Science.gov

Sample records for 10-100 nm range

  1. Investigation of Methanol Formation Mechanisms in H2O+CH4 Ices Subjected to 5 keV Electrons at a 10-100 K Temperature Range

    NASA Astrophysics Data System (ADS)

    Stelmach, K. B.; Cooper, P. D.

    2014-12-01

    Methane (CH4) and water are one of the most common molecules in both planetary bodies and interstellar dust grains. Another common molecule, methanol (CH3OH), is thought to form in CH4+H2O ices. However, the exact formation mechanisms of methanol from cosmic rays are not well known, especially in the temperatures of interest. Experiments were performed using high energy electrons (5 keV) to irradiate mixtures of 1:10, 1:5, and 1:3 CH4+H2O ices under a temperature range of 10-100 Kelvin with Fourier Transform Infrared (FTIR) spectroscopy being used to identify the products. Isotopologues of the two molecules (D2O and CD4) were used to probe for the mechanisms. Other products were formed as well and their potential mechanisms are identified. The implications of the mechanisms for planetary and interstellar chemistry are discussed.

  2. TCSPC FLIM in the wavelength range from 800 nm to 1700 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Becker, Wolfgang; Shcheslavsky, Vladislav

    2016-03-01

    Excitation and detection in the wavelength range above 800nm is a convenient and relatively inexpensive way to increase the penetration depth in optical microscopy. Moreover, detection at long wavelength avoids the problem that tissue autofluorescence contaminates the signals from endogenous fluorescence probes. FLIM at NIR wavelength may therefore be complementary to multiphoton microscopy, especially if the lifetimes of NIR fluorophores report biological parameters of the tissue structures they are bound to. Unfortunately, neither the excitation sources nor the detectors of standard confocal and multiphoton laser scanning systems are directly suitable for excitation and detection of NIR fluorescence. Most of these problems can be solved, however, by using ps diode lasers or Ti:Sapphire lasers at their fundamental wavelength, and NIR-sensitive detectors. With NIR-sensitive PMTs the detection wavelength range can be extended up to 900 nm, with InGaAs SPAD detectors up to 1700 nm. Here, we demonstrate the use of a combination of laser scanning, multi-dimensional TCSPC, and advanced excitation sources and detectors for FLIM at up to 1700 nm. The performance was tested at tissue samples incubated with NIR dyes. The fluorescence lifetimes generally get shorter with increasing absorption and emission wavelengths of the dyes. For the cyanine dye IR1061, absorbing around 1060 nm, the lifetime was found to be as short as 70 ps. Nevertheless the fluorescence decay could still be clearly detected. Almost all dyes showed clear lifetime changes depending on the binding to different tissue constituents.

  3. 15 CFR 10.0 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false General. 10.0 Section 10.0 Commerce... PRODUCT STANDARDS § 10.0 General. (a) Introduction. The Department of Commerce (hereinafter referred to as... substantial public impact; (2) The proposed standard reflects the broad interest of an industry group or...

  4. Laser enhancements for Lunar Laser Ranging at 532 nm

    NASA Astrophysics Data System (ADS)

    Martinot-Lagarde, G.; Aimar, M.; Albanèse, D.; Courde, C.; Exertier, P.; Fienga, A.; Mariey, H.; Métris, G.; Rigard-Cerison, R.; Samain, E.; Torre, J.-M.; Viot, H.

    This article exposes how we improved (by more than a factor of four) the green Lunar Laser Ranging instrumental sensitivity of the French telemetric station of the "Observatoire de la Côte d'Azur" in 2012. The primary reason for this success is the doubling of the pulse energy of our green Nd:YAG laser, reaching now 200 mJ at 10 Hz. This first gain is due to the replacement (inside our oscillator cavity) of the dye cell with a CR4+:YAG crystal saturable absorber. Complementary spatial beam profile improvements are also described, regarding polarisation, flashlamp geometry and specific lens arrangements (to exclude ghosts from focusing on the 8 m long amplification chain). Those combined laser enhancements pave the way to future science breakthrough linked to quasi-millimetric determination of the Earth-Moon dynamics (Murphy, 2013). Jointly, we propose an empirical thermal lensing model, varying with the cycle ratio of the flashlamps. Our model connects Koechner's (1970) continuous pumping to our intermittent pumping case, with a "normalised heating coefficient" equalling 0.05 only if the electrical lamp input power is equal to 6 kW and scaling as this [electrical input power into the lamps] to the power of [half the pumping cycle ratio].

  5. 750 nm 1.5 W frequency-doubled semiconductor disk laser with a 44 nm tuning range.

    PubMed

    Saarinen, Esa J; Lyytikäinen, Jari; Ranta, Sanna; Rantamäki, Antti; Sirbu, Alexei; Iakovlev, Vladimir; Kapon, Eli; Okhotnikov, Oleg G

    2015-10-01

    We demonstrate 1.5 W of output power at the wavelength of 750 nm by intracavity frequency doubling a wafer-fused semiconductor disk laser diode-pumped at 980 nm. An optical-to-optical efficiency of 8.3% was achieved using a bismuth borate crystal. The wavelength of the doubled emission could be tuned from 720 to 764 nm with an intracavity birefringent plate. The beam quality parameter M2 of the laser output was measured to be below 1.5 at all pump powers. The laser is a promising tool for biomedical applications that can take advantage of the large penetration depth of light in tissue in the 700-800 nm spectral range.

  6. 750 nm 1.5 W frequency-doubled semiconductor disk laser with a 44 nm tuning range.

    PubMed

    Saarinen, Esa J; Lyytikäinen, Jari; Ranta, Sanna; Rantamäki, Antti; Sirbu, Alexei; Iakovlev, Vladimir; Kapon, Eli; Okhotnikov, Oleg G

    2015-10-01

    We demonstrate 1.5 W of output power at the wavelength of 750 nm by intracavity frequency doubling a wafer-fused semiconductor disk laser diode-pumped at 980 nm. An optical-to-optical efficiency of 8.3% was achieved using a bismuth borate crystal. The wavelength of the doubled emission could be tuned from 720 to 764 nm with an intracavity birefringent plate. The beam quality parameter M2 of the laser output was measured to be below 1.5 at all pump powers. The laser is a promising tool for biomedical applications that can take advantage of the large penetration depth of light in tissue in the 700-800 nm spectral range. PMID:26421536

  7. Megahertz FDML laser with up to 143nm sweep range for ultrahigh resolution OCT at 1050nm

    NASA Astrophysics Data System (ADS)

    Kolb, Jan Philip; Klein, Thomas; Eibl, Matthias; Pfeiffer, Tom; Wieser, Wolfgang; Huber, Robert

    2016-03-01

    We present a new design of a Fourier Domain Mode Locked laser (FDML laser), which provides a new record in sweep range at ~1μm center wavelength: At the fundamental sweep rate of 2x417 kHz we reach 143nm bandwidth and 120nm with 4x buffering at 1.67MHz sweep rate. The latter configuration of our system is characterized: The FWHM of the point spread function (PSF) of a mirror is 5.6μm (in tissue). Human in vivo retinal imaging is performed with the MHz laser showing more details in vascular structures. Here we could measure an axial resolution of 6.0μm by determining the FWHM of specular reflex in the image. Additionally, challenges related to such a high sweep bandwidth such as water absorption are investigated.

  8. Articular cartilage optical properties in the spectral range 300--850 nm

    NASA Astrophysics Data System (ADS)

    Ebert, Daniel W.; Roberts, Cynthia J.; Farrar, Stuart K.; Johnston, William M.; Litsky, Alan S.; Bertone, Alicia L.

    1998-07-01

    Measurements of absolute total reflectance were recorded from weight-bearing (n equals 9) and nonweight-bearing (n equals 9) equine articular cartilage specimens from 300 to 850 nm using a spectrophotometer with integrating sphere attachment. Following correction of measured spectra for interfacial reflections and edge losses, Kubelka-Munk theory was applied to estimate absorption and scattering coefficient, 1D light intensity distribution, and light penetration depth. Kubelka-Munk absorption coefficients ranged from approximately 7 cm-1 at 330 nm to approximately 1 cm-1 at 850 nm. A localized absorption peak was noted at approximately 340 nm. Above 510 nm, weight-bearing cartilage demonstrated significantly higher absorption coefficients than nonweight-bearing tissue (paired t-test, p < 0.05). Kubelka-Munk scattering coefficients ranged from approximately 40 cm-1 at 360 nm to approximately 6 cm-1 at 850 nm. No statistical differences in scattering coefficient were noted between weight-bearing and nonweight-bearing tissue. Penetration depths predicted by Kubelka-Munk theory ranged from 0.6 mm at 350 nm to over 3 mm at 850 nm. Stronger absorption in weight-bearing cartilage compared to nonweight-bearing tissue resulted in lower light penetration depths in weight-bearing cartilage at all wavelengths longer than 510 nm.

  9. Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Molina, M. J.

    1986-01-01

    The absorption cross sections of ozone have been measured in the wavelength range 185-350 nm and in the temperature range 225-298 K. The absolute ozone concentrations were established by measuring the pressure of pure gaseous samples in the 0.08to 300-torr range, and the UV spectra were recorded under conditions where less than 1 percent of the sample decomposed. The temperature dependence is significant for wavelengths longer than about 280 nm. The absorption cross-section values around 210 nm were found to be about 10 percent larger than the previously accepted values.

  10. Achromatic circular polarizer in the 482-535 nm range based on polypropylene films

    NASA Astrophysics Data System (ADS)

    Muravsky, Al. A.; Murauski, An. A.; Agabekov, V. E.; Chuvasheva, O. O.; Ivanova, N. A.

    2012-11-01

    We present a design for an achromatic circular polarizer based on polypropylene films. The circular polarizer, having eccentricity ≥0.92 in the 482-535 nm range and ideally circular for the wavelength of ~505 nm, is obtained by combining BOPP C2-25 and BOPP C2-35 films of thickness 23 m and 33 μm.

  11. Research of the Additional Losses Occurring in Optical Fiber at its Multiple Bends in the Range Waves 1310nm, 1550nm and 1625nm Long

    NASA Astrophysics Data System (ADS)

    Yurchenko, A. V.; Gorlov, N. I.; Alkina, A. D.; Mekhtiev, A. D.; Kovtun, A. A.

    2016-01-01

    Article is devoted to research of the additional losses occurring in the optical fiber at its multiple bends in the range waves of 1310 nanometers, 1550 nanometers and 1625 nanometers long. Article is directed on creation of the external factors methods which allow to estimate and eliminate negative influence. The automated way of calculation of losses at a bend is developed. Results of scientific researches are used by engineers of “Kazaktelekom” AS for practical definition of losses service conditions. For modeling the Wolfram|Alpha environment — the knowledge base and a set of computing algorithms was chosen. The greatest losses are noted on wavelength 1310nm and 1625nm. All dependences are nonlinear. Losses with each following excess are multiplicative.

  12. CCPR-S1 Supplementary comparison for spectral radiance in the range of 220 nm to 2500 nm

    NASA Astrophysics Data System (ADS)

    Khlevnoy, Boris; Sapritsky, Victor; Rougie, Bernard; Gibson, Charles; Yoon, Howard; Gaertner, Arnold; Taubert, Dieter; Hartmann, Juergen

    2009-08-01

    In 1997, the Consultative Committee for Photometry and Radiometry (CCPR) initiated a supplementary comparison of spectral radiance in the wavelength range from 220 nm to 2500 nm (CCPR-S1) using tungsten strip-filament lamps as transfer standards. Five national metrology institutes (NMIs) took part in the comparison: BNM/INM (France), NIST (USA), NRC (Canada), PTB (Germany) and VNIIOFI (Russia), with VNIIOFI as the pilot laboratory. Each NMI provided the transfer lamps that were used to transfer their measurements to the pilot laboratory. The intercomparison sequence began with the participant measurements, then the pilot measurements, followed by a second set of measurements by the participant laboratory. The measurements were carried out from 1998 to 2002, with the final report completed in 2008. This paper presents the descriptions of measurement facilities and uncertainties of the participants, as well as the comparison results that were analysed in accordance with the Guidelines for CCPR Comparisons Report Preparation, and a re-evaluation of the results taking into account the instability of some of the transfer lamps. Excluding a few wavelengths, all participants agree with each other within ±1.5%. The disagreement decreases to approximately ±1.0% when the anomalous data are excluded from the analysis.

  13. A Sounding Rocket Mission Concept to Acquire High-Resolution Radiometric Spectra Spanning the 9 nm - 31 nm Wavelength Range

    NASA Technical Reports Server (NTRS)

    Krause, L. Habash; Cirtain, Jonathan; McGuirck, Michael; Pavelitz, Steven; Weber, Ed.; Winebarger, Amy

    2012-01-01

    When studying Solar Extreme Ultraviolet (EUV) emissions, both single-wavelength, two- dimensional (2D) spectroheliograms and multi-wavelength, one-dimensional (1D) line spectra are important, especially for a thorough understanding of the complex processes in the solar magnetized plasma from the base of the chromosphere through the corona. 2D image data are required for a detailed study of spatial structures, whereas radiometric (i.e., spectral) data provide information on relevant atomic excitation/ionization state densities (and thus temperature). Using both imaging and radiometric techniques, several satellite missions presently study solar dynamics in the EUV, including the Solar Dynamics Observatory (SDO), Hinode, and the Solar-Terrestrial Relations Observatory (STEREO). The EUV wavelengths of interest typically span 9 nm to 31 nm, with the shorter wavelengths being associated with the hottest features (e.g., intense flares and bright points) and the longer wavelengths associated with cooler features (e.g., coronal holes and filaments). Because the optical components of satellite instruments degrade over time, it is not uncommon to conduct sounding rocket underflights for calibration purposes. The authors have designed a radiometric sounding rocket payload that could serve as both a calibration underflight for and a complementary scientific mission to the upcoming Solar Ultraviolet Imager (SUVI) mission aboard the GOES-R satellite (scheduled for a 2015 launch). The challenge to provide quality radiometric line spectra over the 9-31 nm range covered by SUVI was driven by the multilayer coatings required to make the optical components, including mirrors and gratings, reflective over the entire range. Typically, these multilayers provide useful EUV reflectances over bandwidths of a few nm. Our solution to this problem was to employ a three-telescope system in which the optical components were coated with multilayers that spanned three wavelength ranges to cover

  14. Double Brillouin frequency spaced multiwavelength Brillouin-erbium fiber laser with 50 nm tuning range

    NASA Astrophysics Data System (ADS)

    Zhao, J. F.; Liao, T. Q.; Zhang, C.; Zhang, R. X.; Miao, C. Y.; Tong, Z. R.

    2012-09-01

    A 50 nm tuning range multiwavelength Brillouin-erbium fiber laser (MWBEFL) with double Brillouin frequency spacing is presented. Two separated gain blocks with symmetrical architecture, consisted by erbium-doped fiber amplifiers (EDFAs) and Brillouin gain media, are used to generate double Brillouin frequency spacing. The wider tuning range is realized by eliminating the self-lasing cavity modes existing in conventional MWBEFLs because of the absence of the physical mirrors at the ends of the linear cavity. The Brillouin pump (BP) is preamplified by the EDFA before entering the single-mode fiber (SMF), which leads to the reduction of threshold power and the generation enhancement of Brillouin Stokes (BS) signals. Four channels with 0.176 nm spacing are achieved at 2 mW BP power and 280 mW 980 nm pump power which can be tuned from 1525 to 1575 nm.

  15. Size distribution of radon decay products in the range 0.1-10 nm.

    PubMed

    Zhukovsky, Michael; Rogozina, Marina; Suponkina, Anna

    2014-07-01

    Information about the size distribution of radioactive aerosols in nanometre range is essential for the purposes of air contamination monitoring, dose assessment to respiratory tract and planning of protective measures. The diffusion battery, which allows capturing particles in the size range of 0.1-10 nm, has developed. Interpreting data obtained from diffusion battery is very complex. The method of expectation maximisation by Maher and Laird was chosen for indirect inversion data. The experiments were performed in the box with equivalent equilibrium concentration of radon in the range of 7000-10,000 Bq m(-3). The three modes of size distribution of radon decay products aerosols were obtained: activity median thermodynamic diameter (AMTD) 0.3, 1.5 and 5 nm. These modes can be identified as: AMTD 0.3 nm--atoms of radon progeny (218Po in general); AMTD 1.5 nm--clusters of radon progeny atoms and non-radioactive atoms in the atmosphere; AMTD 5 nm--particles formed by coagulation of previous mode clusters with existing aerosol particles or nucleation of condensation nuclei containing atoms of radon progeny.

  16. 38 CFR 10.0 - Adjusted service pay entitlements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Adjusted service pay entitlements. 10.0 Section 10.0 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUSTED COMPENSATION Adjusted Compensation; General § 10.0 Adjusted service pay entitlements. A veteran entitled...

  17. 38 CFR 10.0 - Adjusted service pay entitlements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Adjusted service pay entitlements. 10.0 Section 10.0 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUSTED COMPENSATION Adjusted Compensation; General § 10.0 Adjusted service pay entitlements. A veteran entitled...

  18. Optical properties of human colon tissues in the 350 – 2500 nm spectral range

    SciTech Connect

    Bashkatov, A N; Genina, E A; Kochubey, V I; Kolesnikova, E A; Tuchin, V V; Rubtsov, V S

    2014-08-31

    We present the optical characteristics of the mucosa and submucosa of human colon tissue. The experiments are performed in vitro using a LAMBDA 950 spectrophotometer in the 350 – 2500 nm spectral range. The absorption and scattering coefficients and the scattering anisotropy factor are calculated based on the measured diffuse reflectance and total and collimated transmittance spectra using the inverse Monte Carlo method. (laser biophotonics)

  19. Stable Gain-Switched Thulium Fiber Laser With 140-nm Tuning Range

    NASA Astrophysics Data System (ADS)

    Wang, Fengqiu; Meng, Yafei; Kelleher, Edmund; Guo, Guoxiang; Li, Yao; Xu, Yongbing; Zhu, Shining

    2016-06-01

    We demonstrate a gain-switched thulium fiber laser that can be continuously tuned over 140 nm, while maintaining stable nanosecond single-pulse operation. To the best of our knowledge, this system represents the broadest tuning range for a gain-switched fiber laser. The system simplicity and wideband wavelength tunability combined with the ability to control the temporal characteristics of the gain-switched pulses mean this is a versatile source highly suited to a wide range of applications in the eye-safe region of the infrared, including spectroscopy, sensing and material processing, as well as being a practical seed source for pumping nonlinear processes.

  20. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    SciTech Connect

    Andreeva, E V; Il'chenko, S N; Lobintsov, A A; Shramenko, M V; Ladugin, M A; Marmalyuk, A A; Yakubovich, S D

    2013-11-30

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  1. Eye safe high power laser diode in the 1410-1550nm range

    NASA Astrophysics Data System (ADS)

    Boucart, Julien; de Largy, Brian; Kearley, Mark; Lichtenstein, Norbert

    2010-02-01

    The demand for high power lasers emitting in the 14xx-15xxnm range is growing for applications in fields such as medical or homeland security. We demonstrate high power laser diodes with emission at 1430, 1470 and 1560 nm. Single multimode emitters at 1470nm emit about 3.5W in CW operation. Power conversion efficiency can reach values as high as 38.5%. With this base material, single and multi-emitter fiber coupled modules are built. Additionally, bars on passive and microchannel coolers are fabricated that deliver 25W and 38W respectively in CW mode, while obtaining more than 80 W in pulsed mode. All reliability tests show an outstanding stability of the material with no signs of wearout after 3750 hrs under strong acceleration conditions.

  2. Stationary radiator in the 130 - 190 nm range based on a water vapour plasma

    SciTech Connect

    Shuaibov, Aleksandr K; Dashchenko, Arkadii I; Shevera, Igor V

    2001-06-30

    The characteristics of a continuous radiation source pumped by a longitudinal glow He - H{sub 2}O mixture discharge are presented. For a water vapour pressure of {approx}50 - 300 Pa and helium pressure of 1.0 - 8.0 kPa, the discharge under study was shown to emit radiation primarily in the 130 - 190 nm range. The optimal water vapour pressure lies in the range from 50 Pa to 150 Pa and the optimal partial helium pressure is 1.0 kPa. In the 3-50 mA range of the discharge current, the brightness of the main emission bands was observed to increase linearly with current. (laser applications and other topics in quantum electronics)

  3. Metrological characterization of nm-range dynamic etalons using a heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Kazieva, T. V.; Kuznetsov, A. P.; Ponarina, M. V.; Gubskiy, K. L.; Reshetov, V. N.

    2016-09-01

    Test structures used for calibration of scanning probe microscopes have certain limitations. They are short-lived, their work surface becomes coated with microparticles over time, and it gradually wears out by contact with the measuring probe, resulting in the etalon geometry deformation. Dynamic etalons allow calibrating SPMs in ranges from pm to nm. In this article we present the results of dynamic etalon metrological characteristics research using an SPM equipped with tree-coordinate heterodyne laser interferometer. Obtained data indicates stability of piezoelectric modulus and absence of piezoelectric hysteresis phenomena in the etalon samples used.

  4. Stronger Limits on Hypothetical Yukawa Interactions in the 30-8000 nm Range.

    PubMed

    Chen, Y-J; Tham, W K; Krause, D E; López, D; Fischbach, E; Decca, R S

    2016-06-01

    We report the results of new differential force measurements between a test mass and rotating source masses of gold and silicon to search for forces beyond Newtonian gravity at short separations. The technique employed subtracts the otherwise dominant Casimir force at the outset and, when combined with a lock-in amplification technique, leads to a significant improvement (up to a factor of 10^{3}) over existing limits on the strength (relative to gravity) of a putative force in the 40-8000 nm interaction range. PMID:27314709

  5. Stronger Limits on Hypothetical Yukawa Interactions in the 30-8000 nm Range

    NASA Astrophysics Data System (ADS)

    Chen, Y.-J.; Tham, W. K.; Krause, D. E.; López, D.; Fischbach, E.; Decca, R. S.

    2016-06-01

    We report the results of new differential force measurements between a test mass and rotating source masses of gold and silicon to search for forces beyond Newtonian gravity at short separations. The technique employed subtracts the otherwise dominant Casimir force at the outset and, when combined with a lock-in amplification technique, leads to a significant improvement (up to a factor of 103 ) over existing limits on the strength (relative to gravity) of a putative force in the 40-8000 nm interaction range.

  6. High-power cw laser bars of the 750 - 790-nm wavelength range

    SciTech Connect

    Degtyareva, N S; Kondakov, S A; Mikayelyan, G T; Gorlachuk, P V; Ladugin, M A; Marmalyuk, Aleksandr A; Ryaboshtan, Yu L; Yarotskaya, I V

    2013-06-30

    We have developed the effective design of semiconductor heterostructures, which allow one to fabricate cw laser diodes emitting in the 750 - 790-nm spectral range. The optimal conditions for fabrication of GaAsP/AlGaInP/GaAs heterostructures by MOCVD have been determined. It is shown that the use of quantum wells with a precisely defined quantity mismatch reduces the threshold current density and increases the external differential efficiency. The results of studies of characteristics of diode laser bars fabricated from these heterostructures are presented. (lasers)

  7. Ocular aberrations up to the infrared range: from 632.8 to 1070 nm.

    PubMed

    Fernández, Enrique J; Artal, Pablo

    2008-12-22

    Ocular aberrations were measured by using a Hartmann-Shack wavefront sensor in the visible and infrared portions of the spectrum. In the latter, wavelengths 1030, 1050 and 1070 nm were used for the first time for the study of the optical quality of the eye. In this spectral range the retinal photoreceptors barely respond, so the radiation is virtually invisible for the subject. The results were confronted with those obtained by the same system at 780 and 632.8 nm. Monochromatic aberrations were found to be similar from the visible to the infrared. Longitudinal chromatic aberration was experimentally obtained, being approximately 1 D from 632.8 to 1070 nm. The feasibility of using the infrared for studying the eye was demonstrated. The employment of the infrared has an enormous potential for the better understanding of the impact and influence of the aberrations in vision with adaptive optics. It allows for measuring and controlling aberrations whilst the subject might eventually perform visual tests, with no interference from the beacon light.

  8. 21-nm-range wavelength-tunable L-band Er-doped fiber linear-cavity laser

    NASA Astrophysics Data System (ADS)

    Yang, Shiquan; Zhao, Chunliu; Li, Zhaohui; Ding, Lei; Yuan, Shuzhong; Dong, Xiaoyi

    2001-10-01

    A novel method, which utilizes amplified spontaneous emission (ASE) as a secondary pump source, is presented for implanting a linear cavity erbium-doped fiber laser operating in L-Band. The output wavelength tuned from 1566 nm to 1587 nm, about 21 nm tuning range, was obtained in the experiment and the stability of the laser is very good.

  9. IC design of low power, wide tuning range VCO in 90 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Zhu, Li; Zhigong, Wang; Zhiqun, Li; Qin, Li; Faen, Liu

    2014-12-01

    A low power VCO with a wide tuning range and low phase noise has been designed and realized in a standard 90 nm CMOS technology. A newly proposed current-reuse cross-connected pair is utilized as a negative conductance generator to compensate the energy loss of the resonator. The supply current is reduced by half compared to that of the conventional LC-VCO. An improved inversion-mode MOSFET (IMOS) varactor is introduced to extend the capacitance tuning range from 32.8% to 66%. A detailed analysis of the proposed varactor is provided. The VCO achieves a tuning range of 27-32.5 GHz, exhibiting a frequency tuning range (FTR) of 18.4% and a phase noise of -101.38 dBc/Hz at 1 MHz offset from a 30 GHz carrier, and shows an excellent FOM of -185 dBc/Hz. With the voltage supply of 1.5 V, the core circuit of VCO draws only 2.1 mA DC current.

  10. Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm

    NASA Astrophysics Data System (ADS)

    Saeys, Wouter; Velazco-Roa, Maria A.; Thennadil, Suresh N.; Ramon, Herman; Nicolaï, Bart M.

    2008-03-01

    Optical measurement of fruit quality is challenging due to the presence of a skin around the fruit flesh and the multiple scattering by the structured tissues. To gain insight in the light-tissue interaction, the optical properties of apple skin and flesh tissue are estimated in the 350-2200 nm range for three cultivars. For this purpose, single integrating sphere measurements are combined with inverse adding-doubling. The observed absorption coefficient spectra are dominated by water in the near infrared and by pigments and chlorophyll in the visible region, whose concentrations are much higher in skin tissue. The scattering coefficient spectra show the monotonic decrease with increasing wavelength typical for biological tissues with skin tissue being approximately three times more scattering than flesh tissue. Comparison to the values from time-resolved spectroscopy reported in literature showed comparable profiles for the optical properties, but overestimation of the absorption coefficient values, due to light losses.

  11. Absolute frequency measurement for the emission transitions of molecular iodine in the 982 - 985 nm range

    SciTech Connect

    Matyugin, Yu A; Ignatovich, S M; Kuznetsov, Sergei A; Nesterenko, M I; Okhapkin, M V; Pivtsov, V S; Skvortsov, Mikhail N; Bagaev, Sergei N

    2012-03-31

    We report high-precision frequency measurements of the separate hyperfine structure (HFS) components of the emission B - X system transitions of {sup 127}I{sub 2} molecules in the 982 - 985 nm range. To resolve the HFS of the emission lines, advantage was taken of the method of three-level laser spectroscopy. The function of exciting radiation was fulfilled by the second harmonic of a cw Nd : YAG laser, and the probe radiation in the 968 - 998 nm range was generated by an external-cavity diode laser. The output Nd : YAG laser frequency was locked to an HFS component of the absorption transition and the probing laser radiation to the emission transition component. When both frequencies were locked to HFS components with a common upper level, the output diode laser frequency was precisely equal to the emission transition frequency. The output frequency of the thus stabilised diode laser was measured with the help of a femtosecond optical frequency synthesiser based on a Ti : sapphire laser. We present the results of the absolute frequency measurements of 20 HFS components belonging to six vibrational - rotational transitions of the B - X system of iodine [R56(32 - 48)a1, P58(32 - 48)a1, P85(33 - 48)a1, R87(33 - 48a1, R88(33 - 48)a10] and all 15 components of the R86(33 - 48) line. The relative measurement uncertainty is equal to 7 Multiplication-Sign 10{sup -10} and is determined by the frequency instability of the diode laser radiation.

  12. A grating-coupled external cavity InAs/InP quantum dot laser with 85-nm tuning range

    NASA Astrophysics Data System (ADS)

    Wei, Heng; Jin, Peng; Luo, Shuai; Ji, Hai-Ming; Yang, Tao; Li, Xin-Kun; Wu, Jian; An, Qi; Wu, Yan-Hua; Chen, Hong-Mei; Wang, Fei-Fei; Wu, Ju; Wang, Zhan-Guo

    2013-09-01

    The optical performance of a grating-coupled external cavity laser based on InAs/InP quantum dots is investigated. Continuous tuning from 1391 nm to 1468 nm is realized at an injection current of 1900 mA. With the injection current increasing to 2300 mA, the tuning is blue shifted to some extent to the range from 1383 nm to 1461 nm. By combining the effect of the injection current with the grating tuning, the total tuning bandwidth of the external cavity quantum-dot laser can reach up to 85 nm. The dependence of the threshold current on the tuning wavelength is also presented.

  13. Final report on the key comparison CCPR-K2.c-2003: Spectral responsivity in the range of 200 nm to 400 nm

    NASA Astrophysics Data System (ADS)

    Werner, Lutz

    2014-01-01

    The CCPR K2.c key comparison of spectral power responsivity of detectors in the ultraviolet spectral range from 200 nm to 400 nm was carried out in the framework of the CIPM Mutual Recognition Arrangement by 14 participating national metrology institutes. The key comparison was piloted by the Physikalisch-Technische Bundesanstalt (PTB). The comparison was carried out through the calibration of sets of transfer detectors. Three types of transfer detectors based on two types of photodiodes have been used to handle probable changes of the spectral responsivity of the detectors in the ultraviolet spectral range. The results of the key comparison in the wavelength range from 200 nm to 240 nm are based on single-element windowless PtSi/n-Si Schottky photodiodes while in the range from 250 nm to 400 nm the results are based on single-element photodiode detectors and three-element reflection trap detectors, both made up of windowless Si pn junction photodiodes. The comparison was organized in a star pattern and conducted in three groups of participants. The report describes the measurements made by the pilot laboratory, summarizes the reports submitted by the participants and describes the data analysis carried out to determine the key comparison reference values and degrees of equivalence. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCPR, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  14. 780nm-range VCSEL array for laser printer system and other applications at Ricoh

    NASA Astrophysics Data System (ADS)

    Jikutani, Naoto; Itoh, Akihiro; Harasaka, Kazuhiro; Sasaki, Toshihide; Sato, Shunichi

    2016-03-01

    A 780 nm-range 40 channels vertical-cavity surface-emitting laser (VCSEL) array was developed as a writing light source for printers. A 15° off missoriented GaAs substrate, an aluminum-free GaInAsP/GaInP compressively-strained multiple quantum well and an anisotropic-shape transverse-mode filter were employed to control polarization characteristics. The anisotropic-shape transverse-mode filter also suppressed higher transverse-mode and enabled high-power single-mode operation. Thus, orthogonal-polarization suppression-ratio (OPSR) of over 22 dB and side-mode suppression-ratio (SMSR) of 30 dB were obtained at operation power of 3mW at same time for wide oxide-aperture range below 50 μm2. Moreover, a thermal resistance was reduced for 38% by increasing a thickness of high thermal conductivity layer (3λ/4-AlAs layer) near a cavity. By this structure, a peak-power increased to 1.3 times. Moreover, a power-fall caused by self-heating at pulse-rise was decreased to 10% and the one caused by a thermal-crosstalk between channels was decreased to 46%. The VCSEL array was mounted in a ceramic package with a tilted seal glass to prevent optical-crosstalk caused by other channels. Thus, we achieved stable-output and high-quality beam characteristics for long-duration pulse drive.

  15. The optical absorption of triatomic carbon C3 for the wavelength range 260 to 560 nm

    NASA Technical Reports Server (NTRS)

    Jones, J. J.

    1978-01-01

    The spectral absorption properties of C3 have been measured in a shock tube containing a test gas mixture of acetylene diluted with argon. The absorption of a pulsed xenon light source was measured by means of eight photomultiplier channels to a spectrograph and an accompanying drum camera. The postshock test gas temperature and pressure were varied over the range 3240 to 4300 K and 37 to 229 kPa, respectively. The results showed appreciable absorption by C3 for the wavelength range 300 to 540 nm. The various reported measurements of the heat of formation of C3 which are available in the open literature were reviewed, and a value of 198 kcal/mol is recommended. This value, along with best available values for other species, was used to calculate the number density of C3 for the conditions of the present experiments in order to compute absorption cross section or electronic oscillator strength. The computed electronic oscillator strength varied from a high of 0.062 at 3300 K to a low of 0.036 at 3900 K.

  16. Long-range pulselength scaling of 351nm laser damage thresholds

    NASA Astrophysics Data System (ADS)

    Foltyn, S. R.; Jolin, L. J.

    1986-12-01

    In a series of experiments incorporating 351nm pulselength of 9, 26, 54, and 625ns, it was found that laser damage thresholds increased as (pulselength)/sup x/, and that the exponent averaged 0.36 and ranged, for different samples, from 0.23 to 0.48. Similar results were obtained when only catastrophic damage was considered. Samples included Al2O3/SiO2 in both AR and HR multilayers, HR's of Sc2O3/SiO2 and HfO2/SiO2, and Al-on-pyrex mirror; 9ns thresholds were between 0.2 to 5.6 J/sq cm. When these data were compared with a wide range of other results - for wavelengths from 0.25 to 10.6 microns and pulselengths down to 4ps - a remarkably consistent picture emerged. Damage thresholds, on average, increase approximately as the cube-root of pulselength from picoseconds to nearly a microsecond, and do so regardless of wavelength or material under test.

  17. High power laser diodes at 14xx nm wavelength range for industrial and medical applications

    NASA Astrophysics Data System (ADS)

    Telkkälä, Jarkko; Boucart, Julien; Krejci, Martin; Crum, Trevor; Lichtenstein, Norbert

    2014-03-01

    We report on the development of the latest generation of high power laser diodes at 14xx nm wavelength range suitable for industrial applications such as plastics welding and medical applications including acne treatment, skin rejuvenation and surgery. The paper presents the newest chip generation developed at II-VI Laser Enterprise, increasing the output power and the power conversion efficiency while retaining the reliability of the initial design. At an emission wavelength around 1440 nm we applied the improved design to a variety of assemblies exhibiting maximum power values as high as 7 W for broad-area single emitters. For 1 cm wide bars on conductive coolers and for bars on active micro channel coolers we have obtained 50 W and 72 W in continuous wave (cw) operation respectively. The maximum power measured for a 1 cm bar operated with 50 μs pulse width and 0.01% duty cycle was 184 W, demonstrating the potential of the chip design for optimized cooling. Power conversion efficiency values as high as 50% for a single emitter device and over 40% for mounted bars have been demonstrated, reducing the required power budget to operate the devices. Both active and conductive bar assembly configurations show polarization purity greater than 98%. Life testing has been conducted at 95 A, 50% duty cycle and 0.5 Hz hard pulsed operation for bars which were soldered to conductive copper CS mounts using our hard solder technology. The results after 5500 h, or 10 million "on-off" cycles show stable operation.

  18. Spectrophotometry of Jupiter in the Wavelength Range 320-1100 nm: Long-Term Observations of Variations over the Disk

    NASA Astrophysics Data System (ADS)

    Vdovichenko, V. D.; Kirienko, G. A.; Nosova, T. P.

    2003-07-01

    Based on long-term spectrophotometric observations of Jupiter in the wavelength range 320-1100 nm, we investigate the variations of aerosol extinction (at λ 320-600 nm) and methane-ammonia absorption (at λ 600-1100 nm) over Jupiter's disk. We give estimates of the optical parameters for the upper cloud layer of the planet, the overlying stratospheric haze, and a Rayleigh atmosphere.

  19. Spectral irradiance model for tungsten halogen lamps in 340-850 nm wavelength range.

    PubMed

    Ojanen, Maija; Kärhä, Petri; Ikonen, Erkki

    2010-02-10

    We have developed a physical model for the spectral irradiance of 1 kW tungsten halogen incandescent lamps for the wavelength range 340-850 nm. The model consists of the Planck's radiation law, published values for the emissivity of tungsten, and a residual spectral correction function taking into account unknown factors of the lamp. The correction function was determined by measuring the spectra of a 1000 W, quartz-halogen, tungsten coiled filament (FEL) lamp at different temperatures. The new model was tested with lamps of types FEL and 1000 W, 120 V quartz halogen (DXW). Comparisons with measurements of two national standards laboratories indicate that the model can account for the spectral irradiance values of lamps with an agreement better than 1% throughout the spectral region studied. We further demonstrate that the spectral irradiance of a lamp can be predicted with an expanded uncertainty of 2.6% if the color temperature and illuminance values for the lamp are known with expanded uncertainties of 20 K and 2%, respectively. In addition, it is suggested that the spectral irradiance may be derived from resistance measurements of the filament with lamp on and off.

  20. Spectral irradiance model for tungsten halogen lamps in 340-850 nm wavelength range

    SciTech Connect

    Ojanen, Maija; Kaerhae, Petri; Ikonen, Erkki

    2010-02-10

    We have developed a physical model for the spectral irradiance of 1 kW tungsten halogen incandescent lamps for the wavelength range 340-850 nm. The model consists of the Planck's radiation law, published values for the emissivity of tungsten, and a residual spectral correction function taking into account unknown factors of the lamp. The correction function was determined by measuring the spectra of a 1000 W, quartz-halogen, tungsten coiled filament (FEL) lamp at different temperatures. The new model was tested with lamps of types FEL and 1000 W, 120 V quartz halogen (DXW). Comparisons with measurements of two national standards laboratories indicate that the model can account for the spectral irradiance values of lamps with an agreement better than 1% throughout the spectral region studied. We further demonstrate that the spectral irradiance of a lamp can be predicted with an expanded uncertainty of 2.6% if the color temperature and illuminance values for the lamp are known with expanded uncertainties of 20 K and 2%, respectively. In addition, it is suggested that the spectral irradiance may be derived from resistance measurements of the filament with lamp on and off.

  1. Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770-1110 nm tuning range and frequency doubling to 387-463 nm.

    PubMed

    Demirbas, Umit; Baali, Ilyes

    2015-10-15

    We report significant average power and efficiency scaling of diode-pumped Cr:LiSAF lasers in continuous-wave (cw), cw frequency-doubled, and mode-locked regimes. Four single-emitter broad-area laser diodes around 660 nm were used as the pump source, which provided a total pump power of 7.2 W. To minimize thermal effects, a 20 mm long Cr:LiSAF sample with a relatively low Cr-concentration (0.8%) was used as the gain medium. In cw laser experiments, 2.4 W of output power, a slope efficiency of 50%, and a tuning range covering the 770-1110 nm region were achieved. Intracavity frequency doubling with beta-barium borate (BBO) crystals generated up to 1160 mW of blue power and a record tuning range in the 387-463 nm region. When mode locked with a saturable absorber mirror, the laser produced 195 fs pulses with 580 mW of average power around 820 nm at a 100.3 MHz repetition rate. The optical-to-optical conversion efficiency of the system was 33% in cw, 16% in cw frequency-doubled, and 8% in cw mode-locked regimes.

  2. 31 CFR 10.0 - Scope of part.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Money and Finance: Treasury Office of the Secretary of the Treasury PRACTICE BEFORE THE INTERNAL REVENUE SERVICE § 10.0 Scope of part. This part contains rules governing the recognition of attorneys, certified public accountants, enrolled agents, and other persons representing clients before the Internal...

  3. Spectral emission properties of a LPP light source in the sub-200nm range for wafer inspection applications

    NASA Astrophysics Data System (ADS)

    Gambino, Nadia; Rollinger, Bob; Hudgins, Duane; Abhari, Reza; Abreau, F.

    2015-03-01

    In this work, the spectral emission proprieties of a droplet-based laser-produced plasma are investigated in the VUV range. These studies are performed with a spectrograph operating from 30 nm to 180 nm at a spectral resolution of 0.1 nm. The emission spectra are recorded for different droplet-based metal fuels such as tin, indium and gallium in the presence of different background gas pressure levels. The experimental results are relevant for alternative light sources that would be needed for future wafer inspection tools. In addition, the experimental results help to determine the Out- Of-Band (OOB) radiation emission of the EUV source. By tuning the type of fuel, the laser energies and the background gas, the LPP light source shows good capabilities to be operated as a tunable light source that covers a spectral emission range from the EUV to the sub-200 nm range.

  4. The use of hyperspectral imaging in the VNIR (400-1000nm) and SWIR range (1000-2500nm) for detecting counterfeit drugs with identical API composition.

    PubMed

    Wilczyński, Sławomir; Koprowski, Robert; Marmion, Mathieu; Duda, Piotr; Błońska-Fajfrowska, Barbara

    2016-11-01

    The risk of death from taking counterfeit drugs is now greater than the probability of dying from malaria and AIDS combined (at least half a million deaths each year). At the same time, counterfeit medicines are falsified more and more "skillfully". According to WHO about 10% of counterfeit drugs are copies of original products. The methods of hyperspectral imaging and image analysis and processing were used to detect counterfeit drugs. Original Viagra® (Pfizer) and counterfeit tablets were compared. Hyperspectral imaging was used to acquire hyperspectral data cubes from both original and counterfeit tablets in the spectral range of 400-2500nm. Spectral parameters for both the original Viagra® and counterfeit drugs were compared. Grey-Level Co-Occurrence Matrix (GLCM) analysis and Principal Component Analysis (PCA) were performed. Hyperspectral analysis of the surface of the original Viagra® and counterfeit tablets demonstrates significant differences in reflectance (maximum difference for 1619.75nm). The GLCM contrast for the falsified drug is on average higher than for the original one 16±4%. GLCM contrast analysis enables to quantify homogeneity of distribution of tablet ingredients and enables to distinguish tablets with identical chemical composition. SWIR (1000-2500nm) hyperspectral imaging has a definite advantage over imaging in VNIR (400-1000nm) - higher wavelength is less sensitive to non-uniform illumination.

  5. The use of hyperspectral imaging in the VNIR (400-1000nm) and SWIR range (1000-2500nm) for detecting counterfeit drugs with identical API composition.

    PubMed

    Wilczyński, Sławomir; Koprowski, Robert; Marmion, Mathieu; Duda, Piotr; Błońska-Fajfrowska, Barbara

    2016-11-01

    The risk of death from taking counterfeit drugs is now greater than the probability of dying from malaria and AIDS combined (at least half a million deaths each year). At the same time, counterfeit medicines are falsified more and more "skillfully". According to WHO about 10% of counterfeit drugs are copies of original products. The methods of hyperspectral imaging and image analysis and processing were used to detect counterfeit drugs. Original Viagra® (Pfizer) and counterfeit tablets were compared. Hyperspectral imaging was used to acquire hyperspectral data cubes from both original and counterfeit tablets in the spectral range of 400-2500nm. Spectral parameters for both the original Viagra® and counterfeit drugs were compared. Grey-Level Co-Occurrence Matrix (GLCM) analysis and Principal Component Analysis (PCA) were performed. Hyperspectral analysis of the surface of the original Viagra® and counterfeit tablets demonstrates significant differences in reflectance (maximum difference for 1619.75nm). The GLCM contrast for the falsified drug is on average higher than for the original one 16±4%. GLCM contrast analysis enables to quantify homogeneity of distribution of tablet ingredients and enables to distinguish tablets with identical chemical composition. SWIR (1000-2500nm) hyperspectral imaging has a definite advantage over imaging in VNIR (400-1000nm) - higher wavelength is less sensitive to non-uniform illumination. PMID:27591580

  6. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064  nm wavelength.

    PubMed

    Xue, Li; Li, Zhulian; Zhang, Labao; Zhai, Dongsheng; Li, Yuqiang; Zhang, Sen; Li, Ming; Kang, Lin; Chen, Jian; Wu, Peiheng; Xiong, Yaoheng

    2016-08-15

    Satellite laser ranging operating at 1064 nm wavelength using superconducting nanowire single-photon detectors (SNSPDs) is successfully demonstrated. A SNSPD with an intrinsic quantum efficiency of 80% and a dark count rate of 100 cps at 1064 nm wavelength is developed and introduced to Yunnan Observatory in China. With improved closed-loop telescope systems (field of view of about 26''), satellites including Cryosat, Ajisai, and Glonass with ranges of 1600 km, 3100 km, and 19,500 km, respectively, are experimentally ranged with mean echo rates of 1200/min, 4200/min, and 320/min, respectively. To the best of our knowledge, this is the first demonstration of laser ranging for satellites using SNSPDs at 1064 nm wavelength. Theoretical analysis of the detection efficiency and the mean echo rate for typical satellites indicate that it is possible for a SNSPD to range satellites from low Earth orbit to geostationary Earth orbit. PMID:27519105

  7. 10. 100 foot through truss north west bearing abutment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. 100 foot through truss - north west bearing abutment of the second through truss, showing the diagonal sway bracing to its alternate pier. This bearing point is on a concrete extension of the original bearing point now covered by rock and soil. Note that the bearing point is to the backmost position on the concrete pier. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  8. Optical Properties of Sodium Chloride Solution Within the Spectral Range from 300 to 2500 nm at Room Temperature.

    PubMed

    Li, Xingcan; Liu, Linhua; Zhao, Junming; Tan, Jianyu

    2015-05-01

    The optical properties of sodium chloride (NaCl) solution were experimentally determined by double optical pathlength transmission method in the spectral range from 300 to 2500 nm at the NaCl concentration range from 0 to 360 g/L. The results show that the refractive index of NaCl solution increases with NaCl concentrations and correlates nonlinearly with the concentration of NaCl solution. The absorption index of NaCl solution increases with NaCl concentrations in the visible spectral range of 300-700 nm, but varies little in the near-infrared spectral range of 700-2500 nm at room temperature. For the sake of applications, the fitted formulae of the refractive index and absorption index of NaCl solution as a function of wavelength and NaCl concentration are presented.

  9. Four-wavelength time-resolved optical mammography in the 680-980-nm range

    NASA Astrophysics Data System (ADS)

    Pifferi, Antonio; Taroni, Paola; Torricelli, Alessandro; Messina, Fabrizio; Cubeddu, Rinaldo; Danesini, Gianmaria

    2003-07-01

    What is to our knowledge the first instrument for time-resolved optical mammography operating at wavelengths longer than 900 nm has been developed. It is a scanning system that relies on the acquisition of time-resolved transmittance curves at 683, 785, 912, and 975 nm, with a total measurement time of ~5 min for an entire image. Breast structures and lesions can be discriminated based on the different absorption and scattering properties at the four wavelengths, which reflect different contributions of oxyhemoglobin, deoxyhemoglobin, water, and lipids, as well as distinct structures. The system is currently used in a European clinical trial.

  10. Fabrication of Fiber-Optic Tilted Bragg Grating Filter in 40 nm Range with A Single Phase Mask

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Wang, Y.; Sharma, A.; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    Fiber-optic Bragg grating filters are fabricated with a range of Bragg wavelength between 1296 and 1336 nm, using a single phase mask. 30 mW of continuous-wave light at 244 nm is used from a frequency-doubled argon-ion laser having an intracavity etalon. Gratings are fabricated by tilting the photosensitive fiber with respect to the phase mask up to an angle of 15 degrees. The variation of Bragg wavelength with the fiber-tilt is explained with a simple formula. High spatial coherence of 244 nm light makes it possible to displace the fiber as much as 6 mm in front of the phase mask and tilt the fiber by as much as 15 degrees. This results in nearly constant band-width and near 100% reflectively for all gratings throughout the 40 nm range.

  11. Ytterbium-doped fibre laser tunable in the range 1017 - 1040 nm with second-harmonic generation

    SciTech Connect

    Dontsova, E I; Kablukov, S I; Babin, Sergei A

    2013-05-31

    A cladding-pumped ytterbium-doped fibre laser has been tuned to shorter emission wavelengths (from 1040 to 1017 nm). The laser output power obtained has been compared to calculation results. We have studied frequency doubling of the laser in a KTiOPO{sub 4} (KTP) crystal with type II phase matching in the XY plane and demonstrated wavelength tuning in the range 510 - 520 nm. (lasers)

  12. Extended femtosecond laser wavelength range to 330 nm in a high power LBO based optical parametric oscillator.

    PubMed

    Fan, Jintao; Gu, Chenglin; Wang, Chingyue; Hu, Minglie

    2016-06-13

    We experimentally demonstrate a compact tunable, high average power femtosecond laser source in the ultraviolet (UV) regime. The laser source is based on intra-cavity frequency doubling of a temperature-tuned lithium tribotate (LBO) optical parametric oscillator (OPO), synchronously pumped at 520 nm by a frequency-doubled, Yb-fiber femtosecond laser amplifier system. By adjusting crystal temperature, the OPO can provide tunable visible to near-infrared (NIR) signal pulse, which have a wide spectral tuning range from 660 to 884 nm. Using a β-barium borate (BBO) crystal for intra-cavity frequency doubling, tunable femtosecond UV pulse are generated across 330~442 nm with up to 364 mW at 402 nm.

  13. Extended femtosecond laser wavelength range to 330 nm in a high power LBO based optical parametric oscillator.

    PubMed

    Fan, Jintao; Gu, Chenglin; Wang, Chingyue; Hu, Minglie

    2016-06-13

    We experimentally demonstrate a compact tunable, high average power femtosecond laser source in the ultraviolet (UV) regime. The laser source is based on intra-cavity frequency doubling of a temperature-tuned lithium tribotate (LBO) optical parametric oscillator (OPO), synchronously pumped at 520 nm by a frequency-doubled, Yb-fiber femtosecond laser amplifier system. By adjusting crystal temperature, the OPO can provide tunable visible to near-infrared (NIR) signal pulse, which have a wide spectral tuning range from 660 to 884 nm. Using a β-barium borate (BBO) crystal for intra-cavity frequency doubling, tunable femtosecond UV pulse are generated across 330~442 nm with up to 364 mW at 402 nm. PMID:27410342

  14. Tunable semiconductor laser at 1025-1095 nm range for OCT applications with an extended imaging depth

    NASA Astrophysics Data System (ADS)

    Shramenko, Mikhail V.; Chamorovskiy, Alexander; Lyu, Hong-Chou; Lobintsov, Andrei A.; Karnowski, Karol; Yakubovich, Sergei D.; Wojtkowski, Maciej

    2015-03-01

    Tunable semiconductor laser for 1025-1095 nm spectral range is developed based on the InGaAs semiconductor optical amplifier and a narrow band-pass acousto-optic tunable filter in a fiber ring cavity. Mode-hop-free sweeping with tuning speeds of up to 104 nm/s was demonstrated. Instantaneous linewidth is in the range of 0.06-0.15 nm, side-mode suppression is up to 50 dB and polarization extinction ratio exceeds 18 dB. Optical power in output single mode fiber reaches 20 mW. The laser was used in OCT system for imaging a contact lens immersed in a 0.5% intra-lipid solution. The cross-section image provided the imaging depth of more than 5mm.

  15. Mobility of Chromophores Absorbing Light in the 320-420 nm Range in Transparent and Cataract Lens Tissue

    NASA Astrophysics Data System (ADS)

    Halets-Bui, I. V.; Sukhodol, A. A.; Shcharbin, D. G.

    2014-11-01

    We have analyzed the spectral and kinetic characteristics of phosphorescence at room temperature on a millisecond time scale for transparent and cataract lens tissues. We have studied the nature of the change (with age and with cataract development in the lens tissues) in the molecular mobility of the products absorbing light in the 320-420 nm range.

  16. Ion generation and CPC detection efficiency studies in sub 3-nm size range

    SciTech Connect

    Kangasluoma, J.; Junninen, H.; Sipilae, M.; Kulmala, M.; Petaejae, T.; Lehtipalo, K.; Mikkilae, J.; Vanhanen, J.; Attoui, M.; Worsnop, D.

    2013-05-24

    We studied the chemical composition of commonly used condensation particle counter calibration ions with a mass spectrometer and found that in our calibration setup the negatively charged ammonium sulphate, sodium chloride and tungsten oxide are the least contaminated whereas silver on both positive and negative and the three mentioned earlier in positive mode are contaminated with organics. We report cut-off diameters for Airmodus Particle Size Magnifier (PSM) 1.1, 1.3, 1.4, 1.6 and 1.6-1.8 nm for negative sodium chloride, ammonium sulphate, tungsten oxide, silver and positive organics, respectively. To study the effect of sample relative humidity on detection efficiency of the PSM we used different humidities in the differential mobility analyzer sheath flow and found that with increasing relative humidity also the detection efficiency of the PSM increases.

  17. Study of transitions in thulium atoms in the 410-420-nm range for laser cooling

    SciTech Connect

    Akimov, A V; Chebakov, K Yu; Tolstikhina, I Yu; Sokolov, A V; Rodionov, P B; Kanorsky, S I; Sorokin, V N; Kolachevsky, N N

    2008-10-31

    The possibility of laser cooling of thulium atoms is considered. The hyperfine structure of almost cyclic 4f{sup 13}6s{sup 2} (J{sub g} = 7/2) {r_reversible} 4f{sup 12}5d{sub 3/2}6s{sup 2} (J{sub e} = 9/2) and 4f{sup 13}6s{sup 2} (J{sub g} = 7/2) {r_reversible} 4f{sup 12}5d{sub 5/2}6s{sup 2} (J{sub e} = 9/2) transitions at 410.6 and 420.4 nm, respectively, is studied by the method of sub-Doppler saturation spectroscopy in counterpropagating laser beams. The hyperfine splitting of excited levels involved in these transitions is measured and the natural linewidths of these transitions are determined. The structure of the neighbouring 4f{sup 13}6s6p (J{sub e} = 5/2) and 4f{sup 12}5d{sub 5/2}6s{sup 2} (J{sub e} = 7/2) levels is studied for the first time by this method. The decay probabilities of the J{sub e} = 9/2 levels via channels removing atoms from the cooling cycle are calculated. It is found that the branching ratio for the strong transition at 410.6 nm (A = 6x10{sup 7} s{sup -1}) is smaller than 2x10{sup -5}, which makes this transition most promising for laser cooling. The laser cooling of atoms in a Zeeman cooler at this transition is simulated. The possibility of using a laser-cooled cloud of thulium atoms to study the metrological transition at 1.14 {mu}m is discussed. (laser cooling of atoms)

  18. A new bismuth-doped fibre laser, emitting in the range 1625 – 1775 nm

    SciTech Connect

    Dianov, E M; Firstov, S V; Alyshev, S V; Riumkin, K E; Shubin, A V; Medvedkov, O I; Mel'kumov, M A; Khopin, V F; Gur'yanov, A N

    2014-06-30

    CW lasing of a Bi-doped germanosilicate fibre in a wavelength range that covers the spectral region between the emission bands of Er and Tm fibre lasers has been demonstrated for the first time. (letters)

  19. Fabrication and performance of tuneable single-mode VCSELs emitting in the 750- to 1000-nm range

    NASA Astrophysics Data System (ADS)

    Grabherr, Martin; Wiedenmann, Dieter; Jaeger, Roland; King, Roger

    2005-03-01

    The growing demand on low cost high spectral purity laser sources at specific wavelengths for applications like tuneable diode laser absorption spectroscopy (TDLAS) and optical pumping of atomic clocks can be met by sophisticated single-mode VCSELs in the 760 to 980 nm wavelength range. Equipped with micro thermo electrical cooler (TEC) and thermistor inside a small standard TO46 package, the resulting wavelength tuning range is larger than +/- 2.5 nm. U-L-M photonics presents manufacturing aspects, device performance and reliability data on tuneable single-mode VCSELs at 760, 780, 794, 852, and 948 nm lately introduced to the market. According applications are O2 sensing, Rb pumping, Cs pumping, and moisture sensing, respectively. The first part of the paper dealing with manufacturing aspects focuses on control of resonance wavelength during epitaxial growth and process control during selective oxidation for current confinement. Acceptable resonance wavelength tolerance is as small as +/- 1nm and typical aperture size of oxide confined single-mode VCSELs is 3 &mum with only few hundred nm tolerance. Both of these major production steps significantly contribute to yield on wafer values. Key performance data for the presented single-mode VCSELs are: >0.5 mW of optical output power, >30 dB side mode suppression ratio, and extrapolated 10E7 h MTTF at room temperature based on several millions of real test hours. Finally, appropriate fiber coupling solutions will be presented and discussed.

  20. The spectral opacity of triatomic carbon measured in a graphite tube furnace over the 280 to 600 nm wavelength range

    NASA Technical Reports Server (NTRS)

    Snow, W. L.; Wells, W. L.

    1980-01-01

    The opacity of linear triatomic carbon (C3) was measured in a graphite tube furnace from 280 to 600 nm to supplement the earlier measurements of Brewer and Engelke. The spectral cross section was estimated from the opacities using temperature profiles determined pyrometrically and a revised heat of formation delta H = 198 kcal/mole). The cross section was found to be nonnegligible over the range 300 to 500 nm and the electronic oscillator strength based on the total cross section estimate was 0.02.

  1. Investigation of the lithium 670.7 nm wavelength range in the solar spectrum

    NASA Astrophysics Data System (ADS)

    Caffau, Elisabetta; Mott, Alessandro; Harutyunyan, Gohar; Malherbe, Jean-Marie; Steffen, Matthias

    2016-07-01

    Lithium is a key chemical element, with a chemical evolution that is different from that of most other elements. It is also very fragile, as it is destroyed by nuclear reactions with protons at temperatures higher than about 2.5 million K. According to standard Big Bang nucleosynthesis, only the isotope 7Li is produced in significant amounts, while the primordial abundance of the lighter isotope 6Li is negligible. Lithium is not produced by nucleosynthesis in normal stars, except in peculiar phases of stellar evolution (e.g. in AGB stars and Novae). Lithium may also be formed as a result of flares in the atmospheres of young, active stars. To investigate the history of Li production and depletion in the Galaxy, it is necessary to analyse stars of all ages, including those at solar metallicity. In this case, the spectroscopic determination of the Li abundance is complicated by the presence of other spectral lines overlapping with the Li doublet at 670.7 nm. The correct identification and knowledge of the atomic parameters of these blend lines is critical, especially if the 6LI/7Li isotopic ratio is to be derived. In this investigation, we consider several line lists of the blending components available in the literature and use them to compute synthetic spectra, performing the line formation computations both for the classical 1D Holweger-Mueller model and a CO5BOLD 3D hydrodynamical simulation of the solar atmosphere. The synthetic spectra are then compared to the solar spectrum observed at different limb angles. This allows us to check the quality of existing line lists, to find potentially misidentified blend lines, and to construct an optimized line list for solar-type stars.

  2. Preparation of aqueous colloidal mesostructured and mesoporous silica nanoparticles with controlled particle size in a very wide range from 20 nm to 700 nm

    NASA Astrophysics Data System (ADS)

    Yamada, Hironori; Urata, Chihiro; Ujiie, Hiroto; Yamauchi, Yusuke; Kuroda, Kazuyuki

    2013-06-01

    Particle size control of colloidal mesoporous silica nanoparticles (CMPS) in a very wide range is quite significant for the design of CMPS toward various applications, such as catalysis and drug delivery. Various types of CMPS and their precursors (colloidal mesostructured silica nanoparticles (CMSS)) with different particle sizes (ca. 20-700 nm) were newly prepared from tetraalkoxysilanes with different alkoxy groups (Si(OR)4, R = Me, Et, Pr, and Bu) in the presence of alcohols (R'OH, R' = Me, Et, Pr, and Bu) as additives. CMSS with larger particle size were obtained by using tetrabutoxysilane (TBOS) and by increasing the amount of BuOH, which is explained by both the difference in the hydrolysis rates of tetraalkoxysilanes themselves and the effect of added alcohols on the hydrolysis rates of tetraalkoxysilanes. Larger amounts of alcohols with longer alkyl chains decrease the hydrolysis rates of tetraalkoxysilanes and the subsequent formation rates of silica species. Thus, the preferential particle growth of CMSS to nucleation occurs, and larger CMSS are formed. Highly dispersed CMPS were prepared by the removal of surfactants of CMSS by dialysis which can lead to the preparation of CMPS without aggregation. Therefore, the particle size control through the tuning of the hydrolysis rate of tetraalkoxysilanes can be conducted by a one-pot and easy approach. Even larger CMPS (ca. 700 nm in size) show relatively high dispersibility. This dispersibility will surely contribute to the design of materials both retaining nanoscale characteristics and avoiding various nanorisks.Particle size control of colloidal mesoporous silica nanoparticles (CMPS) in a very wide range is quite significant for the design of CMPS toward various applications, such as catalysis and drug delivery. Various types of CMPS and their precursors (colloidal mesostructured silica nanoparticles (CMSS)) with different particle sizes (ca. 20-700 nm) were newly prepared from tetraalkoxysilanes with

  3. ABSORPTION CROSS SECTION OF GASEOUS ACETYLENE AT 85 K IN THE WAVELENGTH RANGE 110-155 nm

    SciTech Connect

    Cheng, Bing-Ming; Chen, Hui-Fen; Lu, Hsiao-Chi; Chen, Hong-Kai; Alam, M. S.; Chou, Sheng-Lung; Lin, Meng-Yeh

    2011-09-01

    Absorption spectra and absorption cross sections of gaseous acetylene, C{sub 2}H{sub 2}, at 298 and 85 K were measured in the wavelength range 110-155 nm with a slit-jet system coupled to a synchrotron as a source of vacuum ultraviolet light. Using published spectral parameters of C{sub 2}H{sub 2}, we simulated the absorption profile for the Rydberg transition to state 4R{sub 0} in the range 124.6-125.1 nm, according to which the temperature of the jet-expanded sample at stagnation pressure 200 Torr is 85 {+-} 5 K. Our cross sections of C{sub 2}H{sub 2} are applicable for determining properties sensitive to temperature for diagnostic work on Saturn and Titan.

