Science.gov

Sample records for 10-12 hz frequency

  1. The 10 Hz Frequency: A Fulcrum For Transitional Brain States

    PubMed Central

    Garcia-Rill, E.; D’Onofrio, S.; Luster, B.; Mahaffey, S.; Urbano, F. J.; Phillips, C.

    2016-01-01

    A 10 Hz rhythm is present in the occipital cortex when the eyes are closed (alpha waves), in the precentral cortex at rest (mu rhythm), in the superior and middle temporal lobe (tau rhythm), in the inferior olive (projection to cerebellar cortex), and in physiological tremor (underlying all voluntary movement). These are all considered resting rhythms in the waking brain which are “replaced” by higher frequency activity with sensorimotor stimulation. That is, the 10 Hz frequency fulcrum is replaced on the one hand by lower frequencies during sleep, or on the other hand by higher frequencies during volition and cognition. The 10 Hz frequency fulcrum is proposed as the natural frequency of the brain during quiet waking, but is replaced by higher frequencies capable of permitting more complex functions, or by lower frequencies during sleep and inactivity. At the center of the transition shifts to and from the resting rhythm is the reticular activating system, a phylogenetically preserved area of the brain essential for preconscious awareness.

  2. Magnetic resonance imaging at frequencies below 1 kHz.

    PubMed

    Hilschenz, Ingo; Körber, Rainer; Scheer, Hans-Jürgen; Fedele, Tommaso; Albrecht, Hans-Helge; Mario Cassará, Antonino; Hartwig, Stefan; Trahms, Lutz; Haase, Jürgen; Burghoff, Martin

    2013-02-01

    Within the magnetic resonance imaging (MRI) community the trend is going to higher and higher magnetic fields, ranging from 1.5 T to 7 T, corresponding to Larmor frequencies of 63.8-298 MHz. Since for high-field MRI the magnetization increases with the applied magnetic field, the signal-to-noise-ratio increases as well, thus enabling higher image resolutions. On the other hand, MRI is possible also at ultra-low magnetic fields, as was shown by different groups. The goal of our development was to reach a Larmor frequency range of the low-field MRI system corresponding to the frequency range of human brain activities ranging from near zero-frequency (near-DC) to over 1 kHz. Here, first 2D MRI images of phantoms taken at Larmor frequencies of 100 Hz and 731 Hz will be shown and discussed. These frequencies are examples of brain activity triggered by electrostimulation of the median nerve. The method will allow the magnetic fields of the brain currents to influence the magnetic resonance image, and thus lead to a direct functional imaging modality of neuronal currents. PMID:22898690

  3. 47 CFR 90.253 - Use of frequency 5167.5 kHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Use of frequency 5167.5 kHz. 90.253 Section 90.253 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES... frequency 5167.5 kHz. The frequency 5167.5 kHz may be used by any station authorized under this part...

  4. 47 CFR 90.253 - Use of frequency 5167.5 kHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Use of frequency 5167.5 kHz. 90.253 Section 90.253 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES... frequency 5167.5 kHz. The frequency 5167.5 kHz may be used by any station authorized under this part...

  5. 47 CFR 90.253 - Use of frequency 5167.5 kHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Use of frequency 5167.5 kHz. 90.253 Section 90.253 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES... frequency 5167.5 kHz. The frequency 5167.5 kHz may be used by any station authorized under this part...

  6. Dual frequency (20.0-19.9 kHz) VLF data

    NASA Technical Reports Server (NTRS)

    Looney, C. H.

    1968-01-01

    Data are presented from 24 months of operation of radio station WWVL. Daily measurements of the 20.0 kHz and 20.0/19.9 kHz signal phase angles corrected in accordance with the NBS measurements are presented in tabular form. The 20.0/19.9 kHz data is a function of the phase angle of the 100 Hz information inherent in the 20.0/19.9 transmissions. This data can be used to resolve the 50 microsecond ambiguity inherent in 20.0 kHz single frequency transmissions.

  7. 47 CFR 90.253 - Use of frequency 5167.5 kHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Use of frequency 5167.5 kHz. 90.253 Section 90.253 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Standards for Special Frequencies or Frequency Bands § 90.253 Use...

  8. 47 CFR 90.253 - Use of frequency 5167.5 kHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Use of frequency 5167.5 kHz. 90.253 Section 90.253 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Standards for Special Frequencies or Frequency Bands § 90.253 Use...

  9. Arc extinction characteristics in power supply frequencies from 50 Hz to 1 MHz

    NASA Astrophysics Data System (ADS)

    Miki, N.; Sawa, K.

    2010-04-01

    It is well-known that arcing phenomena at the break of contacts affect seriously the reliability and lifetime of contacts. Therefore, many papers have reported arc duration, arc extinction current and other characteristics. Recently, in mobile communication application an electro-mechanical switch is said to be superior to a semiconductor switch in insertion loss and isolation, and a RF (radio frequency) MEMS relay has been intensively developed. Based on the above background it is one of important research topics how the frequency of interrupted current affects the characteristics of breaking arc. However, there are few papers on that topic. In this paper the effect of frequency on arc characteristics is investigated in range of the frequency of interrupted current from 50 Hz to 1 MHz. Consequently the followings can be made clear. At the interruption of peak current 2 A arc extinguishes in terms of arc characteristics and circuit conditions up to the frequency of 200 Hz. Above 200 Hz the arc extinguishes at current zero. The current zero extinction takes place up to 500 kHz. Therefore, arc duration decreases with high frequencies and the contact damage caused by arc is reduced with frequency. However, at frequencies higher than 600 kHz an arc is re-ignited after the current zero and failed to extinguish.

  10. Free-field calibration of measurement microphones at frequencies up to 80 kHz

    NASA Astrophysics Data System (ADS)

    Zuckerwar, Allan J.; Herring, Gregory C.

    2002-11-01

    Civil-aviation noise-reduction programs, that make use of scaled-down aircraft models in wind tunnel tests, require knowledge of microphone pressure (i.e., not free-field) sensitivities beyond 20 kHz--since noise wavelengths also scale down with decreasing model size. Furthermore, not all microphone types (e.g., electrets) are easily calibrated with the electrostatic technique, while enclosed cavity calibrations typically have an upper limit for the useful frequency range. Thus, work was initiated to perform a high-frequency pressure calibration of Panasonic electret microphones using a substitution free-field method in a small anechoic chamber. First, a standard variable-frequency pistonphone was used to obtain the pressure calibration up to 16 kHz. Above 16 kHz, to avoid spatially irregular sound fields due to dephasing of loudspeaker diaphragms, a series of resonant ceramic piezoelectric crystals was used at five specific ultrasonic frequencies as the free-field calibration sound source. Then, the free-field sensitivity was converted to a pressure sensitivity with an electrostatic calibration of the reference microphone (an air condenser type), for which the free-field correction is known. Combining the low- and high-frequency data sets, a full frequency calibration of pressure sensitivity for an electret microphone was generated from 63 Hz to 80 kHz.

  11. Low-frequency sounds and psychological tests at 7, 18, and 40 Hz

    NASA Astrophysics Data System (ADS)

    Damijan, Zbigniew; Kasprzak, Cezary; Panuszka, Ryszard

    2001-05-01

    Research included the results of tests aimed to determine how LFN (low-frequency noise) with the dominating frequency (7 Hz at 120 dB, 18 Hz at 120 dB, and 40 Hz at 110 dB) influences human brain potentials and understanding the dependency of results achieved in psychological questionnaires. The psychological questionnaires (EPQ-R Eysencks and SSS-5 Zuckermans) were analyzed. Presented issue existences difference, relative influence LFN on human biopotentials, dependence from acquired results in ranges EPQ-R Eysencks and SSS-5 Zuckermans. The test included 96 experiments. Standard EEG potentials, ECG potentials, and EDP (dermal) were recorded before, during and after subject's 35-min exposures to LFN. Evident differences in changed bio-signals especially in EEG subject's dispersion, were easily determined and correlated to questionnaire reports.

  12. Low frequency, ca. 40 Hz, pulse trains recorded in the humpback whale assembly in Hawaii.

    PubMed

    Darling, James D

    2015-11-01

    During studies of humpback whale song and social sounds in Hawaii, bouts of low frequency (ca. 40 Hz) pulses were periodically recorded. One example was made near an active group of eight adults (included 22 bouts, 2-13 s long, over 90 min); another close to an adult male-female pair (12 bouts, 9-93 s long, over 22 min). The mean peak and center frequencies (39 to 40 Hz) and bandwidth (13 Hz) were similar in both, but the organization of the pulses differed. Song components, social sounds, bubble trains, or other species do not provide a ready explanation for this sound. PMID:26627813

  13. A megavolt Marx generator with pulse recurrence frequency of 200 Hz

    SciTech Connect

    Bushlyakov, A.I.; Rukin, S.N.; Slovikovskii, B.G.

    1995-10-01

    The design problems related to repetitive Marx generators are discussed. The circuitry and structure of a megavolt nanosecond Marx generator with a pulse recurrence frequency of 200 Hz operating at an average power of 80 kW are described. The results of generator tests are given.

  14. The distribution of kHz QPO frequencies in bright low mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Belloni, T.; Méndez, M.; Homan, J.

    2005-07-01

    We analyzed all published frequencies, ν1 and ν2, of the twin kilohertz quasi-periodic oscillations (kHz QPOs) in bright neutron star low-mass X-ray binaries. The two frequencies are well correlated but, contrary to recent suggestions, the frequency-frequency correlation is significantly different from a ν2 = (3/2) ν1 relation. To check whether, although not following the the 3/2 relation, the QPO frequencies cluster around a region where ν2/ν1 ≈ 3/2, we re-analyzed the Sco X-1 data that were used to report that ratio and show that, because the distribution of ratios of linearly correlated measurements is intrinsically biased, although the significance of the clustering around ν2/ν1 ≈ 3/2 previously reported in the case of Sco X-1 is formally correct, it does not provide any useful information about a possible underlying resonance mechanism in this source. Using the same data, we then show that the (unbiased) distribution of QPO frequencies is consistent with a uniform distribution at a 2.4σ level. To investigate this further, we analyzed a larger data set of Sco X-1 and four other sources, 4U 1608-52, 4U 1636-53, 4U 1728-34 and 4U 1820-30. We find that for all five sources the distribution of the kHz QPO frequencies is not uniform and has multiple peaks, which have no analogy in the distribution of points in the spectral color-color diagrams of these sources. Finally, we demonstrate that a simple random walk of the QPO frequencies can reproduce qualitatively the observed distributions in frequency and frequency ratio. This result weakens the support for resonance models of kHz QPOs in neutron stars.

  15. Extended high-frequency audiometry (9,000-20,000 Hz). Usefulness in audiological diagnosis.

    PubMed

    Rodríguez Valiente, Antonio; Roldán Fidalgo, Amaya; Villarreal, Ithzel M; García Berrocal, José R

    2016-01-01

    Early detection and appropriate treatment of hearing loss are essential to minimise the consequences of hearing loss. In addition to conventional audiometry (125-8,000 Hz), extended high-frequency audiometry (9,000-20,000 Hz) is available. This type of audiometry may be useful in early diagnosis of hearing loss in certain conditions, such as the ototoxic effect of cisplatin-based treatment, noise exposure or oral misunderstanding, especially in noisy environments. Eleven examples are shown in which extended high-frequency audiometry has been useful in early detection of hearing loss, despite the subject having a normal conventional audiometry. The goal of the present paper was to highlight the importance of the extended high-frequency audiometry examination for it to become a standard tool in routine audiological examinations. PMID:26025356

  16. Dependence of kHz quasi-periodic oscillation frequencies on accretion-related parameters

    NASA Astrophysics Data System (ADS)

    Hakan Erkut, M.; Catmabacak, Onur; Duran, Sivan; Çatmabacak, Önder

    2016-07-01

    To study the possible dependence of kHz QPO frequencies on the parameters such as the mass accretion rate, the surface magnetic field strength, mass, and radius of the neutron star, we consider the up-to-date distribution of neutron star LMXBs in the kHz QPO frequency versus X-ray luminosity plane. We confirm the absence of any correlation between QPO frequencies and luminosity in the ensemble of LMXBs. Searching for the dependence of QPO data on accretion-related parameters, we find a correlation between the lower kHz QPO frequency and the parameter combining mass accretion rate with magnetic field strength. The correlation cannot be adequately described by a simple power law due to observed scattering of individual source data in the ensemble of Z and atoll sources. Based on disk-magnetosphere boundary region, the model function for QPO frequency can delineate the correlation taking into account the scattering of individual sources. In addition to mass accretion rate and magnetic field strength, the model function also depends on the radial width of the boundary region near the magnetopause. Modelling the variation of the width with mass accretion rate, we also provide an explanation for the parallel tracks phenomenon observed in the case of individual sources.

  17. Atmospheric Electric Field Measurements at 100 Hz and High Frequency Electric Phenomena

    NASA Astrophysics Data System (ADS)

    Conceição, Ricardo; Gonçalves da Silva, Hugo; Matthews, James; Bennett, Alec; Chubb, John

    2016-04-01

    Spectral response of Atmospheric Electric Potential Gradient (PG), symmetric to the Atmospheric Electric Field, gives important information about phenomena affecting these measurements with characteristic time-scales that appear in the spectra as specific periodicities. This is the case of urban pollution that has a clear weekly dependence and reveals itself on PG measurements by a ~7 day periodicity (Silva et al., 2014). While long-term time-scales (low frequencies) have been exhaustively explored in literature, short-term time-scales (high frequencies), above 1 Hz, have comparatively received much less attention (Anisimov et al., 1999). This is mainly because of the technical difficulties related with the storage of such a huge amount of data (for 100 Hz sampling two days of data uses a ~1 Gb file) and the response degradation of the field-meters at such frequencies. Nevertheless, important Electric Phenomena occurs for frequencies above 1 Hz that are worth pursuing, e.g. the Schumann Resonances have a signature of worldwide thunderstorm activity at frequencies that go from ~8 up to ~40 Hz. To that end the present work shows preliminary results on PG measurements at 100 Hz that took place on two clear-sky days (17th and 18th June 2015) on the South of Portugal, Évora (38.50° N, 7.91° W). The field-mill used is a JCI 131F installed in the University of Évora campus (at 2 m height) with a few trees and two buildings in its surroundings (~50 m away). This device was developed by John Chubb (Chubb, 2014) and manufactured by Chilworth (UK). It was calibrated in December 2013 and recent work by the author (who is honored in this study for his overwhelming contribution to atmospheric electricity) reveals basically a flat spectral response of the device up to frequencies of 100 Hz (Chubb, 2015). This makes this device suitable for the study of High Frequency Electric Phenomena. Anisimov, S.V., et al. (1999). On the generation and evolution of aeroelectric structures

  18. Harvesting Low-Frequency (<5 Hz) Irregular Mechanical Energy: A Possible Killer Application of Triboelectric Nanogenerator.

    PubMed

    Zi, Yunlong; Guo, Hengyu; Wen, Zhen; Yeh, Min-Hsin; Hu, Chenguo; Wang, Zhong Lin

    2016-04-26

    Electromagnetic generators (EMGs) and triboelectric nanogenerators (TENGs) are the two most powerful approaches for harvesting ambient mechanical energy, but the effectiveness of each depends on the triggering frequency. Here, after systematically comparing the performances of EMGs and TENGs under low-frequency motion (<5 Hz), we demonstrated that the output performance of EMGs is proportional to the square of the frequency, while that of TENGs is approximately in proportion to the frequency. Therefore, the TENG has a much better performance than that of the EMG at low frequency (typically 0.1-3 Hz). Importantly, the extremely small output voltage of the EMG at low frequency makes it almost inapplicable to drive any electronic unit that requires a certain threshold voltage (∼0.2-4 V), so that most of the harvested energy is wasted. In contrast, a TENG has an output voltage that is usually high enough (>10-100 V) and independent of frequency so that most of the generated power can be effectively used to power the devices. Furthermore, a TENG also has advantages of light weight, low cost, and easy scale up through advanced structure designs. All these merits verify the possible killer application of a TENG for harvesting energy at low frequency from motions such as human motions for powering small electronics and possibly ocean waves for large-scale blue energy. PMID:27077467

  19. Orbit compensation for the time-varying elliptically polarized wiggler with switching frequency at 100 hz

    SciTech Connect

    Singh, O.; Krinsky, S.

    1997-07-01

    In October 1996, the elliptically polarized wiggler, installed in the X13 straight section of the NSLS X-ray ring, was commissioned at an operating frequency of 100 hz. This wiggler generates circularly polarized photons in the energy range of 0.1 to 10 keV with AC modulation of polarization helicity. The vertical magnetic field is produced by a hybrid permanent magnet structure, and the horizontal magnetic field is generated by an electromagnet capable of switching at frequencies up to 100 hz. Here, the authors discuss the compensation of the residual vertical and horizontal orbit motion utilizing a time-domain algorithm employing a function generator to drive trim coils at the wiggler ends, and the wideband high precision orbit measurement system of the X-ray ring. The residual orbit motion has been reduced to a level below 1 micron, and the device has been run in regular operations with no negative effect on other users.

  20. A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex

    PubMed Central

    Roopun, Anita K.; Middleton, Steven J.; Cunningham, Mark O.; LeBeau, Fiona E. N.; Bibbig, Andrea; Whittington, Miles A.; Traub, Roger D.

    2006-01-01

    Beta2 frequency (20–30 Hz) oscillations appear over somatosensory and motor cortices in vivo during motor preparation and can be coherent with muscle electrical activity. We describe a beta2 frequency oscillation occurring in vitro in networks of layer V pyramidal cells, the cells of origin of the corticospinal tract. This beta2 oscillation depends on gap junctional coupling, but it survives a cut through layer 4 and, hence, does not depend on apical dendritic electrogenesis. It also survives a blockade of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors or a blockade of GABAA receptors that is sufficient to suppress gamma (30–70 Hz) oscillations in superficial cortical layers. The oscillation period is determined by the M type of K+ current. PMID:17030821

  1. COOMET.AUV.W-S1 supplementary comparison of free-field hydrophone calibrations in the frequency range 250 Hz to 8 kHz

    NASA Astrophysics Data System (ADS)

    Isaev, A. E.; Yi, Chen; Matveev, A. N.; Zihong, Ping

    2015-01-01

    A description is given of COOMET.AUV.W-S1 supplementary comparison of free-field hydrophone calibrations in the frequency range 250 Hz to 8 kHz between Hangzhou Applied Acoustics Research Institute—a pilot and Russian National Research Institute for Physicotechnical and Radio Engineering Measurements. Two standard hydrophones of TC 4033 and GI 55 were calibrated in this comparison. Reciprocity method, comparison methods, and their facilities were used to assess the current state of free-field hydrophone calibration in the frequency range 250 Hz to 8 kHz of China and Russia. The consistency of calibration results between two participants was confirmed, and the maximum deviation observed was 0.59 dB at frequency 400 Hz. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  2. Human exposure standards in the frequency range 1 Hz To 100 kHz: the case for adoption of the IEEE standard.

    PubMed

    Patrick Reilly, J

    2014-10-01

    Differences between IEEE C95 Standards (C95.6-2002 and C95.1-2005) in the low-frequency (1 Hz-100 kHz) and the ICNIRP-2010 guidelines appear across the frequency spectrum. Factors accounting for lack of convergence include: differences between the IEEE standards and the ICNIRP guidelines with respect to biological induction models, stated objectives, data trail from experimentally derived thresholds through physical and biological principles, selection and justification of safety/reduction factors, use of probability models, compliance standards for the limbs as distinct from the whole body, defined population categories, strategies for central nervous system protection below 20 Hz, and correspondence of environmental electric field limits with contact currents. This paper discusses these factors and makes the case for adoption of the limits in the IEEE standards. PMID:25162425

  3. Discovery of a Neutron Star with Spin Frequency 530 Hz in A1744-361

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, Tod E.; Markwardt, Craig B.; Swank, Jean H.; Bhattacharyya, Sudip

    2005-01-01

    We report the detection with the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) of 530 Hz burst oscillations in a thermonuclear (Type I) burst from the transient X-ray source A1744-361. This is only the second burst ever observed from this source, and the first to be seen in any detail. Our results confirm that A1744-361 is a low mass X-ray binary (LMXB) system harboring a rapidly rotating neutron star. The oscillations are first detected along the rising edge of the burst, and show evidence for frequency evolution of a magnitude similar to that seen in other burst sources. The modulation amplitude and its increase with photon energy are also typical of burst oscillations. The lack of any strong indication of photospheric radius expansion during the burst suggests a 9 kpc upper limit of the source distance. We also find energy dependent dips, establishing A1744-361 as a high inclination, dipping LMXB. The timescale between the two episodes of observed dips suggests an orbital period of approx. 97 min. We have also detected a 2 - 4 Hz quasi-periodic-oscillation (QPO) for the first time from this source. This QPO appears consistent with approx. 1 Hz QPOs seen from other high inclination systems. We searched for kilohertz QPOs, and found a suggestive 2.3 sigma feature at 800 Hz in one observation. The frequency, strength and quality factor are consistent with that of a lower frequency kilohertz QPO, but the relatively low significance argues for caution, so we consider this a tentative detection requiring confirmation.

  4. Observations of the radio noise background in the frequency range 150-180 kHz

    NASA Astrophysics Data System (ADS)

    Knowles, S. H.; Kelly, F. J.; Waltman, W. B.; Odenwald, S.

    1985-05-01

    Observations were made of the radio noise background in the frequency range 150-180 kHz to provide reference data for the design of the ground wave emergency network system. These observations were undertaken at Nanjemoy, Maryland, during early summer 1983 and included 41 days of data recording. The noise environment was found to be dominated by impulsive thunderstorm noise. A typical nighttime mean noise power spectral density was 1×10-15 W m-2 Hz-1 (noise factor of 107 dB above kT0), while a typical daytime level was at least 14 dB quieter. However, the daytime level was at times significantly higher, especially during the presence of a local thunderstorm front. During local thunderstorm activity, impulses with peak power spectral density of 1×10-14 W m-2 Hz-1 were observed frequently, while the most energetic pulse detected during our monitoring period had a peak power spectral density of 6.8×10-14 W m-2 Hz-1 (Fa = 125 dB). Sample amplitude probability distributions and time probability distributions are presented for day/quiet, night, and thunderstorm conditions. Agreement with the mean noise level predictions of CCIR report 322 is satisfactory within the accuracy limits of the CCIR data.

  5. Occupational exposures to high frequency electromagnetic fields in the intermediate range ( >300 Hz-10 MHz).

    PubMed

    Floderus, Birgitta; Stenlund, Carin; Carlgren, Frank

    2002-12-01

    The aim of this study was to identify work situations with electromagnetic fields of 300 Hz-10 MHz and to characterize the occupational exposure. Work place investigations included descriptions of the work environment and physical measurements. We estimated electric (E) and magnetic (H) fields by spot measurements in air, by logged exposure data, and when possible, we recorded induced currents in limbs. The instruments used were Wandel and Golterman EFA-3, NARDA 8718, Holaday HI-3702. The exposure sources comprised five induction furnaces, seven induction heaters, one surface treatment equipment, four units of electronic article surveillance (EAS), and medical devices for surgery and muscle stimulation. The induction furnaces operated at 480 Hz-7 kHz, and the maximum values of logged data varied between 512-2,093 V/m (E field) and 10.5-87.3 A/m (H field). The induction heaters (3.8 kHz-1.25 MHz) also showed high maximum exposure values of both E and H fields. Three EAS units, an electromagnetic plate at a library, a luggage control unit, and an antitheft gate, showed E fields reaching 658-1,069 V/m. The H fields were comparatively lower, except for the antitheft gate (5 and 7.5 kHz) showing a maximum value of 27.2 A/m (recorded during repair). Induced currents of 5-13 mA were measured for the medical devices. The study improves the basis for an exposure assessment for epidemiological studies of long term effects of exposures to high frequency electromagnetic fields. PMID:12395411

  6. Exposure to high-frequency electromagnetic fields (100 kHz-2 GHz) in Extremadura (Spain).

    PubMed

    Rufo, M Montaña; Paniagua, Jesús M; Jiménez, Antonio; Antolín, Alicia

    2011-12-01

    The last decade has seen a rapid increase in people's exposure to electromagnetic fields. This paper reports the measurements of radiofrequency (RF) total power densities and power density spectra in 35 towns of the region of Extremadura, Spain. The spectra were taken with three antennas covering frequencies from 100 kHz to 2.2 GHz. This frequency range includes AM/FM radio broadcasting, television, and cellular telephone signals. The power density data and transmitting antenna locations were stored in a geographic information system (GIS) as an aid in analyzing and interpreting the results. The results showed the power density levels to be below the reference level guidelines for human exposure and that the power densities are different for different frequency ranges and different size categories of towns. PMID:22048492

  7. Review of Studies Concerning Electromagnetic Field (EMF) Exposure Assessment in Europe: Low Frequency Fields (50 Hz-100 kHz).

    PubMed

    Gajšek, Peter; Ravazzani, Paolo; Grellier, James; Samaras, Theodoros; Bakos, József; Thuróczy, György

    2016-01-01

    We aimed to review the findings of exposure assessment studies done in European countries on the exposure of the general public to low frequency electric and magnetic fields (EMFs) of various frequencies. The study shows that outdoor average extremely low frequency magnetic fields (ELF-MF) in public areas in urban environments range between 0.05 and 0.2 µT in terms of flux densities, but stronger values (of the order of a few µT) may occur directly beneath high-voltage power lines, at the walls of transformer buildings, and at the boundary fences of substations. In the indoor environment, high values have been measured close to several domestic appliances (up to the mT range), some of which are held close to the body, e.g., hair dryers, electric shavers. Common sources of exposure to intermediate frequencies (IF) include induction cookers, compact fluorescent lamps, inductive charging systems for electric cars and security or anti-theft devices. No systematic measurement surveys or personal exposimetry data for the IF range have been carried out and only a few reports on measurements of EMFs around such devices are mentioned. According to the available European exposure assessment studies, three population exposure categories were classified by the authors regarding the possible future risk analysis. This classification should be considered a crucial advancement for exposure assessment, which is a mandatory step in any future health risk assessment of EMFs exposure. PMID:27598182

  8. The phonological function of vowels is maintained at fundamental frequencies up to 880 Hz.

    PubMed

    Friedrichs, Daniel; Maurer, Dieter; Dellwo, Volker

    2015-07-01

    In a between-subject perception task, listeners either identified full words or vowels isolated from these words at F0s between 220 and 880 Hz. They received two written words as response options (minimal pair with the stimulus vowel in contrastive position). Listeners' sensitivity (A') was extremely high in both conditions at all F0s, showing that the phonological function of vowels can also be maintained at high F0s. This indicates that vowel sounds may carry strong acoustic cues departing from common formant frequencies at high F0s and that listeners do not rely on consonantal context phenomena for their identification performance. PMID:26233058

  9. Measurements and mechanisms investigation of seismic wave attenuation for frequencies between 1 and 100 Hz

    NASA Astrophysics Data System (ADS)

    Tisato, N.; Madonna, C.; Saenger, E. H.