  4. Terminal Area Simulation System User's Guide - Version 10.0

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Proctor, Fred H.

    2014-01-01

    The Terminal Area Simulation System (TASS) is a three-dimensional, time-dependent, large eddy simulation model that has been developed for studies of wake vortex and weather hazards to aviation, along with other atmospheric turbulence, and cloud-scale weather phenomenology. This document describes the source code for TASS version 10.0 and provides users with needed documentation to run the model. The source code is programed in Fortran language and is formulated to take advantage of vector and efficient multi-processor scaling for execution on massively-parallel supercomputer clusters. The code contains different initialization modules allowing the study of aircraft wake vortex interaction with the atmosphere and ground, atmospheric turbulence, atmospheric boundary layers, precipitating convective clouds, hail storms, gust fronts, microburst windshear, supercell and mesoscale convective systems, tornadic storms, and ring vortices. The model is able to operate in either two- or three-dimensions with equations numerically formulated on a Cartesian grid. The primary output from the TASS is time-dependent domain fields generated by the prognostic equations and diagnosed variables. This document will enable a user to understand the general logic of TASS, and will show how to configure and initialize the model domain. Also described are the formats of the input and output files, as well as the parameters that control the input and output.

  5. 45 nm wavelength tuning range of an InP/InGaAsP photonic integrated tunable receiver

    NASA Astrophysics Data System (ADS)

    Jan, Yu-Heng; Heimbuch, Mark E.; Coldren, Larry A.; DenBaars, Steven P.

    1996-11-01

    An integrated widely tunable photonic receiver including a semiconductor optical preamplifier, a two-section grating-assisted co-directional coupler optical filter, and a waveguide photodetector has been produced in the InP/InGaAsP materials system. Although sidelobes and bandwidth are still higher than desired, this integrated receiver can be continuously tuned for a record-wide 45 nm wavelength range.

  6. Photoluminescence quantum yields of PbSe and PbS QDs in the range of 1000 nm to 2000 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Beard, Matthew C.; Semonin, Octavi E.; Johnson, Justin C.; Marshall, Ashley; Zhang, Jianbing; Chernomordik, Boris D.

    2016-03-01

    PbS and PbSe quantum dots (QDs) are promising strong infrared emitters. We have developed several synthetic routes to producing PbS and PbSe QDs with a variety of sizes such that the bandgap can be continuously tuned from 2000 to 1000 nm. We provide a simple and accurate synthetic route to reproducibly produce PbS QDs with a narrow size-distribution and high chemical yield. The different synthetic routes lead to differences in their surface chemistry and to differences in their air stability and photoluminescence quantum yields (PLQY). To characterize the PLQY we directly measured the PLQY IR-26 (a standard IR emitting organic dye) at a range of concentrations as well as the PLQY of PbS and PbSe QDs for a range of sizes. We find that the PLQY of IR-26 has a weak concentration dependence due to reabsorption, with a PLQY of 0:048_0:002% for low concentrations, lower than previous reports by a full order of magnitude. We also find a dramatic size dependence for both PbS and PbSe QDs, with the smallest dots exhibiting a PLQY in excess of 60% while larger dots fall below 3%. A model, including nonradiative transition between electronic states and energy transfer to ligand vibrations, appears to explain this size dependence. These findings provide both a better characterization of photoluminescence for near infrared emitters. Halogen surface passivation provides both a larger PLQY (~ 30% improvement) as well as increased air stability.

  7. Graphene mode-locked femtosecond Cr2+:ZnS laser with ~300 nm tuning range.

    PubMed

    Cho, Won Bae; Choi, Sun Young; Zhu, Chunhui; Kim, Mi Hye; Kim, Jun Wan; Kim, Jin Sun; Park, Hyung Ju; Shin, Dong Ho; Jung, Moon Youn; Wang, Fengqiu; Rotermund, Fabian

    2016-09-01

    Graphene has proved to be an excellent broadband saturable absorber for mode-locked operation of ultrafast lasers. However, for the mid-infrared (mid-IR) range where broadly tunable sources are in great needs, graphene-based broadly tunable ultrafast mid-IR lasers have not been demonstrated so far. Here, we report on passive mode-locking of a mid-IR Cr:ZnS laser by utilizing a transmission-type monolayer graphene saturable absorber and broad spectral tunability between 2120 nm and 2408 nm, which is the broadest tuning bandwidth ever reported for graphene mode-locked mid-IR solid-state lasers. The recovery time of the saturable absorber is measured to be ~2.4 ps by pump-probe technique at a wavelength of 2350 nm. Stably mode-locked Cr:ZnS laser delivers Fourier transform-limited 220-fs pulses with a pulse energy of up to 7.8 nJ. PMID:27607680

  8. Background UV in the 300 to 400 nm region affecting the extended range detection of radioactive material

    NASA Astrophysics Data System (ADS)

    West, William Carey

    The desire to find alternative methods for the detection of radioactive material at extended ranges has resulted in an increased interest in the detection of the air fluorescence resulting from the alpha or beta radioactive particle's interaction with molecules of air. Air fluorescence photons travel further than the radioactive particles, allowing for detections at longer distances. However, any detection of the ultraviolet (UV) air fluorescence is dependant on overcoming natural and man-made background UV to achieve favorable signal to noise ratios. This research describes laboratory and field experiments conducted to determine the background UV in the 300 to 400 nm region of the electromagnetic spectrum for certain detection scenarios, and number of UV air fluorescence photons required to achieve detections with a certain confidence limit. The reflective, scintillation, and transmissive UV characteristics of some common materials are discussed and their contribution to a successful detection explored. Additionally, the contributions to the UV background from natural and man-made light sources are investigated. The successful outside optical detection of alpha and beta radioactive isotopes in the 300 to 400 nm region is possible in the lower part of the spectral region (i.e., near 316 nm), when there is no UV light from man-made sources in that band and only natural light exists. Alpha sources (i.e., 241Am) equal to or larger than 1.017 curies, theoretically can be detected with 95% confidence during nighttime scenarios with moonless overcast skies at a distances of 20 meters at 316 nm with the optical system assumed for these calculations. Additionally, where scintillators are available that can be employed near 90Sr radioactive sources, the detectable activities can be reduced by factors as high as 250. This allows for detections of sources in the millicuries. Tests results are presented for several common materials (e.g., polypropylene, high density

  9. High-accuracy reference standards for two-photon absorption in the 680-1050 nm wavelength range.

    PubMed

    de Reguardati, Sophie; Pahapill, Juri; Mikhailov, Alexander; Stepanenko, Yuriy; Rebane, Aleksander

    2016-04-18

    Degenerate two-photon absorption (2PA) of a series of organic fluorophores is measured using femtosecond fluorescence excitation method in the wavelength range, λ2PA = 680-1050 nm, and ~100 MHz pulse repetition rate. The function of relative 2PA spectral shape is obtained with estimated accuracy 5%, and the absolute 2PA cross section is measured at selected wavelengths with the accuracy 8%. Significant improvement of the accuracy is achieved by means of rigorous evaluation of the quadratic dependence of the fluorescence signal on the incident photon flux in the whole wavelength range, by comparing results obtained from two independent experiments, as well as due to meticulous evaluation of critical experimental parameters, including the excitation spatial- and temporal pulse shape, laser power and sample geometry. Application of the reference standards in nonlinear transmittance measurements is discussed.

  10. Distinct Short-Range Order Is Inherent to Small Amorphous Calcium Carbonate Clusters (<2 nm).

    PubMed

    Sun, Shengtong; Chevrier, Daniel M; Zhang, Peng; Gebauer, Denis; Cölfen, Helmut

    2016-09-26

    Amorphous intermediate phases are vital precursors in the crystallization of many biogenic minerals. While inherent short-range orders have been found in amorphous calcium carbonates (ACCs) relating to different crystalline forms, it has never been clarified experimentally whether such orders already exist in very small clusters less than 2 nm in size. Here, we studied the stability and structure of 10,12-pentacosadiynoic acid (PCDA) protected ACC clusters with a core size of ca. 1.4 nm consisting of only seven CaCO3 units. Ligand concentration and structure are shown to be key factors in stabilizing the ACC clusters. More importantly, even in such small CaCO3 entities, a proto-calcite short-range order can be identified but with a relatively high degree of disorder that arises from the very small size of the CaCO3 core. Our findings support the notion of a structural link between prenucleation clusters, amorphous intermediates, and final crystalline polymorphs, which appears central to the understanding of polymorph selection. PMID:27611501

  11. Refractivities of H2, He, O2, CO, and Kr for 168-288 nm wavelength range

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Parkinson, W. H.; Huber, M. C. E.

    1976-01-01

    Precision measurements of the refractivities of H2, He, O2, CO, and Kr were made in the wavelength range 168-288 nm. By using a 1.2-m-long test cell and by keeping the test gas at accurately determined conditions near atmospheric pressure and room temperature, accuracies (90% confidence limit) were achieved for the absolute refractivities that ranged from plus or minus 0.1% to plus or minus 1.0% depending upon the gas and wavelength range. For a given gas, the ratio of refractivities at any two wavelengths has a smaller uncertainty. For H2, CO, and O2, results are for wavelengths shorter than those of previous measurements and, for He and Kr, the uncertainties are less than those of other measurements. For He refractivities agree with the theoretical ones, but in the case of H2 results are about 1% larger than the theoretical values. At the upper end of the wavelength range studied, the data are in agreement with previous measurements on H2, CO, and Kr. For O2 results indicate that the hitherto available data are too large by amounts ranging from 0.8% to 10%.

  12. Design concepts of monolithic metamorphic vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range

    SciTech Connect

    Egorov, A. Yu. Karachinsky, L. Ya.; Novikov, I. I.; Babichev, A. V.; Nevedomskiy, V. N.; Bugrov, V. E.

    2015-11-15

    Possible design concepts for long-wavelength vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range on GaAs substrates are suggested. It is shown that a metamorphic GaAs–InGaAs heterostructure with a thin buffer layer providing rapid transition from the lattice constant of GaAs to that of In{sub x}Ga{sub 1–x}As with an indium fraction of x < 0.3 can be formed by molecular-beam epitaxy. Analysis by transmission electron microscopy demonstrated the effective localization of mismatch dislocations in the thin buffer layer and full suppression of their penetration into the overlying InGaAs metamorphic layer.

  13. Full anterior segment biometry with extended imaging range spectral domain optical coherence tomography at 1340 nm

    PubMed Central

    Li, Peng; Johnstone, Murray; Wang, Ruikang K.

    2014-01-01

    Abstract. We demonstrate an extended-imaging-range anterior-segment optical coherence tomography (eAS-OCT) system for the biometric assessment of full AS in human eye. This newly developed eAS-OCT operating at 1340-nm wavelength band is simultaneously capable of an imaging speed of 120 kHz A-line scan rate, an axial resolution of 7.2 μm, and an extended imaging range of up to 16 mm in air. Imaging results from three healthy subjects and one subject with a narrow-angle demonstrate the instrument’s utility. With this system, it can provide anatomical dimensions of AS, including central corneal thickness, anterior chamber width, anterior chamber depth, crystalline lens vault, crystalline lens thickness, angle opening distance (AOD500/AOD750), and the area described by the trabecular-iris space (TISA500/TISA750) at 500/750  μm. We also use eAS-OCT to image and quantify dynamic functional changes of the AS in response to a light stimulus that induces physiological pupillary changes as well as accommodative efforts that induce lens changes. The results show that the described eAS-OCT is able to provide full anatomical biometry for AS and is useful for the studies where the dynamic response of AS compartment to certain stimulus is required. PMID:24752381

  14. Optical properties of dental restorative materials in the wavelength range 400 to 700 nm for the simulation of color perception.

    PubMed

    Friebel, Moritz; Povel, Kirsten; Cappius, Hans-Joachim; Helfmann, Jürgen; Meinke, Martina

    2009-01-01

    Aesthetic restorations require dental restorative materials to have optical properties very similar to those of the teeth. A method is developed to this end to determine the optical parameters absorption coefficient mu(a), scattering coefficient mu(s), anisotropy factor g, and effective scattering coefficient mu(s) (') of dental restorative materials. The method includes sample preparation and measurements of transmittance and reflectance in an integrating sphere spectrometer followed by inverse Monte Carlo simulations. Using this method the intrinsic optical parameters are determined for shade B2 of the light-activated composites TPH((R)) Spectrum, Esthet-X, and the Ormocer Definite in the wavelength range 400 to 700 nm. By using the determined parameters mu(a), mu(s), and g together with an appropriate phase function, the reflectance of samples with 1-mm layer thickness and shade B2 could be predicted with a very high degree of accuracy using a forward Monte Carlo simulation. The color perception was calculated from the simulated reflectance according to the CIELAB system. We initiate the compilation of a data pool of optical parameters that in the future will enable calculation models to be used as a basis for optimization of the optical approximation of the natural tooth, and the composition of new materials and their production process.

  15. Optical properties of dental restorative materials in the wavelength range 400 to 700 nm for the simulation of color perception

    NASA Astrophysics Data System (ADS)

    Friebel, Moritz; Povel, Kirsten; Cappius, Hans-Joachim; Helfmann, Jürgen; Meinke, Martina

    2009-09-01

    Aesthetic restorations require dental restorative materials to have optical properties very similar to those of the teeth. A method is developed to this end to determine the optical parameters absorption coefficient μa, scattering coefficient μs, anisotropy factor g, and effective scattering coefficient μs' of dental restorative materials. The method includes sample preparation and measurements of transmittance and reflectance in an integrating sphere spectrometer followed by inverse Monte Carlo simulations. Using this method the intrinsic optical parameters are determined for shade B2 of the light-activated composites TPH® Spectrum®, Esthet-X®, and the Ormocer® Definite® in the wavelength range 400 to 700 nm. By using the determined parameters μa, μs, and g together with an appropriate phase function, the reflectance of samples with 1-mm layer thickness and shade B2 could be predicted with a very high degree of accuracy using a forward Monte Carlo simulation. The color perception was calculated from the simulated reflectance according to the CIELAB system. We initiate the compilation of a data pool of optical parameters that in the future will enable calculation models to be used as a basis for optimization of the optical approximation of the natural tooth, and the composition of new materials and their production process.

  16. Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm.

    PubMed

    Friebel, Moritz; Helfmann, Jürgen; Netz, Uwe; Meinke, Martina

    2009-01-01

    The intrinsic optical parameters absorption coefficient mu(a), scattering coefficient micros, anisotropy factor g, and effective scattering coefficient micros were determined for human red blood cell (RBC) suspensions of hematocrit 33.2% dependent on the oxygen saturation (SAT O(2)) in the wavelength range 250 to 2,000 nm, including the range above 1,100 nm, about which there are no data available in the literature. Integrating sphere measurements of light transmittance and reflectance in combination with inverse Monte Carlo simulation were carried out for SAT O(2) levels of 100 and 0%. In the wavelength range up to 1,200 nm, the absorption behavior is determined by the hemoglobin absorption. The spectral range above the cells' absorption shows no dependence on SAT O(2) and approximates the absorption of water with values 20 to 30% below the respective values for water. Parameters micros and g are significantly influenced by the SAT O(2)-induced absorption changes. Above 600 nm, micros decreases continuously from values of 85 mm(-1) to values of 30 mm(-1) at 2,000 nm. The anisotropy factor shows a slight decrease with wavelengths above 600 nm. In the spectral regions of 1,450 and 1,900 nm where water has local absorption maxima, g shows a significant decrease down to 0.85, whereas micros increases. PMID:19566295

  17. Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber

    NASA Astrophysics Data System (ADS)

    Pourbeyram, Hamed; Agrawal, Govind P.; Mafi, Arash

    2013-05-01

    We report on the generation of a Raman cascade spanning the wavelength range of 523 to 1750 nm wavelength range in a standard telecommunication graded-index multimode optical fiber. Despite the highly multimode nature of the pump, the Raman peaks are generated in specific modes of the fiber, confirming substantial beam cleanup during the stimulated Raman scattering process.

  18. 20 CFR 10.0 - What are the provisions of the FECA, in general?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... benefits to volunteers in the Civil Air Patrol (5 U.S.C. 8141), members of the Reserve Officers' Training... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false What are the provisions of the FECA, in general? 10.0 Section 10.0 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT...

  19. 20 CFR 10.0 - What are the provisions of the FECA, in general?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... benefits to volunteers in the Civil Air Patrol (5 U.S.C. 8141), members of the Reserve Officers' Training... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true What are the provisions of the FECA, in general? 10.0 Section 10.0 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT...

  20. 20 CFR 10.0 - What are the provisions of the FECA, in general?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... benefits to volunteers in the Civil Air Patrol (5 U.S.C. 8141), members of the Reserve Officers' Training... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true What are the provisions of the FECA, in general? 10.0 Section 10.0 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT...

  1. 20 CFR 10.0 - What are the provisions of the FECA, in general?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... benefits to volunteers in the Civil Air Patrol (5 U.S.C. 8141), members of the Reserve Officers' Training... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false What are the provisions of the FECA, in general? 10.0 Section 10.0 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT...

  2. 20 CFR 10.0 - What are the provisions of the FECA, in general?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... benefits to volunteers in the Civil Air Patrol (5 U.S.C. 8141), members of the Reserve Officers' Training... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false What are the provisions of the FECA, in general? 10.0 Section 10.0 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT...

  3. 20 CFR 10.100 - How and when is a notice of traumatic injury filed?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false How and when is a notice of traumatic injury filed? 10.100 Section 10.100 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF... filed? (a) To claim benefits under the FECA, an employee who sustains a work-related traumatic...

  4. 20 CFR 10.100 - How and when is a notice of traumatic injury filed?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true How and when is a notice of traumatic injury filed? 10.100 Section 10.100 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF... filed? (a) To claim benefits under the FECA, an employee who sustains a work-related traumatic...

  5. 20 CFR 10.100 - How and when is a notice of traumatic injury filed?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false How and when is a notice of traumatic injury filed? 10.100 Section 10.100 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF... filed? (a) To claim benefits under the FECA, an employee who sustains a work-related traumatic...

  6. 20 CFR 10.100 - How and when is a notice of traumatic injury filed?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... filed? 10.100 Section 10.100 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF... submitting a notice shall include the Social Security Number (SSN) of the injured employee. (b) For injuries..., of the causal relationship between the disability and the employment (see 5 U.S.C. 8122(b))....

  7. Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1-4 nm range using polymeric stabilizers.

    PubMed

    Hussain, Irshad; Graham, Susan; Wang, Zhenxin; Tan, Bien; Sherrington, David C; Rannard, Steven P; Cooper, Andrew I; Brust, Mathias

    2005-11-30

    We report here a simple one-step protocol for the preparation of near-monodisperse gold hydrosols in the small size regime (<5 nm). The particle size can be controlled by varying the concentration of the stabilizing polymer, which can be readily displaced by thiol ligands to yield monolayer protected clusters of the usual type.

  8. Diode pumped Yb:CN laser at 1082 nm and intracavity doubling to the green spectral range

    NASA Astrophysics Data System (ADS)

    Liu, B.; Li, Y. L.; Jiang, H. L.

    2011-08-01

    A diode pumped Yb:CaNb2O6 (Yb:CN) laser at 1082 nm with a maximum output of 1.35 W at 13.3 W pump power has been demonstrated. The slope efficiency was 12.4%. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a maximum green power of 374 mW by using a LiB3O5 (LBO) nonlinear crystal. To the best of our knowledge, this is the first report on continuous wave (CW) green generation by intracavity frequency doubling Yb:CN laser.

  9. Nearly lattice-matched n, i, and p layers for InGaN p-i-n photodiodes in the 365-500 nm spectral range

    NASA Astrophysics Data System (ADS)

    Berkman, E. A.; El-Masry, N. A.; Emara, A.; Bedair, S. M.

    2008-03-01

    We report on nearly lattice-matched grown InGaN based p-i-n photodiodes detecting in the 365-500nm range with tunable peak responsivity tailored by the i-layer properties. The growth of lattice matched i- and n-InGaN layer leads to improvement in the device performance. This approach produced photodiodes with zero-bias responsivities up to 0.037A /W at 426nm, corresponding to 15.5% internal quantum efficiency. The peak responsivity wavelength ranged between 416 and 466nm, the longest reported for III-N photodiodes. The effects of InN content and i-layer thickness on photodiode properties and performance are discussed.

  10. Metamorphic distributed Bragg reflectors for the 1440–1600 nm spectral range: Epitaxy, formation, and regrowth of mesa structures

    SciTech Connect

    Egorov, A. Yu. Karachinsky, L. Ya.; Novikov, I. I.; Babichev, A. V.; Berezovskaya, T. N.; Nevedomskiy, V. N.

    2015-10-15

    It is shown that metamorphic In{sub 0.3}Ga{sub 0.7}As/In{sub 0.3}Al{sub 0.7}As distributed Bragg reflectors (DBRs) with a reflection band at 1440–1600 nm and a reflectance of no less than 0.999 can be fabricated by molecular beam epitaxy (MBE) on a GaAs substrate. It is demonstrated that mesa structures formed from metamorphic DBRs on a GaAs substrate can be regrown by MBE and microcavities can be locally formed in two separate epitaxial processes. The results obtained can find wide application in the fabrication of vertical-cavity surface-emitting lasers (VCSELs) with a buried tunnel junction.

  11. Multilayer metal-dielectric planar waveguides for subwavelength guiding of long-range hybrid plasmon polaritons at 1550 nm

    NASA Astrophysics Data System (ADS)

    Bian, Yusheng; Gong, Qihuang

    2014-01-01

    The characteristics of long-range hybrid plasmonic modes guided by multilayer metal-dielectric planar waveguides are investigated at the telecom wavelength. These multilayer structures are formed by sandwiching thin metallic stripes into horizontal silicon slot-like waveguides. Comprehensive numerical studies regarding the geometric parameters’ effects on the modal properties reveal that, by properly choosing the dimensions of the metal stripe and the low-index gaps between the stripe and the silicon layers, the symmetric hybrid modes supported by the structures could feature simultaneously ultra-long propagation distance (several centimeters) and subwavelength mode size. Consideration of possible fabrication imperfections shows that the optical performances of the waveguides are quite robust and highly tolerant to these errors. The presented multilayer plasmonic structures greatly extend the capabilities of conventional long-range surface plasmon polariton waveguides by successfully confining light into a subwavelength scale while maintaining the key advantage of enabling ultra-low-loss propagation, which could facilitate potential applications in ultra-long-range plasmon waveguiding and realizations of compact, high-performance photonic components, as well as building optically integrated circuits with complex functionalities.

  12. A new method to calculate the threshold temperature of a perfect blackbody to protect cornea and lens in the range of 780-3,000 nm.

    PubMed

    Madjidi, Faramarz; Mohammadi, Jamshid

    2015-01-01

    Exposure to IR-A and IR-B radiation, in the wavelength region of 780 nm to 3,000 nm, may lead to the development of cataractogenesis. Estimation of the exposure levels is the first step in controlling adverse health effects. In the present study, the irradiance of a hot blackbody emitter is replaced by its temperature in the exposure limit values for cornea and lens in the range of 780-3,000 nm. This paper explains the development and implementation of a computer code to predict a temperature, defined as Threshold Temperature, which satisfies the exposure limits already proposed by the ICNIRP. To this end, first an infinite series was created for the calculation of spectral radiance by integration with Planck's law. For calculation of irradiance, the initial terms of this infinite series were selected, and integration was performed in the wavelength region of 780 nm to 3,000 nm. Finally, using a computer code, an unknown source temperature that can emit the same irradiance was found. Exposure duration, source area, and observer distance from the hot source were entered as input data in this proposed code. Consequently, it is possible only by measurement of a Planckian emitter temperature and taking into account the distance from source and exposure time for an observer to decide whether the exposure to IR radiation in the range of 780 to 3,000 nm is permissible or not. It seems that the substitution of irradiance by the source temperature is an easier and more convenient way for hygienists to evaluate IR exposures. PMID:25437515

  13. Tuning range and output power optimization of an external-cavity GaN diode laser at 455  nm.

    PubMed

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-03-20

    In this paper we discuss how different feedback gratings affect the tuning range and the output power of external feedback diode laser systems. A tunable high-power narrow-spectrum external-cavity diode laser system around 455 nm is investigated. The laser system is based on a high-power GaN diode laser in a Littrow external-cavity. Both a holographic diffraction grating and a ruled diffraction grating are used as feedback elements in the external cavity. The output power, spectral bandwidth, and tunable range of the external cavity diode laser system are measured and compared with the two gratings at different injected currents. When the holographic grating is used, the laser system can be tuned over a range of 1.4 nm with an output power around 530 mW. When the ruled grating is used, the laser system can be tuned over a range of 6.0 nm with an output power around 80 mW. The results can be used as a guide for selecting gratings for external-cavity diode lasers for different requirements. PMID:27140561

  14. Tuning range and output power optimization of an external-cavity GaN diode laser at 455  nm.

    PubMed

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-03-20

    In this paper we discuss how different feedback gratings affect the tuning range and the output power of external feedback diode laser systems. A tunable high-power narrow-spectrum external-cavity diode laser system around 455 nm is investigated. The laser system is based on a high-power GaN diode laser in a Littrow external-cavity. Both a holographic diffraction grating and a ruled diffraction grating are used as feedback elements in the external cavity. The output power, spectral bandwidth, and tunable range of the external cavity diode laser system are measured and compared with the two gratings at different injected currents. When the holographic grating is used, the laser system can be tuned over a range of 1.4 nm with an output power around 530 mW. When the ruled grating is used, the laser system can be tuned over a range of 6.0 nm with an output power around 80 mW. The results can be used as a guide for selecting gratings for external-cavity diode lasers for different requirements.

  15. Multispectral measurement of contrast in tissue-mimicking phantoms in near-infrared spectral range of 650 to 1600 nm

    PubMed Central

    Salo, Daniel; Zhang, Hairong; Kim, David M.; Berezin, Mikhail Y.

    2014-01-01

    Abstract. In order to identify the optimal imaging conditions for the highest spatial contrast in biological tissue, we explored the properties of a tissue-mimicking phantom as a function of the wavelengths in a broad range of near-infrared spectra (650 to 1600 nm). Our customized multispectral hardware, which featured a scanning transmission microscope and imaging spectrographs equipped with silicon and InGaAs charge-coupled diode array detectors, allowed for direct comparison of the Michelson contrast obtained from a phantom composed of a honeycomb grid, Intralipid, and India ink. The measured contrast depended on the size of the grid, luminance, and the wavelength of measurements. We demonstrated that at low thickness of the phantom, a reasonable contrast of the objects can be achieved at any wavelength between 700 and 1400 nm and between 1500 and 1600 nm. At larger thicknesses, such contrast can be achieved mostly between 1200 and 1350 nm. These results suggest that distinguishing biological features in deep tissue and developing contrast agents for in vivo may benefit from imaging in this spectral range. PMID:25104414

  16. Chemical analyses of soil samples collected from the Sandia National Laboratories/NM, Tonopah Test Range environs, 1994-2005.

    SciTech Connect

    Deola, Regina Anne; Oldewage, Hans D.; Herrera, Heidi M.; Miller, Mark Laverne

    2006-05-01

    From 1994 through 2005, the Environmental Management Department of Sandia National Laboratories (SNL) at the Tonopah Test Range (TTR), NV, has collected soil samples at numerous locations on-site, on the perimeter, and off-site for the purpose of determining potential impacts to the environs from operations at TTR. These samples were submitted to an analytical laboratory of metal-in-soil analyses. Intercomparisons of these results were then made to determine if there was any statistical difference between on-site, perimeter, and off-site samples, or if there were increasing or decreasing trends which indicated that further investigation may be warranted. This work provided the SNL Environmental Management Department with a sound baseline data reference against which to compare future operational impacts. In addition, it demonstrates the commitment that the Laboratories have to go beyond mere compliance to achieve excellence in its operations. This data is presented in graphical format with narrative commentaries on particular items of interest.

  17. High Coverages of Hydrogen on a (10,0) Carbon Nanotube

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James (Technical Monitor)

    2001-01-01

    The binding energy of H to a (10,0) carbon nanotube is calculated at 24, 50, and 100% coverage. Several different bonding configurations are considered for the 50% coverage case. Using the ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) approach, the average C-H bond energy for the most stable 50% coverage and for the 100% coverage are 57.3 and 38.6 kcal/mol, respectively. Considering the size of the bond energy of H2, these values suggest that it will be difficult to achieve 100% atomic H coverage on a (10,0) nanotube.

  18. Spectral emission properties of a laser-produced plasma light source in the sub-200 nm range for wafer inspection applications

    NASA Astrophysics Data System (ADS)

    Gambino, Nadia; Rollinger, Bob; Hudgins, Duane; Abhari, Reza S.

    2015-07-01

    The spectral emission properties of a droplet-based laser-produced plasma are investigated in the vacuum ultraviolet (VUV) range. Measurements are performed with a spectrograph that operates from 30 to 180 nm with a spectral resolution of 0.1 nm. The emission spectra are recorded for different metal droplet targets, namely tin, indium, and gallium. Measurements were performed at different pressure levels of the background gas. Several characteristic emission lines are observed. The spectra are also calibrated in intensity in terms of spectral radiance to allow absolute emission power estimations from the light source in the VUV region. The presented experimental results are relevant for alternative light sources that would be needed for future wafer inspection tools. In addition, the experimental results help to determine the out-of-band radiation emission of a tin-based extreme ultraviolet (EUV) source. By tuning the type of fuel, the laser energies, and the background gas, the laser-produced plasma light source shows good capabilities to be operated as a light source that covers a spectral emission range from the EUV to the sub-200 nm range.

  19. A wide range ultra-low power Phase-Locked Loop with automatic frequency setting in 130 nm CMOS technology for data serialisation

    NASA Astrophysics Data System (ADS)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moroń, J.; Świentek, K.

    2015-12-01

    The design and measurements results of a wide frequency range ultra-low power Phase-Locked Loop (PLL) for applications in readout systems of particle physics detectors are presented. The PLL was fabricated in a 130 nm CMOS technology. To allow the implementation of different data serialisation schemes multiple division factors (6, 8, 10, 16) were implemented in the PLL feedback loop. The main PLL block—VCO works in 16 frequency ranges/modes, switched either manually or automatically. A dedicated automatic frequency mode switching circuit was developed to allow simple frequency tuning. Although the PLL was designed and simulated for a frequency range of 30 MHz-3 GHz, due to the SLVS interface limits, the measurements were done only up to 1.3 GHz. The full PLL functionality was experimentally verified, confirming a very low and frequency scalable power consumption (0.7 mW at 1 GHz).

  20. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm.

    PubMed

    Nasouri, Babak; Murphy, Thomas E; Berberoglu, Halil

    2014-01-01

    For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.

  1. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-07-01

    For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.

  2. Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30–200 nm and Comparison of Their Optical Properties

    PubMed Central

    Zhang, Qiang; Li, Weiyang; Moran, Christine; Zeng, Jie; Chen, Jingyi; Wen, Long-Ping; Xia, Younan

    2010-01-01

    Silver nanocubes with edge lengths controllable in the range of 30–200 nm were synthesized using an approach based on seeded growth. The key to the success of this synthesis is the use of single-crystal Ag seeds to direct the growth and the use of AgNO3 as a precursor to elemental Ag where the by-product HNO3 can block both the homogeneous nucleation and evolution of single-crystal seeds into twinned nanoparticles. Either spherical (in the shape of cubooctahedron) or cubic seeds could be employed for this growth process. The edge length of resultant Ag nanocubes can be readily controlled by varying the amount of Ag seeds used, the amount of AgNO3 added, or both. For the first time, we could obtain Ag nanocubes with uniform edge lengths controllable in the range of 30–200 nm and then compare their localized surface plasmon resonance and surface-enhanced Raman scattering properties. PMID:20698704

  3. Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400 1100 nm

    NASA Astrophysics Data System (ADS)

    Ao, Huilan; Xing, Da; Wei, Huajiang; Gu, Huaimin; Wu, Guoyong; Lu, Jianjun

    2008-04-01

    The absorption coefficients, the reduced scattering coefficients and the optical penetration depths for native and coagulated human normal and adenomatous colon tissues in vitro were determined over the range of 400-1100 nm using a spectrophotometer with an internal integrating sphere system, and the inverse adding-doubling method was applied to calculate the tissue optical properties from diffuse reflectance and total transmittance measurements. The experimental results showed that in the range of 400-1100 nm there were larger absorption coefficients (P < 0.01) and smaller reduced scattering coefficients (P < 0.01) for adenomatous colon tissues than for normal colon tissues, and there were smaller optical penetration depths for adenomatous colon tissues than for normal colon tissues, especially in the near-infrared wavelength. Thermal coagulation induced significant increase of the absorption coefficients and reduced scattering coefficients for the normal and adenomatous colon tissues, and significantly reduced decrease of the optical penetration depths for the normal and adenomatous colon tissues. The smaller optical penetration depth for coagulated adenomatous colon tissues is a disadvantage for laser-induced thermotherapy (LITT) and photodynamic therapy (PDT). It is necessary to adjust the application parameters of lasers to achieve optimal therapy.

  4. Ab initio study of semiconductor atoms impurities in zigzag edge (10,0) carbon nanotubes

    SciTech Connect

    Muttaqien, Fahdzi Suprijadi

    2015-04-16

    The substitutional impurities in zigzag edge (10,0) carbon nanotubes have been studied by using first principles calculations. Silicon (Si), gallium (Ga), and arsenic (As) atom have been chosen as semiconductor based-atom for replacing carbon atoms in CNT’s surface. The silicon atom changes the energy gap of pristine zigzag (10,0) CNT, it is 0.19 eV more narrow than that of pristine CNT. Geometrically, the silicon atom creates sp{sup 3} bond with three adjacent carbon atoms, where the tetrahedral form of its sp{sup 3} bond is consisted of free unoccupied state. The silicon atom does not induce magnetism to zigzag CNT. Due to gallium (Ga) and arsenic (As) atom substitution, the zigzag CNT becomes metallic and has magnetic moment of 1 µ{sub B}. The valance and conduction band are crossed each other, then the energy gap is vanished. The electronic properties of GaAs-doped CNT are dominantly affected by gallium atom and its magnetic properties are dominantly affected by arsenic atom. These results prove that the CNT with desired properties can be obtained with substitutional impurities without any giving structural defect.

  5. Influence of polymer packaging films on hyperspectral imaging data in the visible-near-infrared (450-950 nm) wavelength range.

    PubMed

    Gowen, A A; O'Donnell, C P; Esquerre, C; Downey, G

    2010-03-01

    Hyperspectral imaging (HSI) has recently emerged as a useful tool for quality analysis of consumer goods (e.g., food and pharmaceutical products). These products are typically packaged in polymeric film prior to distribution; however, HSI experiments are typically carried out on such samples ex-packaging (either prior to or after removal from packaging). This research examines the effects of polymer packaging films (polyvinyl chloride (PVC) and polyethylene terephthalate (PET)) on spectral and spatial features of HSI data in order to investigate the potential of HSI for quality evaluation of packaged goods. The effects of packaging film were studied for hyperspectral images of samples obtained in the visible-near-infrared (Vis-NIR, i.e., 450-950 nm) wavelength range, which is relevant to many food, agricultural, and pharmaceutical products. The dominant influence of the films tested in this wavelength range could be attributed to light scattering. Relative position of the light source, film, and detector were shown to be highly influential on the scattering effects observed. Detection of features on samples imaged through film was shown to be possible after some data preprocessing. This suggests that quality analysis of products packaged in polymer film is feasible using HSI. These findings would be useful in the development of quality monitoring tools for consumer products post-packaging using HSI.

  6. Optical properties measurement of laser coagulated tissues with double integrating sphere and inverse Monte Carlo technique in the wavelength range from 350 to 2100 nm

    NASA Astrophysics Data System (ADS)

    Honda, Norihiro; Nanjo, Takuya; Ishii, Katsunori; Awazu, Kunio

    2012-03-01

    In laser medicine, the accurate knowledge about the optical properties (absorption coefficient; μa, scattering coefficient; μs, anisotropy factor; g) of laser irradiated tissues is important for the prediction of light propagation in tissues, since the efficacy of laser treatment depends on the photon propagation within the irradiated tissues. Thus, it is likely that the optical properties of tissues at near-ultraviolet, visible and near-infrared wavelengths will be more important due to more biomedical applications of lasers will be developed. For improvement of the laser induced thermotherapy, the optical property change during laser treatment should be considered in the wide wavelength range. For estimation of the optical properties of the biological tissues, the optical properties measurement system with a double integrating sphere setup and an inverse Monte Carlo technique was developed. The optical properties of chicken muscle tissue were measured in the native state and after laser coagulation using the optical properties measurement system in the wavelength range from 350 to 2100 nm. A CO2 laser was used for laser coagulation. After laser coagulation, the reduced scattering coefficient of the tissue increased. And, the optical penetration depth decreased. For improvement of the treatment depth during laser coagulation, a quantitative procedure using the treated tissue optical properties for determination of the irradiation power density following light penetration decrease might be important in clinic.

  7. The Nuclear Network Generator NETGEN v10.0: A Tool for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Goriely, S.; Jorissen, A.; Takahashi, K.; Arnould, M.

    2011-09-01

    We present an updated release of the Brussels Nuclear Network Generator. NETGEN is a tool to help astrophysicists build nuclear reaction networks by generating tables of rates of light-particle (mostly n, p, α) induced reactions, nucleus-nucleus fusion reactions, and photodisintegrations, as well as β-decays and electron captures on temperature grids specified by the user. Nuclear reaction networks relevant to a large variety of astrophysical situations can be constructed, including Big-Bang nucleosynthesis, stellar hydrostatic and explosive hydrogen-, helium- and later burning phases, as well as the synthesis of heavy nuclides (s-, r-, p-, rp-, α-processes). The latest version, NETGEN v10.0, is available on the ULB-IAA website www.astro.ulb.ac.be/Netgen/form.html.

  8. Rocket spectrogram of a solar flare in the 10-100 A region

    NASA Technical Reports Server (NTRS)

    Acton, L. W.; Bruner, M. E.; Brown, W. A.; Fawcett, B. C.; Schweizer, W.; Speer, R. J.

    1985-01-01

    The soft (10-100 A) X-ray spectrum of an M-class solar flare was observed with a high-resolution (0.02 A) rocket-borne spectrograph on 1982 July 13. The spectrum samples an area of 600/sq arcsec on the sun, centered on or near the brightest X-ray feature of the flare. Several hundred emission lines characteristic of temperatures from about 0.5 to 7 x 10 to the 6th K have been photographically recorded. All but three of the stronger lines have been identified. It is argued that previous identification of the line at 17.62 A as iron Ly-alpha is incorrect. Spectral lines from nickel, iron, chromium, calcium, sulphur, silicon, aluminium, magnesium, neon, oxygen, nitrogen, and carbon are tabulated and discussed with extensive reference to earlier work. Absolute line intensities are given and the calibration of the telescope-spectrograph is discussed.

  9. Ultrahigh wavelength range (300nm-2μm) polarization-independent 500gs/s single-shot pulse, all-optical real time oscilloscope

    NASA Astrophysics Data System (ADS)

    Gleyze, Jean-François; Hocquet, Steve; Monnier Bourdin, Dominique; Le Boudec, Patrice; Arnaud, Romain; Chassagne, Bruno; Jolly, Alain; Penninckx, Denis

    2014-03-01

    The development of ultra-broadband oscilloscopes is mainly governed by the needs of future telecom networks. But other applications are requesting the availability of true real-time acquisition oscilloscopes. Systems able to be used in single-shot operation are of prime interest for Inertial Confinement Fusion (ICF) and for the related R&D for plasma physics. We previously demonstrate a single-shot, 100GHz design of an all-optical sampling oscilloscope at 1μm (MULO). This laboratory system has been improved in stability and compactness to make an all-in-one box prototype. More, by the addition of an opto-electro-optics (OEO) sub-system at the input, we developed the ability to use this oscilloscope to analyze an electrical input signal up to 60GHz. This new integrated subset also increases the range of wavelength for optical input signal, from 300nm up to 2μm. Furthermore, it allows the use of inexpensive opto-electronic components at telecom wavelength for this system regardless of the signal to be analysed. In parallel with these improvements, by optimizing the heart of the system, we get a very high sampling rate, up to 500Gs/s and more; this allows considering much higher bandwidths in the future. In this talk, we will present latest developments and integration of this system. It will also allow us to give more details on the innovative OEO sub-system.

  10. Ultrafast laser with an average power of 120 W at 515 nm and a highly dynamic repetition rate in the MHz range for novel applications in micromachining

    NASA Astrophysics Data System (ADS)

    Harth, F.; Piontek, M. C.; Herrmann, T.; L'huillier, J. A.

    2016-03-01

    A new generation of resonant scanners in the kHz-range shows ultra-high deflection speeds of more than 1000m/s but suffer from an inherent nonlinear mirror oscillation. If this oscillation is not compensated, a typical bitmap, written point by point, would be strongly distorted because of the decreasing spot distance at the turning point of the scanning mirror. However, this can be avoided by a dynamic adaption of the repetition rate (RR) of the ultrafast laser. Since resonant scanners are operated in the 10 kHz-range, this means that the RR has to be continuously swept up to several 10 000 times per second between e.g. 5MHz and 10 MHz. High-speed continuous adaption of the RR could also optimize laser micromachining of narrow curved geometries, where nowadays a time consuming approximation with numerous vectors is required. We present a laser system, which is capable of sweeping the RR more than 32 000 times per second between 5MHz and 10MHz at an average output power of more than 120W at 515nm with a pulse duration of about 40 ps. The laser consists of a semiconductor oscillator, a 3-stage fiber pre-amplifier, a solid state InnoSlab power amplifier and a SHG stage. We systematically analyzed the dynamic of the laser system as well as the spectral and temporal behavior of the optical pulses. Switching the repetition rate typically causes a varying pulse energy, which could affect the machining quality over one scanning line. This effect will be analyzed and discussed. Possible techniques to compensate or avoid this effect will be considered.

  11. COMPARATIVE STUDY OF MICROANASTOMOSIS WITH DISTINCT 10-0 NYLON SUTURES IN RATS

    PubMed Central

    Silva, Ricardo Teixeira e; Barros, Thiago Felipe Santos; de Carvalho, José Thomé; Ribeiro, André Araújo; Pires, André Fernandes; Wei, Teng Hsiang

    2016-01-01

    ABSTRACT Objective: The aim of this study is to compare micro-sutures commonly used in our midst. Methods: In this double-blind study, 30 Wistar rats were operated randomly divided into three groups matched according to the suture used (Nylon 10-0, 75micron, brands Microsuture(r), Polysuture(r) and Ethicon(r)). We analyzed the number of surgical nodes required, bleeding, surgical time and histological evaluation. Results: There was no significant difference between the amount of stitches of arterial suture per anastomosis. Surgical time was longer in Microsuture(r) group as compared to Polysuture(r) (p ≤ 0.05). Bleeding in Microsuture(r) group was higher when compared to the others (p <0.01). In the histological analysis, the Microsuture(r) group showed a greater tendency to develop fibrosis and aneurysm in surgical site than the others (p <0.01 and p≤0,05, respectively). Similarly, the Ethicon(r) group showed less tendency to myointimal proliferation than the rest. (p = 0.025). Conclusion: The results confirm the relevance of the choice of surgical thread as an independent determining factor for the success of the procedure, besides serving as a rational subsidy for a better cost-benefit analysis. Level of Evidence I, Experimental Study, Controlled Animal Study. PMID:26997912

  12. White light tunable emissions from ZnS: Eu3+ nanophosphors over 330-465 nm excitation range for white LED applications

    NASA Astrophysics Data System (ADS)

    Ahemen, I.; De, D. K.; Dejene, F. B.; Viana, B.

    2016-04-01

    (ZnS: Eu3+ - CMC) nanophosphors of cubic (zinc blende) structure were synthesized using a precipitation technique with doping concentrations of Eu3+ ions 1 mol% and 5 mol%. The crystal sizes were 2.56 nm and 2.91 nm respectively. Annealing at 300 °C in a sulfur-rich atmosphere altered the crystal size to 4.35 nm and 3.65 nm respectively and the band gap from 4.2 eV to 3.76 eV and 3.81 eV respectively. The as-synthesized samples gave pure orange-red emission when excited at wavelengths of 394 nm and 465 nm. After thermal annealing of the samples, a broad emission band in the blue-green region assigned to defect related states emerged or were enhanced. Also enhanced were the emission lines of Eu3+ ions in the orange-red region. A combination of these two transitions gave white light of different shades (recorded on the CIE 1931 chromaticity diagram) from cool white through day-light to warm white light, depending on Eu3+ concentration and the excitation wavelengths (UV-330 to blue 465 nm), thus showing great potential of these nano-phosphors in the generation of high quality white light.

  13. Generation of high-power femtosecond supercontinua in the near-IR spectral range using broadband parametric frequency conversion in LBO and DCDA crystals pumped at λ = 620 nm

    SciTech Connect

    Podshivalov, A A; Sidorov-Biryukov, D A; Potemkin, F V

    2014-09-30

    The pump wavelength of parametric amplifiers based on CLBO, DCDA and LBO crystals and pumped by the second harmonic of a femtosecond Cr : forsterite laser (620 nm) is close to optimal for broadband amplification because of the proximity of group velocities of interacting pulses. Injection of a broadband continuum into the range of the signal-wave gain in LBO and DCDA parametric amplifiers, pumped at λ = 620 nm, leads to generation of broadband femtosecond pulses with a spectrum ranging from 1050 to 1600 nm and peak powers up to 20 MW. (nonlinear optical phenomena)

  14. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm.

    PubMed

    Zhao, Weixiong; Dong, Meili; Chen, Weidong; Gu, Xuejun; Hu, Changjin; Gao, Xiaoming; Huang, Wei; Zhang, Weijun

    2013-02-19

    Despite the significant progress in the measurements of aerosol extinction and absorption using spectroscopy approaches such as cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS), the widely used single-wavelength instruments may suffer from the interferences of gases absorption present in the real environment. A second instrument for simultaneous measurement of absorbing gases is required to characterize the effect of light extinction resulted from gases absorption. We present in this paper the development of a blue light-emitting diode (LED)-based incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) approach for broad-band measurements of wavelength-resolved aerosol extinction over the spectral range of 445-480 nm. This method also allows for simultaneous measurement of trace gases absorption present in the air sample using the same instrument. On the basis of the measured wavelength-dependent aerosol extinction cross section, the real part of the refractive index (RI) can be directly retrieved in a case where the RI does not vary strongly with the wavelength over the relevant spectral region. Laboratory-generated monodispersed aerosols, polystyrene latex spheres (PSL) and ammonium sulfate (AS), were employed for validation of the RI determination by IBBCEAS measurements. On the basis of a Mie scattering model, the real parts of the aerosol RI were retrieved from the measured wavelength-resolved extinction cross sections for both aerosol samples, which are in good agreement with the reported values. The developed IBBCEAS instrument was deployed for simultaneous measurements of aerosol extinction coefficient and NO(2) concentration in ambient air in a suburban site during two representative days. PMID:23320530

  15. Effect of GaAsP barrier layers on the parameters of InGaAs/AlGaAs laser diodes emitting in the 1050-1100-nm spectral range

    SciTech Connect

    Duraev, V P; Marmalyuk, Aleksandr A; Padalitsa, A A; Petrovskii, A V; Ryaboshtan, Yu L; Sumarokov, M A; Sukharev, A V

    2005-10-31

    To improve the parameters of laser diodes emitting in the 1000-1070-nm spectral range and develop highly efficient laser diodes emitting in the 1070-1100-nm range, it is proposed to introduce GaAsP barrier layers into the active region of the quantum-well InGaAs/AlGaAs heterostructure, which compensate for enhanced mechanical stresses. This considerably improves the luminescence characteristics of heterostructures and changes conditions for generating misfit dislocations. The long-wavelength lasing at 1100 nm becomes possible due to an increase in the thickness of quantum wells and in the molar fraction of InAs in them. The manufactured laser diodes emitting in the 1095-1100-nm range have low threshold currents, the high output power and high reliability. (lasers)

  16. UV spectroscopy of Titan's atmosphere, planetary organic chemistry and prebiological synthesis. II - Interpretation of new IUE observations in the 220-335 nm range

    NASA Technical Reports Server (NTRS)

    Courtin, Regis; Wagener, Richard; Mckay, Christopher P.; Caldwell, John; Fricke, Karl-Heinrich

    1991-01-01

    The theoretical model developed by McKay et al. (1989) to characterize the size distribution, thermal structure, and chemical composition of the stratospheric haze of Titan is applied to new 220-335-nm albedo measurements obtained with the long-wavelength prime camera of the IUE during August 1987. Data and model predictions are presented in extensive graphs and discussed in detail. It is shown that a simple model with particles of one size at a given altitude does not accurately reproduce the observed features in all spectral regions, but that good general agreement is obtained using a model with a uniformly mixed layer at 150-600 km and a bimodal distribution of small 'polymer' haze particles (radius less than 20 nm) and larger haze particles (radius 100-500 nm). The number densities implied by this model require, however, a mechanism such as electrostatic charging or reaction kinetics to inhibit coagulation of the smaller particles.

  17. AGILE as a particle detector: Magnetospheric measurements of 10-100 MeV electrons in L shells less than 1.2

    NASA Astrophysics Data System (ADS)

    Argan, A.; Piano, G.; Tavani, M.; Trois, A.

    2016-04-01

    We study the capability of the AGILE gamma ray space mission in detecting magnetospheric particles (mostly electrons) in the energy range 10-100 MeV. Our measurements focus on the inner magnetic shells with L ≲ 1.2 in the magnetic equator. The instrument characteristics and a quasi-equatorial orbit of ˜500 km altitude make it possible to address several important properties of the particle populations in the inner magnetosphere. We review the on board trigger logic and study the acceptance of the AGILE instrument for particle detection. We find that the AGILE effective geometric factor (acceptance) is R≃50 cm2 sr for particle energies in the range 10-100 MeV. Particle event reconstruction allows to determine the particle pitch angle with the local magnetic field with good accuracy. We obtain the pitch angle distributions for both the AGILE "pointing" phase (July 2007 to October 2009) and the "spinning" phase (November 2009 to present). In spinning mode, the whole range (0-180 degrees) is accessible every 7 min. We find a pitch angle distribution of the "dumbbell" type with a prominent depression near α = 90° which is typical of wave-particle resonant scattering and precipitation in the inner magnetosphere. Most importantly, we show that AGILE is not affected by solar particle precipitation events in the magnetosphere. The satellite trajectory intersects magnetic shells in a quite narrow range (1.0 ≲ L ≲ 1.2); AGILE then has a high exposure to a magnetospheric region potentially rich of interesting phenomena. The large particle acceptance in the 10-100 MeV range, the pitch angle determination capability, the L shell exposure, and the solar-free background make AGILE a unique instrument for measuring steady and transient particle events in the inner magnetosphere.

  18. Vapor-liquid equilibria for the systems difluoromethane + chlorodifluoromethane, difluoromethane + dichlorodifluoromethane, and difluoromethane + chloromethane at 10.0 C

    SciTech Connect

    Kang, Y.W.; Chung, K.Y.

    1996-05-01

    Isothermal vapor-liquid equilibria for the three binary systems (difluoromethane + chlorodifluoromethane, difluoromethane + dichlorodifluoromethane, and difluoromethane + chloromethane) have been measured at 10.0 C. The experimental data for the binary systems are correlated with the Wilson equation and the relevant parameters are presented. The difluoromethane + dichlorodifluoromethane system forms a minimum boiling azeotrope, but the others do not.

  19. Photodissociation of van der Waals clusters of isoprene with oxygen, C5H8-O2, in the wavelength range 213-277 nm

    NASA Astrophysics Data System (ADS)

    Vidma, Konstantin V.; Frederix, Pim W. J. M.; Parker, David H.; Baklanov, Alexey V.

    2012-08-01

    The speed and angular distribution of O atoms arising from the photofragmentation of C5H8-O2, the isoprene-oxygen van der Waals complex, in the wavelength region of 213-277 nm has been studied with the use of a two-color dissociation-probe method and the velocity map imaging technique. Dramatic enhancement in the O atoms photo-generation cross section in comparison with the photodissociation of individual O2 molecules has been observed. Velocity map images of these "enhanced" O atoms consisted of five channels, different in their kinetic energy, angular distribution, and wavelength dependence. Three channels are deduced to be due to the one-quantum excitation of the C5H8-O2 complex into the perturbed Herzberg III state (3Δu) of O2. This excitation results in the prompt dissociation of the complex giving rise to products C5H8+O+O when the energy of exciting quantum is higher than the complex photodissociation threshold, which is found to be 41740 ± 200 cm-1 (239.6±1.2 nm). This last threshold corresponds to the photodissociation giving rise to an unexcited isoprene molecule. The second channel, with threshold shifted to the blue by 1480 ± 280 cm-1, corresponds to dissociation with formation of rovibrationally excited isoprene. A third channel was observed at wavelengths up to 243 nm with excitation below the upper photodissociation threshold. This channel is attributed to dissociation with the formation of a bound O atom C5H8-O2 + hv → C5H8-O2(3Δu) → C5H8O + O and/or to dissociation of O2 with borrowing of the lacking energy from incompletely cooled complex internal degrees of freedom C5H8*-O2 + hv → C5H8*-O2(3Δu) → C5H8 + O + O. The kinetic energy of the O atoms arising in two other observed channels corresponds to O atoms produced by photodissociation of molecular oxygen in the excited a 1Δg and b ^1 Σ _g^ + singlet states as the precursors. This indicates the formation of singlet oxygen O2(a 1Δg) and O2({b }^1 Σ _g^ +) after excitation of the C5

  20. Time-dependent seafloor acoustic backscatter (10-100 kHz).

    PubMed

    Sternlicht, Daniel D; de Moustier, Christian P

    2003-11-01

    A time-dependent model of the acoustic intensity backscattered by the seafloor is described and compared with data from a calibrated, vertically oriented, echo-sounder operating at 33 and 93 kHz. The model incorporates the characteristics of the echo-sounder and transmitted pulse, and the water column spreading and absorption losses. Scattering from the water-sediment interface is predicted using Helmholtz-Kirchhoff theory, parametrized by the mean grain size, the coherent reflection coefficient, and the strength and exponent of a power-law roughness spectrum. The composite roughness approach of Jackson et al. [J. Acoust. Soc. Am. 79, 1410-1422 (1986)], modified for the finite duration of the transmitted signal, is used to predict backscatter from subbottom inhomogeneities. It depends on the sediment's volume scattering and attenuation coefficients, as well as the interface characteristics governing sound transmission into the sediment. Estimation of model parameters (mean grain size, roughness spectrum strength and exponent, volume scattering coefficient) reveals ambiguous ranges for the two spectral components. Analyses of model outputs and of physical measurements reported in the literature yield practical constraints on roughness spectrum parameter settings appropriate for echo-envelope-based sediment classification procedures.

  1. Time-dependent seafloor acoustic backscatter (10-100 kHz).

    PubMed

    Sternlicht, Daniel D; de Moustier, Christian P

    2003-11-01

    A time-dependent model of the acoustic intensity backscattered by the seafloor is described and compared with data from a calibrated, vertically oriented, echo-sounder operating at 33 and 93 kHz. The model incorporates the characteristics of the echo-sounder and transmitted pulse, and the water column spreading and absorption losses. Scattering from the water-sediment interface is predicted using Helmholtz-Kirchhoff theory, parametrized by the mean grain size, the coherent reflection coefficient, and the strength and exponent of a power-law roughness spectrum. The composite roughness approach of Jackson et al. [J. Acoust. Soc. Am. 79, 1410-1422 (1986)], modified for the finite duration of the transmitted signal, is used to predict backscatter from subbottom inhomogeneities. It depends on the sediment's volume scattering and attenuation coefficients, as well as the interface characteristics governing sound transmission into the sediment. Estimation of model parameters (mean grain size, roughness spectrum strength and exponent, volume scattering coefficient) reveals ambiguous ranges for the two spectral components. Analyses of model outputs and of physical measurements reported in the literature yield practical constraints on roughness spectrum parameter settings appropriate for echo-envelope-based sediment classification procedures. PMID:14650007

  2. Status of the NEXT Ion Thruster Long-Duration Test After 10,100 hr and 207 kg Demonstrated

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation ion propulsion system with significant enhancements beyond the state-of-the-art in ion propulsion to provide future NASA science missions with enhanced mission capabilities at a low total development cost. As part of a comprehensive thruster service life assessment utilizing both testing and analyses, a Long-Duration Test (LDT) was initiated to validate and qualify the NEXT propellant throughput capability to a qualification-level of 450 kg, 1.5 times the mission-derived throughput requirement of 300 kg. This wear test is being conducted with a modified, flight-representative NEXT engineering model ion thruster, designated EM3. As of June 21, 2007, the thruster has accumulated 10,100 hr of operation at the thruster full-input-power of 6.9 kW with 3.52 A beam current and 1800 V beam power supply voltage. The thruster has processed 207 kg of xenon and demonstrated a total impulse of 8.5 106 N-s; the highest total impulse ever demonstrated by an ion thruster in the history of space propulsion. Thruster performance tests are conducted periodically over the entire NEXT throttle table with input power ranging 0.5 to 6.9 kW. Overall ion thruster performance parameters including thrust, input power, specific impulse, and thruster efficiency have been nominal with little variation to date. Lifetime-limiting component erosion rates have been consistent with the NEXT service life assessment, which predicts the earliest failure sometime after 750 kg of xenon propellant throughput; well beyond the mission-derived lifetime requirement. The NEXT wear test data confirm that the erosion of the discharge keeper orifice, enlarging of nominal-current-density accelerator grid aperture cusps, and the decrease in cold grid-gap observed during the NSTAR Extended Life Test have been mitigated. This paper presents the status of the NEXT LDT to date.

  3. Repair of non-dimer DNA damages in ICB 2A frog cells exposed to solar-ultraviolet radiation in the UVB (290-320 nm) range

    SciTech Connect

    Chao, C.C.K.

    1985-01-01

    The purpose of the research described in this dissertation was to investigate the repair and cellular consequences of non-dimer DNA damages induced by solar-UV irradiation of cultured I CR 2A (Rana pipiens) frog cells. Because this cell line is proficient in enzymatic photoreactivation, it was possible to induce a relatively pure population of non-dimer DNA photoproducts by exposure of cells to the Mylar-filtered solar-UV wavelengths produced by a fluorescent sunlamp followed by treatment with photoreactivating light. With a modification of bromodeoxyuridine photolysis assay, it was found that the solar-UV-induced non-dimer DNA damages were repaired by a short-patch repair mechanism in which less than 20 nucleotides were inserted into a repaired region. Similar results were also obtained for ..gamma..-irradiated cells. In contrast, excision repair of 254 nm-induced dimers was accomplished by a long-patch process in which an average of about 180 nucleotides were inserted into the repaired sites. A mutant cell line, DRP 36, hypersensitive to non-dimer DNA damages, was isolated from I CR 2A cells. It was found that the DRP 36 cells performed a significantly lower level of excision repair following the induction of non-dimer DNA damages. The results are consistent with the conclusion that the DRP 36 cells are deficient in the repair of at least one type of solar-UV-induced non-dimer DNA lesion. These experiments indicate that solar-UV-induced non-dimer DNA photoproducts behave more like the photoproducts of ..gamma..-rays than those of far-UV radiation, which are primarily pyrimidine dimers.

  4. Linear and nonlinear transmission of Fe{sup 2+}-doped ZnSe crystals at a wavelength of 2940 nm in the temperature range 20–220 °C

    SciTech Connect

    Il'ichev, N N; Pashinin, P P; Gulyamova, E S; Bufetova, G A; Shapkin, P V; Nasibov, A S

    2014-03-28

    The linear and nonlinear transmission of Fe{sup 2+}:ZnSe crystals is measured at a wavelength of 2940 nm in the temperature range 20 – 220 °C. It is found that, with increasing temperature from 20 °C to 150 – 220 °C, the transmission of Fe{sup 2+}:ZnSe crystals decreases in the case of incident radiation with an intensity of ∼5.5 MW cm{sup -2} and increases in the case of radiation with an intensity of 28 kW cm{sup -2}. At a temperature of 220 °C, the linear transmission almost coincides with the nonlinear transmission. The transmission spectra of Fe{sup 2+}:ZnSe crystals at temperatures of 22 and 220 °C in the wavelength range 500 – 7000 nm are presented. (active media)

  5. 41 CFR 302-10.100 - What distance will my agency allow for points of origin and destination within CONUS and Alaska?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... agency allow for points of origin and destination within CONUS and Alaska? 302-10.100 Section 302-10.100... origin and destination within CONUS and Alaska? Your agency will allow for the distance shown in standard... determined from your odometer readings, between the authorized origin and destination....

  6. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    SciTech Connect

    Karcı, Özgür; Dede, Münir

    2014-10-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ~12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system.

  7. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution.

    PubMed

    Karcı, Özgür; Dede, Münir; Oral, Ahmet

    2014-10-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ∼12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system. PMID:25362401

  8. Experimental investigation of transport of discrete solids with surge flows in a 10.0 cm diameter partially filled pipe

    NASA Astrophysics Data System (ADS)

    Mahajan, B. M.

    1982-01-01

    The transport of discrete solids with surge flows in a partially filled slightly pitched horizontal pipe was investigated. The experimental apparatus, instrumentation, and procedures are described. The experiments were conducted using a cylindrical solid in a 10.0 cm (4 in) diameter pipe. The water surge flows were obtained by discharging different volumes of water into the pipe from a falling head open container which simulated a water closet. Flow induced solid velocities and stream depth histories at various locations along the length of the pipe were measured. The effects of water volume used, pipe slope, and size of the solid on the solid velocities were examined. Solid velocities were compared with the maximum water velocities estimated from the stream depth histories. Also, the distance traversed by the solids in the pipe were measured for those cases in which the solids did not clear the pipe. The solid velocity increased with an increase in water volume used, a decrease in the size of the solid, and an increase in the pipe slope. The solid velocity in the initial reach of the pipe was less than the maximum water velocity; and the solid velocity approaches the maximum water velocity as the solid traveled downstream, except for some experiments with small water volumes.

  9. Strong enhancement of 10-100 keV electron fluxes by combined effects of chorus waves and time domain structures

    NASA Astrophysics Data System (ADS)

    Ma, Qianli; Mourenas, Didier; Artemyev, Anton; Li, Wen; Thorne, Richard M.; Bortnik, Jacob

    2016-05-01

    Time domain structures (TDSs) are trains of intense electric field spikes observed in large numbers during plasma injections in the outer radiation belt. Here we explore the question of their importance in energetic electron acceleration and loss in this region. Although the most common TDSs can preaccelerate low-energy electrons up to 1-5 keV energies, they often cannot produce by themselves the seed population of 30-150 keV electrons, which are needed for a subsequent energization up to relativistic energies during storms or substorms. However, we demonstrate by numerical simulations that modifications of the low-energy electron pitch angle and energy distributions due to interactions with TDS lead to more efficient scattering of electrons by chorus waves toward both higher and lower pitch angles, ultimately leading to both significantly higher fluxes in the 10-100 keV energy range and more intense 1-100 keV precipitation into the atmosphere, potentially affecting the outer radiation belt dynamics.

  10. Productions of I, I{sup *}, and C{sub 2}H{sub 5} in the A-band photodissociation of ethyl iodide in the wavelength range from 245 to 283 nm by using ion-imaging detection

    SciTech Connect

    Tang, Ying; Lee, Wei-Bin; Hu, Zhengfa; Zhang, Bing; Lin, King-Chuen

    2007-02-14

    Photodissociation dynamics of ethyl iodide in the A band has been investigated at several wavelengths between 245 and 283 nm using resonance-enhanced multiphoton ionization technique combined with velocity map ion-imaging detection. The ion images of I, I{sup *}, and C{sub 2}H{sub 5} fragments are analyzed to yield corresponding speed and angular distributions. Two photodissociation channels are found: I(5p {sup 2}P{sub 3/2})+C{sub 2}H{sub 5} (hotter internal states) and I{sup *}(5p {sup 2}P{sub 1/2})+C{sub 2}H{sub 5} (colder). In addition, a competitive ionization dissociation channel, C{sub 2}H{sub 5}I{sup +}+h{nu}{yields}C{sub 2}H{sub 5}+I{sup +}, appears at the wavelengths <266 nm. The I/I{sup *} branching of the dissociation channels may be obtained directly from the C{sub 2}H{sub 5}{sup +} images, yielding the quantum yield of I{sup *} about 0.63-0.76, comparable to the case of CH{sub 3}I. Anisotropy parameters ({beta}) determined for the I{sup *} channel remain at 1.9{+-}0.1 over the wavelength range studied, indicating that the I{sup *} production should originate from the {sup 3}Q{sub 0} state. In contrast, the {beta}(I) values become smaller above 266 nm, comprising two components, direct excitation of {sup 3}Q{sub 1} and nonadiabatic transition between the {sup 3}Q{sub 0} and {sup 1}Q{sub 1} states. The curve crossing probabilities are determined to be 0.24-0.36, increasing with the wavelength. A heavier branched ethyl group does not significantly enhance the I(5p {sup 2}P{sub 3/2}) production from the nonadiabatic contribution, as compared to the case of CH{sub 3}I.

  11. Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second

    PubMed Central

    Choi, Dong-hak; Hiro-Oka, Hideaki; Shimizu, Kimiya; Ohbayashi, Kohji

    2012-01-01

    An ultrafast frequency domain optical coherence tomography system was developed at A-scan rates between 2.5 and 10 MHz, a B-scan rate of 4 or 8 kHz, and volume-rates between 12 and 41 volumes/second. In the case of the worst duty ratio of 10%, the averaged A-scan rate was 1 MHz. Two optical demultiplexers at a center wavelength of 1310 nm were used for linear-k spectral dispersion and simultaneous differential signal detection at 320 wavelengths. The depth-range, sensitivity, sensitivity roll-off by 6 dB, and axial resolution were 4 mm, 97 dB, 6 mm, and 23 μm, respectively. Using FPGAs for FFT and a GPU for volume rendering, a real-time 4D display was demonstrated at a rate up to 41 volumes/second for an image size of 256 (axial) × 128 × 128 (lateral) voxels. PMID:23243560

  12. (19)F(α,n) thick target yield from 3.5 to 10.0 MeV.

    PubMed

    Norman, E B; Chupp, T E; Lesko, K T; Grant, P J; Woodruff, G L

    2015-09-01

    Using a target of PbF2, the thick-target yield from the (19)F(α,n) reaction was measured from E(α)=3.5-10 MeV. From these results, we infer the thick-target neutron yields from targets of F2 and UF6 over this same alpha-particle energy range.

  13. Gamma-Ray Bursts in the One of the Last Frontiers: the 10-100 GeV Energy Band

    NASA Astrophysics Data System (ADS)

    Tam, P. H. Thomas

    2016-07-01

    Thanks to many space-borne detectors such as the Swift and Fermi satellites and numerous ground-based followed-up telescopes, gamma-ray bursts (GRBs) are now quickly covered in virtually every wavelength in the electromagnetic spectrum. Covering the energy range above 30 MeV, the Fermi-LAT has seen more than a hundred GRBs and have seen tens of photons above 10 GeV from several bright GRBs, limited by its collective area. In this talk, I will review recent GRB observations at >10 GeV up to nearly a day after the burst, including that of GRB 130427A and some recent GRBs, and discuss the corresponding radiation mechanisms in the afterglow at these energies.

  14. Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm

    SciTech Connect

    Flock, S.T.; Wilson, B.C.; Patterson, M.S.

    1987-09-01

    Measurements have been made of the total attenuation coefficient sigma t and the scattering phase function, S(theta), of 632.8 nm of light for a number of animal model tissues, blood, and inert scattering and absorbing media. Polystyrene microspheres of known size and refractive index, for which sigma t and S(theta) can be calculated by Mie theory, were used to test the experimental methods. The purpose of the study was to define typical ranges for these optical properties of tissues, as a contribution to the development of experimental and theoretical methods of light dosimetry in tissue, particularly related to photodynamic therapy of solid tumors. The results demonstrate that, for the representative tissues studied, the total attenuation coefficients are of the order of 10-100 mm-1, and that the scattering is highly forward peaked, with average cosine of scatter in the range 0.6-0.97.

  15. Modeling Relativistic Electron Precipitation Bremsstrahlung X-Ray Intensities at 10-100 km Manned Vehicle Altitudes

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Gilchrist, B. E.; Nishikawa, K.; Williams, A.

    2013-12-01

    Relativistic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and suborbital Reusable Launch Vehicle (sRLV) altitudes. The monoenergetic beam is modeled in cylindrical symmetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremmstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry that relies on sRLVs with a nominal apogee of 100 km. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.

  16. Modeling Relativistic Electron Precipitation Bremsstrahlung X-Ray Intensities at 10-100 km Manned Vehicle Altitudes

    NASA Technical Reports Server (NTRS)

    Krause, L. Habsh; Gilchrist, B. E.; Nishikawa, Ken-Ichi

    2013-01-01

    Relativisitic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and space reuseable launch vehicles (sRLVs). The monoenergetic beam is modeled in cylindrical symetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremsstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.

  17. Neutron structure of human carbonic anhydrase II: A hydrogen bonded water network switch is observed between pH 7.8 and 10.0.

    SciTech Connect

    Fisher, Zoe; Langan, Paul; Mustyakimov, Marat; Kovalevsky, Andrey

    2011-01-01

    The neutron structure of wild type human carbonic anhydrase II at pH 7.8 has been determined to 2.0 resolution. Detailed analysis and comparison to the previous determined structure at pH 10.0 shows important differences in protonation of key catalytic residues in the active site as well as a rearrangement of the hydrogen bonded water network. For the first time, a completed hydrogen bonded network stretching from the Zn-bound solvent to the proton shuttling residue His64 has been directed observed.

  18. Sub-10 nm nanopantography

    NASA Astrophysics Data System (ADS)

    Tian, Siyuan; Donnelly, Vincent M.; Ruchhoeft, Paul; Economou, Demetre J.

    2015-11-01

    Nanopantography, a massively parallel nanopatterning method over large areas, was previously shown to be capable of printing 10 nm features in silicon, using an array of 1000 nm-diameter electrostatic lenses, fabricated on the substrate, to focus beamlets of a broad area ion beam on selected regions of the substrate. In the present study, using lens dimensional scaling optimized by computer simulation, and reduction in the ion beam image size and energy dispersion, the resolution of nanopantography was dramatically improved, allowing features as small as 3 nm to be etched into Si.

  19. Photodissociation of van der Waals clusters of isoprene with oxygen, C{sub 5}H{sub 8}-O{sub 2}, in the wavelength range 213-277 nm

    SciTech Connect

    Vidma, Konstantin V.; Frederix, Pim W. J. M.; Parker, David H.; Baklanov, Alexey V.

    2012-08-07

    The speed and angular distribution of O atoms arising from the photofragmentation of C{sub 5}H{sub 8}-O{sub 2}, the isoprene-oxygen van der Waals complex, in the wavelength region of 213-277 nm has been studied with the use of a two-color dissociation-probe method and the velocity map imaging technique. Dramatic enhancement in the O atoms photo-generation cross section in comparison with the photodissociation of individual O{sub 2} molecules has been observed. Velocity map images of these 'enhanced' O atoms consisted of five channels, different in their kinetic energy, angular distribution, and wavelength dependence. Three channels are deduced to be due to the one-quantum excitation of the C{sub 5}H{sub 8}-O{sub 2} complex into the perturbed Herzberg III state ({sup 3}{Delta}{sub u}) of O{sub 2}. This excitation results in the prompt dissociation of the complex giving rise to products C{sub 5}H{sub 8}+O+O when the energy of exciting quantum is higher than the complex photodissociation threshold, which is found to be 41740 {+-} 200 cm{sup -1} (239.6{+-}1.2 nm). This last threshold corresponds to the photodissociation giving rise to an unexcited isoprene molecule. The second channel, with threshold shifted to the blue by 1480 {+-} 280 cm{sup -1}, corresponds to dissociation with formation of rovibrationally excited isoprene. A third channel was observed at wavelengths up to 243 nm with excitation below the upper photodissociation threshold. This channel is attributed to dissociation with the formation of a bound O atom C{sub 5}H{sub 8}-O{sub 2}+hv{yields} C{sub 5}H{sub 8}-O{sub 2}({sup 3}{Delta}{sub u}) {yields} C{sub 5}H{sub 8}O + O and/or to dissociation of O{sub 2} with borrowing of the lacking energy from incompletely cooled complex internal degrees of freedom C{sub 5}H{sub 8}{sup *}-O{sub 2}+hv{yields} C{sub 5}H{sub 8}{sup *}-O{sub 2}({sup 3}{Delta}{sub u}) {yields} C{sub 5}H{sub 8}+ O + O. The kinetic energy of the O atoms arising in two other observed channels

  20. Microwave ablation at 10.0 GHz achieves comparable ablation zones to 1.9 GHz in ex vivo bovine liver.

    PubMed

    Luyen, Hung; Gao, Fuqiang; Hagness, Susan C; Behdad, Nader

    2014-06-01

    We demonstrate the feasibility of using high-frequency microwaves for tissue ablation by comparing the performance of a 10 GHz microwave ablation system with that of a 1.9 GHz system. Two sets of floating sleeve dipole antennas operating at these frequencies were designed and fabricated for use in ex vivo experiments with bovine livers. Combined electromagnetic and transient thermal simulations were conducted to analyze the performance of these antennas. Subsequently, a total of 16 ablation experiments (eight at 1.9 GHz and eight at 10.0 GHz) were conducted at a power level of 42 W for either 5 or 10 min. In all cases, the 1.9 and 10 GHz experiments resulted in comparable ablation zone dimensions. Temperature monitoring probes revealed faster heating rates in the immediate vicinity of the 10.0 GHz antenna compared to the 1.9 GHz antenna, along with a slightly delayed onset of heating farther from the 10 GHz antenna, suggesting that heat conduction plays a greater role at higher microwave frequencies in achieving a comparably sized ablation zone. The results obtained from these experiments agree very well with the combined electromagnetic/thermal simulation results. These simulations and experiments show that using lower frequency microwaves does not offer any significant advantages, in terms of the achievable ablation zones, over using higher frequency microwaves. Indeed, it is demonstrated that high-frequency microwave antennas may be used to create reasonably large ablation zones. Higher frequencies offer the advantage of smaller antenna size, which is expected to lead to less invasive interstitial devices and may possibly lead to the development of more compact multielement arrays with heating properties not available from single-element antennas.

  1. Albuquerque, NM, USA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Albuquerque, NM (35.0N, 106.5W) is situated on the edge of the Rio Grande River and flood plain which cuts across the image. The reddish brown surface of the Albuquerque Basin is a fault depression filled with ancient alluvial fan and lake bed sediments. On the slopes of the Manzano Mountains to the east of Albuquerque, juniper and other timber of the Cibola National Forest can be seen as contrasting dark tones of vegetation.

  2. Specific Volumes of the Zr(41.2)Ti(13.8)Cu(12.5)Ni(10.0)Be(22.5) Alloy in the Liquid, Glass, and Crystalline States

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Chung, S. K.; Rhim, W. K.; Johnson, W. L.; Peker, A.; Scruggs, D.

    1997-01-01

    The specific volumes of the Zr(41.2)Ti(3.8)Cu(2.5)Ni(10.0)Be(22.5) alloy as a function of temperature, T, are determined by employing an image digitizing technique and numerical calculation methods applied to the electrostatically levitated spherical alloy. The linear fitting of the volumes of the alloy in the liquid, V(sub l), glass, V(sub g) and crystalline V(sub c), states in the temperature ranges shown in parentheses are V(sub l)(T) = 0.1583 + 8.877 x 10(exp -6) T(cu cm/g) (700-1300 K);V(sub g)(T) = 0.1603 + 5.528 x 10(exp -6) T (400-550 K);V(sub c)(T) = 0.1583 + 6.21 x 10(exp -6)T(400-850 K). The average volume thermal expansion coefficients within the temperature ranges are determined to be 5.32, 3.39. and 3.83 x 10(exp -5) (1/K) for the liquid, glass, and crystalline states, respectively.

  3. Full-vector paleomagnetic secular variation records from latest quaternary sediments of Lake Malawi (10.0°S, 34.3°E)

    NASA Astrophysics Data System (ADS)

    Lund, Steve; Platzman, Ellen; Johnson, Tom

    2016-07-01

    We have conducted a paleomagnetic study of Late Quaternary sediments from Lake Malawi, East Africa, in order to develop a high-resolution record of paleomagnetic secular variation (PSV). This study has recovered PSV records from two cores (3P, 6P) in northern Lake Malawi (10.0°S, 34.3°E). The PSV appears to be recorded in fine-grained detrital magnetite/titanomagnetite grains. Detailed af demagnetization of the natural remanence (NRM) shows that a distinctive characteristic remanence (ChRM) is demagnetized from ∼20 to 80 mT, which decreases simply toward the origin. The resulting directional PSV records for 3P and 6P are easily correlatable with 29 distinct inclination features and 29 declination features. The statistical character of the PSV in both cores is consistent with Holocene PSV noted at other Holocene equatorial sites. Radiocarbon dating of the cores is based on 18 independent radiocarbon dates and four dated stratigraphic horizons that can be correlated into each core. The final directional PSV time series cover the last 24,000 years with an average sediment accumulation rate of ∼30 cm/kyr. We have also developed a relative paleointensity estimate for these PSV records based on normalizing the NRM (after 20 mT af demagnetization) by the SIRM (after 20 mT af demagnetization). Changing sedimentation patterns complicate any attempt to develop a single paleointensity record for the entire core lengths. We have developed a relative paleointensity record for the last 6000 years that has 14 correlatable features including 5 notable peaks in intensity. Three of these peaks are synchronous with paleointensity highs farther north in SE Europe/SW Asia/Egypt but two of the peaks are at times of low paleointensity farther north. We interpret this to indicate that Lake Malawi (10°S) is at least partly under the influence of a different flux-regeneration region of the outer-core dynamo. A relative paleointensity record was also developed for ∼11,000-24,000 YBP; the general pattern appears to be consistent with other published records, but our confidence in the correlations is more limited.

  4. 1064 nm Nd:YVO4 laser intracavity pumped at 912 nm and sum-frequency mixing for an emission at 491 nm.

    PubMed

    Herault, Emilie; Balembois, François; Georges, Patrick; Georges, Thierry

    2008-07-15

    We present for the first time a Nd:YVO(4) laser emitting at 1064 nm intracavity pumped at 912 nm by a Nd:GdVO(4) laser. We carried out a model to design the system properly, and laser performance was experimentally investigated. Intracavity sum-frequency mixing at 912 and 1064 nm was then realized in a BiBO crystal to reach the blue range. We obtained a cw output power of 155 mW at 491 nm with a pump laser diode emitting 20 W at 808 nm. PMID:18628821

  5. Laser damage database at 1064 nm

    SciTech Connect

    Rainer, F.; Gonzales, R.P.; Morgan, A.J.

    1990-03-01

    In conjunction with our diversification of laser damage testing capabilities, we have expanded upon a database of threshold measurements and parameter variations at 1064 nm. This includes all tests at low pulse-repetition frequencies (PRF) ranging from single shots to 120 Hz. These tests were conducted on the Reptile laser facility since 1987 and the Variable Pulse Laser (VPL) facility since 1988. Pulse durations ranged from 1 to 16 ns. 10 refs., 14 figs.

  6. A propagation effects handbook for satellite systems design. A summary of propagation impairments on 10-100 GHz satellite links, with techniques for system design. [tropospheric scattering

    NASA Technical Reports Server (NTRS)

    Kaul, R.; Wallace, R.; Kinal, G.

    1980-01-01

    This handbook provides satellite system engineers with a concise summary of the major propagation effects experienced on Earth-space paths in the 10 to 100 GHz frequency range. The dominant effect, attenuation due to rain, is dealt with in terms of both experimental data from measurements made in the U.S. and Canada, and the mathematical and conceptual models devised to explain the data. Rain systems, rain and attenuation models, depolarization and experimental data are described. The design techniques recommended for predicting propagation effects in Earth-space communications systems are presented. The questions of where in the system design process the effects of propagation should be considered, and what precautions should be taken when applying the propagation results are addressed in order to bridge the gap between the propagation research data and the classical link budget analysis of Earth-space communications system.

  7. A propagation effects handbook for satellite systems design. A summary of propagation impairments on 10-100 GHz satellite links, with techniques for system design

    NASA Astrophysics Data System (ADS)

    Kaul, R.; Wallace, R.; Kinal, G.

    1980-03-01

    This handbook provides satellite system engineers with a concise summary of the major propagation effects experienced on Earth-space paths in the 10 to 100 GHz frequency range. The dominant effect, attenuation due to rain, is dealt with in terms of both experimental data from measurements made in the U.S. and Canada, and the mathematical and conceptual models devised to explain the data. Rain systems, rain and attenuation models, depolarization and experimental data are described. The design techniques recommended for predicting propagation effects in Earth-space communications systems are presented. The questions of where in the system design process the effects of propagation should be considered, and what precautions should be taken when applying the propagation results are addressed in order to bridge the gap between the propagation research data and the classical link budget analysis of Earth-space communications system.

  8. 469nm Fiber Laser Source

    SciTech Connect

    Drobshoff, A; Dawson, J W; Pennington, D M; Payne, S A; Beach, R

    2005-01-20

    We have demonstrated 466mW of 469nm light from a frequency doubled continuous wave fiber laser. The system consisted of a 938nm single frequency laser diode master oscillator, which was amplified in two stages to 5 Watts using cladding pumped Nd{sup 3+} fiber amplifiers and then frequency doubled in a single pass through periodically poled KTP. The 3cm long PPKTP crystal was made by Raicol Crystals Ltd. with a period of 5.9 {micro}m and had a phase match temperature of 47 degrees Centigrade. The beam was focused to a 1/e{sup 2} diameter in the crystal of 29 {micro}m. Overall conversion efficiency was 11% and the results agreed well with standard models. Our 938nm fiber amplifier design minimizes amplified spontaneous emission at 1088nm by employing an optimized core to cladding size ratio. This design allows the 3-level transition to operate at high inversion, thus making it competitive with the 1088nm 4-level transition. We have also carefully chosen the fiber coil diameter to help suppress propagation of wavelengths longer than 938 nm. At 2 Watts, the 938nm laser had an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >10:1).

  9. Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm

    PubMed Central

    Kodach, V. M.; Kalkman, J.; Faber, D. J.; van Leeuwen, T. G.

    2010-01-01

    One of the present challenges in optical coherence tomography (OCT) is the visualization of deeper structural morphology in biological tissues. Owing to a reduced scattering, a larger imaging depth can be achieved by using longer wavelengths. In this work, we analyze the OCT imaging depth at wavelengths around 1300 nm and 1600 nm by comparing the scattering coefficient and OCT imaging depth for a range of Intralipid concentrations at constant water content. We observe an enhanced OCT imaging depth for 1600 nm compared to 1300 nm for Intralipid concentrations larger than 4 vol.%. For higher Intralipid concentrations, the imaging depth enhancement reaches 30%. The ratio of scattering coefficients at the two wavelengths is constant over a large range of scattering coefficients and corresponds to a scattering power of 2.8 ± 0.1. Based on our results we expect for biological tissues an increase of the OCT imaging depth at 1600 nm compared to 1300 nm for samples with high scattering power and low water content. PMID:21258456

  10. 15 CFR 10.0 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., performance criteria, inspection requirements, marking requirements, testing equipment, test procedures and... purchase, installation, and use of the product being standardized. (b) Requirements for Department of... organization concerned with the manufacture, production, packaging, distribution, testing, consumption, or...

  11. 21 CFR 10.100 - Public calendar.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... feasible, significant events of the previous week, including significant meetings with persons outside the...) Public calendar entries will include: (i) Significant meetings with members of the judiciary... case, administrative hearing, or other regulatory action or decision; (ii) Significant...

  12. 21 CFR 10.100 - Public calendar.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... feasible, significant events of the previous week, including significant meetings with persons outside the...) Public calendar entries will include: (i) Significant meetings with members of the judiciary... case, administrative hearing, or other regulatory action or decision; (ii) Significant...

  13. 21 CFR 10.100 - Public calendar.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... feasible, significant events of the previous week, including significant meetings with persons outside the...) Public calendar entries will include: (i) Significant meetings with members of the judiciary... case, administrative hearing, or other regulatory action or decision; (ii) Significant...

  14. 21 CFR 10.100 - Public calendar.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... feasible, significant events of the previous week, including significant meetings with persons outside the...) Public calendar entries will include: (i) Significant meetings with members of the judiciary... case, administrative hearing, or other regulatory action or decision; (ii) Significant...

  15. 21 CFR 10.100 - Public calendar.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... feasible, significant events of the previous week, including significant meetings with persons outside the...) Public calendar entries will include: (i) Significant meetings with members of the judiciary... case, administrative hearing, or other regulatory action or decision; (ii) Significant...

  16. 15 CFR 10.0 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... duplicate a standard published by, or actively being developed or revised by, a private standards-writing... and maintenance by a private standards-writing organization; and (6) The proposed standard will be... current with respect to advancing technology and marketing practices. (e) Role of the National...

  17. 15 CFR 10.0 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... current with respect to advancing technology and marketing practices. (e) Role of the National Institute of Standards & Technology. The National Institute of Standards & Technology (NIST) administers these... Standards & Technology, Gaithersburg, Maryland 20899....

  18. 15 CFR 10.0 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... current with respect to advancing technology and marketing practices. (e) Role of the National Institute of Standards & Technology. The National Institute of Standards & Technology (NIST) administers these... Standards & Technology, Gaithersburg, Maryland 20899....

  19. Photoionization of Nitromethane at 355nm and 266nm

    NASA Astrophysics Data System (ADS)

    Martínez, Denhi; Betancourt, Francisco; Poveda, Juan Carlos; Guerrero, Alfonso; Cisneros, Carmen; Álvarez, Ignacio

    2014-05-01

    Nitromethane is one of the high-yield clean liquid fuels, i.e., thanks to the oxygen contained in nitromethane, much less atmospheric oxygen is burned compared to hydrocarbons such as gasoline, making the nitromethane an important prototypical energetic material, the understanding of its chemistry is relevant in other fields such as atmospheric chemistry or biochemistry. In this work we present the study of photoionization dynamics by multiphoton absorption with 355 nm and 266 nm wavelength photons, using time of flight spectrometry in reflectron mode (R-TOF). Some of the observed ion products appear for both wavelength and other only in one of them; both results were compared with preview observations and new ions were detected. This work is supported by CONACYT grant 165410 and DGAPA-UNAM grants IN-107-912 and IN-102-613.

  20. Picosecond laser texturization of mc-silicon for photovoltaics: A comparison between 1064 nm, 532 nm and 355 nm radiation wavelengths

    NASA Astrophysics Data System (ADS)

    Binetti, Simona; Le Donne, Alessia; Rolfi, Andrea; Jäggi, Beat; Neuenschwander, Beat; Busto, Chiara; Frigeri, Cesare; Scorticati, Davide; Longoni, Luca; Pellegrino, Sergio

    2016-05-01

    Self-organized surface structures were produced by picosecond laser pulses on multi-crystalline silicon for photovoltaic applications. Three different laser wavelengths were employed (i.e. 1064 nm, 532 nm and 355 nm) and the resulting morphologies were observed to effectively reduce the reflectivity of the samples after laser irradiation. Besides, a comparative study of the laser induced subsurface damage generated by the three different wavelengths was performed by confocal micro-Raman, photoluminescence and transmission electron microscopy. The results of both the structural and optical characterization showed that the mc-Si texturing performed with the laser at 355 nm provides surface reflectivity between 11% and 8% over the spectral range from 400 nm to 1 μm, while inducing the lowest subsurface damage, located above the depletion region of the p-n junction.

  1. 248nm silicon photoablation: Microstructuring basics

    SciTech Connect

    Poopalan, P.; Najamudin, S. H.; Wahab, Y.; Mazalan, M.

    2015-05-15

    248nm pulses from a KrF excimer laser was used to ablate a Si wafer in order to ascertain the laser pulse and energy effects for use as a microstructuring tool for MEMS fabrication. The laser pulses were varied between two different energy levels of 8mJ and 4mJ while the number of pulses for ablation was varied. The corresponding ablated depths were found to range between 11 µm and 49 µm, depending on the demagnified beam fluence.

  2. Precursor to equatorial spread-F in OI 630.0 nm dayglow

    NASA Astrophysics Data System (ADS)

    Sridharan, R.; Raju, D. Pallam; Raghavarao, R.; Ramarao, P. V. S.

    1994-12-01

    A unique of OI 630.0 nm dayglow photometer operated from Waltair (10.0 deg N dip lat.), a-low-latitude station in India, in a bidirectional mode, i.e., over zenith and at 200 deg elevation pointing north, has revealed features associated with the evolution of the Equatorial Ionization Anomaly (EIA). The estimated strength of the EIA on a particular day based on these features reveal that significant differences exist in the EIA contribution of OI 630.0 nm on equatorial spread-F (ESF) and non-ESF days. There exists a precursor in the OI 630.0 nm dayglow which enables the prediction of ESF at least 3 hours prior to its actual occurrence and hence points to the significant control of daytime EIA-related processes uin the triggering of the post-sunset ESF.

  3. TUNABLE DIODE LASER MEASUREMENTS OF NO2 NEAR 670 NM AND 395 NM. (R823933)

    EPA Science Inventory

    Two single-mode diode lasers were used to record high-resolution absorption spectra of NO2 (dilute in Ar) near 670.2 and 394.5 nm over a range of temperatures (296 to 774 K) and total pressures (2.4 x 10(-2) to 1 atm). A commercial InGaAsP laser was tuned 1.3 cm(-1) at a repetiti...

  4. Pulsed blue laser at 491 nm by nonlinear cavity dumping.

    PubMed

    Herault, Emilie; Lelek, Mickaël; Balembois, François; Georges, Patrick

    2008-11-24

    A nonlinear cavity dumping process is applied for the first time to generate kW peak power pulses at 491 nm. The system is based on efficient sum-frequency mixing of 1063 nm and 912 nm radiations in a BiBO nonlinear crystal placed inside a Nd:GdVO4 laser oscillator with a high finesse cavity at 912 nm. The nonlinear cavity dumping process is triggered by high peak power nanosecond pulses from a 1063 nm Q-switched Nd:GdVO4 laser operating at 10 kHz. To reach the kW range at 491 nm a key point is to Q-switch the high finesse 912 nm cavity instead of continuous wave operation. Thus, the peak power (9.3 kW for 3 ns pulses) and the average power (280 mW) obtained at 491 nm are 14 times higher than the one obtained when the 912 nm laser operated in continuous wave. PMID:19030029

  5. 40nm tunable multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Jia, Qingsong; Wang, Tianshu; Zhang, Peng; Dong, Keyan; Jiang, Huilin

    2014-12-01

    A Brillouin-Erbium multi-wavelength tunable fiber laser at C-band is demostrated. A 10 km long singlemode fiber(SMF), a 6 m long Erbium-doped fiber, two couplers, a wavelength division multiplexer, a isolator, an optical circulator, a 980nm pump laser and a narrow linewidth tunable laser are included in the structure. A segment of 10 km-long single-mode fiber (SMF) between the two ports of a 1×2 coupler is used as Brillouin gain. Ebiumdoped fiber amplifier (EDFA) consists of a segment of 6m er-doped fiber pumped by 980nm laser dioder . A narrow linewidth tunable laser from 1527 to 1607 nm as Brillouin bump, At the Brillouin pump power of 8mW and the 980 nm pump power of 400 mw, 16 output channels with 0.08 nm spacing and tuning range of 40 nm from 1527 nm to 1567 nm are achieved. We realize the tunable output of wavelength by adjusting the 980 nm pump power and the Brillouin pump wavelength. Stability of the multiwavelength fiber laser is also observed.

  6. 32nm overlay improvement capabilities

    NASA Astrophysics Data System (ADS)

    Eichelberger, Brad; Huang, Kevin; O'Brien, Kelly; Tien, David; Tsai, Frank; Minvielle, Anna; Singh, Lovejeet; Schefske, Jeffrey

    2008-03-01

    The industry is facing a major challenge looking forward on the technology roadmap with respect to overlay control. Immersion lithography has established itself as the POR for 45nm and for the next few nodes. As the gap closes between scanner capability and device requirements new methodologies need to be taken into consideration. Double patterning lithography is an approach that's being considered for 32 and below, but it creates very strict demands for overlay performance. The fact that a single layer device will need to be patterned using two sequential single processes creates a strong coupling between the 1st and 2nd exposure. The coupling effect during the double patterning process results in extremely tight tolerances for overlay error and scanner capabilities. The purpose of this paper is to explore a new modeling method to improve lithography performance for the 32nm node. Not necessarily unique for double patterning, but as a general approach to improve overlay performance regardless of which patterning process is implemented. We will achieve this by performing an in depth source of variance analysis of current scanner performance and project the anticipated improvements from our new modeling approach. Since the new modeling approach will involve 2nd and 3rd order corrections we will also provide and analysis that outlines current metrology capabilities and sampling optimizations to further expand the opportunities of an efficient implementation of such approach.

  7. 75 FR 11194 - Notice of Filing of Plats of Survey, NM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ..., for Group 1096 NM. The plat representing the dependent resurvey and survey, in Township 11 ] South, Range 22 East, of the New Mexico Principal Meridian, accepted January 15, 2010, for Group 1096 NM. If...

  8. All-fibre ytterbium laser tunable within 45 nm

    SciTech Connect

    Abdullina, S R; Babin, S A; Vlasov, A A; Kablukov, S I; Shelemba, I S; Kurkov, A S

    2007-12-31

    A tunable ytterbium-doped fibre laser is fabricated. The laser is tuned by using a tunable fibre Bragg grating (FBG) as a selecting intracavity element. The laser is tunable within 45 nm (from 1063 to 1108 nm) and emits {approx}6 W in the line of width {approx}0.15 nm, the output power and linewidth being virtually invariable within the tuning range. The method is proposed for synchronous tuning the highly reflecting and output FBGs, and a tunable ytterbium all-fibre laser is built. (lasers)

  9. High-efficiency high-brightness diode lasers at 1470 nm/1550 nm for medical and defense applications

    NASA Astrophysics Data System (ADS)

    Gallup, Kendra; Ungar, Jeff; Vaissie, Laurent; Lammert, Rob; Hu, Wentao

    2012-03-01

    Diode lasers in the 1400 nm to 1600 nm regime are used in a variety of applications including pumping Er:YAG lasers, range finding, materials processing, aesthetic medical treatments and surgery. In addition to the compact size, efficiency, and low cost advantages of traditional diode lasers, high power semiconductor lasers in the eye-safe regime are becoming widely used in an effort to minimize the unintended impact of potentially hazardous scattered optical radiation from the laser source, the optical delivery system, or the target itself. In this article we describe the performance of high efficiency high brightness InP laser bars at 1470nm and 1550nm developed at QPC Lasers for applications ranging from surgery to rangefinding.

  10. Wide-range neutron spectrometer on gas proportional counters

    SciTech Connect

    Shvetsov, A.M.; Fomushkin, E.F.

    1994-12-31

    A neutron spectrometer with four cylindrical gas proportional counters was developed, produced and tested in VNIIEF. Active lengths of the counters are concentrated in the range of {approximately}10-100 cm, while the diameters - in the range of {approximately}2-8 cm. Hydrogen, methane, argon, krypton and {sup 3}He were used as working gases. Energy range of the spectrometer constitutes {approximately}0.01

  11. All-fiber wavelength-tunable Tm/Ho-codoped laser between 1727 nm and 2030 nm

    NASA Astrophysics Data System (ADS)

    Xue, Guanghui; Zhang, Bin; Yin, Ke; Yang, Weiqiang; Hou, Jing

    2015-02-01

    Lasers in the eye-safe 2 μm spectral region are attracting significant interest due to a variety of applications such as atmospheric lidar sensing and medical treatment, which require laser sources matching the absorption lines of various molecules in the 2 μm wavelength region. We demonstrate an all-fiber Tm/Ho-codoped laser operating in the 2 μm wavelength region with a wide wavelength tuning range of more than 300 nm. The Tm/Ho-codoped fiber laser (THFL) was built in a ring cavity configuration with a fiberized grating-based tunable filter to select the operating wavelength. The tunable wavelength range of the THFL was from 1727 nm to 2030 nm. To the best of our knowledge, this is the widest tuning range that has been reported for an all-fiber rare-earth-doped laser to date. Efficient short wavelength operation was also achieved. The output power of the THFL was further scaled up from 1810 nm to 2010 nm by using a stage of Tm/Ho-codoped fiber amplifier (THFA), which exhibited the maximum slope efficiency of 42.6% with output power of 408 mW at 1910 nm.

  12. Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array

    DOEpatents

    Gruen, Dieter M.

    2000-01-01

    A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.

  13. High-speed stimulated Brillouin scattering spectroscopy at 780 nm

    NASA Astrophysics Data System (ADS)

    Remer, Itay; Bilenca, Alberto

    2016-09-01

    We demonstrate a high-speed stimulated Brillouin scattering (SBS) spectroscopy system that is able to acquire stimulated Brillouin gain point-spectra in water samples and Intralipid tissue phantoms over 2 GHz within 10 ms and 100 ms, respectively, showing a 10-100 fold increase in acquisition rates over current frequency-domain SBS spectrometers. This improvement was accomplished by integrating an ultra-narrowband hot rubidium-85 vapor notch filter in a simplified frequency-domain SBS spectrometer comprising nearly counter-propagating continuous-wave pump-probe light at 780 nm and conventional single-modulation lock-in detection. The optical notch filter significantly suppressed stray pump light, enabling detection of stimulated Brillouin gain spectra with substantially improved acquisition times at adequate signal-to-noise ratios (˜25 dB in water samples and ˜15 dB in tissue phantoms). These results represent an important step towards the use of SBS spectroscopy for high-speed measurements of Brillouin gain resonances in scattering and non-scattering samples.

  14. Analysis of multi-mode to single-mode conversion at 635 nm and 1550 nm

    NASA Astrophysics Data System (ADS)

    Zamora, Vanessa; Bogatzki, Angelina; Arndt-Staufenbiel, Norbert; Hofmann, Jens; Schröder, Henning

    2016-03-01

    We propose two low-cost and robust optical fiber systems based on the photonic lantern (PL) technology for operating at 635 nm and 1550 nm. The PL is an emerging technology that couples light from a multi-mode (MM) fiber to several single-mode (SM) fibers via a low-loss adiabatic transition. This bundle of SM fibers is observed as a MM fiber system whose spatial modes are the degenerate supermodes of the bundle. The adiabatic transition allows that those supermodes evolve into the modes of the MM fiber. Simulations of the MM fiber end structure and its taper transition have been performed via functional mode solver tools in order to understand the modal evolution in PLs. The modelled design consists of 7 SM fibers inserted into a low-index capillary. The material and geometry of the PLs are chosen such that the supermodes match to the spatial modes of the desired step-index MM fiber in a moderate loss transmission. The dispersion of materials is also considered. These parameters are studied in two PL systems in order to reach a spectral transmission from 450 nm to 1600 nm. Additionally, an analysis of the geometry and losses due to the mismatching of modes is presented. PLs are typically used in the fields of astrophotonics and space photonics. Recently, they are demonstrated as mode converters in telecommunications, especially focusing on spatial division multiplexing. In this study, we show the use of PLs as a promising interconnecting tool for the development of miniaturized spectrometers operating in a broad wavelength range.

  15. Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm

    NASA Astrophysics Data System (ADS)

    von Brunn, P.; Heuer, A. M.; Fornasiero, L.; Huber, G.; Kränkel, C.

    2016-08-01

    Even though the first Nd3+-doped sesquioxide lasers have been realized more than 50 years ago, up to now no reports on efficient laser operation of Nd3+:doped sesquioxides can be found. In this work, we review the favorable spectroscopic properties of the sesquioxide Nd3+:Lu2O3 in terms of ground state absorption, stimulated emission, and excited state absorption cross sections as well as the upper level lifetime. Making use of these properties, we achieved efficient laser performance on eight different laser transitions in the wavelength range between 917 nm and 1463 nm under Ti:sapphire laser pumping using state-of-the-art HEM-grown Nd3+:Lu2O3 crystals with good optical quality. At the strongest transition around 1076 nm we determined a slope efficiency of 69%, which represents the highest efficiency ever obtained for a Nd3+-doped sesquioxide. Furthermore, we could generate watt level output powers and high slope efficiencies for seven other transitions. Lasers at 917 nm, 1053 nm, 1108 nm and 1463 nm were realized for the first time and the latter represents one of the longest laser wavelengths obtained on the 4F3/2  →  4I13/2 transition in Nd3+-doped materials.

  16. The Spectrum of Th-Ar Hollow Cathode Lamps in the 691nm to 5804nm region Database

    National Institute of Standards and Technology Data Gateway

    SRD 161 The Spectrum of Th-Ar Hollow Cathode Lamps in the 691nm to 5804nm region Database (Web, free access)   This atlas presents observations of the infra-red (IR) spectrum of a low current Th-Ar hollow cathode lamp with the 2-m Fourier transform spectrometer (FTS) at NIST. These observations establish more than 2400 lines that are suitable for use as wavelength standards in the range 691 nm to 5804 nm. The observations were made in collaboration with the European Southern Observatory (ESO), in order to provide calibration reference data for new high-resolution Echelle spectrographs, such as the Cryogenic High-Resolution IR Echelle Spectrograph ([CRIRES]), ESO's new IR spectrograph at the Very Large Telescope in Chile.

  17. Micromachining with femtosecond 250-nm laser pulses

    NASA Astrophysics Data System (ADS)

    Li, C.; Argument, Michael A.; Tsui, Ying Y.; Fedosejevs, Robert

    2000-12-01

    Laser micromachining is a flexible technique for precision patterning of surfaces in microelectronics, microelectromechanical devices and integrated optical devices. Typical applications include drilling of holes, cutting of conducting lines or shaping of micro component surfaces. The resolution, edge finish and residual damage to the surrounding and underlying structures depend on a variety of parameters including laser energy, intensity, pulse width and wavelength. Femtosecond pulses are of particular interest because the limited time of interaction limits the lateral expansion of the plasma and the inward propagation of the heat front. Thus, very small spot size can be achieved and minimal heating and damage of underlying layers can be obtained. An additional advantage of femtosecond pulses is that multiphoton absorption leads to efficient coupling of energy to many materials independent of the linear reflectivity of the surface. Thus metals and transmitting dielectrics, which are difficult to micromachine, may be machined with such pulses. The coupling is improved further by employing ultraviolet wavelength laser pulses where the linear absorption typically is much higher than for visible and infrared laser pulses. To explore these advantages, we have initiated a study of the interaction of 250nm femtosecond laser pulses with metals. The laser pulses are obtained by generating the third harmonic from a femtosecond Ti:sapphire laser operating at 750nm. The pulses are focused to various intensities in the range of 1010Wcm2 to 1015 Wcm2 using reflective and refractive microscope objectives and ablation thresholds and ablation rates have been determined for a few metals. In addition the ability to control feature size and produce submicron holes and lines have been investigated. The results are presented and compared to results obtained using infrared and visible femtosecond laser pulses.

  18. The Missing Solar Irradiance Spectrum: 1 to 7 nm

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Lewis, M.; David, M.; Schunk, R. W.; Woods, T. N.; Eparvier, F. G.; Warren, H. P.

    2015-12-01

    During large X-class flares the Earth's upper atmospheric E-region responds immediately to solar photons in the 1 to 7 nm range. The response can change the E-region density by factors approaching 10, create large changes in conductivity, and plague HF communications. GOES-XRS provide 0.1 to 0.8 nm and a 0.05 to 0.4 nm integral channels; SOHO-SEM provided a 0 to 50 nm irradiance; TIMED and SORCE-XPS diode measurements also integrated down to 0.1 nm; and most recently SDO-EVE provided a 0.1 to 7 nm irradiance. For atmospheric response to solar flares the cadence is also crucial. Both GOES and SDO provided integral measurements at 10 seconds or better. Unfortunately these measurements have failed to capture the 1 to 7 nm spectral changes that occur during flares. It is these spectral changes that create the major impact since the ionization cross-section of the dominant atmospheric species, N2 and O2, both contain step function changes in the cross-sections. Models of the solar irradiance over this critical wavelength regime have suffered from the need to model the spectral variability based on incomplete measurements. The most sophisticated empirical model FISM [Chamberlin et al., 2008] used 1 nm spectral binning and various implementations of the above integral measurements to describe the 1 to 7 nm irradiance. Since excellent solar observations exist at other wavelengths it is possible to construct an empirical model of the solar atmosphere and then use this model to infer the spectral distribution at wavelengths below 5 nm. This differential emission measure approach has been used successfully in other contexts [e.g., Warren, 2005, Chamberlin et al., 2009]. This paper contrasts the broadband versus spectrally resolved descriptions of the incoming irradiance that affects the upper atmospheric E-layer. The results provide a prescription of what wavelength resolution would be needed to adequately measure the incoming solar irradiance in the 1 to 7 nm range.

  19. Intracavity pumped sum-frequency mixing for an emission at 491.5 nm

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Duanmu, Q. D.; Li, S. T.; Dong, Y.

    2013-08-01

    We present an Nd:LuVO4 laser emitting at 1066 nm intracavity pumped by a 912 nm diode-pumped Nd:GdVO4 laser. A 880 nm diode laser is used to pump the Nd:GdVO4 crystal emitting at 912 nm, and the Nd:LuVO4 laser emitting at 1066 nm intracavity pumped at 912 nm. Intracavity sum-frequency mixing at 912 and 1066 nm was realized in a lithium triborate crystal to reach the blue range. We obtained a continuous-wave output power of 2.35 W at 491.5 nm with a pump laser diode emitting 26.2 W at 880 nm. The power stability is better than 3.5% and the laser beam quality M2 factors are 1.31 and 1.23 in the horizontal and vertical dimensions respectively.

  20. Revisit pattern collapse for 14nm node and beyond

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Kenji; Higgins, Craig; Raghunathan, Ananthan; Hartley, John G.; Goldfarb, Dario L.; Kato, Hirokazu; Petrillo, Karen; Colburn, Matthew E.; Schefske, Jeffrey; Wood, Obert; Wallow, Thomas I.

    2011-04-01

    In this study, we have analyzed new data sets of pattern collapse obtained from 300 mm wafers which were coated with a process-of-record (POR) EUV resist and exposed by an EUV Alpha-Demo tool (ADT) and a Vistec VB300 e-beam exposure tool. In order to minimize any processing effects on pattern collapse, the same POR EUV track process was applied to both exposures. A key metric of our analysis is the critical aspect ratio of collapse (CARC)1. We found that CARC of POR EUV resist decreases monotonically with spacing, in the range of ~1.8-2.2 at ~32-54 nm space (60-80 nm pitch) for EUV, and ~1.5-2.1 at ~16-50 nm space (~46-80 nm pitch) for e-beam. We also estimated an apparent Young's modulus of POR EUV resist by fitting a collapse model2 to the CARC data. The resulting modulus ~0.30 GPa was much smaller than the modulus of typical polymer glasses (~1.0-5.0 GPa). Our findings suggest that due to a significant decrease of resist mechanical properties and a sharp increase in capillary force, it will be challenging to maintain aspect ratios above 2.0 for sub-30 nm resist spacing (sub-60 nm pitches). For patterning at these dimensions, alternate processes and materials will become increasingly necessary, e.g. surfactant-based rinse solutions3 and other approaches.

  1. High-brightness 800nm fiber-coupled laser diodes

    NASA Astrophysics Data System (ADS)

    Berk, Yuri; Levy, Moshe; Rappaport, Noam; Tessler, Renana; Peleg, Ophir; Shamay, Moshe; Yanson, Dan; Klumel, Genadi; Dahan, Nir; Baskin, Ilya; Shkedi, Lior

    2014-03-01

    Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. Single emitters offer reliable multi-watt output power from a 100 m lateral emission aperture. By their combination and fiber coupling, pump powers up to 100 W can be achieved from a low-NA fiber pigtail. Whilst in the 9xx nm spectral range the single emitter technology is very mature with <10W output per chip, at 800nm the reliable output power from a single emitter is limited to 4 W - 5 W. Consequently, commercially available fiber coupled modules only deliver 5W - 15W at around 800nm, almost an order of magnitude down from the 9xx range pumps. To bridge this gap, we report our advancement in the brightness and reliability of 800nm single emitters. By optimizing the wafer structure, laser cavity and facet passivation process we have demonstrated QCW device operation up to 19W limited by catastrophic optical damage to the 100 μm aperture. In CW operation, the devices reach 14 W output followed by a reversible thermal rollover and a complete device shutdown at high currents, with the performance fully rebounded after cooling. We also report the beam properties of our 800nm single emitters and provide a comparative analysis with the 9xx nm single emitter family. Pump modules integrating several of these emitters with a 105 μm / 0.15 NA delivery fiber reach 35W in CW at 808 nm. We discuss the key opto-mechanical parameters that will enable further brightness scaling of multi-emitter pump modules.

  2. Long-range ferromagnetic order induced by a donor impurity band exchange in SnO{sub 2}:Er{sup 3+} nanoparticles

    SciTech Connect

    Aragón, F. H.; Coaquira, J. A. H.; Chitta, V. A.; Hidalgo, P.; Brito, H. F.

    2013-11-28

    In this work, the structural and magnetic properties of Er-doped SnO{sub 2} (SnO{sub 2}:Er) nanoparticles are reported. The SnO{sub 2}:Er nanoparticles have been synthesized by a polymer precursor method with Er content from 1.0% to 10.0%. X-ray diffraction results indicate the formation of only the rutile-type structure in all samples. The estimated mean crystallite size shows a decrease from ∼10 to ∼4 nm when the Er content is increased from 1.0% to 10.0%. The particle size values have been corroborated by transmission electron microscopy technique. The thermal dependence of the magnetization is consistent with the 3+ oxidation state of erbium ions for all samples. A strong paramagnetic-like behavior coexisting with a ferromagnetic phase has been determined for samples with Er content below 5.0%. Above this concentration, only a paramagnetic behavior has been determined. Isothermal magnetization curves are consistent with the occurrence of long-range ferromagnetic order mediated by donor electrons forming bound magnetic polarons which overlap to produce a spin-split impurity band.

  3. A 1.5-W frequency doubled semiconductor disk laser tunable over 40 nm at around 745 nm

    NASA Astrophysics Data System (ADS)

    Saarinen, Esa J.; Lyytikäinen, Jari; Ranta, Sanna; Rantamäki, Antti; Saarela, Antti; Sirbu, Alexei; Iakovlev, Vladimir; Kapon, Eli; Okhotnikov, Oleg G.

    2016-03-01

    We report on a semiconductor disk laser emitting 1.5 W of output power at the wavelength of 745 nm via intracavity frequency doubling. The high power level and the < 40 nm tuning range make the laser a promising tool for medical treatments that rely on photosensitizing agents and biomarkers in the transmission window of tissue between 700 and 800 nm. The InP-based gain structure of the laser was wafer-fused with a GaAs-based bottom mirror and thermally managed with an intracavity diamond heat spreader. The structure was pumped with commercial low-cost 980 nm laser diode modules. Laser emission at 1490 nm was frequency-doubled with a bismuth borate crystal that was cut for type I critical phase matching. At the maximum output power, we achieved an optical-to-optical efficiency of 8.3% with beam quality parameter M2 below 1.5. The laser wavelength could be tuned with an intracavity birefringent plate from 720 to 764 nm.

  4. 34 nm Charge Transport through DNA

    NASA Astrophysics Data System (ADS)

    Slinker, Jason; Muren, Natalie; Renfrew, Sara; Barton, Jacqueline

    2011-03-01

    Long-range charge transport through DNA has broad-reaching implications due to its inherent biological recognition capabilities and unmatched capacity to be patterned into precise, nanoscale shapes. We have observed charge transport through 34 nm DNA monolayers (100 base pairs) using DNA-mediated electrochemistry. Cyclic voltammetry of multiplexed gold electrodes modified with 100mer DNAs reveal sizable peaks from distally-bound Nile Blue redox probes for well matched duplexes but highly attenuated redox peaks from 100mer monolayers containing a single base pair mismatch, demonstrating that the charge transfer is DNA-mediated. The 100mers on the gold surface are efficiently cleaved by the restriction enzyme RsaI. The 100mers in the DNA film thus adopt conformations that are readily accessible to protein binding and restriction. The ability to assemble well-characterized DNA films with these 100mers permits the demonstration of charge transport over distances surpassing most reports of molecular wires. Supported by funding from the NIH/NIBIB.

  5. Measurements of Photoabsorpton Cross Sections and their Temperature Dependence for CO2 in the 170nm to 200nm Region

    NASA Astrophysics Data System (ADS)

    Parkinson, W. H.; Yoshino, K.

    2001-11-01

    All the photochemical models for the predominately CO2 Martian atmosphere ar e very sensitive to the amount of CO2 and to the values and spectral details of the absorpton cross sections of CO2 in the region 170nm-200nm. Earlier we had measured and published absolute cross sections of CO2 in the region 118.0 nm-175.5 nm at 295K and 195K. We have recently extended these measurements from 170 nm to 200 nm at 300K and 1 95K. The new measurements have been carried out at high resolution with our 6.65 -m normal incidence , photoelectric spectrometer. To measure the weak photoabsorption of the CO2 bands in the wavelength region 170 --200 nm, we required a high column density of the gas. We obtained this by using a multi pass technique, a White cell. The White cell was designed to have a distance of 1.50 m between two main mirrors, and was set for four, double pas ses making a path length of 12.0 m. CO2 gas was frozen in a stainless cylinder immersed in liquid nitrogen, and t he frozen product (dryice) was pumped by the diffusion pump for purification. The CO2 was warmed up slowly and kept in the cylinder at high pressure. The CO2 pressure used in the White cell was varied from 1 to 1000 Torr depend ing on the wavelength region, and was measured with a a capacitance manometer (M KS Baratron, 10 Torr and 1000 Torr). We divided the spectral region into twenty sections of about 1.5 nm extent. At each scan range, another scan was obtained from the emission spectrum of the fourth positive bands of CO for wavelength calibration. We acknowledge funding from NASA, grant NAGS-7859 to Harvard College Observatory.

  6. Segmentation of the macular choroid in OCT images acquired at 830nm and 1060nm

    NASA Astrophysics Data System (ADS)

    Lee, Sieun; Beg, Mirza F.; Sarunic, Marinko V.

    2013-06-01

    Retinal imaging with optical coherence tomography (OCT) has rapidly advanced in ophthalmic applications with the broad availability of Fourier domain (FD) technology in commercial systems. The high sensitivity afforded by FD-OCT has enabled imaging of the choroid, a layer of blood vessels serving the outer retina. Improved visualization of the choroid and the choroid-sclera boundary has been investigated using techniques such as enhanced depth imaging (EDI), and also with OCT systems operating in the 1060-nm wavelength range. We report on a comparison of imaging the macular choroid with commercial and prototype OCT systems, and present automated 3D segmentation of the choroid-scleral layer using a graph cut algorithm. The thickness of the choroid is an important measurement to investigate for possible correlation with severity, or possibly early diagnosis, of diseases such as age-related macular degeneration.

  7. Cavity-dumped Yb:YAG ceramic in the 20  W, 12  mJ range at 6.7  ns operating from 20  Hz to 5  kHz with fluorescence feedback control.

    PubMed

    Fries, Christian; Weitz, Marco; Theobald, Christian; Löwis Of Menar, Patric V; Bartschke, Jürgen; L'huillier, Johannes A

    2016-08-20

    Increasing data acquisition rates in metrology applications based on optical parametric oscillators (OPOs) can accelerate measurement processes. To achieve this, flash-lamp systems with low pulse repetition frequencies of 10-100 Hz used as a pump source for the OPOs could be replaced by diode-pumped solid-state lasers in the kHz range. We demonstrate a 969 nm pumped Yb:YAG ceramic laser yielding 21.6 W output power, 12.5 mJ pulse energy, and excellent beam quality. Fluorescence feedback control, developed from gain dynamics simulations in two operating regimes, allows stable operation at 6.7 ns from 20 to 5000 Hz. Third harmonic generation to 343 nm yields 3.24 W at 2 kHz. The system provides constant pulse duration in a huge repetition rate interval, which is beneficial for pump sources for future metrology devices. PMID:27556969

  8. Coronal Diagnostics from Narrowband Images Around 30.4 nm

    NASA Astrophysics Data System (ADS)

    Andretta, V.; Telloni, D.; Del Zanna, G.

    2012-07-01

    Images taken in the band centered at 30.4 nm are routinely used to map the radiance of the He ii Ly α line on the solar disk. That line is one of the strongest, if not the strongest, line in the EUV observed in the solar spectrum, and one of the few lines in that wavelength range providing information on the upper chromosphere or lower transition region. However, when observing the off-limb corona, the contribution from the nearby Si xi 30.3 nm line can become significant. In this work we aim at estimating the relative contribution of those two lines in the solar corona around the minimum of solar activity. We combine measurements from CDS taken in August 2008 with temperature and density profiles from semiempirical models of the corona to compute the radiances of the two lines, and of other representative coronal lines ( e.g. Mg x 62.5 nm, Si xii 52.1 nm). Considering both diagnosed quantities from line ratios (temperatures and densities) and line radiances in absolute units, we obtain a good overall match between observations and models. We find that the Si xi line dominates the He ii line from just above the limb up to ≈ 2 R ⊙ in streamers, while its contribution to narrowband imaging in the 30.4 nm band is expected to become smaller, even negligible in the corona beyond ≈ 2 - 3 R ⊙, the precise value being strongly dependent on the coronal temperature profile.

  9. Periodic nanostructures on titanium dioxide film produced using femtosecond laser with wavelengths of 388 nm and 775 nm.

    PubMed

    Shinonaga, Togo; Tsukamoto, Masahiro; Miyaji, Godai

    2014-06-16

    Titanium dioxide (TiO2) film is an important biomaterial used to improve the biocompatibility of titanium (Ti). We have used a film coating method with an aerosol beam and femtosecond laser irradiation to form periodic structures on biomaterials for control of the cell spreading. The control of cell spreading on biomaterials is important for the development of advanced biomaterials. In this study, nanostructures with periods of 130 and 230 nm were formed on a film using a femtosecond laser with wavelengths of 388 and 775 nm, respectively. The nanostructure period on the film was 30% of the laser wavelengths. Periods produced with wavelengths of 388 and 775 nm were calculated using a surface plasmon polariton (SPP) model and the experimental results for both wavelengths were in the range of the calculated periods, which suggests that the mechanism for the formation of the periodic nanostructures on the film with a femtosecond laser was due to the excitation of SPPs.

  10. Simultaneous triple 914 nm, 1084 nm, and 1086 nm operation of a diode-pumped Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Xia, Jing; Liu, Huilong; Pu, Xiaoyun

    2014-10-01

    We report a diode-pumped continuous-wave (cw) triple-wavelength Nd:YVO4 laser operating at 914, 1084, and 1086 nm. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous triple-wavelength laser. Using a T-shaped cavity, we realized an efficient triple-wavelength operation at 4F3/2→4I9/2 and 4F3/2→4I11/2 transitions for Nd:YVO4 crystal, simultaneously. At an absorbed pump power of 16 W (or 25 W of incident pump power), the maximum output power was 2.3 W, which included 914 nm, 1084 nm, and 1086 nm three wavelengths, and the optical conversion efficiency with respect to the absorbed pump power was 14.4%.

  11. Comparison of modeled NmE with NmE measured by the Boulder ionosonde near the spring equinox.

    NASA Astrophysics Data System (ADS)

    Pavlov, Anatoli; Pavlova, Nadezhda

    We present a comparison of the E-layer peak electron number densities, NmE, measured by the Boulder ionosonde during geomagnetically quiet conditions on 10 April 1996 at low solar activity, 2 April 1993 and 9 April 1978 during moderate solar activity conditions, and 10 April 1991 at high solar activity with numerical theoretical model calculations of NmE. Based on this comparison, the modified EUVAC model solar flux is necessary to increase by a factor of 2 at moderate and high solar activity in the wavelength range of 3.2-7.0 nm. If O (+) ( (4) S), O (+) ( (2) D), O (+) ( (2) P), and N (+) ions are not calculated, the value of NmE is decreased up to a factor of 1.12 at solar minimum and up to a factor of 1.23 for the moderate and high solar activity conditions. The production of N _{2} (+) ions by photoelectron-impact ionization of N _{2} increases the value of NmE up to a factor of 1.18 at low solar activity and up to a factor of 1.33 for the moderate and high solar activity levels. The increase in NmE due to the production of O _{2} (+) ions by photoelectron-impact ionization of O _{2} does not exceed 4 percent. A difference between the calculated electron, T _{e}, and neutral, T _{n}, temperatures is less than 1, 4, 20, 70, and 145 K at 105, 110, 120, 130, and 140 km altitude, respectively. Changes in NmE caused by this difference between T _{e} and T _{n} are negligible.

  12. Sub-10 nm nanopantography

    SciTech Connect

    Tian, Siyuan Donnelly, Vincent M. E-mail: economou@uh.edu; Economou, Demetre J. E-mail: economou@uh.edu; Ruchhoeft, Paul

    2015-11-09

    Nanopantography, a massively parallel nanopatterning method over large areas, was previously shown to be capable of printing 10 nm features in silicon, using an array of 1000 nm-diameter electrostatic lenses, fabricated on the substrate, to focus beamlets of a broad area ion beam on selected regions of the substrate. In the present study, using lens dimensional scaling optimized by computer simulation, and reduction in the ion beam image size and energy dispersion, the resolution of nanopantography was dramatically improved, allowing features as small as 3 nm to be etched into Si.

  13. Fabrication of 10nm diameter carbon nanopores

    SciTech Connect

    Radenovic, Aleksandra; Trepagnier, Eliane; Csencsits, Roseann; Downing, Kenneth H; Liphardt, Jan

    2008-09-25

    The addition of carbon to samples, during imaging, presents a barrier to accurate TEM analysis, the controlled deposition of hydrocarbons by a focused electron beam can be a useful technique for local nanometer-scale sculpting of material. Here we use hydrocarbon deposition to form nanopores from larger focused ion beam (FIB) holes in silicon nitride membranes. Using this method, we close 100-200nm diameter holes to diameters of 10nm and below, with deposition rates of 0.6nm per minute. I-V characteristics of electrolytic flow through these nanopores agree quantitatively with a one dimensional model at all examined salt concentrations.