    2012-04-01

    Seismic wave attenuation at low frequencies in the earth crust has been explained by partial saturation as well as permeability models. We present results obtained by the Broad Band Attenuation Vessel (BBAV) which measures seismic wave attenuation using the sub-resonance method in the frequency range 0.01 - 100 Hz. The apparatus also allows the investigation of attenuation mechanisms related to fluid flow by means of five pore pressure sensors placed in the specimen. This allows continuous local measurements of pore pressure changes generated by stress field changes. Measurements were performed on 76 mm diameter, 250 mm long, 20% porosity, and ~500 mD permeability Berea sandstone samples. The confining pressure was varied between 0 and 20 MPa, and the specimens were saturated with water between 0% and 90%. Attenuation measurements show dependence with saturation. For instance, when samples are at dry conditions they exhibit attenuation values around 0.01, the same sample saturated with 90% water shows attenuation values between 0.018 and 0.028 across the entire frequency range. Attenuation is also confining pressure dependent. For instance, variations of confining pressure ranging between 0 and 8 MPa lead to quality factors between 40 and 10 at 60 Hz and 60% water saturation. Best fits on these measurements reveal that the corner frequency of the attenuation mechanism decreases from ~800 to ~200 Hz with increasing confining pressure. Using calibration measurements with Aluminum the possibility of apparatus resonances can be ruled out. Local pore pressure measurements corroborate this observation showing pore pressure evolution as a function of saturation. The results are discussed and interpreted in light of known attenuation mechanisms for partially saturated rocks (patchy saturation and squirt flow). We rule out the possibility of patchy saturation occurrence, but squirt flow would offer an explanation. The confining pressure dependence could be the result of

  10. 200 Hz repetition frequency joule-level high beam quality Nd:YAG nanosecond laser

    NASA Astrophysics Data System (ADS)

    Qiu, Jisi; Tang, Xiongxin; Fan, Zhongwei; Wang, Haocheng

    2016-06-01

    A joule-level Nd:YAG nanosecond laser of high repetition frequency and high beam quality is developed out. The laser is designed as a MOPA system mainly including single longitudinal mode seed, pre-amplifier unit an d power amplifier unit. In order to obtain the high-quality laser beam output, phase conjugation is adopted to compensate the laser beam distortion. Under the condition of 200 Hz high repetition frequency and 8.19 μJ single pulse energy injected by the single longitudinal mode seed, 1.53 J output energy is gained. The output laser beam is of 9 mm diameter, 7.41 ns pulse width, the far field beam spot 1.32 times the value of the diffraction limit, 1.2% energy stability (RMS) and less than 13 μrad far field beam spot angle shift.

  11. Comparison of lower-frequency (<1000 Hz) downhole seismic sources for use at environmental sites

    SciTech Connect

    Elbring, G.J.

    1995-03-01

    In conjunction with crosswell seismic surveying being done at the Hanford Site in south-central Washington, four different downhole seismic sources have been tested between the same set of boreholes. The four sources evaluated were the Bolt airgun, the OYO-Conoco orbital vibrator, and two Sandia-developed vertical vibrators, one pneumatically-driven, and the other based on a magnetostrictive actuator. The sources generate seismic energy in the lower frequency range of less than 1000 Hz and have different frequency characteristics, radiation patterns, energy levels, and operational considerations. Collection of identical data sets with all four sources allows the direct comparison of these characteristics and an evaluation of the suitability of each source for a given site and target.

  12. NMDA receptors amplify mossy fiber synaptic inputs at frequencies up to at least 750 Hz in cerebellar granule cells.

    PubMed

    Baade, Carolin; Byczkowicz, Niklas; Hallermann, Stefan

    2016-07-01

    Neuronal integration of high-frequency signals is important for rapid information processing. Cerebellar mossy fiber axons (MFs) can fire action potentials (APs) at frequencies of more than one kilohertz. However, it is unclear whether and how the postsynaptic cerebellar granule cells (GCs) are able to process these high-frequency MF inputs. Here, we measured AP firing in GCs during high-frequency MF stimulation and show that GC firing frequency increased non-linearly when MF stimulation frequency was increased from 100 to 750 Hz. To investigate the mechanisms enabling such high-frequency signaling, we analyzed the role of N-methyl-d-aspartate receptors (NMDARs), which have been implicated in synaptic signaling at lower frequencies. Application of D-2-amino-5-phosphonopentanoic acid (APV), a potent inhibitor of NMDARs, strongly impaired the GC firing frequency during high-frequency MF stimulation. APV had no significant effect on single excitatory postsynaptic potentials (EPSPs) or currents (EPSCs) evoked at 1 Hz at resting membrane potentials. However, the time course of EPSCs evoked at 1 Hz at depolarized potentials or following high-frequency MF stimulation was accelerated by APV. Thus, our results show that NMDAR-mediated currents amplify high-frequency MF inputs by prolonging the time courses of synaptic inputs, thereby causing greater synaptic summation of inputs. Hence, NMDARs support the integration of MF synaptic input at frequencies up to at least 750 Hz. Synapse 70:269-276, 2016. © 2016 Wiley Periodicals, Inc. PMID:26887562

  13. Loading frequencies up to 20Hz as an alternative to accelerate fatigue strength tests in a Y-TZP ceramic.

    PubMed

    Fraga, Sara; Pereira, Gabriel Kalil Rocha; Freitas, Mariana; Kleverlaan, Cornelis Johannes; Valandro, Luiz Felipe; May, Liliana Gressler

    2016-08-01

    Considering the interest of the research community in the fatigue behavior of all-ceramic restorations and the time consumed in low-frequency cyclic fatigue tests, this study aimed to investigate the influence of the loading frequency on the zirconia fatigue strength. The biaxial flexural fatigue strength of Y-TZP discs was determined by the staircase approach after 500,000 cycles. The investigated frequencies were 2Hz (control-simulation of the chewing activity; n=20), 10Hz (n=20), 20Hz (n=20), and 40Hz (n=21). The fatigue strength data were analyzed using one-way ANOVA and post-hoc Tukey׳s test (α=0.05). Pearson coefficient (r) was calculated to assess the existence of a correlation between fatigue strength and loading frequency. X-ray diffraction analysis was used to determine the relative amount of monoclinic phase under each fatigue test condition. The fatigue strength was significantly higher for 40Hz group (630.7±62.1MPa) and did not differ among the groups 2Hz (550.3±89.7MPa), 10Hz (574.0±47MPa) and 20Hz (605.1±30.7MPa). Pearson correlation coefficient indicated a significantly moderate correlation (r=0.57) between fatigue strength and loading frequency. The percentage of monoclinic phase was similar among the groups. Therefore, the use of loading frequencies up to 20Hz seems a good alternative to expedite the cycling strength fatigue tests in polycrystalline ceramics without significantly changing the fatigue behavior showed by zirconia in tests employing the frequency of the masticatory cycle. PMID:26849030

  14. 52 W kHz-linewidth low-noise linearly-polarized all-fiber single-frequency MOPA laser

    NASA Astrophysics Data System (ADS)

    Yang, Changsheng; Xu, Shanhui; Chen, Dan; Zhang, Yuanfei; Zhao, Qilai; Li, Can; Zhou, Kaijun; Feng, Zhouming; Gan, Jiulin; Yang, Zhongmin

    2016-05-01

    An all-fiber Yb-doped kHz-linewidth low-noise linearly polarized single-frequency master-oscillator power-amplifier (MOPA) laser with a stable CW output power of >52 W is demonstrated. By suppressing the intensity noise of the DBR phosphate fiber oscillator, the linewidth of MOPA laser is not noticeably broadened, and an ultra-narrow linewidth of <3 kHz is obtained. Furthermore, the low-noise behavior of MOPA lasers is investigated. A measured relative intensity noise of < -130 dB Hz-1 at frequencies of over 2 MHz, a phase noise above 1 kHz of <5 μrad/Hz1/2, and a signal-to-noise ratio of >63 dB are achieved.

  15. Band limited emission with central frequency around 2 Hz accompanying powerful cyclones

    NASA Technical Reports Server (NTRS)

    Troitskaia, V. A.; Shepetnov, K. S.; Dvobnia, B. D.

    1992-01-01

    It has been found that powerful cyclones are proceeded, accompanied and followed by narrow band electromagnetic emission with central frequency around 2 Hz. It is shown that the signal from this emission is unique and clearly distinguishable from known types of magnetic pulsations, spectra of local thunderstorms, and signals from industrial sources. This emission was first observed during an unusually powerful cyclone with tornadoes in the western European part of the Soviet Union, which passed by the observatory of Borok from south to north-east. The emission has been confirmed by analysis of similar events in Antarctica. The phenomenon described presents a new aspect of interactions of processes in the lower atmosphere and the ionosphere.

  16. Potential low frequency ground vibration (<6.3 Hz) impacts from underground LRT operations

    NASA Astrophysics Data System (ADS)

    Wolf, S.

    2003-10-01

    Vibration sensitive research activities at the laboratories of the University of Washington (UW) Physics and Astronomy Building (PAB) were a critical issue for the design of the Sound Transit Link Light Rail LRT system in Seattle, Washington. A study was conducted to measure and predict low frequency ground vibration generated by the LRT operations. The University's concern was an on-going research experiment in gravity, which had sensitivity to vibration below 6.3 Hz. The experiment was located on an independent concrete slab in an area cut-out from the building foundation with no connection to the building structure. Another concern was the planned future construction of a Life Sciences Center with vibration sensitive test equipment. This paper presents the results of a study to estimate the ground displacement at these buildings using empirical measured data of a similar deep tunnel transit system and finite difference modelling analysis.

  17. 486nm blue laser operating at 500 kHz pulse repetition frequency

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Blanchard, Jon; Pretorius, Herman; Limongelli, Julia; Setzler, Scott D.

    2016-03-01

    Compact, high power blue light in the 470-490nm region is difficult to generate due to the lack of laser sources which are easily convertible (through parametric processes) to those wavelengths. By using a pulsed Tm-doped fiber laser as a pump source for a 2-stage second harmonic generation (SHG) scheme, we have generated ~2W of 486.5nm light at 500kHz pulse repetition frequency (PRF). To our knowledge, this is the highest PRF and output power achieved in the blue region based on a frequency converted, monolithic fiber laser. This pump laser is a pulsed Tm-doped fiber laser/amplifier which generates 12.8W of 1946nm power at 500kHz PRF with diffraction-limited output from a purely single-mode fiber. The output from this laser is converted to 973nm through second harmonic generation (SHG). The 973nm is then converted to 486.5nm via another SHG stage. This architecture operates with very low peak power, which can be challenging from a nonlinear conversion standpoint. However, the low peak power enables the use of a single-mode monolithic fiber amplifier without undergoing nonlinear effects in the fiber. This also eliminates the need for novel fiber designs, large-mode area fiber, or free-space coupling to rod-type amplifiers, improving reliability and robustness of the laser source. Higher power and conversion efficiency are possible through the addition of Tm-doped fiber amplification stages as well as optimization of the nonlinear conversion process and nonlinear materials. In this paper, we discuss the laser layout, results, and challenges with generating blue light using a low peak power approach.

  18. Interictal high-frequency oscillations (80-500 Hz) in the human epileptic brain: entorhinal cortex.

    PubMed

    Bragin, Anatol; Wilson, Charles L; Staba, Richard J; Reddick, Mark; Fried, Itzhak; Engel, Jerome

    2002-10-01

    Unique high-frequency oscillations of 250 to 500 Hz, termed fast ripples, have been identified in seizure-generating limbic areas in rats made epileptic by intrahippocampal injection of kainic acid, and in patients with mesial temporal lobe epilepsy. In the rat, fast ripples clearly are generated by a different neuronal population than normally occurring endogenous ripple oscillations (100-200 Hz), but this distinction has not been previously evaluated in humans. The characteristics of oscillations in the ripple and fast ripple frequency bands were compared in the entorhinal cortex of patients with mesial temporal lobe epilepsy using local field potential and unit recordings from chronically implanted bundles of eight microelectrodes with tips spaced 500 microm apart. The results showed that ripple oscillations possessed different voltage versus depth profiles compared with fast ripple oscillations. Fast ripple oscillations usually demonstrated a reversal of polarity in the middle layers of entorhinal cortex, whereas ripple oscillations rarely showed reversals across entorhinal cortex layers. There was no significant difference in the amplitude distributions of ripple and fast ripple oscillations. Furthermore, multiunit synchronization was significantly increased during fast ripple oscillations compared with ripple oscillations (p < 0.001). These data recorded from the mesial temporal lobe of epileptic patients suggest that the cellular networks underlying fast ripple generation are more localized than those involved in the generation of normally occurring ripple oscillations. Results from this study are consistent with previous studies in the intrahippocampal kainic acid rat model of chronic epilepsy that provide evidence supporting the view that fast ripples in the human brain reflect localized pathological events related to epileptogenesis. PMID:12325068

  19. PULSE AMPLITUDE DEPENDS ON kHz QPO FREQUENCY IN THE ACCRETING MILLISECOND PULSAR SAX J1808.4-3658

    SciTech Connect

    Bult, Peter; Van der Klis, Michiel

    2015-01-10

    We study the relation between the 300-700 Hz upper kHz quasi-periodic oscillation (QPO) and the 401 Hz coherent pulsations across all outbursts of the accreting millisecond X-ray pulsar SAX J1808.4-3658 observed with the Rossi X-ray Timing Explorer. We find that the pulse amplitude systematically changes by a factor of ∼2 when the upper kHz QPO frequency passes through 401 Hz: it halves when the QPO moves to above the spin frequency and doubles again on the way back. This establishes for the first time the existence of a direct effect of kHz QPOs on the millisecond pulsations and provides a new clue to the origin of the upper kHz QPO. We discuss several scenarios and conclude that while more complex explanations can not formally be excluded, our result strongly suggests that the QPO is produced by azimuthal motion at the inner edge of the accretion disk, most likely orbital motion. Depending on whether this azimuthal motion is faster or slower than the spin, the plasma then interacts differently with the neutron-star magnetic field. The most straightforward interpretation involves magnetospheric centrifugal inhibition of the accretion flow that sets in when the upper kHz QPO becomes slower than the spin.

  20. Evaluation of the developmental toxicity of 60 Hz magnetic fields and harmonic frequencies in Sprague-Dawley rats.

    PubMed

    Ryan, B M; Polen, M; Gauger, J R; Mallett, E; Kearns, M B; Bryan, T L; McCormick, D L

    2000-05-01

    Experimental data suggest that exposure to the 50 and 60 Hz sinusoidal components of power-frequency magnetic fields (MFs) does not have an adverse impact on fetal development. However, the possible developmental toxicity of MF harmonics has not been investigated. This study was designed to determine whether exposure to 180 Hz MFs (third harmonic), alone or in combination with 60 Hz MFs, induces birth defects in Sprague-Dawley rats. Groups of sperm-positive dams (> or =20/group) were exposed for 18.5 h per day from gestation days 6 through 19 to (1) ambient MFs only (<0.0001 mT; sham controls); (2) 60 Hz MFs at 0.2 mT; (3) 180 Hz MFs at 0.2 mT; or (4) 60 Hz + 180 Hz MFs (10% third harmonic; total field strength = 0.2 mT). Litter size, litter weight, percentage live births, sex ratio, and number of resorption sites were determined for each dam, and gross external, visceral, cephalic and skeletal examinations were performed on all fetuses. MF exposure had no significant effects on litter size, litter weight, or fetal development. With the exception of common rib variants, the incidence of fetal anomalies was comparable in all groups. A small increase in the incidence of rib variants was seen in the group exposed to 60 Hz + 180 Hz MFs; however, the incidence of rib variants in this group was similar to that in historical controls from our laboratory. These data extend the existing database on developmental toxicity of MFs by demonstrating that exposure to 180 Hz MFs, either alone or superimposed on an underlying 60 Hz signal, does not induce biologically significant developmental toxicity. These data do not support the hypothesis that exposure to power-frequency MFs is an important risk factor for fetal development. PMID:10790286

  1. Closed-cycle 1-kHz-pulse-repetition-frequency HF(DF) laser

    NASA Astrophysics Data System (ADS)

    Harris, Michael R.; Morris, A. V.; Gorton, Eric K.

    1998-05-01

    We describe the design and performance of a closed cycle, high pulse repetition frequency HF(DF) laser. A short duration, glow discharge is formed in a 10 SF6:1 H2(D2) gas mixture at a total pressure of approximately 110 torr. A pair of profiled electrodes define a 15 X 0.5 X 0.5 cm3 discharge volume through which gas flow is forced in the direction transverse to the optical axis. A centrifugal fan provides adequate gas flow to enable operation up to 3 kHz repetition frequency. The fan also passes the gas through a scrubber cell in which ground state HF(DF) is eliminated from the gas stream. An automated gas make-up system replenishes the spent fuel gases removed by the scrubber. Total gas admission is regulated by monitoring the system pressure, whilst the correct fuel balance is maintained through measurement of the discharge voltage. The HF(DF) generation rate is determined to be close to 5 X 1019 molecules per second per watt of laser output. Typical mean laser output powers of up to 3 watts can be delivered for extended periods of time. The primary limitation to life is found to be the discharge pre- ionization system. A distributed resistance corona pre- ionizer is shown to be advantageous when compared with an alternative arc array scheme.

  2. Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz.

    PubMed Central

    Hölzel, R

    1997-01-01

    The determination of complete electrorotation spectra of living cells has been made possible by the development of a quadrature generator and an electrode assembly that span the frequency range between 100 Hz and 1.6 GHz. Multiple spectra of single cells of the yeast Saccharomyces cerevisiae have been measured at different medium conductivities ranging from 0.7 to 550 microS cm-1. A spherical four-shell model was applied that simulated the experimental data well and disclosed the four-layer structure of the cell envelope attributed to the plasma membrane, the periplasmic space, and a thick inner and a thin outer wall region. Below 10 kHz an additional rotation effect was found, which changed its direction depending on the ionic strength of the medium. This is supposed to be connected with properties of the cell surface and its close vicinity. From the four-shell simulation the following physical properties of cell compartments could be derived: specific capacitance of plasma membrane (0.76 microF cm-2), periplasmic space (0.5 microF cm-2), and outer wall region (0.1 microF cm-2). The conductivity of cytoplasm, plasma membrane, and inner wall region were found to vary with medium ionic strength from 9 to 12 mS cm-1, 5.8 nS cm-1 to approximately 50 nS cm-1, and 6 microS cm-1 to 240 microS cm-1, respectively. Images FIGURE 2 PMID:9251826

  3. High frequency (1-100 HZ) noise and signal recorded at different depths in a mine, northwest Adirondacks, NY

    NASA Astrophysics Data System (ADS)

    Barstow, Noël; Carter, Jerry A.; Pomeroy, Paul W.; Sutton, George H.; Chael, Eric P.; Leahy, Patrick J.

    Seismograms of noise recorded simultaneously at the surface and at two subsurface stations (335m and 945m below surface level) show that high frequency (1-100 Hz) background noise is reduced at the subsurface stations. Seismometers at all three stations are well coupled to hard crystalline bedrock. Most of the noise reduction occurs between the surface and 335m depth. Between 1 and 3 Hz, seismic noise correlates well with wind speed at all levels. Above 3 Hz, wind speed up to 8 m/sec does not influence high frequency noise levels at 335m or 945m depths. At the surface, however, high frequency noise is associated with wind speeds in excess of 2 m/s. A site resonance is characteristic of the surface spectra, but is not characteristic of the subsurface sites. Spectral signal-to-noise (S/N) ratios, measured for S-waves from a regional earthquake (Δ = 530 km, mb = 4.1), are roughly equal from 1-10 Hz at all depths. Above 10 Hz, however, S/N is greater at the subsurface stations with S/N greater than 1 up to 30 Hz for the surface station, ≈ 50 Hz for the 335m station, and ≈ 70 Hz for the 945m station. Results indicate the advantage of employing high frequency sensors sufficiently below the surface to reduce the level of noise and to improve the S/N ratio in the high frequency range. Such an advantage could be critically important for nuclear test detection and discrimination.

  4. High frequency (1-100 Hz) noise and signal recorded at different depths in a mine, northwest Adirondacks, NY

    SciTech Connect

    Barstow, N.; Carter, J.A.; Pomeroy, P.W.; Sutton, G.H. ); Chael, E.P.; Leahy, P.J. )

    1990-05-01

    Seismograms of noise recorded simultaneously at the surface and at two subsurface stations (335m and 945m below surface level) show that high frequency (1-100 Hz) background noise is reduced at the subsurface stations. Seismometers at all three stations are well coupled to hard crystalline bedrock. Most of the noise reduction occurs between the surface and 335m depth. Between 1 and 3 Hz, seismic noise correlates well with wind speed at all levels. Above 3 Hz, wind speed up to 8 m/sec does not influence high frequency noise levels at 335m or 945m depths. At the surface, however, high frequency noise is associated with wind speeds in excess of 2 m/s. A site resonance is characteristic of the surface spectra, but is not characteristic of the subsurface sites. Spectral signal-to-noise (S/N) ratios, measured for S-waves from a regional earthquake ({Delta} = 530 km, m{sub b} = 4.1), are roughly equal from 1-10 Hz at all depths. Above 10 Hz, however, S/N is greater at the subsurface stations with S/N greater than 1 up to 30 Hz for the surface station, {approx} 50 Hz for the 335m station, and {approx} 70 Hz for the 945m station. Results indicate the advantage of employing high frequency sensors sufficiently below the surface to reduce the level of noise and to improve the S/N ratio in the high frequency range. Such an advantage could be critically important for nuclear test detection and discrimination.

  5. Cyclic Stress at mHz Frequencies Aligns Fibroblasts in Direction of Zero Strain

    PubMed Central

    Rubner, Wolfgang; Kirchgeßner, Norbert; Safran, Sam; Hoffmann, Bernd; Merkel, Rudolf

    2011-01-01

    Recognition of external mechanical signals is vital for mammalian cells. Cyclic stretch, e.g. around blood vessels, is one such signal that induces cell reorientation from parallel to almost perpendicular to the direction of stretch. Here, we present quantitative analyses of both, cell and cytoskeletal reorientation of umbilical cord fibroblasts. Cyclic strain of preset amplitudes was applied at mHz frequencies. Elastomeric chambers were specifically designed and characterized to distinguish between zero strain and minimal stress directions and to allow accurate theoretical modeling. Reorientation was only induced when the applied stretch exceeded a specific amplitude, suggesting a non-linear response. However, on very soft substrates no mechanoresponse occurs even for high strain. For all stretch amplitudes, the angular distributions of reoriented cells are in very good agreement with a theory modeling stretched cells as active force dipoles. Cyclic stretch increases the number of stress fibers and the coupling to adhesions. We show that changes in cell shape follow cytoskeletal reorientation with a significant temporal delay. Our data identify the importance of environmental stiffness for cell reorientation, here in direction of zero strain. These in vitro experiments on cultured cells argue for the necessity of rather stiff environmental conditions to induce cellular reorientation in mammalian tissues. PMID:22194961

  6. Relationships among low frequency (2 Hz) electrical resistivity, porosity, clay content and permeability in reservoir sandstones

    NASA Astrophysics Data System (ADS)

    Han, Tongcheng; Best, Angus I.; Sothcott, Jeremy; North, Laurence J.; MacGregor, Lucy M.

    2015-01-01

    The improved interpretation of marine controlled source electromagnetic (CSEM) data requires knowledge of the inter-relationships between reservoir parameters and low frequency electrical resistivity. Hence, the electrical resistivities of 67 brine (35 g/l) saturated sandstone samples with a range of petrophysical properties (porosity from 2% to 29%, permeability from 0.0001 mD to 997.49 mD and volumetric clay content from 0 to 28%) were measured in the laboratory at a frequency of 2 Hz using a four-electrode circumferential resistivity method with an accuracy of ± 2%. The results show that sandstones with porosity higher than 9% and volumetric clay content up to 22% behave like clean sandstones and follow Archie's law for a brine concentration of 35 g/l. By contrast, at this brine salinity, sandstones with porosity less than 9% and volumetric clay content above 10% behave like shaly sandstones with non-negligible grain surface conductivity. A negative, linear correlation was found between electrical resistivity and hydraulic permeability on a logarithmic scale. We also found good agreement between our experimental results and a clay pore blocking model based on pore-filling and load-bearing clay in a sand/clay mixture, variable (non-clay) cement fraction and a shaly sandstone resistivity model. The model results indicate a general transition in shaly sandstones from clay-controlled resistivity to sand-controlled resistivity at about 9% porosity. At such high brine concentrations, no discernible clay conduction effect was observed above 9% porosity.

  7. Final report on key comparison CCAUV.A-K5: pressure calibration of laboratory standard microphones in the frequency range 2 Hz to 10 kHz

    NASA Astrophysics Data System (ADS)

    Avison, Janine; Barham, Richard

    2014-01-01

    This document and the accompanying spreadsheets constitute the final report for key comparison CCAUV.A-K5 on the pressure calibration of laboratory standard microphones in the frequency range from 2 Hz to 10 kHz. Twelve national measurement institutes took part in the key comparison and the National Physical Laboratory piloted the project. Two laboratory standard microphones IEC type LS1P were circulated to the participants and results in the form of regular calibration certificates were collected throughout the project. One of the microphones was subsequently deemed to have compromised stability for the purpose of deriving a reference value. Consequently the key comparison reference value (KCRV) has been made based on the weighted mean results for sensitivity level and for sensitivity phase from just one of the microphones. Corresponding degrees of equivalence (DoEs) have also been calculated and are presented. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  8. Report on key comparison COOMET.AUV.A-K5: pressure calibration of laboratory standard microphones in the frequency range 2 Hz to 10 kHz

    NASA Astrophysics Data System (ADS)

    Dobrowolska, D.; Kosterov, A.

    2016-01-01

    This is the final report for regional key comparison COOMET.AUV.A-K5 on the pressure calibration of laboratory standard microphones in the frequency range from 2 Hz to 10 kHz. Two laboratories—Central Office of Measures (GUM)—the national metrology institute for Poland and the State Enterprise Scientific-Research Institute for Metrology of Measurement and Control Systems (DP NDI Systema)— the designated institute for acoustics in Ukraine took part in this comparison with the GUM as a pilot. One travelling type LS1P microphone was circulated to the participants and results in the form of regular calibration certificates were collected. The results of the DP NDI Systema obtained in this comparison were linked to the CCAUV.A-K5 key comparison through the joint participation of the GUM. The degrees of equivalence were computed for DP NDI Systema with respect to the CCAUV.A-K5 key comparison reference value. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  9. COOMET pilot comparison 473/RU-a/09: Comparison of hydrophone calibrations in the frequency range 250 Hz to 200 kHz

    NASA Astrophysics Data System (ADS)

    Yi, Chen; Isaev, A. E.; Yuebing, Wang; Enyakov, A. M.; Teng, Fei; Matveev, A. N.

    2011-01-01

    A description is given of the COOMET project 473/RU-a/09: a pilot comparison of hydrophone calibrations at frequencies from 250 Hz to 200 kHz between Hangzhou Applied Acoustics Research Institute (HAARI, China)—pilot laboratory—and Russian National Research Institute for Physicotechnical and Radio Engineering Measurements (VNIIFTRI, Designated Institute of Russia of the CIPM MRA). Two standard hydrophones, B&K 8104 and TC 4033, were calibrated and compared to assess the current state of hydrophone calibration of HAARI (China) and Russia. Three different calibration methods were applied: a vibrating column method, a free-field reciprocity method and a comparison method. The standard facilities of each laboratory were used, and three different sound fields were applied: pressure field, free-field and reverberant field. The maximum deviation of the sensitivities of two hydrophones between the participants' results was 0.36 dB. Main text. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCAUV-KCWG.