  14. Laser Damage Growth in Fused Silica with Simultaneous 351 nm and 1053 nm irradiation

    SciTech Connect

    Norton, M A; Carr, A V; Carr, C W; Donohue, E E; Feit, M D; Hollingsworth, W G; Liao, Z; Negres, R A; Rubenchik, A M; Wegner, P J

    2008-10-24

    Laser-induced growth of optical damage often determines the useful lifetime of an optic in a high power laser system. We have extended our previous work on growth of laser damage in fused silica with simultaneous 351 nm and 1053 nm laser irradiation by measuring the threshold for growth with various ratios of 351 nm and 1053 nm fluence. Previously we reported that when growth occurs, the growth rate is determined by the total fluence. We now find that the threshold for growth is dependent on both the magnitude of the 351 nm fluence as well as the ratio of the 351 nm fluence to the 1053 nm fluence. Furthermore, the data suggests that under certain conditions the 1053 nm fluence does not contribute to the growth.

  15. Generation of Thermospheric OI 845 nm Emission by Bowen Fluorescence

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Sharpee, B. D.; Cosby, P. C.; Slanger, T. G.

    2006-12-01

    777 and 845 nm emissions from the 3p-3s multiplets of atomic oxygen are commonly observed at non-auroral latitudes in the terrestrial nightglow. By studying the relative strengths of these emissions we can learn something about the mechanisms that produce them and what they can teach us about the atmosphere. Recently [1] we have used intensity-calibrated sky spectra from the Keck telescopes to investigate the relative strengths of a wide range of O-atom Rydberg lines and have confirmed that electron-ion radiative recombination is a primary source of excitation for both the triplet and quintet systems. Following the intensity of the 777 and 845 nm lines during the night, we find that for most of the night the quintet 777 nm line is consistently stronger than the triplet 845 nm line, with a nearly constant intensity ratio I(777)/I(845) near 2.3, although both intensities fall rapidly as the night progresses. However, late in the night the 845 nm intensity levels off, while the 777 nm intensity continues to fall, and the I(777)/I(845) ratio plunges by a factor of 5-10. We interpret these observations as indicating that the O-atom quintet states are still being excited by the same mechanism as earlier in the night, i.e. radiative recombination, but some triplet states are also being excited by an additional mechanism. Such a mechanism has been proposed before [2-6] but not previously observed directly in the terrestrial nightglow. The oxygen triplet 3d-2p transition at 102.576 nm is in close coincidence with the solar hydrogen Lyman-β line at 102.572 nm. Radiative transport in the hydrogen geocorona will deliver Lyman-β intensity into the Earth's shadow and will produce triplet O(3d 3D) high in the atmosphere, even prior to direct solar illumination. The result is observable in a radiative cascade sequence 3d-3p(1129 nm) → 3p- 3s(845 nm) → 3s-2p(130 nm). A similar effect is observed in the H-α emission, which is also excited by Lyman-β absorption. This process

  16. On the photochemistry of IONO2: absorption cross section (240-370 nm) and photolysis product yields at 248 nm.

    PubMed

    Joseph, D M; Ashworth, S H; Plane, J M C

    2007-11-01

    The absolute absorption cross section of IONO(2) was measured by the pulsed photolysis at 193 nm of a NO(2)/CF(3)I mixture, followed by time-resolved Fourier transform spectroscopy in the near-UV. The resulting cross section at a temperature of 296 K over the wavelength range from 240 to 370 nm is given by log(10)(sigma(IONO(2))/cm(2) molecule(-1)) = 170.4 - 3.773 lambda + 2.965 x 10(-2)lambda(2)- 1.139 x 10(-4)lambda(3) + 2.144 x 10(-7)lambda(4)- 1.587 x 10(-10)lambda(5), where lambda is in nm; the cross section, with 2sigma uncertainty, ranges from (6.5 +/- 1.9) x 10(-18) cm(2) at 240 nm to (5 +/- 3) x 10(-19) cm(2) at 350 nm, and is significantly lower than a previous measurement [J. C. Mössinger, D. M. Rowley and R. A. Cox, Atmos. Chem. Phys., 2002, 2, 227]. The photolysis quantum yields for IO and NO(3) production at 248 nm were measured using laser induced fluorescence of IO at 445 nm, and cavity ring-down spectroscopy of NO(3) at 662 nm, yielding phi(IO)

  17. 2 nm continuously tunable 488nm micro-integrated diode-laser-based SHG light source for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Braune, M.; Maiwald, M.; Sumpf, B.; Tränkle, G.

    2016-04-01

    Raman spectroscopy in the visible spectral range is of great interest due to resonant Raman effects. Nevertheless, fluorescence and ambient light can mask the weak Raman lines. Shifted excitation Raman difference spectroscopy is a demonstrated tool to overcome this drawback. To apply this method, a light source with two alternating wavelengths is necessary. The spectral distance between these two wavelengths has to be adapted to the width of the Raman signal. According to the sample under investigation the width of the Raman signal could be in the range of 3 cm-1 - 12 cm-1. In this work, a micro-integrated light source emitting at 488 nm with a continuous wavelength tuning range up to 2 nm (83 cm-1) is presented. The pump source, a DFB laser emitting at 976 nm, and a periodically poled lithium niobate (PPLN) ridge waveguide crystal is used for the second harmonic generation (SHG). Both components are mounted on a μ-Peltier-element for temperature control. Here, a common wavelength tuning of the pump wavelength and the acceptance bandwidth of the SHG crystal via temperature is achieved. With the results the light source is suitable for portable Raman and SERDS experiments with a flexible spectral distance between both excitation wavelengths for SERDS with respect to the sample under investigation.

  18. Imaging challenges in 20nm and 14nm logic nodes: hot spots performance in Metal1 layer

    NASA Astrophysics Data System (ADS)

    Timoshkov, V.; Rio, D.; Liu, H.; Gillijns, W.; Wang, J.; Wong, P.; Van Den Heuvel, D.; Wiaux, V.; Nikolsky, P.; Finders, J.

    2013-10-01

    The 20nm Metal1 layer, based on ARM standard cells, has a 2D design with minimum pitch of 64nm. This 2D design requires a Litho-Etch-Litho-Etch (LELE) double patterning. The whole design is divided in 2 splits: Me1A and Me1B. But solution of splitting conflicts needs stitching at some locations, what requires good Critical Dimension (CD) and overlay control to provide reliable contact between 2 stitched line ends. ASML Immersion NXT tools are aimed at 20 and 14nm logic production nodes. Focus control requirements become tighter, as existing 20nm production logic layouts, based on ARM, have about 50-60nm focus latitude and tight CD Uniformity (CDU) specifications, especially for line ends. IMEC inspected 20nm production Metal1 ARM standard cells with a Negative Tone Development (NTD) process using the Process Window Qualification-like technique experimentally and by Brion Tachyon LMC by simulations. Stronger defects were found thru process variations. A calibrated Tachyon model proved a good overall predictability capability for this process. Selected defects are likely to be transferred to hard mask during etch. Further, CDU inspection was performed for these critical features. Hot spots showed worse CD uniformity than specifications. Intra-field CDU contribution is significant in overall CDU budget, where reticle has major impact due to high MEEF of hot spots. Tip-to-Tip and tip-to-line hot spots have high MEEF and its variation over the field. Best focus variation range was determined by best focus offsets between hot spots and its variation within the field.

  19. Observation of Quiet Limb in He I 1083.0 nm, H Paschen alpha1281.8 nm and H Brackett gamma 2166.1 nm lines

    NASA Astrophysics Data System (ADS)

    Prasad Choudhary, Debi

    2016-05-01

    In this paper, we shall present the results of an observational study of the quiet solar limb in the near infrared lines using the New IR Array Camera (NAC) and the vertical spectrograph at the focal plane of McMath-Pierce telescope. The NAC, at the exit port of the spectrograph, was used to record the limb spectrum in HeI 1083.0 nm, Hydrogen Paschen 1281.8 nm and Brackett 2165.5 nm wavelength regions. The NAC is a 1024x1024 InSb Alladin III Detector operating over 1-5 micron range with high density sampling at 0.018 arc second/pixel. The all-reflective optical train minimizes number of surfaces and eliminates ghosts leading to low scatter, ghost-free optics. The close-cycle cryogenic provides a stable cooling environment over six hour period with an accuracy of 0.01K leading to low dark current. The low read out noise combined with low scattered light and dark current makes NAC an ideal detector for making high quality infrared spectral observations of solar limb. The limb spectrums were obtained by placing the spectrograph slit perpendicular to the limb at an interval of 10 degrees around the solar disk. We shall report the intensity profile, line-of-sight velocity and line width distribution around the sun derived from the spectra along the slit.

  20. Corneal injury from 1318-nm single laser pulses

    NASA Astrophysics Data System (ADS)

    Roach, William P.; Ketzenberger, Bryan K.; Burton, Margaret B.; Johnson, Thomas E.

    2002-06-01

    Threshold, median effective dose, and the mechanism of laser-tissue interaction are not well defined at the 1318-nm wavelength for human corneal exposures. The goals of this research effort are to identify at-risk groups, characterize the lesions imposed, and establish the ED50 for single pulse 1318-nm laser exposures on the cornea. A Neodymium: Yttrium Aluminum Garnet (Nd:YAG) laser was used to deliver 1318-nm wavelength pulses to the corneas of ten female Dutch Belted rabbits (Oryctolagus cuniculus). Single pulses of 0.5-ms duration and radiant beam energy ranging from 116 to 2250 joules/per square centimeter (J/cm2) were used. Exposure sites were clinically evaluated acutely, one hour and twenty-four hours post-exposure for the presence of a lesion. Results from the twenty-four hour evaluation were used to determine the ED50. Grossly, the lesions appeared as small, circular, well-demarcated, white, opaque lesions. Histologically, the lesions appeared as conical shaped coagulative necrosis with the base of the lesion at the epithelial surface of the cornea and extending to the apex at the endothelial border of the cornea. The ED50 for 1318-nm exposures to the rabbit cornea was determined to be 383 J/cm2 for a 0.1-mm spot size as measured at 1/e2.

  1. Radiation Failures in Intel 14nm Microprocessors

    NASA Technical Reports Server (NTRS)

    Bossev, Dobrin P.; Duncan, Adam R.; Gadlage, Matthew J.; Roach, Austin H.; Kay, Matthew J.; Szabo, Carl; Berger, Tammy J.; York, Darin A.; Williams, Aaron; LaBel, K.; Ingalls, James D.

    2016-01-01

    In this study the 14 nm Intel Broadwell 5th generation core series 5005U-i3 and 5200U-i5 was mounted on Dell Inspiron laptops, MSI Cubi and Gigabyte Brix barebones and tested with Windows 8 and CentOS7 at idle. Heavy-ion-induced hard- and catastrophic failures do not appear to be related to the Intel 14nm Tri-Gate FinFET process. They originate from a small (9 m 140 m) area on the 32nm planar PCH die (not the CPU) as initially speculated. The hard failures seem to be due to a SEE but the exact physical mechanism has yet to be identified. Some possibilities include latch-ups, charge ion trapping or implantation, ion channels, or a combination of those (in biased conditions). The mechanism of the catastrophic failures seems related to the presence of electric power (1.05V core voltage). The 1064 nm laser mimics ionization radiation and induces soft- and hard failures as a direct result of electron-hole pair production, not heat. The 14nm FinFET processes continue to look promising for space radiation environments.

  2. 810nm, 980nm, 1470nm and 1950nm diode laser comparison: a preliminary "ex vivo" study on oral soft tissues

    NASA Astrophysics Data System (ADS)

    Fornaini, Carlo; Merigo, Elisabetta; Sozzi, Michele; Selleri, Stefano; Vescovi, Paolo; Cucinotta, Annamaria

    2015-02-01

    The introduction of diode lasers in dentistry has several advantages, mainly consisting on the reduced size, reduced cost and possibility to beam delivering by optical fibers. At the moment the two diode wavelengths normally utilized in the dental field are 810 and 980 nm for soft tissues treatments. The aim of this study was to compare the efficacy of four different diode wavelengths: 810, 980, 1470 and 1950 nm diode laser for the ablation of soft tissues. Several samples of veal tongue were exposed to the four different wavelengths, at different fluences. The internal temperature of the soft tissues, in the area close to the beam, was monitored with thermocouple during the experiment. The excision quality of the exposed samples have been characterized by means of an optical microscope. Tissue damages and the cut regularity have been evaluated on the base of established criteria. The lowest thermal increase was recorded for 1950 nm laser. Best quality and speed of incision were obtained by the same wavelength. By evaluating epithelial, stromal and vascular damages for all the used wavelengths, the best result, in terms of "tissue respect", have been obtained for 1470 and 1950 nm exposures. From the obtained results 1470 and 1950 nm diode laser showed to be the best performer wavelengths among these used in this "ex vivo" study, probably due to their greatest affinity to water.

  3. Diode laser (980nm) cartilage reshaping

    NASA Astrophysics Data System (ADS)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  4. Resist materials for 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Toriumi, Minoru; Ishikawa, Seiichi; Miyoshi, Seiro; Naito, Takuya; Yamazaki, Tamio; Watanabe, Manabu; Itani, Toshiro

    2001-08-01

    Fluoropolymers are key materials for single layer resists of 157nm lithography. We have been studying fluoropolymers to identify their potential for base resins of 157nm photoresist. Many fluoropolymers showed high optical transparencies, with absorption coefficients of 0.01micrometers -1 to 2micrometers -1 at 157nm, and dry- etching resistance comparable to an ArF resist, and non- swelling solubility in the standard developer. Positive- tone resists were formulated using fluoropolymers that fulfill practical resist requirements. They showed good sensitivities, from 1 mJ/cm(superscript 2 to 10 mJ/cm2, and contrast in the sensitivity curves. They were able to be patterned using a F2 laser microstepper.

  5. The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface

    NASA Astrophysics Data System (ADS)

    Schrider, Keegan J.; Torralva, Ben; Yalisove, Steven M.

    2015-09-01

    The dynamics of femtosecond laser removal of 20 nm Ni films on glass substrates was studied using time-resolved pump-probe microscopy. 20 nm thin films exhibit removal at two distinct threshold fluences, removal of the top 7 nm of Ni above 0.14 J/cm2, and removal of the entire 20 nm film above 0.36 J/cm2. Previous work shows the top 7 nm is removed through liquid spallation, after irradiation the Ni melts and rapidly expands leading to tensile stress and cavitation within the Ni film. This work shows that above 0.36 J/cm2 the 20 nm film is removed in two distinct layers, 7 nm and 13 nm thick. The top 7 nm layer reaches a speed 500% faster than the bottom 13 nm layer at the same absorbed fluence, 500-2000 m/s and 300-700 m/s in the fluence ranges studied. Significantly different velocities for the top 7 nm layer and bottom 13 nm layer indicate removal from an interface occurs by a different physical mechanism. The method of measuring film displacement from the development of Newton's rings was refined so it could be shown that the 13 nm layer separates from the substrate within 70 ps and accelerates to its final velocity within several hundred picoseconds. We propose that removal of the bottom 13 nm is consistent with heterogeneous nucleation and growth of vapor at the Ni-glass interface, but that the rapid separation and acceleration of the 13 nm layer from the Ni-glass interface requires consideration of exotic phases of Ni after excitation.

  6. Comparative study of Nd:KGW lasers pumped at 808 nm and 877 nm

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Ge, Wen-Qi; Zhao, Tian-Zhuo; He, Jian-Guo; Feng, Chen-Yong; Fan, Zhong-Wei

    2015-10-01

    The laser performance and thermal analysis of Nd:KGW laser continuously pumped by 808 nm and 877 nm are comparatively investigated. Output power of 670 mW and 1587 mW, with nearly TEM00 mode, are achieved respectively at 808 nm pump and 877 nm pump. Meanwhile, a high-power passively Q-switched Nd:KGW/Cr4+:YAG laser pumped at 877 nm is demonstrated. An average output power of 1495 mW is obtained at pump power of 5.22 W while the laser is operating at repetition of 53.17 kHz. We demonstrate that 877 nm diode laser is a more potential pump source for Nd:KGW lasers.

  7. Sub-10 nm carbon nanotube transistor.

    PubMed

    Franklin, Aaron D; Luisier, Mathieu; Han, Shu-Jen; Tulevski, George; Breslin, Chris M; Gignac, Lynne; Lundstrom, Mark S; Haensch, Wilfried

    2012-02-01

    Although carbon nanotube (CNT) transistors have been promoted for years as a replacement for silicon technology, there is limited theoretical work and no experimental reports on how nanotubes will perform at sub-10 nm channel lengths. In this manuscript, we demonstrate the first sub-10 nm CNT transistor, which is shown to outperform the best competing silicon devices with more than four times the diameter-normalized current density (2.41 mA/μm) at a low operating voltage of 0.5 V. The nanotube transistor exhibits an impressively small inverse subthreshold slope of 94 mV/decade-nearly half of the value expected from a previous theoretical study. Numerical simulations show the critical role of the metal-CNT contacts in determining the performance of sub-10 nm channel length transistors, signifying the need for more accurate theoretical modeling of transport between the metal and nanotube. The superior low-voltage performance of the sub-10 nm CNT transistor proves the viability of nanotubes for consideration in future aggressively scaled transistor technologies.

  8. Radiation Tolerance of 65nm CMOS Transistors

    DOE PAGES

    Krohn, M.; Bentele, B.; Christian, D. C.; Cumalat, J. P.; Deptuch, G.; Fahim, F.; Hoff, J.; Shenai, A.; Wagner, S. R.

    2015-12-11

    We report on the effects of ionizing radiation on 65 nm CMOS transistors held at approximately -20°C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we observe less damage than was observed at room temperature.

  9. White Sands, Carrizozo Lava Beds, NM

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground.

  10. Negative-tone 193-nm resists

    NASA Astrophysics Data System (ADS)

    Cho, Sungseo; Vander Heyden, Anthony; Byers, Jeff D.; Willson, C. Grant

    2000-06-01

    A great deal of progress has been made in the design of single layer positive tone resists for 193 nm lithography. Commercial samples of such materials are now available from many vendors. The patterning of certain levels of devices profits from the use of negative tone resists. There have been several reports of work directed toward the design of negative tones resists for 193 nm exposure but, none have performed as well as the positive tone systems. Polymers with alicyclic structures in the backbone have emerged as excellent platforms from which to design positive tone resists for 193 nm exposure. We now report the adaptation of this class of polymers to the design of high performance negative tone 193 nm resists. New systems have been prepared that are based on a polarity switch mechanism for modulation of the dissolution rate. The systems are based on a polar, alicyclic polymer backbone that includes a monomer bearing a glycol pendant group that undergoes the acid catalyzed pinacol rearrangement upon exposure and bake to produce the corresponding less polar ketone. This monomer was copolymerized with maleic anhydride and a norbornene bearing a bis-trifluoromethylcarbinol. The rearrangement of the copolymer was monitored by FT-IR as a function of temperature. The synthesis of the norbornene monomers will be presented together with characterization of copolymers of these monomers with maleic anhydride. The lithographic performance of the new resist system will also be presented.

  11. MEPHISTO spectromicroscope reaches 20 nm lateral resolution

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Perfetti, Luca; Gilbert, B.; Fauchoux, O.; Capozi, M.; Perfetti, P.; Margaritondo, G.; Tonner, B. P.

    1999-03-01

    The recently described tests of the synchrotron imaging photoelectron spectromicroscope MEPHISTO (Microscope à Emission de PHotoélectrons par Illumination Synchrotronique de Type Onduleur) were complemented by further resolution improvements and tests, which brought the lateral resolution down to 20 nm. Images and line plot profiles demonstrate such performance.

  12. 1541nm GmAPD LADAR system

    NASA Astrophysics Data System (ADS)

    Kutteruf, Mary R.; Lebow, Paul

    2014-06-01

    The single photon sensitivity of Geiger-mode avalanche photo diodes (GmAPDs) has facilitated the development of LADAR systems that operate at longer stand-off distances, require lower laser pulse powers and are capable of imaging through a partial obscuration. In this paper, we describe a GmAPD LADAR system which operates at the eye-safe wavelength of 1541 nm. The longer wavelength should enhance system covertness and improve haze penetration compared to systems using 1064 nm lasers. The system is comprised of a COTS 1541 nm erbium fiber laser producing 4 ns pulses at 80 kHz to 450 kHz and a COTS camera with a focal plane of 32x32 InGaAs GmAPDs band-gap optimized for 1550 nm. Laboratory characterization methodology and results are discussed. We show that accurate modeling of the system response, allows us to achieve a depth resolution which is limited by the width of the camera's time bin (.25 ns or 1.5 inches) rather than by the duration of the laser pulse (4 ns or 2 ft.). In the presence of obscuration, the depth discrimination is degraded to 6 inches but is still significantly better than that dictated by the laser pulse duration. We conclude with a discussion of future work.

  13. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s

    USGS Publications Warehouse

    Boore, D.M.; Atkinson, G.M.

    2008-01-01

    This paper contains ground-motion prediction equations (GMPEs) for average horizontal-component ground motions as a function of earthquake magnitude, distance from source to site, local average shear-wave velocity, and fault type. Our equations are for peak ground acceleration (PGA), peak ground velocity (PGV), and 5%-damped pseudo-absolute-acceleration spectra (PSA) at periods between 0.01 s and 10 s. They were derived by empirical regression of an extensive strong-motion database compiled by the 'PEER NGA' (Pacific Earthquake Engineering Research Center's Next Generation Attenuation) project. For periods less than 1 s, the analysis used 1,574 records from 58 mainshocks in the distance range from 0 km to 400 km (the number of available data decreased as period increased). The primary predictor variables are moment magnitude (M), closest horizontal distance to the surface projection of the fault plane (RJB), and the time-averaged shear-wave velocity from the surface to 30 m (VS30). The equations are applicable for M=5-8, RJB<200 km, and VS30= 180-1300 m/s. ?? 2008, Earthquake Engineering Research Institute.

  14. VizieR Online Data Catalog: Thorium spectrum from 250nm to 5500nm (Redman+, 2014)

    NASA Astrophysics Data System (ADS)

    Redman, S. L.; Nave, G.; Sansonetti, C. J.

    2014-04-01

    We observed the spectrum of a commercial sealed Th/Ar HCL running at 25mA for almost 15hr starting on 2011 November 2. The region of observation was limited to between 8500/cm and 28000/cm (360nm and 1200nm) by the sensitivity of the silicon photodiode detector. (5 data files).

  15. 120 nm resolution and 55 nm structure size in STED-lithography.

    PubMed

    Wollhofen, Richard; Katzmann, Julia; Hrelescu, Calin; Jacak, Jaroslaw; Klar, Thomas A

    2013-05-01

    Two-photon direct laser writing (DLW) lithography is limited in the achievable structure size as well as in structure resolution. Adding stimulated emission depletion (STED) to DLW allowed overcoming both restrictions. We now push both to new limits. Using visible light for two-photon DLW (780 nm) and STED (532 nm), we obtain lateral structure sizes of 55 nm, a Sparrow limit of around 100 nm and we present two clearly separated lines spaced only 120 nm apart. The photo-resist used in these experiments is a mixture of tri- and tetra-acrylates and 7-Diethylamino-3-thenoylcoumarin as a photo-starter which can be readily quenched via STED.

  16. Photoresist outgassing at 157 nm exposure

    NASA Astrophysics Data System (ADS)

    Hien, Stefan; Angood, Steve; Ashworth, Dominic; Basset, Steve; Bloomstein, Theodore M.; Dean, Kim R.; Kunz, Roderick R.; Miller, Daniel A.; Patel, Shashikant; Rich, Georgia K.

    2001-08-01

    Contamination of optical elements during photoresist exposure is a serious issue in optical lithography. The outgassing of photoresist has been identified as a problem at 248nm and 193nm in production because the organic films that can be formed on an exposure lens can cause transmission loss and sever image distortion. At these exposure energies, the excitation of the photo acid generator, formation of acid, and cleavage of the protecting group are highly selective processes. At 157nm, the exposure energy is much higher (7.9 eV compared to 6.4 eV at 193nm) and it is known from laser ablation experiments that direct laser cleavage of sigma bonds occurs. The fragments formed during this irradiation can be considered as effective laser deposition precursors even in the mid ppb level. In this study, methods to quantify photoresist outgassing at 157 nm are discussed. Three criteria have been set up at International SEMATECH to protect lens contamination and to determine the severity of photoresist outgassing. First, we measured film thickness loss as a function of exposure dose for a variety of materials. In a second test we studied the molecular composition of the outgassing fragments with an exposure chamber coupled to a gas chromatograph and a mass spectrometer detector. Our third method was a deposition test of outgassing vapors on a CaF2 proof plate followed by analysis using VUV and X-ray photoelectron spectroscopies (XPS). With this technique we found deposits for many different resists. Our main focus is on F- and Si- containing resists. Both material classes form deposits especially if these atoms are bound to the polymer side chains. Whereas the F-containing films can be cleaned off under 157nm irradiation, cleaning of Si-containing films mainly produces SiO2. Our cleaning studies of plasma deposited F-containing organic films on SiO2 did not indicate damage of this surface by the possible formation of HF. Despite that we strongly recommend engineering

  17. Radiation Status of Sub-65 nm Electronics

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2011-01-01

    Ultra-scaled complementary metal oxide semiconductor (CMOS) includes commercial foundry capabilities at and below the 65 nm technology node Radiation evaluations take place using standard products and test characterization vehicles (memories, logic/latch chains, etc.) NEPP focus is two-fold: (1) Conduct early radiation evaluations to ascertain viability for future NASA missions (i.e. leverage commercial technology development). (2) Uncover gaps in current testing methodologies and mechanism comprehension -- early risk mitigation.

  18. Absolute measurements of nonlinear absorption near LIDT at 193 nm

    NASA Astrophysics Data System (ADS)

    Blaschke, Holger; Ristau, Detlev; Welsch, Eberhard; Apel, Oliver

    2001-04-01

    Previous investigations indicate that oxide coatings exhibit non-linear absorption phenomena below 200 nm. Hereby, absorption data of Al2O3 thin film coatings has been determined absolutely by laser calorimetry (LCA) at 193 nm in the low fluence regime. As an alternative, on the basis of the pulsed surface thermal lens technique (STL), photothermal measurements allow to determine the absorption relatively at fluence levels both in the subdamage fluence range far from the damage onset and close to the LIDT. By combining the two measurement techniques, the absolute determination of linear as well as multiphoton absorption can be achieved also in the vicinity of the laser damage fluences. This is of crucial interest because the initiation of damage onset can be observed immediately. Absolute absorption data of Al2O3 coatings at different laser fluences stating of some mJoule/cm2 will be presented for the wavelength 193 nm. Thus, the correlation between the increase of absorption and the onset of breakdown can be illustrated impressively. The evaluation and discussion of the experimental results are focused on the degree of non-linearity of the investigated absorption behavior of oxide single layers initiating the optical breakdown of UV oxide coatings.

  19. Brain lesion induced by 1319nm laser radiation

    NASA Astrophysics Data System (ADS)

    Yang, Zaifu; Chen, Hongxia; Wang, Jiarui; Chen, Peng; Ma, Ping; Qian, Huanwen

    2010-11-01

    The laser-tissue interaction has not been well defined at the 1319 nm wavelength for brain exposure. The goal of this research effort was to identify the behavioral and histological changes of brain lesion induced by 1319 nm laser. The experiment was performed on China Kunming mice. Unilateral brain lesions were created with a continuous-wave Nd:YAG laser (1319nm). The brain lesions were identified through behavioral observation and histological haematoxylin and eosin (H&E) staining method. The behavior change was observed for a radiant exposure range of 97~773 J/cm2. The histology of the recovery process was identified for radiant exposure of 580 J/cm2. Subjects were sacrificed 1 hour, 1 week, 2 weeks, 3 months, 7 months and 13 months after laser irradiation. Results showed that after laser exposure, behavioral deficits, including kyphosis, tail entasia, or whole body paralysis could be noted right after the animals recovered from anesthesia while gradually disappeared within several days and never recurred again. Histologically, the laser lesion showed a typical architecture dependent on the interval following laser treatment. The central zone of coagulation necrosis is not apparent right after exposure but becomes obvious within several days. The nerotic tissue though may persist for a long time, will finally be completely resorbed. No carbonization granules formed under our exposure condition.

  20. Pattern generation requirements for mask making beyond 130 nm

    NASA Astrophysics Data System (ADS)

    Abboud, Frank E.; Gesley, Mark A.; Maldonado, Juan R.

    1998-06-01

    It is commonly accepted in the semiconductor industry that optical lithography will be the most cost-effective solution for 150 nm and 130 nm device generations. Some selected layers at the 130 nm device generation may be produced using electron-beam direct-write or x-ray during the development phase. However, for the production phase, it is expected that 193 nm optical lithography with reticle enhancement techniques such as optical proximity correction (OPC) and phase shift masks (PSM) will be the technology of choice. What about post 193 nm. The range of solutions is more diverse and a clear winner has not yet emerged. The topic, however, is becoming more visible and has taken a prominent place in technical conferences in the past year. The five leading potential alternatives to optical lithography are proximity x-ray, e-beam projection (EBP), extended UV (EUV), ion projection lithography (IPL), and e-beam direct write. The search for the right answer will most likely continue for a few years, and possibly more than one alternative will emerge as an effective solution at and below 100 nm. All of the alternatives, with the exception of e-beam direct write, have one thing in common, the mask. Except for proximity x- ray, all solutions at present envision a 4x reduction of the mask-to-wafer image plane. Instead of chrome-coated quartz, a silicon wafer substrate is used. Aside from patterning, mask fabrication varies depending on the lithography absorbing substrate, and EUV requires a reflective multilayer stack. Most key lithography requirements needed to pattern the imaging layer are common to all of the candidates, at least for the reduction methods. For x-ray lithography, the requirements are significantly more stringent but at a smaller field. This paper will consolidate the requirements of the various types of masks from a pattern generation point of view and will focus on the pattern generation tool requirements to meet those mask requirements. In addition, it

  1. Linearly polarized, single-frequency, widely tunable Er:Yb bulk laser at around 1550 nm wavelength

    SciTech Connect

    Taccheo, S.; Laporta, P.; Svelto, O.

    1996-11-01

    We report on a 36 nm tunable, single-frequency, linearly polarized Er:Yb:glass laser. A tuning range from 1528 to 1564 nm, with output power ranging from 1 to 8 mW, is achieved. Wavelength tuning and linearly polarized output are simultaneously obtained by using a special polarizing etalon with anisotropic absorption losses. {copyright} {ital 1996 American Institute of Physics.}

  2. Patterning polymeric structures with 2 nm resolution at 3 nm half pitch in ambient conditions.

    PubMed

    Martínez, R V; Losilla, N S; Martinez, J; Huttel, Y; Garcia, R

    2007-07-01

    The miniaturization limits of electronic and mechanical devices depend on the minimum pattern periodicity that is stable in ambient conditions. Here we demonstrate an atomic force microscopy lithography that enables the patterning of 2 nm organic structures with 6 nm periodicities in air. We also demonstrate that the lithography can be up-scaled for parallel patterning. The method is based on the formation of a nanoscale octane meniscus between a sharp conductive protrusion and a silicon (100) surface. The application of a high electrical field ( approximately 10 V/nm) produces the polymerization and cross-linking of the octane molecules within the meniscus followed by their deposition. The resulting pattern periodicities are very close to the ultimate theoretical limits achievable in air ( approximately 3 nm). The chemical composition of the patterns has been characterized by photoemission spectroscopy.

  3. 981 nm Yb:KYW laser intracavity pumped at 912 nm and frequency-doubling for an emission at 490.5 nm

    NASA Astrophysics Data System (ADS)

    Lü, Y. F.; Zhang, X. H.; Xia, J.; Chen, R.; Jin, G. Y.; Wang, J. G.; Li, C. L.; Ma, Z. Y.

    2010-05-01

    We present an Yb:KY(WO4)2 (Yb:KYW) laser emitting at 981 nm intracavity pumped by a 912 nm diode-pumped Nd:GdVO4 laser. A 808 nm diode laser is used to pump the Nd:GdVO4 crystal emitting at 912 nm, and the Yb:KYW laser emitting at 981 nm intracavity pumped at 912 nm. This configuration enabled us to indirectly diode-pump this ytterbium doped crystal, and to obtain 1.12 W output power at 981 nm for 19.6 W of incident pump power at 808 nm. Furthermore, intracavity second harmonic generation has also been demonstrated with a power of 106 mW at 490.5 nm by using a LBO nonlinear crystal.

  4. Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions

    PubMed Central

    Yan, Haijun; Bergren, Adam Johan; McCreery, Richard; Della Rocca, Maria Luisa; Martin, Pascal; Lafarge, Philippe; Lacroix, Jean Christophe

    2013-01-01

    In this work, we bridge the gap between short-range tunneling in molecular junctions and activated hopping in bulk organic films, and greatly extend the distance range of charge transport in molecular electronic devices. Three distinct transport mechanisms were observed for 4.5–22-nm-thick oligo(thiophene) layers between carbon contacts, with tunneling operative when d < 8 nm, activated hopping when d > 16 nm for high temperatures and low bias, and a third mechanism consistent with field-induced ionization of highest occupied molecular orbitals or interface states to generate charge carriers when d = 8–22 nm. Transport in the 8–22-nm range is weakly temperature dependent, with a field-dependent activation barrier that becomes negligible at moderate bias. We thus report here a unique, activationless transport mechanism, operative over 8–22-nm distances without involving hopping, which severely limits carrier mobility and device lifetime in organic semiconductors. Charge transport in molecular electronic junctions can thus be effective for transport distances significantly greater than the 1–5 nm associated with quantum-mechanical tunneling. PMID:23509271

  5. Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions.

    PubMed

    Yan, Haijun; Bergren, Adam Johan; McCreery, Richard; Della Rocca, Maria Luisa; Martin, Pascal; Lafarge, Philippe; Lacroix, Jean Christophe

    2013-04-01

    In this work, we bridge the gap between short-range tunneling in molecular junctions and activated hopping in bulk organic films, and greatly extend the distance range of charge transport in molecular electronic devices. Three distinct transport mechanisms were observed for 4.5-22-nm-thick oligo(thiophene) layers between carbon contacts, with tunneling operative when d < 8 nm, activated hopping when d > 16 nm for high temperatures and low bias, and a third mechanism consistent with field-induced ionization of highest occupied molecular orbitals or interface states to generate charge carriers when d = 8-22 nm. Transport in the 8-22-nm range is weakly temperature dependent, with a field-dependent activation barrier that becomes negligible at moderate bias. We thus report here a unique, activationless transport mechanism, operative over 8-22-nm distances without involving hopping, which severely limits carrier mobility and device lifetime in organic semiconductors. Charge transport in molecular electronic junctions can thus be effective for transport distances significantly greater than the 1-5 nm associated with quantum-mechanical tunneling.

  6. Deep ultraviolet (254 nm) focal plane array

    NASA Astrophysics Data System (ADS)

    Cicek, Erdem; Vashaei, Zahra; McClintock, Ryan; Razeghi, Manijeh

    2011-10-01

    We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A/cm2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated.

  7. Photolysis of formic acid at 355 nm

    NASA Astrophysics Data System (ADS)

    Martinez, Denhi; Bautista, Teonanacatl; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2015-05-01

    Formic acid is well known as a food additive and recently an application on fuel cell technology has emerged. In this work we have studied the dissociative ionization process by multiphoton absorption of formic acid molecules at 355nm wavelength photons, using TOF spectrometry in reflectron mode (R-TOF). Some of the most abundant ionic fragments produced are studied at different settings of the laser harmonic generator. The dependence of the products on these conditions is reported. This work was supported by CONACYT Project 165410 and PAPIIT IN102613 and IN101215.

  8. Low-intensity LED (625 and 405 nm) and laser (805 nm) killing of Propionibacterium acnes and Staphylococcus epidermidis

    NASA Astrophysics Data System (ADS)

    Tuchina, Elena S.; Tuchin, Valery V.

    2009-02-01

    In the present work we have investigated in vitro sensitivity of microorganisms P. acnes and S. epidermidis to action of red (625 nm and 405 nm) and infrared (805 nm) radiations in combination with photosensitizes Methylene Blue and Indocyanine Green.

  9. AGN flickering on 10-100 kyr timescales

    NASA Astrophysics Data System (ADS)

    Sartori, Lia F.; Schawinski, Kevin; Kill, Bill; Maksym, Peter; Koss, Michael; Argo, Megan; Urry, Meg; Wong, Ivy; Lintott, Chris

    2016-08-01

    The study of AGN variability on timescales of 10^4-10^5 years is important in order to understand the BH - host galaxy interaction and coevolution. The discovery of "Hanny's Voorwerp" (HV), an extended emission line region associated with the nearby galaxy IC 2497, provided us with a laboratory to study AGN variability over such timescales. HV was illuminated by a strong quasar in IC 2497, but this quasar significantly shut down in the last 200 kyrs. Thanks to its recent shutdown we can now explore the host galaxy unimpeded by the presence of a quasar dominating the observations, while the Voorwerp preserves the echoes of its past activity. Recent studies on the optical properties of hard X-ray selected AGN suggest that AGN may flicker on and off hundreds or thousands times with each burst lasting ~10^5 yrs. Systems similar to IC 2497 and HV, the so-called Voorwerpjes, allow us to constrain the last stages of the AGN lifecycle. On the other hand, we recently suggested that the switch on phase may be observed in the so-called optically elusive AGN. In this talk I will review both observational evidence and results from simulation work which support this picture, and explain how optically elusive AGN and Voorwerpjes galaxies can help us to understand different phases of the AGN lifecycle. Moreover, I will discuss possible implications for AGN feedback, BH - host galaxy coevolution, and the analogy between AGN and X-ray binaries accretion physics.

  10. The 10-100 kW submillimeter gyrotron

    NASA Technical Reports Server (NTRS)

    Spira, S.; Kreischer, K. E.; Temkin, R. J.

    1989-01-01

    High frequency high harmonic gyrotrons; cyclotron autoresonance maser (CARM); CARM amplifier schematics; MIT electron gun; and baseline design for the 140 GHz CARM amplifier are briefly reviewed. This presentation is represented by viewgraphs only.

  11. The evaluation of hyperspectral imaging for the detection of person-borne threat objects over the 400nm to 1700nm spectral region

    NASA Astrophysics Data System (ADS)

    Cooksey, Catherine C.; Neira, Jorge E.; Allen, David W.

    2012-06-01

    The detection of person-borne threat objects, such as improvised explosive devices, at a safe distance is an ongoing challenge. While much attention has been given to other parts of the electromagnetic spectrum, very little is known about what potential exists to detect clothing obscured threats over the ultraviolet through the shortwave-infrared spectral region. Hyperspectral imaging may provide a greater ability to discriminate between target and non-target by using the full spectrum. This study investigates this potential by the collection and analysis of hyperspectral images of obscured proxy threat objects. The results of this study indicate a consistent ability to detect the presence of concealed objects. The study included the use of VNIR (400 nm to 1000 nm) and SWIR (1000 nm to 1700 nm), as defined here, hyperspectral imagers. Both spectral ranges provided comparable results, however, potential advantages of the SWIR spectral region are discussed.

  12. Electrically-pumped 850-nm micromirror VECSELs.

    SciTech Connect

    Geib, Kent Martin; Peake, Gregory Merwin; Serkland, Darwin Keith; Keeler, Gordon Arthur; Mar, Alan

    2005-02-01

    Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission is employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.

  13. DNA charge transport over 34 nm

    NASA Astrophysics Data System (ADS)

    Slinker, Jason D.; Muren, Natalie B.; Renfrew, Sara E.; Barton, Jacqueline K.

    2011-03-01

    Molecular wires show promise in nanoscale electronics, but the synthesis of uniform, long conductive molecules is a significant challenge. Deoxyribonucleic acid (DNA) of precise length, by contrast, is synthesized easily, but its conductivity over the distances required for nanoscale devices has not been explored. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Nile Blue redox probe. Significant signal attenuation upon incorporation of a single base-pair mismatch demonstrates that CT is DNA-mediated. Efficient cleavage of these 100-mers by a restriction enzyme indicates that the DNA adopts a native conformation accessible to protein binding. Similar electron-transfer rates measured through 100-mer and 17-mer monolayers are consistent with rate-limiting electron tunnelling through the saturated carbon linker. This DNA-mediated CT distance of 34 nm surpasses that of most reports of molecular wires.

  14. Photodissociation of Methyl Iodide at 193 NM

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Pratt, Stephen

    2014-05-01

    A new measurement of the photodissociation of CH3I at 193 nm is reported in which we use a combination of vacuum ultraviolet photoionization and velocity map ion imaging. The iodine photofragments are probed by single-photon ionization at photon energies above and below the photoionization threshold of I(2P3/2) . The relative I(2P3/2) and I*(2P1/2) photoionization cross sections are determined at these wavelengths by using the known branching fractions for the photodissociation at 266 nm. Velocity map ion images indicate that the branching fraction for I(2P3/2) atoms is non-zero, and yield a value of 0.07 +/- 0.01. Interestingly, the translational energy distribution extracted from the image shows that the translational energy of the I(2P3/2) fragments is significantly smaller than that of the I*(2P1/2) atoms. This observation indicates the internal rotational/vibrational energy of the CH3 co-fragment is very high in the I(2P3/2) channel. The results can be interpreted in a manner consistent with the previous measurements, and provide a more complete picture of the dissociation dynamics of this prototypical molecule. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under contract No. DE-AC02-06CH11357.

  15. Linewidth characteristics of Raman-shifted dye laser output at 720 and 940 nm

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Higdon, N. S.; Higdon, N. S.; Higdon, N. S.; Higdon, N. S.; Higdon, N. S.; Higdon, N. S.

    1986-01-01

    Existing DIAL systems for water vapor measurements in the troposphere operate at wavelengths near 720 nm. The use of stronger water vapor absorption lines in the range 930 to 960 nm will significantly improve DIAL measurements in the upper troposphere and lower stratosphere where water vapor concentrations are low. The generation of light at 940 nm using a frequency doubled Nd:YAG pumped dye laser is inefficient due to the small absorption if infrared dyes at the pump wavelength. However, 940 nm generation utilizing stimulated Raman scattering of dye lasers is attractive because of a potentially high conversion efficiency plus the possibility of retaining the narrow linewidth available from some dye lasers. The Raman conversion efficiency and line broadening are presented for first Stokes operation at 720 and 940 nm using hydrogen and deuterium as the Raman media.

  16. Attaining 186-nm light generation in cooled beta-BaB(2)O(4) crystal.

    PubMed

    Kouta, H; Kuwano, Y

    1999-09-01

    The transparency range of beta-BaB(2)O(4) (BBO) was expanded by means of cooling, and the resulting absorption coefficient at 193.4 nm was reduced to 0.29cm(-1) at 91 K from 1.39cm(-1) at 295 K. Further, generation of light at 186.0 nm (the measurement limit in air) by type I sum-frequency generation (SFG) based on fundamental (744-nm) and third-harmonic (248-nm) light from a Ti:sapphire laser was confirmed for cooled BBO. Calculations based on observed data for SFG wavelengths and phase-matching angles indicate a potential for cooled BBO to generate wavelengths as low as 181.7 nm.

  17. Wavelength tunable integrated add-drop filter with 10.6 nm bandwidth adjustability.

    PubMed

    Boroojerdi, M T; Ménard, M; Kirk, A G

    2016-09-19

    We present the design and characterization of a silicon-on-insulator based bandwidth and wavelength-tunable add-drop filter. The tunability of the device is achieved by independently controlling the central wavelength of two cascaded contra-directional grating assisted couplers. The device was fabricated using e-beam lithography and the tuning is demonstrated using the thermo-optic effect, which was obtained with metal heaters fabricated by a lift-off process. It is experimentally demonstrated that within the wavelength range of 1555 nm to 1573 nm the transmission bandwidth of the device can be tuned from 1.1 nm to 11.7 nm. Moreover, more than 4 nm of central wavelength tuning is demonstrated. The tunability of the central wavelength is limited by the breakdown current of the metal heaters. PMID:27661939

  18. Proposed SLR Optical Bench Required to Track Debris Using 1550 nm Lasers

    NASA Technical Reports Server (NTRS)

    Shappirio, M.; Coyle, D. B.; McGarry, J. F.; Bufton, J.; Cheek, J. W.; Clarke, G.; Hull, S. M.; Skillman, D. R.; Stysley, P. R.; Sun, X.; Young, R. P.; Zagwodzki, T.

    2015-01-01

    A previous study has indicated that by using approx.1550 nm wavelengths a laser ranging system can track debris objects in an "eye safe" manner, while increasing the expected return rate by a factor of approx. 2/unit area of the telescope. In this presentation we develop the optical bench required to use approx.1550nm lasers, and integration with a 532nm system. We will use the optical bench configuration for NGSLR as the baseline, and indicate a possible injection point for the 1550 nm laser. The presentation will include what elements may need to be changed for transmitting the required power on the approx.1550nm wavelength, supporting the alignment of the laser to the telescope, and possible concerns for the telescope optics.

  19. Characteristics and Applications of Tapered Fiber Optical Sensors for 1310 nm Wavelength

    NASA Astrophysics Data System (ADS)

    Hwang, Thunter; Cheng, Wood-Hi; Su, Yan-Kuin

    2013-06-01

    Optical sensors for displacement measurement and fluorescence probes were designed and experimentally studied. This is the first time we used photonic sensors for displacement measurement and fluorescence probes at the same time using a long-wavelength (1310 nm) photon beam in the reflective mode. A tapered fiber sensor was chosen to increase the dynamic range for fluorescence probes. The results showed that the tapered fiber sensor exhibited a high resolution of 12 nm and a better dynamic range of 2 mm in our system. The relationship between resolution and dynamic range was experimentally found to vary with tapered fiber tilt angle. The precise diameter of the fiber microlens was measured. These were the characteristics considered in the manufacturing of our chosen device. Moreover, these novel 1310-nm-wavelength tapered fiber sensors with high resolution, good dynamic range, better reliability, and low cost may provide multipurpose applications, such as those in telecommunication systems, commercial measurements, and military inspection.

  20. On the Stark Widths and Shifts of Ar II 472.68 nm Spectral Line

    SciTech Connect

    Mijatovic, Z.; Gajo, T.; Vujicic, B.; Djurovic, S.; Kobilarov, R.

    2008-10-22

    Stark widths and shifts of Ar II 472.68 nm spectral line were measured from T-tube plasmas. Plasma electron density ranged 1.8-2.210{sup 17} cm{sup -3}, while temperature ranged 20000-43000 K. Obtained results of widths and shifts were compared with measured results of other authors.

  1. Spectroscopy of Pluto at six longitudes, 380-930 nm

    NASA Astrophysics Data System (ADS)

    Cruikshank, Dale P.; Pinilla-Alonso, Noemi; Lorenzi, Vania; Grundy, Will M.; Licandro, Javier; Binzel, Richard P.

    2014-11-01

    We have obtained spectra of the Pluto-Charon pair (unresolved) in the wavelength range 380-930 nm with resolution ~450 at six roughly equally spaced longitudes. The data were taken in May and June, 2014, with the 4.2-m Isaac Newton Telescope at Roque de Los Muchachos Observatory in the Canary Islands, using the ACAM (auxiliary-port camera) in spectrometer mode, and using two solar analog stars. The new spectra clearly show absorption bands of solid CH4 at 620, 728, and 850-910 nm, which were known from earlier work. The 620-nm CH4 band is intrinsically very weak, and its appearance indicates a long optical pathlength through the ice. This is especially true if it arises from CH4 dissolved in N2 ice. Earlier work (Owen et al. Science 261, 745, 1993) on the near-infrared spectrum of Pluto (1-2.5 µm) has shown that the CH4 bands are shifted to shorter wavelengths because the CH4 occurs as a solute in beta-phase crystalline N2. The optical pathlength through the N2 crystals must be on the order of several cm to produce the N2 band observed at 2.15 µm. The new spectra exhibit a pronounced red slope across the entire wavelength range; the slope is variable with longitude, and differs in a small but significant way from that measured at comparable longitudes by Grundy & Fink (Icarus 124, 329, 1996) in their 15-year study of Pluto’s spectrum (500-1000 nm). The new spectra will provide an independent means for calibrating the color filter bands on the Multispectral Visible Imaging Camera (MVIC) (Reuter et al. Space Sci. Rev. 140, 129, 2008) on the New Horizons spacecraft, which will encounter the Pluto-Charon system in mid-2015. They will also form the basis of modeling the spectrum of Pluto at different longitudes to help establish the nature of the non-ice component(s) of Pluto’s surface. It is presumed that the non-ice component is the source of the yellow-red coloration of Pluto, which is known to be variable across the surface.

  2. Spectroscopy of Pluto, 380-930 Nm at Six Longitudes

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Pinilla-Alonso, N.; Lorenzi, V.; Grundy, William; Licandro, J.; Binzel, R. P.

    2014-01-01

    We have obtained spectra of the Pluto-Charon pair (unresolved) in the wavelength range 380-930 nm with resolution approx..450 at six roughly equally spaced longitudes. The data were taken in May and June, 2014, with the 4.2-m Isaac Newton Telescope at Roque de Los Muchachos Observatory in the Canary Islands, using the ACAM (auxiliary-port camera) in spectrometer mode, and using two solar analog stars. The new spectra clearly show absorption bands of solid CH4 at 620, 728, and 850-910 nm, which were known from earlier work. The 620-nm CH4 band is intrinsically very weak, and its appearance indicates a long optical path-length through the ice. This is especially true if it arises from CH4 dissolved in N2 ice. Earlier work (Owen et al. Science 261, 745, 1993) on the near-infrared spectrum of Pluto (1-2.5 microns) has shown that the CH4 bands are shifted to shorter wavelengths because the CH4 occurs as a solute in beta-phase crystalline N2. The optical path-length through the N2 crystals must be on the order of several cm to produce the N2 band observed at 2.15 microns. The new spectra exhibit a pronounced red slope across the entire wavelength range; the slope is variable with longitude, and differs in a small but significant way from that measured at comparable longitudes by Grundy & Fink (Icarus 124, 329, 1996) in their 15-year study of Pluto's spectrum (500-1000 nm). The new spectra will provide an independent means for calibrating the color filter bands on the Multispectral Visible Imaging Camera (MVIC) (Reuter et al. Space Sci. Rev. 140, 129, 2008) on the New Horizons spacecraft, which will encounter the Pluto-Charon system in mid-2015. They will also form the basis of modeling the spectrum of Pluto at different longitudes to help establish the nature of the non-ice component(s) of Pluto's surface. It is presumed that the non-ice component is the source of the yellow-red coloration of Pluto, which is known to be variable across the surface.

  3. Comparison of 980-nm and 1070-nm in endovenous laser treatment (EVLT)

    NASA Astrophysics Data System (ADS)

    Topaloglu, Nermin; Tabakoglu, Ozgur; Ergenoglu, Mehmet U.; Gülsoy, Murat

    2009-07-01

    The use of endovenous laser treatment for varicose veins has been increasing in recent years. It is a safer technique than surgical vein stripping. Its complications (e.g. bruising, pain) are less than the complications of surgical vein stripping. But best parameters such as optimum wavelength, power, and application duration are still under investigation to clarify uncertainties about this technique. To prevent its complications and improve its clinical outcomes, the exact mechanism of it has to be known. The aim of this study is to investigate the effect of different laser wavelengths on endovenous laser therapy. In this study 980-nm diode laser and 1070-nm fiber laser were used. Human veins were irradiated with 980-nm and 1070-nm lasers at 8 W and 10 W to find the optimal power and wavelength. After laser application, remarkable shrinkage was observed. Inner and outer diameters of the veins also narrowed for both of the laser types. 10 W of 980-nm laser application led to better shrinkage results.

  4. Dual illumination OCT at 1050nm and 840nm for whole eye segment imaging

    NASA Astrophysics Data System (ADS)

    Fan, Shanhui; Qin, Lin; Dai, Cuixia; Zhou, Chuanqing

    2014-11-01

    We presented an improved dual channel dual focus spectral domain optical coherence tomography (SD-OCT) with two illuminations at 840 nm and 1050 nm for whole eye segment imaging and biometry in vivo. The two light beams were coupled and optically optimized to scan the anterior and posterior segment of the eye simultaneously. This configuration with dichroic mirrors integrated in the sample arm enables us to acquire images from the anterior segment and retina effectively with minimum loss of sample signal. In addition, the full resolved complex (FRC) method was applied to double the imaging depth for the whole anterior segment imaging by eliminating the mirror image. The axial resolution for 1050 nm and 840 nm OCT was 14 μm and 8 μm in air, respectively. Finally, the system was successfully tested in imaging the unaccommodated and accommodated eyes. The preliminary results demonstrated the significant improvements comparing with our previous dual channel SD-OCT configuration in which the two probing beams had the same central wavelength of 840 nm.

  5. DPAL pump system exceeding 3kW at 766nm and 30 GHz bandwidth

    NASA Astrophysics Data System (ADS)

    Koenning, Tobias; McCormick, Dan; Irwin, David; Stapleton, Dean; Guiney, Tina; Patterson, Steve

    2016-03-01

    Due to their low quantum defect, diode pumped alkali metal vapor lasers (DPALs) offer the promise of scalability to very high average power levels while maintaining excellent beam quality. Research on DPALs has progressed to ever increasing power levels across multiple gain media species over the last years, necessitating pump power in the kW range. Each material requires a specific pump wavelength: near 852nm for cesium, 780nm for rubidium, 766nm for potassium, and 670nm for lithium atoms. The shorter pump wavelength below 800nm are outside the typical wavelength range for pump diodes developed for diode pumped solid state lasers (DPSS). The biggest challenge in pumping these materials efficiently is the need for maintaining the narrow gain media absorption band of approximately 0.01nm while greatly increasing power. Typical high power diode lasers achieve spectral widths around 3nm (FWHM) in the near infrared spectrum, but optical gratings may be used internal or external to the cavity to reduce the spectral width. Recently, experimental results have shown yet narrower line widths ranging from picometers at very low power levels to sub-100 picometers for water cooled stacks around 1kW of output power. The focus of this work is the development of a fiber-based pump system for potassium DPAL. The individual tasks are the development of high power 766nm chip material, a fiber-coupled module as a building block, and a scalable system design to address power requirements from hundreds of watts to tens of kilowatts. Results for a 3kW system achieving ~30GHz bandwidth at 766nm will be shown. Approaches for power-scaling and size reduction will be discussed.

  6. 308-nm excimer laser in endodontics

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim

    1992-06-01

    Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.

  7. 1064-nm Nd:YAG laser nucleotomy

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Pergadia, Vani R.; Shi, Wei-Qiang; Snyder, Wendy J.; Fishbein, Michael C.; Grundfest, Warren S.

    1993-07-01

    The high incidence of patients with clinical and neurological symptoms of lumbar disc herniation has spurred the development of less invasive and more cost efficient methods to treat patients. In this study we evaluated pulsed and continuous wave (cw) 1064 nm Nd:YAG laser ablation and induced thermal damage in sheep intervertebral disc. We used the Heraeus LaserSonics Hercules 5040 (Nd:YAG) laser system and 400 micrometers bare and 600 micrometers ball-tipped fibers in cw and pulsed mode. For the laser parameters and fibers used in this study, ablation of the intervertebral disc was successful and thermal damage did not exceed 0.5 mm. Varying beam diameters and focusing abilities (i.e., bare and ball) did not produce any difference in the coagulation thermal effect.

  8. Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes.

    PubMed

    Liao, Yang; Shen, Yinglong; Qiao, Lingling; Chen, Danping; Cheng, Ya; Sugioka, Koji; Midorikawa, Katsumi

    2013-01-15

    We report on controllable production of nanostructures embedded in a porous glass by femtosecond laser direct writing. We show that a hollow nanovoid with a lateral size of ~40 nm and an axial size of ~1500 nm can be achieved by manipulating the peak intensity and polarization of the writing laser beam. Our finding enables applications ranging from direct construction of 3D nanofluidics in glass to clean stealth dicing of transparent plates.

  9. DFB lasers between 760 nm and 16 μm for sensing applications.

    PubMed

    Zeller, Wolfgang; Naehle, Lars; Fuchs, Peter; Gerschuetz, Florian; Hildebrandt, Lars; Koeth, Johannes

    2010-01-01

    Recent years have shown the importance of tunable semiconductor lasers in optical sensing. We describe the status quo concerning DFB laser diodes between 760 nm and 3,000 nm as well as new developments aiming for up to 80 nm tuning range in this spectral region. Furthermore we report on QCL between 3 μm and 16 μm and present new developments. An overview of the most interesting applications using such devices is given at the end of this paper.

  10. DFB Lasers Between 760 nm and 16 μm for Sensing Applications

    PubMed Central

    Zeller, Wolfgang; Naehle, Lars; Fuchs, Peter; Gerschuetz, Florian; Hildebrandt, Lars; Koeth, Johannes

    2010-01-01

    Recent years have shown the importance of tunable semiconductor lasers in optical sensing. We describe the status quo concerning DFB laser diodes between 760 nm and 3,000 nm as well as new developments aiming for up to 80 nm tuning range in this spectral region. Furthermore we report on QCL between 3 μm and 16 μm and present new developments. An overview of the most interesting applications using such devices is given at the end of this paper. PMID:22319259

  11. Inline detection of Chrome degradation on binary 193nm photomasks

    NASA Astrophysics Data System (ADS)

    Dufaye, Félix; Sippel, Astrid; Wylie, Mark; García-Berríos, Edgardo; Crawford, Charles; Hess, Carl; Sartelli, Luca; Pogliani, Carlo; Miyashita, Hiroyuki; Gough, Stuart; Sundermann, Frank; Brochard, Christophe

    2013-09-01

    mm wafers exposed and the cleaning brought it back almost to its original state after manufacture. Wafer CD, photomask CD and iCDU results can be compared, before and after a standard mask shop cleaning. Measurement points have be chosen in logic areas and SRAM areas, so that their respective behaviours can be studied separately. Transmitted maps before and after cleaning were analysed in terms of CD shift and CDU degradation. The delta map shows a nice correlation with photomask CD shift. iCDU demonstrated the capability to detect a reliable CD range degradation of 5nm on photomask by a comparison between a reference inspection and the current inspection. Die to die inspection mode provides also valuable data, highlighting the degraded chrome sidewalls, more in the photomask centre than on the edges. Ultimately, these results would enable to trigger the preventive cleanings rather than on predefined thresholds. The expected gains for wafer fabs are cost savings (adapted cleanings frequency), increased photomask availability for production, longer photomask lifetime, no additional SEM time neither for photomask nor on wafer.

  12. 1.86 W cw single-frequency 1319 nm ring laser pumped at 885 nm.

    PubMed

    Li, M L; Zhao, W F; Zhang, S B; Guo, L; Hou, W; Li, J M; Lin, X C

    2012-03-20

    A 1.86 W cw single-frequency 1319 nm laser was produced by using an 885 nm-pumped Nd:YAG crystal with a compact four-mirror ring cavity, for the first time to our knowledge. The Nd:YAG produced a slope efficiency of 21% and an optical-to-optical efficiency of 18% with respect to the absorbed diode pump power. A near-diffraction-limited beam with M(2)=1.2 was achieved under the maximum output power. PMID:22441467

  13. Measurement of 100 nm and 60 nm Particle Standards by Differential Mobility Analysis

    PubMed Central

    Mulholland, George W.; Donnelly, Michelle K.; Hagwood, Charles R.; Kukuck, Scott R.; Hackley, Vincent A.; Pui, David Y. H.

    2006-01-01

    The peak particle size and expanded uncertainties (95 % confidence interval) for two new particle calibration standards are measured as 101.8 nm ± 1.1 nm and 60.39 nm ± 0.63 nm. The particle samples are polystyrene spheres suspended in filtered, deionized water at a mass fraction of about 0.5 %. The size distribution measurements of aerosolized particles are made using a differential mobility analyzer (DMA) system calibrated using SRM® 1963 (100.7 nm polystyrene spheres). An electrospray aerosol generator was used for generating the 60 nm aerosol to almost eliminate the generation of multiply charged dimers and trimers and to minimize the effect of non-volatile contaminants increasing the particle size. The testing for the homogeneity of the samples and for the presence of multimers using dynamic light scattering is described. The use of the transfer function integral in the calibration of the DMA is shown to reduce the uncertainty in the measurement of the peak particle size compared to the approach based on the peak in the concentration vs. voltage distribution. A modified aerosol/sheath inlet, recirculating sheath flow, a high ratio of sheath flow to the aerosol flow, and accurate pressure, temperature, and voltage measurements have increased the resolution and accuracy of the measurements. A significant consideration in the uncertainty analysis was the correlation between the slip correction of the calibration particle and the measured particle. Including the correlation reduced the expanded uncertainty from approximately 1.8 % of the particle size to about 1.0 %. The effect of non-volatile contaminants in the polystyrene suspensions on the peak particle size and the uncertainty in the size is determined. The full size distributions for both the 60 nm and 100 nm spheres are tabulated and selected mean sizes including the number mean diameter and the dynamic light scattering mean diameter are computed. The use of these particles for calibrating DMAs and for

  14. The Doubling of 846 nm Light to Produce 423 nm Light for use in Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Archibald, James; Birrell, Jeremey; Tang, Rebecca; Erickson, Chris; Goggins, Landon; Durfee, Dallin

    2009-10-01

    We present progress on a 423 nm fluorescence probe/cooling laser for use in our neutral calcium atom interferometer. The finished system will include an 846 nm diode laser that is coupled to a tapered amplifier. This light will be sent to a buildup cavity where we will achieve second-harmonic generation (SHG) using either a BBO non-linear crystal or a periodically-poled KTP crystal. We will discuss the theoretical considerations relating to the doubling of light in a crystal and the construction of our buildup cavity. We will also discuss its proposed application for use in atom interferometry.

  15. Absorption Measurements of Periodically Poled Potassium Titanyl Phosphate (PPKTP) at 775 nm and 1550 nm

    PubMed Central

    Steinlechner, Jessica; Ast, Stefan; Krüger, Christoph; Singh, Amrit Pal; Eberle, Tobias; Händchen, Vitus; Schnabel, Roman

    2013-01-01

    The efficient generation of second-harmonic light and squeezed light requires non-linear crystals that have low absorption at the fundamental and harmonic wavelengths. In this work the photo-thermal self-phase modulation technique is exploited to measure the absorption coefficient of periodically poled potassium titanyl phosphate (PPKTP) at 1,550 nm and 775 nm. The measurement results are (84±40) ppm/cm and (127±24) ppm/cm, respectively. We conclude that the performance of state-of-the-art frequency doubling and squeezed light generation in PPKTP is not limited by absorption. PMID:23291574

  16. Transcanalicular laser dacryocystorhinostomy using low energy 810 nm diode laser

    PubMed Central

    Gupta, Sanjiv K.; Kumar, Ajai; Agarwal, Swati; Pandey, Paritosh

    2012-01-01

    Background: Hypertrophic scarring may be a cause of failure after transcanalicular laser dacryocystorhinostomy (DCR) surgery. This hypertrophic scarring results from tissue charring and excessive coagulation, which may be caused by the high laser energy. We have evaluated the use of low energy settings to prevent hypertrophic scarring, for a successful outcome. Aims: To perform and evaluate transcanalicular laser DCR using low energy 810 nm diode laser. Design: Interventional, non-comparative, case series. Materials and Methods: Patients with nasolacrimal duct obstruction and chronic dacryocystitis, who needed DCR, and were fit for surgery under local anesthesia, were recruited to undergo transcanalicular laser DCR using a 810 nm diode laser. The outcome was measured by the patency of the lacrimal passage, as indicated by the relief in the symptoms and the patency on syringing at the last follow-up. The surgical time and surgical complications were noted. Statistical Analysis Used: Descriptive analysis. Results: The study included 94 patients. The average age was 30.1 years (range 15 - 69 years). Seventy (74.4%) patients were female. Eight patients had failed external DCR. Per-operative patency of the passage was obtained in all the patients. Average surgical time was seven minutes (5 – 18 minutes). At the end of the study period of one year, a successful outcome was seen in 85 patients (90.5%). There were eight patients of previous failed DCR surgeries, and six of them achieved a cure at the end of follow-up. Conclusions: Transcanalicular Laser DCR can be safely performed using a low power 810 nm diode laser. The surgery is elegant, minimally invasive, allows fast rehabilitation, and has an excellent success rate. PMID:23439888

  17. Narrowband filters for the FUV range

    NASA Astrophysics Data System (ADS)

    Rodríguez-de Marcos, Luis; Larruquert, Juan I.; Méndez, José A.; Aznárez, José A.; Fu, Liping

    2015-05-01

    We address the design, fabrication, and characterization of transmittance filters for the Ionosphere Photometer instrument (IP), developed by the Center for Space Science and Applied Research (CSSAR). IP, a payload of Feng-Yun 3D meteorological satellite, to be launched on 2016, is aimed to perform photometry measurements of Earth's ionosphere by the analysis of the OI (135.6 nm) spectral line and N2 Lyman-Birge-Hopfield (LBH, 140-180 nm) band, both of them in the far ultraviolet (FUV) range. The most convenient procedure to isolate a spectral band is the use of tunable transmittance filters. In many applications the intensity of the ultraviolet, visible and infrared background is higher than the intensity of the target FUV lines; therefore one of the most important requirements for transmittance filters is to reject (by reflecting and/or by absorbing) as efficiently as possible the visible and close ranges. In the FUV range, (Al/MgF2)n transmittance filters are the most common, and they are suitable to reject the visible and adjacent ranges. These materials present unique properties in this range: MgF2 is transparent down to ˜115 nm and Al has a very low refractive index in the FUV that contrasts well with MgF2. Narrowband tunable filters with very low transmittance at long wavelengths are achievable. The main data on the preparation and characterization of IP filters by Grupo de Óptica de Láminas Delgadas (GOLD) is detailed. In this proceeding we present (Al/MgF2)3 filters peaked at either 135.6 nm or at the center of the LBH band (˜160 nm). Filters were characterized in the 125-800 nm range (143-800 nm range for the LBH filter). After some storage in a desiccator, both coatings kept a transmittance of ~0.14 at their target wavelengths, with visible-to-peak transmittance ratios of 1.2·10-4 (OI filter) and 1.3·10-4 (LBH filter). One filter tuned at each target wavelength was exposed to ~300 Gy 60Co gamma dose, with no significant transmittance change.

  18. 650 nm Laser stimulated dating from Side Antique Theatre, Turkey

    NASA Astrophysics Data System (ADS)

    Doğan, M.; Meriç, N.

    2014-03-01

    Samples were taken from the archeological excavation site, which was at the backs of the Side Antique Theatre. Samples were taken from under the base rock in this area. Polymineral fine grains were examined to determine the ages of the sediments. Samples gathered from the Side Antique Theatre were investigated through using the SAR method. Firstly, one part of the samples were evaluated by using conventional IRSL reading head model of (ELSEC-9010) which is infrared (880±80 nm) stimulation source with Schott BG39 filter. The IRSL age dating with feldspar minerals, gives a number of overestimated or underestimated age values as a result. A new reading head was proposed with the following configuration attachments for overestimation of equivalent dose rates. Measurements were done with this newly designed red laser stimulating reading head which works with Elsec 9010 OSL age dating system. SAR measurements were performed by (650±10 nm) red laser light source with two Schott BG3 filters. With usage of the new designed reading head; closer results were obtained in comparision with the Antique Theatre's expected age range. Fading rates were taken into consideration and these corrections were also handled for true age results.

  19. Comparison of 1470nm laser and 1470nm laser heat head for ex-vivo kidney tissue cutting: a preliminary study

    NASA Astrophysics Data System (ADS)

    Zhou, Zhentian; Zhang, Lupeng; Liu, Jiafeng; Shun, Zhi; Li, Wenzhi; Liu, Zhuwen; Liang, Zhiyuan

    2014-11-01

    Purpose: Compare of the efficiency of 1470nm laser and 1470nm laser heat head for tissue cutting in vitro porcine kidney tissue . Method: We designed a laser heat head that convert laser energy into thermal energy by the absorbing materials. Fresh kidney tissue was harvested from a porcine and then placed on a turntable with constant speed . The same power of 1470nm laser and 1470nm laser heat head was used to cutting tissue, respectively .The cutting results and the range of thermal damage was compared after cutting . Result: Compared with 1470nm laser, 1470nm laser heat head's cutting traces is more smooth and the thermal damage area is very regular ,so it has smaller damage to deep tissue . Conclusion: The efficiency of laser heat head for tissue cutting was better. This study indicate that we might be able to make laser which the tissue have a low absorption coefficient about it to obtain good results for tissue cutting through the laser point heat source.

  20. Amplifications in the S-, C- and L-bands using RE-ion doped short tellurite fibres with 980 nm and 800 nm excitation sources

    NASA Astrophysics Data System (ADS)

    Jha, Animesh; Shen, Shaoxiong; Joshi, P.

    2006-02-01

    We report the results of emission and amplification in Tm 3+- and Er 3+-fibres for signal gain in the 1420 nm to 1600 nm wavelength range, which covers S-, C- and L-bands of silica fibre optical communication networks. The paper explains the mechanism for alleviating the pump excited state absorption (ESA) in Er-doped tellurite fibres for maximizing the pump inversion efficiency at 980 nm using the Ce-ions as a co-dopant and via the structural modification of TeO II glass using B IIO 3. The spectroscopic data and gain bandwidth of Er-doped fibres are reported in the C- and L-bands. Methods for enhancing gain in the S-band using the co-dopants (Tb 3+, Yb 3+) with 800 nm and 980 nm pumping schemes are also explained. The measured maximum relative gain in short fibres of 5 to 10 cm in length in C- and L-bands are: 30 dB and 15 dB, respectively. By comparison the internal gain in a 20 cm long Tm/Yb ion co-doped fibre pumped with a 980 nm source was 7 dB.

  1. Photodissociation of the Propargyl (C3D3) Radicals at 248 nm and 193 nm

    SciTech Connect

    Neumark., D.M.; Crider, P.E.; Castiglioni, L.; Kautzman, K.K.

    2009-01-21

    The photodissociation of perdeuterated propargyl (D{sub 2}CCCD) and propynyl (D{sub 3}CCC) radicals was investigated using fast beam photofragment translational spectroscopy. Radicals were produced from their respective anions by photodetachment at 540 nm and 450 nm (below and above the electron affinity of propynyl). The radicals were then photodissociated by 248 nm or 193 nm light. The recoiling photofragments were detected in coincidence with a time- and position-sensitive detector. Three channels were observed: D{sub 2} loss, CD + C{sub 2}D{sub 2}, and CD{sub 3} + C{sub 2}. Obervation of the D loss channel was incompatible with this experiment and was not attempted. Our translational energy distributions for D{sub 2} loss peaked at nonzero translational energy, consistent with ground state dissociation over small (< 1 eV) exit barriers with respect to separated products. Translational energy distributions for the two heavy channels peaked near zero kinetic energy, indicating dissociation on the ground state in the absence of exit barriers.

  2. Evaluation of the Diode laser (810nm,980nm) on dentin tubule diameter following internal bleaching

    PubMed Central

    Kiomarsi, Nazanin; Salim, Soheil; Sarraf, Pegah; Javad-Kharazifard, Mohammad

    2016-01-01

    Background The aim of this study was to evaluate the effect of diode laser irradiation and bleaching materials on the dentinal tubule diameter after laser bleaching. Material and Methods The dentin discs of 40 extracted third molar were used in this experiment. Each disc surface was divided into two halves by grooving. Half of samples were laser bleached at different wavelengths with two different concentrations of hydrogen peroxide. Other half of each disc with no laser bleaching remained as a negative control. Dentin discs were assigned randomly into four groups (n=10) with following hydrogen peroxide and diode laser wavelength specifications; Group 1 (30% - 810 nm), group 2 (30% - 980 nm), group 3 (46% - 810 nm) and group 4 (46% - 980 nm). All specimens were sent for scanning electron microscopic (SEM) analysis in order to measure tubular diameter in laser treated and control halves. Data were analyzed by ANOVA and Tukey test (p<0.05). Results A significant reduction in dentin tubule diameter was observed in groups 1, 2 and 4. There was no significant difference between groups 1 and 2 and between groups 3 and 4 after bleaching. Conclusions The SEM results showed that diode laser was able to reduce dentin tubule diameter and its effect on dentin was dependent on chemical action of bleaching material. Key words:Laser, diode, dentin, tubule, diameter. PMID:27398172

  3. NXT:1980Di immersion scanner for 7nm and 5nm production nodes

    NASA Astrophysics Data System (ADS)

    de Graaf, Roelof; Weichselbaum, Stefan; Droste, Richard; McLaren, Matthew; Koek, Bert; de Boeij, Wim

    2016-03-01

    Immersion scanners remain the critical lithography workhorses in semiconductor device manufacturing. When progressing towards the 7nm device node for logic and D18 device node for DRAM production, pattern-placement and layer-to-layer overlay requirements keep progressively scaling down and consequently require system improvements in immersion scanners. The on-product-overlay requirements are approaching levels of only a few nanometers, imposing stringent requirements on the scanner tool design in terms of reproducibility, accuracy and stability. In this paper we report on the performance of the NXT:1980Di immersion scanner. The NXT:1980Di builds upon the NXT:1970Ci, that is widely used for 16nm, 14nm and 10nm high-volume manufacturing. We will discuss the NXT:1980Di system- and sub-system/module enhancements that drive the scanner overlay, focus and productivity performance. Overlay, imaging, focus, productivity and defectivity data will be presented for multiple tools. To further reduce the on-product overlay system performance, alignment sensor contrast improvements as well as active reticle temperature conditioning are implemented on the NXT:1980Di. Reticle temperature conditioning will reduce reticle heating overlay and the higher contrast alignment sensor will improve alignment robustness for processed alignment targets. Due to an increased usage of multiple patterning techniques, an increased number of immersion exposures is required. NXT:1980Di scanner design modifications raised productivity levels from 250wph to 275wph. This productivity enhancement provides lower cost of ownership (CoO) for customers using immersion technology.

  4. THE SPECTRUM OF THORIUM FROM 250 nm TO 5500 nm: RITZ WAVELENGTHS AND OPTIMIZED ENERGY LEVELS

    SciTech Connect

    Redman, Stephen L.; Nave, Gillian; Sansonetti, Craig J.

    2014-03-01

    We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists to re-optimize the energy levels of neutral, singly, and doubly ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19, 874 thorium lines between 250 nm and 5500 nm (40, 000 cm{sup –1} to 1800 cm{sup –1}). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer and Engleman and typographical errors and incorrect classifications in Kerber et al. We also found a large scatter with respect to the thorium line list of Lovis and Pepe. We anticipate that our Ritz wavelengths will lead to improved measurement accuracy for current and future spectrographs that make use of thorium-argon or thorium-neon lamps as calibration standards.

  5. Faster qualification of 193-nm resists for 100-nm development using photo cell monitoring

    NASA Astrophysics Data System (ADS)

    Jones, Chris M.; Kallingal, Chidam; Zawadzki, Mary T.; Jeewakhan, Nazneen N.; Kaviani, Nazila N.; Krishnan, Prakash; Klaum, Arthur D.; Van Ess, Joel

    2003-05-01

    The development of 100-nm design rule technologies is currently taking place in many R&D facilities across the world. For some critical alyers, the transition to 193-nm resist technology has been required to meet this leading edge design rule. As with previous technology node transitions, the materials and processes available are undergoing changes and improvements as vendors encounter and solve problems. The initial implementation of the 193-nm resits process did not meet the photolithography requirements of some IC manufacturers due to very high Post Exposure Bake temperature sensitivity and consequently high wafer to wafer CD variation. The photoresist vendors have been working to improve the performance of the 193-nm resists to meet their customer's requirements. Characterization of these new resists needs to be carried out prior to implementation in the R&D line. Initial results on the second-generation resists evaluated at Cypress Semicondcutor showed better CD control compared to the aelrier resist with comparable Depth of Focus (DOF), Exposure Latitute, Etch Resistance, etc. In addition to the standard lithography parameters, resist characterization needs to include defect density studies. It was found that the new resists process with the best CD control, resulted in the introduction of orders of magnitude higher yield limiting defects at Gate, Contact adn Local Interconnect. The defect data were shared with the resists vendor and within days of the discovery the resist vendor was able to pinpoint the source of the problem. The fix was confirmed and the new resists were successfully released to production. By including defect monitoring into the resist qualification process, Cypress Semiconductor was able to 1) drive correction actions earlier resulting in faster ramp and 2) eliminate potential yield loss. We will discuss in this paper how to apply the Micro Photo Cell Monitoring methodology for defect monitoring in the photolithogprhay module and the

  6. Illumination optimization for 65nm technology node

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Heng; Liu, Qingwei; Zhang, Liguo; Hung, Chi-Yuan

    2006-10-01

    The most important task of the microlithography process is to make the manufacturable process latitude/window, including dose latitude and Depth of Focus, as wide as possible. Thus, to perform a thorough source optimization during process development is becoming more critical as moving to high NA technology nodes. Furthermore, Optical proximity correction (OPC) are always used to provide a common process window for structures that would, otherwise, have no overlapping windows. But as the critical dimension of the IC design shrinks dramatically, the flexibility for applying OPC also decreases. So a robust microlithography process should also be OPC-friendly. This paper demonstrates our work on the illumination optimization during the process development. The Calibre ILO (Illumination Optimization) tool was used to perform the illumination optimization and provided plots of DOF vs. various parametric illumination settings. This was used to screen the various illumination settings for the one with optimum process margins. The resulting illumination conditions were then implemented and analyzed at a real wafer level on our 90/65nm critical layers, such as Active, Poly, Contact and Metal. In conclusion, based on these results, a summary is provided highlighting how OPC can get benefit from proper illumination optimization.

  7. Wind Measurements with a 355 nm Molecular Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.

    2000-01-01

    A Doppler lidar system based on the molecular double edge technique is described. The system is mounted in a modified van to allow deployment in field operations. The lidar operates with a tripled Nd:YAG laser at 355 nm, a 45cm aperture telescope and a matching azimuth-over-elevation scanner to allow full sky access. Validated atmospheric wind profiles have been measured from 1.8 km to 35 km with a 178 m vertical resolution. The range dependent rms deviation of the horizontal wind speed is 0.4 - 6 m/s. The results of wind speed and direction are in good agreement with balloon sonde wind measurements made simultaneously at the same location.

  8. NM-Scale Anatomy of an Entire Stardust Carrot Track

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Messenger, S.

    2009-01-01

    Comet Wild-2 samples collected by NASA s Stardust mission are extremely complex, heterogeneous, and have experienced wide ranges of alteration during the capture process. There are two major types of track morphologies: "carrot" and "bulbous," that reflect different structural/compositional properties of the impactors. Carrot type tracks are typically produced by compact or single mineral grains which survive essentially intact as a single large terminal particle. Bulbous tracks are likely produced by fine-grained or organic-rich impactors [1]. Owing to their challenging nature and especially high value of Stardust samples, we have invested considerable effort in developing both sample preparation and analytical techniques tailored for Stardust sample analyses. Our report focuses on our systematic disassembly and coordinated analysis of Stardust carrot track #112 from the mm to nm-scale.

  9. Lasing at 300 nm and below: Optical challenges and perspectives

    SciTech Connect

    Garzella, D.; Couprie, M.E. |; Billardon, M.

    1995-12-31

    The FEL experiment in the visible and near UV on the Super ACO storage ring has given, since 1989, important informations on the SRFEL dynamics and, furthermore, a very good beam stability has been achieved. In addition, the operation at 350 nm with this good stability and a long beam lifetime allowed us to perform the first user experiment in biology and to start with a campaign for using the laser as photons source for experiments in other domains, coupling FEL light and the Synchrotron Radiation. For this, FEL starts to be very competitive with respect to the other conventional laser sources, provided that it could oscillate further in the UV, say at 300 nm and below. So, the real challenge is now given by the lasing at shorter wavelengths and, for this, by the optical technology existing nowadays. Since 1992 the efforts have been concentrating to look for every kind of solution allowing us to overcome the problem of having a very low gain. From an optical point of view, in the range of wavelengths explored, there is a lack of transparents dielectric materials for substrates and coatings. Substrates are required at the same time to be relatively not absorbing (a few tens 10{sup -6}), to have a very good surface quality (RMS roughness below 10 {Angstrom}) because of scattering losses dramatically increasing in this spectral range and, due to the thermal load of the undulator emission, to have adequate thermal characteristics. In order to fulfill all these requirements, a good characterisation and modelisation of the substrates is needed, especially to correlate thermal loading and mechanical deformations from one hand, and roughness and scattering losses from the other hand. Coatings must be not absorbing too and, above all, the most amorphous as possible (this could be obtained with IBS deposition technique), in order to insure a good reproduction of the substrate roughness at the interfaces and on the top layer and an higher resistance to the XUV photons load.

  10. Recalibration of the absorption/photodissociation spectra of CO and its isotopes between 91 and 115 nm

    NASA Technical Reports Server (NTRS)

    Eidelsberg, M.; Benayoun, J. J.; Viala, Y.; Rostas, F.; Smith, P. L.; Yoshino, K.; Stark, G.; Shettle, C. A.

    1992-01-01

    A systematic error has been identified in the wavelengths and wavenumbers presented in two papers concerning the absorption/dissociation spectra of CO and isotopes between 91.2 and 115.2 nm. The published wavelengths are about 10 mA (0.001 nm) too small for lines in the 91-100 nm range. A table of corrected band origins is provided.

  11. OPC structures for maskshops qualification for the CMOS65nm and CMOS45nm nodes

    NASA Astrophysics Data System (ADS)

    Sundermann, Frank; Trouiller, Yorick; Urbani, Jean-Christophe; Couderc, Christophe; Belledent, Jérôme; Borjon, Amandine; Foussadier, Franck; Gardin, Christian; LeCam, Laurent; Rody, Yves; Saied, Mazen; Yesilada, Emek; Martinelli, Catherine; Wilkinson, Bill; Vautrin, Florent; Morgana, Nicolo; Robert, Frederic; Montgomery, Patrick; Kerrien, Gurwan; Planchot, Jonathan; Farys, Vincent; Di Maria, Jean-Luc

    2007-02-01

    Several qualification stages are required for new maskshop tools, first step is done by the maskshop internally. Taking a new writer for example, the maskshop will review the basic factory and site acceptance tests, including CD uniformity, CD linearity, local CD errors and registration errors. The second step is to have dedicated OPC (Optical Proximity Correction) structures from the wafer fab. These dedicated OPC structures will be measured by the maskshop to get a reticle CD metrology trend line. With this trend line, we can: - ensure the stability at reticle level of the maskshop processes - put in place a matching procedure to guarantee the same OPC signature at reticle level in case of any internal maskshop process change or new maskshop evaluation. Changes that require qualification could be process changes for capacity reasons, like introducing a new writer or a new manufacturing line, or for capability reasons, like a new process (new developer tool for example) introduction. Most advanced levels will have dedicated OPC structures. Also dedicated maskshop processes will be monitored with these specific OPC structures. In this paper, we will follow in detail the different reticle CD measurements of dedicated OPC structures for the three advanced logic levels of the 65nm node: poly level, contact level and metal level. The related maskshop's processes are - for poly: eaPSM 193nm with a nega CAR (Chemically Amplified Resist) process for Clear Field L/S (Lines & Space) reticles - for contact: eaPSM 193nm with a posi CAR process for Dark Field Holes reticles - for metal1: eaPSM 193nm with a posi CAR process for Dark Field L/S reticles. For all these structures, CD linearity, CD through pitch, length effects, and pattern density effects will be monitored. To average the metrology errors, the structures are placed twice on the reticle. The first part of this paper will describe the different OPC structures. These OPC structures are close to the DRM (Design Rule

  12. Multi-watt 589nm fiber laser source

    SciTech Connect

    DAWSON, J W; DROBSHOFF, A D; BEACH, R J; MESSERLY, M J; PAYNE, S A; BROWN, A; PENNINGTON, D M; BAMFORD, D J; SHARPE, S J; COOK, D J

    2006-01-19

    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  13. Design and implementation of a vacuum compatible laser-basedsub-nm resolution absolute distance measurement gauge

    SciTech Connect

    Naulleau, Patrick P.; Denham, Paul E.; Rekawa, Senajith

    2004-02-16

    We describe the design and implementation of a vacuum compatible laser-based absolute distance measurement gauge with sub-nm resolution. The present system is compatible with operation in the 10{sup -8} Torr range and with some minor modifications could be used in the 10{sup -9} Torr range. The system is based on glancing incidence reflection and dual segmented diode detection. The system has been implemented as a focus sensor for extreme ultraviolet interferometry and microlithography experiments at Lawrence Berkeley National Laboratory's Advanced Light Source synchrotron radiation facility and 1{sigma} operational measurement noise floor of 0.26 nm has been demonstrated.

  14. Polarization properties of lidar scattering from clouds at 347 nm and 694 nm.

    PubMed

    Pal, S R; Carswell, A I

    1978-08-01

    The polarization characteristics of lidar scattering from cumulus and low-lying shower clouds have been measured with a system operating at 694 nm (red) and 347 nm (blue). The backscatter profiles of the polarization components as well as of the total intensity of the return are presented and discussed for the two wavelengths. The linear depolarization ratio delta, which can be used as a measure of the unpolarized multiple scattering, has been obtained at both wavelengths. This quantity has a very low value at cloud base for both wavelengths and increases with pulse penetration. The blue registers generally higher values of a within the cloud. The measured total intensity backscatter functions for both wavelengths are presented and discussed in relation to theoretical calculations of cloud models.

  15. Mapping the Use of Engineered NM in Quebec's Industries and Research Laboratories

    NASA Astrophysics Data System (ADS)

    Ostiguy, Claude; Emond, Claude; Dossa, Inès; Malki, Yasmina; Boily, Chantale; Roughley, David; Plavski, Anton; Endo, Charles-Anica

    2013-04-01

    Engineered NanoMaterials (NM) offer an opportunity to develop a wide variety of new products with unique properties but many studies have shown potential OHS risks specific to NM. Addressing these risks requires knowledge about release of NM into the workplaces. This research aimed to map the state of nanotechnology OHS practices in Quebec through a questionnaire following a first contact by telephone when possible and by compiling the type and volumes of NM used as well as gathering information related to the working conditions and OHS aspects. This survey was conducted among 1310 Quebec industries and 653 researchers working in different specialties potentially involved in the development/production/distribution/integration of NM and use of NM containing products. Overall, 90 questionnaires, including 51 from the industries, were completed. These showed that NM are mainly used into the powder form, in many different sectors and deserve a wide range of markets. The prevention measures implemented vary widely from a workplace to another but about one third of the participants report that they have implemented NP adapted prevention measures but they remain worried on some specific operations. More than 50% of the participants request more information about the safe laboratory/plant design, toxicity, regulation, good work practices and prevention measures, efficiency of personal protective equipment and environmental impacts.

  16. Performance comparison of bismuth/erbium co-doped optical fibre by 830 nm and 980 nm pumping

    NASA Astrophysics Data System (ADS)

    Yan, Binbin; Luo, Yanhua; Zareanborji, Amirhassan; Xiao, Gui; Peng, Gang-Ding; Wen, Jianxiang

    2016-10-01

    The performance of bismuth/erbium co-doped fibre (BEDF) by 830 nm and 980 nm pumping has been studied in detail, including the small signal absorption, pump absorption, emission, gain and excited state absorption (ESA). Based on the study, energy transition diagrams of BEDF under 830 nm or 980 nm pumping are proposed to clarify the spectroscopic properties. The results demonstrate the advantages of 830 nm pumping for BEDF over 980 nm pumping when considering the absorption, pumping efficiency, excited state absorption and optical amplification.

  17. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    DOE PAGES

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; et al

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environmentsmore » for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.« less

  18. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    SciTech Connect

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; Schrimpf, R. D.; Labello, R.; Nichols, J.; Weeden-Wright, S. L.

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environments for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.

  19. The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface

    SciTech Connect

    Schrider, Keegan J.; Yalisove, Steven M.; Torralva, Ben

    2015-09-21

    The dynamics of femtosecond laser removal of 20 nm Ni films on glass substrates was studied using time-resolved pump-probe microscopy. 20 nm thin films exhibit removal at two distinct threshold fluences, removal of the top 7 nm of Ni above 0.14 J/cm{sup 2}, and removal of the entire 20 nm film above 0.36 J/cm{sup 2}. Previous work shows the top 7 nm is removed through liquid spallation, after irradiation the Ni melts and rapidly expands leading to tensile stress and cavitation within the Ni film. This work shows that above 0.36 J/cm{sup 2} the 20 nm film is removed in two distinct layers, 7 nm and 13 nm thick. The top 7 nm layer reaches a speed 500% faster than the bottom 13 nm layer at the same absorbed fluence, 500–2000 m/s and 300–700 m/s in the fluence ranges studied. Significantly different velocities for the top 7 nm layer and bottom 13 nm layer indicate removal from an interface occurs by a different physical mechanism. The method of measuring film displacement from the development of Newton's rings was refined so it could be shown that the 13 nm layer separates from the substrate within 70 ps and accelerates to its final velocity within several hundred picoseconds. We propose that removal of the bottom 13 nm is consistent with heterogeneous nucleation and growth of vapor at the Ni-glass interface, but that the rapid separation and acceleration of the 13 nm layer from the Ni-glass interface requires consideration of exotic phases of Ni after excitation.

  20. Electronically tunable thulium-holmium mode-locked fiber laser for the 1700-1800 nm wavelength band.

    PubMed

    Noronen, Teppo; Okhotnikov, Oleg; Gumenyuk, Regina

    2016-06-27

    We demonstrate a widely tunable, mode-locked fiber laser capable of producing sub-picosecond pulses between 1705 and 1805 nm. The 100 nm tuning range is achieved by using intracavity acousto-optic tunable filter. The laser delivers highly stable pulses via self-starting hybrid mode-locking triggered by frequency-shifting and nonlinear polarization evolution. PMID:27410623

  1. Telemetry Ranging: Concepts

    NASA Astrophysics Data System (ADS)

    Hamkins, J.; Kinman, P.; Xie, H.; Vilnrotter, V.; Dolinar, S.

    2015-11-01

    Telemetry ranging is a proposed alternative to conventional two-way ranging for determining the two-way time delay between a Deep Space Station (DSS) and a spacecraft. The advantage of telemetry ranging is that the ranging signal on the uplink is not echoed to the downlink, so that telemetry alone modulates the downlink carrier. The timing information needed on the downlink, in order to determine the two-way time delay, is obtained from telemetry frames. This article describes the phase and timing estimates required for telemetry ranging, and how two-way range is calculated from these estimates. It explains why the telemetry ranging architecture does not require the spacecraft transponder to have a high-frequency or high-quality oscillator, and it describes how a telemetry ranging system can be infused in the Deep Space Network.

  2. Effects of 946-nm thermal shift and broadening on Nd3+:YAG laser performance

    NASA Astrophysics Data System (ADS)

    Seyed Ebrahim, Pourmand; Ghasem, Rezaei

    2015-12-01

    Spectroscopic properties of flashlamp pumped Nd3+:YAG laser are studied as a function of temperature in a range from -30 °C to 60 °C. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission within the respective intermanifold transitions of 4F3/2 → 4I9/2 are investigated. The 946.0-nm line shifts toward the shorter wavelength and broadens. In addition, the threshold power and slope efficiency of the 946.0-nm laser line are quantified with temperature. The lower the temperature, the lower the threshold power is and the higher the slope efficiency of the 946.0-nm laser line is, thus the higher the laser output is. This phenomenon is attributed to the ion-phonon interaction and the thermal population in the ground state. Project supported by Estahban Branch, Islamic Azad University.

  3. Thin-disk Raman laser operation of Yb:YVO4/YVO4 around 1120 nm

    NASA Astrophysics Data System (ADS)

    Yang, F. G.; Qiao, L.; Xia, Z. C.

    2015-12-01

    We present diode-pumped Yb:YVO4/YVO4 thin-disk Raman laser operation around 1120 nm. The thin-disk crystals, Yb:YVO4, and the Raman crystal, YVO4, are cut with 250 μm and 20 mm, respectively. In multimode configurations, up to 0.91 W of Raman laser output power and a maximum slope efficiency of 10% are demonstrated corresponding to a pump power of 10 W. A continuous wavelength tuning range of 54 nm from 1096 to 1150 nm with a maximum output power of 320 mW at 1126 nm is confirmed.

  4. Light dosage in whole bladder wall photodynamic therapy at 532 and 630 nm

    NASA Astrophysics Data System (ADS)

    van Staveren, Hugo J.; Ramaekers, Joost W.; Marijnissen, Johannes P. A.; Beek, Johan F.; Keijzer, Marleen; Star, Willem M.

    1994-03-01

    The optical absorption, scattering and anisotropy coefficient of piglet and diseased human bladder tissue were determined in vitro in the wavelength range of 500 - 650 nm. Monte Carlo simulations for whole bladder wall (WBW) photodynamic therapy (PDT) have been performed using the optical parameters determined in vitro. The calculated light dose rate values are in agreement with those measured in clinical WBW-PDT, previously performed at 630 nm. The light dose rate at the bladder wall can differ by a factor of 4, due to variations in optical properties of the tissue. This demonstrates the necessity of in situ light dosimetry during clinical WBW-PDT. WBW-PDT with red light (630 nm) will be technically more advantageous than with green light (532 nm), because of a higher integrating sphere effect.

  5. Spin pumping and Gilbert damping in atomically flat nanometric thick YIG|NM system

    NASA Astrophysics Data System (ADS)

    Alyahyaei, H. M.; Tang, Chi; Yang, Bowen; Shi, Jing

    2014-03-01

    Epitaxial nanometric thick ytrrium iron garnet (YIG) films grown on (111) and (110) gadolliun gallium garnet (GGG) substrates via PLD exhibit an atomically flat surface. This extremely flat surface with a roughness ~ 0.1 Å offers a more controlled study of the physical mechanism behind the newly observed damping in YIG|NM bilayer systems. Our bilayer systems consist of a 30 nm thick YIG film, either (111) or (110), and a non-magnetic layer, either beta-phase Ta or Pd, with thickness ranging from 0 to 20 nm. We have performed ferromagnetic resonance (FMR) experiments and observed systematic thickness dependence of the FMR linewidth. As the thickness of NM increases, the FMR linewidth increases rapidly and then slowly approaches saturation. The effect of the YIG surface on the Gilbert damping due to the magnetic proximity effect and on spin pumping in such bilayer systems will be discussed. The research is supported by NSF/EECS.

  6. RADIO RANGING DEVICE

    DOEpatents

    Nieset, R.T.

    1961-05-16

    A radio ranging device is described. It utilizes a super regenerative detector-oscillator in which echoes of transmitted pulses are received in proper phase to reduce noise energy at a selected range and also at multiples of the selected range.

  7. SAR ambiguous range suppression.

    SciTech Connect

    Doerry, Armin Walter

    2006-09-01

    Pulsed Radar systems suffer range ambiguities, that is, echoes from pulses transmitted at different times arrive at the receiver simultaneously. Conventional mitigation techniques are not always adequate. However, pulse modulation schemes exist that allow separation of ambiguous ranges in Doppler space, allowing easy filtering of problematic ambiguous ranges.

  8. Improved performance 1590 nm Er:YLF laser

    SciTech Connect

    Marchbanks, R.D.; Petrin, R.R.; Cockroft, N.J.

    1994-12-01

    We present an improvement in the performance of a 1590 nm ER:YLF laser through simultaneous laser operation at 2717 nm. A slope efficiency of 7.0% with an output of 13.2 mW has been achieved with 971 nm pumping.

  9. An improved light source for laser ranging

    NASA Technical Reports Server (NTRS)

    Hamal, Karel; Richardson, Martin

    1993-01-01

    The development of a new laser material, Cr-doped LiSAF, makes possible the development of a laser source for satellite ranging systems that is more superior in performance capabilities than current Nd:YAG-based laser sources. This new material offers the potential of shorter pulses and more preferable wavelengths (850 and 425 nm) than multiwavelength Nd:YAG systems, leading to superior ranging resolution and greater detection sensitivity. We are embarking on a feasibility study of a two-wavelength, mode-locked laser system based on Cr:LiSAF, providing shorter pulses for improved ranging resolution.

  10. 25 Gbps 850 nm photodiode for emerging 100 Gb ethernet applications

    NASA Astrophysics Data System (ADS)

    Joshi, Abhay; Rue, Jim; Becker, Don; Datta, Shubhashish; McFaul, Will

    2011-06-01

    The IEEE Std 802.3ba-2010 for 40 Gb and 100 Gb Ethernet was released in July, 2010. This standard will continue to evolve over the next several years. Two of the challenging transmit/receive architectures contained in this standard are the 100GBASE-LR4 (<10 km range) and 100GBASE-ER4 (<40 km range). Although presently envisioned for 1310 nm optical wavelengths, both of these 4 lane, 25.78 GBaud formats may be adopted for the impending 850 nm short reach optical backplane market, whose range is below 150 m. Driven by major computer server companies, such as IBM, HP and Oracle, the 850 nm Active Optical Cable (AOC) market is presently undergoing an increase of serial rates up to 25 Gbaud to enhance backplane interconnectivity. With AOCs up to 16 channels, the potential for up to 400 Gbps backhaul composite data rates will soon be possible. We report a 25 Gbps photodiode with quantum efficiency ~ 0.6 at 850 nm. This InGaAs/InP device was optimized for high quantum efficiency at 850 nm. When pigtailed with multimode fiber and integrated with an application-specific RF amplifier, the resultant photoreceiver will provide multiple functionalities for these 100 Gb Ethernet markets.

  11. 47 CFR 90.371 - Dedicated short range communications service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... improvement of traffic flow, traffic safety, and other intelligent transportation service applications in a... 405600N 0743400W Redstone Arsenal, AL 343630N 0863610W White Sands Missile Range, NM 322246N 1062813W...

  12. Short-term clinical outcomes of laser supported periodontal treatment concept using Er,Cr:YSGG (2780nm) and diode (940 nm): a pilot study

    NASA Astrophysics Data System (ADS)

    Odor, Alin A.; Violant, Deborah; Badea, Victoria; Gutknecht, Norbert

    2016-03-01

    Backgrounds: Er,Cr:YSGG (2780nm) and diode (940 nm) lasers can be used adjacent to the conventional periodontal treatment as minimally invasive non-surgical devices. Aim: To describe the short-term clinical outcomes by combining Er,Cr:YSGG (2780nm) and diode 940 nm lasers in non-surgical periodontal treatment. Materials and methods: A total of 10 patients with periodontal disease (mild, moderate, severe) - 233 teeth and 677 periodontal pockets ranging from 4 mm to 12 mm - were treated with Er,Cr:YSGG (2780nm) and diode (940 nm) lasers in adjunct to manual and piezoelectric scaling and root planning (SRP). Periodontal parameters such as mean probing depth (PD), mean clinical attachment level (CAL) and mean bleeding on probing (BOP) were evaluated at baseline and 6 months after the laser treatment using an electronic periodontal chart. Results: At baseline, the mean PD was 4.06 ± 1.06 mm, mean CAL was 4.56 ± 1.43 mm, and mean BOP was 43.8 ± 23.84 %. At 6 months after the laser supported periodontal treatments the mean PD was 2.6 ± 0.58 mm (p <0.001), mean CAL was 3.36 ± 1.24 mm (p <0.001) and mean BOP was 17 ± 9.34 % (p <0.001). Also 3 patients showed radiographic signs of bone regeneration. Conclusion: The combination of two laser wavelengths in adjunct to SRP offers significant improvements of periodontal clinical parameters such as PD, CAL and BOP. Keywords: Laser supported periodontal treatment concept, Er,Cr:YSGG and diode 940nm lasers, Scaling and root planning, Minimally invasive non-surgical device

  13. Continuous-wave simultaneous dual-wavelength operation at 912 nm and 1063 nm in Nd:GdVO4

    NASA Astrophysics Data System (ADS)

    Lünstedt, K.; Pavel, N.; Petermann, K.; Huber, G.

    2007-01-01

    A continuous-wave, diode-pumped Nd:GdVO4 thin disk laser with simultaneous dual-wavelength emission at the 912 nm 4 F 3/2→4 I 9/2 quasi-three-level transition and the 1063 nm 4 F 3/2→4 I 11/2 four-level transition is demonstrated and analyzed. Output powers of 1.7 W at 912 nm and of 1.6 W at 1063 nm were achieved simultaneously from a 0.3-at.%, 300-μm thick Nd:GdVO4 crystal that was multi-pass excited with 26.8 W of available diode pump power. Second harmonic generation to 456 nm with LiB3O5 yielded 0.96 W in 912 nm single-wavelength operation and 0.73 W in 912 nm/1063 nm dual-wavelength operation.

  14. Telemetry Ranging: Signal Processing

    NASA Astrophysics Data System (ADS)

    Hamkins, J.; Kinman, P.; Xie, H.; Vilnrotter, V.; Dolinar, S.

    2016-02-01

    This article describes the details of the signal processing used in a telemetry ranging system in which timing information is extracted from the downlink telemetry signal in order to compute spacecraft range. A previous article describes telemetry ranging concepts and architecture, which are a slight variation of a scheme published earlier. As in that earlier work, the telemetry ranging concept eliminates the need for a dedicated downlink ranging signal to communicate the necessary timing information. The present article describes the operation and performance of the major receiver functions on the spacecraft and the ground --- many of which are standard tracking loops already in use in JPL's flight and ground radios --- and how they can be used to provide the relevant information for making a range measurement. It also describes the implementation of these functions in software, and performance of an end-to-end software simulation of the telemetry ranging system.

  15. Telemetry-Based Ranging

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon; Vilnrotter, Victor A.; Andrews, Kenneth S.; Shambayati, Shervin

    2011-01-01

    A telemetry-based ranging scheme was developed in which the downlink ranging signal is eliminated, and the range is computed directly from the downlink telemetry signal. This is the first Deep Space Network (DSN) ranging technology that does not require the spacecraft to transmit a separate ranging signal. By contrast, the evolutionary ranging techniques used over the years by NASA missions, including sequential ranging (transmission of a sequence of sinusoids) and PN-ranging (transmission of a pseudo-noise sequence) whether regenerative (spacecraft acquires, then regenerates and retransmits a noise-free ranging signal) or transparent (spacecraft feeds the noisy demodulated uplink ranging signal into the downlink phase modulator) relied on spacecraft power and bandwidth to transmit an explicit ranging signal. The state of the art in ranging is described in an emerging CCSDS (Consultative Committee for Space Data Systems) standard, in which a pseudo-noise (PN) sequence is transmitted from the ground to the spacecraft, acquired onboard, and the PN sequence is coherently retransmitted back to the ground, where a delay measurement is made between the uplink and downlink signals. In this work, the telemetry signal is aligned with the uplink PN code epoch. The ground station computes the delay between the uplink signal transmission and the received downlink telemetry. Such a computation is feasible because symbol synchronizability is already an integral part of the telemetry design. Under existing technology, the telemetry signal cannot be used for ranging because its arrival-time information is not coherent with any Earth reference signal. By introducing this coherence, and performing joint telemetry detection and arrival-time estimation on the ground, a high-rate telemetry signal can provide all the precision necessary for spacecraft ranging.

  16. Tunable high-power narrow-spectrum external-cavity diode laser based on tapered amplifier at 668 nm.

    PubMed

    Chi, Mingjun; Erbert, G; Sumpf, B; Petersen, Paul Michael

    2010-05-15

    A 668 nm tunable high-power narrow-spectrum diode laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The laser system is tunable from 659to675 nm. As high as 1.38 W output power is obtained at 668.35 nm. The emission spectral bandwidth is less than 0.07 nm throughout the tuning range, and the beam quality factor M(2) is 2.0 with the output power of 1.27 W. PMID:20479803

  17. From the nm to the Mm

    NASA Astrophysics Data System (ADS)

    Villa, I. M.

    2003-12-01

    Tectonic models for the evolution of an orogen start at the Mm scale, and use field work on smaller subunits at the km scale and rocks collected at the m scale. At the mm scale, minerals are identified, analyzed by mass spectrometry, their "cooling ages" assigned to a specific closure temperature, a cooling rate attributed to a particular tectonic regime, and a large body of self-referential literature is the product of an oiled machinery. Problems become apparent if one attempts to harmonize mm-scale science with the nasty little details at even smaller scales. Atoms are invisible to the naked eye (unlike the minerals mentioned above) and their actual behavior is, or was, only accessible to indirect argumentations and simplified calculations. Increased computing power now allows calculating the transport of atoms in a crystal from the Schr”dinger equation: results do not fit 19th century continuum physics for infinitely dilute solutions (Fick's and Arrhenius' "laws"). Moreover, improved nanochemical analyses allow characterizing the supposedly homogeneous mineral matrix. TEM images show how layers or chains in pristine minerals are substituted in a non-periodic way by alteration products. EMP analyses show the almost ubiquitous presence of razor-sharp boundaries rather than Erf profiles. Disequilibrium recrystallization textures thus prevail over diffusive reequilibration; diffusion sensu stricto is shown to be a much slower process than heterochemical replacement. Alterability sequences are well known to surface scientists: e.g. halite, olivine, biotite, muscovite, zircon. Such sequences are reflected in the isotopic retentivity. The link only becomes clear at the nm scale: isotopic exchange occurs during the replacement reactions that affect all rocks on their retrograde P-T evolution. This is sufficient to explain why zircons record higher isotopic ages than muscovites, which in turn undergo less isotope exchange than biotites etc. While there is a vague

  18. Ordering of self-assembled 5-nm-diameter poly(dimethylsiloxane) nanodots with sub-10 nm pitch using ultra-narrow electron-beam-drawn guide lines and three-dimensional control

    SciTech Connect

    Zhang, Hui; Hosaka, Sumio; Yin, You

    2014-03-03

    We demonstrate the possibility of forming long-range ordered self-assembled arrays of 5-nm-diameter nanodots with pitch of 10 × 7.5 nm{sup 2} using guide line templates and low molecular weight (MW) (4700–1200 g/mol) poly(styrene)-poly(dimethylsiloxane) (PS-PDMS) for application in ultrahigh density patterned magnetic recording media. We propose a three-dimensional control which involves control of the height of the guide lines, the thickness of the PS-PDMS films, and the gap between the guide lines in order to produce 5-nm-diameter, sub-10 nm pitched nanodots with long-range order along the guide lines. Adopting a 13-nm-thick PS-PDMS film and 14-nm-high resist guide lines, the 5-nm-diameter and 10 × 7.5 nm{sup 2}-pitched self-assembled nanodots were ordered in 4–7 dot arrays with long-range order. The experimental results demonstrate that the method is suitable for the production of patterned media with magnetic recording densities of 8.6 Tbit/in.{sup 2} using low MW PS-PDMS and slim guide lines.

  19. Ordering of self-assembled 5-nm-diameter poly(dimethylsiloxane) nanodots with sub-10 nm pitch using ultra-narrow electron-beam-drawn guide lines and three-dimensional control

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Hosaka, Sumio; Yin, You

    2014-03-01

    We demonstrate the possibility of forming long-range ordered self-assembled arrays of 5-nm-diameter nanodots with pitch of 10 × 7.5 nm2 using guide line templates and low molecular weight (MW) (4700-1200 g/mol) poly(styrene)-poly(dimethylsiloxane) (PS-PDMS) for application in ultrahigh density patterned magnetic recording media. We propose a three-dimensional control which involves control of the height of the guide lines, the thickness of the PS-PDMS films, and the gap between the guide lines in order to produce 5-nm-diameter, sub-10 nm pitched nanodots with long-range order along the guide lines. Adopting a 13-nm-thick PS-PDMS film and 14-nm-high resist guide lines, the 5-nm-diameter and 10 × 7.5 nm2-pitched self-assembled nanodots were ordered in 4-7 dot arrays with long-range order. The experimental results demonstrate that the method is suitable for the production of patterned media with magnetic recording densities of 8.6 Tbit/in.2 using low MW PS-PDMS and slim guide lines.

  20. Developing multi-layer mirror technology near 45 nm using Sc/Si interfaces

    SciTech Connect

    Nilsen, J; Jankowski, A; Friedman, L; Walton, C C

    2004-02-12

    Given the existing X-ray laser sources near 45 nm it would be useful to produce efficient X-ray optics in the 35 to 50 nm wavelength range that could be utilized in new applications. In this work we are developing the process to stabilize the interfaces of nanolaminate structures using materials such as Sc and Si. These materials will enable us to develop new multi-layer mirror technology that can be used in the wavelength range near 45 nm. To obtain this objective, the interfacial structure and reaction kinetics must first be well understood and then controlled for design applications. In this work we fabricate several Sc/Si multi-layer mirrors with and without a B{sub 4}C barrier layer. The structure and reflectivity of the mirrors are analyzed.

  1. Time Scales for Viscous Flow, Atomic Transport, and Crystallization in the Liquid and Supercooled Liquid States of Zr{sub 41.2 } Ti{sub 1 3.8} Cu{sub 12.5} Ni{sub 10.0} Be{sub 22.5}

    SciTech Connect

    Masuhr, A.; Waniuk, T.A.; Busch, R.; Johnson, W.L.

    1999-03-01

    The shear viscosity of liquid Zr{sub 41.2} Ti{sub 13.8} Cu{sub 12.5} Ni{sub 10.0} Be{sub 22.5} has been measured. At the liquidus temperature we find an extremely high viscosity of 2.5thinspthinspPathinsps, favoring glass formation. At deep supercooling the time scales for the diffusion of small and medium sized atoms as reported in the literature decouple from the internal relaxation time as probed by our viscosity measurements. Similarly, crystallization from the supercooled liquid state can be described with an effective diffusivity that scales with the viscosity at high temperatures and is Arrhenius-like at deep supercooling. {copyright} {ital 1999} {ital The American Physical Society}

  2. Interference patterning of gratings with a period of 150 nm at a wavelength of 157 nm

    NASA Astrophysics Data System (ADS)

    Fuetterer, Gerald; Herbst, Waltraud; Rottstegge, Joerg; Ferstl, Margit; Sebald, Michael; Schwider, Johannes

    2002-07-01

    A system producing an optical pattern with a high spatial frequency at (lambda) equals 157 nm has been built to be used as a photoresist tool for the 157 nm lithography. In order to generate a test pattern with a high spatial frequency, two-beam interference was used to overcome the limits of existing mask-projection systems using numerical apertures up to 0.65. In order to work without phase lock techniques a e-beam phase grating was used for providing the two interfering wave fronts for the generation of 150 nm-structures. The phase grating is illuminated under the Bragg-angle. Only two diffraction orders propagate and the other orders are evanescent. The interference pattern resulting in the region of the overlap of the propagated orders is a true two-beam pattern of the same period as the e-beam mask. The photoresist coated wafer is placed in the plane of the interference pattern and is rigidly held by a mechanical fixture. The contrast of the interference pattern depends on the degree of spatial coherence of the excimer laser, on the coherence length, the polarization state of the beam used to illuminate the surface relief phase grating, and on the distance between the wafer and the surface relief phase grating. The degree of spatial coherence was increased by a restriction of the plane wave spectrum which has been attained at the cost of energy throughput. In addition, the TM-polarization was blocked. This was done by a polarizer and a spatial filter. The theoretical background of the experiment will be discussed as well as practical problems.

  3. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  4. Optical breakdown threshold investigation of 1064 nm laser induced air plasmas

    SciTech Connect

    Thiyagarajan, Magesh; Thompson, Shane

    2012-04-01

    We present the theoretical and experimental measurements and analysis of the optical breakdown threshold for dry air by 1064 nm infrared laser radiation and the significance of the multiphoton and collisional cascade ionization process on the breakdown threshold measurements over pressures range from 10 to 2000 Torr. Theoretical estimates of the breakdown threshold laser intensities and electric fields are obtained using two distinct theories namely multiphoton and collisional cascade ionization theories. The theoretical estimates are validated by experimental measurements and analysis of laser induced breakdown processes in dry air at a wavelength of 1064 nm by focusing 450 mJ max, 6 ns, 75 MW max high-power 1064 nm IR laser radiation onto a 20 {mu}m radius spot size that produces laser intensities up to 3 - 6 TW/cm{sup 2}, sufficient for air ionization over the pressures of interest ranging from 10 to 2000 Torr. Analysis of the measured breakdown threshold laser intensities and electric fields are carried out in relation with classical and quantum theoretical ionization processes, operating pressures. Comparative analysis of the laser air breakdown results at 1064 nm with corresponding results of a shorter laser wavelength (193 nm) [M. Thiyagarajan and J. E. Scharer, IEEE Trans. Plasma Sci. 36, 2512 (2008)] and a longer microwave wavelength (10{sup 8} nm) [A. D. MacDonald, Microwave Breakdown in Gases (Wiley, New York, 1966)]. A universal scaling analysis of the breakdown threshold measurements provided a direct comparison of breakdown threshold values over a wide range of frequencies ranging from microwave to ultraviolet frequencies. Comparison of 1064 nm laser induced effective field intensities for air breakdown measurements with data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the scaled collisional microwave portion. The measured breakdown threshold of 1064 nm laser intensities are then

  5. Automatic range selector

    DOEpatents

    McNeilly, Clyde E.

    1977-01-04

    A device is provided for automatically selecting from a plurality of ranges of a scale of values to which a meter may be made responsive, that range which encompasses the value of an unknown parameter. A meter relay indicates whether the unknown is of greater or lesser value than the range to which the meter is then responsive. The rotatable part of a stepping relay is rotated in one direction or the other in response to the indication from the meter relay. Various positions of the rotatable part are associated with particular scales. Switching means are sensitive to the position of the rotatable part to couple the associated range to the meter.

  6. 9nm node wafer defect inspection using three-dimensional scanning, a 405nm diode laser, and a broadband source

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Edwards, Chris; Bryniarski, Casey A.; Popescu, Gabriel; Goddard, Lynford L.

    2015-03-01

    We recently built a 405nm laser based optical interferometry system for 9nm node patterned wafer defect inspection. Defects with volumes smaller than 15nm by 90nm by 35nm have been detected. The success of defect detection relied on accurate mechanical scanning of the wafer and custom engineered image denoising post-processing. To further improve the detection sensitivity, we designed a higher precision XYZ scanning stage and replaced the laser source with an incoherent LED to remove the speckle noise. With these system modifications, we successfully detected both defects and surface contamination particles in bright-field imaging mode. Recently, we have upgraded this system for interferometric defect inspection.

  7. Polymer and Material Design for Lithography From 50 nm Node to the sub-16 nm Node

    NASA Astrophysics Data System (ADS)

    Trefonas, Peter

    2012-02-01

    Microlithography is one of the technologies which enabled the Information Age. Developing at the intersection of optical physics, polymer science and photochemistry, the need for ever smaller high fidelity patterns to build integrated circuits is currently pushing the technology evolution from 193 nm immersion lithography to extreme ultraviolet lithography (13.5 nm) to alternate patterning technologies such as directed self assembly (DSA) of block copolymers. Essential to the success of this progression is a rapid application of new concepts and materials in polymer science. We will discuss the requirements for 193 immersion lithography and how advanced acrylic random polymers are being designed with chemical amplification functionality to meet these needs. The special requirements of a water immersion lithography led to the invention and rapid commercial application of surface assembled embedded barrier layer polymers. Design of polymers for EUV lithography is having to respond to much different challenges, prominent being the dearth of photons in the exposure step, and the other being how to maximize the efficiency of photoacid production. In parallel, alternative lithographic approaches are being developed using directed self assembly of block copolymers which realize pattern frequency multiplication. We will update with our progress in the applications of polymers designed for DSA.

  8. Energy-phase coupling inside sapphire-based f-2f nonlinear interferometers from 800 to 1940 nm.

    PubMed

    Marceau, Claude; Gingras, Guillaume; Thomas, Steven; Kassimi, Yacine; Witzel, Bernd

    2014-02-10

    Energy-phase coupling inside f-2f nonlinear interferometers poses stringent limits on the tolerable pulse-to-pulse energy fluctuations of phase stable laser systems. Here we report a coupling coefficient of -220±20  mrad per 1% energy increase at 800 nm. We also report coefficients from +320 to +820  mrad per 1% energy increase in the 1140-1550 nm (signal) range. Finally, we report coefficients from -180 to +30  mrad per 1% energy variation in the 1636-1940 nm range.

  9. Range Scheduling Aid (RSA)

    NASA Technical Reports Server (NTRS)

    Logan, J. R.; Pulvermacher, M. K.

    1991-01-01

    Range Scheduling Aid (RSA) is presented in the form of the viewgraphs. The following subject areas are covered: satellite control network; current and new approaches to range scheduling; MITRE tasking; RSA features; RSA display; constraint based analytic capability; RSA architecture; and RSA benefits.

  10. Isothermal annealing of a 620 nm optical absorption band in Brazilian topaz crystals

    NASA Astrophysics Data System (ADS)

    Isotani, Sadao; Matsuoka, Masao; Albuquerque, Antonio Roberto Pereira Leite

    2013-04-01

    Isothermal decay behaviors, observed at 515, 523, 562, and 693 K, for an optical absorption band at 620 nm in gamma-irradiated Brazilian blue topaz were analyzed using a kinetic model consisting of O- bound small polarons adjacent to recombination centers (electron traps). The kinetic equations obtained on the basis of this model were solved using the method of Runge-Kutta and the fit parameters describing these defects were determined with a grid optimization method. Two activation energies of 0.52±0.08 and 0.88±0.13 eV, corresponding to two different structural configurations of the O- polarons, explained well the isothermal decay curves using first-order kinetics expected from the kinetic model. On the other hand, thermoluminescence (TL) emission spectra measured at various temperatures showed a single band at 400 nm in the temperature range of 373-553 K in which the 620 nm optical absorption band decreased in intensity. Monochromatic TL glow curve data at 400 nm extracted from the TL emission spectra observed were found to be explained reasonably by using the knowledge obtained from the isothermal decay analysis. This suggests that two different structural configurations of O- polarons are responsible for the 620 nm optical absorption band and that the thermal annealing of the polarons causes the 400 nm TL emission band.

  11. Near infrared imaging of teeth at wavelengths between 1200 and 1600 nm

    NASA Astrophysics Data System (ADS)

    Chung, Soojeong; Fried, Daniel; Staninec, Michal; Darling, Cynthia L.

    2011-03-01

    Near-IR (NIR) imaging is a new technology that is currently being investigated for the detection and assessment of dental caries without the use of ionizing radiation. Several papers have been published on the use of transillumination and reflectance NIR imaging to detect early caries in enamel. The purpose of this study was to investigate alternative near infrared wavelengths besides 1300-nm in the range from 1200- 1600-nm to determine the wavelengths that yield the highest contrast in both transmission and reflectance imaging modes. Artificial lesions were created on thirty tooth sections of varying thickness for transillumination imaging. NIR images at wavelengths from the visible to 1600-nm were also acquired for fifty-four whole teeth with occlusal lesions using a tungsten halogen lamp with several spectral filters and a Ge-enhanced CMOS image sensor. Cavity preparations were also cut into whole teeth and Z250 composite was used as a restorative material to determine the contrast between composite and enamel at NIR wavelengths. Slightly longer NIR wavelengths are likely to have better performance for the transillumination of occlusal caries lesions while 1300-nm appears best for the transillumination of proximal surfaces. Significantly higher performance was attained at wavelengths that have higher water absorption, namely 1460-nm and wavelengths greater than 1500-nm and these wavelength regions are likely to be more effective for reflectance imaging. Wavelengths with higher water absorption also provided higher contrast of composite restorations.

  12. New rotationally resolved spectra of Pluto-Charon from 350 - 900 nm

    NASA Astrophysics Data System (ADS)

    Throop, Henry B.; Grundy, Will; Olkin, Cathy B.; Young, Leslie A.; Sickafoose, Amanda A.

    2015-11-01

    We are using the 11-meter Southern African Large Telescope (SALT) to acquire high-resolution rotationally resolved visible spectra of Pluto-Charon. We use the Robert Stobie Spectrograph (RSS) to observe Pluto-Charon from 350 nm to 900 nm. At 500 nm, resolution is 0.05 nm (R ~ 10,0000) and SNR per spectral resolution element is ~ 500.We planned observations for 13 dates during June-September 2014, and 13 more dates during June-September 2015. The observations for each season were spaced so as to equally sample Pluto's 6.5-day rotational period. As of the abstract submission, we have data from 11 nights (2014) and 9 nights (2015) in hand. Most of the observations were taken with observations of solar-type star HD 146233 to determine the surface reflectivity.Our results will provide constraint on the composition and spatial distribution of material on Pluto's surface, enabling comparison to previous epochs and near-infrared results, and giving a ground-truth for New Horizons' July 2015 flyby. In addition, our data will allow us to search for new spectral features in the range 350 nm to 600 nm, at a sensitivity substantially higher than previously published searches.

  13. Comparison between HMME mediated photodynamic therapy using 413nm and 532nm for port wine stains: a mathematical simulation study

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gu, Y.; Chen, R.; Xu, L. Q.; Liao, X. H.; Huang, N. Y.; Wang, Y. Y.

    2007-11-01

    Introduction: As it is always difficult to find the optimal combination of photosensitizer and of laser wavelength to achieve selective vascular damage in PWS-PDT, the selective vascular effects of HMME (Hematoporphyrin monomethyl ether) mediated PDT with 413 nm and with 532 nm were compared by mathematical simulation in this study. Materials & Methods: Firstly, distribution of 413 nm, 532 nm light in PWS tissue was simulated by Monte Carlo model. Two energy density groups were set, one is 80mW/cm2x40min for both 413 nm and 532 nm, the other is 80mW/cm2x40min for 532 nm while 80mW/cm2x20min in for 413 nm. Secondly, the productivity of reactive oxygen species (ROS) in target vessels and normal tissue were simulated using a simulation system for PDT of PWS established in our lab, which considering the amount of light and photosensitizer in tissue, the molar extinction coefficient of photosensitizer, and quantum yield of ROS. Concentration of HMME for each wavelength were same. Finally, the productivity of ROS n in target vessels and normal tissue were compared between 413 nm PDT and 532 nm PDT under different energy density. Result: Under the same energy density, ROS productivity in target vessels of 413 nm PDT was significantly higher than that of 532 nm PDT. Moreover, it was still higher at low energy density than that of 532nm PDT with high energy density. Conclusion: HMME mediated PDT using 413 nm has the potential to increase the selective vascular effect of PDT for PWS by shortening treatment time.

  14. Home range and travels

    USGS Publications Warehouse

    Stickel, L.F.; King, John A.

    1968-01-01

    The concept of home range was expressed by Seton (1909) in the term 'home region,' which Burr (1940, 1943) clarified with a definition of home range and exemplified in a definitive study of Peromyscus in the field. Burt pointed out the ever-changing characteristics of home-range area and the consequent absence of boundaries in the usual sense--a finding verified by investigators thereafter. In the studies summarized in this paper, sizes of home ranges of Peromyscus varied within two magnitudes, approximately from 0.1 acre to ten acres, in 34 studies conducted in a variety of habitats from the seaside dunes of Florida to the Alaskan forests. Variation in sizes of home ranges was correlated with both environmental and physiological factors; with habitat it was conspicuous, both in the same and different regions. Food supply also was related to size of home range, both seasonally and in relation to habitat. Home ranges generally were smallest in winter and largest in spring, at the onset of the breeding season. Activity and size also were affected by changes in weather. Activity was least when temperatures were low and nights were bright. Effects of rainfall were variable. Sizes varied according to sex and age; young mice remained in the parents' range until they approached maturity, when they began to travel more widely. Adult males commonly had larger home ranges than females, although there were a number of exceptions. An inverse relationship between population density and size of home range was shown in several studies and probably is the usual relationship. A basic need for activity and exploration also appeared to influence size of home range. Behavior within the home range was discussed in terms of travel patterns, travels in relation to home sites and refuges, territory, and stability of size of home range. Travels within the home range consisted of repeated use of well-worn trails to sites of food, shelter, and refuge, plus more random exploratory travels

  15. Improved long wavelength 14xx and 19xx nm InGaAsp/InP lasers

    NASA Astrophysics Data System (ADS)

    Tanbun-Ek, T.; Pathak, R.; Xu, Z.; Winhold, H.; Zhou, F.; Peters, M.; Schleuning, D.; Acklin, B.