  10. 0. 04 Hz relative optical-frequency stability in a 1. 5. mu. m distributed-Bragg-reflector (DBR) laser

    SciTech Connect

    Ishida, O.; Toba, H. ); Tohmori, Y. )

    1989-12-01

    The optical frequency of a 1.5 {mu}m distributed-Bragg-reflector (DBR) laser is stabilized against that of a master laser by heterodyne-type frequency locking with a phase-locked loop (PLL). Despite its wide linewidth of 16 MHz, stable PLL operation with an optical hold-in range of 26 GHz is realized, and residual frequency fluctuations are reduced to 0.04 Hz at an averaging time of 500 s. The combination of DBR laser and PLL is, therefore, suitable for future frequency-controlled light sources. The offset error from the settled frequency caused by the band-limited beat spectrum is also discussed.

  11. Tunable cw UV laser with <35 kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states.

    PubMed

    Bridge, Elizabeth M; Keegan, Niamh C; Bounds, Alistair D; Boddy, Danielle; Sadler, Daniel P; Jones, Matthew P A

    2016-02-01

    We present a solid-state laser system that generates over 200 mW of continuous-wave, narrowband light, tunable from 316.3 nm - 317.7 nm and 318.0 nm - 319.3 nm. The laser is based on commercially available fiber amplifiers and optical frequency doubling technology, along with sum frequency generation in a periodically poled stoichiometric lithium tantalate crystal. The laser frequency is stabilized to an atomic-referenced high finesse optical transfer cavity. Using a GPS-referenced optical frequency comb we measure a long term frequency instability of < 35 kHz for timescales between 10(-3) s and 10(3) s. As an application we perform spectroscopy of Sr Rydberg states from n = 37 - 81, demonstrating mode-hop-free scans of 24 GHz. In a cold atomic sample we measure Doppler-limited linewidths of 350 kHz. PMID:26906804

  12. Nonequilibrium atmospheric pressure plasma jet using a combination of 50 kHz/2 MHz dual-frequency power sources

    SciTech Connect

    Zhou, Yong-Jie; Yuan, Qiang-Hua; Li, Fei; Wang, Xiao-Min; Yin, Gui-Qin; Dong, Chen-Zhong

    2013-11-15

    An atmospheric pressure plasma jet is generated by dual sinusoidal wave (50 kHz and 2 MHz). The dual-frequency plasma jet exhibits the advantages of both low frequency and radio frequency plasmas, namely, the long plasma plume and the high electron density. The radio frequency ignition voltage can be reduced significantly by using dual-frequency excitation compared to the conventional radio frequency without the aid of the low frequency excitation source. A larger operating range of α mode discharge can be obtained using dual-frequency excitation which is important to obtain homogeneous and low-temperature plasma. A larger controllable range of the gas temperature of atmospheric pressure plasma could also be obtained using dual-frequency excitation.

  13. An Attempt to Describe Frequency Correlations among kHz QPOs and HBOs by Two-Armed Nearly Vertical Oscillations

    NASA Astrophysics Data System (ADS)

    Kato, Shoji

    2012-06-01

    We examine whether the two-armed (m = 2) vertical p-mode oscillations trapped in the innermost region of magnetized accretion disks with finite disk thickness can describe kHz quasi-periodic oscillations (QPOs) and horizontal branch oscillations (HBOs) in low-mass X-ray binaries (LMXBs). First, we derive the frequency-frequency correlation of the two basic oscillations (both are fundamental modes in the vertical direction, but one is the fundamental and the other the first overtone in the radial direction), and compare it with the observed frequency correlation of twin kHz QPOs. Results show that the calculated frequency correlation can well describe the observed frequency one with reasonable values of the parameters. Second, we examine whether the observed frequency correlation between kHz QPOs and HBO can be described by regarding HBO as the first overtone oscillation in the vertical direction (and the fundamental in the radial direction). The results suggest that (i) the innermost parts of disks on the horizontal branch are strongly diminished in their vertical thickness (presumably by hot coronae) and (ii) the branch is roughly a sequence of variations of magnetic fields or disk temperature.

  14. Low Frequency (11 mHz) Oscillations in H1743-322: A New Class of Black Hole QPOs?

    NASA Technical Reports Server (NTRS)

    Altamirano, D.; Strohmayer, T.

    2012-01-01

    We report the discovery of quasi-periodic oscillations (QPO) at approx 11 mHz in two RXTE observations and one Chandra observation of the black hole candidate HI743-322. The QPO is observed only at the beginning of the 2010 and 2011 outbursts at similar hard color and intensity, suggestive of an accretion state dependence for the QPO. Although its frequency appears to be correlated with Xray intensity on timescales of a day, in successive outbursts eight months apart we measure a QPO frequency that differs by less than approximately equals 0.0015 Hz while the intensity had changed significantly. We show that this 11 mHz QPO is different from the so-called Type-C QPOs seen in black holes and that the mechanisms that produce the two flavors of variability are most probably independent. We compare the 11 mHz QPO with other variability phenomena seen in accreting black holes and neutron stars and conclude that although at 1-2 orders of magnitude lower in frequency, they best resemble the so-called "1 Hz" QPOs seen in dipping neutron star systems. If confirmed, H1743-322 is the first black hole showing this type of variability. Given the unusual characteristics and the hard-state dependence of the 11 mHz QPO, we speculate that these oscillations might instead be related to the radio jets observed in HI743-322. It remains unexplained, however, why similar QPOs have not yet been identified in other black holes and why they have only been seen in the last two outbursts of HI743-322.

  15. Encapsulated high frequency (235 kHz), high-Q (100 k) disk resonator gyroscope with electrostatic parametric pump

    NASA Astrophysics Data System (ADS)

    Ahn, C. H.; Nitzan, S.; Ng, E. J.; Hong, V. A.; Yang, Y.; Kimbrell, T.; Horsley, D. A.; Kenny, T. W.

    2014-12-01

    In this paper, we explore the effects of electrostatic parametric amplification on a high quality factor (Q > 100 000) encapsulated disk resonator gyroscope (DRG), fabricated in <100> silicon. The DRG was operated in the n = 2 degenerate wineglass mode at 235 kHz, and electrostatically tuned so that the frequency split between the two degenerate modes was less than 100 mHz. A parametric pump at twice the resonant frequency is applied to the sense axis of the DRG, resulting in a maximum scale factor of 156.6 μV/(°/s), an 8.8× improvement over the non-amplified performance. When operated with a parametric gain of 5.4, a minimum angle random walk of 0.034°/√h and bias instability of 1.15°/h are achieved, representing an improvement by a factor of 4.3× and 1.5×, respectively.

  16. 200 kHz Commercial Sonar Systems Generate Lower Frequency Side Lobes Audible to Some Marine Mammals

    SciTech Connect

    Deng, Zhiqun; Southall, Brandon; Carlson, Thomas J.; Xu, Jinshan; Martinez, Jayson J.; Weiland, Mark A.; Ingraham, John M.

    2014-04-15

    The spectral properties of pulses transmitted by three commercially available 200 kHz echo sounders were measured to assess the possibility that sound energy in below the center (carrier) frequency might be heard by marine mammals. The study found that all three sounders generated sound at frequencies below the center frequency and within the hearing range of some marine mammals and that this sound was likely detectable by the animals over limited ranges. However, at standard operating source levels for the sounders, the sound below the center frequency was well below potentially harmful levels. It was concluded that the sounds generated by the sounders could affect the behavior of marine mammals within fairly close proximity to the sources and that that the blanket exclusion of echo sounders from environmental impact analysis based solely on the center frequency output in relation to the range of marine mammal hearing should be reconsidered.

  17. Low-frequency (f less than about 1 Hz) stratospheric electrical noise measured by balloon-borne sensors

    NASA Technical Reports Server (NTRS)

    Iversen, I. B.; Mohl Madsen, M.; Dangelo, N.

    1983-01-01

    Low-frequency (f less than about 1 Hz) stratospheric electrical noise is occasionally observed by balloon-borne sensors. The phenomenon occurs 1-3 percent of the time, with maximum incidence during the morning hours. It appears to be related to fluctuations of the electrical conductivity of the medium around the balloons, produced by air turbulence due to the wind shear and/or gravity waves.

  18. 30 Hz-linewidth, diode-laser-pumped, Nd:GGG nonplanar ring oscillators by active frequency stabilisation

    NASA Technical Reports Server (NTRS)

    Day, T.; Nilsson, A. C.; Fejer, M. M.; Farinas, A. D.; Gustafson, E. K.

    1989-01-01

    A heterodyne linewidth of less than 30 Hz for the beatnote between the outputs of two 282 THz Nd:GGG nonplanar ring oscillators (NPROs) is reported. The lasers were independently locked to adjacent axial modes of a high-finesse interferometer. The remnant frequency noise appears to be dominated by free spectral range fluctuations in the reference interferometer rather than by residual laser noise.

  19. 200 kHz Commercial Sonar Systems Generate Lower Frequency Side Lobes Audible to Some Marine Mammals

    PubMed Central

    Deng, Z. Daniel; Southall, Brandon L.; Carlson, Thomas J.; Xu, Jinshan; Martinez, Jayson J.; Weiland, Mark A.; Ingraham, John M.

    2014-01-01

    The spectral properties of pulses transmitted by three commercially available 200 kHz echo sounders were measured to assess the possibility that marine mammals might hear sound energy below the center (carrier) frequency that may be generated by transmitting short rectangular pulses. All three sounders were found to generate sound at frequencies below the center frequency and within the hearing range of some marine mammals, e.g. killer whales, false killer whales, beluga whales, Atlantic bottlenose dolphins, harbor porpoises, and others. The frequencies of these sub-harmonic sounds ranged from 90 to 130 kHz. These sounds were likely detectable by the animals over distances up to several hundred meters but were well below potentially harmful levels. The sounds generated by the sounders could potentially affect the behavior of marine mammals within fairly close proximity to the sources and therefore the exclusion of echo sounders from environmental impact analysis based solely on the center frequency output in relation to the range of marine mammal hearing should be reconsidered. PMID:24736608

  20. 200 kHz commercial sonar systems generate lower frequency side lobes audible to some marine mammals.

    PubMed

    Deng, Z Daniel; Southall, Brandon L; Carlson, Thomas J; Xu, Jinshan; Martinez, Jayson J; Weiland, Mark A; Ingraham, John M

    2014-01-01

    The spectral properties of pulses transmitted by three commercially available 200 kHz echo sounders were measured to assess the possibility that marine mammals might hear sound energy below the center (carrier) frequency that may be generated by transmitting short rectangular pulses. All three sounders were found to generate sound at frequencies below the center frequency and within the hearing range of some marine mammals, e.g. killer whales, false killer whales, beluga whales, Atlantic bottlenose dolphins, harbor porpoises, and others. The frequencies of these sub-harmonic sounds ranged from 90 to 130 kHz. These sounds were likely detectable by the animals over distances up to several hundred meters but were well below potentially harmful levels. The sounds generated by the sounders could potentially affect the behavior of marine mammals within fairly close proximity to the sources and therefore the exclusion of echo sounders from environmental impact analysis based solely on the center frequency output in relation to the range of marine mammal hearing should be reconsidered. PMID:24736608

  1. Areas V1 and V2 show microsaccade-related 3-4-Hz covariation in gamma power and frequency.

    PubMed

    Lowet, E; Roberts, M J; Bosman, C A; Fries, P; De Weerd, P

    2016-05-01

    Neuronal gamma-band synchronization (25-80 Hz) in visual cortex appears sustained and stable during prolonged visual stimulation when investigated with conventional averages across trials. However, recent studies in macaque visual cortex have used single-trial analyses to show that both power and frequency of gamma oscillations exhibit substantial moment-by-moment variation. This has raised the question of whether these apparently random variations might limit the functional role of gamma-band synchronization for neural processing. Here, we studied the moment-by-moment variation in gamma oscillation power and frequency, as well as inter-areal gamma synchronization, by simultaneously recording local field potentials in V1 and V2 of two macaque monkeys. We additionally analyzed electrocorticographic V1 data from a third monkey. Our analyses confirm that gamma-band synchronization is not stationary and sustained but undergoes moment-by-moment variations in power and frequency. However, those variations are neither random and nor a possible obstacle to neural communication. Instead, the gamma power and frequency variations are highly structured, shared between areas and shaped by a microsaccade-related 3-4-Hz theta rhythm. Our findings provide experimental support for the suggestion that cross-frequency coupling might structure and facilitate the information flow between brain regions. PMID:26547390

  2. Device for recording the 20 Hz - 200 KHz sound frequency spectrum using teletransmission

    NASA Technical Reports Server (NTRS)

    Baciu, I.

    1974-01-01

    The device described consists of two distinct parts: (1) The sound pickup system consisting of the wide-frequency band condenser microphone which contains in the same assembly the frequency-modulated oscillator and the output stage. Being transistorized and small, this system can be easily moved, so that sounds can be picked up even in places that are difficult to reach with larger devices. (2) The receiving and recording part is separate and can be at a great distance from the sound pickup system. This part contains a 72 MHz input stage, a frequency changer that gives an intermediate frequency of 30 MHz and a multichannel analyzer coupled to an oscilloscope and a recorder.

  3. Subcallosal brain structure: correlation with hearing threshold at supra-clinical frequencies (>8 kHz), but not with tinnitus.

    PubMed

    Melcher, Jennifer R; Knudson, Inge M; Levine, Robert A

    2013-01-01

    This study tested for differences in brain structure between tinnitus and control subjects, focusing on a subcallosal brain region where striking differences have been inconsistently found previously. Voxel-based morphometry (VBM) was used to compare structural MRIs of tinnitus subjects and non-tinnitus controls. Audiograms of all subjects were normal or near-normal at standard clinical frequencies (≤8 kHz). Mean threshold through 14 kHz, age, sex and handedness were matched between groups. There were no definitive differences between tinnitus and control groups in modulated or unmodulated maps of gray matter (GM) probability (i.e., GM volume and concentration, respectively). However, when the image data were tested for correlations with parameters that were either not measured or not matched between the tinnitus and control groups of previous studies, a notable correlation was found: Threshold at supra-clinical frequencies (above 8 kHz) was negatively correlated with modulated GM probability in ventral posterior cingulate cortex, dorsomedial prefrontal cortex, and a subcallosal region that included ventromedial prefrontal cortex and coincided with previously-reported differences between tinnitus and control subjects. The results suggest an explanation for the discrepant findings in subcallosal brain: threshold at supra-clinical frequencies may have differed systematically between tinnitus and control groups in some studies but not others. The observed correlation between (1) brain structure in regions engaged in cognitive and attentional processes and (2) hearing sensitivity at frequencies generally considered unnecessary for normal human auditory behavior is surprising and worthy of follow up. PMID:22504034

  4. Investigation of atmospheric insect wing-beat frequencies and iridescence features using a multispectral kHz remote detection system

    NASA Astrophysics Data System (ADS)

    Gebru, Alem; Rohwer, Erich; Neethling, Pieter; Brydegaard, Mikkel

    2014-01-01

    Quantitative investigation of insect activity in their natural habitat is a challenging task for entomologists. It is difficult to address questions such as flight direction, predation strength, and overall activities using the current techniques such as traps and sweep nets. A multispectral kHz remote detection system using sunlight as an illumination source is presented. We explore the possibilities of remote optical classification of insects based on their wing-beat frequencies and iridescence features. It is shown that the wing-beat frequency of the fast insect events can be resolved by implementing high-sampling frequency. The iridescence features generated from the change of color in two channels (visible and near-infrared) during wing-beat cycle are presented. We show that the shape of the wing-beat trajectory is different for different insects. The flight direction of an atmospheric insect is also determined using a silicon quadrant detector.

  5. High switching speed copper phthalocyanine thin film transistors with cut-off frequency up to 25 kHz

    NASA Astrophysics Data System (ADS)

    Wang, Zeying; Wang, Dong Xing; Zhang, Yongshuang; Wang, Yueyue

    2015-12-01

    The characteristics of high frequency and high speed are demonstrated in vertical structure organic thin film transistors (VOTFTs) fabricated by DC magnetron sputtering and vacuum evaporation. The saturated current-voltage characteristics can be determined by drain-source negative bias voltage. Responsive frequency of the device is as high as 20 kHz when rectangular wave dynamic signal is applied to the gate-source electrode, and switch characteristic time reaches the microsecond. The unsaturated current-voltage characteristics are observed when the drain-source bias voltage is positive. In the condition of VDS = 3 V and VGS = 0 V, the drain-source current IDS is 2.986 × 10-5 A, and the current density is 1.194 mA/cm2. Cut-off frequency fc is 25 kHz when a small sine wave dynamic signal is applied to the gate-source electrode. The volt-ampere characteristic of VOTFTs transfers from linear to nonlinear with increasing of drain-source bias voltage.

  6. >400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging

    PubMed Central

    Oh, Wang-Yuhl; Vakoc, Benjamin J.; Shishkov, Milen; Tearney, Guillermo J.; Bouma, Brett E.

    2010-01-01

    We demonstrate a high-speed wavelength-swept laser with a tuning range of 104 nm (1228–1332 nm) and a repetition rate of 403 kHz. The design of the laser utilizes a high-finesse polygon-based wavelength-scanning filter and a short-length unidirectional ring resonator. Optical frequency domain imaging of the human skin in vivo is presented using this laser, and the system shows sensitivity of higher than 98 dB with single-side ranging depth of 1.7 mm over 4 dB sensitivity roll-off. PMID:20808369

  7. On the lack of correlation between X-ray flux and kHz quasi-periodic oscillation frequencies

    NASA Astrophysics Data System (ADS)

    Catmabacak, Onur; Hakan Erkut, M.

    2016-07-01

    We study the so-called "parallel tracks" phenomenon, which arises from the observation that kHz quasi-periodic oscillation (QPO) frequencies correlate with X-ray flux on short time scales (less than a day) while there seems to be no correlation at all on longer time scales (more than a day). The oscillatory modes with frequency bands determined by the radial epicyclic frequency in the magnetic boundary region between the disk and the neutron star magnetosphere are likely to be the origin of these high frequency QPOs. Within the boundary region model, we provide a possible explanation for the parallel track phenomenon taking into account the variation of the model parameters such as the rotation frequency of the innermost disk matter and the radial extension of the boundary region. In addition to the mass, radius, and magnetic field of the neutron star, the frequency bands of oscillatory modes depend on mass accretion rate through these model parameters as well. Using the aspect ratio of the disk, which actually depends on mass accretion rate, we estimate the radial width of the boundary region and its variation on long and short time scales to reproduce the parallel tracks in accordance with observations. We repeat the analysis for a wide range of neutron star masses, radii, and magnetic field strengths in order to understand the effects of these parameters on our results.

  8. Increased Beta Frequency (15-30 Hz) Oscillatory Responses in Euthymic Bipolar Patients Under Lithium Monotherapy.

    PubMed

    Tan, Devran; Özerdem, Ayşegül; Güntekin, Bahar; Atagün, M Ilhan; Tülay, Elif; Karadağ, Figen; Başar, Erol

    2016-04-01

    The effect of lithium on neurocognition is not still fully explored. Brain oscillatory activity is altered in bipolar disorder. We aimed to assess the oscillatory responses of euthymic bipolar patients and how they are affected by lithium monotherapy. Event-related oscillations in response to visual target stimulus during an oddball paradigm in 16 euthymic drug-free and 13 euthymic lithium-treated bipolar patients were compared with 16 healthy controls. The maximum peak-to-peak amplitudes were measured for each subject's averaged beta (15-30 Hz) responses in the 0- to 300-ms time window over frontal (F3, Fz, F4), central (C3, Cz, C4), temporal (T7, T8), temporo-parietal (TP7, TP8), parietal (P3, Pz, P4), and occipital (O1, Oz, O2) areas. Patients under lithium monotherapy had significantly higher beta responses to visual target stimuli than healthy controls (P=.017) and drug-free patients (P=.015). The increase in beta response was observed at all electrode locations, however, the difference was statistically significant for the left (T7; P=.016) and right (T8; P=.031) temporal beta responses. Increased beta responses in drug-free patients and further significant increase in lithium-treated patients may be indicative of a core pathophysiological process of bipolar disorder and how it is affected by lithium. Whether the finding corresponds to lithium's corrective effect on the underlying pathology or to its neurocognitive side effect remains to be further explored. In either case, the finding is a sign that the oscillatory activity may be useful in tracking medication effect in bipolar disorder. PMID:25465436

  9. Increasing the oscillation frequency of strong magnetic fields above 101 kHz significantly raises peripheral nerve excitation thresholds

    PubMed Central

    Weinberg, Irving N.; Stepanov, Pavel Y.; Fricke, Stanley T.; Probst, Roland; Urdaneta, Mario; Warnow, Daniel; Sanders, Howard; Glidden, Steven C.; McMillan, Alan; Starewicz, Piotr M.; Reilly, J. Patrick

    2012-01-01

    Purpose: A time-varying magnetic field can cause unpleasant peripheral nerve stimulation (PNS) when the maximum excursion of the magnetic field (ΔB) is above a frequency-dependent threshold level [P. Mansfield and P. R. Harvey, Magn. Reson. Med. 29, 746–758 (1993)]. Clinical and research magnetic resonance imaging (MRI) gradient systems have been designed to avoid such bioeffects by adhering to regulations and guidelines established on the basis of clinical trials. Those trials, generally employing sinusoidal waveforms, tested human responses to magnetic fields at frequencies between 0.5 and 10 kHz [W. Irnich and F. Schmitt, Magn. Reson. Med. 33, 619–623 (1995), T. F. Budinger et al., J. Comput. Assist. Tomogr. 15, 909–914 (1991), and D. J. Schaefer et al., J. Magn. Reson. Imaging 12, 20–29 (2000)]. PNS thresholds for frequencies higher than 10 kHz had been extrapolated, using physiological models [J. P. Reilly et al., IEEE Trans. Biomed. Eng. BME-32(12), 1001–1011 (1985)]. The present study provides experimental data on human PNS thresholds to oscillating magnetic field stimulation from 2 to 183 kHz. Sinusoidal waveforms were employed for several reasons: (1) to facilitate comparison with earlier reports that used sine waves, (2) because prior designers of fast gradient hardware for generalized waveforms (e.g., including trapezoidal pulses) have employed quarter-sine-wave resonant circuits to reduce the rise- and fall-times of pulse waveforms, and (3) because sinusoids are often used in fast pulse sequences (e.g., spiral scans) [S. Nowak, U.S. patent 5,245,287 (14 September 1993) and K. F. King and D. J. Schaefer, J. Magn. Reson. Imaging 12, 164–170 (2000)]. Methods: An IRB-approved prospective clinical trial was performed, involving 26 adults, in which one wrist was exposed to decaying sinusoidal magnetic field pulses at frequencies from 2 to 183 kHz and amplitudes up to 0.4 T. Sham exposures (i.e., with no magnetic fields) were applied to all

  10. Field measurements and modeling of attenuation from near-surface bubbles for frequencies 1-20 kHz.

    PubMed

    Dahl, Peter H; Choi, Jee Woong; Williams, Neil J; Graber, Hans C

    2008-09-01

    Measurements of excess attenuation from near-surface bubbles from the Shallow Water '06 experiment are reported. These are transmission measurements made over the frequency range 1-20 kHz, and they demonstrate a frequency, grazing angle, and wind speed dependence in attenuation. Data modeling points to bubble void fractions of order 10(-6) in effect for wind speeds 10-13 m/s. Simultaneous measures of wind speed made within 1.5 and 11 km of the open water experimental location differed by 2 m/s in their respective 30 min average; this has cautionary implications for empirical models for bubble attenuation that are a strong function of wind speed. PMID:19045560

  11. Aminergic control of high-frequency (approximately 200 Hz) network oscillations in the hippocampus of the behaving rat.

    PubMed

    Ponomarenko, Alexei A; Knoche, Anja; Korotkova, Tatiana M; Haas, Helmut L

    2003-09-11

    Hippocampal high-frequency (200 Hz, 'ripple') oscillations were recorded in the CA1 area of behaving rats. The histamine H1-receptor antagonist pyrilamine facilitated while the H2-antagonist zolantidine (5 mg/kg i.p) transiently decreased ripple occurrence. Thioperamide, an H3 antagonist, had no effect. The 5-HT1A-receptor antagonist WAY100635 (50 microg i.c.v.) reduced the occurrence and the intrinsic frequency of ripples. The 5-HT3-receptor antagonist Y-25130 (i.c.v.) increased the number but reduced the amplitude of ripples. All the treatments affected sharp-waves and ripple oscillations to the same extent. Changes of ripple occurrence were not secondary to alterations of behavior. In the light of these divergent actions via different receptor subtypes the net effect of aminergic innervations will be determined by their state-dependent activities and mutual interactions as well as receptor localizations. PMID:12902028

  12. Integrated mixed signal control IC for 500-kHz switching frequency buck regulator

    NASA Astrophysics Data System (ADS)

    Chen, Keng; Zhang, Hong

    2015-12-01

    The main purpose for this work is to study the challenges of designing a digital buck regulator using pipelined analog to digital converter (ADC). Although pipelined ADC can achieve high sampling speed, it will introduce additional phase lag to the buck circuit. Along with the latency brought by processing time of additional digital circuits, as well as the time delay associated with the switching frequency, the closed loop will be unstable; moreover, raw ADC outputs have low signal-to-noise ratio, which usually need back-end calibration. In order to compensate these phase lag and make control loop unconditional stable, as well as boost up signal-to-noise ratio of the ADC block with cost-efficient design, a finite impulse response filter followed by digital proportional-integral-derivative blocks were designed. All these digital function blocks were optimised with processing speed. In the system simulation, it can be found that this controller achieved output regulation within 10% of nominal 5 V output voltage under 1 A/µs load transient condition; moreover, with the soft-start method, there is no turn-on overshooting. The die size of this controller is controlled within 3 mm2 by using 180 nm CMOS technology.

  13. Magnetoreception in laboratory mice: sensitivity to extremely low-frequency fields exceeds 33 nT at 30 Hz

    PubMed Central

    Prato, Frank S.; Desjardins-Holmes, Dawn; Keenliside, Lynn D.; DeMoor, Janice M.; Robertson, John A.; Thomas, Alex W.

    2013-01-01

    Magnetoreception in the animal kingdom has focused primarily on behavioural responses to the static geomagnetic field and the slow changes in its magnitude and direction as animals navigate/migrate. There has been relatively little attention given to the possibility that weak extremely low-frequency magnetic fields (wELFMF) may affect animal behaviour. Previously, we showed that changes in nociception under an ambient magnetic field-shielded environment may be a good alternative biological endpoint to orientation measurements for investigations into magnetoreception. Here we show that nociception in mice is altered by a 30 Hz field with a peak amplitude more than 1000 times weaker than the static component of the geomagnetic field. When mice are exposed to an ambient magnetic field-shielded environment 1 h a day for five consecutive days, a strong analgesic (i.e. antinociception) response is induced by day 5. Introduction of a static field with an average magnitude of 44 µT (spatial variability of ±3 µT) marginally affects this response, whereas introduction of a 30 Hz time-varying field as weak as 33 nT has a strong effect, reducing the analgesic effect by 60 per cent. Such sensitivity is surprisingly high. Any purported detection mechanisms being considered will need to explain effects at such wELFMF. PMID:23365198

  14. Free-field Calibration of the Pressure Sensitivity of Microphones at Frequencies up to 80 kHz

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Zuckerwar, Allan J.; Elbing, Brian R.