    2016-03-01

    We report on our progress developing long wavelength high power laser diodes based on the InGaAsP/InP alloy system emitting in the range from 1400 to 2010 nm. Output power levels exceeding 50 Watts CW and 40% conversion efficiency were obtained at 1470 nm wavelength from 20% fill factor (FF) bars with 2 mm cavity length mounted on water cooled plates. Using these stackable plates we built a water cooled stack with 8 bars, successfully demonstrating 400 W at 1470 nm with good reliability. In all cases the maximum conversion efficiency was greater than 40% and the maximum power achievable was limited by thermal rollover. For lasers emitting in the range from 1930 to 2010 nm we achieved output power levels over 15 W and 20 % conversion efficiency from 20% FF bars with 2 mm cavity length on a conductively cooled platform. Life testing of the 1470 nm lasers bars over 14,000 hours under constant current mode has shown no significant degradation.

  16. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    NASA Astrophysics Data System (ADS)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  17. Thermostable keratinase from Bacillus pumilus KS12: production, chitin crosslinking and degradation of Sup35NM aggregates.

    PubMed

    Rajput, Rinky; Gupta, Rani

    2013-04-01

    Production of thermostable keratinase from Bacillus pumilus KS12 was enhanced up to seven fold by statistical methods. The enzyme was partially purified by ultrafiltration followed by thermal precipitation with purity of 3.2-fold and recovery of 89%. Keratinase was immobilized using covalent method by crosslinking 2 mg protein (688 U/mg) onto 1g chitin activated with 2.5% (v/v) glutaraldehyde for 60 min. Its comparative biochemical studies with that of free keratinase revealed the shift in optimum pH with increased stability towards pH from 9.0 to 10.0 and temperature. Also, it showed statistically significant improved hydrolysis of a number of soluble and insoluble substrates in comparison to free keratinase. Owing to improved catalytic efficiency of immobilized keratinase, its potential for degradation of Sup35NM was evaluated, where 100 μg of enzyme could degrade 60 μg Sup35NM after 60 min at pH 7.0 and 37°C.

  18. Properties of 62x nm red-emitting single-mode diode lasers

    NASA Astrophysics Data System (ADS)

    Paschke, K.; Pohl, J.; Feise, D.; Blume, G.; Erbert, G.

    2014-02-01

    Single-mode lasers in the spectral region between 620 nm and 630 nm are still realized using complex laser systems, such as ring-dye laser or using non-linear frequency shifted lasers, when used in applications such as laser cooling of beryllium ions or spectroscopy on rare earth elements. Direct emitting AlGaInP based diode lasers offer a much simpler approach to this wavelength range, but so far lack a suitable beam quality and spectral purity. Recently distributed Bragg reflector (DBR) ridge waveguide lasers (RWL) were developed for the 630 nm to 640 nm region. Building on this knowledge CAMFR simulations were performed to find suitable grating periods and duty cycles to obtain emission wavelengths below 630 nm. The grating itself was then introduced by stepper lithography and reactive ion etching into the laser structure. The manufactured DBR-RWLs show laser emission at 628.5 nm and 626.5 nm at a temperature of 15°C with threshold currents below 150 mA. The spectral emission shows single-mode operation with side mode suppression ratios > 20 dB. Two DBR-RWLs with the shorter wavelength were packaged into sealed TO-3 housings to provide a small-sized non-condensing environment with temperatures down to -25°C. When cooled internally to about 0°C, an emitted power of more than 50 mW was measured at a wavelength of 626.0 nm. At this operation point a diffraction-limited single longitudinal mode was observed that allowed a heterodyne measurement where a spectral width below 1 MHz was obtained. These new diode lasers have the potential to drastically miniaturize existing set-ups for quantum information processing.

  19. Narrow linewidth broadband tunable semiconductor laser at 840 nm with dual acousto-optic tunable configuration for OCT applications

    NASA Astrophysics Data System (ADS)

    Chamorovskiy, Alexander; Shramenko, Mikhail V.; Lobintsov, Andrei A.; Yakubovich, Sergei D.

    2016-03-01

    We demonstrate a tunable narrow linewidth semiconductor laser for the 840 nm spectral range. The laser has a linear cavity comprised of polarization maintaining (PM) fiber. A broadband semiconductor optical amplifier (SOA) in in-line fiber-coupled configuration acts as a gain element. It is based on InGaAs quantum-well (QW) active layer. SOA allows for tuning bandwidth exceeding 25 nm around 840 nm. Small-signal fiber-to-fiber gain of SOA is around 30 dB. A pair of acousto-optic tunable filters (AOTF) with a quasi-collinear interaction of optical and acoustic waves are utilized as spectrally selective elements. AOTF technology benefits in continuous tuning, broadband operation, excellent reproducibility and stability of the signal, as well as a high accuracy of wavelength selectivity due to the absence of mechanically moving components. A single AOTF configuration has typical linewidth in 0.05-0.15 nm range due to a frequency shift obtained during each roundtrip. A sequential AOTF arrangement enables instantaneous linewidth generation of <0.01 nm by compensating for this shift. Linewidth as narrow as 0.0036 nm is observed at 846 nm wavelength using a scanning Fabry-Perot interferometer with 50 MHz spectral resolution. Output power is in the range of 1 mW. While the majority of commercial tunable sources operate in 1060-1550 nm spectral ranges, the 840 nm spectral range is beneficial for optical coherence tomography (OCT). The developed narrow linewidth laser can be relevant for OCT with extended imaging depth, as well as spectroscopy, non-destructive testing and other applications.

  20. 9nm node wafer defect inspection using visible light

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Edwards, Chris; Popescu, Gabriel; Goddard, Lynford L.

    2014-04-01

    Over the past 2 years, we have developed a common optical-path, 532 nm laser epi-illumination diffraction phase microscope (epi-DPM) and successfully applied it to detect different types of defects down to 20 by 100 nm in a 22nm node intentional defect array (IDA) wafer. An image post-processing method called 2DISC, using image frame 2nd order differential, image stitching, and convolution, was used to significantly improve sensitivity of the measured images. To address 9nm node IDA wafer inspection, we updated our system with a highly stable 405 nm diode laser. By using the 2DISC method, we detected parallel bridge defects in the 9nm node wafer. To further enhance detectability, we are exploring 3D wafer scanning, white-light illumination, and dark-field inspection.

  1. Our perspective of the treatment of naevus of Ota with 1,064-, 755- and 532-nm wavelength lasers.

    PubMed

    Felton, S J; Al-Niaimi, F; Ferguson, J E; Madan, V

    2014-09-01

    Naevus of Ota (NO) is a disfiguring pigmentary disorder affecting the face. Q-switched neodymium-doped yttrium aluminium garnet (QS Nd:YAG)-1,064 nm is a standard laser treatment because it causes highly selective destruction of melanin within the aberrant dermal melanocytes. However, not all lesions respond. This study aims to evaluate the efficacy/safety of QS Nd:YAG-1,064 nm and the shorter wavelength QS Alexandrite-755 nm and QS Nd:YAG-532 nm lasers in treating NO. Data were evaluated from 21 patients treated in our laser centre from 2004 to 2012. Lesional skin was irradiated with QS-532 nm/QS-755 nm/QS-1,064 nm, with settings titrated according to responses. All received initial test patches to direct initial wavelength choice, with subsequent treatments at 3-monthly intervals until clearance/lack of further response. Laser modality was switched following repeated test patches if there was no or no sustained improvement. Two thirds of patients had ≥ 90% improvement compared to baseline photographs. In 20% of patients, QS-1,064 nm was most efficacious with 97% mean improvement. The mean improvement was 80% for those in whom QS-755 nm was superior, and 90% for QS-532 nm. Median number of overall laser treatments was 8 (range 4-13). Number of treatments required varied significantly according to lesional colour and site: grey lesions and those on the forehead/temple were most resistant. We confirm successful treatment of NO with QS Nd:YAG-1,064 nm and the shorter wavelength QS-755 nm/QS-532 nm lasers without serious or irreversible side effects. We recommend judicious test patch analysis before treatment and a modality switch if complete clearance is not obtained. PMID:23640036

  2. Detection limits of 405 nm and 633 nm excited PpIX fluorescence for brain tumor detection during stereotactic biopsy

    NASA Astrophysics Data System (ADS)

    Markwardt, Niklas; Götz, Marcus; Haj-Hosseini, Neda; Hollnburger, Bastian; Sroka, Ronald; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2016-04-01

    5-aminolevulinic-acid-(5-ALA)-induced protoporphyrin IX (PpIX) fluorescence may be used to improve stereotactic brain tumor biopsies. In this study, the sensitivity of PpIX-based tumor detection has been investigated for two potential excitation wavelengths (405 nm, 633 nm). Using a 200 μm fiber in contact with semi-infinite optical phantoms containing ink and Lipovenös, PpIX detection limits of 4.0 nM and 200 nM (relating to 1 mW excitation power) were determined for 405 nm and 633 nm excitation, respectively. Hence, typical PpIX concentrations in glioblastomas of a few μM should be well detectable with both wavelengths. Additionally, blood layers of selected thicknesses were placed between fiber and phantom. Red excitation was shown to be considerably less affected by blood interference: A 50 μm blood layer, for instance, blocked the 405- nm-excited fluorescence completely, but reduced the 633-nm-excited signal by less than 50%. Ray tracing simulations demonstrated that - without blood layer - the sensitivity advantage of 405 nm rises for decreasing fluorescent volume from 50-fold to a maximum of 100-fold. However, at a tumor volume of 1 mm3, which is a typical biopsy sample size, the 633-nm-excited fluorescence signal is only reduced by about 10%. Further simulations revealed that with increasing fiber-tumor distance, the signal drops faster for 405 nm. This reduces the risk of detecting tumor tissue outside the needle's coverage, but diminishes the overlap between optically and mechanically sampled volumes. While 405 nm generally offers a higher sensitivity, 633 nm is more sensitive to distant tumors and considerably superior in case of blood-covered tumor tissue.

  3. 7nm logic optical lithography with OPC-Lite

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.; Tsujita, Koichiro; Yaegashi, Hidetami; Axelrad, Valery; Nakayama, Ryo; Oyama, Kenichi; Yamauchi, Shohei; Ishii, Hiroyuki; Mikami, Koji

    2015-03-01

    The CMOS logic 22nm node was the last one done with single patterning. It used a highly regular layout style with Gridded Design Rules (GDR). Smaller nodes have required the same regular layout style but with multiple patterning for critical layers. A "line/cut" approach is being used to achieve good pattern fidelity and process margin.[1] As shown in Fig. 1, even with "line" patterns, pitch division will eventually be necessary. For the "cut" pattern, Design-Source-Mask Optimization (DSMO) has been demonstrated to be effective at the 20nm node and below.[2,3,4] Single patterning was found to be suitable down to 16nm, while double patterning extended optical lithography for cuts to the 10-12nm nodes. Design optimization avoided the need for triple patterning. Lines can be patterned with 193nm immersion with no complex OPC. The final line dimensions can be achieved by applying pitch division by two or four.[5] In this study, we extend the scaling using simplified OPC to the 7nm node for critical FEOL and BEOL layers. The test block is a reasonably complex logic function with ~100k gates of combinatorial logic and flip-flops, scaled from previous experiments. Simulation results show that for cuts at 7nm logic dimensions, the gate layer can be done with single patterning whose minimum pitch is 53nm, possibly some of the 1x metal layers can be done with double patterning whose minimum pitch is 53nm, and the contact layer will require triple patterning whose minimum pitch is 68nm. These pitches are less than the resolution limit of ArF NA=1.35 (72nm). However these patterns can be separated by a combination of innovative SMO for less than optical resolution limit and a process trick of hole-repair technique. An example of triple patterning coloring is shown in Fig 3. Fin and local interconnect are created by lines and trims. The number of trim patterns are 3 times (min. pitch=90nm) and twice (min. pitch=120nm), respectively. The small number of masks, large pitches, and

  4. SNOWY RANGE WILDERNESS, WYOMING.

    USGS Publications Warehouse

    Houston, Robert S.; Bigsby, Philip R.

    1984-01-01

    A mineral survey of the Snowy Range Wilderness in Wyoming was undertaken and was followed up with more detailed geologic and geochemical surveys, culminating in diamond drilling of one hole in the Snowy Range Wilderness. No mineral deposits were identified in the Snowy Range Wilderness, but inasmuch as low-grade uranium and associated gold resources were identified in rocks similar to those of the northern Snowy Range Wilderness in an area about 5 mi northeast of the wilderness boundary, the authors conclude that the northern half of the wilderness has a probable-resource potential for uranium and gold. Closely spaced drilling would be required to completely evaluate this mineral potential. The geologic terrane precludes the occurrence of fossil fuels.

  5. Radiation trapping of the Hg 185 nm resonance line

    NASA Astrophysics Data System (ADS)

    Menningen, K. L.; Lawler, J. E.

    2000-09-01

    The decay rate of the Hg 61P1 level was measured as a function of cold spot temperature (Hg density) and buffer gas pressure in cylindrical, sealed fused silica cells. The decay rates were obtained using a time-resolved laser-induced 185 nm fluorescence experiment with multi-step excitation. Cold spot temperatures from 25 to 100 °C were studied. The Hg densities for this temperature range and with no buffer gas yield the lowest possible decay rates due to radiation trapping with partial frequency redistribution. Decay rates with argon buffer gas pressures of 3 and 30 Torr were also studied. The results are in agreement with published data from a discharge afterglow experiment. Monte Carlo simulations of radiation transport in the cells, including the effects of hyperfine and isotope structure, the effects of foreign gas broadening, and partial frequency redistribution are compared to the experimental data. Reasonably good agreement is obtained, however there is evidence of quenching of Hg 61P1 atoms in collisions with ground state Hg and Ar atoms. An analytic formula for the fundamental mode trapped decay rate of the 61P1 level, which is applicable over a substantial region of parameter space, was devised from the Monte Carlo results.

  6. Photorefractive keratectomy at 193 nm using an erodible mask

    NASA Astrophysics Data System (ADS)

    Gordon, Michael; Brint, Stephen F.; Durrie, Daniel S.; Seiler, Theo; Friedman, Marc D.; Johnsson, N. M. F.; King, Michael C.; Muller, David F.

    1992-08-01

    Clinical experience with more than ten thousand sighted eyes has demonstrated great promise for correcting myopia with photorefractive keratectomy (PRK). Previously reported techniques have incorporated computer-controlled irises, diaphragms, and apertures to regulate the desired distribution of 193 nm radiation onto the eye. This paper reports on an entirely new approach for performing PRK which utilizes an erodible mask to control the shape transfer process. Compared to the more traditional techniques, the erodible mask offers promise of correcting a broad range of refractive errors. In this paper the erodible mask and associated hardware are described in detail. We describe the shape transfer experiments used to predict the functional relationship between the desired refractive correction and the mask shape. We report on early clinical results from five patients with myopic astigmatism. We conclude that the early shape transfer experiments overestimated the spherical component of the correction by 1.25 diopters and underestimated the cylindrical component by approximately 0.85 diopters. The data suggest there may be biological effects which evoke different healing responses when myopic PRK corrections are performed with and without astigmatism. Clinical trials are proceeding with the mask shapes adjusted for these observations.

  7. Hard x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution.

    SciTech Connect

    Chu, Y. S.; De Carlo, F.; Shen, Q.; Lee, W.K.; Wu, H.J.; Wang, C.L.; Wang, J.Y.; Liu, C.J.; Wang, C.H.; Wu, S.R.; Chien, C.C.; Hwu, Y.; Tkachuk, A.; Yun, W.; Feser, M.; Liang, K.S.; Yang, C.S.; Je, J.H.; Margaritondo, G.; X-Ray Science Division; Academia Sinica; National Tsing Hua Univ.; National Taiwan Ocean Univ.; National Synchrotron Radiation Research Center; Xradia, Inc.; National Health Research Inst.; Ecole Polytechnique Federale de Lausanne; Pohang Univ.

    2008-03-10

    Substantial improvements in the nanofabrication and characteristics of gold Fresnel zone plates yielded unprecedented resolution levels in hard-x-ray microscopy. Tests performed on a variety of specimens with 8-10 keV photons demonstrated a first-order lateral resolution below 40 nm based on the Rayleigh criterion. Combined with the use of a phase contrast technique, this makes it possible to view features in the 30 nm range; good-quality images can be obtained at video rate, down to 50 ms/frame. The important repercussions on materials science, nanotechnology, and the life sciences are discussed.

  8. The temperature dependence of refractive index of hemoglobin at the wavelengths 930 and 1100 nm

    NASA Astrophysics Data System (ADS)

    Lazareva, Ekaterina N.; Tuchin, Valery V.

    2016-04-01

    In this study, the refractive index of hemoglobin was measured at different temperatures within a physiological range and above that is characteristic to light-blood interaction at laser therapy. Measurements were carried out using the multi-wavelength Abbe refractometer (Atago, Japan). The refractive index was measured at two NIR wavelengths of 930 nm and 1100 nm. Samples of hemoglobin solutions with concentration of 80, 120 and 160 g/l were investigated. The temperature was varied between 25 and 55 °C. It was shown that the dependence of the refractive index of hemoglobin is nonlinear with temperature, which may be associated with changes in molecular structure of hemoglobin.

  9. Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution

    SciTech Connect

    Chu, Y. S.; Yi, J. M.; De Carlo, F.; Shen, Q.; Lee, Wah-Keat; Wu, H. J.; Wang, C. L.; Wang, J. Y.; Liu, C. J.; Wang, C. H.; Wu, S. R.; Chien, C. C.; Hwu, Y.; Tkachuk, A.; Yun, W.; Feser, M.; Liang, K. S.; Yang, C. S.; Je, J. H.; Margaritondo, G.

    2008-03-10

    Substantial improvements in the nanofabrication and characteristics of gold Fresnel zone plates yielded unprecedented resolution levels in hard-x-ray microscopy. Tests performed on a variety of specimens with 8-10 keV photons demonstrated a first-order lateral resolution below 40 nm based on the Rayleigh criterion. Combined with the use of a phase contrast technique, this makes it possible to view features in the 30 nm range; good-quality images can be obtained at video rate, down to 50 ms/frame. The important repercussions on materials science, nanotechnology, and the life sciences are discussed.

  10. Mu-2 ranging

    NASA Technical Reports Server (NTRS)

    Martin, W. L.; Zygielbaum, A. I.

    1977-01-01

    The Mu-II Dual-Channel Sequential Ranging System designed as a model for future Deep Space Network ranging equipment is described. A list of design objectives is followed by a theoretical explanation of the digital demodulation techniques first employed in this machine. Hardware and software implementation are discussed, together with the details relating to the construction of the device. Two appendixes are included relating to the programming and operation of this equipment to yield the maximum scientific data.

  11. Demonstration of miniaturized 20mW CW 280nm and 266nm solid-state UV laser sources

    NASA Astrophysics Data System (ADS)

    Landru, Nicolas; Georges, Thierry; Beaurepaire, Julien; Le Guen, Bruno; Le Bail, Guy

    2015-02-01

    Visible 561 nm and 532 nm laser emissions from 14-mm long DPSS monolithic cavities are frequency converted to deep UV 280 nm and 266 nm in 16-mm long monolithic external cavities. Wavelength conversion is fully insensitive to mechanical vibrations and the whole UV laser sources fit in a miniaturized housing. More than 20 mW deep UV laser emission is demonstrated with high power stability, low noise and good beam quality. Aging tests are in progress but long lifetimes are expected thanks to the cavity design. Protein detection and deep UV resonant Raman spectroscopy are applications that could benefit from these laser sources.

  12. Evaluation of dental pulp repair using low level laser therapy (688 nm and 785 nm) morphologic study in capuchin monkeys

    NASA Astrophysics Data System (ADS)

    Pretel, H.; Oliveira, J. A.; Lizarelli, R. F. Z.; Ramalho, L. T. O.

    2009-02-01

    The aim of this study was to evaluate the hypothesis that low-level laser therapy (LLLT) 688 nm and 785 nm accelerate dentin barrier formation and repair process after traumatic pulp exposure. The sample consisted of 45 premolars of capuchin monkeys (Cebus apella) with pulp exposure Class V cavities. All premolars were treated with calcium hydroxide (Ca(OH)2), divided in groups of 15 teeth each, and analyzed on 7th, 25th, and 60th day. Group GI - only Ca(OH)2, GII - laser 688 nm, and GIII - laser 785 nm. Laser beam was used in single and punctual dose with the parameters: continuous, 688 nm and 785 nm wavelength, tip's area of 0.00785 cm2, power 50 mW, application time 20 s, dose 255 J/cm2, energy 2 J. Teeth were capped with Ca(OH)2, Ca(OH)2 cement and restored with amalgam. All groups presented pulp repair. On 25th day the thickness of the formed dentin barrier was different between the groups GI and GII (p < 0.05) and between groups GI and GIII (p < 0.01). On 60th day there was difference between GI and GIII (p < 0.01). It may be concluded that, LLLT 688 nm and 785 nm accelerated dentin barrier formation and consequently pulp repair process, with best results using infrared laser 785 nm.

  13. 1319 nm and 1356 nm dual-wavelength operation of diode-side-pumped Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Wang, Zhi-chao; Zhang, Shen-jin; Yang, Feng; Zhang, Feng-feng; Yuan, Lei; He, Miao; Li, Jia-jia; Zhang, Xiao-wen; Zong, Nan; Wang, Zhi-min; Bo, Yong; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2016-05-01

    We report the first demonstration on a diode-side-pumped quasi continuous wave (QCW) dual-wavelength Nd:YAG laser operating at 1319 nm and 1356 nm. The resonator adopts symmetrical L-shaped flat-flat structure working in a thermally near unstable cavity. By precise coating on the cavity mirrors, the simultaneous oscillation at 1319 nm and 1356 nm is delivered. A maximum dual-wavelength output power of 9.4 W is obtained. The beam quality factor M2 is measured to be 1.9.

  14. NM counts in relation to CMEs and Magnetic fields

    NASA Astrophysics Data System (ADS)

    Mishra, Rajesh Kumar; Agarwal, Rekha

    2016-07-01

    The global network of neutron monitors (NMs) have provided data to the heliophysics community for over sixty years to study the time variations of the galactic cosmic ray (GCR) intensity. Simpson recommended a standard NM for worldwide use during the International Geophysical Year (IGY, 1957-58). NM data have been used extensively for the time variation studies ranging from minutes to decades. Coronal Mass Ejections are vast structures of plasma and magnetic fields that are expelled from the sun into the heliosphere, which is detected by remote sensing and in-situ spacecraft observations. The present study is related with behaviour of four types of CMEs namely Asymmetric 'Full' Halo CMEs, Partial Halo CMEs, Asymmetric and Complex 'Full' Halo CMEs and 'Full' Halo CMEs on cosmic ray neutron monitor intensity. The data of two different ground based neutron monitors having different cutoff rigidity threshold and CME events observed with instruments onboard and Wind spacecraft have been used in the present work. The superposed epoch (Chree) analysis has been applied to the arrival times of these CMEs. The occurrence frequency of three different types of CMEs used in the present analysis shows complex behavior. Significant fluctuations in cosmic ray intensity is observed few days after the onset of asymmetric full halo and few days after the onset of full halo CMEs. The fluctuations in cosmic ray intensity are more prior to the onset of both types of the CMEs. However, during Partial Halo CMEs the cosmic ray intensity peaks, 8- 9 days prior to the onset of CMEs and depressed 3 days prior to the onset of CMEs, whereas in case of asymmetric and complex full CMEs, the intensity depressed 2 days prior to the onset of CMEs and enhanced 2 days after the onset of CMEs. The deviations in cosmic ray intensity are more pronounced in case for asymmetric and complex full halo CMEs compared to other CMEs. The cosmic ray intensity shows nearly good anti-correlation with interplanetary

  15. Laser-Matter Interactions with a 527 nm Drive

    SciTech Connect

    Glenzer, S; Niemann, C; Witman, P; Wegner, P; Mason, D; Haynam, C; Parham, T; Datte, P

    2007-02-16

    The primary goal of this Exploratory Research is to develop an understanding of laser-matter interactions with 527-nm light (2{omega}) for studies of interest to numerous Laboratory programs including inertial confinement fusion (ICF), material strength, radiation transport, and hydrodynamics. In addition, during the course of this work we will develop the enabling technology and prototype instrumentation to diagnose a high fluence laser beam for energy, power, and near field intensity profile at 2{omega}. Through this Exploratory Research we have established an extensive experimental and modeling data base on laser-matter interaction with 527 nm laser light (2{omega}) in plasma conditions of interest to numerous Laboratory programs. The experiments and the laser-plasma interaction modeling using the code pF3D have shown intensity limits and laser beam conditioning requirements for future 2{omega} laser operations and target physics experiments on the National Ignition Facility (NIF). These findings have set requirements for which present radiation-hydrodynamic simulations indicate the successful generation of relevant pressure regimes in future 2{omega} experiments. To allow these experiments on the NIF, optics and optical mounts were prepared for the 18mm Second Harmonic Generation Crystal (SHG crystal) that would provide the desired high conversion efficiency from 1{omega} to 2{omega}. Supporting experimental activities on NIF included high-energy 1{omega} shots at up to 22kJ/beamline (4MJ full NIF 1{omega} equivalent energy) that demonstrated, in excess, the 1{omega} drive capability of the main laser that is required for 2{omega} operations. Also, a very extensive 3{omega} campaign was completed (see ''The National Ignition Facility Laser Performance Status'' UCRL-JRNL-226553) that demonstrated that not only doubling the laser, but also tripling the laser (a much more difficult and sensitive combination) met our model predictions over a wide range of laser

  16. Measurements at 351 nm of temporal dispersion in fibers

    SciTech Connect

    Griffith, R; Milam, D; Sell, W; Thompson, C

    1998-11-04

    1. Temporal dispersion at 351-nm was measured in the following: a 35-m bundle of 19 each 50-µm-core fibers, a companion 35-m single fiber, a 100-µm-core single fiber (at 4 lengths), and a 50-µm-core single fiber (two samples, 7 lengths). The 50-µm-core fiber was from preform #24; the 100-µm-core fiber was a prototype version having a thick cladding. All of the fibers were developed and manufactured at the Vavilov State Optical Institute, St. Petersburg, Russia. 2. Dispersion measurements were made by propagating a 20-ps 351-nm pulse through the fiber under test and recording the output on an S20 streak camera. The width of the pulse transmitted by the fiber was compared to that of a fraction of the pulse that had propagated over an air path. Values of dispersion were calculated as, D = {radical}(F² - A²) , where F and A are the full widths at half maximum (FWHM) for, respectively, the fiber-path and the air-path streaks. 3. In each of the experiments, the measured dispersion increased with counts in the streak record, which in principle, are proportional to intensity in the fiber. Measured values of dispersion ranged from about 0.6 to 1.0 ps/m for the single fibers. 4. The measured FWHMs of both the fiber-path pulse and the air-path pulse increased with increase in counts in the streak record. The rate of broadening was greatest for the fiber-path pulse, and the broadening of that pulse was the primary cause for the dependence of dispersion on counts in the streak record. Pulse broadening with increase in counts is symptomatic of camera saturation, but it is difficult to understand why saturation should have effected the fiber-path pulses more strongly. 5. There were spatial anomalies in the streak records of the output pulses from some of the fibers. Emission by the bundle of a "doubled" pulse is a primary example. In streaks recorded at about 800 counts, the total duration for the pair of pulses was about 100 ps. The maxima of the pulses occurred in

  17. Laser Ranging Simulation Program

    NASA Technical Reports Server (NTRS)

    Piazolla, Sabino; Hemmati, Hamid; Tratt, David

    2003-01-01

    Laser Ranging Simulation Program (LRSP) is a computer program that predicts selected aspects of the performances of a laser altimeter or other laser ranging or remote-sensing systems and is especially applicable to a laser-based system used to map terrain from a distance of several kilometers. Designed to run in a more recent version (5 or higher) of the MATLAB programming language, LRSP exploits the numerical and graphical capabilities of MATLAB. LRSP generates a graphical user interface that includes a pop-up menu that prompts the user for the input of data that determine the performance of a laser ranging system. Examples of input data include duration and energy of the laser pulse, the laser wavelength, the width of the laser beam, and several parameters that characterize the transmitting and receiving optics, the receiving electronic circuitry, and the optical properties of the atmosphere and the terrain. When the input data have been entered, LRSP computes the signal-to-noise ratio as a function of range, signal and noise currents, and ranging and pointing errors.

  18. Reconfigurable laser ranging instrument

    NASA Astrophysics Data System (ADS)

    Schneiter, John

    1994-03-01

    This paper describes the design and operation of a fast, flexible, non-contact, eye-safe laser ranging instrument useful in a variety of industrial metrology situations, such as in-process machining control and part inspection. The system has variable computer-controlled standoff and depth of field, and can obtain 3-D images of surfaces within a range of from 1.5 ft to almost 10 ft from the final optical element. The minimum depth of field is about 3.5 in. at 1.5 ft and about 26 in. at the far range. The largest depth of field for which useful data are available is about 41 in. Resolution, with appropriate averaging, is about one part in 4000 of the depth of field, which implies a best case resolution for this prototype of 0.00075 in. System flexibility is achieved by computer controlled relative positioning of optical components.

  19. The range scheduling aid

    NASA Technical Reports Server (NTRS)

    Halbfinger, Eliezer M.; Smith, Barry D.

    1991-01-01

    The Air Force Space Command schedules telemetry, tracking and control activities across the Air Force Satellite Control network. The Range Scheduling Aid (RSA) is a rapid prototype combining a user-friendly, portable, graphical interface with a sophisticated object-oriented database. The RSA has been a rapid prototyping effort whose purpose is to elucidate and define suitable technology for enhancing the performance of the range schedulers. Designing a system to assist schedulers in their task and using their current techniques as well as enhancements enabled by an electronic environment, has created a continuously developing model that will serve as a standard for future range scheduling systems. The RSA system is easy to use, easily ported between platforms, fast, and provides a set of tools for the scheduler that substantially increases his productivity.

  20. Diode-pumped Nd:YCOB self-frequency-doubling blue laser at 468 nm

    NASA Astrophysics Data System (ADS)

    Li, C. L.; Tan, Y.; Xu, L. J.; Cai, H. X.; Jin, G. Y.; Bi, J.

    2011-08-01

    We report a continuous-wave (CW) self-frequency-doubling blue laser at 468 nm by a diodepumped Nd3+:YCa4O(BO3)3 (Nd:YCOB) laser. With 14.3 W of diode pump power, a maximum output power of 211 mW in the blue spectral range at 468 nm has been achieved. The beam quality M2 values were equal to 1.16 and 1.23 in X and Y directions, respectively. The output power stability over 30 min is better than 5%. To the best of our knowledge, this is the highest power laser at 468 nm generated by self-frequency doubling of a diode pumped Nd:YCOB laser.

  1. 10 nm gap bowtie plasmonic apertures fabricated by modified lift-off process

    NASA Astrophysics Data System (ADS)

    Huang, I.-Chun; Holzgrafe, Jeffrey; Jensen, Russell A.; Choy, Jennifer T.; Bawendi, Moungi G.; Lončar, Marko

    2016-09-01

    Bowtie plasmonic apertures, with gap sizes down to 11 nm and silver film thickness of up to 150 nm (aspect ratio ˜14:1), were fabricated on a silicon nitride membrane. Transmission spectra feature the aperture resonances ranging from 470 to 687 nm, with quality factors around 10. The mode area of the smallest gap aperture is estimated to be as small as 0.002 (λ/n)2 using numerical modeling. Importantly, our fabrication technique, based on an e-beam lithography and a lift-off process, is scalable which allows fabrication of many devices in parallel over a relatively large area. We believe that the devices demonstrated in this work will find application in studying and engineering light-matter interactions.

  2. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band.

    PubMed

    Al-Jalali, Muhammad A; Aljghami, Issam F; Mahzia, Yahia M

    2016-03-15

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG(-1)) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range.

  3. Temporal characteristics of the solar UV flux and He I line at 1083 nm

    NASA Technical Reports Server (NTRS)

    Donnelly, R. F.; Repoff, T. P.; Harvey, J. W.; Heath, D. F.

    1985-01-01

    It is pointed out that the solar UV flux in the 170- to 210-nm range is important because it photodissociates O2 in the terrestrial atmosphere and thereby initiates the production of ozone and other odd-oxygen chemistry in the stratosphere. The 210- to 290-nm solar UV flux heats the stratosphere. There is consequently a great interest in the temporal variations of the solar UV flux and its relation to ground-based measures of solar activity which may be useful in estimating the UV flux variations. The present investigation is concerned with daily values of 205-nm solar UV flux data measured with the aid of the Nimbus 7 satellite during the period from November 1978 to November 1982, taking into account also measurements of the equivalent width of the He I solar absorption line at 1083 at the National Solar Observatory. Attention is given to an analysis of the data, episodes of activity, and long-term variations.

  4. High resolution spectroscopy of an Orionid meteor from 700 to 800 nm

    NASA Astrophysics Data System (ADS)

    Passas, M.; Madiedo, J. M.; Gordillo-Vázquez, F. J.

    2016-03-01

    The emission spectrum of a meteor was recorded by the GRASSP instrument during the observation of transient luminous events (TLEs) on 2014 October 16th. The spectroscopic signal was recorded in the wavelength range from 700 to 800 nm, where the emission from atmospheric oxygen and nitrogen dominated. The good spectral resolution of the spectrum (0.24 nm with 0.07 nm/pixel spectral dispersion) has allowed us to determine the physical conditions in the meteor plasma, to identify several emissions from atmospheric (N I, N II, O I) and meteoroid species (Ti I, Cr I, Fe I, Fe II, Zr I, Pd I, W I) and to estimate the upper limit of the temperature of the gaseous environment surrounding the meteoroid. Images recorded for this meteor from two different sites allowed calculating its atmospheric trajectory and the orbital parameters of the progenitor meteoroid. These data revealed that the particle belonged to the Orionid meteoroid stream.

  5. Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm

    SciTech Connect

    Rybaltovsky, A A; Sokolov, V O; Plotnichenko, V G; Lanin, Aleksei V; Semenov, S L; Dianov, Evgenii M; Gur'yanov, A N; Khopin, V F

    2007-04-30

    The photoinduced room-temperature-stable increase in the refractive index by {approx}5x10{sup -4} at a wavelength of 1.55 {mu}m was observed in phosphosilicate fibres without their preliminary loading with molecular hydrogen. It is shown that irradiation of preliminary hydrogen-loaded fibres by an ArF laser at 193 nm enhances the efficiency of refractive-index induction by an order of magnitude. The induced-absorption spectra of preforms with a phosphosilicate glass core and optical fibres fabricated from them are studied in a broad spectral range from 150 to 5000 nm. The intense induced-absorption band ({approx}800 cm{sup -1}) at 180 nm is found, which strongly affects the formation of the induced refractive index. The quantum-chemical model of a defect related to this band is proposed. (optical fibres)

  6. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band

    NASA Astrophysics Data System (ADS)

    AL-Jalali, Muhammad A.; Aljghami, Issam F.; Mahzia, Yahia M.

    2016-03-01

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG- 1) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range.

  7. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band.

    PubMed

    Al-Jalali, Muhammad A; Aljghami, Issam F; Mahzia, Yahia M

    2016-03-15

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG(-1)) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range. PMID:26709019

  8. Achieving CDU requirement for 90-nm technology node and beyond with advanced mask making process technology

    NASA Astrophysics Data System (ADS)

    Tzu, San-De; Chang, Chung-Hsing; Chen, Wen-Chi; Kliem, Karl-Heinz; Hudek, Peter; Beyer, Dirk

    2005-01-01

    For 90nm node and beyond technology generations, one of the most critical challenges is how to meet the local CD uniformity (proximity) and global CD uniformity (GCDU) requirements within the exposure field. Both of them must be well controlled in the mask making process: (1) proximity effect and, (2) exposure pattern loading effect, or the so-called e-beam "fogging effect". In this paper, we report a method to improve our global CDU by means of a long range fogging compensation together with the Leica SB350 MW. This exposure tool is operated at 50keV and 1nm design grid. The proximity correction is done by the software - package "PROXECCO" from PDF Solutions. We have developed a unique correction method to reduce the fogging effect in dependency of the pattern density of the mask. This allows us to meet our customers" CDU specifications for the 90nm node and beyond.

  9. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    This viewgraph presentation reviews the work of the Western Aeronautical Test Range (WATR). NASA's Western Aeronautical Test Range is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). Maps show the general location of the WATR area that is used for aeronautical testing and evaluation. The products, services and facilities of WATR are discussed,

  10. Himalayan Mountain Range, India

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Snow is present the year round in most of the high Himalaya Mountain Range (33.0N, 76.5E). In this view taken at the onset of winter, the continuous snow line can be seen for hundreds of miles along the south face of the range in the Indian states of Punjab and Kashmir. The snow line is at about 12,000 ft. altitude but the deep Cenab River gorge is easily delineated as a break along the south edge of the snow covered mountains. '

  11. Satellite Laser Ranging operations

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael R.

    1994-01-01

    Satellite Laser Ranging (SLR) is currently providing precision orbit determination for measurements of: 1) Ocean surface topography from satellite borne radar altimetry, 2) Spatial and temporal variations of the gravity field, 3) Earth and ocean tides, 4) Plate tectonic and regional deformation, 5) Post-glacial uplift and subsidence, 6) Variations in the Earth's center-of-mass, and 7) Variations in Earth rotation. SLR also supports specialized programs in time transfer and classical geodetic positioning, and will soon provide precision ranging to support experiments in relativity.

  12. Satellite laser ranging

    NASA Astrophysics Data System (ADS)

    Osorio, J. P.

    1992-03-01

    Laser ranging to satellites is one of the most precise methods for positio ning on the surface of the Earth. Reference is made to the need for precise posi tioning and to the improvement brought by the use of space techniques. Satellite Laser Ranging system is then described and in view of the high precision of the results derived from its measurements comments are made to some of the more important applications: high precision networks tectonic plate motion polar motion and earth''s rotation. Finally plans for system improvement in the near future are also presented.

  13. Next-generation 193-nm laser for sub-100-nm lithography

    NASA Astrophysics Data System (ADS)

    Duffey, Thomas P.; Blumenstock, Gerry M.; Fleurov, Vladimir B.; Pan, Xiaojiang; Newman, Peter C.; Glatzel, Holger; Watson, Tom A.; Erxmeyer, J.; Kuschnereit, Ralf; Weigl, Bernhard

    2001-09-01

    The next generation 193 nm (ArF) laser has been designed and developed for high-volume production lithography. The NanoLithTM 7000, offering 20 Watts average output power at 4 kHz repetition rates is designed to support the highest exposure tool scan speeds for maximum productivity and wafer throughput. Fundamental design changes made to the laser core technologies are described. These advancements in core technology support the delivery of highly line-narrowed light with

  14. Applications of the 308-nm excimer laser in dermatology

    NASA Astrophysics Data System (ADS)

    Farkas, A.; Kemeny, L.

    2006-05-01

    Excimer lasers contain a mixture of a noble inert gas and a halogen, which form excited dimers only in the activated state. High-energy current is used to produce these dimers, which have a very short lifetime, and after their fast dissociation they release the excitation energy through ultraviolet photons. The application of these lasers proved to be successful in medicine, including the field of ophthalmology, cardiology, angiology, dentistry, orthopaedics, and, in recent years, dermatology. For medical purposes, the 193-nm argon fluoride, the 248-nm krypton fluoride, the 351-nm xenon fluoride, and the 308-nm xenon chloride lasers are used. Recently, the 308-nm xenon chloride laser has gained much attention as a very effective treatment modality in dermatological disorders. It was successfully utilized in psoriasis; later, it proved to be useful in handling other lightsensitive skin disorders and even in the treatment of allergic rhinitis. This review summarizes the possible applications of this promising tool in dermatology.

  15. (abstract) Determination of the Specific Heat and Total Hemispherical Total Emissivity of the Highly Undercooled Zr(sub 41.2)Ti(sub 13.8)Cu(sub 12.5)Ni(sub 10.0)Be(sub 22.5) Alloy

    NASA Technical Reports Server (NTRS)

    Busch, R.; Kim, Y. J.; Johnson, W. L.; Rulison, A. J.; Rhim, W. K.

    1995-01-01

    High temperature high vacuum electrostatic levitation was combined with DSC experiments to determine the specific heat C(sub p) of the undercooled Zr(sub 41.2)Ti(sub 13.8)Cu(sub 12.5)Ni(sub 10.0)Be(sub 22.5) liquid as a function of temperature. The containerless approach made it possible to undercool the melt to the glass transition temperature without inducing nucleation. Because the cooling process was purely radiative, noncontact temperature measurement techniques could be used to determine the specific heat to total hemispherical emissivity ratio, C(sub p)/epsilon(sub t), for the undercooled liquid region. Using C(sub p) values which were independently obtained by DSC, epsilon(sub t) could be determined. With knowledge of C(sub p) of the undercooled liquid it was possible to determine other thermodynamic properties such as Gibbs free energy and entropy as a function of undercooling.

  16. (abstract) Undercooling Studies of the Bulk Metallic Glass Forming Zr(sub 41.2)Ti(sub 13.8)Cu(sub 12.5)Ni(sub 10.0)Be(sub 22.5) Alloy During Containerless Electrostatic Levitation Processing

    NASA Technical Reports Server (NTRS)

    Kim, Y. J.; Busch, R.; Johnson, W. L.; Rulison, A. J.; Rhim, W. K.

    1995-01-01

    Bulk glass forming metallic alloys have long been desired for technological applications and for investigation into liquid undercooling, solidification processes, and thermophysical properties. A glass forming alloy Zr(sub 41.2)Ti(sub 13.8)Cu(sub 12.5)Ni(sub 10.0)Be(sub 22.5) was used to investigate the thermal treatments affecting undercooling and vitrification. The experiments were performed using the high temperature high vacuum electrostatic levitator at JPL. A sample approximately 3 mm in diameter was melted, superheated, undercooled, and solidified while levitated in high vacuum. The results show that when the sample was held above its melting temperature for a sufficient period of time to dissolve oxides and then cooled faster than a critical cooling rate, it undercooled to the glass transition temperature, T(sub g), and formed a glassy alloy. The required critical cooling rate for metallic glass formation was obtained to be between 0.9 K per second and 1.2 K per second for the 42.4 mg sample.

  17. Absolute spectral irradiance measurements of lightning from 375 to 880 nm

    NASA Technical Reports Server (NTRS)

    Orville, R. E.; Henderson, R. W.

    1984-01-01

    The time-integrated emissions from cloud-to-ground lightning have been recorded in the 375-880 nm region, using a spectrometer-detector and multichannel analyzer system capable of absolute spectral irradiance measurements. A schematic drawing of the detector-analyzer system is presented, and the experimental setup is described. A total of ten flashes containing 46 individual strikes were recorded and compared to recordings of 500 flashes from 1981. The average spectral irradiance from 375 to 695 nm for flashes at about 15 km was 3.5 x 10 to the -5th J/sq m per stroke with a standard deviation of 2.0 x 10 to the -5th and a range from 0.7 x 10 to the 0.7-6.8 x 10 to the -5th J/sq m per stroke. The average stroke spectra irradiance from 650 to 880 nm for the same strokes was 1.2 x 10 to the -5th, with a standard deviation of 0.7 x 10 to the -5th and a range from 0.5 to 3.2 x 10 to the -5th J/sq m per stroke. A summary table of spectral irradiance values in 50 nm increment is presented. Analysis of the spectral emission data show that unresolved neutral hydrogen lines (NI) at 744.2 nm were more intense than H-alpha emission at 656.3 nm. The strong emission of a flash with a continuing current was identified as cyanogen (CN) emission.

  18. Frequency conversion concepts for the efficient generation of high power 935 - 942 nm laser radiation

    NASA Astrophysics Data System (ADS)

    Rhee, H.; Riesbeck, T.; Kallmeyer, F.; Strohmaier, S.; Eichler, H. J.; Treichel, R.; Petermann, K.

    2006-02-01

    The three-dimensional measurement of the global water vapor distribution in the atmosphere considerably improves the reliability of the weather forecast and climate modeling. A spaceborne Differential Absorption Lidar (DIAL) is able to per-form this task by use of suitable absorption lines of the broad absorption spectrum of water vapor. Because no interference with the absorption of other molecules exists, the range of 935/936 nm, 942/943 nm are the most preferred wavelength ranges for a water vapor DIAL. The challenge is to develop a dedicated efficient high power laser source emitting at these wavelengths. The comparison between frequency converters based on stimulated Raman scattering (SRS) and Ti:Sapphire and the directly generated Mixed Garnet laser shows the favorable properties of each concept and helps to evaluate the most suitable concept. Development of Raman frequency converters for high pulse energies concentrates on linear resonator de-signs and seeding using the Raman material as a direct amplifier based on Raman four-wave-mixing. In addition a seeded and frequency stabilized pulsed Ti:Sapphire laser system with output pulses up to 22 mJ injection-seeded at the water vapor absorption line at 935.684 nm with a spectral purity up to 99.9 % has been developed. Direct generation of the wavelengths 935/936 nm and 942/943 nm required for water vapor detection is possible with diode-pumped, Nd-doped YGG- and GSAG-crystals. First experiments resulted in pulse energies of 18 mJ in Q-switched and 86 mJ in free-running operation at 942 nm wavelength.

  19. Challenges in the Plasma Etch Process Development in the sub-20nm Technology Nodes

    NASA Astrophysics Data System (ADS)

    Kumar, Kaushik

    2013-09-01

    For multiple generations of semiconductor technologies, RF plasmas have provided a reliable platform for critical and non-critical patterning applications. The electron temperature of processes in a RF plasma is typically several electron volts. A substantial portion of the electron population is within the energy range accessible for different types of electron collision processes, such as electron collision dissociation and dissociative electron attachment. When these electron processes occur within a small distance above the wafer, the neutral species, radicals and excited molecules, generated from these processes take part in etching reactions impacting selectivity, ARDE and micro-loading. The introduction of finFET devices at 22 nm technology node at Intel marks the transition of planar devices to 3-dimensional devices, which add to the challenges to etch process in fabricating such devices. In the sub-32 nm technology node, Back-end-of-the-line made a change with the implementation of Trench First Metal Hard Mask (TFMHM) integration scheme, which has hence gained traction and become the preferred integration of low-k materials for BEOL. This integration scheme also enables Self-Aligned Via (SAV) patterning which prevents via CD growth and confines via by line trenches to better control via to line spacing. In addition to this, lack of scaling of 193 nm Lithography and non-availability of EUV based lithography beyond concept, has placed focus on novel multiple patterning schemes. This added complexity has resulted in multiple etch schemes to enable technology scaling below 80 nm Pitches, as shown by the memory manufacturers. Double-Patterning and Quad-Patterning have become increasingly used techniques to achieve 64 nm, 56 nm and 45 nm Pitch technologies in Back-end-of-the-line. Challenges associated in the plasma etching of these multiple integration schemes will be discussed in the presentation. In collaboration with A. Ranjan, TEL Technology Center, America

  20. Nonthermal radiative transfer of oxygen 98.9 nm ultraviolet emission: Solving an old mystery

    NASA Astrophysics Data System (ADS)

    Hubert, B.; Gérard, J.-C.; Shematovich, V. I.; Bisikalo, D. V.; Chakrabarti, S.; Gladstone, G. R.

    2015-12-01

    Sounding rocket measurements conducted in 1988 under high solar activity conditions revealed that the intensity of thermospheric OI emissions at 98.9 nm presents an anomalous vertical profile, showing exospheric intensities much higher than expected from radiative transfer model results, which included the known sources of excited oxygen. All attempts based on modeling of the photochemical processes and radiative transfer were unable to account for the higher than predicted brightnesses. More recently, the SOHO-Solar Ultraviolet Measurements of Emitted Radiation instrument measured the UV solar flux at high-spectral resolution, revealing the importance of a significant additional source of oxygen emission at 98.9 nm that had not been accounted for before. In this study, we simulate the radiative transfer of the OI-98.9 nm multiplet, including the photochemical sources of excited oxygen, the resonant scattering of solar photons, and the effects of nonthermal atoms, i.e., a population of fast-moving oxygen atoms in excess of the Maxwellian distribution. Including resonance scattering of the 98.9 nm solar multiplet, we find good agreement with the previous sounding rocket observation. The inclusion of a nonthermal oxygen population with a consistent increase of the total density produces a larger intensity at high altitude that apparently better accounts for the observation, but such a correction cannot be demonstrated given the uncertainties of the observations. A good agreement between model and sounding rocket observation is also found with the triplet at 130.4 nm. We further investigate the radiative transfer of the OI-98.9 nm multiplet and the oxygen emissions at 130.4 and 135.6 nm using observations from the STP78-1 satellite. We find a less satisfying agreement between the model and the STP78-1 data that can be accounted for by scaling the modeled intensity within a range acceptable given the uncertainties on the STP78-1 absolute calibration.

  1. RADIO RANGING DEVICE

    DOEpatents

    Bogle, R.W.

    1960-11-22

    A description is given of a super-regenerative oscillator ranging device provided with radiating and receiving means and being capable of indicating the occurrence of that distance between itself and a reflecting object which so phases the received echo of energy of a preceding emitted oscillation that the intervals between oscillations become uniform.

  2. Agriculture, forest, and range

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The findings and recommendations of the panel for developing a satellite remote-sensing global information system in the next decade are reported. User requirements were identified in five categories: (1) cultivated crops, (2) land resources, (3)water resources, (4)forest management, and (5) range management. The benefits from the applications of satellite data are discussed.

  3. Agriculture, forestry, range resources

    NASA Technical Reports Server (NTRS)

    Crea, W. J.

    1974-01-01

    In the area of crop specie identification, it has been found that temporal data analysis, preliminary stratification, and unequal probability analysis were several of the factors that contributed to high identification accuracies. Single data set accuracies on fields of greater than 80,000 sq m (20 acres) are in the 70- to 90-percent range; however, with the use of temporal data, accuracies of 95 percent have been reported. Identification accuracy drops off significantly on areas of less than 80,000 sq m (20 acres) as does measurement accuracy. Forest stratification into coniferous and deciduous areas has been accomplished to a 90- to 95-percent accuracy level. Using multistage sampling techniques, the timber volume of a national forest district has been estimated to a confidence level and standard deviation acceptable to the Forest Service at a very favorable cost-benefit time ratio. Range specie/plant community vegetation mapping has been accomplished at various levels of success (69- to 90-percent accuracy). However, several investigators have obtained encouraging initial results in range biomass (forage production) estimation and range readiness predictions. Soil association map correction and soil association mapping in new area appear to have been proven feasible on large areas; however, testing in a complex soil area should be undertaken.

  4. Agriculture, forestry, range resources

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1974-01-01

    The necessary elements to perform global inventories of agriculture, forestry, and range resources are being brought together through the use of satellites, sensors, computers, mathematics, and phenomenology. Results of ERTS-1 applications in these areas, as well as soil mapping, are described.

  5. Institutional Long Range Planning.

    ERIC Educational Resources Information Center

    Caldwell Community Coll. and Technical Inst., Lenoir, NC.

    Long-range institutional planning has been in effect at Caldwell Community College and Technical Institute since 1973. The first step in the process was the identification of planning areas: administration, organization, educational programs, learning resources, student services, faculty, facilities, maintenance/operation, and finances. The major…

  6. STDN ranging equipment

    NASA Technical Reports Server (NTRS)

    Jones, C. E.

    1975-01-01

    Final results of the Spaceflight Tracking and Data Network (STDN) Ranging Equipment program are summarized. Basic design concepts and final design approaches are described. Theoretical analyses which define requirements and support the design approaches are presented. Design verification criteria are delineated and verification test results are specified.

  7. Laser ranging data analysis

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Center for Space Research efforts have focused on the near real-time analysis of Lageos laser ranging data and on the production of predictive ephemerides. The data are analyzed in terms of range bias, time bias, and internal precision, and estimates for the Earth orientation parameters X(sub p), Y(sub p) and UT1 are obtained. The results of these analyses are reported in a variety of formats. In addition several additional stations began sending not only quick-look observations but also normal points created on-site with new software. These normal points are transmitted in a new standard format different from either current quick-look or MERIT-II full-rate formats. Thus new preprocessing software was written and successfully tested on these data. Inspection of the Bendix produced Lageos full-rate normal points continued, with detailed analyses and filtering of all 1991 A and B release normal points for Lageos through the beginning of 1992. A summary of the combined full-rate and quick-look normal point data set created for 1991 is provided. New long-term ephemerides for Lageos satellite, as well as for Etalon-1 and Etalon-2 (the so-called high satellites used for laser ranging) were produced and distributed to the network stations in cooperation with the Crustal Dynamics Project and Eurolas. These predictions are used by essentially every laser ranging site obtaining regular returns from any of these three satellites.

  8. Front Range Branch Officers

    NASA Astrophysics Data System (ADS)

    The Front Range Branch of AGU has installed officers for 1990: Ray Noble, National Center for Atmospheric Research, chair; Sherry Oaks, U.S. Geological Survey, chair-elect; Howard Garcia, NOAA, treasurer; Catharine Skokan, Colorado School of Mines, secretary. JoAnn Joselyn of NOAA is past chair. Members at large are Wallace Campbell, NOAA; William Neff, USGS; and Stephen Schneider, NCAR.

  9. Fact Sheet: Range Complex

    NASA Technical Reports Server (NTRS)

    Cornelson, C.; Fretter, E.

    2004-01-01

    NASA Ames has a long tradition in leadership with the use of ballistic ranges and shock tubes for the purpose of studying the physics and phenomena associated with hypervelocity flight. Cutting-edge areas of research run the gamut from aerodynamics, to impact physics, to flow-field structure and chemistry. This legacy of testing began in the NACA era of the 1940's with the Supersonic Free Flight Tunnel, and evolved dramatically up through the late 1950s with the pioneering work in the Ames Hypersonic Ballistic Range. The tradition continued in the mid-60s with the commissioning of the three newest facilities: the Ames Vertical Gun Range (AVGR) in 1964, the Hypervelocity Free Flight Facility (HFFF) in 1965 and the Electric Arc Shock Tube (EAST) in 1966. Today the Range Complex continues to provide unique and critical testing in support of the Nation's programs for planetary geology and geophysics; exobiology; solar system origins; earth atmospheric entry, planetary entry, and aerobraking vehicles; and various configurations for supersonic and hypersonic aircraft.

  10. Electric vehicles: Driving range

    NASA Astrophysics Data System (ADS)

    Kempton, Willett

    2016-09-01

    For uptake of electric vehicles to increase, consumers' driving-range needs must be fulfilled. Analysis of the driving patterns of personal vehicles in the US now shows that today's electric vehicles can meet all travel needs on almost 90% of days from a single overnight charge.

  11. Mobile satellite ranging

    NASA Technical Reports Server (NTRS)

    Silverberg, E. C.

    1978-01-01

    A brief review of the constraints which have limited satellite ranging hardware and an outline of the steps which are underway to improve the status of the equipment in this area are given. In addition, some suggestions are presented for the utilization of newer instruments and for possible future research and development work in this area.

  12. A cesium bromide photocathode excited by 405 nm radiation

    SciTech Connect

    Maldonado, J. R.; Cheng, Y. T.; Pease, Fabian W.; Hesselink, L.; Pianetta, P.

    2014-07-14

    In several applications, such as electron beam lithography and X-ray differential phase contrast imaging, there is a need for a free electron source with a current density at least 10 A/cm{sup 2} yet can be shaped with a resolution down to 20 nm and pulsed. Additional requirements are that the source must operate in a practical demountable vacuum (>1e-9 Torr) and be reasonably compact. In prior work, a photocathode comprising a film of CsBr on metal film on a sapphire substrate met the requirements except it was bulky because it required a beam (>10 W/cm{sup 2}) of 257 nm radiation. Here, we describe an approach using a 405 nm laser which is far less bulky. The 405 nm laser, however, is not energetic enough to create color centers in CsBr films. The key to our approach is to bombard the CsBr film with a flood beam of about 1 keV electrons prior to operation. Photoelectron efficiencies in the range of 100–1000 nA/mW were demonstrated with lifetimes exceeding 50 h between electron bombardments. We suspect that the electron bombardment creates intraband color centers whence electrons can be excited by the 405 nm photons into the conduction band and thence into the vacuum.

  13. ED50 determination of corneal lesions produced by 1318-nm laser radiation pulses

    NASA Astrophysics Data System (ADS)

    Ketzenberger, Bryan K.; Johnson, Thomas E.; Wild, Steven P.; Pletcher, Kenneth B.; Roach, William P.

    2001-05-01

    High-energy use of 1318 nm laser systems is becoming more prevalent in military and industrial settings. Threshold, ED50, exposure data and mechanism of laser-tissue interaction need to be determined for this wavelength using appropriate animal models that allow for extrapolation to control human exposures. Threshold, ED50, exposure data at 1318 nm for retinal and corneal injury have previously been undertaken and reported for rhesus monkeys. Using comparable methods, we examine exposure data at 1318 nm to determine the ED50 and laser-tissue interaction in the rabbit model to evaluate cornea. We present preliminary data for the ED50 threshold on the cornea from exposure to 1318 nm single laser pulses. Delivery of laser energy is accomplished using an Nd:YAG system producing 1318 nm light in the 0.5 millisecond time exposure regime and in the range of 0 to 500 mJ. Results from this work will aid in the establishment of safety standards for near infrared laser systems.

  14. 1064 nm laser emission of highly doped Nd: Yttrium aluminum garnet under 885 nm diode laser pumping

    NASA Astrophysics Data System (ADS)

    Lupei, V.; Pavel, N.; Taira, T.

    2002-06-01

    Highly efficient 1064 nm continuous-wave laser emission under 885 nm diode pumping in concentrated Nd: Yttrium aluminum garnet (YAG) crystals (up to 3.5 at. % Nd) and ceramics (up to 3.8 at. % Nd) is reported. A highly doped (2.4 at. %) Nd:YAG laser, passively Q switched by a Cr4+:YAG saturable absorber, is demonstrated.

  15. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

    SciTech Connect

    Cahoon, Erica M.; Almirall, Jose R.

    2010-05-01

    Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

  16. The research progress of metrological 248nm deep ultraviolent microscope inspection device

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-xin; Li, Qi; Gao, Si-tian; Shi, Yu-shu; Li, Wei; Li, Shi

    2016-01-01

    In lithography process, the precision of wafer pattern to a large extent depends on the geometric dimensioning and tolerance of photomasks when accuracy of lithography aligner is certain. Since the minimum linewidth (Critical Dimension) of the aligner exposing shrinks to a few tens of nanometers in size, one-tenth of tolerance errors in fabrication may lead to microchip function failure, so it is very important to calibrate these errors of photomasks. Among different error measurement instruments, deep ultraviolent (DUV) microscope because of its high resolution, as well as its advantages compared to scanning probe microscope restrained by measuring range and scanning electron microscope restrained by vacuum environment, makes itself the most suitable apparatus. But currently there is very few DUV microscope adopting 248nm optical system, means it can attain 80nm resolution; furthermore, there is almost no DUV microscope possessing traceable calibration capability. For these reason, the National Institute of Metrology, China is developing a metrological 248nm DUV microscope mainly consists of DUV microscopic components, PZT and air supporting stages as well as interferometer calibration framework. In DUV microscopic component, the Köhler high aperture transmit condenser, DUV splitting optical elements and PMT pinhole scanning elements are built. In PZT and air supporting stages, a novel PZT actuating flexural hinge stage nested separate X, Y direction kinematics and a friction wheel driving long range air supporting stage are researched. In interferometer framework, a heterodyne multi-pass interferometer measures XY axis translation and Z axis rotation through Zerodur mirror mounted on stage. It is expected the apparatus has the capability to calibrate one dimensional linewidths and two dimensional pitches ranging from 200nm to 50μm with expanded uncertainty below 20nm.

  17. Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse.

    PubMed

    Chen, Teng; Madey, John M J; Price, Frank M; Sharma, Shiv K; Lienert, Barry

    2007-06-01

    This report describes a mobile Raman lidar system that has been developed for spectral measurements of samples located remotely at ranges of hundreds of meters. The performance of this system has been quantitatively verified in a lidar calibration experiment using a hard target of standardized reflectance. A new record in detection range was achieved for remote Raman systems using 532 nm laser excitation. Specifically, Raman spectra of liquid benzene were measured with an integration time corresponding to a single 532 nm laser pulse at a distance of 217 meters. The single-shot Raman spectra at 217 meters demonstrated high signal-to-noise ratio and good resolution sufficient for the unambiguous identification of the samples of interest. The transmitter consists of a 20 Hz Nd:YAG laser emitting at 532 nm and 1064 nm and a 178 mm telescope through the use of which allows the system to produce a focused beam at the target location. The receiver consists of a large custom telescope (609 mm aperture) and a Czerny-Turner monochromator equipped with two fast photomultiplier tubes. PMID:17650374

  18. Deposition of robust multilayer mirror coatings for storage ring FEL lasing at 176nm

    NASA Astrophysics Data System (ADS)

    Günster, St.; Ristau, D.; Trovó, M.; Danailov, M.; Gatto, A.; Kaiser, N.; Sarto, F.; Piegari, A.