    2006-01-01

    A free-field (FF) substitution method for calibrating the pressure sensitivity of microphones at frequencies up to 80 kHz is demonstrated with both grazing and normal incidence geometries. The substitution-based method, as opposed to a simultaneous method, avoids problems associated with the non-uniformity of the sound field and, as applied here, uses a 1/2 -inch air-condenser pressure microphone as a known reference. Best results were obtained with a centrifugal fan, which is used as a random, broadband sound source. A broadband source minimizes reflection-related interferences that often plague FF measurements. Calibrations were performed on 1/4-inch FF air-condenser, electret, and micro-electromechanical systems (MEMS) microphones in an anechoic chamber. The accuracy of this FF method is estimated by comparing the pressure sensitivity of an air-condenser microphone, as derived from the FF measurement, with that of an electrostatic actuator calibration and is typically 0.3 dB (95% confidence), over the range 2-80 kHz.

  15. Highly efficient, widely tunable, 10-Hz parametric amplifier pumped by frequency-doubled femtosecond Ti:sapphire laser pulses.

    PubMed

    Zhang, J Y; Xu, Z; Kong, Y; Yu, C; Wu, Y

    1998-05-20

    We report a 10-Hz, highly efficient, widely tunable (from the visible to the IR), broadband femtosecond optical parametric generator and optical parametric amplifier (OPA) in BBO, LBO, and CBO crystals pumped by the frequency-doubled output of a regeneratively amplified Ti:sapphire laser at 400 nm. The output of the system is continuously tunable from 440 nm to 2.5 microm with a maximum overall efficiency of approximately 25% at 670 nm and an optical conversion efficiency of more than 36% in the OPA stage. The effects of the seed beam energy, the type of the crystal and the crystal length, and the pumping energy of the output of the OPA, such as the optical efficiency, the bandwidth, the pulse duration, and the group velocity mismatch between the signal and the idler and between the seeder and the pump, are investigated. The results provide useful information for optimization of the design of the system. PMID:18273287

  16. EFFECTS OF ELF (EXTREMELY LOW FREQUENCY) (1-120 HZ) AND MODULATED (50 HZ) RF (RADIO FREQUENCY) FIELDS ON THE EFFLUX OF CALCIUM IONS FROM BRAIN TISSUE IN VITRO

    EPA Science Inventory

    The authors have previously shown that 16-Hz, sinusoidal electromagnetic fields can cause enhanced efflux of calcium ions from chick brain tissue, in vitro, in two intensity regions centered on 6 and 40 Vp-p/m. Alternatively, 1-Hz and 30-Hz fields at 40Vp-p/m did not cause enhanc...

  17. Comparison of biological effects of electromagnetic fields with pulse frequencies of 8 and 50 Hz on gastric smooth muscles.

    PubMed

    Martynyuk, Victor; Melnyk, Mariia; Artemenko, Alexander

    2016-01-01

    The influence of electromagnetic fields (EMFs) with rectangular pulse frequencies of 8 and 50 Hz and flux density of 25 µT on contraction, nitric oxide/nitrite synthesis, and intracellular calcium concentration in the gastric smooth muscles of rats was investigated. An approximately 8-Hz field reduced the fast component of contraction induced by KCl depolarization and slowed down the time to reach the maximum of the slow component of contraction, whereas the 50-Hz field increased the fast and slow components and accelerated the time to reach the maximum of the slow component of contraction. After turning off the EMF, the force and character of contraction returned to the control values. In addition, the 8-Hz field increased nitric oxide/nitrite synthesis in the excited smooth muscle tissue with KCl depolarization, while the 50-Hz field had no significant effect. 8- and 50-Hz fields had no significant effects on nitric oxide/nitrite production in non-stimulated tissue. However, the 50-Hz field significantly increased the basic intracellular calcium concentration in smooth muscle cells (SMC) in a time-dependent manner, whereas the 8-Hz field only slightly increased calcium levels. Thus, we showed that responses of gastric smooth muscles to EMFs are pulse-frequency dependent. PMID:26192248

  18. A comparison between automated detection methods of high-frequency oscillations (80–500 Hz) during seizures

    PubMed Central

    Salami, Pariya; Lévesque, Maxime; Gotman, Jean; Avoli, Massimo

    2016-01-01

    High-frequency oscillations (HFOs, ripples: 80–200 Hz, fast ripples: 250–500 Hz) recorded from the epileptic brain are thought to reflect abnormal network-driven activity. They are also better markers of seizure onset zones compared to interictal spikes. There is thus an increasing number of studies analysing HFOs in vitro, in vivo and in the EEG of human patients with refractory epilepsy. However, most of these studies have focused on HFOs during interictal events or at seizure onset, and few have analysed HFOs during seizures. In this study, we are comparing three different automated methods of HFO detection to two methods of visual analysis, during the pre-ictal, ictal and post-ictal periods on multiple channels using the rat pilocarpine model of temporal lobe epilepsy. The first method (method 1) detected HFOs using the average of the normalised period, the second (method 2) detected HFOs using the average of the normalised period in 1 s windows and the third (method 3) detected HFOs using the average of a reference period before seizure onset. Overall, methods 2 and 3 showed higher sensitivity compared to method 1. When dividing the analysed traces in pre-, ictal and post-ictal periods, method 3 showed the highest sensitivity during the ictal period compared to method 1, while method 2 was not significantly different from method 1. These findings suggest that method 3 could be used for automated and reliable detection of HFOs on large data sets containing multiple channels during the ictal period. PMID:22983173

  19. Slow modulations of high-frequency activity (40-140-Hz) discriminate preictal changes in human focal epilepsy.

    PubMed

    Alvarado-Rojas, C; Valderrama, M; Fouad-Ahmed, A; Feldwisch-Drentrup, H; Ihle, M; Teixeira, C A; Sales, F; Schulze-Bonhage, A; Adam, C; Dourado, A; Charpier, S; Navarro, V; Le Van Quyen, M

    2014-01-01

    Recent evidence suggests that some seizures are preceded by preictal changes that start from minutes to hours before an ictal event. Nevertheless an adequate statistical evaluation in a large database of continuous multiday recordings is still missing. Here, we investigated the existence of preictal changes in long-term intracranial recordings from 53 patients with intractable partial epilepsy (in total 531 days and 558 clinical seizures). We describe a measure of brain excitability based on the slow modulation of high-frequency gamma activities (40-140 Hz) in ensembles of intracranial contacts. In prospective tests, we found that this index identified preictal changes at levels above chance in 13.2% of the patients (7/53), suggesting that results may be significant for the whole group (p < 0.05). These results provide a demonstration that preictal states can be detected prospectively from EEG data. They advance understanding of the network dynamics leading to seizure and may help develop novel seizure prediction algorithms. PMID:24686330

  20. Neural network interpretation of electromagnetic ellipticity data in a frequency range from 1 kHz to 32 MHz

    NASA Astrophysics Data System (ADS)

    Birken, Ralf Andreas

    A new real-time in-field interpretation and visualization scheme and software, using neural networks for the detection and localization of buried waste, and the boundaries of waste sites, has been developed. The capabilities and limitations of the high-frequency (1 kHz to 1 MHz and 31 kHz to 32 MHz) electromagnetic ellipticity systems are analyzed by numerically studying the sensitivity of the acquired 3D-ellipticity to model parameters describing the geometry of the systems and the electrical parameters of layered-earth models. Changes in ellipticity due to coil misalignment in standard operating mode are typically just 1% to 2%. Changes due to variations in layered-earth model parameters (resistivity, relative dielectric constant, and thickness) are typically at least one order of magnitude higher. Hence, it will be possible to resolve these parameters. For conductive models (resistivity <50 Omegam) it will be hard to determine the relative dielectric constant and for models with high relative dielectric constants it will be hard to determine the resistivity, especially if it is greater than 1000 Omegam. The results of the sensitivity analysis contribute considerably to the training of several neural networks to determine the electrical properties of the subsurface. The two classes of artificial neural network paradigms utilized in this study are the radial basis function and the modular neural network algorithms. One-dimensional layered-earth inversions are performed by neural networks using ellipticity data. The three-dimensional localization of metallic objects (e.g. drums) is done by visualizing the results of one particular halfspace neural network technique. Several small conductive objects have been detected by applying this technique to data collected in controlled physical modeling field experiments. Classification neural networks are trained on field data to categorize ellipticity soundings into either a target or a background class. Two environmental

  1. Domain self-organization in iron garnet films in pulsed magnetic fields with a frequency between 0.001 and 25 Hz

    NASA Astrophysics Data System (ADS)

    Osadchenko, V. Kh.; Kandaurova, G. S.; Pashko, A. G.

    2007-04-01

    The results of studying processes of self-organization in a domain structure of highly anisotropic iron garnet films with perpendicular anisotropy in an ac magnetic field of a symmetrical meander type (with rectangular pulses with a frequency of 0.001-25 Hz and an amplitude H 0 = 0-70 Oe are reported for the first time. In the frequency range from 0.01 to 25 Hz, there has been observed an anger (excited) state, which is characterized by the formation of a close packing of spiral dynamic domains.

  2. Welding characteristics of 27, 40 and 67 kHz ultrasonic plastic welding systems using fundamental- and higher-resonance frequencies.

    PubMed

    Tsujino, Jiromaru; Hongoh, Misugi; Yoshikuni, Masafumi; Hashii, Hidekazu; Ueoka, Tetsugi

    2004-04-01

    The welding characteristics of 27, 40 and 67 kHz ultrasonic plastic welding systems that are driven at only the fundamental-resonance frequency vibration were compared, and also those of the welding systems that were driven at the fundamental and several higher resonance frequencies simultaneously were studied. At high frequency, welding characteristics can be improved due to the larger vibration loss of plastic materials. For welding of rather thin or small specimens, as the fundamental frequency of these welding systems is higher and the numbers of driven higher frequencies are driven simultaneously, larger welded area and weld strength were obtained. PMID:15047274

  3. Final report of supplementary comparison AFRIMETS.AUV.A-S1: primary pressure calibration of LS2aP microphones according to IEC 61094-2, over the frequency range 1 Hz to 31.5 kHz.

    NASA Astrophysics Data System (ADS)

    Nel, R.; Barrera-Figueroa, S.; Dobrowolska, D.; Defilippo Soares, Z. M.; Maina, A. K.; Hof, C.

    2016-01-01

    This is the final report of the AFRIMETS.AUV-S1 comparison of the pressure sensitivity, modulus and phase, of LS2aP microphones in the frequency range 1 Hz to 31.5 kHz in accordance with IEC 61094-2. Six national metrology institutes from three different regional metrology organisations participated in the comparison for which two LS2aP microphones were circulated simultaneously to all the participants in a hybrid-star configuration. The comparison reference values were calculated as the weighted mean for modulus and phase for each individual microphone. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  4. Polarization behavior of polystyrene particles under direct current and low-frequency (<1 kHz) electric fields in dielectrophoretic systems.

    PubMed

    Saucedo-Espinosa, Mario A; Rauch, Mallory M; LaLonde, Alexandra; Lapizco-Encinas, Blanca H

    2016-02-01

    The relative polarization behavior of micron and submicron polystyrene particles was investigated under direct current and very low frequency (<1 kHz) alternating current electric fields. Relative polarization of particles with respect to the suspending medium is expressed in terms of the Clausius-Mossotti factor, a parameter of crucial importance in dielectrophoretic-based operations. Particle relative polarization was studied by employing insulator-based dielectrophoretic (iDEP) devices. The effects of particle size, medium conductivity, and frequency (10-1000 Hz) of the applied electric potential on particle response were assessed through experiments and mathematical modeling with COMSOL Multiphysics(®). Particles of different sizes (100-1000 nm diameters) were introduced into iDEP devices fabricated from polydimethylsiloxane (PDMS) and their dielectrophoretic responses under direct and alternating current electric fields were recorded and analyzed in the form of images and videos. The results illustrated that particle polarizability and dielectrophoretic response depend greatly on particle size and the frequency of the electric field. Small particles tend to exhibit positive DEP at higher frequencies (200-1000 Hz), while large particles exhibit negative DEP at lower frequencies (20-200 Hz). These differences in relative polarization can be used for the design of iDEP-based separations and analysis of particle mixtures. PMID:26531799

  5. Hearing frequency thresholds of a harbor porpoise (Phocoena phocoena) temporarily affected by a continuous 1.5 kHz tone.

    PubMed

    Kastelein, Ronald A; Gransier, Robin; Hoek, Lean; Rambags, Martijn

    2013-09-01

    Harbor porpoises may suffer hearing loss when exposed to intense sounds. After exposure to a 1.5 kHz continuous tone without harmonics at a mean received sound pressure level of 154 dB re 1 μPa for 60 min (cumulative sound exposure level: 190 dB re 1 μPa(2) s), the temporary hearing threshold shift (TTS) of a porpoise was quantified at 1.5, 2, 4, 6.5, 8, 16, 32, 63, and 125 kHz with a psychoacoustic technique. Significant TTS only occurred at 1.5 and 2 kHz. Mean TTS (1-4 min after sound exposure stopped) was ~14 dB at 1.5 kHz and ~11 dB at 2 kHz, and recovery occurred within 96 min. Control hearing tests before and after a 60 min low ambient noise exposure showed that normal variation in TTS was limited (standard deviation: ± 1.0 dB). Ecological effects of TTS depend not only on the magnitude of the TTS, its duration (depending on the exposure duration), and the recovery time after the exposure stopped, but also on the hearing frequency affected by the fatiguing noise. The hearing thresholds of harbor porpoises for the frequencies of their echolocation signals are not affected by intense low frequency sounds, therefore these sounds are unlikely to affect foraging efficiency. PMID:23967958

  6. Using ictal high-frequency oscillations (80-500Hz) to localize seizure onset zones in childhood absence epilepsy: a MEG study.

    PubMed

    Miao, Ailiang; Xiang, Jing; Tang, Lu; Ge, Huaiting; Liu, Hongxing; Wu, Ting; Chen, Qiqi; Hu, Zheng; Lu, Xiaopeng; Wang, Xiaoshan

    2014-04-30

    This study aimed to use ictal high-frequency oscillations (HFOs) ranging from 80Hz to 500Hz to locate seizure onset zones in childhood absence epilepsy (CAE) using non-invasive magnetoencephalography (MEG). Ten drug-naïve children with CAE were studied using a 275-channel MEG system. MEG data were digitized at a sampling rate of 6000Hz. HFO spectral power in real-time spectrograms was assessed using Morlet continuous wavelet transform. Magnetic sources were volumetrically localized through dynamic magnetic source imaging with a slide window. HFOs were identified in all patients. The total time of fast ripples (250-500Hz) was greater than that of ripples (80-250Hz) during absence seizures. The rate of fast ripples was associated with seizure frequency. HFO duration was significantly longer when co-occurring with spikes than when occurring independently, and the maximum frequency of HFOs co-occurring with spikes was higher than that of HFOs occurring independently. HFOs were predominantly localized in the medial prefrontal cortex (MPFC), whereas spikes were widespread to a variety of regions during the absence seizures. Compared with spikes, HFOs appeared to be more focal. The findings indicate that HFOs in the MPFC have a primary function in initializing epileptic activity in CAE. PMID:24582907

  7. Assessment of low-frequency hearing with narrow-band chirp-evoked 40-Hz sinusoidal auditory steady-state response.

    PubMed

    Wilson, Uzma S; Kaf, Wafaa A; Danesh, Ali A; Lichtenhan, Jeffery T

    2016-01-01

    Objective To determine the clinical utility of narrow-band chirp-evoked 40-Hz sinusoidal auditory steady state responses (s-ASSR) in the assessment of low-frequency hearing in noisy participants. Design Tone bursts and narrow-band chirps were used to respectively evoke auditory brainstem responses (tb-ABR) and 40-Hz s-ASSR thresholds with the Kalman-weighted filtering technique and were compared to behavioral thresholds at 500, 2000, and 4000 Hz. A repeated measure ANOVA and post-hoc t-tests, and simple regression analyses were performed for each of the three stimulus frequencies. Study sample Thirty young adults aged 18-25 with normal hearing participated in this study. Results When 4000 equivalent response averages were used, the range of mean s-ASSR thresholds from 500, 2000, and 4000 Hz were 17-22 dB lower (better) than when 2000 averages were used. The range of mean tb-ABR thresholds were lower by 11-15 dB for 2000 and 4000 Hz when twice as many equivalent response averages were used, while mean tb-ABR thresholds for 500 Hz were indistinguishable regardless of additional response averaging. Conclusion Narrow-band chirp-evoked 40-Hz s-ASSR requires a ∼15 dB smaller correction factor than tb-ABR for estimating low-frequency auditory threshold in noisy participants when adequate response averaging is used. PMID:26795555

  8. 295 mW output, frequency-stabilized erbium silica fiber laser with a linewidth of 5 kHz and a RIN of -120 dB/Hz.

    PubMed

    Kasai, Keisuke; Yoshida, Masato; Nakazawa, Masataka

    2016-02-01

    We demonstrate the frequency stabilization of a high output power, erbium silica fiber laser by utilizing a (13)C2H2 (acetylene) absorption line at 1538.8 nm and a H(13)C(14)N (hydrogen cyanide) absorption line at 1549.73 nm. We introduced a novel short ring cavity configuration and pump power feedback control to suppress the intensity noise of the laser output, which is caused by the relaxation oscillation of erbium ions. As a result, we succeeded in simultaneously obtaining a stable single-frequency oscillation with an output power of over 290 mW, a linewidth of 5 kHz, and a low relative intensity noise (RIN) of -120 dB/Hz. The frequency stabilities reached 2.8 × 10(-11) and 6.9 × 10(-11) for an integration time of 1 s with a (13)C2H2 and a H(13)C(14)N absorption line, respectively. PMID:26906844

  9. Active frequency stabilization of a 1.062-micron, Nd:GGG, diode-laser-pumped nonplanar ring oscillator to less than 3 Hz of relative linewidth

    NASA Technical Reports Server (NTRS)

    Day, T.; Gustafson, E. K.; Byer, R. L.

    1990-01-01

    Results are presented on the frequency stabilization of two diode-laser-pumped ring lasers that are independently locked to the same high-finesse interferometer. The relative frequency stability is measured by locking the lasers one free spectral range apart and observing the heterodyne beat note. The resultant beat note width of 2.9 Hz is consistent with the theoretical system noise-limited linewidth and is approximately 20 times that expected for shot-noise-limited performance.

  10. Low-frequency (<100 kHz), low-intensity (<100 mW/cm(2)) ultrasound to treat venous ulcers: a human study and in vitro experiments.

    PubMed

    Samuels, Joshua A; Weingarten, Michael S; Margolis, David J; Zubkov, Leonid; Sunny, Youhan; Bawiec, Christopher R; Conover, Dolores; Lewin, Peter A

    2013-08-01

    The purpose of this study was to examine whether low frequency (<100 kHz), low intensity (<100 mW/cm(2), spatial peak temporal peak) ultrasound can be an effective treatment of venous stasis ulcers, which affect 500 000 patients annually costing over $1 billion per year. Twenty subjects were treated with either 20 or 100 kHz ultrasound for between 15 and 45 min per session for a maximum of four treatments. Healing was monitored by changes in wound area. Additionally, two in vitro studies were conducted using fibroblasts exposed to 20 kHz ultrasound to confirm the ultrasound's effects on proliferation and cellular metabolism. Subjects receiving 20 kHz ultrasound for 15 min showed statistically faster (p < 0.03) rate of wound closure. All five of these subjects fully healed by the fourth treatment session. The in vitro results indicated that 20 kHz ultrasound at 100 mW/cm(2) caused an average of 32% increased metabolism (p < 0.05) and 40% increased cell proliferation (p < 0.01) after 24 h when compared to the control, non-treated cells. Although statistically limited, this work supports the notion that low-intensity, low-frequency ultrasound is beneficial for treating venous ulcers. PMID:23927194

  11. Effects of frequency, tidal volume, and lung volume on CO2 elimination in dogs by high frequency (2-30 Hz), low tidal volume ventilation.

    PubMed

    Slutsky, A S; Kamm, R D; Rossing, T H; Loring, S H; Lehr, J; Shapiro, A H; Ingram, R H; Drazen, J M

    1981-12-01

    Recent studies have shown that effective pulmonary ventilation is possible with tidal volumes (VT) less than the anatomic dead-space if the oscillatory frequency (f) is sufficiently large. We systematically studied the effect on pulmonary CO2 elimination (VCO2) of varying f (2-30 Hz) and VT (1-7 ml/kg) as well as lung volume (VL) in 13 anesthetized, paralyzed dogs in order to examine the contribution of those variables that are thought to be important in determining gas exchange by high frequency ventilation. All experiments were performed when the alveolar PCO2 was 40 +/- 1.5 mm Hg. In all studies, VCO2 increased monotonically with f at constant VT. We quantitated the effects of f and VT on VCO2 by using the dimensionless equation VCO2/VOSC = a(VT/VTo)b(f/fo)c where: VOSC = f X VT, VTo = mean VT, fo = mean f and a, b, c, are constants obtained by multiple regression. The mean values of a, b, and c for all dogs were 2.12 X 10(-3), 0.49, and 0.08, respectively. The most important variable in determining VCO2 was VOSC; however, there was considerable variability among dogs in the independent effect of VT and f on VCO2, with a doubling of VT at a constant VOSC causing changes in VCO2 ranging from -13 to +110% (mean = +35%). Increasing VL from functional residual capacity (FRC) to the lung volume at an airway opening minus body surface pressure of 25 cm H2O had no significant effect on VCO2. PMID:6798071

  12. Frequency dependent crustal scattering and absorption at 5-160 Hz from coda decay observed at 2.5 Km depth

    NASA Astrophysics Data System (ADS)

    Leary, Peter; Abercrombie, Rachel

    1994-06-01

    A triaxial 10 Hz seismometer at 2.5 km depth in the Cajon Pass borehole near the San Andreas fault in southern California records shear-wave coda motion from small local events for over 20 seconds duration. The passband of recorded seismic motion is 5 Hz to 200 Hz. To measure the rate of coda energy decay as a function of frequency, we filter the vector velocity seisograms of seven events into five octave-wide frequency bands (mean frequencies approximately equals 7, 14, 28, 56 and 112 Hz) and square the filtered seisograms. The observed energy decay in each passband is well approximated by first and second order scattering plus intrinsic attenuation as formulated by Zeng at al. (1991). The fits determine two energy decay parameters expressed as inverse lengths, beta(sub scat) for scattering and beta(sub intr) for absorption. Because the source-receiver distance is less than the thickness of the upper crust and the receiver is at depth, the direct body wave is uncomplicated by refracted energy and/or surface waves and allows accurate recording of coda energy relative to source pulse energy. The coda/source energy ratio directly defines the scattering attentuation parameter b(sub scat) and voids the need for multiple offset observations.

  13. Discovery of a Variable-Frequency, 50--60 HZ Quasi-Periodic Oscillation on the Normal Branch of GX 17+2

    NASA Astrophysics Data System (ADS)

    Wijnands, R. A. D.; van der Klis, M.; Psaltis, D.; Lamb, F. K.; Kuulkers, E.; Dieters, S.; van Paradijs, J.; Lewin, W. H. G.

    1996-09-01

    We report the discovery, with the Rossi X-Ray Timing Explorer, of a 50--60 Hz quasi-periodic oscillation (QPO) in GX 17+2. The QPO is seen when GX 17+2 is on the normal branch in the X-ray color-color diagram. Its frequency initially increases from 59 to 62 Hz as the source moves down the normal branch, but below the middle of the normal branch it decreases to ~50 Hz. Together with this frequency decrease, the QPO peak becomes much broader, from ~4 Hz in the upper part of the normal branch to ~15 Hz in the lower normal branch. The rms amplitude remains approximately constant between 1% and 2% along the entire normal branch. From a comparison of the properties of this QPO with those of QPOs previously observed along the normal branch in other Z sources, we conclude that it is most likely the horizontal-branch QPO (HBO). However, this QPO displays a number of unusual characteristics. The decrease in the QPO frequency along the lower normal branch is not in agreement with the predictions of the beat-frequency model for the HBO unless the mass flux through the inner disk decreases as the source moves down the lower normal branch. We tentatively suggest that the required decrease in the mass flux through the inner disk is caused by an unusually rapid increase in the mass flux in the radial inflow as GX 17+2 moves down the normal branch. Assuming that this explanation is correct, we can derive an upper bound on the dipole component of the star's magnetic field at the magnetic equator of 5 x 109 G for a 1.4 Msolar neutron star with a radius of 106 cm.

  14. LOW-FREQUENCY (11 mHz) OSCILLATIONS IN H1743-322: A NEW CLASS OF BLACK HOLE QUASI-PERIODIC OSCILLATIONS?

    SciTech Connect

    Altamirano, D.; Strohmayer, T.

    2012-08-01

    We report the discovery of quasi-periodic oscillations (QPOs) at {approx}11 mHz in two RXTE and one Chandra observations of the black hole candidate H1743-322. The QPO is observed only at the beginning of the 2010 and 2011 outbursts at similar hard color and intensity, suggestive of an accretion state dependence for the QPO. Although its frequency appears to be correlated with X-ray intensity on timescales of a day, in successive outbursts eight months apart, we measure a QPO frequency that differs by less than Almost-Equal-To 2.2 mHz while the intensity had changed significantly. We show that this {approx}11 mHz QPO is different from the so-called Type C QPOs seen in black holes and that the mechanisms that produce the two flavors of variability are most probably independent. After comparing this QPO with other variability phenomena seen in accreting black holes and neutron stars, we conclude that it best resembles the so-called 1 Hz QPOs seen in dipping neutron star systems, although having a significantly lower (1-2 orders of magnitude) frequency. If confirmed, H1743-322 is the first black hole showing this type of variability. Given the unusual characteristics and the hard-state dependence of the {approx}11 mHz QPO, we also speculate whether these oscillations could instead be related to the radio jets observed in H1743-322. A systematic search for this type of low-frequency QPOs in similar systems is needed to test this speculation. In any case, it remains unexplained why these QPOs have only been seen in the last two outbursts of H1743-322.

  15. Alcohol enhances unprovoked 22-28 kHz USVs and suppresses USV mean frequency in High Alcohol Drinking (HAD-1) male rats.

    PubMed

    Thakore, Neha; Reno, James M; Gonzales, Rueben A; Schallert, Timothy; Bell, Richard L; Maddox, W Todd; Duvauchelle, Christine L

    2016-04-01

    Heightened emotional states increase impulsive behaviors such as excessive ethanol consumption in humans. Though positive and negative affective states in rodents can be monitored in real-time through ultrasonic vocalization (USV) emissions, few animal studies have focused on the role of emotional status as a stimulus for initial ethanol drinking. Our laboratory has recently developed reliable, high-speed analysis techniques to compile USV data during multiple-hour drinking sessions. Since High Alcohol Drinking (HAD-1) rats are selectively bred to voluntarily consume intoxicating levels of alcohol, we hypothesized that USVs emitted by HAD-1 rats would reveal unique emotional phenotypes predictive of alcohol intake and sensitive to alcohol experience. In this study, male HAD-1 rats had access to water, 15% and 30% EtOH or water only (i.e., Controls) during 8 weeks of daily 7-h drinking-in-the-dark (DID) sessions. USVs, associated with both positive (i.e., 50-55 kHz frequency-modulated or FM) and negative (i.e., 22-28 kHz) emotional states, emitted during these daily DID sessions were examined. Findings showed basal 22-28 kHz USVs were emitted by both EtOH-Naïve (Control) and EtOH-experienced rats, alcohol experience enhanced 22-28 kHz USV emissions, and USV acoustic parameters (i.e., mean frequency in kHz) of both positive and negative USVs were significantly suppressed by chronic alcohol experience. These data suggest that negative affective status initiates and maintains excessive alcohol intake in selectively bred HAD-1 rats and support the notion that unprovoked emissions of negative affect-associated USVs (i.e., 22-28 kHz) predict vulnerability to excessive alcohol intake in distinct rodent models. PMID:26802730

  16. Effect of non-symmetric waveform on conduction block induced by high-frequency (kHz) biphasic stimulation in unmyelinated axon.

    PubMed

    Zhao, Shouguo; Yang, Guangning; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-10-01

    The effect of a non-symmetric waveform on nerve conduction block induced by high-frequency biphasic stimulation is investigated using a lumped circuit model of the unmyelinated axon based on Hodgkin-Huxley equations. The simulation results reveal that the block threshold monotonically increases with the stimulation frequency for the symmetric stimulation waveform. However, a non-monotonic relationship between block threshold and stimulation frequency is observed when the stimulation waveform is non-symmetric. Constant activation of potassium channels by the high-frequency stimulation results in the increase of block threshold with increasing frequency. The non-symmetric waveform with a positive pulse 0.4-0.8 μs longer than the negative pulse blocks axonal conduction by hyperpolarizing the membrane and causes a decrease in block threshold as the frequency increases above 12-16 kHz. On the other hand, the non-symmetric waveform with a negative pulse 0.4-0.8 μs longer than the positive pulse blocks axonal conduction by depolarizing the membrane and causes a decrease in block threshold as the frequency increases above 40-53 kHz. This simulation study is important for understanding the potential mechanisms underlying the nerve block observed in animal studies, and may also help to design new animal experiments to further improve the nerve block method for clinical applications. PMID:24928360

  17. Energy dependence of r.m.s amplitude of low frequency broadband noise and kHz quasi periodic oscillations in 4U 1608-52

    NASA Astrophysics Data System (ADS)

    Mandal, Soma

    2016-07-01

    The neutron star low mass X-ray binary 4U 1608-52 is known to show kHz QPOs as well as low frequency broad band noise. The energy dependence of the fractional r.m.s of these variations reflect the underlying radiative mechanism responsible for the phenomena. In this work we compute the energy depedence for 26 instances of kHz QPO observed by RXTE. We typically find as reported before, that the r.m.s increases with energy with slope of ˜0.5. This indicates that the variation is in the hot thermal compotonization component and in particular the QPO is likely to be driven by variation in the thermal heating rate of the hot plasma. For the same data, we compute the energy dependent r.m.s variability of the low frequency broad band noise component by considering the light curves. In contrast to the behaviour seen for the kHz QPO, the energy dependence is nearly flat i.e. the r.m.s. is energy independent. This indicates that the driver here may be the soft photon source. Thus the radiative mechanism driving the low frequency broad band noise and the high frequency QPO are different in nature.

  18. 15 CFR 10.12 - Editorial changes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Editorial changes. 10.12 Section 10.12... PRODUCT STANDARDS § 10.12 Editorial changes. The Department may, without prior notice, make such editorial or other minor changes as it deems necessary to reduce ambiguity or to improve clarity in...

  19. 15 CFR 10.12 - Editorial changes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Editorial changes. 10.12 Section 10.12... PRODUCT STANDARDS § 10.12 Editorial changes. The Department may, without prior notice, make such editorial or other minor changes as it deems necessary to reduce ambiguity or to improve clarity in...

  20. 15 CFR 10.12 - Editorial changes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Editorial changes. 10.12 Section 10.12... PRODUCT STANDARDS § 10.12 Editorial changes. The Department may, without prior notice, make such editorial or other minor changes as it deems necessary to reduce ambiguity or to improve clarity in...

  1. 15 CFR 10.12 - Editorial changes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Editorial changes. 10.12 Section 10.12... PRODUCT STANDARDS § 10.12 Editorial changes. The Department may, without prior notice, make such editorial or other minor changes as it deems necessary to reduce ambiguity or to improve clarity in...

  2. 15 CFR 10.12 - Editorial changes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Editorial changes. 10.12 Section 10.12... PRODUCT STANDARDS § 10.12 Editorial changes. The Department may, without prior notice, make such editorial or other minor changes as it deems necessary to reduce ambiguity or to improve clarity in...

  3. Calibration of miniature medical ultrasonic hydrophones for frequencies in the range 100 to 500 kHz using an ultrasonically absorbing waveguide.

    PubMed

    Rajagopal, Srinath; Zeqiri, Bajram; Gélat, Pierre N

    2014-05-01

    Enhancements to the existing primary standard optical interferometer and narrowband tone-burst comparison calibration methods for miniature medical ultrasonic hydrophones of the membrane type over the frequency range 100 to 500 kHz are described. Improvements were realized through application of an ultrasonically absorbing waveguide made of a low-frequency-absorbing tile used in sonar applications which narrows the spatial extent of the broad acoustic field. The waveguide was employed in conjunction with a sonar multilayered polyvinylidene difluoride (PVDF) hydrophone used as a transmitting transducer covering a frequency range of 100 kHz to 1 MHz. The acoustic field emanating from the ultrasonically absorbing waveguide reduced the significance of diffracted acoustic waves from the membrane hydrophone ring and the consequent interference of this wave with the direct acoustic wave received by the active element of the hydrophone during calibration. Four membrane hydrophone make/ models with ring sizes (defined as the inner diameter of the annular mounting ring of the hydrophone) in the range 50 to 100 mm were employed along with a needle hydrophone. A reference membrane hydrophone, calibrated using the NPL primary standard optical interferometer in combination with the ultrasonically absorbing waveguide, was subsequently used to calibrate the other four hydrophones by comparison, again using the ultrasonically absorbing waveguide. In comparison to existing methods, the use of the ultrasonically absorbing waveguide enabled the low-frequency calibration limit of a membrane hydrophone with a ring diameter of 50 mm to be reduced from 400 kHz to 200 kHz. PMID:24803021

  4. Effective conductivity and permittivity of unsaturated clayey materials in the frequency range 1 mHz to 1GHz: A unified model and its appications in hydrogeophysics

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2012-12-01

    A model combining low frequency complex conductivity and high frequency permittivity is developed in the frequency range from 1 mHz to 1 GHz. The low frequency conductivity depends on the pore water conductivity and a surface conductivity term that is mostly controlled by the electrical diffuse layer, the outer component of the electrical double layer coating the surface of the clay minerals. The frequency dependence of the effective quadrature conductivity shows three domains. Below a critical frequency fd that depends on the dynamic pore throat size, the quadrature conductivity is frequency dependent. Between fd and a second critical frequency fp, the quadrature conductivity is generally well described by a plateau (there are however few exception to this rule showing a well-characterized peak but still with a relatively weak frequency dependence). The characteristic frequency fd controls the transition between double layer polarization and the effect of the high frequency permittivity of the material. The Maxwell-Wagner polarization is found to be relatively negligible. For a broad range of frequencies below 1 MHz, the effective permittivity exhibits a strong dependence with the cation exchange capacity and the specific surface area. At high frequency, above the critical frequency fd, the effective permittivity reaches a high-frequency asymptotic limit that is controlled by the two Archie's exponent m and n like the low-frequency electrical conductivity. The unified model is compared with various datasets from the literature and is able to explain fairly well a broad number of observations with a very small number of textural and electrochemical parameters. It canbe therefore used to interpret induced polarization, induction-based electromagnetic methods, GPR data, and seismoelectric measurements to characterize the vadose zone.

  5. Attenuation of shear-waves in the back-arc region of the Hellenic arc for frequencies from 0.6 to 16 Hz

    NASA Astrophysics Data System (ADS)

    Polatidis, Antonis; Kiratzi, Anastasia; Hatzidimitriou, Panagiotis; Margaris, Basil

    2003-05-01

    Qβ for shear-waves is determined for the inner part of the Hellenic arc, the back-arc area, as a function of frequency in the range 0.6-16 Hz. We used 314 digital records from 32 earthquakes with magnitudes ( Mw) ranging from 3.9 to 5.1. Epicentral distances ranged from 65 to 515 km. The data were obtained in 1997 during a 6-month operation of a digital portable network in Greece. The Qβ estimates were made for five frequency bands centred at 0.8, 1.5, 3.0, 6.0 and 12.0 Hz and the Qβ values obtained were 47, 79, 143, 271 and 553, respectively. The results show that Qβ for S-waves increases with frequency taking the form Qβ=55 f0.91 (or Qβ-1≃0.018 f-0.91). The high attenuation and the strong frequency dependence found, which is close to the frequency dependence of coda Q for Greece, are characteristic of an area with high seismicity, rapid extension, and in agreement with other similar studies in Greece.

  6. Two efficient methods for measuring hydrophone frequency response in the 100 kHz to 2 MHz range

    NASA Astrophysics Data System (ADS)

    Harris, G. R.; Maruvada, S.; Gammell, P. M.

    2004-01-01

    As new medical applications of ultrasound emerge with operating frequencies in the hundreds of kilohertz to low megahertz region, it becomes more important to have convenient calibration methods for hydrophones in this frequency range. Furthermore, short diagnostic ultrasound pulses affected by finite amplitude distortion require that the hydrophone frequency response be known well below the center frequency. National standards laboratories can provide accurate calibration data at these frequencies, but the two methods now employed, laser interferometry and three-transducer reciprocity, are both single-frequency techniques, and they can be time-consuming procedures. Therefore, two efficient methods for generating a wideband acoustic pressure spectrum have been implemented to cover this frequency range. In one method a high-voltage pulse generator was used to excite a thick piezoelectric ceramic disk, producing a plane-wave acoustic pressure transient <1 µs in duration with peak amplitude of about 40 kPa. In the other technique, time delay spectrometry (TDS), a purpose-built 1-3 piezoelectric composite source transducer weakly focused at 20 cm was swept over the 0-2 MHz range. Its transmitting voltage response at 1 MHz was 11 kPa/V. The broadband pulse technique has the advantage of being simpler to implement, but TDS has a much greater signal-to-noise ratio because of the frequency-swept narrowband filter employed.

  7. A spectral-timing analysis of the kHz QPOs in 4U 1636-53: the frequency-energy resolved RMS spectrum

    NASA Astrophysics Data System (ADS)

    Ribeiro, Evandro M.; Mendez, Mariano; Zhang, Guo-Bao; De Avellar, Márcio G. B.

    2016-07-01

    Our understanding of quasi-periodic oscillations (QPO) has been further advanced in the last few years by the use of combined spectral and timing techniques, and it is now clear that QPO properties are closely related to the spectral state of the source in which they appear. In this work we used all the available RXTE observations of the neutron-star low-mass X-ray binary 4U~1636-53 to study the properties of the kilohertz QPO as a function of energy and frequency. By following the frequency evolution of the kHz QPOs we created frequency-resolved fractional RMS spectra. We also studied the connection between the frequency of the kHz QPOs and the parameters of the model that fits the X-ray energy spectrum. We show the dependence of the QPO properties in a multi-parameter space, and we discuss the implication of our results to the mechanism that produces the QPOs. Our results provide input to the next generation of spectral-timing models, which will help us understand the variability and the environment around the neutron star in these systems.

  8. The changes of the frequency specific impedance of the human body due to the resonance in the kHz range in cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Michalak, K. P.; Nawrocka-Bogusz, H.

    2011-12-01

    The frequency-specific absorption of kHz signals has been postulated for different tissues, trace elements, vitamins, toxins, pathogens, allergens etc. for low-power (μV) signals. An increase in the impedance of the human body is observed only up to the given power of the applied signal. The highest amplification of the given signal being damped by the body makes it possible to determine the intensity of the given process in the body (e.g. amount of the toxin, trace element, intensity of the allergy) being connected with a given frequency spectrum of the signal. The mechanism of frequency-specific absorption can be explained by means of the Quantum Field Theory being applied to the structure of the water. Substantially high coincidence between the frequencies of the rotation of free quasi-excited electrons in coherent domains of water and the frequencies being used in the MORA diagnostics (Med-Tronic GmbH, EN ISO 13485, EN ISO 9001) can be observed. These frequencies are located in the proximity of f = 7kHz · i (i = 1,3,5,7,...). This fact suggests that the coherent domains with the admixtures of the given substances create structure-specific coherent domains that possess frequency-specific absorption spectra. The diagnostic tool called "MORA System diagnosis" was used to investigate 102 patients with different types and stages of cancer. Many signals were observed to be absorbed by many cancer patients, e.g.: 'Cellular defense system', 'Degeneration tendencies', Manganese, Magnesium, Zinc, Selenium, Vitamin E, Glutamine, Glutathione, Cysteine, Candida albicans, Mycosis. The results confirm the role of oxidative stress, immunological system deficiency and mitochondria malfunction in the development of cancer.

  9. Investigation of atmospheric insect wing-beat frequencies and iridescence features using a multi-spectral kHz remote detection system

    NASA Astrophysics Data System (ADS)

    Gebru, Alem; Rohwer, Erich; Neethling, Pieter; Brydegaard, Mikkel

    2014-10-01

    Quantitative investigation of insect activity in their natural habitat is a challenging task for entomologist. It is difficult to address questions such as flight direction, predation strength and overall activities using the current techniques such as traps and sweep nets. A multi-spectral kHz remote detection system using sunlight as an illumination source is presented. We explore possibilities of remote optical classification of insects based on their wing-beat frequencies and iridescence features. It is shown that the wing-beat frequency of the fast insect events can be resolved by implementing high sampling frequency. The iridescence features generated from the change of color in two channels (visible and near infrared) during wing-beat cycle is presented. We show that the shape of the wing-beat trajectory is different for different insects. The flight direction of atmospheric insect is also determined using silicon quadrant detector.

  10. Intracavity frequency doubling of a 2,5-kHz pulsed Ti:Al2O3 laser

    NASA Astrophysics Data System (ADS)

    Poirier, P.; Hanson, F.

    1993-11-01

    An intracavity frequency doubled Ti:Al2O3 laser using a cw-pumped, repetitively Q-switched Nd:YAG laser as pump source is reported. Thus an efficient tunable blue source is obtained that provides a reliable all solid state system based on laser diode pumping.

  11. A 99nW 70.4kHz Resistive Frequency Locking On-Chip Oscillator with 27.4ppm/°C Temperature Stability

    PubMed Central

    Choi, Myungjoon; Bang, Suyoung; Jang, Tae-Kwang; Blaauw, David; Sylvester, Dennis

    2015-01-01

    We present a low power on-chip oscillator for system-on-chip designs. The oscillator introduces a resistive frequency locking loop topology where the equivalent resistance of a switched-capacitor is matched to a temperature-compensated resistor. The approach eliminates the traditional comparator from the oscillation loop, which consumes significant power and limits temperature stability in conventional relaxation oscillators. The oscillator is fabricated in 0.18μm CMOS and exhibits 27.4ppm/°C and <7ppm long-term stability while consuming 99.4nW at 70.4 kHz. PMID:26855849

  12. A -90 dBc@ 10 kHz Phase Noise Fractional-N Frequency Synthesizer with Accurate Loop Bandwidth Control Circuit

    NASA Astrophysics Data System (ADS)

    Dosho, Shiro

    2006-06-01

    This paper describes a -90 dBc@10 kHz phase noise fractional-N frequency synthesizer of 110 M-180 MHz output with accurate loop bandwidth control. Stable phase noise characteristics are achieved by controlling the bandwidth correctly, even if the PLL uses a noisy but small ring oscillator. Digital controller adjusts voltage controlled oscillator (VCO) gain and time constant of the loop filter. Analog controller compensates temperature variance. Test chip fabricated on 0.13 μm CMOS process shows stable and 6.8 dB improvement of the phase noise performance is achieved against process and environmental variations.

  13. Electric field of the power terrestrial sources observed by microsatellite Chibis-M in the Earth's ionosphere in frequency range 1-60 Hz

    NASA Astrophysics Data System (ADS)

    Dudkin, Fedir; Korepanov, Valery; Dudkin, Denis; Pilipenko, Vyacheslav; Pronenko, Vira; Klimov, Stanislav

    2015-07-01

    The power line emission (PLE) 50/60 Hz and the Schumann resonance (SR) harmonics were detected by the use of a compact electrical field sensor of length 0.42 m during microsatellite Chibis-M mission in years 2012-2014. The initial orbit of Chibis-M has altitude 500 km and inclination 52°. We present the space distribution of PLE and its connections with the possible overhead power lines. PLE has been recorded both in the shade and sunlit parts of the orbits as opposed to SR which have been recorded only in the nightside of the Earth. The cases of an extra long distance of PLE propagation in the Earth's ionosphere and increased value of SR Q factor have been also observed. These results should stimulate the ionosphere model refinement for ultralow frequency and extremely low frequency electromagnetic wave propagation as well as a study on new possibility of the ionosphere diagnostics.

  14. Comparative study of time-dependent effects of 4 and 8 Hz mechanical vibration at infrasound frequency on E. coli K-12 cells proliferation.

    PubMed

    Martirosyan, Varsik; Ayrapetyan, Sinerik

    2015-01-01

    The aim of the present work is to study the time-dependent effects of mechanical vibration (MV) at infrasound (IS) frequency at 4 and 8 Hz on E. coli K-12 growth by investigating the cell proliferation, using radioactive [(3)H]-thymidine assay. In our previous work it was suggested that the aqua medium can serve as a target through which the biological effect of MV on microbes could be realized. At the same time it was shown that microbes have mechanosensors on the surface of the cells and can sense small changes of the external environment. The obtained results were shown that the time-dependent effects of MV at 4 and 8 Hz frequency could either stimulate or inhibit the growth of microbes depending from exposure time. It more particularly, the invention relates to a method for controlling biological functions through the application of mechanical vibration, thus making it possible to artificially control the functions of bacterial cells, which will allow us to develop method that can be used in agriculture, industry, medicine, biotechnology to control microbial growth. PMID:24725172

  15. 10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers.

    PubMed

    Knabe, Kevin; Wu, Shun; Lim, Jinkang; Tillman, Karl A; Light, Philip S; Couny, Francois; Wheeler, Natalie; Thapa, Rajesh; Jones, Andrew M; Nicholson, Jeffrey W; Washburn, Brian R; Benabid, Fetah; Corwin, Kristan L

    2009-08-31

    Saturated absorption spectroscopy reveals the narrowest features so far in molecular gas-filled hollow-core photonic crystal fiber. The 48-68 mum core diameter of the kagome-structured fiber used here allows for 8 MHz full-width half-maximum sub-Doppler features, and its wavelength-insensitive transmission is suitable for high-accuracy frequency measurements. A fiber laser is locked to the (12)C2H2 nu(1); + nu(3) P(13) transition inside kagome fiber, and compared with frequency combs based on both a carbon nanotube fiber laser and a Cr:forsterite laser, each of which are referenced to a GPS-disciplined Rb oscillator. The absolute frequency of the measured line center agrees with those measured in power build-up cavities to within 9.3 kHz (1 sigma error), and the fractional frequency instability is less than 1.2 x 10(-11) at 1 s averaging time. PMID:19724600

  16. [The dynamics of the high-frequency components of brain electrical activity (up to 200 Hz) during learning reflects the functional mosaic structure of the neocortex].

    PubMed

    Dumenko, V N; Kozlov, M K; Kulikov, M A

    1996-01-01

    The study was aimed to reveal frequency ranges of correlated changes of power spectral densities of the brain electrical activity (EA) including the high-frequency components (HFC) in dogs (4 animals) by means of factor analysis technique. Spectral densities of EA in different cortical areas and olfactory bulb were factored. Relationships between the structure of the selected factors both by the parts of the total variance determined by them and their frequency loads suggest the regional and individual EA differences. In the process of learning (elaboration of motor skill of pressing the food-dispenser pedal with a forepaw) the factor organization of the EA became substantially more complicated, mainly, in the HFC-range (40-170 Hz). This was manifested in formation of narrower frequency subbands of the HFC each of which being highly loaded (0.7-0.8) by one of the factors. The evidence obtained by means of the FA was completely verified using original version of cluster analysis. PMID:8984810

  17. Spontaneous and forced oscillations of cell membrane of normal human erythrocytes: absence of resonance frequencies in a range of 0.03-500 Hz.

    PubMed

    Kononenko, V L; Shimkus, J K

    2000-01-01

    The spectra of natural oscillations of human erythrocyte cell membranes were studied experimentally and theoretically. The measurements were carried out at room temperature for both single normal cells and erythrocyte rouleaux in a range of 0.03-500 Hz. The spectra were measured at a resolution better than 1% using two techniques: registration of spontaneous membrane oscillations induced by thermal agitation in the surrounding medium and registration of the amplitude-frequency characteristics of the forced oscillations of erythrocyte elongation induced by a high-frequency electric field with the amplitude harmonic modulation. The spectra measured by both techniques had no resonance frequencies and decreased monotonically with the frequency increase. These results are confirmed by the theory developed for the extracellular excitation mechanisms of membrane oscillations. The spectra of active oscillatory biomechanical processes were measured for comparison. These processes are ciliary beating of human bronchial epithelium and ciliary beating and artificial periodic contractions of the cytoplasm of the ciliate Spirostomum ambiguum. The quality of the resonance lines of the order of 10-20 registered may serve as estimates for the line width in search of the resonance oscillations in erythrocytes induced by active cell processes. PMID:11368497

  18. Multi-mJ, kHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser

    NASA Astrophysics Data System (ADS)

    Hong, Kyung-Han; Chang, Chun-Lin; Krogen, Peter; Liang, Houkun; Stein, Gregory J.; Moses, Jeffrey; Lai, Chien-Jen; Kärtner, Franz X.

    2015-05-01

    We report on the development of a 2.74-mJ, ~4.2 ps, ~258 nm deep-ultraviolet (DUV) source at 1 kHz based on frequency quadrupling of ~32 mJ, 8.4 ps, ~1030 nm near-infrared (NIR) laser pulses with an excellent beam profile, generated from a diode-pumped, ultrafast hybrid Yb-doped chirped-pulse amplification laser system. We have used a two-stage second harmonic generation scheme at LBO (NIR-to-green) and BBO crystals (green-to-DUV), respectively, to achieve the fourth-harmonic generation (FHG). The NIR-to-DUV conversion efficiency of ~10% in the FHG is obtained. The peak power of the produced DUV laser pulses is as high as 0.56 GW. The beam profiles at near-field and far-field are found to be excellent and the M2 value is measured as ~2.6. We also present the systematic parameter study on the optimization of DUV generation. To our best knowledge, this is the most energetic DUV generation from a diodepumped solid-state laser at kHz repetition rates.

  19. Dielectric behavior of wild-type yeast and vacuole-deficient mutant over a frequency range of 10 kHz to 10 GHz.

    PubMed Central

    Asami, K; Yonezawa, T

    1996-01-01

    Dielectric behavior of Saccharomyces cerevisiae wild-type and vacuole-deficient mutant cells has been studied over a frequency range of 10 kHz to 10 GHz. Both types of cells harvested at the early stationary growth phase showed dielectric dispersion that was phenomenologically formulated by a sum of three separate dispersion terms: beta 1-dispersion (main dispersion) and beta 2-dispersion (additional dispersion) and gamma-dispersion due to orientation of water molecules. The beta 1-dispersion centered at a few MHz, which has been extensively studied so far, is due to interfacial polarization (or the Maxwell-Wagner effect) related to the plasma membrane. The beta 2-dispersion for the vacuole-deficient mutant centered at approximately 50 MHz was explained by taking the cell wall into account, whereas, for the wild-type cells, the beta 2-dispersion around a few tens MHz involved the contributions from the vacuole and cell wall. PMID:8889195

  20. Octave-wide frequency comb centered at 4 μm based on a subharmonic OPO with Hz-level relative comb linewidth

    NASA Astrophysics Data System (ADS)

    Smolski, V. O.; Xu, J.; Schunemann, P. G.; Vodopyanov, K. L.

    2016-03-01

    We study coherence properties of a more-than-octave-wide (2.6-7.5 μm) mid-IR frequency comb based on a 2-μm Tmfiber- laser-pumped degenerate (subharmonic) optical parametric oscillator (OPO) that uses orientation-patterned gallium arsenide (OP-GaAs) as gain element. By varying intracavity dispersion, we observed a 'phase' transition from a singlecomb state (at exactly OPO degeneracy) to a two-comb state (near-degenerate operation), characterized by two spectrally overlapping combs (signal and idler) with distinct carrier-envelope offset frequencies. We achieve this by generating a supercontinuum (SC) from the mode-locked Tm laser that spans most of the near-IR range, and observing RF beats between the SC and parasitic sum-frequency light (pump + OPO) that also falls into the near-IR. We found RF linewidth to be <15 Hz (a resolution of our spectrum analyzer), which proves that coherence of the pump laser comb is preserved to a high degree in a subharmonic OPO. Transition to a two-comb state was characterized by a symmetric splitting of the RF peak. Low pump threshold (down to 7 mW), high (73 mW) average power and high (up to 90%) pump depletion make this comb source very attractive for numerous applications including trace molecular detection and chemical sensing with massively parallel spectral data acquisition.

  1. Changes in dielectric properties at 460 kHz of kidney and fat during heating: importance for radio-frequency thermal therapy

    NASA Astrophysics Data System (ADS)

    Pop, Mihaela; Molckovsky, Andrea; Chin, Lee; Kolios, Michael C.; Jewett, Michael A. S.; Sherar, Michael D.

    2003-08-01

    We have developed a system to measure the changes due to heating to high temperatures in the dielectric properties of tissues in the radio-frequency range. A two-electrode arrangement was connected to a low-frequency impedance analyser and used to measure the dielectric properties of ex vivo porcine kidney and fat at 460 kHz. This frequency was selected as it is the most commonly used for radio-frequency thermal therapy of renal tumours. Tissue samples were heated to target temperatures between 48 and 78 °C in a hot water bath and changes in dielectric properties were measured during 30 min of heating and 15 min of cooling. Results suggest a time-temperature dependence of dielectric properties, with two separate components: one a reversible, temperature-dependent effect and the other a permanent effect due to structural events (e.g. protein coagulation, fat melting) that occur in tissues during heating. We calculated temperature coefficients of 1.3 +/- 0.1% °C-1 for kidney permittivity and 1.6% °C-1 for kidney conductivity, 0.9 +/- 0.1% °C-1 for fat permittivity and 1.7 +/- 0.1% °C-1 for fat conductivity. An Arrhenius model was employed to determine the first-order kinetic rates for the irreversible changes in dielectric properties. The following Arrhenius parameters were determined: an activation energy of 57 +/- 5 kcal mol-1 and a frequency factor of (6 +/- 1) × 1034 s-1 for conductivity of kidney, an activation energy of 48 +/- 2 kcal mol-1 and a frequency factor of 6 × 1028 s-1 for permittivity of kidney. A similar analysis led to an activation energy of 31 +/- 4 kcal mol-1 and a frequency factor of (4.43 +/-1) × 1016 s-1 for conductivity of fat, and an activation energy of 40 +/- 4 kcal mol-1 and a frequency factor of 4 × 1022 s-1 for permittivity of fat. Structural events occurring during heating at different target temperatures as determined by histological analyses were correlated with the changes in the measured dielectric properties.