    2005-09-01

    Progress was achieved in the last years in the development of multilayer mirrors used in storage ring Free Electron Lasers (FEL) operating in the vacuum ultraviolet spectral range. Based on dense oxide coatings deposited by Ion Beam Sputtering, a stable lasing at 190 nm was demonstrated. The extension towards shorter wavelengths had to overcome severe problems connected to the radiation resistance and the necessary reflectivity of the resonator mirrors. In this context, radiation resistance can be considered as the ability of the mirror materials to withstand the high power laser radiation and the intense energetic background radiation generated in the synchrotron source. The bombardment with high energetic photons leads to irreversible changes and a coloration on the specimen. Reflectivity requirements can be evaluated from the tolerable losses of FEL systems. At ELETTRA FEL the resonator mirror reflectivity must be above 95 %. Evaporated fluoride multilayer mirrors provide sufficient reflectivity, but they do not exhibit an adequate radiation resistance. Pure oxide multilayers show a sufficient radiation resistance, but they cannot reach the necessary reflectivity below 190 nm. A successful approach combines evaporated fluoride multilayer stack with a dense protection layer of silicon dioxide deposited by Ion Beam Sputtering. Such mirror systems were produced reaching a reflectivity of approximately 99 % at 180 nm. Lasing in the storage ring FEL at ELETTRA was realised in the range between 176 - 179 nm. The mirror reflectivity shows only a slight degradation after lasing, which could be fully restored after the lasing experiment.

  19. EUV reticle inspection with a 193nm reticle inspector

    NASA Astrophysics Data System (ADS)

    Broadbent, William; Inderhees, Gregg; Yamamoto, Tetsuya; Lee, Isaac; Lim, Phillip

    2013-06-01

    The prevailing industry opinion is that EUV Lithography (EUVL) will enter High Volume Manufacturing (HVM) in the 2015 - 2017 timeframe at the 16nm HP node. Every year the industry assesses the key risk factors for introducing EUVL into HVM - blank and reticle defects are among the top items. To reduce EUV blank and reticle defect levels, high sensitivity inspection is needed. To address this EUV inspection need, KLA-Tencor first developed EUV blank inspection and EUV reticle inspection capability for their 193nm wavelength reticle inspection system - the Teron 610 Series (2010). This system has become the industry standard for 22nm / 3xhp optical reticle HVM along with 14nm / 2xhp optical pilot production; it is further widely used for EUV blank and reticle inspection in R and D. To prepare for the upcoming 10nm / 1xhp generation, KLA-Tencor has developed the Teron 630 Series reticle inspection system which includes many technical advances; these advances can be applied to both EUV and optical reticles. The advanced capabilities are described in this paper with application to EUV die-to-database and die-to-die inspection for currently available 14nm / 2xhp generation EUV reticles. As 10nm / 1xhp generation optical and EUV reticles become available later in 2013, the system will be tested to identify areas for further improvement with the goal to be ready for pilot lines in early 2015.

  20. Relationship between shelf-life and optical properties of Yuanhuang pear in the region of 400-1150 nm

    NASA Astrophysics Data System (ADS)

    He, Xueming; Fu, Xiaping; Rao, Xiuqin; Fang, Zhenhuan

    2016-05-01

    The main goals of this study are to investigate the potential of absorption coefficient for the prediction of water contents in `Yuanhuang' pear and analyze the relationship between the shelf-life and bulk optical properties in the range of 900-1050 nm. An automated integrating sphere (AIS) system was used to measure the total reflectance, total transmittance of pear flesh tissues in visible-Near infrared (Vis-NIR) range. These two measurements were used to estimate the absorption coefficient μa and reduced scattering coefficient μ's of pear samples by using an inverse adding doubling (IAD) light propagation model. The detection accuracy of the AIS system was verified by using both liquid (Intralipid-20% as scatterer) and solid phantom (TiO2 as scatterer, carbon black as absorber). The relative error of measurement of μ's of liquid phantom with four different concentration (0.5%,1%,1.5%,2%) at 632.8 nm, 751 nm, 833 nm are less than 10% except for 2% concentration at 833 nm, and the relative error of measurement μa and μ's of solid phantom at 525.4 nm, 632.1 nm, 710.3 nm and 780.1 nm are less than 5% except for the μa at 525.4 nm. A total of 140 samples were used to conduct the moisture measurement, and drying method was used. Predictive models for moisture content from μa data were constructed using partial least squares regression (PLSR). The coefficient of correlation of calibration set (Rc) and validation set (Rp) were 0.50 and 0.45 respectively. The relationship between the shelf-life and optical properties was analyzed by dividing pear samples into three categories according to the actual shelf-life, and calculating classification accuracy by using actual and calculated shelf-life grade.

  1. Measurements of the complex refractive index of volcanic ash at 450, 546.7, and 650 nm

    NASA Astrophysics Data System (ADS)

    Ball, J. G. C.; Reed, B. E.; Grainger, R. G.; Peters, D. M.; Mather, T. A.; Pyle, D. M.

    2015-08-01

    The detection and quantification of volcanic ash is extremely important to the aviation industry, civil defense organizations, and those in peril from volcanic ashfall. To exploit the remote sensing techniques that are used to monitor a volcanic cloud and return information on its properties, the effective complex refractive index of the volcanic ash is required. This paper presents the complex refractive index determined in the laboratory at 450.0 nm, 546.7 nm, and 650.0 nm for volcanic ash samples from eruptions of Aso (Japan), Grímsvötn (Iceland), Chaitén (Chile), Etna (Italy), Eyjafjallajökull (Iceland), Tongariro (New Zealand), Askja (Iceland), Nisyros (Greece), Okmok (Alaska), Augustine (Alaska), and Spurr (Alaska). The Becke line method was used to measure the real part of the refractive index with an accuracy of 0.01. The values measured differed between eruptions and were in the range 1.51-1.63 at 450.0 nm, 1.50-1.61 at 546.7 nm, and 1.50-1.59 at 650.0 nm. A novel method is introduced to derive the imaginary part of the refractive index from the attenuation of light by ash. The method has a precision in the range 10-3-10-4. The values for the ash imaginary refractive index ranged 0.22-1.70 × 10-3 at 450.0 nm, 0.16-1.93 × 10-3 at 546.7 nm, and 0.15-2.08 × 10-3 at 650.0 nm. The accuracy of Becke and attenuation methods was assessed by measuring the complex refractive index of Hoya neutral density glass and found to have an accuracy of <0.01 and <2 × 10-5 for the real and imaginary parts of the refractive index, respectively.

  2. Light beam range finder

    DOEpatents

    McEwan, T.E.

    1998-06-16

    A ``laser tape measure`` for measuring distance is disclosed which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%. 7 figs.

  3. Light beam range finder

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    A "laser tape measure" for measuring distance which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%.

  4. Wideband thulium-holmium-doped fiber source with combined forward and backward amplified spontaneous emission at 1600-2300  nm spectral band.

    PubMed

    Honzatko, Pavel; Baravets, Yauhen; Kasik, Ivan; Podrazky, Ondrej

    2014-06-15

    We have experimentally demonstrated two extremely wideband amplified spontaneous emission (ASE) sources. High bandwidth is achieved by combining the backward and forward ASEs generated in thulium-holmium-doped fiber using appropriate wideband couplers. The ASE source optimized for flat spectral power density covers a spectral range from 1527 to 2171 nm at a -10  dB level. The ASE source optimized for spectroscopy features an enhancement with respect to single-mode fiber (SMF) coupled halogen lamps within the spectral range from 1540 nm to more than 2340 nm covering the 800 nm bandwidth.

  5. Spectropolarimetry of Atomic and Molecular Lines near 4135 nm

    NASA Astrophysics Data System (ADS)

    Penn, Matthew James; Uitenbroek, Han; Clark, Alan; Coulter, Roy; Goode, Phil; Cao, Wenda

    2016-10-01

    New spatially scanned spectropolarimetry sunspot observations are made of photospheric atomic and molecular absorption lines near 4135 nm. The relative splittings among several atomic lines are measured and shown to agree with values calculated with configuration interaction and intermediate coupling. Large splitting is seen in a line identified with Fe i at 4137 nm, showing multiple Stokes V components and an unusual linear polarization. This line will be a sensitive probe of quiet-Sun magnetic fields, with a magnetic sensitivity of 2.5 times higher than that of the well-known 1565 nm Fe i line.

  6. Spectropolarimetry of Atomic and Molecular Lines near 4135 nm

    NASA Astrophysics Data System (ADS)

    Penn, Matthew James; Uitenbroek, Han; Clark, Alan; Coulter, Roy; Goode, Phil; Cao, Wenda

    2016-09-01

    New spatially scanned spectropolarimetry sunspot observations are made of photospheric atomic and molecular absorption lines near 4135 nm. The relative splittings among several atomic lines are measured and shown to agree with values calculated with configuration interaction and intermediate coupling. Large splitting is seen in a line identified with Fe uc(i) at 4137 nm, showing multiple Stokes V components and an unusual linear polarization. This line will be a sensitive probe of quiet-Sun magnetic fields, with a magnetic sensitivity of 2.5 times higher than that of the well-known 1565 nm Fe uc(i) line.

  7. 80 nm tunable DBR-free semiconductor disk laser

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Albrecht, A. R.; Cederberg, J. G.; Sheik-Bahae, M.

    2016-07-01

    We report a widely tunable optically pumped distributed Bragg reflector (DBR)-free semiconductor disk laser with 6 W continuous wave output power near 1055 nm when using a 2% output coupler. Using only high reflecting mirrors, the lasing wavelength is centered at 1034 nm and can be tuned up to a record 80 nm by using a birefringent filter. We attribute such wide tunability to the unique broad effective gain bandwidth of DBR-free semiconductor disk lasers achieved by eliminating the active mirror geometry.

  8. Generation of third harmonic picosecond pulses at 355 nm by sum frequency mixing in periodically poled MgSLT crystal

    NASA Astrophysics Data System (ADS)

    Kaltenbach, André; Schönau, Thomas; Lauritsen, Kristian; Tränkle, Günther; Erdmann, Rainer

    2015-02-01

    Third harmonic 355nm picosecond pulses are generated by sum frequency mixing in a periodically poled magnesium doped stoichiometric lithium tantalate (PPMgSLT) crystal. The third harmonic generation is based on the 1064nm radiation of a gain-switched distributed feedback (DFB) diode laser which is amplified by a two-stage fiber amplifier. The diode laser is freely triggerable at variable repetition rates up to 80MHz and provides optical pulses of 65 ps FWHM duration and pulse energies in the range of 5 pJ. The 355nm third harmonic generation is realized in a two-step conversion process. First, the 1064nm fundamental radiation is frequency-doubled to 532 nm, afterwards both frequencies are mixed in the PPMgSLT crystal to 355 nm. The UV-radiation shows a pulse width of 60 ps, a good beam profile and stable pulse energy over a wide range of repetition rates by proprietary pump power management. At 355nm a pulse peak power of 5.3W was achieved with 192W pulse peak power of the fundamental radiation.

  9. Soft X-ray Zone Plate Microscopy to 10 nm Resolution with XM-1 at the ALS

    SciTech Connect

    Chao Weilun; Attwood, David T.; Anderson, Erik H.; Harteneck, Bruce D.; Liddle, J. Alexander

    2007-01-19

    Soft x-ray zone plate microscopy provides a unique combination of capabilities that complement those of electron and scanning probe microscopies. Tremendous efforts are taken worldwide to achieve sub-10 nm resolution, which will permit extension of x-ray microscopy to a broader range of nanosciences and nanotechnologies. In this paper, the overlay nanofabrication technique is described, which permits zone width of 15 nm and below to be fabricated. The fabrication results of 12 nm zone plates, and the stacking of identical zone patterns for higher aspect ratio, are discussed.

  10. Photodynamic action on microorganisms using iron oxide Fe2O3 nanoparticles and LED blue (405 nm) light

    NASA Astrophysics Data System (ADS)

    Petrov, Pavel O.; Kulikova, Maria V.; Tuchina, Elena S.; Kochubey, Vyacheslav I.; Tuchin, Valery V.

    2012-03-01

    The main goal was to study the sensitivity of microorganisms to combined action of LED blue (405 nm) light and Fe2O3 nanoparticles. The bacterial strains used in this study were Staphylococcus aureus 209 P, S. simulans, Dermabacter hominis (isolated from maxillary sinusitis). As blue light source LED with spectrum maxima at 405 nm was taken. The light exposure was ranged from 5 to 30 min. Fe2O3 nanoparticles with average size about 8 nm in concentration of 0.001% were used. It was shown that irradiation with blue light caused 20 to 90% decrease in the number of microorganisms treated with nanoparticles.

  11. Pulsed picosecond 766 nm laser source operating between 1-80 MHz with automatic pump power management

    NASA Astrophysics Data System (ADS)

    Schönau, Thomas; Siebert, Torsten; Härtel, Romano; Eckhardt, Thomas; Klemme, Dietmar; Lauritsen, Kristian; Erdmann, Rainer

    2013-03-01

    The optical amplification and frequency conversion of a gain-switched 1532 nm distributed feedback (DFB) laser diode over a wide range of repetition rates are studied. A two stage Erbium fiber amplifier setup is pumped at 976 nm and operated at 1 to 80MHz pulse repetition frequency. The seed laser repetition rate is evaluated directly inside the pumping electronics to set the optimum pump power. Second-harmonic generation to 766 nm is achieved in a periodically poled lithium niobate bulk crystal. There is a high demand of several hundred milliwatt of picosecond pulsed laser power for stimulated emission depletion (STED) microscopy.

  12. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band.

    PubMed

    Daniel, J M O; Simakov, N; Tokurakawa, M; Ibsen, M; Clarkson, W A

    2015-07-13

    Ultra-short wavelength operation of a thulium fibre laser is investigated. Through use of core pumping and high feedback efficiency wavelength selection, a continuously-tunable fibre laser source operating from 1660 nm to 1720 nm is demonstrated in a silica host. We discuss the range of applications within this important wavelength band such as polymer materials processing and medical applications targeting characteristic C-H bond resonance peaks. As a demonstration of the power scalability of thulium fibre lasers in this band, fixed wavelength operation at 1726 nm with output power up 12.6 W and with slope efficiency > 60% is also shown. PMID:26191883

  13. Widely ultra-narrow linewidth 104 nm tunable all-fiber compact erbium-doped ring laser

    NASA Astrophysics Data System (ADS)

    Zhong, F. F.; Xu, Y.; Zhang, Y. J.; Ju, Y.

    2011-01-01

    A widely tunable narrow linewidth compact erbium-doped all-fiber ring laser with 104 nm tuning range was reported. An all-fiber Fabry-Perot filter (FFP-TF) was used to realize the laser tuning output, and the wavelength at constant voltage had high time stability. With the 8 m length erbium-doped fiber as gain medium, we realized widely tunable laser from 1513 to 1617 nm with the linewidth less than 40 pm at any wavelength. Pumped by the 976 nm laser diode, the fiber laser worked with slope efficiency of above 10% and threshold of less than 21 mW.

  14. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    SciTech Connect

    Mukhopadhyay, Pranab K. Gupta, Pradeep K.; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M.

    2014-05-15

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm–1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  15. Comparing the Effectiveness of 1064 vs. 810 nm Wavelength Endovascular Laser for Chronic Venous Insufficiency (Varicose Veins)

    PubMed Central

    Yu, De-Yi; Chen, Hung-Chang; Hsiao, Yen-Chang; Chang, Cheng-Jen

    2013-01-01

    Background and Objective: The objective of this study was to compare the efficacy and safety of Endovenous Laser Photocoagulation (EVLP) at wavelengths of 1064 nm versus 810 nm for chronic venous insufficiency (varicose veins) in a large series of patients. Study Design/Materials and Methods: A retrospective review was conducted of 108 patients with chronic venous insufficiency treated over a 8-year period. Subjects' ages ranged between 16 to 79 years; there were 83 females and 25 males, all of whom were Asian. Patients (n=54) received EVLP at wavelengths of 1064 nm (EVLP-1064 nm), Nd:YAG laser. Subsequent patients (n=54) received 810 nm (EVLP-810 nm), Diode laser. The primary efficacy measurement was the quantitative assessment of final outcome for 1064 nm versus 810 nm. Patients were monitored for adverse effects as well. Results: Complications were observed at 3 weeks (early), 6 weeks (late) and 6 months after EVLP. In both groups, the commonest complication in early convalescence was swelling. This was followed by Local paraesthesia, pigmentation, superficial burns, superficial phlebitis, and localized hematomas. At 6 weeks postoperatively, local paraesthesia, persistent hyperpigmentation, and minimal scarring were presented. These problems all disappeared completely after the 6 months study period. Based on chi-squared analysis, there were clinical, and statistically significant differences in the severity score of final results favoring the EVLP-810 nm group. Conclusion: All patients achieved good or excellent improvement after EVLP-1064nm and EVLP-810nm. However, the difference of final outcome was significant, and indicates that improvement was greater in the Diode group. Further studies of different wavelengths and optimization of cryogen spray cooling (CSC) may lead to improved results in the eradication of varicose veins. PMID:24511201

  16. Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width

    NASA Astrophysics Data System (ADS)

    Geiss, Reinhard; Sergeyev, Anton; Hartung, Holger; Solntsev, Alexander S.; Sukhorukov, Andrey A.; Grange, Rachel; Schrempel, Frank; Kley, Ernst-Bernhard; Tünnermann, Andreas; Pertsch, Thomas

    2016-02-01

    Nonlinear optical nanoscale waveguides are a compact and powerful platform for efficient wavelength conversion. The free-standing waveguide geometry opens a range of applications in microscopy for local delivery of light, where in situ wavelength conversion helps to overcome various wavelength-dependent issues, such as biological tissue damage. In this paper, we present an original patterning method for high-precision fabrication of free-standing nanoscale waveguides based on lithium niobate, a material with a strong second-order nonlinearity and a broad transparency window covering the visible and mid-infrared wavelength ranges. The fabrication process combines electron-beam lithography with ion-beam enhanced etching and produces nanowaveguides with lengths from 5 to 50 μm, widths from 50 to 1000 nm and heights from 50 to 500 nm, each with a precision of few nanometers. The fabricated nanowaveguides are tested in an optical characterization experiment showing efficient second-harmonic generation.

  17. Gold nanoparticles as a saturable absorber for visible 635 nm Q-switched pulse generation.

    PubMed

    Wu, Duanduan; Peng, Jian; Cai, Zhiping; Weng, Jian; Luo, Zhengqian; Chen, Nan; Xu, Huiying

    2015-09-01

    Gold nanoparticle (GNP) possesses saturable absorption bands in the visible region induced by surface plasmon resonance (SPR). We firstly applied the GNP as a visible saturable absorber (SA) for the red Q-switched pulse generation. The GNPs were embedded in polyvinyl alcohol (PVA) for film-forming and inserted into a praseodymium (Pr(3+))-doped fiber laser cavity to achieve 635 nm passive Q-switching. The visible 635 nm Q-switched fiber laser has a wide range of pulse-repetition-rate from 285.7 to 546.4 kHz, and a narrow pulse width of 235 ns as well as the maximum output power of 11.1 mW. The results indicate that the GNPs-based SA is available for pulsed operation in the visible spectral range. PMID:26368498

  18. Laser System for Precise, Unambiguous Range Measurements

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, Oliver

    2005-01-01

    The Modulation Sideband Technology for Absolute Range (MSTAR) architecture is the basis of design of a proposed laser-based heterodyne interferometer that could measure a range (distance) as great as 100 km with a precision and resolution of the order of 1 nm. Simple optical interferometers can measure changes in range with nanometer resolution, but cannot measure range itself because interference is subject to the well-known integer-multiple-of-2 -radians phase ambiguity, which amounts to a range ambiguity of the order of 1 m at typical laser wavelengths. Existing rangefinders have a resolution of the order of 10 m and are therefore unable to resolve the ambiguity. The proposed MSTAR architecture bridges the gap, enabling nanometer resolution with an ambiguity range that can be extended to arbitrarily large distances. The MSTAR architecture combines the principle of the heterodyne interferometer with the principle of extending the ambiguity range of an interferometer by using light of two wavelengths. The use of two wavelengths for this purpose is well established in optical metrology, radar, and sonar. However, unlike in traditional two-color laser interferometry, light of two wavelengths would not be generated by two lasers. Instead, multiple wavelengths would be generated as sidebands of phase modulation of the light from a single frequency- stabilized laser. The phase modulation would be effected by applying sinusoidal signals of suitable frequencies (typically tens of gigahertz) to high-speed electro-optical phase modulators. Intensity modulation can also be used

  19. Compact frequency-quadrupled pulsed 1030nm fiber laser

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Goldberg, Lew; Cole, Brian; DiLazaro, Tom; Hays, Alan D.

    2016-03-01

    A compact 1030nm fiber laser for ultraviolet generation at 257.5nm is presented. The laser employs a short length of highly-doped, large core (20μm), coiled polarization-maintaining ytterbium-doped double-clad fiber pumped by a wavelength-stabilized 975nm diode. It is passively Q-switched via a Cr4+:YAG saturable absorber and generates 2.4W at 1030nm in a 110μJ pulse train. Lithium triborate (LBO) and beta-barium borate (BBO) are used to achieve 325mW average power at the fourth harmonic. The laser's small form factor, narrow linewidth and modest power consumption are suitable for use in a man-portable ultraviolet Raman explosives detection system.

  20. 980 nm narrow linewidth Yb-doped phosphate fiber laser

    NASA Astrophysics Data System (ADS)

    Li, Pingxue; Yao, Yifei; Hu, Haowei; Chi, Junjie; Yang, Chun; Zhao, Ziqiang; Zhang, Guangju

    2014-12-01

    A narrow-linewidth ytterbium (Yb)-doped phosphate fiber laser based on fiber Bragg grating (FBG) operating around 980 nm is reported. Two different kinds of cavity are applied to obtain the 980 nm narrow-linewidth output. One kind of the cavity consists of a 0.35 nm broadband lindwidth high-reflection FBG and the Yb-doped phosphate fiber end with 0° angle, which generates a maximum output power of 25 mW. The other kind of resonator is composed of a single mode Yb-doped phosphate fiber and a pair of FBGs. Over 10.7 mW stable continuous wave are obtained with two longitudinal modes at 980 nm. We have given a detailed analysis and discussion for the results.

  1. Absolute measurement of F2-laser power at 157 nm

    SciTech Connect

    Kueck, Stefan; Brandt, Friedhelm; Kremling, Hans-Albert; Gottwald, Alexander; Hoehl, Arne; Richter, Mathias

    2006-05-10

    We report a comparison of laser power measurements at the F2-laser wavelength oaf nm made at two facilities of the Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute. At the PTB laboratory at the electron storage ring BESSY II in Berlin, the scale for laser power was directly traced to a cryogenic radiometer operating at 157 nm, whereas at the PTB laser radiometry facility in Braunschweig the calibration of transfer detectors was performed with a newly developed standard for laser power at 157 nm, which is traceable in several steps to a cryogenic radiometer operating at 633 nm. The comparison was performed under vacuum conditions with laser pulse energies of?10 {mu}J, however with different average powers because different primary standard radiometers were used. The relative deviation for the responsivity of the transfer detector was 4.8% and thus within the combined standard uncertainty.

  2. Immersion and 32nm lithography: now and future

    NASA Astrophysics Data System (ADS)

    Kameyama, Masaomi; McCallum, Martin

    2007-12-01

    The amazing growth of the semiconductor industry over the past decades has been supported, and in many cases driven, by miniaturization of devices. Behind this has been one strong backbone - lithography. In the 1970's, devices had geometries of several micrometers, but now we are about to enter 45nm device pre-production and shortly after move it into volume-production. Immersion lithography, although having a short development time, is already in production and will become the primary technology driver. What we need to do now is identify the solutions for 32nm lithography. There are several candidates for 32nm lithography, such as EUVL, High Index Immersion and Double Patterning / Double Exposure. Other more esoteric technologies such as nanoimprint and maskless lithography have also been mentioned. In this paper, the present status of Immersion lithography will be reviewed and each of the 32nm candidates are reviewed.

  3. Determination of complex index of immersion liquids at 193 nm

    NASA Astrophysics Data System (ADS)

    Stehle, Jean-Louis; Piel, Jean-Philippe; Campillo-Carreto, Jose

    2006-03-01

    The next nodes in immersion lithography will require the scanners to use the 193 nm ArF* laser line with a very large numerical aperture and a liquid between the optics and the resist. (1) Immersion lithography at 193 nm requests very specific parameters for the fluid. The first generation is using the deionized Water (DIW) very pure and not recycled, but when a new optical material for the last lens will be available with a refractive index (RI) larger than 1.85, a higher refractive index fluid could be used, enabling second and maybe third generation of immersion lithography at 193 nm. So the 45 and maybe the 32 nm nodes could be covered with this high Index fluids (HIF).

  4. Gas cooking range

    SciTech Connect

    Narang, R.K.; Narang, K.

    1984-02-14

    An energy-efficient gas cooking range features an oven section with improved heat circulation and air preheat, a compact oven/broiler burner, a smoke-free drip pan, an efficient piloted ignition, flame-containing rangetop burner rings, and a small, portable oven that can be supported on the burner rings. Panels spaced away from the oven walls and circulation fans provide very effective air flow within the oven. A gas shutoff valve automatically controls the discharge of heated gases from the oven so that they are discharged only when combustion is occurring.

  5. Low-k/copper integration scheme suitable for ULSI manufacturing from 90nm to 45nm nodes

    NASA Astrophysics Data System (ADS)

    Nogami, T.; Lane, S.; Fukasawa, M.; Ida, K.; Angyal, M.; Chanda, K.; Chen, F.; Christiansen, C.; Cohen, S.; Cullinan, M.; Dziobkowski, C.; Fitzsimmons, J.; Flaitz, P.; Grill, A.; Gill, J.; Inoue, K.; Klymko, N.; Kumar, K.; Labelle, C.; Lane, M.; Li, B.; Liniger, E.; Madon, A.; Malone, K.; Martin, J.; McGahay, V.; McLaughlin, P.; Melville, I.; Minami, M.; Molis, S.; Nguyen, S.; Penny, C.; Restaino, D.; Sakamoto, A.; Sankar, M.; Sherwood, M.; Simonyi, E.; Shimooka, Y.; Tai, L.; Widodo, J.; Wildman, H.; Ono, M.; McHerron, D.; Nye, H.; Davis, C.; Sankaran, S.; Edelstein, D.; Ivers, T.

    2005-11-01

    This paper discusses low-k/copper integration schemes which has been in production in the 90 nm node, have been developed in the 65 nm node, and should be taken in the 45 nm node. While our baseline 65 nm BEOL process has been developed by extension and simple shrinkage of our PECVD SiCOH integration which has been in production in the 90 nm node with our SiCOH film having k=3.0, the 65 nm SiCOH integration has two other options to go to extend to lower capacitance. One is to add porosity to become ultra low-k (ULK). The other is to stay with low-k SiCOH, which is modified to have a "lower-k". The effective k- value attained with the lower-k (k=2.8) SiCOH processed in the "Direct CMP" scheme is very close to that with an ULK (k=2.5) SiCOH film built with the "Hard Mask Retention" scheme. This paper first describes consideration of these two damascene schemes, whose comparison leads to the conclusion that the lower-k SiCOH integration can have more advantages in terms of process simplicity and extendibility of our 90 nm scheme under certain assumptions. Then describing the k=2.8 SiCOH film development and its successful integration, damascene schemes for 45nm nodes are discussed based on our learning from development of the lower-k 65nm scheme. Capability of modern dry etchers to define the finer patterns, non-uniformity of CMP, and susceptibility to plasma and mechanical strength and adhesion of ULK are discussed as factors to hamper the applicability of ULK.

  6. Variations in the atomic oxygen 630 nm emission intensity related to orography

    NASA Astrophysics Data System (ADS)

    Nasyrov, G. A.

    2009-08-01

    The spatial variations in the emission intensity, related to internal gravity waves (IGWs) generated in the troposphere when the air flows around the Kopet Dagh mountain range, and the regularities of these variations have been detected for the first time based on the photometric measurements of the spatial distribution of the atomic oxygen 630 nm emission intensity, performed in 1967 at Vannovskii station of the Physicotechnical Institute, Academy of Sciences of the Turkmen SSR.

  7. High efficiency 1341 nm Nd:GdVO4 laser in-band pumped at 912 nm

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Liu, J. Y.; Zhang, Y. C.

    2012-03-01

    A high-efficiency 1341 nm Nd:GdVO4 laser in-band pumped at 912 nm is demonstrated for the first time. Using an all-solid-state Nd:GdVO4 laser operating at 912 nm as pump source, 542 mW output was obtained with 1.14 W absorbed pump power. The slope efficiency with respect to the absorbed pump power was 56.6%, and the fluctuation of the output power was better than 2.6% in the given 30 min. The beam quality factor M 2 is 1.15.

  8. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    NASA's Western Aeronautical Test Range (WATR) is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). It is managed by the Aeronautics Test Program (ATP) of the Aeronautics Research Mission Directorate (ARMD) to provide the right facility at the right time. NASA is a tenant on Edwards Air Force Base and has an agreement with the Air Force Flight Test Center to use the land and airspace controlled by the Department of Defense (DoD). The topics include: 1) The WATR supports a variety of vehicles; 2) Dryden shares airspace with the AFFTC; 3) Restricted airspace, corridors, and special use areas are available for experimental aircraft; 4) WATR Products and Services; 5) WATR Support Configuration; 6) Telemetry Tracking; 7) Time Space Positioning; 8) Video; 9) Voice Communication; 10) Mobile Operations Facilities; 11) Data Processing; 12) Mission Control Center; 13) Real-Time Data Analysis; and 14) Range Safety.

  9. Monocular visual ranging

    NASA Astrophysics Data System (ADS)

    Witus, Gary; Hunt, Shawn

    2008-04-01

    The vision system of a mobile robot for checkpoint and perimeter security inspection performs multiple functions: providing surveillance video, providing high resolution still images, and providing video for semi-autonomous visual navigation. Mid-priced commercial digital cameras support the primary inspection functions. Semi-autonomous visual navigation is a tertiary function whose purpose is to reduce the burden of teleoperation and free the security personnel for their primary functions. Approaches to robot visual navigation require some form of depth perception for speed control to prevent the robot from colliding with objects. In this paper present the initial results of an exploration of the capabilities and limitations of using a single monocular commercial digital camera for depth perception. Our approach combines complementary methods in alternating stationary and moving behaviors. When the platform is stationary, it computes a range image from differential blur in the image stack collected at multiple focus settings. When the robot is moving, it extracts an estimate of range from the camera auto-focus function, and combines this with an estimate derived from angular expansion of a constellation of visual tracking points.

  10. Range Process Simulation Tool

    NASA Technical Reports Server (NTRS)

    Phillips, Dave; Haas, William; Barth, Tim; Benjamin, Perakath; Graul, Michael; Bagatourova, Olga

    2005-01-01

    Range Process Simulation Tool (RPST) is a computer program that assists managers in rapidly predicting and quantitatively assessing the operational effects of proposed technological additions to, and/or upgrades of, complex facilities and engineering systems such as the Eastern Test Range. Originally designed for application to space transportation systems, RPST is also suitable for assessing effects of proposed changes in industrial facilities and large organizations. RPST follows a model-based approach that includes finite-capacity schedule analysis and discrete-event process simulation. A component-based, scalable, open architecture makes RPST easily and rapidly tailorable for diverse applications. Specific RPST functions include: (1) definition of analysis objectives and performance metrics; (2) selection of process templates from a processtemplate library; (3) configuration of process models for detailed simulation and schedule analysis; (4) design of operations- analysis experiments; (5) schedule and simulation-based process analysis; and (6) optimization of performance by use of genetic algorithms and simulated annealing. The main benefits afforded by RPST are provision of information that can be used to reduce costs of operation and maintenance, and the capability for affordable, accurate, and reliable prediction and exploration of the consequences of many alternative proposed decisions.

  11. Defect inspection of imprinted 32 nm half pitch patterns

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Thompson, Ecron; McMackin, Ian; Perez, Joseph; Sreenivasan, S. V.; Resnick, Douglas J.

    2008-10-01

    Step and Flash Imprint Lithography redefines nanoimprinting. This novel technique involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed leaving a patterned solid on the substrate. Compatibility with existing CMOS processes requires a mask infrastructure in which resolution, inspection and repair are all addressed. The purpose of this paper is to understand the limitations of inspection at half pitches of 32 nm and below. A 32 nm programmed defect mask was fabricated. Patterns included in the mask consisted of an SRAM Metal 1 cell, dense lines, and dense arrays of pillars. Programmed defect sizes started at 4 nm and increased to 48 nm in increments of 4 nm. Defects in both the mask and imprinted wafers were characterized scanning electron microscopy and the measured defect areas were calculated. These defects were then inspected using a KLA-T eS35 electron beam wafer inspection system. Defect sizes as small as 12 nm were detected, and detection limits were found to be a function of defect type.

  12. Electron beam inspection methods for imprint lithography at 32 nm

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Thompson, Ecron; Sreenivasan, S. V.; Resnick, Douglas J.

    2009-01-01

    Step and Flash Imprint Lithography redefines nanoimprinting. This novel technique involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed leaving a patterned solid on the substrate. Compatibility with existing CMOS processes requires a mask infrastructure in which resolution, inspection and repair are all addressed. The purpose of this paper is to understand the limitations of inspection at half pitches of 32 nm and below. A 32 nm programmed defect mask was fabricated. Patterns included in the mask consisted of an SRAM Metal 1 cell, dense lines, and dense arrays of pillars. Programmed defect sizes started at 4 nm and increased to 48 nm in increments of 4 nm. Defects in both the mask and imprinted wafers were characterized scanning electron microscopy and the measured defect areas were calculated. These defects were then inspected using a KLA-T eS35 electron beam wafer inspection system. Defect sizes as small as 12 nm were detected, and detection limits were found to be a function of defect type.

  13. Magneto-optical trap for metastable helium at 389 nm

    SciTech Connect

    Koelemeij, J.C.J.; Stas, R.J.W.; Hogervorst, W.; Vassen, W.

    2003-05-01

    We have constructed a magneto-optical trap (MOT) for metastable triplet helium atoms utilizing the 2 {sup 3}S{sub 1}{yields}3 {sup 3}P{sub 2} line at 389 nm as the trapping and cooling transition. The far-red-detuned MOT (detuning {delta}=-41 MHz) typically contains few times 10{sup 7} atoms at a relatively high ({approx}10{sup 9} cm{sup -3}) density, which is a consequence of the large momentum transfer per photon at 389 nm and a small two-body loss rate coefficient (2x10{sup -10} cm{sup 3}/s<{beta}<1.0x10{sup -9} cm{sup 3}/s). The two-body loss rate is more than five times smaller than in a MOT on the commonly used 2 {sup 3}S{sub 1}{yields}2 {sup 3}P{sub 2} line at 1083 nm. Furthermore, laser cooling at 389 nm results in temperatures somewhat lower than those achieved using 1083 nm. The 389-nm MOT exhibits small losses due to two-photon ionization, which have been investigated as well.

  14. Alternatives to chemical amplification for 193nm lithography

    NASA Astrophysics Data System (ADS)

    Baylav, Burak; Zhao, Meng; Yin, Ran; Xie, Peng; Scholz, Chris; Smith, Bruce; Smith, Thomas; Zimmerman, Paul

    2010-04-01

    Research has been conducted to develop alternatives to chemically amplified 193 nm photoresist materials that will be able to achieve the requirements associated with sub-32 nm device technology. New as well as older photoresist design concepts for non-chemically amplified 193 nm photoresists that have the potential to enable improvements in line edge roughness while maintaining adequate sensitivity, base solubility, and dry etch resistance for high volume manufacturing are being explored. The particular platforms that have been explored in this work include dissolution inhibitor photoresist systems, chain scissioning polymers, and photoresist systems based on polymers incorporating formyloxyphenyl functional groups. In studies of two-component acidic polymer/dissolution inhibitor systems, it was found that compositions using ortho-nitrobenzyl cholate (NBC) as the dissolution inhibitor and poly norbornene hexafluoro alcohol (PNBHFA) as the base resin are capable of printing 90 nm dense line/space patterns upon exposure to a 193 nm laser. Studies of chain scission enhancement in methylmethacrylate copolymers showed that incorporating small amounts of absorptive a-cleavage monomers significantly enhanced sensitivity with an acceptable increase in absorbance at 193 nm. Specifically, it was found that adding 3 mol% of α-methyl styrene (α-MS) reduced the dose to clear of PMMA-based resist from 1400 mJ/cm2 to 420 mJ/cm2. Preliminary data are also presented on a direct photoreactive design concept based on the photo-Fries reaction of formyloxyphenyl functional groups in acrylic copolymers.

  15. Application of atomic force microscope to 65-nm node photomasks

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshiyuki; Itou, Yasutoshi; Yoshioka, Nobuyuki; Matsuyama, Katsuhiro; Dawson, Dean J.

    2004-08-01

    The technology node of semiconductor device production is progressing to 65nm generation. For the 65nm photomasks, the target specifications of defect size and repair accuracy are 52nm and 7nm, respectively. Especially, real defects on photomasks are not only simple two-dimensional patterns but also three-dimensional shapes such as phase shift defects and contamination, thus we need to recognize defect shapes accurately. Additionally, AAPSM's Cr patterns overhang, and we have to measure defects on three-dimensional shapes. To evaluate them, we use an AFM metrology system, Dimension X3D (Veeco), having both precise CD measurement repeatability (2nm) and high resolution for defects. In this report, we show the performance of the AFM metrology system. First, we evaluated CD metrology performance, CD repeatbility about four type photomasks: NEGA-BIM, POSI-BIM, KrF-HT and ArF-HT, and all masks met specifications. Next, we evaluated defect pattern shapes and AAPSM and CPL mask patterns. Consequently, we have confirmed that the AFM metrology system has high performance for 65nm photomasks.

  16. Al-free active region laser diodes at 894 nm for compact Cesium atomic clocks

    NASA Astrophysics Data System (ADS)

    Von Bandel, N.; Bébé Manga Lobé, J.; Garcia, M.; Larrue, A.; Robert, Y.; Vinet, E.; Lecomte, M.; Drisse, O.; Parillaud, O.; Krakowski, M.

    2015-03-01

    Time-frequency applications are in need of high accuracy and high stability clocks. Compact industrial Cesium atomic clocks optically pumped is a promising area that could satisfy these demands. However, the stability of these clocks relies, among others, on the performances of laser diodes that are used for atomic pumping. This issue has led the III-V Lab to commit to the European Euripides-LAMA project that aims to provide competitive compact optical Cesium clocks for earth applications. This work will provide key experience for further space technology qualification. We are in charge of the design, fabrication and reliability of Distributed-Feedback diodes (DFB) at 894nm (D1 line of Cesium) and 852nm (D2 line). The use of D1 line for pumping will provide simplified clock architecture compared to D2 line pumping thanks to simpler atomic transitions and larger spectral separation between lines in the 894nm case. Also, D1 line pumping overcomes the issue of unpumped "dark states" that occur with D2 line. The modules should provide narrow linewidth (<1MHz), very good reliability in time and, crucially, be insensitive to optical feedback. The development of the 894nm wavelength is grounded on our previous results for 852nm DFB. Thus, we show our first results from Al-free active region with InGaAsP quantum well broad-area lasers (100μm width, with lengths ranging from 2mm to 4mm), for further DFB operation at 894nm. We obtained low internal losses below 2cm-1, the external differential efficiency is 0.49W/A with uncoated facets and a low threshold current density of 190A/cm², for 2mm lasers at 20°C.

  17. Reflective electron-beam lithography performance for the 10nm logic node

    NASA Astrophysics Data System (ADS)

    Freed, Regina; Gubiotti, Thomas; Sun, Jeff; Cheung, Anthony; Yang, Jason; McCord, Mark; Petric, Paul; Carroll, Allen; Ummethala, Upendra; Hale, Layton; Hench, John; Kojima, Shinichi; Mieher, Walter; Bevis, Chris F.

    2012-11-01

    Maskless electron beam lithography has the potential to extend semiconductor manufacturing to the sub-10 nm technology node. KLA-Tencor is currently developing Reflective Electron Beam Lithography (REBL) for high-volume 10 nm logic (16 nm HP). This paper reviews progress in the development of the REBL system towards its goal of 100 wph throughput for High Volume Lithography (HVL) at the 2X and 1X nm nodes. In this paper we introduce the Digital Pattern Generator (DPG) with integrated CMOS and MEMs lenslets that was manufactured at TSMC and IMEC. For REBL, the DPG is integrated to KLA-Tencor pattern generating software that can be programmed to produce complex, gray-scaled lithography patterns. Additionally, we show printing results for a range of interesting lithography patterns using Time Domain Imaging (TDI). Previously, KLA-Tencor reported on the development of a Reflective Electron Beam Lithography (REBL) tool for maskless lithography at and below the 22 nm technology node1. Since that time, the REBL team and its partners (TSMC, IMEC) have made good progress towards developing the REBL system and Digital Pattern Generator (DPG) for direct write lithography. Traditionally, e-beam direct write lithography has been too slow for most lithography applications. Ebeam direct write lithography has been used for mask writing rather than wafer processing since the maximum blur requirements limit column beam current - which drives e-beam throughput. To print small features and a fine pitch with an e-beam tool requires a sacrifice in processing time unless one significantly increases the total number of beams on a single writing tool. Because of the continued uncertainty with regards to the optical lithography roadmap beyond the 22 nm technology node, the semiconductor equipment industry is in the process of designing and testing e-beam lithography tools with the potential for HVL.

  18. High-resolution spectra and photoabsorption coefficients for carbon monoxide absorption bands between 94.0 nm and 100.4 nm

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Stark, G.; Smith, P. L.; Parkinson, W. H.; Ito, K.

    1988-01-01

    Photoabsorption coefficients have been measured for the CO in interstellar clouds at a resolving power more than 20 times greater than previously obtainable. In order to facilitate comparisons, these data have been integrated over the same wavelength ranges as used in Letzelter et al. (1987). It is found that most of the results obtained for bands between 94.0 and 100.4 nm are larger than those of Letzelter; the discrepancy may be attributable to the difference between the resolving powers of the spectrometers used, because the saturation effects associated with low resolution can underestimate absorption coefficient values.

  19. The effects of leaf area density variation on the collection efficiency of black carbon in the size range of ultrafine particles (UFP)

    NASA Astrophysics Data System (ADS)

    Huang, C.; Lin, M.; Khlystov, A.; Katul, G. G.

    2012-12-01

    Black carbon is mainly produced in the ultra-fine particle (UFP) size range of 10-100 nm from combustion processes and is now receiving significant attention given its role in global and regional climate change, cloud physics, human health and respiratory related diseases. Likewise, the role of vegetated surfaces in removing UFP is drawing increased attention, prompting interest in the relationship between leaf area density and UFP collection efficiency. Here, carbonaceous particles, mainly black carbon, were generated by burning candles during "sooting burn" to explore the effects of leaf area density (LAD) variation on the collection efficiency of black carbon in the UFP size range. Three scenarios were explored in a wind tunnel: (1) Juniperus Chinensis branches that are uniformly distributed within the test section; (2) LAD that is linearly increasing with downwind distance and (3) LAD that is decreasing with downwind distance. The total leaf area index (LAI) was maintained constant in all three cases. Particle concentrations were measured at multiple locations within the vegetated volume for a range of sizes of UFP (12.6-102 nm) using Scanning Mobility Particle Sizer (SMPS). The measured concentration can be used to evaluate the performance of a size-resolving model that couples the turbulent flow field and the collection efficiency for the variable LAD. The model assumes that (i) the mean longitudinal momentum balance is controlled only by the interplay between drag force and the pressure gradient, and (ii) the dominant collection mechanism for UFP is Brownian diffusion. Hence, other collection mechanisms such as inertial impaction, interception and phoretic effects are negligible. Good agreement was found between the model calculations of the UFP collection efficiency by the vegetation and the wind tunnel measurements for all three cases and across a wide range of wind speeds and particle size. It was shown that variations in leaf area density lead to a

  20. Imaging spectrometer measurement of water vapor in the 400 to 2500 nm spectral region

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Roberts, Dar A.; Conel, James E.; Dozier, Jeff

    1995-01-01

    The Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) measures the total upwelling spectral radiance from 400 to 2500 nm sampled at 10 nm intervals. The instrument acquires spectral data at an altitude of 20 km above sea level, as images of 11 by up to 100 km at 17x17 meter spatial sampling. We have developed a nonlinear spectral fitting algorithm coupled with a radiative transfer code to derive the total path water vapor from the spectrum, measured for each spatial element in an AVIRIS image. The algorithm compensates for variation in the surface spectral reflectance and atmospheric aerosols. It uses water vapor absorption bands centered at 940 nm, 1040 nm, and 1380 nm. We analyze data sets with water vapor abundances ranging from 1 to 40 perceptible millimeters. In one data set, the total path water vapor varies from 7 to 21 mm over a distance of less than 10 km. We have analyzed a time series of five images acquired at 12 minute intervals; these show spatially heterogeneous changes of advocated water vapor of 25 percent over 1 hour. The algorithm determines water vapor for images with a range of ground covers, including bare rock and soil, sparse to dense vegetation, snow and ice, open water, and clouds. The precision of the water vapor determination approaches one percent. However, the precision is sensitive to the absolute abundance and the absorption strength of the atmospheric water vapor band analyzed. We have evaluated the accuracy of the algorithm by comparing several surface-based determinations of water vapor at the time of the AVIRIS data acquisition. The agreement between the AVIRIS measured water vapor and the in situ surface radiometer and surface interferometer measured water vapor is 5 to 10 percent.

  1. Range imaging laser radar

    DOEpatents

    Scott, M.W.

    1990-06-19

    A laser source is operated continuously and modulated periodically (typically sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream. 2 figs.

  2. Range imaging laser radar

    DOEpatents

    Scott, Marion W.

    1990-01-01

    A laser source is operated continuously and modulated periodically (typicy sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream.

  3. Long-range connectomics.

    PubMed

    Jbabdi, Saad; Behrens, Timothy E

    2013-12-01

    Decoding neural algorithms is one of the major goals of neuroscience. It is generally accepted that brain computations rely on the orchestration of neural activity at local scales, as well as across the brain through long-range connections. Understanding the relationship between brain activity and connectivity is therefore a prerequisite to cracking the neural code. In the past few decades, tremendous technological advances have been achieved in connectivity measurement techniques. We now possess a battery of tools to measure brain activity and connections at all available scales. A great source of excitement are the new in vivo tools that allow us to measure structural and functional connections noninvasively. Here, we discuss how these new technologies may contribute to deciphering the neural code.

  4. SASE free electron lasers as short wavelength coherent sources. From first results at 100 nm to a 1 Å X-ray laser

    NASA Astrophysics Data System (ADS)

    Treusch, R.; Feldhaus, J.

    2003-10-01

    During the last few years free electron lasers (FELs) based on self-amplified spontaneous emission (SASE) have been demonstrated at wavelengths of 12 μm [CITE], 830 nm [CITE], 530 nm [CITE] and 385 nm [CITE], and around 100 nm [CITE]. Recently, saturation has been observed in the vacuum ultraviolet (VUV) spectral region between 82 nm and 125 nm at the TESLA Test Facility (TTF) at DESY. The radiation pulses have been characterized with respect to pulse energy, statistical fluctuations, angular divergence and spectral distribution, both in the linear gain and in the saturation regime of the FEL [CITE]. The results are in good agreement with theoretical simulations, providing a solid basis for other projects aiming at still shorter wavelengths down to the 0.1 nm range [CITE].

  5. Highly efficient continuous-wave 912 nm Nd:GdVO4 laser emission under direct 880 nm pumping

    NASA Astrophysics Data System (ADS)

    Lü, Y. F.; Zhang, X. H.; Xia, J.; Zhang, A. F.; Yin, X. D.; Bao, L.

    2009-11-01

    The quasi-three-level 912 nm continuous-wave laser emission under direct diode laser pumping at 880 nm into emitting level 4F3/2 of Nd:GdVO4 have been demonstrated. An end-pumped Nd:GdVO4 crystal yielded 8.1 W of output power for 13.9 W of absorbed pump power. The slope efficiency with respect to the absorbed pump power was 0.679. To the best of our knowledge this is the first demonstration of such a laser system. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4F5/2 level, are given in order to prove the advantages of the 880 nm wavelength pumping.

  6. Thermodynamics of hydride formation and decomposition in supported sub-10 nm Pd nanoparticles of different sizes

    NASA Astrophysics Data System (ADS)

    Wadell, Carl; Pingel, Torben; Olsson, Eva; Zorić, Igor; Zhdanov, Vladimir P.; Langhammer, Christoph

    2014-05-01

    Hydrogen storage properties of supported Pd nanoparticles with average sizes in the range 2.7-7.6 nm were studied using indirect nanoplasmonic sensing. For each particle size, a series of isotherms was measured and, through Van't Hoff analysis, the changes in enthalpy upon hydride formation/decomposition were determined. Contrary to the expected decrease of the enthalpy, due to increasing importance of surface tension in smaller particles, we observe a very weak size dependence in the size range under consideration. We attribute this to a compensation effect due to an increased fraction of hydrogen atoms occupying energetically favorable subsurface sites in smaller nanoparticles.

  7. Tunable microwave signal generator with an optically-injected 1310 nm QD-DFB laser.

    PubMed

    Hurtado, Antonio; Mee, Jesse; Nami, Mohsen; Henning, Ian D; Adams, Michael J; Lester, Luke F

    2013-05-01

    Tunable microwave signal generation with frequencies ranging from below 1 GHz to values over 40 GHz is demonstrated experimentally with a 1310 nm Quantum Dot (QD) Distributed-Feedback (DFB) laser. Microwave signal generation is achieved using the period 1 dynamics induced in the QD DFB under optical injection. Continuous tuning in the positive detuning frequency range of the quantum dot's unique stability map is demonstrated. The simplicity of the experimental configuration offers promise for novel uses of these nanostructure lasers in Radio-over-Fiber (RoF) applications and future mobile networks.

  8. Compact Fiber Laser for 589nm Laser Guide Star Generation

    NASA Astrophysics Data System (ADS)

    Pennington, D.; Drobshoff, D.; Mitchell, S.; Brown, A.

    Laser guide stars are crucial to the broad use of astronomical adaptive optics, because they facilitate access to a large fraction of possible locations on the sky. Lasers tuned to the 589 nm atomic sodium resonance can create an artificial beacon at altitudes of 95-105 km, thus coming close to reproducing the light path of starlight. The deployment of multiconjugate adaptive optics on large aperture telescopes world-wide will require the use of three to nine sodium laser guide stars in order to achieve uniform correction over the aperture with a high Strehl value. Current estimates place the minimum required laser power at > 10 W per laser for a continuous wave source, though a pulsed format, nominally 6?s in length at ~ 16.7 kHz, is currently preferred as it would enable tracking the laser through the Na layer to mitigate spot elongation. The lasers also need to be compact, efficient, robust and turnkey. We are developing an all-fiber laser system for generating a 589 nm source for laser-guided adaptive optics. Fiber lasers are more compact and insensitive to alignment than their bulk laser counterparts, and the heat-dissipation characteristics of fibers, coupled with the high efficiencies demonstrated and excellent spatial mode characteristics, make them a preferred candidate for many high power applications. Our design is based on sum-frequency mixing an Er/Yb:doped fiber laser operating at 1583 nm with a 938 nm Nd:silica fiber laser in a periodically poled crystal to generate 589 nm. We have demonstrated 14 W at 1583 nm with an Er/Yb:doped fiber laser, based on a Koheras single frequency fiber oscillator amplified in an IPG Photonics fiber amplifier. The Nd:silica fiber laser is a somewhat more novel device, since the Nd3+ ions must operate on the resonance transition (i.e. 4F3/2-4I9/2), while suppressing ASE losses at the more conventional 1088 nm transition. Optimization of the ratio of the fiber core and cladding permits operation of the laser at room

  9. Imaging performance and challenges of 10nm and 7nm logic nodes with 0.33 NA EUV

    NASA Astrophysics Data System (ADS)

    van Setten, Eelco; Schiffelers, Guido; Psara, Eleni; Oorschot, Dorothe; Davydova, Natalia; Finders, Jo; Depre, Laurent; Farys, Vincent

    2014-10-01

    The NXE:3300B is ASML's third generation EUV system and has an NA of 0.33 and is positioned at a resolution of 22nm, which can be extended down to 18nm and below with off-axis illumination at full transmission. Multiple systems have been qualified and installed at customers. The NXE:3300B succeeds the NXE:3100 system (NA of 0.25), which has allowed customers to gain valuable EUV experience. It is expected that EUV will be adopted first for critical Logic layers at 10nm and 7nm nodes, such as Metal-1, to avoid the complexity of triple patterning schemes using ArF immersion. In this paper we will evaluate the imaging performance of (sub-)10nm node Logic M1 on the NXE:3300B EUV scanner. We will show the line-end performance of tip-to-tip and tip-to-space test features for various pitches and illumination settings and the performance enhancement obtained by means of a 1st round of OPC. We will also show the magnitude of local variations. The Logic M1 cell is evaluated at various critical features to identify hot spots. A 2nd round OPC model was calibrated of which we will show the model accuracy and ability to predict hot spots in the Logic M1 cell. The calibrated OPC model is used to predict the expected performance at 7nm node Logic using off-axis illumination at 16nm minimum half pitch. Initial results of L/S exposed on the NXE:3300B at 7nm node resolutions will be shown. An outlook is given to future 0.33 NA systems on the ASML roadmap with enhanced illuminator capabilities to further improve performance and process window.

  10. A self-Q-switched all-fiber erbium laser at 1530 nm using an auxiliary 1570-nm erbium laser.

    PubMed

    Tsai, Tzong-Yow; Fang, Yen-Cheng

    2009-11-23

    We demonstrate a self-Q-switched, all-fiber, tunable, erbium laser at 1530 nm with high pulse repetition rates of 0.9-10 kHz. Through the use of an auxiliary 10-mW, 1570 nm laser that shortened the relaxation time of erbium, sequentially Q-switched pulses with pulse energies between 4 and 6 microJ and pulse widths of 40 ns were steadily achieved. A peak pulse power of 165 W was obtained.

  11. Considerations for fine hole patterning for the 7nm node

    NASA Astrophysics Data System (ADS)

    Yaegashi, Hidetami; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Koike, Kyohei

    2016-03-01

    One of the practical candidates to produce 7nm node logic devices is to use the multiple patterning with 193-immersion exposure. For the multiple patterning, it is important to evaluate the relation between the number of mask layer and the minimum pitch systematically to judge the device manufacturability. Although the number of the time of patterning, namely LE(Litho-Etch) ^ x-time, and overlay steps have to be reduced, there are some challenges in miniaturization of hole size below 20nm. Various process fluctuations on contact hole have a direct impact on device performance. According to the technical trend, 12nm diameter hole on 30nm-pitch hole will be needed on 7nm node. Extreme ultraviolet lithography (EUV) and Directed self-assembly (DSA) are attracting considerable attention to obtain small feature size pattern, however, 193-immersion still has the potential to extend optical lithography cost-effectively for sub-7nm node. The objective of this work is to study the process variation challenges and resolution in post-processing for the CD-bias control to meet sub-20nm diameter contact hole. Another pattern modulation is also demonstrated during post-processing step for hole shrink. With the realization that pattern fidelity and pattern placement management will limit scaling long before devices and interconnects fail to perform intrinsically, the talk will also outline how circle edge roughness (CER) and Local-CD uniformity can correct efficiency. On the other hand, 1D Gridded-Design-Rules layout (1D layout) has simple rectangular shapes. Also, we have demonstrated CD-bias modification on short trench pattern to cut grating line for its fabrication.

  12. Analysis of Cervical Supernatant Samples Luminescence Using 355 nm Laser

    NASA Astrophysics Data System (ADS)

    Vaitkuviene, A.; Gegzna, V.; Kurtinaitiene, R.; Stanikunas, R.; Rimiene, J.; Vaitkus, J.

    2010-05-01

    The biomarker discovery for accurate detection and diagnosis of cervical carcinoma and its malignant precursors represents one of the current challenges in clinical medicine. Laser induced autofluorescence spectra in cervical smear content were fitted to predict the cervical epithelium diagnosis as a lab off "optical biopsy" method. Liquid PAP supernatant sediment dried on Quartz plate spectroscopy was performed by 355 nm Nd YAG microlaser STA-1 (Standa, Ltd). For comparison a liquid supernatant spectroscopy was formed by laboratory "Perkin Elmer LS 50B spetrometer at 290, 300, 310 nm excitations. Analysis of spectrum was performed by approximation using the multi-peaks program with Lorentz functions for the liquid samples and with Gaussian functions for the dry samples. Ratio of spectral components area to the area under whole experimental curve (SPP) was calculated. The spectral components were compared by averages of SPP using Mann-Whitney U-test in histology groups. Results. Differentiation of Normal and HSIL/CIN2+ cases in whole supernatant could be performed by stationary laboratory lamp spectroscopy at excitation 290 nm and emission >379 nm with accuracy AUC 0,69, Sens 0,72, Spec 0,65. Differentiation Normal versus HSIL/CIN2+ groups in dried enriched supernatant could be performed by 355 nm microlaser excitation at emission 405-424 nm with accuracy (AUC 0,96, Sens 0,91, Spec 1.00). Diagnostic algorithm could be created for all histology groups differentiation under 355 nm excitation. Microlaser induced "optical biopsy "looks promising method for cervical screening at the point of care.

  13. Electro-optically Q-switched dual-wavelength Nd:YLF laser emitting at 1047 nm and 1053 nm

    NASA Astrophysics Data System (ADS)

    Men, Shaojie; Liu, Zhaojun; Cong, Zhenhua; Li, Yongfu; Zhang, Xingyu

    2015-05-01

    A flash-lamp pumped electro-optically Q-switched dual-wavelength Nd:YLF laser is demonstrated. Two Nd:YLF crystals placed in two cavities are employed to generate orthogonally polarized 1047 nm and 1053 nm radiations, respectively. The two cavities are jointed together by a polarizer and share the same electro-optical Q-switch. Two narrow-band pass filters are used to block unexpected oscillations at the hold-off state of the electro-optical Q-switch. In this case, electro-optical Q-switching is able to operate successfully. With pulse synchronization realized, the maximum output energy of 66.2 mJ and 83.9 mJ are obtained for 1047 nm and 1053 nm lasers, respectively. Correspondingly, the minimum pulse width is both 17 ns for 1047 nm and 1053 nm lasers. Sum frequency generation is realized. This demonstrates the potential of this laser in difference-frequency generations to obtain terahertz wave.

  14. Optical coherence tomography based imaging of dental demineralisation and cavity restoration in 840 nm and 1310 nm wavelength regions

    NASA Astrophysics Data System (ADS)

    Damodaran, Vani; Rao, Suresh Ranga; Vasa, Nilesh J.

    2016-08-01

    In this paper, a study of in-house built optical coherence tomography (OCT) system with a wavelength of 840 nm for imaging of dental caries, progress in demineralisation and cavity restoration is presented. The caries when imaged with the 840 nm OCT system showed minute demineralisation in the order of 5 μm. The OCT system was also proposed to study the growth of lesion and this was demonstrated by artificially inducing caries with a demineralisation solution of pH 4.8. The progress of carious lesion to a depth of about 50-60 μm after 60 hours of demineralisation was clearly observed with the 840 nm OCT system. The tooth samples were subjected to accelerated demineralisation condition at pH of approximately 2.3 to study the adverse effects and the onset of cavity formation was clearly observed. The restoration of cavity was also studied by employing different restorative materials (filled and unfilled). In the case of restoration without filler material (unfilled), the restoration boundaries were clearly observed. Overall, results were comparable with that of the widely used 1310 nm OCT system. In the case of restoration with filler material, the 1310 nm OCT imaging displayed better imaging capacity due to lower scattering than 840 nm imaging.

  15. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  16. Metrology of 50nm HP wire-grid polarizer: a SEM-scatterometry comparison

    NASA Astrophysics Data System (ADS)

    Zhu, Ruichao; Munoz, Alexander; Brueck, S. R. J.; Singhanl, Shrawan; Sreenivasan, S. V.

    2015-03-01

    The capabilities and limitations of angular scatterometry for a structure pitch much less than the optical wavelength are experimentally investigated using a 100-nm pitch Al-wire grid polarizer on a SiO2 substrate. Three CW laser sources of wavelengths (244 nm, 405 nm and 633 nm) are used to measure the 0-order diffraction (reflection) across an incident angle range of 8° to 80°. The grating profile is defined by seven parameters (pitch, bottom linewidth, top linewidth, fused silica undercut, Al thickness, horizontal and vertical extent of top rounding). Rigorous coupled wave analysis (RCWA) simulations show that the reflectivity versus angle results are sensitive to changes in all of these parameters. The simulations act as a baseline library for the scatterometry measurements. Fitting the experimental curves with the corresponding simulation parameters results in a determination of the grating profile. As expected the shorter wavelength measurements provide the most sensitivity, but good precision is obtained at all three wavelengths. The measurements are in good agreement with destructive cross section scanning electron microscopy measurements.

  17. OSIRIS Detections of a Tropospheric Aerosol that Absorbs at Wavelengths Near 350 nm - Black Carbon?

    NASA Astrophysics Data System (ADS)

    Degenstein, D. A.; Roth, C.; Bourassa, A. E.; Lloyd, N.