  2. Discovery of Nearly Coherent Oscillations with a Frequency of approximately 567 Hz During Type I X-ray Bursts of the X-ray Transient and Eclipsing Binary X1658-298

    NASA Technical Reports Server (NTRS)

    Wijnands, Rudy; Strohmayer, Tod; Franco, Lucia M.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We report the discovery of nearly coherent oscillations with a frequency of approximately 567 Hz during type I X-ray bursts from the X-ray transient and eclipsing binary X1658-298. If these oscillations are directly related to the neutron star rotation, then the spin period of the neutron star in X1658-298 is approximately 1.8 ms. The oscillations can be present during the rise or decay phase of the bursts. Oscillations during the decay phase of the bursts show an increase in frequency of approximately 0.5-1 Hz. However, in one particular burst the oscillations reappear at the end of the decay phase at about 571.5 Hz. This represents an increase in oscillation frequency of about 5 Hz, which is the largest frequency change seen so far in a burst oscillation. It is unclear if such a large change can be accommodated by present models used to explain the frequency evolution of the oscillations. The oscillations at 571.5 Hz are unusually soft compared to the oscillations found at 567 Hz. We also observed several bursts during which the oscillations are detected at much lower significance or not at all. Most of these bursts happen during periods of X-ray dipping behavior, suggesting that the X-ray dipping might decrease the amplitude of the oscillations (although several complications exist with this simple picture). We discuss our discovery in the framework of the neutron star spin interpretation.

  3. Three Three-Year Aging of Prototype Flight Laser at 10 kHz and 1 ns Pulses With External Frequency Doubler for ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Konoplev, Oleg A.; Chiragh, Furqan L.; Vasilyev, Aleksey A.; Edwards, Ryan; Stephen, Mark A.; Troupaki, Elisavet; Yu, Anthony W.; Krainak, Michael A.; Sawruk, Nick; Hovis, Floyd; Culpepper, Charles F.; Strickler, Kathy

    2016-01-01

    We present the results of three year life-aging of a specially designed prototype flight source laser operating at 1064 nm, 10 kHz, 1ns, 15W average power and external frequency doubler. The Fibertek-designed, slightly pressurized air, enclosed-container source laser operated at 1064 nm in active Q-switching mode. The external frequency doubler was set in a clean room at a normal air pressure. The goal of the experiment was to measure degradation modes at 1064 and 532 nm discreetly. The external frequency doubler consisted of a Lithium triborate, LiB3O5, crystal operated at non-critical phase-matching. Due to 1064 nm diagnostic needs, the amount of fundamental frequency power available for doubling was 13.7W. The power generated at 532 nm was between 8.5W and 10W, depending on the level of stress and degradation. The life-aging consisted of double stress-step operation for doubler crystal, at 0.35 Jcm2 for almost 1 year, corresponding to normal conditions, and then at 0.93 Jcm2 for the rest of the experiment, corresponding to accelerated testing. We observed no degradation at the first step and linear degradation at the second step. The linear degradation at the second stress-step was related to doubler crystal output surface changes and linked to laser-assisted contamination. We discuss degradation model and estimate the expected lifetime for the flight laser at 532 nm. This work was done within the laser testing for NASAs Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) LIDAR at Goddard Space Flight Center in Greenbelt, MD with the goal of 1 trillion shots lifetime.

  4. Home Economics. Grades 10-12.

    ERIC Educational Resources Information Center

    Instructional Objectives Exchange, Los Angeles, CA.

    This collection contains 41 cognitive objectives and related test items for home economics, grades 10-12. It is organized into the following categories: child development (home discipline); clothing and textiles, consumer practices; design principals; health services, home management and family economics; housing; and pregnancy. Each objective is…

  5. Extremely Low Frequency Magnetic Field (50 Hz, 0.5 mT) Reduces Oxidative Stress in the Brain of Gerbils Submitted to Global Cerebral Ischemia

    PubMed Central

    Rauš Balind, Snežana; Selaković, Vesna; Radenović, Lidija; Prolić, Zlatko; Janać, Branka

    2014-01-01

    Magnetic field as ecological factor has influence on all living beings. The aim of this study was to determine if extremely low frequency magnetic field (ELF-MF, 50 Hz, 0.5 mT) affects oxidative stress in the brain of gerbils submitted to 10-min global cerebral ischemia. After occlusion of both carotid arteries, 3-month-old gerbils were continuously exposed to ELF-MF for 7 days. Nitric oxide and superoxide anion production, superoxide dismutase activity and index of lipid peroxidation were examined in the forebrain cortex, striatum and hippocampus on the 7th (immediate effect of ELF-MF) and 14th day after reperfusion (delayed effect of ELF-MF). Ischemia per se increased oxidative stress in the brain on the 7th and 14th day after reperfusion. ELF-MF also increased oxidative stress, but to a greater extent than ischemia, only immediately after cessation of exposure. Ischemic gerbils exposed to ELF-MF had increased oxidative stress parameters on the 7th day after reperfusion, but to a lesser extent than ischemic or ELF-MF-exposed animals. On the 14th day after reperfusion, oxidative stress parameters in the brain of these gerbils were mostly at the control levels. Applied ELF-MF decreases oxidative stress induced by global cerebral ischemia and thereby reduces possible negative consequences which free radical species could have in the brain. The results presented here indicate a beneficial effect of ELF-MF (50 Hz, 0.5 mT) in the model of global cerebral ischemia. PMID:24586442

  6. Electromagnetic Characterization of Terrestrial Analogues To the Martian Volcanic Sediments in the Frequency Band 1 kHz to 500 MHz: Toward a Dielectric Map of Mars

    NASA Astrophysics Data System (ADS)

    Heggy, E.; Clifford, S.; Morris, R. V.; Ruffie, G.

    2004-05-01

    We have undertaken a laboratory electromagnetic characterization of minerals identified by the Mars Global Surveyor's Thermal Emission Spectrometer (TES) to determine their dielectric properties over the frequency range from 1 kHz to 500 MHz. The study includes the same sample library used for the calibration of TES, volcanic rocks from potential terrestrial analogues sites, as well as some achondrite and SNC meteorite samples. Samples have been measured in two forms: powder and compacted pellets, reflecting the different extremes in soil density and lithology that are found on the Martian surface (the in-situ density of these materials has been estimated from the TES thermal inertia data). The primary objective of this work is to evaluate the range of the surface electrical and magnetic losses that may be encountered by radar sounding investigations that are conducted to identify the state and distribution of subsurface water on Mars. The electromagnetic properties of these Mars-like materials are being investigates as a function of various geophysical parameters, such as porosity, bulk density and grain size. This information will help to locate regions on Mars were surface dielectric conditions are optimal for orbital subsurface sounding. Preliminary results indicate that for low-density dust, the dielectric contrast between different iron-poor minerals is not very relevant while for consolidated materials with equal densities the contrast is more important. In contrast, iron-rich minerals, such as hematite and magnetite, have both a complex dielectric behavior and yield a strong contrast with other minerals detected on the surface of Mars. Even in minor amounts, iron oxides can have a strong impact on the strength of the backscattered radar signal in the frequency band 1 to 30 MHz. We discuss the potential implications of these findings on the maximum penetration depth and effect of surface clutter at the frequencies utilized by the MARSIS and SHARAD orbital

  7. Neuritin reverses deficits in murine novel object associative recognition memory caused by exposure to extremely low-frequency (50 Hz) electromagnetic fields

    PubMed Central

    Zhao, Qian-Ru; Lu, Jun-Mei; Yao, Jin-Jing; Zhang, Zheng-Yu; Ling, Chen; Mei, Yan-Ai

    2015-01-01

    Animal studies have shown that electromagnetic field exposure may interfere with the activity of brain cells, thereby generating behavioral and cognitive disturbances. However, the underlying mechanisms and possible preventions are still unknown. In this study, we used a mouse model to examine the effects of exposure to extremely low-frequency (50 Hz) electromagnetic fields (ELF MFs) on a recognition memory task and morphological changes of hippocampal neurons. The data showed that ELF MFs exposure (1 mT, 12 h/day) induced a time-dependent deficit in novel object associative recognition memory and also decreased hippocampal dendritic spine density. This effect was observed without corresponding changes in spontaneous locomotor activity and was transient, which has only been seen after exposing mice to ELF MFs for 7-10 days. The over-expression of hippocampal neuritin, an activity-dependent neurotrophic factor, using an adeno-associated virus (AAV) vector significantly increased the neuritin level and dendritic spine density. This increase was paralleled with ELF MFs exposure-induced deficits in recognition memory and reductions of dendritic spine density. Collectively, our study provides evidence for the association between ELF MFs exposure, impairment of recognition memory, and resulting changes in hippocampal dendritic spine density. Neuritin prevented this ELF MFs-exposure-induced effect by increasing the hippocampal spine density. PMID:26138388

  8. Laboratory investigation of the acoustic response of seagrass tissue in the frequency band 0.5-2.5 kHz.

    PubMed

    Wilson, Preston S; Dunton, Kenneth H

    2009-04-01

    Previous in situ investigations of seagrass have revealed acoustic phenomena that depend on plant density, tissue gas content, and free bubbles produced by photosynthetic activity, but corresponding predictive models that could be used to optimize acoustic remote sensing, shallow water sonar, and mine hunting applications have not appeared. To begin to address this deficiency, low frequency (0.5-2.5 kHz) acoustic laboratory experiments were conducted on three freshly collected Texas Gulf Coast seagrass species. A one-dimensional acoustic resonator technique was used to assess the biomass and effective acoustic properties of the leaves and rhizomes of Thalassia testudinum (turtle grass), Syringodium filiforme (manatee grass), and Halodule wrightii (shoal grass). Independent biomass and gas content estimates were obtained via microscopic cross-section imagery. The acoustic results were compared to model predictions based on Wood's equation for a two-phase medium. The effective sound speed in the plant-filled resonator was strongly dependent on plant biomass, but the Wood's equation model (based on tissue gas content alone) could not predict the effective sound speed for the low irradiance conditions of the experiment, in which no free bubbles were generated by photosynthesis. The results corroborate previously published results obtained in situ for another seagrass species, Posidonia oceanica. PMID:19354371

  9. The effect of signal duration on the underwater detection thresholds of a harbor porpoise (Phocoena phocoena) for single frequency-modulated tonal signals between 0.25 and 160 kHz.

    PubMed

    Kastelein, Ronald A; Hoek, Lean; de Jong, Christ A F; Wensveen, Paul J

    2010-11-01

    The underwater hearing sensitivity of a young male harbor porpoise for tonal signals of various signal durations was quantified by using a behavioral psychophysical technique. The animal was trained to respond only when it detected an acoustic signal. Fifty percent detection thresholds were obtained for tonal signals (15 frequencies between 0.25-160 kHz, durations 0.5-5000 ms depending on the frequency; 134 frequency-duration combinations in total). Detection thresholds were quantified by varying signal amplitude by the 1-up 1-down staircase method. The hearing thresholds increased when the signal duration fell below the time constant of integration. The time constants, derived from an exponential model of integration [Plomp and Bouman, J. Acoust. Soc. Am. 31, 749-758 (1959)], varied from 629 ms at 2 kHz to 39 ms at 64 kHz. The integration times of the porpoises were similar to those of other mammals including humans, even though the porpoise is a marine mammal and a hearing specialist. The results enable more accurate estimations of the distances at which porpoises can detect short-duration environmental tonal signals. The audiogram thresholds presented by Kastelein et al. [J. Acoust. Soc. Am. 112, 334-344 (2002)], after correction for the frequency bandwidth of the FM signals, are similar to the results of the present study for signals of 1500 ms duration. Harbor porpoise hearing is more sensitive between 2 and 10 kHz, and less sensitive above 10 kHz, than formerly believed. PMID:21110616

  10. Sporadic Geomagnetic Pulsations at Frequencies of up to 15 HZ in the Magnetic Storm of November 7-14, 2004: Features of the Amplitude and Polarization Spectra and their Connection with Ion-Cyclotron Waves in the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Ermakova, E. N.; Yahnin, A. G.; Yahnina, T. A.; Demekhov, A. G.; Kotik, D. S.

    2016-01-01

    We study the dynamics of the geomagnetic-pulsation spectra at unusually high frequencies (including the frequencies exceeding the Schumann resonance frequency 8 Hz), which were detected for the first time at the Novaya Zhizn' midlatitude station (the McIlwain parameter L = 2.6) at the time of a strong magnetic storm on November 07-14, 2004. To interpret the observed pulsation frequencies, we used the data from the NOAA low-orbit satellites which recorded localized precipitations of energetic protons (with energies of 30 to 80 keV) and calculations of the singlepass cyclotron amplification of electromagnetic ion-cyclotron waves. Amplitude and polarization characteristics of the radiation spectra at frequencies of up to 15 Hz at the Novaya Zhizn' and Lovozero stations (L = 5.2) are compared. It is shown that the magnetic field oscillations in the frequency range 7-15 Hz correlate with proton precipitations and proton auroras at geomagnetic latitudes 50°-57° (L = 2.42-3.37). It is also shown that for a high anisotropy of the pitch-angle distribution of the ring-current protons at such low geomagnetic latitudes, the frequency spectrum of observed high-frequency radiation agrees well with the calculated location of the maximum of the single-pass cyclotron amplification of electromagnetic ion-cyclotron waves. Analysis of the data and calculation results has led to the conclusion that inherently the recorded signals are a high-frequency counterpart of the Pc1 pulsations and are due to the generation of ion-cyclotron waves in the magnetosphere at unusually low latitudes, which are probably stipulated by the shift of the plasma pause to these latitudes during a strong magnetic storm.

  11. Search for a correlation between kHz quasi-periodic oscillation frequencies and accretion-related parameters in the ensemble of neutron star low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Çatmabacak, Önder; Hakan Erkut, M.; Catmabacak, Onur; Duran, Sivan

    2016-07-01

    The distribution of neutron star sources in the ensemble of low-mass X-ray binaries shows no evidence for a correlation between kHz quasi-periodic oscillation (QPO) frequencies and X-ray luminosity. Sources differing by orders of magnitude in luminosity can exhibit similar range of QPO frequencies. We study the possibility for the existence of a correlation between kHz QPO frequencies and accretion related parameters. The parameters such as the mass accretion rate and the size of the boundary region in the innermost disk are expected to be related to X-ray luminosity. Using the up-to-date data of neutron star low-mass X-ray binaries, we search for a possible correlation between lower kHz QPO frequencies and mass accretion rate through the mass and radius values predicted by different equations of state for the neutron star. The range of mass accretion rate for each source can be estimated if the accretion luminosity is assumed to be represented well by the X-ray luminosity of the source. Although we find no correlation between mass accretion rate and QPO frequencies, the source distribution seems to be in accordance with a correlation between kHz QPO frequencies and the parameter combining the neutron star magnetic field and the mas accretion rate. The model function we employ to descibe the correlation is able to account for the scattering of individual sources around a simple power law. The correlation argues disk-magnetosphere interaction as the origin of these millisecond oscillations.

  12. 44 CFR 10.12 - Pre-implementation actions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Pre-implementation actions. 10.12 Section 10.12 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY GENERAL ENVIRONMENTAL CONSIDERATIONS Agency Implementing Procedures § 10.12 Pre-implementation actions. (a)...

  13. 1 CFR 10.12 - Format, indexes, and ancillaries.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1 General Provisions 1 2012-01-01 2012-01-01 false Format, indexes, and ancillaries. 10.12 Section 10.12 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER SPECIAL EDITIONS OF THE FEDERAL REGISTER PRESIDENTIAL PAPERS Annual Publication § 10.12 Format, indexes, and ancillaries. (a)...

  14. 1 CFR 10.12 - Format, indexes, and ancillaries.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 General Provisions 1 2011-01-01 2011-01-01 false Format, indexes, and ancillaries. 10.12 Section 10.12 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER SPECIAL EDITIONS OF THE FEDERAL REGISTER PRESIDENTIAL PAPERS Annual Publication § 10.12 Format, indexes, and ancillaries. (a)...

  15. 1 CFR 10.12 - Format, indexes, and ancillaries.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Format, indexes, and ancillaries. 10.12 Section 10.12 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER SPECIAL EDITIONS OF THE FEDERAL REGISTER PRESIDENTIAL PAPERS Annual Publication § 10.12 Format, indexes, and ancillaries. (a)...

  16. 1 CFR 10.12 - Format, indexes, and ancillaries.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1 General Provisions 1 2013-01-01 2012-01-01 true Format, indexes, and ancillaries. 10.12 Section 10.12 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER SPECIAL EDITIONS OF THE FEDERAL REGISTER PRESIDENTIAL PAPERS Annual Publication § 10.12 Format, indexes, and ancillaries. (a)...

  17. 1 CFR 10.12 - Format, indexes, and ancillaries.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 1 General Provisions 1 2014-01-01 2012-01-01 true Format, indexes, and ancillaries. 10.12 Section 10.12 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER SPECIAL EDITIONS OF THE FEDERAL REGISTER PRESIDENTIAL PAPERS Annual Publication § 10.12 Format, indexes, and ancillaries. (a)...

  18. 46 CFR 90.10-12 - Gas free.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Gas free. 90.10-12 Section 90.10-12 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 90.10-12 Gas free. This term means free from dangerous concentrations...

  19. 46 CFR 90.10-12 - Gas free.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Gas free. 90.10-12 Section 90.10-12 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 90.10-12 Gas free. This term means free from dangerous concentrations...

  20. 46 CFR 90.10-12 - Gas free.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Gas free. 90.10-12 Section 90.10-12 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 90.10-12 Gas free. This term means free from dangerous concentrations...

  1. 46 CFR 90.10-12 - Gas free.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Gas free. 90.10-12 Section 90.10-12 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 90.10-12 Gas free. This term means free from dangerous concentrations...

  2. 46 CFR 90.10-12 - Gas free.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Gas free. 90.10-12 Section 90.10-12 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 90.10-12 Gas free. This term means free from dangerous concentrations...

  3. Audiogram of the chicken (Gallus gallus domesticus) from 2 Hz to 9 kHz.

    PubMed

    Hill, Evan M; Koay, Gimseong; Heffner, Rickye S; Heffner, Henry E

    2014-10-01

    The pure-tone thresholds of four domestic female chickens were determined from 2 Hz to 9 kHz using the method of conditioned suppression/avoidance. At a level of 60 dB sound pressure level (re 20 μN/m(2)), their hearing range extends from 9.1 Hz to 7.2 kHz, with a best sensitivity of 2.6 dB at 2 kHz. Chickens have better sensitivity than humans for frequencies below 64 Hz; indeed, their sensitivity to infrasound exceeds that of the homing pigeon. However, when threshold testing moved to the lower frequencies, the animals required additional training before their final thresholds were obtained, suggesting that they may perceive frequencies below 64 Hz differently than higher frequencies. PMID:25092127

  4. Generation of ultrashort 90 µJ deep-ultraviolet pulses by dual broadband frequency doubling with β-BaB2O4 crystals at 1 kHz

    NASA Astrophysics Data System (ADS)

    Zhou, Chun; Kanai, Teruto; Watanabe, Shuntaro

    2015-01-01

    Fourth-harmonic pulses of a 1 kHz chirped-pulse amplification (CPA) Ti:sapphire laser have been generated by a scheme of dual broadband frequency doubling with two β-BaB2O4 (BBO) crystals. The pulse energy was 90 µJ with a bandwidth of 2.7 nm (full width at half maximum, FWHM) at a central wavelength of 220 nm. The pulse width was measured to be 45 fs by autocorrelation with the two-photon fluorescence of CaF2, which was much smaller than that (120 fs) obtained by conventional frequency conversion.

  5. A new type of auroral radio emission observed at medium frequencies (approx. 1350-3700 kHz) using ground-based receivers

    NASA Astrophysics Data System (ADS)

    Weathermax, A. T.; Labelle, J.; Trimpi, M. L.

    1994-12-01

    A new form of broadband emissions ('MF bursts') appearing between approx. 1350-3700 kHz has been identified in 8 months of data (October 1993-May 1994) from ground-based LF/MF/HF receiving systems at Circle Hot Springs (65.5 deg N, 144.7 deg W) and Two Rivers (64.9 deg N, 146.9 deg W), Alaska. These emissions are often observed simultaneously with 2f(sub ce) and 3f(sub ce) auroral roar emissions, auroral hiss, and absorption of AM broadcast band transmitters. MF bursts display significant amplitude variations on timescales as short as 10 ms, but the variations do not correlate with the fine structures seen in simultaneous auroral hiss and auroral roar. The generation mechanism of these emissions is unknown.

  6. Rats showing low and high sensitization of frequency-modulated 50-kHz vocalization response to amphetamine differ in amphetamine-induced brain Fos expression.

    PubMed

    Kaniuga, Ewelina; Taracha, Ewa; Stępień, Tomasz; Wierzba-Bobrowicz, Teresa; Płaźnik, Adam; Chrapusta, Stanisław J

    2016-10-01

    Individuals predisposed to addiction constitute a minority of drug users, in both humans and animal models of the disorder, but there are no established characteristics that would allow identifying them beforehand. Our studies demonstrate that sensitization of rat 50-kHz ultrasonic vocalization (USV) response to amphetamine shows marked inter-individual diversity but substantial intra-individual stability. Low sensitization of the response shows relevance to the acquisition of self-administration of this drug and hence might be of predictive value regarding the risk of addiction. We compared amphetamine-induced Fos expression in 16 brain regions considered important for the development of addiction between rats preselected for low and high sensitization of the response and next given nine daily amphetamine doses followed by a 2-week withdrawal and final amphetamine challenge. Ventral tegmental area and nucleus accumbens shell Fos-positive nuclei counts correlated positively with 50-kHz USV response to the challenge in high-sensitized rats. Compared to those in amphetamine-untreated controls, Fos-positive nuclei counts were significantly and markedly (2-6 times) higher in 12 regions in high-sensitized rats, whereas in low-sensitized rats they were significantly higher in the cingulate cortex and dorsomedial striatum only. The difference in the counts between the latter two subsets reached statistical significance in dorsomedial and dorsolateral striatum and three out of four cortical regions studied. The fact that the diversification was most distinct in dorsal striatum that plays a critical role in the transition from controlled to compulsive drug intake suggests that the USV-based categorization may be related to divergent vulnerability of rats to AMPH addiction. PMID:27507424

  7. Forced oscillation technique. Reference values for resistance and reactance over a frequency spectrum of 2-26 Hz in healthy children aged 2.3-12.5 years.

    PubMed

    Duiverman, E J; Clément, J; van de Woestijne, K P; Neijens, H J; van den Bergh, A C; Kerrebijn, K F

    1985-01-01

    The forced pseudo-random noise oscillation technique is a method by which total respiratory resistance (Rrs) and reactance (Xrs) can be measured simultaneously at various frequencies by means of complex oscillations, superimposed at the mouth during spontaneous quiet breathing. Reference values were obtained in 255 healthy Caucasian children of Dutch descent aged 2.3-12.5 years. Rrs and Xrs vs frequency (f) curves are mainly determined by the child's sex, age, height and weight. Taking complete Rrs and Xrs-f curves into account, we found that Rrs values were significantly higher in young boys than in young girls. They were equal at about 8 years, but at about 12 years of age Rrs values were again significantly higher in boys than in girls. Frequency dependence of Rrs was found in healthy boys up to about 5 years of age, but not in girls of the same age or in older children. These data suggest differences in airway diameter between boys and girls. At all ages Xrs was significantly lower in boys than in girls. This suggests differences in bronchial patency of peripheral airways, boys being at a disadvantage. It is concluded that multiple frequency oscillometry is a method which is ideal for children from the age of about 3 years. The possibility of measuring Rrs as well as frequency dependence of Rrs and Xrs simultaneously is the major advantage over other oscillation devices. PMID:3995199

  8. Behavior of 1 Ω resistors at frequencies below 1 Hz and the problem of assigning a dc value

    NASA Astrophysics Data System (ADS)

    Fletcher, Nick; Götz, Martin; Rolland, Benjamin; Pesel, Eckart

    2015-08-01

    This paper presents a systematic study of the effects of reversals of current polarity on 1 Ω standard resistors. A selection of 1 Ω standards were measured on a dc cryogenic current comparator bridge and also on an ac current comparator bridge operating at 1 Hz. We find that the apparent 4 terminal resistance depends strongly on the dc reversal rate, in one case showing a variation of more than 0.1 μΩ/Ω for cycle times between 10 s and 1000 s. Even in the best cases, effects of at least 0.01 μΩ/Ω are present. Furthermore, the assumption that the apparent resistance value converges to a limiting value for long waiting times after reversal is not always upheld, making it difficult to quote a simple dc value. Existing models of Peltier heating at wire junctions do not completely explain our observations. The problems presented have been the limiting factor for 1 Ω measurements as part of a recent on-site comparison of quantum Hall effect resistance standards.

  9. The effect of Non- ionizing electromagnetic field with a frequency of 50 Hz in Rat ovary: A transmission electron microscopy study

    PubMed Central

    Khaki, Amir Afshin; Khaki, Arash; Ahmadi, Seyed Shahin

    2016-01-01

    Background: Recently, there are increasing concerns and interests about the potential effects of Electromagnetic Field (EMF) on both human and animal health. Objective: The goal of this study was to evaluate the harmful effects of 50 Hz non-ionizing EMF on rat oocytes. Materials and Methods: In this experimental study 30 rats were randomly taken from laboratory animals and their ags and weights were determined. These 3 month's old rats were randomly divided into 3 groups. The control group consisted of 10 rats without receiving any treatment and kept under normal conditions. Experimental group 1 (10 rats) received EMF for 8 weeks (3 weeks intrauterine +5 weeks after births) and experimental group 2 (10 rats) received EMF for 13 weeks (3 weeks intrauterine +10 weeks after birth). After removing the ovaries and isolating follicles, granulosa cells were fixed in glutaraldehyde and osmium tetroxide. Electron microscopy was used to investigate the traumatic effects of EMF on follicles. Results: In control group nucleus membrane and mitochondria in follicle’s cytoplasm seemed normal in appearance. Theca layer of primary follicles in experimental group was separated clearly, zona layer demonstrated trot with irregular thickness and ovarian stroma seemed isolated with dilated vessels showing infiltration. Conclusion: According to the results of this study, it can be concluded that EMF has harmful effects on the ovarian follicles. PMID:27200427

  10. An Attempt to Describe Frequency-Correlations among kHz QPOs and HBOs by Two-Armed Vertical p-Mode Oscillations: Case of No Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kato, Shoji

    2012-12-01

    The trapping of two-armed (m = 2) vertical p-mode oscillations in relativistic disks is examined. The disks are assumed to be isothermal in the vertical direction, but are truncated at a certain height by the presence of corona. The same issues were examined in a previous paper (Kato 2012a). In this paper, unlike the previous paper, however, we do not use the approximation that the oscillations are nearly vertical, but limit to a simpler case of no magnetic field. As in the previous paper, the results suggest that the two basic oscillation modes [both are the fundamental (n =1) in the vertical direction, but in the horizontal direction one is the fundamental (nr = 0) and the other the first overtone (nr =1)] correspond to the twin kHz QPOs. Second, the oscillation mode, which is the first overtone (n =2) in the vertical direction and the fundamental in the horizontal direction (nr =0), will correspond to the horizontal branch oscillation (HBO) of Z-sources. The latter suggests that the horizontal branch of Z-sources is a sequence of temperature change in disks whose vertical thickness is strongly terminated. The temperature increases leftward along the sequence from the apex between the normal and horizontal branches.

  11. Morphological and biochemical analysis by atomic force microscopy and scanning near-field optical microscopy techniques of human keratinocytes (HaCaT) exposed to extremely low frequency 50 Hz magnetic field

    NASA Astrophysics Data System (ADS)

    Rieti, Sabrina; Manni, Vanessa; Lisi, Antonella; Grimaldi, Settimio; Generosi, Renato; Luce, Marco; Perfetti, Paolo; Cricenti, Antonio; Pozzi, Deleana; Giuliani, Livio

    2002-10-01

    We studied the effect of the interaction of electromagnetic radiation with human keratinocytes (HaCaT), at low (50 Hz, 1 mT) frequency using both atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM) techniques. AFM analysis showed modifications in shape and morphology in exposed cells, while SNOM indirect immunofluorescence analysis revealed an increase of segregation of β4 integrin (an adhesion marker) in the cell membrane of the same cells, suggesting that a higher percentage of the exposed cells shows a modified pattern of this adhesion marker.

  12. Energetic Particle Propagation in the Inner Heliosphere as Deduced from Low Frequency (less than 100 kHz) Observations of Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Erickson, W. C.

    2003-01-01

    Solar energetic particle (SEP) events are well-associated with solar flares. It is observed that the delay between the time of the flare and the first-arriving particles at a spacecraft increases with increasing difference between the flare longitude and the footpoint of the field line on which the spacecraft is located. This difference we call the "connection angle" and can be as large as approximately 120 deg. Recently it has been found that all SEP events are preceded by type III radio bursts. These bursts are plasma emission caused by the propagation of 2-50 keV flare electrons through the solar corona and into the solar wind. The drift of these type III radio bursts to lower and lower frequencies enables the propagation of the flare electrons to be traced from the Sun to about 1 AU. We have made an extensive analysis of the type III bursts associated with greater than 20 MeV proton events and find that, in most cases, the radio emission extends to the local plasma frequency when the energetic particles arrive within a few hours of the flare. We conclude that this emission at the lowest possible frequency is generated close to the spacecraft. We then use the time from when the burst started at the Sun to when it reached the local plasma frequency to infer the time it took the radio producing electrons to travel to the spacecraft. We find that these delay times are organized by the connection angle and correlate with the proton delay times. We also find that the differences between the radio delays at Wind and Ulysses are matched by differences in the relative arrival times of the energetic particles at the two spacecraft. The consistent timing between the relative arrival times of energetic electrons and protons and the start of the lowest frequency radio emissions suggests that the first arriving particles of both species are accelerated as part of the flare process and that they propagate to the spacecraft along trajectories similar to those of the lower

  13. All-sky coherent search for continuous gravitational waves in 6-7 Hz band with a torsion-bar antenna

    NASA Astrophysics Data System (ADS)

    Eda, Kazunari; Shoda, Ayaka; Kuwahara, Yuya; Itoh, Yousuke; Ando, Masaki

    2016-01-01

    A torsion-bar antenna (TOBA) is a low-frequency terrestrial gravitational wave (GW) antenna which consists of two orthogonal bar-shaped test masses. We upgraded the prototype TOBA and achieved the strain sensitivity 10^{-10} Hz^{-1/2} at around 1 Hz. We operated the upgraded TOBA (called the "Phase-II TOBA") located at Tokyo in Japan for 22.5 hours and performed an all-sky coherent search for continuous GWs using the mathcal {F}-statistic. We place upper limits on continuous GWs from electromagnetically unknown sources in the frequency range from 6 Hz to 7 Hz with the first derivative of frequency less than 7.62 × 10^{-11} Hz s^{-1} using data from the TOBA. As a result, no significant GW signals are found in the frequency band 6-7 Hz. The strictest upper limit on the dimensionless GW strain with a 95% confidence level in this band is 3.6 × 10^{-12} at 6.84 Hz.

  14. 10 Hz flicker improves recognition memory in older people

    PubMed Central

    Williams, Jonathan; Ramaswamy, Deepa; Oulhaj, Abderrahim

    2006-01-01

    Background 10 Hz electroencephalographic (EEG) alpha rhythms correlate with memory performance. Alpha and memory decline in older people. We wished to test if alpha-like EEG activity contributes to memory formation. Flicker can elicit alpha-like EEG activity. We tested if alpha-frequency flicker enhances memory in older people. Pariticpants aged 67–92 identified short words that followed 1 s of flicker at 9.0 Hz, 9.5 Hz, 10.0 Hz, 10.2 Hz, 10.5 Hz, 11.0 Hz, 11.5 Hz or 500 Hz. A few minutes later, we tested participants' recognition of the words (without flicker). Results Flicker frequencies close to 10 Hz (9.5–11.0 Hz) facilitated the identification of the test words in older participants. The same flicker frequencies increased recognition of the words more than other frequencies (9.0 Hz, 11.5 Hz and 500 Hz), irrespective of age. Conclusion The frequency-specificity of flicker's effects in our participants paralleled the power spectrum of EEG alpha in the general population. This indicates that alpha-like EEG activity may subserve memory processes. Flicker may be able to help memory problems in older people. PMID:16515710

  15. Enhanced therapeutic anti-inflammatory effect of betamethasone on topical administration with low-frequency, low-intensity (20 kHz, 100 mW/cm(2)) ultrasound exposure on carrageenan-induced arthritis in a mouse model.

    PubMed

    Cohen, Gadi; Natsheh, Hiba; Sunny, Youhan; Bawiec, Christopher R; Touitou, Elka; Lerman, Melissa A; Lazarovici, Philip; Lewin, Peter A

    2015-09-01

    The purpose of this work was to investigate whether low-frequency, low-intensity (20 kHz, <100 mW/cm(2), spatial-peak, temporal-peak intensity) ultrasound, delivered with a lightweight (<100 g), tether-free, fully wearable, battery-powered applicator, is capable of reducing inflammation in a mouse model of rheumatoid arthritis. The therapeutic, acute, anti-inflammatory effect was estimated from the relative swelling induced in mice hindlimb paws. In an independent, indirect approach, the inflammation was bio-imaged by measuring glycolytic activity with near-infrared labeled 2-deoxyglucose. The outcome of the experiments indicated that the combination of ultrasound exposure and topical application of 0.1% (w/w) betamethasone gel resulted in statistically significantly (p < 0.05) enhanced anti-inflammatory activity in comparison with drug or ultrasound treatment alone. The present study underscores the potential benefits of low-frequency, low-intensity ultrasound-assisted drug delivery. However, the proof of concept presented indicates the need for additional experiments to systematically evaluate and optimize the potential of, and the conditions for, tolerable low-frequency, low-intensity ultrasound-promoted non-invasive drug delivery. PMID:26003010

  16. 47 CFR 80.882 - 2182 kHz watch.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false 2182 kHz watch. 80.882 Section 80.882 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... kHz watch. Ships subject to this subpart must maintain a watch on the frequency 2182 kHz pursuant...

  17. 47 CFR 80.882 - 2182 kHz watch.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false 2182 kHz watch. 80.882 Section 80.882 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... kHz watch. Ships subject to this subpart must maintain a watch on the frequency 2182 kHz pursuant...

  18. 47 CFR 80.882 - 2182 kHz watch.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false 2182 kHz watch. 80.882 Section 80.882 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... kHz watch. Ships subject to this subpart must maintain a watch on the frequency 2182 kHz pursuant...

  19. 47 CFR 80.882 - 2182 kHz watch.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false 2182 kHz watch. 80.882 Section 80.882 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... kHz watch. Ships subject to this subpart must maintain a watch on the frequency 2182 kHz pursuant...

  20. 47 CFR 80.882 - 2182 kHz watch.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false 2182 kHz watch. 80.882 Section 80.882 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... kHz watch. Ships subject to this subpart must maintain a watch on the frequency 2182 kHz pursuant...

  1. Career Education Resource Guide. Volume III: 10-12.

    ERIC Educational Resources Information Center

    Treacy, Thomas D., Ed.

    This third of a three-volume career education resource guide consists of 146 teacher-developed and -tested learning activities for use in grades 10-12. Included in this volume are activities that can be incorporated into existing curricula in the following subject areas: art, biology, business, chemistry, English, foreign languages, counseling,…

  2. The Math Master Level 4. Ages 10-12.

    ERIC Educational Resources Information Center

    Levy, Barbara W.

    This booklet, designed for ages 10-12, is the fourth in a series designed to help teachers develop a more positive and creative approach to giving work on mathematics skills to children. It is based on objectives concerning creativity, fostering independent thinking, using experiences, using mastery, reinforcing previously learned skills,…

  3. Secondary Schools Curriculum Guide, Science, Grades 10-12. Revised.

    ERIC Educational Resources Information Center

    Cranston School Dept., RI.

    This curriculum guide offers instructional objectives and activities for teaching science in grades 10-12. The objectives are stated in behavioral or performance terms and have been arranged in increasing levels of complexity according to Bloom's Taxonomy. The behavioral objectives generally include: (1) the objective statement, specifying the…

  4. Teachers Guide to Economic Concepts: Grade 10-12.

    ERIC Educational Resources Information Center

    McCabe, Milo F.

    This grades 10-12 teachers guide is one of five resource guides developed to aid teachers in helping students in South Dakota to achieve a high degree of economic literacy. It is felt that schools must prepare students at all grade levels to develop an understanding of the economy in which they live. This guide was specifically prepared to assist…

  5. Black American Literature, Grades 10-12. Experimental.

    ERIC Educational Resources Information Center

    Gunn, Evelyn, Ed.

    This black American literature course for grades 10-12 is designed to introduce students to the unique contribution that the black American has made to American life. The course guide is divided into four units--Slave Narrative and Autobiography, Poetry, Short Story, Drama--with suggested activites, including class discussions, small group…

  6. Auditory filter shapes at 8 and 10 kHz.

    PubMed

    Shailer, M J; Moore, B C; Glasberg, B R; Watson, N; Harris, S

    1990-07-01

    Auditory filter shapes were derived from notched-noise masking data at center frequencies of 8 kHz (for three spectrum levels, N0 = 20, 35, and 50 dB) and 10 kHz (N0 = 50 dB). In order to minimize variability due to earphone placement, insert earphones (Etymotic Research ER2) were used and individual earmolds were made for each subject. These earphones were designed to give a flat frequency response at the eardrum for frequencies up to 14 kHz. The filter shapes were derived under the assumption that a frequency-dependent attenuation was applied to all stimuli before reaching the filter; this attenuation function was estimated from the variation of absolute threshold with frequency for the three youngest normally hearing subjects in our experiments. At 8 kHz, the mean equivalent rectangular bandwidths (ERBs) of the filters derived from the individual data for three subjects were 677, 637, and 1011 Hz for N0 = 20, 35, and 50 dB, respectively. The filters at N0 = 50 dB were roughly symmetrical, while, at the lower spectrum levels, the low-frequency skirt was steeper than the high-frequency skirt. The mean ERB at 10 kHz was 957 Hz. At this frequency, the filters for two subjects were steeper on the high-frequency side than the low-frequency side, while the third subject showed a slight asymmetry in the opposite direction. PMID:2380442

  7. Morphological analysis on the coherence of kHz QPOs

    NASA Astrophysics Data System (ADS)

    Wang, J.; Chang, H. K.; Zhang, C. M.; Wang, D. H.; Chen, L.; Qu, J. L.; Song, L. M.

    2012-12-01

    We take the recently published data of twin kHz quasi-period oscillations (QPOs) in neutron star (NS) low-mass X-ray binaries (LMXBs) as the samples, and investigate the morphology of the samples, which focuses on the quality factor, peak frequency of kHz QPOs, and try to infer their physical mechanism. We notice that: (1) The quality factors of upper kHz QPOs are low (2˜20 in general) and increase with the kHz QPO peak frequencies for both Z and Atoll sources. (2) The distribution of quality factor versus frequency for the lower kHz QPOs are quite different between Z and Atoll sources. For most Z source samples, the quality factors of lower kHz QPOs are low (usually lower than 15) and rise steadily with the peak frequencies except for Sco X-1, which drop abruptly at the frequency of about 750 Hz. While for most Atoll sources, the quality factors of lower kHz QPOs are very high (from 2 to 200) and usually have a rising part, a maximum and an abrupt drop. (3) There are three Atoll sources (4U 1728-34, 4U 1636-53 and 4U 1608-52) of displaying very high quality factors for lower kHz QPOs. These three sources have been detected with the spin frequencies and sidebands, in which the source with higher spin frequency presents higher quality factor of lower kHz QPOs and lower difference between sideband frequency and lower kHz QPO frequency.

  8. An optical fiber spool for laser stabilization with reduced acceleration sensitivity to 10-12/g

    NASA Astrophysics Data System (ADS)

    Hu, Yong-Qi; Dong, Jing; Huang, Jun-Chao; Li, Tang; Liu, Liang

    2015-10-01

    Environmental vibration causes mechanical deformation in optical fibers, which induces excess frequency noise in fiber-stabilized lasers. In order to solve such a problem, we propose an ultralow acceleration sensitivity fiber spool with symmetrically mounted structure. By numerical analysis with the finite element method, we obtain the optimal geometry parameters of the spool with which the horizontal and vertical acceleration sensitivity can be reduced to 3.25 × 10-12/g and 5.38 × 10-12/g respectively. Moreover, the structure features the insensitivity to the variation of geometry parameters, which will minimize the influence from numerical simulation error and manufacture tolerance. Project supported by the National Natural Science Foundation of China (Grant Nos. 11034008 and 11274324) and the Key Research Program of the Chinese Academy of Sciences (Grant No. KJZD-EW-W02).

  9. Watts linkage based large band low frequency sensors for scientific applications

    NASA Astrophysics Data System (ADS)

    Barone, F.; Giordano, G.; Acernese, F.; Romano, R.

    2016-07-01

    The UNISA Folded Pendulum class of horizontal and vertical sensors, based on an innovative configuration of the classical Watt's linkage mechanical architecture, allows the design and implementation of very large band monolithic sensors (10-7 Hz to102 Hz), whose sensitivities for the most common applications are defined by the noise introduced by their readouts (e.g. <10-12 m /√{ Hz } with classical LVDT readouts). These unique features, coupled other relevant properties like scalability, compactness, lightness, high directivity, frequency tunability (typical resonance frequencies in the band 10-1 Hz to102 Hz), very high immunity to environmental noises and low cost make this class of sensors very effective for the implementation of uniaxial (horizontal and/or vertical) and triaxial seismometers and accelerometers for ground, space and underwater applications, including UHV and cryogenics ones.

  10. Primary calibration system for vibration transducers from 0.4 Hz to 160 Hz

    NASA Astrophysics Data System (ADS)

    Ferreira, C. D.; Ripper, G. P.; Dias, R. S.; Teixeira, D. B.

    2015-01-01

    This paper presents a system developed at the Vibration Laboratory of Inmetro, which is used for primary calibration of vibration transducers by the fringe counting method. This system includes a vibration exciter, a Michelson interferometer, a data acquisition board, a band-pass filter, a universal counter and a software for measurement automation. It allows the laboratory to perform calibrations in accordance with the international standard ISO 16063-11 in the frequency range from 0.4 Hz to 160 Hz. Some experimental results are presented herein.

  11. RHIC 10 Hz global orbit feedback system

    SciTech Connect

    Michnoff, R.; Arnold, L.; Carboni, L.; Cerniglia, P; Curcio, A.; DeSanto, L.; Folz, C.; Ho, C.; Hoff, L.; Hulsart, R.; Karl, R.; Luo, Y.; Liu, C.; MacKay, W.; Mahler, G.; Meng, W.; Mernick, K.; Minty, M.; Montag, C.; Olsen, R.; Piacentino, J.; Popken, P.; Przybylinski, R.; Ptitsyn, V.; Ritter, J.; Schoenfeld, R.; Thieberger, P.; Tuozzolo, J.; Weston, A.; White, J.; Ziminski, P.; Zimmerman, P.

    2011-03-28

    Vibrations of the cryogenic triplet magnets at the Relativistic Heavy Ion Collider (RHIC) are suspected to be causing the horizontal beam perturbations observed at frequencies around 10 Hz. Several solutions to counteract the effect have been considered in the past, including a local beam feedback system at each of the two experimental areas, reinforcing the magnet base support assembly, and a mechanical servo feedback system. However, the local feedback system was insufficient because perturbation amplitudes outside the experimental areas were still problematic, and the mechanical solutions are very expensive. A global 10 Hz orbit feedback system consisting of 36 beam position monitors (BPMs) and 12 small dedicated dipole corrector magnets in each of the two 3.8 km circumference counter-rotating rings has been developed and commissioned in February 2011. A description of the system architecture and results with beam will be discussed.

  12. Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback

    NASA Astrophysics Data System (ADS)

    Li, Yang; Lu, Ping; Baset, Farhana; Ou, Zhonghua; Song, Jia; Alshehri, Ali; Bhardwaj, Vedula Ravi; Bao, Xiaoyi

    2014-09-01

    We propose and demonstrate a narrow linewidth, low frequency noise Er-doped fiber ring laser with resonant feedback in a femtosecond laser induced random medium of deep refractive index modulation in three dimensions. Eight concatenated single-mode fiber segments about 1 cm long, each carry a total of 8 × 500 randomly spaced laser-written-planes. Numerous low-finesse spectral filters are formed to significantly suppress sub-cavity modes, ensuring single-mode operation within a wavelength-locking range. The linewidth of the laser is 2.1 kHz with 58 dB side-mode-suppression-ratio. The frequency noise is ˜1 Hz/Hz1/2 above 1 kHz, and the frequency jitter is ˜1.8 × 10-12 over 100 s.

  13. 50-kHz, 50-ns UV pulse generation by diode-pumped frequency doubling Pr3+:YLF Q-switch laser with a Cr4+:YAG saturable absorber.

    PubMed

    Tanaka, Hiroki; Kariyama, Ryosuke; Iijima, Kodai; Kannari, Fumihiko

    2016-08-10

    We demonstrate intracavity second-harmonic generation at 320 nm of a diode-pumped praseodymium-doped YLF laser Q-switched by a Cr4+:YAG crystal. By employing two 3.5-W high-power blue InGaN diode lasers as the pump source, we obtained 50-ns Q-switched pulses with a pulse energy of 1.54 μJ at a repetition rate of 50 kHz. A rate equation analysis shows good agreement with the experimental results. PMID:27534459

  14. Traceable dual-frequency measurement of Zeeman split He-Ne lasers using an optical frequency comb locked external cavity diode laser

    NASA Astrophysics Data System (ADS)

    Wei, Haoyun; Wu, Xuejian; Zhou, Lei; Zhang, Jitao; Li, Yan

    2012-11-01

    A frequency measurement system for dual frequency He-Ne lasers is set up based on an external cavity diode laser locked to fiber femtosecond optical frequency comb using an Rb clock as a frequency standard. The frequencies of the Zeeman split orthogonal polarized lasers are measured by beating with the locked diode laser at the same time. Locking the diode laser to the 1 894 449th comb tooth, the absolute frequency of the diode laser is 473 612 190 000.0 (2.4) kHz, with a relative frequency uncertainty of 5.1×10-12. A commercial dual frequency He-Ne laser is measured to test the system, and the results show that the mean absolute frequencies of the horizontal polarized laser and the vertical polarized laser are 473 612 229 934 kHz and 473 612 232 111 kHz, respectively, with a relative Allan deviation of 5.2× 10-11 at 1 024 s, and the mean split frequency is 2.177 MHz with a standard deviation of 2 kHz.

  15. Microbial Production of Energy Colloquium- March 10-12, 2006

    SciTech Connect

    Merry Buckley; Judy Wall

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  16. 47 CFR 15.219 - Operation in the band 510-1705 kHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the band 510-1705 kHz. 15.219... kHz. (a) The total input power to the final radio frequency stage (exclusive of filament or heater... ground lead (if used) shall not exceed 3 meters. (c) All emissions below 510 kHz or above 1705 kHz...

  17. Sustained Effectiveness of 10 kHz High-Frequency Spinal Cord Stimulation for Patients with Chronic, Low Back Pain: 24-Month Results of a Prospective Multicenter Study

    PubMed Central

    Al-Kaisy, Adnan; Van Buyten, Jean-Pierre; Smet, Iris; Palmisani, Stefano; Pang, David; Smith, Thomas

    2014-01-01

    Objective The aim of this study was to investigate the long-term efficacy and safety of paresthesia-free high-frequency spinal cord stimulation (HF10 SCS) for the treatment of chronic, intractable pain of the low back and legs. Design Prospective, multicenter, observational study. Method Patients with significant chronic low back pain underwent implantation of a spinal cord stimulator capable of HF10 SCS. Patients' pain ratings, disability, sleep disturbances, opioid use, satisfaction, and adverse events were assessed for 24 months. Results After a trial period, 88% (72 of 82) of patients reported a significant improvement in pain scores and underwent the permanent implantation of the system. Ninety percent (65 of 72) of patients attended a 24-month follow-up visit. Mean back pain was reduced from 8.4 ± 0.1 at baseline to 3.3 ± 0.3 at 24 months (P < 0.001), and mean leg pain from 5.4 ± 0.4 to 2.3 ± 0.3 (P < 0.001). Concomitantly to the pain relief, there were significant decreases in opioid use, Oswestry Disability Index score, and sleep disturbances. Patients' satisfaction and recommendation ratings were high. Adverse Events were similar in type and frequency to those observed with traditional SCS systems. Conclusions In patients with chronic low back pain, HF10 SCS resulted in clinically significant and sustained back and leg pain relief, functional and sleep improvements, opioid use reduction, and high patient satisfaction. These results support the long-term safety and sustained efficacy of HF10 SCS. PMID:24308759

  18. Multiscale magnetosheath turbulence model from mHz to kHz

    NASA Astrophysics Data System (ADS)

    Dwivedi, Navin; Narita, Yasuhito

    2015-04-01

    We construct a nonlinear whistler wave model under the influence of the ponderomotive force to explain the energy spectra and the waveforms observed in loin roar waves in Earth's magnetosheath region. We use the two-fluid approach to derive the model equations governing the dynamics of ion-acoustic and whistler waves propagating along the ambient magnetic field. On the account of ponderomotive force, nonlinearity arises in the dynamics of ion-acoustic wave which modify the background number density under the steady state condition. Whistler wave nonlinearly interacts with the ion-acoustic wave while propagating through the density inhomogeneity created by the ponderomotive force, and gets modulated and forms localized structures in the magnetic field. Furthermore, we develop a semi-analytical numerical method to compute the magnetic energy spectrum of whistler wave and investigate the spectral features of the spectrum. The magnetic field spectrum shows a spectral break accompanied by the steepening of the spectrum with a spectral index -3.2 at higher wave numbers. In the recent past, the magnetic field fluctuations with the occurrence of lion roar waves are widely investigated in the frequency range from 20 to 1000 Hz in Earth's magnetosheath. The observed lion roar waves show a broadband turbulence spectrum with the spectral slope about -4.5. The present model develop a concept on multiscale magnetosheath turbulence in which turbulence at low frequencies (mHz) is dominated by mirror mode, however at high frequencies (kHz) it is mainly due to the nonlinear whistler waves and the whistler turbulence is embedded inside the mirror mode.

  19. Circuit measures hysteresis loop areas at 30 Hz

    NASA Technical Reports Server (NTRS)

    Hoffman, C.; Spilo, D.

    1967-01-01

    Analog circuit measures hysteresis loop areas as a function of time during fatigue testing of specimens subjected to sinusoidal tension-compression stresses at a frequency of Hz. When the sinusoidal stress signal is multiplied by the strain signal, the dc signal is proportional to hysteresis loop area.

  20. NASA Rat Acoustic Tolerance Test 1994-1995: 8 kHz, 16 kHz, 32 kHz Experiments

    NASA Technical Reports Server (NTRS)

    Mele, Gary D.; Holley, Daniel C.; Naidu, Sujata

    1996-01-01

    Adult male Sprague-Dawley rats were exposed to chronic applied sound (74 to 79 dB, SPL) with octave band center frequencies of either 8, 16 or 32 kHz for up to 60 days. Control cages had ambient sound levels of about 62 dB (SPL). Groups of rats (test vs. control; N=9 per group) were euthanized after 0. 5. 14, 30, and 60 days. On each euthanasia day, objective evaluation of their physiology and behavior was performed using a Stress Assessment Battery (SAB) of measures. In addition, rat hearing was assessed using the brain stem auditory evoked potential (BAER) method after 60 days of exposure. No statistically significant differences in mean daily food use could be attributed to the presence of the applied test sound. Test rats used 5% more water than control rats. In the 8 kHz and 32 kHz tests this amount was statistically significant(P less than .05). This is a minor difference of questionable physiological significance. However, it may be an indication of a small reaction to the constant applied sound. Across all test frequencies, day 5 test rats had 6% larger spleens than control rats. No other body or organ weight differences were found to be statistically significant with respect to the application of sound. This spleen effect may be a transient adaptive process related to adaptation to the constant applied noise. No significant test effect on differential white blood cell counts could be demonstrated. One group demonstrated a low eosinophil count (16 kHz experiment, day 14 test group). However this was highly suspect. Across all test frequencies studied, day 5 test rats had 17% fewer total leukocytes than day 5 control rats. Sound exposed test rats exhibited 44% lower plasma corticosterone concentrations than did control rats. Note that the plasma corticosterone concentration was lower in the sound exposed test animals than the control animals in every instance (frequency exposure and number of days exposed).

  1. Optical Frequency Standards Based on Neutral Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Riehle, Fritz; Helmcke, Juergen

    The current status and prospects of optical frequency standards based on neutral atomic and molecular absorbers are reviewed. Special attention is given to an optical frequency standard based on cold Ca atoms which are interrogated with a pulsed excitation scheme leading to resolved line structures with a quality factor Q > 10^12. The optical frequency was measured by comparison with PTB's primary clock to be νCa = 455 986 240 494.13 kHz with a total relative uncertainty of 2.5 x10^-13. After a recent recommendation of the International Committee of Weights and Measures (CIPM), this frequency standard now represents one of the most accurate realizations of the length unit.

  2. The global distribution of natural and man-made ionospheric electric fields at 200 kHz and 540 kHz as observed by Ogo 6

    NASA Technical Reports Server (NTRS)

    Laaspere, T.; Semprebon, L. C.

    1974-01-01

    An experiment on the polar-orbiting Ogo 6 spacecraft yielded real-time analog data in several broadband channels and essentially continuous tape-recorded data from two narrow-band (200-Hz) receivers operating at 200 and 540 kHz. The results show that the worldwide distributions of signals at 200 and 540 kHz falls into a number of different categories: (1) naturally generated broadband (auroral) hiss at polar latitudes with typical 200-kHz intensities of around 0.1 microvolt per meter per Hz to the 1/2 power, maximum intensities of up to several microvolt per meter per Hz to the 1/2 power, and generally lower intensities at 540 kHz; (2) nighttime midlatitude enhancements of a few microvolts per meter, which probably result either from a superposition of signals from a number of 200- and 540-kHz stations or from interference from intense signals of much higher frequencies; (3) well-defined signal peaks associated with individual ground stations operating at 200 kHz; (4) striking signal enhancements in the conjugate region of a low-latitude 200-kHz station (Ashkhabad), suggesting propagation in the whistler mode to the opposite hemisphere; and (5) occasional signal enhancements at the magnetic equator.