    2014-12-01

    The Canadian built OSIRIS instrument has been in operation onboard the Swedish spacecraft Odin since the autumn of 2001. During this 13 year period OSIRIS has recorded millions of spectra of the limb-scattered radiance in the wavelength range from 280 nm to 810 nm with approximately 1 nm spectral resolution. These measurements that scan tangents altitudes from 10 km to 65 km have primarily been used to retrieve stratospheric composition including vertical profiles of ozone, nitrogen dioxide, sulphate aerosol and bromine monoxide. The ozone retrieval is done is such a way that it uses the vertical radiance profile at 350 nm as a non-ozone absorbing reference measurement and it is these measurements that have serendipitously indicated the presence of an absorbing aerosol at tropospheric altitudes. At this time there is no indication of the exact composition of this absorber but it has characteristics that are curiously like those of black carbon. This poster will outline: the technique used to detect the black carbon from OSIRIS measurements; the wavelength dependence of a pseudo absorber used in the SASKTARN radiative transfer model to accurately simulate the OSIRIS measurements; and the geographical distribution of the detections of this pseudo absorber.

  18. Mutagenesis of mNeptune Red-Shifts Emission Spectrum to 681-685 nm

    PubMed Central

    Li, ZhaoYang; Zhang, ZhiPing; Bi, LiJun; Cui, ZongQiang; Deng, JiaoYu; Wang, DianBing; Zhang, Xian-En

    2016-01-01

    GFP-like fluorescent proteins with diverse emission wavelengths have been developed through mutagenesis, offering many possible choices in cellular and tissue imaging, such as multi-targets imaging, deep tissue imaging that require longer emission wavelength. Here, we utilized a combined approach of random mutation and structure-based rational design to develop new NIR fluorescent proteins on the basis of a far-red fluorescent protein, mNeptune (Ex/Em: 600/650 nm). We created a number of new monomeric NIR fluorescent proteins with the emission range of 681–685 nm, which exhibit the largest Stocks shifts (77–80 nm) compared to other fluorescent proteins. Among them, mNeptune681 and mNeptune684 exhibit more than 30 nm redshift in emission relative to mNeptune, owing to the major role of the extensive hydrogen-bond network around the chromophore and contributions of individual mutations to the observed redshift. Furthermore, the two variants still maintain monomeric state in solution, which is a trait crucial for their use as protein tags. In conclusion, our results suggest that there is untapped potential for developing fluorescent proteins with desired properties. PMID:27119418

  19. Mutagenesis of mNeptune Red-Shifts Emission Spectrum to 681-685 nm.

    PubMed

    Li, ZhaoYang; Zhang, ZhiPing; Bi, LiJun; Cui, ZongQiang; Deng, JiaoYu; Wang, DianBing; Zhang, Xian-En

    2016-01-01

    GFP-like fluorescent proteins with diverse emission wavelengths have been developed through mutagenesis, offering many possible choices in cellular and tissue imaging, such as multi-targets imaging, deep tissue imaging that require longer emission wavelength. Here, we utilized a combined approach of random mutation and structure-based rational design to develop new NIR fluorescent proteins on the basis of a far-red fluorescent protein, mNeptune (Ex/Em: 600/650 nm). We created a number of new monomeric NIR fluorescent proteins with the emission range of 681-685 nm, which exhibit the largest Stocks shifts (77-80 nm) compared to other fluorescent proteins. Among them, mNeptune681 and mNeptune684 exhibit more than 30 nm redshift in emission relative to mNeptune, owing to the major role of the extensive hydrogen-bond network around the chromophore and contributions of individual mutations to the observed redshift. Furthermore, the two variants still maintain monomeric state in solution, which is a trait crucial for their use as protein tags. In conclusion, our results suggest that there is untapped potential for developing fluorescent proteins with desired properties. PMID:27119418

  20. Improvement of optical damage in specialty fiber at 266 nm wavelength

    NASA Astrophysics Data System (ADS)

    Tobisch, T.; Ohlmeyer, H.; Zimmermann, H.; Prein, S.; Kirchhof, J.; Unger, S.; Belz, M.; Klein, K.-F.

    2014-02-01

    Improved multimode UV-fibers with core diameters ranging from 70 to 600 μm diameter have been manufactured based on novel preform modifications and fiber processing techniques. Only E'-centers at 214 nm and NBOHC at 260 nm are generated in these fibers. A new generation of inexpensive laser-systems have entered the market and generated a multitude of new and attractive applications in the bio-life science, chemical and material processing field. However, for example pulsed 355 nm Nd:YAG lasers generate significant UV-damages in commercially available fibers. For lower wavelengths, no results on suitable multi-mode or low-mode fibers with high UV resistance at 266 nm wavelength (pulsed 4th harmonic Nd:YAG laser) have been published. In this report, double-clad fibers with 70 μm or 100 μm core diameter and a large claddingto- core ratio will be recommended. Laser-induced UV-damages will be compared between these new fiber type and traditional UV fibers with similar core sizes. Finally, experimental results will be cross compared against broadband cw deuterium lamp damage standards.

  1. C-doped mesoporous anatase TiO2 comprising 10nm crystallites.

    PubMed

    Xie, Chong; Yang, Shenghui; Li, Beibei; Wang, Hongkong; Shi, Jian-Wen; Li, Guodong; Niu, Chunming

    2016-08-15

    We report a C-doped mesoporous anatase TiO2 with high surface area synthesized using multi-walled carbon nanotube (MWCNT) mat as a "rigid" template and carbon doping source. The characterization by SEM, HRTEM, X-ray diffraction and nitrogen adsorption revealed that TiO2 samples have a porous structure which are figuratively a inverse copy of MWCNT network and pore walls are formed by interconnected TiO2 nanoparticles with average diameter of ∼10nm. We found that annealing temperatures from 400 to 1000°C before MWCNT template removal had very limited effect on particle size (∼10nm), surface area (112-129m(2)/g) and total pore volume (0.74-0.85m(2)/g) of the samples through a significantly delayed phase transition from anatase to rutile started at 800°C, resulting in only ∼9.1% conversion at 1000°C. The pore size distribution is in mesopore range from 6 to 60nm peaked at ∼24nm. XPS analysis showed a relatively strong C1s peak at 288.4eV, indicating C doping at Ti sites, which is responsible for red shift of adsorption edge of UV-vis spectra and photocatalytic activity in visible-light region. PMID:27179173

  2. Microsecond gain-switched master oscillator power amplifier (1958 nm) with high pulse energy

    SciTech Connect

    Ke Yin; Weiqiang Yang; Bin Zhang; Ying Li; Jing Hou

    2014-02-28

    An all-fibre master oscillator power amplifier (MOPA) emitting high-energy pulses at 1958 nm is presented. The seed laser is a microsecond gain-switched thulium-doped fibre laser (TDFL) pumped with a commercial 1550-nm pulsed fibre laser. The TDFL operates at a repetition rate f in the range of 10 to 100 kHz. The two-stage thulium-doped fibre amplifier is built to scale the energy of the pulses generated by the seed laser. The maximum output pulse energy higher than 0.5 mJ at 10 kHz is achieved which is comparable with the theoretical maximum extractable pulse energy. The slope efficiency of the second stage amplifier with respect to the pump power is 30.4% at f = 10 kHz. The wavelength of the output pulse laser is centred near 1958 nm at a spectral width of 0.25 nm after amplification. Neither nonlinear effects nor significant amplified spontaneous emission (ASE) is observed in the amplification experiments. (lasers)

  3. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    SciTech Connect

    Momblona, C.; Malinkiewicz, O.; Soriano, A.; Gil-Escrig, L.; Bandiello, E.; Scheepers, M.; Bolink, H. J.; Edri, E.

    2014-08-01

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging from 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.

  4. C-doped mesoporous anatase TiO2 comprising 10nm crystallites.

    PubMed

    Xie, Chong; Yang, Shenghui; Li, Beibei; Wang, Hongkong; Shi, Jian-Wen; Li, Guodong; Niu, Chunming

    2016-08-15

    We report a C-doped mesoporous anatase TiO2 with high surface area synthesized using multi-walled carbon nanotube (MWCNT) mat as a "rigid" template and carbon doping source. The characterization by SEM, HRTEM, X-ray diffraction and nitrogen adsorption revealed that TiO2 samples have a porous structure which are figuratively a inverse copy of MWCNT network and pore walls are formed by interconnected TiO2 nanoparticles with average diameter of ∼10nm. We found that annealing temperatures from 400 to 1000°C before MWCNT template removal had very limited effect on particle size (∼10nm), surface area (112-129m(2)/g) and total pore volume (0.74-0.85m(2)/g) of the samples through a significantly delayed phase transition from anatase to rutile started at 800°C, resulting in only ∼9.1% conversion at 1000°C. The pore size distribution is in mesopore range from 6 to 60nm peaked at ∼24nm. XPS analysis showed a relatively strong C1s peak at 288.4eV, indicating C doping at Ti sites, which is responsible for red shift of adsorption edge of UV-vis spectra and photocatalytic activity in visible-light region.

  5. Bactericidal effect of a 405-nm diode laser on Porphyromonas gingivalis

    NASA Astrophysics Data System (ADS)

    Kotoku, Y.; Kato, J.; Akashi, G.; Hirai, Y.; Ishihara, K.

    2009-05-01

    The study was conducted to determine the effect of 405-nm diode laser irradiation on periodontopathic bacteria such as Porphyromonas gingivalis in vitro. A diluted suspension of P. gingivalis was irradiated directly with a 405-nm diode laser under conditions of 100 mW-10 sec, 100 mW-20 sec, 200 mW-5 sec, 200 mW-10 sec, 200 mW-20 sec, 400 mW-5 sec, 400 mW-10 sec, and 400 mW-20 sec. The energy density ranged from 2.0 to 16.0 J/cm2. The irradiated bacterial suspension was spread on a blood agar plate and growth of the colonies was examined after an anaerobic culture for 7 days. Bacterial growth was inhibited under all irradiation conditions, but the bactericidal effect of the 405-nm diode laser depended on the energy density. More than 97% of bacterial growth was inhibited with irradiation at an energy density > 4.0 J/cm2. The mechanism of the bactericidal effect is photochemical, rather than photothermal. These findings suggest that a 405-nm diode laser has a high bactericidal effect on P. gingivalis.

  6. Solar Spectral Irradiance at 782 nm as Measured by the SES Sensor Onboard Picard

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Hauchecorne, A.; Irbah, A.; Cessateur, G.; Bekki, S.; Damé, L.; Bolsée, D.; Pereira, N.

    2016-04-01

    Picard is a satellite dedicated to the simultaneous measurement of the total and solar spectral irradiance, the solar diameter, the solar shape, and to the Sun's interior through the methods of helioseismology. The satellite was launched on June 15, 2010, and pursued its data acquisitions until March 2014. A Sun Ecartometry Sensor (SES) was developed to provide the stringent pointing requirements of the satellite. The SES sensor produced an image of the Sun at 782 ± 2.5 nm. From the SES data, we obtained a new time series of the solar spectral irradiance at 782 nm from 2010 to 2014. During this period of Solar Cycle 24, the amplitude of the changes has been of the order of ± 0.08 %, corresponding to a range of about 2× 10^{-3} W m^{-2} nm^{-1}. SES observations provided a qualitatively consistent evolution of the solar spectral irradiance variability at 782 nm. SES data show similar amplitude variations with the semi-empirical model Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S), whereas the Spectral Irradiance Monitor instrument (SIM) onboard the SOlar Radiation and Climate Experiment satellite (SORCE) highlights higher amplitudes.

  7. Fluorescence Imaging In Vivo at Wavelengths beyond 1500 nm.

    PubMed

    Diao, Shuo; Blackburn, Jeffrey L; Hong, Guosong; Antaris, Alexander L; Chang, Junlei; Wu, Justin Z; Zhang, Bo; Cheng, Kai; Kuo, Calvin J; Dai, Hongjie

    2015-12-01

    Compared to imaging in the visible and near-infrared regions below 900 nm, imaging in the second near-infrared window (NIR-II, 1000-1700 nm) is a promising method for deep-tissue high-resolution optical imaging in vivo mainly owing to the reduced scattering of photons traversing through biological tissues. Herein, semiconducting single-walled carbon nanotubes with large diameters were used for in vivo fluorescence imaging in the long-wavelength NIR region (1500-1700 nm, NIR-IIb). With this imaging agent, 3-4 μm wide capillary blood vessels at a depth of about 3 mm could be resolved. Meanwhile, the blood-flow speeds in multiple individual vessels could be mapped simultaneously. Furthermore, NIR-IIb tumor imaging of a live mouse was explored. NIR-IIb imaging can be generalized to a wide range of fluorophores emitting at up to 1700 nm for high-performance in vivo optical imaging. PMID:26460151

  8. Spin wave eigenmodes in single and coupled sub-150 nm rectangular permalloy dots

    SciTech Connect

    Carlotti, G. Madami, M.; Tacchi, S.; Gubbiotti, G.; Dey, H.; Csaba, G.; Porod, W.

    2015-05-07

    We present the results of a Brillouin light scattering investigation of thermally excited spin wave eigenmodes in square arrays of either isolated rectangular dots of permalloy or twins of dipolarly coupled elements, placed side-by-side or head-to-tail. The nanodots, fabricated by e-beam lithography and lift-off, are 20 nm thick and have the major size D in the range between 90 nm and 150 nm. The experimental spectra show the presence of two main peaks, corresponding to modes localized either at the edges or in the center of the dots. Their frequency dependence on the dot size and on the interaction with adjacent elements has been measured and successfully interpreted on the basis of dynamical micromagnetic simulations. The latter enabled us also to describe the spatial profile of the eigenmodes, putting in evidence the effects induced by the dipolar interaction between coupled dots. In particular, in twinned dots the demagnetizing field is appreciably modified in proximity of the “internal edges” if compared to the “external” ones, leading to a splitting of the edge mode. These results can be relevant for the exploitation of sub-150 nm magnetic dots in new applications, such as magnonic metamaterials, bit-patterned storage media, and nano-magnetic logic devices.

  9. Effects of nanophase materials (< or = 20 nm) on biological responses.

    PubMed

    Cheng, Meng-Dawn

    2004-01-01

    Nanophase materials have enhanced properties (thermal, mechanical, electrical, surface reactivity, etc.) not found in bulk materials. Intuitively, the enhancement of material properties could occur when the materials encounter biological specimens. Previous investigations of biological interactions with nanometer-scale materials have been very limited. With the ability to manipulate atoms and molecules, we now can create predefined nanostructures with unprecedented precision. In parallel with this development, improved understanding of the biological effects of the nanophase materials, whatever those may be, should also deserve attention. In this study, we have applied precision aerosol technology to investigate cellular response to nanoparticles. We used synthetic nanoparticles generated by an electrospray technique to produce nanoparticles in the size range of 8-13 nm with practically monodispersed aerosol particles and approximately the same number concentration. We report here on the potency of nano-metal particles with single or binary chemical components in eliciting interleukin-8 (IL-8) production from epithelial cell lines. For single-component nanoparticles, we found that nano-Cu particles were more potent in IL-8 production than nano-Ni and nano-V particles. However, the kinetics of IL-8 production by these three nanoparticles was different, the nano-Ni being the highest among the three. When sulfuric acid was introduced to form acidified nano-Ni particles, we found that the potency of such binary-component nanoparticles in eliciting IL-8 production was increased markedly, by about six times. However, the acidified binary nano-Na and -Mg nanoparticles did not exhibit the same effects as binary nano-Ni particles did. Since Ni, a transition metal, could induce free radicals on cell surfaces, while Na and Mg could not, the acidity might have enhanced the oxidative stress caused by radicals to the cells, leading to markedly higher IL-8 production. This result

  10. [In vitro antimycobacterial activity of a new quinolone, NM394].

    PubMed

    Tomioka, H; Sato, K; Saito, H

    1993-08-01

    We evaluated the in vitro antimicrobial activity of NM394 and ofloxacin (OFLX) against representative pathogenic mycobacteria by the agar dilution method, using 7H11 agar medium. NM394 showed appreciable antimicrobial activity against Mycobacterium tuberculosis (MIC90 = 0.78 micrograms/ml), M. kansasii (MIC90 = 6.25 micrograms/ml), M. marinum (MIC90 = 3.13 micrograms/ml) and M. fortuitum (MIC90 = 3.13 micrograms/ml), whereas the agent was not active against M. scrofulaceum (MIC90 = > 100 micrograms/ml), M. avium (MIC90 = 50 micrograms/ml), M. intracellulare (MIC90 = > 100 micrograms/ml), M. chelonae subsp. abscessus (MIC90 = > 100 micrograms/ml) and M. chelonae subsp. chelonae (MIC90 = 25 micrograms/ml). The in vitro antimicrobial activity of the agent against M. fortuitum was a little more active than that of OFLX, whereas the activity of NM394 against the other mycobacteria was slightly inferior to that of OFLX. The antimycobacterial activity of NM394 against M. tuberculosis H37Rv (MIC:NM394 = 0.78 micrograms/ml, OFLX = 0.78 micrograms/ml) phagocytosed in murine peritoneal macrophages was less active than that of OFLX, when the macrophages were cultured in RPMI-1640 medium containing 1 microgram/ml or 10 micrograms/ml of these agents for up to 5 days. PMID:8397311

  11. Taking the X Architecture to the 65-nm technology node

    NASA Astrophysics Data System (ADS)

    Sarma, Robin C.; Smayling, Michael C.; Arora, Narain; Nagata, Toshiyuki; Duane, Michael P.; Shah, Santosh; Keston, Harris J.; Oemardani, Shiany

    2004-05-01

    The X Architecture is a new way of orienting the interconnect on an integrated circuit using diagonal pathways, as well as the traditional right-angle, or Manhattan, configuration. By enabling designs with significantly less wire and fewer vias, the X Architecture can provide substantial improvements in chip performance, power consumption and cost. Members of the X Initiative semiconductor supply chain consortium have demonstrated the production worthiness of the X Architecture at the 130-nm and 90-nm process technology nodes. This paper presents an assessment of the manufacturing readiness of the X Architecture for the 65-nm technology node. The extent to which current production capabilities in mask writing, lithography, wafer processing, inspection and metrology can be used is discussed using the results from a 65-nm test chip. The project was a collaborative effort amongst a number of companies in the IC fabrication supply chain. Applied Materials fabricated the 65-nm X Architecture test chip at its Maydan Technology Center and leveraged the technology of other X Initiative members. Cadence Design Systems provided the test structure design and chip validation tools, Dai Nippon Printing produced the masks and Canon"s imaging system was employed for the photolithography.

  12. Novel fluoro copolymers for 157-nm photoresists: a progress report

    NASA Astrophysics Data System (ADS)

    Hohle, Christoph; Hien, Stefan; Eschbaumer, Christian; Rottstegge, Joerg; Sebald, Michael

    2002-07-01

    Several fluoro-substituted polymers consisting of acid cleavable methacryoic or cinnamic acid tert.-butyl ester compounds copolymerized with maleic acid anhydride derivatives were synthesized by radical copolymerization. Vacuum ultraviolet transmission measurements of the samples reveal absorbances down to 5micrometers -1 despite of the strongly absorbing anhydride moiety which serves as silylation anchor for the application of the Chemical Amplification of Resist Lines (CARL) process, one of the promising approaches for sub-90nm pattern fabrication. Some of the samples exhibit resolutions down to 110nm dense at 157nm exposure using an alternating phase shift mask. The feasibility of the CARL principle including the silylation reaction after development has been demonstrated with selected fluorinated polymer samples.

  13. High power narrowband 589 nm frequency doubled fibre laser source.

    PubMed

    Taylor, Luke; Feng, Yan; Calia, Domenico Bonaccini

    2009-08-17

    We demonstrate high-power high-efficiency cavity-enhanced second harmonic generation of an in-house built ultra-high spectral density (SBS-suppressed) 1178 nm narrowband Raman fibre amplifier. Up to 14.5 W 589 nm CW emission is achieved with linewidth Delta nu(589) < 7 MHz in a diffraction-limited beam, with peak external conversion efficiency of 86%. The inherently high spectral and spatial qualities of the 589 nm source are particularly suited to both spectroscopic and Laser Guide Star applications, given the seed laser can be easily frequency-locked to the Na D(2a) emission line. Further, we expect the technology to be extendable, at similar or higher powers, to wavelengths limited only by the seed-pump-pair availability. PMID:19687946

  14. Guaranteed discovery of the NmSuGra model

    SciTech Connect

    Balazs, Csaba; Carter, Daniel

    2008-11-23

    We analyze the discovery potential of the next-to-minimal supergravity motivated model: NmSuGra. This model is an extension of mSuGra by a gauge singlet, and contains only one additional parameter: {lambda}, the Higgs-singlet-Higgs coupling. NmSuGra solves the {mu}-problem and reduces the fine tuning of mSuGra. After identifying parameter space regions preferred by present experimental data, we show that these regions of NmSuGra are amenable to detection by the combination of the Large Hadron Collider and an upgraded Cryogenic Dark Matter Search. This conclusion holds strictly provided that the more than three sigma discrepancy in the difference of the experimental and the standard theoretical values of the anomalous magnetic moment of the muon prevails in the future.

  15. High Power 938nm Cladding Pumped Fiber Laser

    SciTech Connect

    Dawson, J; Beach, R; Brobshoff, A; Liao, Z; Payne, S; Pennington, D; Taylor, L; Hackenberg, W; Bonaccini, D

    2002-12-26

    We have developed a Nd:doped cladding pumped fiber amplifier, which operates at 938nm with greater than 2W of output power. The core co-dopants were specifically chosen to enhance emission at 938nm. The fiber was liquid nitrogen cooled in order to achieve four-level laser operation on a laser transition that is normally three level at room temperature, thus permitting efficient cladding pumping of the amplifier. Wavelength selective attenuation was induced by bending the fiber around a mandrel, which permitted near complete suppression of amplified spontaneous emission at 1088nm. We are presently seeking to scale the output of this laser to 10W. We will discuss the fiber and laser design issues involved in scaling the laser to the 10W power level and present our most recent results.

  16. New 223-nm excimer laser surgical system for photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Bagaev, Sergei N.; Razhev, Alexander M.; Zhupikov, Andrey A.

    1999-02-01

    The using of KrCl (223 nm) excimer laser in ophthalmic devices for Photorefractive Keratectomy (PRK) and phototherapeutic Keratectomy (PTK) is offered. The structure and functions of a new surgical UV ophthalmic laser systems Medilex using ArF (193 nm) or KrCl (223 nm) excimer laser for corneal surgery are presented. The systems Medilex with the new optical delivery system is used for photoablative reprofiling of the cornea to correct refraction errors (myopia, hyperopia and astigmatism) and to treat a corneal pathologies. The use of the 223 nanometer laser is proposed to have advantages over the 193 nanometer laser. The results of application of the ophthalmic excimer laser systems Medilex for treatment of myopia are presented.

  17. Developmental Function of Nm23/awd - A Mediator of Endocytosis

    PubMed Central

    Nallamothu, Gouthami; Dammai, Vincent; Hsu, Tien

    2009-01-01

    The metastasis suppressor gene Nm23 is highly conserved from yeast to human, implicating a critical developmental function. Studies in cultured mammalian cells have identified several potential functions, but many have not been directly verified in vivo. Here we summarize the studies on the Drosophila homologue of the Nm23 gene, named abnormal wing discs (awd), which shares 78% amino acid identity with the human Nm23-H1 and H2 isoforms. These studies confirmed that awd gene encodes a nucleoside diphosphate kinase, and provided strong evidence of a role for awd in regulating cell differentiation and motility via regulation of growth factor receptor signaling. The latter function is mainly mediated by control of endocytosis. This review provides a historical account of the discovery and subsequent analyses of the awd gene. We will also discuss the possible molecular function of the Awd protein that underlies the endocytic function. PMID:19373545

  18. High power narrowband 589 nm frequency doubled fibre laser source.

    PubMed

    Taylor, Luke; Feng, Yan; Calia, Domenico Bonaccini

    2009-08-17

    We demonstrate high-power high-efficiency cavity-enhanced second harmonic generation of an in-house built ultra-high spectral density (SBS-suppressed) 1178 nm narrowband Raman fibre amplifier. Up to 14.5 W 589 nm CW emission is achieved with linewidth Delta nu(589) < 7 MHz in a diffraction-limited beam, with peak external conversion efficiency of 86%. The inherently high spectral and spatial qualities of the 589 nm source are particularly suited to both spectroscopic and Laser Guide Star applications, given the seed laser can be easily frequency-locked to the Na D(2a) emission line. Further, we expect the technology to be extendable, at similar or higher powers, to wavelengths limited only by the seed-pump-pair availability.

  19. 11nm logic lithography with OPC-lite

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.; Tsujita, Koichiro; Yaegashi, Hidetami; Axelrad, Valery; Nakayama, Ryo; Oyama, Kenichi; Hara, Arisa

    2014-03-01

    CMOS logic at the 22nm node and below is being done with a highly regular layout style using Gridded Design Rules (GDR). Smaller nodes have been demonstrated using a "lines and cuts" approach with good pattern fidelity and process margin, with extendibility to ~7nm.[1] In previous studies, Design-Source-Mask Optimization (DSMO) has been demonstrated to be effective down to the 12nm node.[2,3,4,5,6] The transition from single- to double- and in some cases triple- patterning was evaluated for different layout styles, with highly regular layouts delaying the need for multiple-patterning compared to complex layouts. To address mask complexity and cost, OPC for the "cut" patterns was studied and relatively simple OPC was found to provide good quality metrics such as MEEF and DOF.[3,7,8] This is significant since mask data volumes of >500GB per layer are projected for pixelated masks created by complex OPC or inverse lithography; writing times for such masks are nearly prohibitive. In our present work, we extend the scaling using SMO with "OPC Lite" beyond 12nm. The focus is on the contact pattern since a "hole" pattern is similar to a "cut" pattern so a similar technique should be useful. The test block is a reasonably complex logic function with ~100k gates of combinatorial logic and flip-flops, scaled from previous studies. The contact pattern is a relatively dense layer since it connects two underlying layers - active and gate - to one overlying layer - metal-1. Several design iterations were required to get suitable layouts while maintaining circuit functionality. Experimental demonstration of the contact pattern using OPC-Lite will be presented. Wafer results have been obtained at a metal-1 half-pitch of 18nm, corresponding to the 11nm CMOS node. Additional results for other layers - FINs, local interconnect, and metal-1 - will also be discussed.

  20. 32 nm imprint masks using variable shape beam pattern generators

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Thompson, Ecron; Schmid, Gerard; Stacey, Nick; Perez, Joseph; Maltabes, John; Resnick, Douglas J.; Yeo, Jeongho; Kim, Hoyeon; Eynon, Ben

    2008-05-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and Flash Imprint Lithography (S-FIL ®) is a unique method that has been designed from the beginning to enable precise overlay for creating multilevel devices. A photocurable low viscosity monomer is dispensed dropwise to meet the pattern density requirements of the device, thus enabling imprint patterning with a uniform residual layer across a field and across entire wafers. Further, S-FIL provides sub-100 nm feature resolution without the significant expense of multi-element, high quality projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of templates. For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x templates with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing technology for the sub 32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using Samsung's current flash memory production device design. The fabrication of the template is discussed and the resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting results are described in terms of CD uniformity, etch results, and overlay.

  1. Full-field imprinting of sub-40 nm patterns

    NASA Astrophysics Data System (ADS)

    Yeo, Jeongho; Kim, Hoyeon; Eynon, Ben

    2008-03-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and Flash Imprint Lithography (S-FIL (R)) is a unique patterning method that has been designed from the beginning to enable precise overlay to enable multilevel device fabrication. A photocurable low viscosity resist is dispensed dropwise to match the pattern density requirements of the device, thus enabling patterning with a uniform residual layer thickness across a field and across multiple wafers. Further, S-FIL provides sub-50 nm feature resolution without the significant expense of multi-element projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of imprint masks (templates). For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x imprint masks with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing technology for the sub-32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using Samsung's current flash memory production device design. The fabrication of the imprint mask and the resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting results are described in terms of CD uniformity, etch results, and overlay.

  2. Short range atomic migration in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Strauß, F.; Jerliu, B.; Geue, T.; Stahn, J.; Schmidt, H.

    2016-05-01

    Experiments on self-diffusion in amorphous silicon between 400 and 500 °C are presented, which were carried out by neutron reflectometry in combination with 29Si/natSi isotope multilayers. Short range diffusion is detected on a length scale of about 2 nm, while long range diffusion is absent. Diffusivities are in the order of 10-19-10-20 m2/s and decrease with increasing annealing time, reaching an undetectable low value for long annealing times. This behavior is strongly correlated to structural relaxation and can be explained as a result of point defect annihilation. Diffusivities for short annealing times of 60 s follow the Arrhenius law with an activation enthalpy of (0.74 ± 0.21) eV, which is interpreted as the activation enthalpy of Si migration.

  3. Determination of transition probability for the 655-nm Tl line.

    NASA Astrophysics Data System (ADS)

    Karabourniotis, D.; Couris, S.; Damelincourt, J. J.

    Studies of high-pressure Hg-Tl I a.c. (50 Hz) arc plasmas have been used to verify the validity of Boltzmann statistics at the moment of maximum electron density (5 ms) by applying LTE criteria. For a known plasma temperature, the transition probability of the optically-thin 655-nm line of Tl was derived from emission measurements by using the self-reversed 535-nm line of Tl as reference [A655 = (3.74±0.37)×106s-1].

  4. Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier.

    PubMed

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang; Biedermann, Benjamin R; Hsu, Kevin; Hansen, Kim P; Sumpf, Bernd; Hasler, Karl-Heinz; Erbert, Götz; Jensen, Ole B; Pedersen, Christian; Huber, Robert; Andersen, Peter E

    2010-07-19

    While swept source optical coherence tomography (OCT) in the 1050 nm range is promising for retinal imaging, there are certain challenges. Conventional semiconductor gain media have limited output power, and the performance of high-speed Fourier domain mode-locked (FDML) lasers suffers from chromatic dispersion in standard optical fiber. We developed a novel light source with a tapered amplifier as gain medium, and investigated the FDML performance comparing two fiber delay lines with different dispersion properties. We introduced an additional gain element into the resonator, and thereby achieved stable FDML operation, exploiting the full bandwidth of the tapered amplifier despite high dispersion. The light source operates at a repetition rate of 116 kHz with an effective average output power in excess of 30 mW. With a total sweep range of 70 nm, we achieved an axial resolution of 15 microm in air (approximately 11 microm in tissue) in OCT measurements. As our work shows, tapered amplifiers are suitable gain media for swept sources at 1050 nm with increased output power, while high gain counteracts dispersion effects in an FDML laser. PMID:20720964

  5. Extension of 193 nm dry lithography to 45-nm half-pitch node: double exposure and double processing technique

    NASA Astrophysics Data System (ADS)

    Biswas, Abani M.; Li, Jianliang; Hiserote, Jay A.; Melvin, Lawrence S., III

    2006-10-01

    Immersion lithography and multiple exposure techniques are the most promising methods to extend lithography manufacturing to the 45nm node. Although immersion lithography has attracted much attention recently as a promising optical lithography extension, it will not solve all the problems at the 45-nm node. The 'dry' option, (i.e. double exposure/etch) which can be realized with standard processing practice, will extend 193-nm lithography to the end of the current industry roadmap. Double exposure/etch lithography is expensive in terms of cost, throughput time, and overlay registration accuracy. However, it is less challenging compared to other possible alternatives and has the ability to break through the κ I barrier (0.25). This process, in combination with attenuated PSM (att-PSM) mask, is a good imaging solution that can reach, and most likely go beyond, the 45-nm node. Mask making requirements in a double exposure scheme will be reduced significantly. This can be appreciated by the fact that the separation of tightly-pitched mask into two less demanding pitch patterns will reduce the stringent specifications for each mask. In this study, modeling of double exposure lithography (DEL) with att-PSM masks to target 45-nm node is described. In addition, mask separation and implementation issues of optical proximity corrections (OPC) to improve process window are studied. To understand the impact of OPC on the process window, Fourier analysis of the masks has been carried out as well.

  6. Long range target discrimination using UV fluorescence

    NASA Astrophysics Data System (ADS)

    Bray, Mark; Lepley, Jason

    2011-06-01

    An active imaging system using UV fluorescence for target discrimination is proposed. The emission wavelength is characteristic of the target material and allows spectral discrimination of targets from clutter. The burst-illumination-LIDAR system transmits a laser pulse and the fluorescent return is detected with a synchronised gated imaging receiver. The short gate length (~ns) allowed by a micro-channel plate CCD reduces solar clutter. Detector noise is not the limiting factor because of the high MCP-CCD detectivity. Laser choice is constrained by the required laser pulse energy, laser size and robustness. The COTS solution identified is a diode-pumped, 4th harmonic converted, 1064nm laser. Nd:YAG, Nd:YLF and Nd:Alexandrite lasers have superior performance but require some development for this application. A pessimistic range model evaluates the optical powers. Comparison of the received fluorescent energy to the detector noise equivalent energy and the solar energy received provides the detection range limit. Performance of the proposed systems exceeds the detection range requirement for all samples evaluated and all varying conditions explored. The lowest range is for black paint with the COTS laser system and is 2860m; the best ranges exceed 5km.

  7. Large dynamic range operation of ultra-higher number MWFLs affected by MZI-SI

    NASA Astrophysics Data System (ADS)

    Narimah Aziz, Siti; Arsad, Norhana; Ashrif Abu Bakar, Ahmad; Sushita Menon, P.; Shaari, Sahbudin

    2016-11-01

    This report presents a large dynamic operation of wavelength numbers of laser lines that have been periodically filtered using an MZI-SI filter effect. A 70 nm span range for a wider periodic comb filter with 0.60 nm wavelength spacing was achieved through an advanced triple-loop ring-cavity fiber laser with a combination of MZI-SI. Almost all of the best 95 numbers of wavelengths are flattened at 6 dB of peak power fluctuation in a 52 nm range. By adjusting the rotation angles of a polarization controller (PC), the ultra-wide range multiwavelength spectrum has been shifted by 36 nm in a range from 1522.8-1558.6 nm.

  8. Isolation of Enterococcus faecium NM113, Enterococcus faecium NM213 and Lactobacillus casei NM512 as novel probiotics with immunomodulatory properties.

    PubMed

    Mansour, Nahla M; Heine, Holger; Abdou, Sania M; Shenana, Mohamed E; Zakaria, Mohamed K; El-Diwany, Ahmed

    2014-10-01

    Probiotics, defined as living bacteria that are beneficial for human health, mainly function through their immunomodulatory abilities. Hence, these microorganisms have proven successful for treating diseases resulting from immune deregulation. The aim of this study was to find novel candidates to improve on and complement current probiotic treatment strategies. Of 60 lactic acid bacterial strains that were isolated from fecal samples of healthy, full-term, breast-fed infants, three were chosen because of their ability to activate human immune cells. These candidates were then tested with regard to immunomodulatory properties, antimicrobial effects on pathogens, required pharmacological properties and their safety profiles. To identify the immunomodulatory structures of the selected isolates, activation of specific innate immune receptors was studied. The three candidates for probiotic treatment were assigned Enterococcus faecium NM113, Enterococcus faecium NM213 and Lactobacillus casei NM512. Compared with the established allergy-protective strain Lactococcus lactis G121, these isolates induced release of similar amounts of IL-12, a potent inducer of T helper 1 cells. In addition, all three neonatal isolates had antimicrobial activity against pathogens. Analysis of pharmacological suitability showed high tolerance of low pH, bile salts and pancreatic enzymes. In terms of safe application in humans, the isolates were sensitive to three antibiotics (chloramphenicol, tetracycline and erythromycin). In addition, the Enterococcus isolates were free from the four major virulence genes (cylA, agg, efaAfs and ccf). Moreover, the isolates strongly activated Toll-like receptor 2, which suggests lipopeptides as their active immunomodulatory structure. Thus, three novel bacterial strains with great potential as probiotic candidates and promising immunomodulatory properties have here been identified and characterized.

  9. Laser photolysis of caged compounds at 405 nm: photochemical advantages, localisation, phototoxicity and methods for calibration.

    PubMed

    Trigo, Federico F; Corrie, John E T; Ogden, David

    2009-05-30

    Rapid, localised photolytic release of neurotransmitters from caged precursors at synaptic regions in the extracellular space is greatly hampered at irradiation wavelengths in the near-UV, close to the wavelength of maximum absorption of the caged precursor, because of inner-filtering by strong absorption of light in the cage solution between the objective and cell. For this reason two-photon excitation is commonly used for photolysis, particularly at multiple points distributed over large fields; or, with near-UV, if combined with local perfusion of the cage. These methods each have problems: the small cross-sections of common cages with two-photon excitation require high cage concentrations and light intensities near the phototoxic limit, while local perfusion gives non-uniform cage concentrations over the field of view. Single-photon photolysis at 405 nm, although less efficient than at 330-350 nm, with present cages is more efficient than two-photon photolysis. The reduced light absorption in the bulk cage solution permits efficient wide-field uncaging at non-toxic intensities with uniform cage concentration. Full photolysis of MNI-glutamate with 100 micros pulses required intensities of 2 mW microm(-2) at the preparation, shown to be non-toxic with repeated exposures. Light scattering at 405 nm was estimated as 50% at 18 microm depth in 21-day rat cerebellum. Methods are described for: (1) varying the laser spot size; (2) photolysis calibration in the microscope with the caged fluorophore NPE-HPTS over the wavelength range 347-405 nm; and (3) determining the point-spread function of excitation. Furthermore, DM-Nitrophen photolysis at 405 nm was efficient for intracellular investigations of Ca2+-dependent processes.

  10. Hard X-ray Microscopy with sub 30 nm Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Tang, Mau-Tsu; Song, Yen-Fang; Yin, Gung-Chian; Chen, Fu-Rong; Chen, Jian-Hua; Chen, Yi-Ming; Liang, Keng S.; Duewer, F.; Yun, Wenbing

    2007-01-01

    A transmission X-ray microscope (TXM) has been installed at the BL01B beamline at National Synchrotron Radiation Research Center in Taiwan. This state-of-the-art TXM operational in a range 8-11 keV provides 2D images and 3D tomography with spatial resolution 60 nm, and with the Zernike-phase contrast mode for imaging light materials such as biological specimens. A spatial resolution of the TXM better than 30 nm, apparently the best result in hard X-ray microscopy, has been achieved by employing the third diffraction order of the objective zone plate. The TXM has been applied in diverse research fields, including analysis of failure mechanisms in microelectronic devices, tomographic structures of naturally grown photonic specimens, and the internal structure of fault zone gouges from an earthquake core. Here we discuss the scope and prospects of the project, and the progress of the TXM in NSRRC.

  11. Hard X-ray Microscopy with sub 30 nm Spatial Resolution

    SciTech Connect

    Tang, M.-T.; Song, Y.-F.; Yin, G.-C.; Chen, J.-H.; Chen, Y.-M.; Liang, Keng S.; Chen, F.-R.; Duewer, F.; Yun Wenbing

    2007-01-19

    A transmission X-ray microscope (TXM) has been installed at the BL01B beamline at National Synchrotron Radiation Research Center in Taiwan. This state-of-the-art TXM operational in a range 8-11 keV provides 2D images and 3D tomography with spatial resolution 60 nm, and with the Zernike-phase contrast mode for imaging light materials such as biological specimens. A spatial resolution of the TXM better than 30 nm, apparently the best result in hard X-ray microscopy, has been achieved by employing the third diffraction order of the objective zone plate. The TXM has been applied in diverse research fields, including analysis of failure mechanisms in microelectronic devices, tomographic structures of naturally grown photonic specimens, and the internal structure of fault zone gouges from an earthquake core. Here we discuss the scope and prospects of the project, and the progress of the TXM in NSRRC.

  12. Single Frequency, Pulsed Laser Diode Transmitter for Dial Water Vapor Measurements at 935nm

    NASA Technical Reports Server (NTRS)

    Switzer, Gregg W.; Cornwell, Donald M., Jr.; Krainak, Michael A.; Abshire, James B.; Rall, Johnathan A. R.

    1998-01-01

    We report a tunable, single frequency, narrow linewidth, pulsed laser diode transmitter at 935.68nm for remote sensing of atmospheric water vapor. The transmitter consists of a CW, tunable, external cavity diode laser whose output is amplified 2OdB using a tapered diode amplifier. The output is pulsed for range resolved DIAL lidar by pulsing the drive current to the diode amplifier at 4kHz with a .5% duty cycle. The output from the transmitter is 36OnJ/pulse and is single spatial mode. It maintains a linewidth of less than 25MHz as its wavelength is tuned across the water vapor absorption line at 935.68nm. The transmitter design and its use in a water vapor measurement will be discussed.

  13. Generation of second harmonic light with a wavelength of 560 nm in a compact module

    NASA Astrophysics Data System (ADS)

    Hofmann, Julian; Sahm, Alexander; John, Wilfred; Bugge, Frank; Paschke, Katrin

    2016-09-01

    We demonstrate a continuous wave 133 mW laser module at 560.5 nm on a 50 mm·10 mm optical bench. The setup consists of a 1121 nm distributed Bragg reflector ridge waveguide laser and a MgO:LiNbO3 quasi-phase matched ridge waveguide crystal, which are coupled by a grin lens, as well as two cylindrical lenses for beam collimation behind the crystal. A novel approach to ensure phase matching is used. The laser and the crystal are stabilized by the same heat sink and only the wavelength of the laser is tuned by heating the distributed Bragg reflector section of the laser. This reduces the influence of temperature variations on the module's performance enabling operation with output power variations < 10 % over a temperature range of 20 K. The size and robustness against temperature variations of this setup make it an interesting candidate for future biomedical applications.

  14. Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Rahman, Atikur; Ashraf, Ahsan; Xin, Huolin; Tong, Xiao; Sutter, Peter; Eisaman, Matthew D.; Black, Charles T.

    2015-01-01

    Materials providing broadband light antireflection have applications as highly transparent window coatings, military camouflage, and coatings for efficiently coupling light into solar cells and out of light-emitting diodes. In this work, densely packed silicon nanotextures with feature sizes smaller than 50 nm enhance the broadband antireflection compared with that predicted by their geometry alone. A significant fraction of the nanotexture volume comprises a surface layer whose optical properties differ substantially from those of the bulk, providing the key to improved performance. The nanotexture reflectivity is quantitatively well-modelled after accounting for both its profile and changes in refractive index at the surface. We employ block copolymer self-assembly for precise and tunable nanotexture design in the range of ~10-70 nm across macroscopic solar cell areas. Implementing this efficient antireflection approach in crystalline silicon solar cells significantly betters the performance gain compared with an optimized, planar antireflection coating.

  15. Core level photoionization on free sub-10-nm nanoparticles using synchrotron radiation

    SciTech Connect

    Meinen, Jan; Leisner, Thomas; Khasminskaya, Svetlana; Eritt, Markus; Antonsson, Egill; Langer, Burkhard; Ruehl, Eckart

    2010-08-15

    A novel instrument is presented, which permits studies on singly charged free nanoparticles in the diameter range from 1 to 30 nm using synchrotron radiation in the soft x-ray regime. It consists of a high pressure nanoparticle source, a high efficiency nanoparticle beam inlet, and an electron time-of-flight spectrometer suitable for probing surface and bulk properties of free, levitated nanoparticles. We show results from x-ray photoelectron spectroscopy study near the Si L{sub 3,2}-edge on 8.2 nm SiO{sub 2} particles prepared in a nanoparticle beam. The possible use of this apparatus regarding chemical reactions on the surface of nanometer-sized particles is highlighted. This approach has the potential to be exploited for process studies on heterogeneous atmospheric chemistry.

  16. Visible supercontinuum generation in a graded index multimode fiber pumped at 1064  nm.

    PubMed

    Lopez-Galmiche, G; Sanjabi Eznaveh, Z; Eftekhar, M A; Antonio Lopez, J; Wright, L G; Wise, F; Christodoulides, D; Amezcua Correa, R

    2016-06-01

    We observe efficient supercontinuum generation that extends into the visible spectral range by pumping a low differential mode group delay graded index multimode fiber in the normal dispersion regime. For a 28.5 m long fiber, the generated spectrum spans more than two octaves, starting from below 450 nm and extending beyond 2400 nm. The main nonlinear mechanisms contributing to the visible spectrum generation are attributed to multipath four-wave mixing processes and periodic spatio-temporal breathing dynamics. Moreover, by exploiting the highly multimodal nature of this system, we demonstrate versatile generation of visible spectral peaks in shorter fiber spans by altering the launching conditions. A nonlinearly induced mode cleanup was also observed at the pump wavelength. Our results could pave the way for high brightness, high power, and compact, multi-octave continuum sources. PMID:27244412

  17. Intra-cavity frequency-doubled mode-locked semiconductor disk laser at 325 nm.

    PubMed

    Bek, Roman; Baumgärtner, Stefan; Sauter, Fabian; Kahle, Hermann; Schwarzbäck, Thomas; Jetter, Michael; Michler, Peter

    2015-07-27

    We present a passively mode-locked semiconductor disk laser (SDL) emitting at 650nm with intra-cavity second harmonic generation to the ultraviolet (UV) spectral range. Both the gain and the absorber structure contain InP quantum dots (QDs) as active material. In a v-shaped cavity using the semiconductor samples as end mirrors, a beta barium borate (BBO) crystal is placed in front of the semiconductor saturable absorber mirror (SESAM) for pulsed UV laser emission in one of the two outcoupled beams. Autocorrelation (AC) measurements at the fundamental wavelength reveal a FWHM pulse duration of 1.22ps. With a repetition frequency of 836MHz, the average output power is 10mW per beam for the red emission and 0.5mW at 325nm.

  18. Subsurface imaging of silicon nanowire circuits and iron oxide nanoparticles with sub-10 nm spatial resolution.

    PubMed

    Perrino, A P; Ryu, Y K; Amo, C A; Morales, M P; Garcia, R

    2016-07-01

    Non-destructive subsurface characterization of nanoscale structures and devices is of significant interest in nanolithography and nanomanufacturing. In those areas, the accurate location of the buried structures and their nanomechanical properties are relevant for optimization of the nanofabrication process and the functionality of the system. Here we demonstrate the capabilities of bimodal and trimodal force microscopy for imaging silicon nanowire devices buried under an ultrathin polymer film. We resolve the morphology and periodicities of silicon nanowire pairs. We report a spatial resolution in the sub-10 nm range for nanostructures buried under a 70 nm thick polymer film. By using numerical simulations we explain the role of the excited modes in the subsurface imaging process. Independent of the bimodal or trimodal atomic force microscopy approach, the fundamental mode is the most suitable for tracking the topography while the higher modes modulate the interaction of the tip with the buried nanostructures and provide subsurface contrast.

  19. Acute hematologic, hepatologic, and nephrologic changes after intraperitoneal injections of 18 nm gold nanoparticles in hamsters

    PubMed Central

    Saleh, Hazem Mohamed; Soliman, Omar A; Elshazly, Mohamed Osama; Raafat, Alaa; Gohar, Adel K; Salaheldin, Taher A

    2016-01-01

    In vivo responses to gold nanoparticles (GNPs) vary not only according to the size, shape, surface charge, and capping agent of GNPs but also according to the animal model, the route of administration, and the exposure frequency and duration. We illustrate here the changes in some hematologic parameters, in the hepatic and renal functions, and in the histopathology of solid organs after multiple intraperitoneal injections of 18 nm GNPs in adult male Syrian golden hamsters. We scored the histopathological changes in the liver and kidneys to grade the deleterious effects. Multiple intraperitoneal injections of 18 nm GNPs in hamsters were nonlethal in the short term but resulted in macrocytosis and hypochromasia, leukocytosis, neutrophilia, lymphocytosis, and monocytosis. The hepatic and renal functions showed nonsignificant changes; however, histopathological examination showed hepatic and renal alterations ranging from mild to marked degeneration, with occasional necrosis of hepatocytes and tubular epithelium. PMID:27354788

  20. Power dissipation in oxide-confined 980-nm vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Shi, Guo-Zhu; Guan, Bao-Lu; Li, Shuo; Wang, Qiang; Shen, Guang-Di

    2013-01-01

    We presented 980-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with a 16-μm oxide aperture. Optical power, voltage, and emission wavelength are measured in an ambient temperature range of 5 °C-80 °C. Measurements combined with an empirical model are used to analyse the power dissipation in the device and the physical mechanism contributing to the thermal rollover phenomenon in VCSEL. It is found that the carrier leakage induced self-heating in the active region and the Joule heating caused by the series resistance are the main sources of power dissipation. In addition, carrier leakage induced self-heating increases as the injection current increases, resulting in a rapid decrease of the internal quantum efficiency, which is a dominant contribution to the thermal rollover of the VCSEL at a larger current. Our study provides useful guidelines to design a 980-nm oxide-confined VCSEL for thermal performance enhancement.

  1. Removal of 10-nm contaminant particles from Si wafers using CO2 bullet particles

    PubMed Central

    2012-01-01

    Removal of nanometer-sized contaminant particles (CPs) from substrates is essential in successful fabrication of nanoscale devices. The particle beam technique that uses nanometer-sized bullet particles (BPs) moving at supersonic velocity was improved by operating it at room temperature to achieve higher velocity and size uniformity of BPs and was successfully used to remove CPs as small as 10 nm. CO2 BPs were generated by gas-phase nucleation and growth in a supersonic nozzle; appropriate size and velocity of the BPs were obtained by optimizing the nozzle contours and CO2/He mixture fraction. Cleaning efficiency greater than 95% was attained. BP velocity was the most important parameter affecting removal of CPs in the 10-nm size range. Compared to cryogenic Ar or N2 particles, CO2 BPs were more uniform in size and had higher velocity and, therefore, cleaned CPs more effectively. PMID:22494621

  2. Acute hematologic, hepatologic, and nephrologic changes after intraperitoneal injections of 18 nm gold nanoparticles in hamsters.

    PubMed

    Saleh, Hazem Mohamed; Soliman, Omar A; Elshazly, Mohamed Osama; Raafat, Alaa; Gohar, Adel K; Salaheldin, Taher A

    2016-01-01

    In vivo responses to gold nanoparticles (GNPs) vary not only according to the size, shape, surface charge, and capping agent of GNPs but also according to the animal model, the route of administration, and the exposure frequency and duration. We illustrate here the changes in some hematologic parameters, in the hepatic and renal functions, and in the histopathology of solid organs after multiple intraperitoneal injections of 18 nm GNPs in adult male Syrian golden hamsters. We scored the histopathological changes in the liver and kidneys to grade the deleterious effects. Multiple intraperitoneal injections of 18 nm GNPs in hamsters were nonlethal in the short term but resulted in macrocytosis and hypochromasia, leukocytosis, neutrophilia, lymphocytosis, and monocytosis. The hepatic and renal functions showed nonsignificant changes; however, histopathological examination showed hepatic and renal alterations ranging from mild to marked degeneration, with occasional necrosis of hepatocytes and tubular epithelium. PMID:27354788

  3. Subsurface imaging of silicon nanowire circuits and iron oxide nanoparticles with sub-10 nm spatial resolution

    NASA Astrophysics Data System (ADS)

    Perrino, A. P.; Ryu, Y. K.; Amo, C. A.; Morales, M. P.; Garcia, R.

    2016-07-01

    Non-destructive subsurface characterization of nanoscale structures and devices is of significant interest in nanolithography and nanomanufacturing. In those areas, the accurate location of the buried structures and their nanomechanical properties are relevant for optimization of the nanofabrication process and the functionality of the system. Here we demonstrate the capabilities of bimodal and trimodal force microscopy for imaging silicon nanowire devices buried under an ultrathin polymer film. We resolve the morphology and periodicities of silicon nanowire pairs. We report a spatial resolution in the sub-10 nm range for nanostructures buried under a 70 nm thick polymer film. By using numerical simulations we explain the role of the excited modes in the subsurface imaging process. Independent of the bimodal or trimodal atomic force microscopy approach, the fundamental mode is the most suitable for tracking the topography while the higher modes modulate the interaction of the tip with the buried nanostructures and provide subsurface contrast.

  4. New apparatus with high radiation energy between 320 to 460 nm: physical description and dermatological applications

    SciTech Connect

    Mutzhas, M.F.; Holzle, E.; Hofmann, C.; Plewig, G.

    1981-01-01

    A new apparatus (UVASUN 5000) is presented with high radiation energy between 320 to 460 nm. The radiator is a specially developed source for high uv-A intensity, housing a quartz bulb with a mixture of argon, mercury and metal-halides. The uv-A energy in the range of 320 to 400 nm is about 84% of the total radiation energy. Effects of very high doses of uv-A on human skin were studied. Following single uv-A applications the minimal tanning dose uv-A (MTD) and the immediate pigment darkening (IPD) dose of uv-A were established. Repeated exposure to this uv-A delivering system yields long lasting dark brown skin pigmentation without any clinical or histological signs of sunburn (uv-B) damage, epidermal hyperplasia or thickening of the stratum corneum. Minimal therapeutic results were seen in the phototherapy of vitiligo and inflammatory acne.

  5. Two-stage reflective optical system for achromatic 10 nm x-ray focusing

    NASA Astrophysics Data System (ADS)

    Motoyama, Hiroto; Mimura, Hidekazu

    2015-12-01

    Recently, coherent x-ray sources have promoted developments of optical systems for focusing, imaging, and interferometers. In this paper, we propose a two-stage focusing optical system with the goal of achromatically focusing pulses from an x-ray free-electron laser (XFEL), with a focal width of 10 nm. In this optical system, the x-ray beam is expanded by a grazing-incidence aspheric mirror, and it is focused by a mirror that is shaped as a solid of revolution. We describe the design procedure and discuss the theoretical focusing performance. In theory, soft-XFEL lights can be focused to a 10 nm area without chromatic aberration and with high reflectivity; this creates an unprecedented power density of 1020 W cm-2 in the soft-x-ray range.

  6. Surgical effects on soft tissue produced by a 405-nm violet diode laser in vivo

    NASA Astrophysics Data System (ADS)

    Miyazaki, H.; Kato, J.; Kawai, S.; Hatayama, H.; Uchida, K.; Otsuki, M.; Tagami, J.; Yokoo, S.

    2011-12-01

    This study evaluated the surgical performance of a 405-nm diode laser in vivo, using living rat liver tissue. Tissue was incised by irradiation with the laser at low output power ranging from 1 W (722 W/cm2) to 3 W (2165 W/cm2) on a manual control at a rate of 1 mm/s. As a control, incisions using a stainless scalpel were compared. Immediately after operation, the surface of the incisions was macroscopically observed and histopathologically evaluated by microscopy. Laser-ablated liver tissue was smooth with observable signs of remnant carbonization and easily acquired hemostasis. The thickness of the denatured layer increased in proportion to the output power; the coagulation layer did not thicken accordingly. Bleeding could not be stopped for tissues incised with the stainless scalpel. The 405-nm diode laser thus proved to be effective for ablating soft tissue with high hemostatic ability at low power.

  7. Characterization of single 1.8-nm Au nanoparticle attachments on AFM tips for single sub-4-nm object pickup

    NASA Astrophysics Data System (ADS)

    Cheng, Hui-Wen; Chang, Yuan-Chih; Tang, Song-Nien; Yuan, Chi-Tsu; Tang, Jau; Tseng, Fan-Gang

    2013-11-01

    This paper presents a novel method for the attachment of a 1.8-nm Au nanoparticle (Au-NP) to the tip of an atomic force microscopy (AFM) probe through the application of a current-limited bias voltage. The resulting probe is capable of picking up individual objects at the sub-4-nm scale. We also discuss the mechanisms involved in the attachment of the Au-NP to the very apex of an AFM probe tip. The Au-NP-modified AFM tips were used to pick up individual 4-nm quantum dots (QDs) using a chemically functionalized method. Single QD blinking was reduced considerably on the Au-NP-modified AFM tip. The resulting AFM tips present an excellent platform for the manipulation of single protein molecules in the study of single protein-protein interactions.

  8. High average power, narrow band 248 nm alexandrite laser system

    SciTech Connect

    Kuper, J.W.; Chin, T.C.; Papanestor, P.A.

    1994-12-31

    A compact line-narrowed 248 nm solid state laser source operating at 15 mJ {at} 100 Hz PRF was demonstrated. Constraints due to thermal loading of components were addressed. Tradeoffs between pulse energy and repetition rate were investigated. A method for overcoming thermal dephasing in the THG material was achieved by scanning a slab shaped crystal.

  9. 78 FR 67210 - Santa Clara Pueblo Disaster #NM-00038

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Santa Clara Pueblo Disaster NM-00038 AGENCY: U.S. Small Business Administration. ACTION: Notice...: Submit completed loan applications to: U.S. Small Business Administration, Processing and...

  10. 77 FR 62481 - Radio Broadcasting Services; Crownpoint, NM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Crownpoint, NM AGENCY: Federal Communications....415 and 1.420. List of Subjects in 47 CFR Part 73 Radio, Radio broadcasting. Federal Communications... preamble, the Federal Communications Commission proposes to amend 47 CFR Part 73 as follows: PART...

  11. Gain measurements at 5 nm in nickel-like ytterbium

    SciTech Connect

    MacGowan, B.J.; Bourgade, J.L.; Combis, P.; Keane, C.J.; Louis-Jacquet, M.; Matthews, D.L.; Naccache, D.; Stone, G.; Thiell, G.; Whelan, D.A.

    1988-03-01

    Soft x-ray gain has been demonstrated at 5.03 nm within a laser produced plasma of Ni-like ytterbium. Experiments will also be described with higher Z Ni-like ions which can produce even shorter wavelength x-ray laser transition. 3 refs.

  12. Pushing EUV lithography development beyond 22-nm half pitch

    SciTech Connect

    Naulleau, Patrick; Anderson, Christopher N.; Baclea-an, Lorie-Mae; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Goldstein, Michael; Hoef, Brian; Jones, Gideon; Koh, Chawon; La Fontaine, Bruno; Montogomery, Warren; Wallow, Tom

    2009-06-30

    Microfield exposure tools (METs) have and continue to play a dominant role in the development of extreme ultraviolet (EUV) resists and masks. One of these tools is the SEMATECH Berkeley 0.3 numerical aperture (NA) MET. Here we investigate the possibilities and limitations of using the 0.3-NA MET for sub-22-nm half-pitch development. We consider mask resolution limitations and present a method unique to the centrally obscured MET allowing these mask limitations to be overcome. We also explore projection optics resolution limits and describe various illumination schemes allowing resolution enhancement. At 0.3-NA, the 0.5 k1 factor resolution limit is 22.5 nm meaning that conventional illumination is of limited utility for sub-22-nm development. In general resolution enhancing illumination encompasses increased coherence. We study the effect of this increased coherence on line-edge roughness, which along with resolution is another crucial factor in sub-22-nm resist development.

  13. Surface Photometry of the Southern Milky Way at 170 NM

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Schlosser, W.; Schmidtobreick, L.; Koczet, P.

    As part of the D2-Space-Shuttle-Mission in 1993, the GAUSS-Camera has obtained photographic images of the Milky Way in various passbands in the Ultraviolet. Each film covers an area of the sky of about 140^\\circ. Six images were obtained at 170 nm, but only three of them could be used. The calibration has been done using the catalogued intensities of stars and transforming them into surface brightnesses. Then the stars on the images have been filtered out and the Shuttle-Glow has been eliminated. The images finally have been transformed into maps of the Milky Way in galactic coordinates l, b. These maps cover the Milky Way between the Galactic Center and Vela (360^\\circ <= l <= 270^\\circ, - -25^\\circ <= b <= 35^\\circ) and include dark clouds, reflection nebulae and bright open clusters. They are a perfect tool to investigate the distribution of these objects and therefore the global structure of the Milky Way. The image of the Milky Way at 170 nm is heavily dominated by interstellar extinction, leading to high intensity gradients all over the galactic plane. The images at 217 nm and 280 nm, also obtained by the GAUSS-Camera, and previous photometries taken in U, B, V and R have been used for comparison.

  14. 76 FR 18289 - New Mexico Disaster #NM-00020

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION New Mexico Disaster NM-00020 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... State of New Mexico (FEMA- 1962-DR), dated 03/24/2011. Incident: Severe Winter Storm and Extreme...

  15. 77 FR 55523 - New Mexico Disaster #NM-00029

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION New Mexico Disaster NM-00029 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... State of New Mexico (FEMA- 4079-DR), dated 08/24/2012. Incident: Flooding. Incident Period:...

  16. 75 FR 57538 - New Mexico Disaster # NM-00016

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION New Mexico Disaster NM-00016 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... State of New Mexico (FEMA- 1936-DR), dated 09/13/2010. Incident: Severe Storms and Flooding....

  17. 77 FR 41874 - New Mexico Disaster #NM-00025

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... ADMINISTRATION New Mexico Disaster NM-00025 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of New Mexico dated 07/09... adversely affected by the disaster: Primary Counties: Lincoln. Contiguous Counties: New Mexico: Chaves,...

  18. 78 FR 61999 - New Mexico Disaster #NM-00037

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-10

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION New Mexico Disaster NM-00037 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... State of New Mexico (FEMA- 4148-DR), dated 09/30/2013. Incident: Severe Storms and Flooding....

  19. 77 FR 63409 - New Mexico Disaster Number NM-00029

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... ADMINISTRATION New Mexico Disaster Number NM-00029 AGENCY: U.S. Small Business Administration. ACTION: Amendment... Assistance Only for the State of New Mexico (FEMA-4079-DR), dated 08/24/2012. Incident: Flooding. Incident... Non-Profit organizations in the State of NEW MEXICO, dated 08/24/2012, is hereby amended to...

  20. 76 FR 2431 - New Mexico Disaster #NM-00016

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... ADMINISTRATION New Mexico Disaster NM-00016 AGENCY: U.S. Small Business Administration. ACTION: Amendment 1... Only for the State of New Mexico (FEMA-1936-DR), dated 09/13/2010. Incident: Severe Storms and Flooding... Private Non-Profit organizations in the State of NEW MEXICO, dated 09/13/2010, is hereby amended...