  3. Frequency-agile, rapid scanning spectroscopy

    NASA Astrophysics Data System (ADS)

    Truong, G.-W.; Douglass, K. O.; Maxwell, S. E.; van Zee, R. D.; Plusquellic, D. F.; Hodges, J. T.; Long, D. A.

    2013-07-01

    Challenging applications in trace gas measurements require low uncertainty and high acquisition rates. Many cavity-enhanced spectroscopies exhibit significant sensitivity and potential, but their scanning rates are limited by reliance on either mechanical or thermal frequency tuning. Here, we present frequency-agile, rapid scanning spectroscopy (FARS) in which a high-bandwidth electro-optic modulator steps a selected laser sideband to successive optical cavity modes. This approach involves no mechanical motion and allows for a scanning rate of 8 kHz per cavity mode, a rate that is limited only by the cavity response time itself. Unlike rapidly frequency-swept techniques, FARS does not reduce the measurement duty cycle, degrade the spectrum's frequency axis or require an unusual cavity configuration. FARS allows for a sensitivity of ~2 × 10-12 cm-1 Hz-1/2 and a tuning range exceeding 70 GHz. This technique shows promise for fast and sensitive trace gas measurements and studies of chemical kinetics.

  4. 40-Hz steady state response in Alzheimer's disease and mild cognitive impairment.

    PubMed

    van Deursen, J A; Vuurman, E F P M; van Kranen-Mastenbroek, V H J M; Verhey, F R J; Riedel, W J

    2011-01-01

    The 40-Hz steady state response (SSR) reflects early sensory processing and can be measured with electroencephalography (EEG). The current study compared the 40-Hz SSR in groups consisting of mild Alzheimer's disease patients (AD) (n=15), subjects with mild cognitive impairment (MCI) (n=20) and healthy elderly control subjects (n=20). All participants were naïve for psychoactive drugs. Auditory click trains at a frequency of 40-Hz evoked the 40-Hz SSR. To evaluate test-retest reliability (TRR), subjects underwent a similar assessment 1 week after the first. The results showed a high TRR and a significant increase of 40-Hz SSR power in the AD group compared to MCI and controls. Furthermore a moderate correlation between 40-Hz SSR power and cognitive performance as measured by ADAS-cog was shown. The results suggest that 40-Hz SSR might be an interesting candidate marker of disease progression. PMID:19237225

  5. The Road to Computer Literacy. Part V: Objectives and Activities for Grades 10-12.

    ERIC Educational Resources Information Center

    Bitter, Gary

    1983-01-01

    Presents computer-oriented activities in computer awareness and programing for students in grades 10-12. Intended for use by teachers of all disciplines, activities include such topics as prediction, interpretation and generalization of data, computer systems, PASCAL and PILOT programing, sampling techniques, computer survival, invasion of…

  6. A Supplementary Program for Environmental Education, Art, Grade 10-12.

    ERIC Educational Resources Information Center

    Warpinski, Robert

    Presented in this teacher's guide for grades 10-12 are lesson plans and ideas for integrating art (drawing, painting, graphics, photography, and commercial art) and environmental education. Each lesson originates with a fundamental concept pertaining to the environment and states, in addition, its discipline area, subject area, and problem…

  7. Biotransformation of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-Hexaazaisowurtzitane (CL-20) by Denitrifying Pseudomonas sp. Strain FA1

    PubMed Central

    Bhushan, Bharat; Paquet, Louise; Spain, Jim C.; Hawari, Jalal

    2003-01-01

    The microbial and enzymatic degradation of a new energetic compound, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), is not well understood. Fundamental knowledge about the mechanism of microbial degradation of CL-20 is essential to allow the prediction of its fate in the environment. In the present study, a CL-20-degrading denitrifying strain capable of utilizing CL-20 as the sole nitrogen source, Pseudomonas sp. strain FA1, was isolated from a garden soil. Studies with intact cells showed that aerobic conditions were required for bacterial growth and that anaerobic conditions enhanced CL-20 biotransformation. An enzyme(s) involved in the initial biotransformation of CL-20 was shown to be membrane associated and NADH dependent, and its expression was up-regulated about 2.2-fold in CL-20-induced cells. The rates of CL-20 biotransformation by the resting cells and the membrane-enzyme preparation were 3.2 ± 0.1 nmol h−1 mg of cell biomass−1 and 11.5 ± 0.4 nmol h−1 mg of protein−1, respectively, under anaerobic conditions. In the membrane-enzyme-catalyzed reactions, 2.3 nitrite ions (NO2−), 1.5 molecules of nitrous oxide (N2O), and 1.7 molecules of formic acid (HCOOH) were produced per reacted CL-20 molecule. The membrane-enzyme preparation reduced nitrite to nitrous oxide under anaerobic conditions. A comparative study of native enzymes, deflavoenzymes, and a reconstituted enzyme(s) and their subsequent inhibition by diphenyliodonium revealed that biotransformation of CL-20 is catalyzed by a membrane-associated flavoenzyme. The latter catalyzed an oxygen-sensitive one-electron transfer reaction that caused initial N denitration of CL-20. PMID:12957905

  8. XMM-Newton discovery of mHz quasi-periodic oscillations in the high-mass X-ray binary IGR J19140+0951

    NASA Astrophysics Data System (ADS)

    Sidoli, L.; Esposito, P.; Motta, S. E.; Israel, G. L.; Rodríguez Castillo, G. A.

    2016-08-01

    We report on the discovery of mHz quasi-periodic oscillations (QPOs) from the high-mass X-ray binary (HMXB) IGR J19140+0951, during a 40 ks XMM-Newton observation performed in 2015, which caught the source in its faintest state ever observed. At the start of the observation, IGR J19140+0951 was at a low flux of 2 × 10-12 erg cm-2 s-1 (2-10 keV; LX = 3 × 1033 erg s-1 at 3.6 kpc), then its emission rose reaching a flux ˜10 times higher, in a flare-like activity. The investigation of the power spectrum reveals the presence of QPOs, detected only in the second part of the observation, with a strong peak at a frequency of 1.46 ± 0.07 mHz, together with higher harmonics. The X-ray spectrum is highly absorbed (NH = 1023 cm-2), well fitted by a power law with a photon index in the range 1.2-1.8. The re-analysis of a Chandra archival observation shows a modulation at ˜0.17 ± 0.05 mHz, very likely the neutron-star spin period (although a QPO cannot be excluded). We discuss the origin of the 1.46 mHz QPO in the framework of both disc-fed and wind-fed HMXBs, favouring the quasi-spherical accretion scenario. The low flux observed by XMM-Newton leads to about three orders of magnitude the source dynamic range, overlapping with the one observed from Supergiant Fast X-ray Transients (SFXTs). However, since its duty cycle is not as low as in SFXTs, IGR J19140+0951 is an intermediate system between persistent supergiant HMXBs and SFXTs, suggesting a smooth transition between these two sub-classes.

  9. A 40-Hz Auditory Potential Recorded from the Human Scalp

    NASA Astrophysics Data System (ADS)

    Galambos, Robert; Makeig, Scott; Talmachoff, Peter J.

    1981-04-01

    Computer techniques readily extract from the brainwaves an orderly sequence of brain potentials locked in time to sound stimuli. The potentials that appear 8 to 80 msec after the stimulus resemble 3 or 4 cycles of a 40-Hz sine wave; we show here that these waves combine to form a single, stable, composite wave when the sounds are repeated at rates around 40 per sec. This phenomenon, the 40-Hz event-related potential (ERP), displays several properties of theoretical and practical interest. First, it reportedly disappears with surgical anesthesia, and it resembles similar phenomena in the visual and olfactory system, facts which suggest that adequate processing of sensory information may require cyclical brain events in the 30- to 50-Hz range. Second, latency and amplitude measurements on the 40-Hz ERP indicate it may contain useful information on the number and basilar membrane location of the auditory nerve fibers a given tone excites. Third, the response is present at sound intensities very close to normal adult thresholds for the audiometric frequencies, a fact that could have application in clinical hearing testing.

  10. BOLD fractional contribution to resting-state functional connectivity above 0.1 Hz.

    PubMed

    Chen, Jingyuan E; Glover, Gary H

    2015-02-15

    Blood oxygen level dependent (BOLD) spontaneous signals from resting-state (RS) brains have typically been characterized by low-pass filtered timeseries at frequencies ≤ 0.1 Hz, and studies of these low-frequency fluctuations have contributed exceptional understanding of the baseline functions of our brain. Very recently, emerging evidence has demonstrated that spontaneous activities may persist in higher frequency bands (even up to 0.8 Hz), while presenting less variable network patterns across the scan duration. However, as an indirect measure of neuronal activity, BOLD signal results from an inherently slow hemodynamic process, which in fact might be too slow to accommodate the observed high-frequency functional connectivity (FC). To examine whether the observed high-frequency spontaneous FC originates from BOLD contrast, we collected RS data as a function of echo time (TE). Here we focus on two specific resting state networks - the default-mode network (DMN) and executive control network (ECN), and the major findings are fourfold: (1) we observed BOLD-like linear TE-dependence in the spontaneous activity at frequency bands up to 0.5 Hz (the maximum frequency that can be resolved with TR=1s), supporting neural relevance of the RSFC at a higher frequency range; (2) conventional models of hemodynamic response functions must be modified to support resting state BOLD contrast, especially at higher frequencies; (3) there are increased fractions of non-BOLD-like contributions to the RSFC above the conventional 0.1 Hz (non-BOLD/BOLD contrast at 0.4-0.5 Hz is ~4 times that at <0.1 Hz); and (4) the spatial patterns of RSFC are frequency-dependent. Possible mechanisms underlying the present findings and technical concerns regarding RSFC above 0.1 Hz are discussed. PMID:25497686

  11. Nonperiodic optical flickering in HZ Herculis

    NASA Technical Reports Server (NTRS)

    Moffett, T. J.; Nather, R. E.; Vanden Bout, P. A.

    1974-01-01

    High-speed simultaneous dual-channel photometry of HZ Her and a nearby comparison star reveal nonperiodic optical flickering in the HZ Her system on a time scale of 15 to 300 sec. The amplitude of the flickering appears to be correlated with orbital phase. Optical emission from a hot spot in a disk of material around the X-ray source cannot account for the flickering.

  12. Statistical analysis of thermal IR (10-12 micron) emission from the lunar surface

    NASA Astrophysics Data System (ADS)

    Pugacheva, S. G.

    Brightness data analyzed by Saari and Shorthill are used in a statistical study of thermal 10-12 micron emission from the lunar surface. A digital model of the distribution of surface brightness temperature is described, and isotherm contour maps of the lunar-globe surface for full and new moon periods are constructed. A table of selenographic coordinates and brightness temperatures of 150 sections of the lunar surface with temperature anomalies is presented.

  13. Sounds in the Ocean at 1-100 Hz

    NASA Astrophysics Data System (ADS)

    Wilcock, William S. D.; Stafford, Kathleen M.; Andrew, Rex K.; Odom, Robert I.

    2014-01-01

    Very-low-frequency sounds between 1 and 100 Hz propagate large distances in the ocean sound channel. Weather conditions, earthquakes, marine mammals, and anthropogenic activities influence sound levels in this band. Weather-related sounds result from interactions between waves, bubbles entrained by breaking waves, and the deformation of sea ice. Earthquakes generate sound in geologically active regions, and earthquake T waves propagate throughout the oceans. Blue and fin whales generate long bouts of sounds near 20 Hz that can dominate regional ambient noise levels seasonally. Anthropogenic sound sources include ship propellers, energy extraction, and seismic air guns and have been growing steadily. The increasing availability of long-term records of ocean sound will provide new opportunities for a deeper understanding of natural and anthropogenic sound sources and potential interactions between them.

  14. Sounds in the ocean at 1-100 Hz.

    PubMed

    Wilcock, William S D; Stafford, Kathleen M; Andrew, Rex K; Odom, Robert I

    2014-01-01

    Very-low-frequency sounds between 1 and 100 Hz propagate large distances in the ocean sound channel. Weather conditions, earthquakes, marine mammals, and anthropogenic activities influence sound levels in this band. Weather-related sounds result from interactions between waves, bubbles entrained by breaking waves, and the deformation of sea ice. Earthquakes generate sound in geologically active regions, and earthquake T waves propagate throughout the oceans. Blue and fin whales generate long bouts of sounds near 20 Hz that can dominate regional ambient noise levels seasonally. Anthropogenic sound sources include ship propellers, energy extraction, and seismic air guns and have been growing steadily. The increasing availability of long-term records of ocean sound will provide new opportunities for a deeper understanding of natural and anthropogenic sound sources and potential interactions between them. PMID:23876176

  15. The 1983-84 Connecticut 45-Hz-band field-strength measurements

    NASA Astrophysics Data System (ADS)

    Bannister, P. R.

    1986-03-01

    Extremely low frequency (ELF) measurements are made of the transverse horizontal magnetic field strength received in Connecticut. The AN/BSR-1 receiver consists of an AN/UYK-20 minicomputer, a signal timing and interface unit (STIU), a rubidium frequency time standard, two magnetic tape recorders, and a preamplifier. The transmission source of these farfield (1.6-Mm range) measurements is the U.S. Navy's ELF Wisconsin Test Facility (WTF), located in the Chequamegon National Forest in north central Wisconsin, about 8 km south of the village of Clam Lake. The WTF consists of two 22.5-km antennas; one of which is situated approximately in the north-south (NS) direction and the other approximately in the east-west (EW) direction. Each antenna is grounded at both ends. The electrical axis of the WTF EW antenna is 11 deg east of north at 45 Hz and 14 deg east of north at 75Hz. The electrical axis of the WTF NS antenna is 11 deg east of north at 45 Hz and 14 deg east of north at 75 Hz. The WTF array can be steered electrically. Its radiated power is approximately 0.5 W at 45 Hz and 1 W at 75 Hz. This report will compare results of 45 Hz band data taken during 1983 to 1984 with previous 45 Hz band measurements.

  16. The effect of 10 Hz transcranial alternating current stimulation (tACS) on corticomuscular coherence

    PubMed Central

    Wach, Claudia; Krause, Vanessa; Moliadze, Vera; Paulus, Walter; Schnitzler, Alfons; Pollok, Bettina

    2013-01-01

    Synchronous oscillatory activity at alpha (8–12 Hz), beta (13–30 Hz), and gamma (30–90 Hz) frequencies is assumed to play a key role for motor control. Corticomuscular coherence (CMC) represents an established measure of the pyramidal system's integrity. Transcranial alternating current stimulation (tACS) offers the possibility to modulate ongoing oscillatory activity. Behaviorally, 20 Hz tACS in healthy subjects has been shown to result in movement slowing. However, the neurophysiological changes underlying these effects are not entirely understood yet. The present study aimed at ascertaining the effects of tACS at 10 and 20 Hz in healthy subjects on CMC and local power of the primary sensorimotor cortex. Neuromagnetic activity was recorded during isometric contraction before and at two time points (2–10 min and 30–38 min) after tACS of the left primary motor cortex (M1), using a 306 channel whole head magnetoencephalography (MEG) system. Additionally, electromyography (EMG) of the right extensor digitorum communis (EDC) muscle was measured. TACS was applied at 10 and 20 Hz, respectively, for 10 min at 1 mA. Sham stimulation served as control condition. The data suggest that 10 Hz tACS significantly reduced low gamma band CMC during isometric contraction. This implies that tACS does not necessarily cause effects at stimulation frequency. Rather, the findings suggest cross-frequency interplay between alpha and low gamma band activity modulating functional interaction between motor cortex and muscle. PMID:24009573

  17. Tropical Cyclone Paka's Initial Explosive Development (10-12 December, 1997)

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Halverson, Jeff; Simpson, Joanne; Olson, William; Pierce, Harold

    1999-01-01

    Convection associated with an equatorial westerly wind burst was first observed late November during the strong El Nino of 1997 at approximately 2000 km southwest of the Hawaiian Islands. This region of convection lead to the formation of twin tropical cyclones, one in the southern hemisphere named Pam and the other in the northern hemisphere named Paka. During the first week in December, tropical cyclone Paka, the system of concern, reached tropical storm stage as it moved rapidly westward at relatively low latitudes. During the 10-12 of December, Paka rapidly developed into a typhoon.

  18. a Theoretical Investigation on 10-12 Potential of Hydrogen-Hydrogen Covalent Bond

    NASA Astrophysics Data System (ADS)

    Taneri, Sencer

    2013-05-01

    This is an analytical investigation of well-known 10-12 potential of hydrogen-hydrogen covalent bond. In this research, we will make an elaboration of the well-known 6-12 Lennard-Jones potential in case of this type of bond. Though the results are illustrated in many text books and literature, an analytical analysis for these potentials is missing almost everywhere. The power laws are valid for small radial distances, which are calculated to some extent. The internuclear separation as well as the binding energy of the hydrogen molecule are evaluated with success.

  19. The 2.2 Hz oscillations in auroral electrons

    NASA Astrophysics Data System (ADS)

    Lepine, D. R.; Hall, D. S.; Bryant, D. A.; Johnstone, A. D.; Christiansen, P. J.; Gough, M. P.

    1980-06-01

    A Petrel rocket was launched from Kiruna on 25 January 1979 to compare electron intensities measured at auroral altitudes with related parameters measured at geostationary altitude by the satellite GEOS 2. A sequence of quasi-periodic oscillations in electron intensities were investigated, which appear to originate in the equatorial region, probably in the neighborhood of GEOS 2 was investigated. A similar frequency oscillation in the intensity of 500-Hz VLF emissions was observed at about the same time by the S300 wave experiment located on the satellite.

  20. Miniature pulse tube cooler at 100HZ

    NASA Astrophysics Data System (ADS)

    Chen, Houlei; Xu, Nana; Yin, Chuanlin; Cai, Jinghui; Liang, Jingtao

    2012-06-01

    Miniature pulse tube coolers operating at 100Hz have been designed and manufactured. The regenerator is designed by REGEN 3.2, and the inertance tube is simulated by DeltaE. An in-line prototype is manufactured according to the theoretical design parameters initially. On that basis, a coaxial cooler is developed and with double inlet it gains higher cooling performance.

  1. Thomson Scattering at 250 kHz

    NASA Astrophysics Data System (ADS)

    Young, William; den Hartog, D. J.; Morton, L. A.; MST Team

    2015-11-01

    The fast Thomson scattering diagnostic on the MST Reversed-Field Pinch experiment now measures electron temperature at rates of up to 250 kHz, allowing for single shot analysis of phenomena that previously required ensembles of measurements from many shots. Recent laser upgrades include the addition of a second Nd:glass amplifier (giving a total of six amplifiers including four Nd:YAG stages) and optimization of neodymium doping levels within the glass amplifier stages to reduce thermal defocusing. The master-oscillator power-amplifier laser system operates in a pulse-burst mode where the laser generates multiple pulses per flashlamp firing and these bursts of laser pulses are repeated multiple times. When optimizing for the largest number of laser pulses, the laser produces up to 30 pulses at a rate of 100 kHz per burst repeated up to 4 times every 2 ms for a total of 120 temperature measurements per MST discharge. When optimizing for fastest pulsing rate, the laser can produce 8 pulses at 250 kHz within a single burst. A laser system upgrade currently underway is replacement of the diode-pumped pulsed Nd:YVO4 master oscillator with a CW laser chopped by an acoustic-optic modulator; this upgrade may enable pulsing rates faster than 250 kHz. This work is supported by the US DOE and NSF.

  2. Hearing thresholds of a harbor porpoise (Phocoena phocoena) for sweeps (1-2 kHz and 6-7 kHz bands) mimicking naval sonar signals.

    PubMed

    Kastelein, Ronald A; Hoek, Lean; de Jong, Christ A F

    2011-05-01

    The distance at which active naval sonar signals can be heard by harbor porpoises depends, among other factors, on the hearing thresholds of the species for those signals. Therefore the hearing sensitivity of a harbor porpoise was determined for 1 s up-sweep and down-sweep signals, mimicking mid-frequency and low-frequency active sonar sweeps (MFAS, 6-7 kHz band; LFAS, 1-2 kHz band). The 1-2 kHz sweeps were also tested with harmonics, as sonars sometimes produce these as byproducts of the fundamental signal. The hearing thresholds for up-sweeps and down-sweeps within each sweep pair were similar. The 50% detection threshold sound pressure levels (broadband, averaged over the signal duration) of the 1-2 kHz and 6-7 kHz sweeps were 75 and 67 dB re 1 μPa(2), respectively. Harmonic deformation of the 1-2 kHz sweeps reduced the threshold to 59 dB re 1 μPa(2). This study shows that the presence of harmonics in sonar signals can increase the detectability of a signal by harbor porpoises, and that tonal audiograms may not accurately predict the audibility of sweeps. LFAS systems, when designed to produce signals without harmonics, can operate at higher source levels than MFAS systems, at similar audibility distances for porpoises. PMID:21568440

  3. Total and local impedances of the chest wall up to 10 Hz.

    PubMed

    Barnas, G M; Yoshino, K; Fredberg, J; Kikuchi, Y; Loring, S H; Mead, J

    1990-04-01

    To understand how bical mechanical chest wall (CW) properties are related to those of the CW as a whole, we measured esophageal and gastric pressures, CW volume changes (measured with a head-out body plethysmograph), and anteroposterior and transverse CW diameter changes (measured with magnetometers attached to the surface) during sinusoidal forcing at the mouth (2.5% vital capacity, 0.5-10 Hz) in four healthy subjects. Total CW resistance decreased sharply as frequency rose to 3-4 Hz and remained relatively constant at higher frequencies. Total CW reactance became less negative with increasing frequency but showed no tendency to change sign. Above 2 Hz, diameters measured at different locations changed asynchronously between and within the rib cage and abdomen. "Local pathway impedances" (ratios of esophageal or gastric pressure to a rate of diameter change) showed frequency dependence similar to that of the total CW less than 3 Hz. Local pathway impedances increased during contraction of respiratory muscles acting on the pathway. We conclude that 1) total CW behavior is mainly a reflection of its individual local properties at less than or equal to 3 Hz, 2) local impedances within the rib cage or within the abdomen can change independently in some situations, and 3) asynchronies that develop within the CW during forcing greater than 3 Hz suggest that two compartments may be insufficient to describe CW properties from impedance measurements. PMID:2140827

  4. Observation of 20-400 kHz fluctuations in the U-3M torsatron

    NASA Astrophysics Data System (ADS)

    Dreval, M. B.; Yakovenko, Yu. V.; Sorokovoy, E. L.; Slavnyj, A. S.; Pavlichenko, R. O.; Kulaga, A. E.; Zamanov, N. V.; Hirose, A.

    2016-02-01

    First observations of quasi-coherent fluctuations in the frequency range of 20-400 kHz in Alfvén-wave-heated plasmas of the U-3M torsatron are presented. The excitation conditions of these modes depend on the radio frequency antenna type and the plasma density, the appearance of the modes correlating with the presence of both suprathermal electrons and high-energy ions in the plasma, which supports our opinion that the modes are excited by energetic particles. Complicated evolution of the mode frequencies with abrupt changes at the instants of plasma confinement transitions is observed at the initial stage of each discharge. The frequencies become stable at the stage of the plasma current flattop. Raw estimates show that toroidicity-induced Alfvén eigenmodes could be responsible for the 150-400 kHz fluctuations. Low-frequency 20-70 kHz bursts are observed during plasma confinement transitions. The poloidal mode number of one of these bursts with the frequency of 20 kHz burst was determined to be m = 2. This mode rotated in the electron diamagnetic rotation direction with a frequency lower than the geodesic acoustic mode frequency and can be identified as a drift-sound-type mode.

  5. 20 CFR 10.12 - How may a FECA claimant or beneficiary obtain copies of protected records?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... agency or OWCP shall be filed with the Solicitor of Labor in accordance with 29 CFR 71.7 and 71.9. ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false How may a FECA claimant or beneficiary obtain copies of protected records? 10.12 Section 10.12 Employees' Benefits OFFICE OF WORKERS'...

  6. 20 CFR 10.12 - How may a FECA claimant or beneficiary obtain copies of protected records?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... agency or OWCP shall be filed with the Solicitor of Labor in accordance with 29 CFR 71.7 and 71.9. ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true How may a FECA claimant or beneficiary obtain copies of protected records? 10.12 Section 10.12 Employees' Benefits OFFICE OF WORKERS'...

  7. Megawatt, 1kHz PRF tunable gyrotron experiments

    SciTech Connect

    Cross, A.W.; Phelps, A.D.R.; Ronald, K.; Spark, S.N.; Turnbull, S.M.

    1995-12-31

    Repetitively pulsed and cw gyrotrons have hitherto used thermionic cathodes whereas cold cathode gyrotrons have normally operated as {open_quote} single shot{close_quote} or low pulse repetition frequency (PRF) devices. The novel results presented here demonstrate that a stacked Blumlein pulse generator driven cold cathode gyrotron developing > 1 MW per pulse (f=90 GHz) may be run with a repetition frequency of 1 kHz over timescales of >30 seconds. A short burst PRF of 2 kHz was also observed. The PRF of the system was limited to 2 kHz by the High Voltage (HV) DC power supply. The gyrotron was based on a two-electrode configuration comprising of a field-immersed, field emission cold cathode and a shaped anode cavity. A superconducting magnet was used to produce the homogeneous intra-cavity magnetic field and a stacked Blumlein pulse generator was used to drive the electron beam. This pulse generator was capable of producing an output voltage up to 300 kV with a 20ns rise time, a 100ns flat top, and a 20ns fall time. The output impedance was 200{Omega} and the energy stored in the generator at a charging voltage of 60 kV was 5.4J. No degradation effects on the mm-wave output was evident due to diode recovery time throughout this series of results. A subsequent conclusion is that the recovery time in the cold cathode gyrotron is less than 500{mu}s.

  8. Investigation on Two-Stage 300 HZ Pulse Tube Cryocooler

    NASA Astrophysics Data System (ADS)

    Cai, H. K.; Yang, L. W.; Hong, G. T.; Luo, E. C.; Zhou, Y.

    2010-04-01

    In the past few years, ultra-high frequency pulse tube cryocoolers are becoming a research hotspot for their portability and compactness in aerospace and aviation applications. For preliminary research, a two-stage pulse tube cryocooler working at 300 Hz driven by a thermoacoustic engine is established to investigate the problems due to ultra high frequency, and several results have been derived in our early reports. In order to study the effect of thermal penetration depth, this paper presents the cooler adopting copper mesh as the regenerator, and comparison with stainless steel mesh is given. In addition, the influence of inertance tube on the lowest possible cooler temperature is also tested. Finally, we discuss the improvement for getting a lower temperature.

  9. 100-Hz Electroacupuncture but not 2-Hz Electroacupuncture is Preemptive Against Postincision Pain in Rats.

    PubMed

    Silva, Marcelo Lourenço; Silva, Josie Resende Torres; Prado, Wiliam Alves

    2016-08-01

    Preemptive analgesia involves introducing an analgesic before noxious stimulation. Electroacupuncture (EA) activates descending mechanisms that modulate nociceptive inputs into the spinal dorsal horn. This study evaluated whether preoperative EA is more effective than postoperative EA in reducing incision pain in rats. The nociceptive threshold to mechanical stimulation was utilized to examine the effects of an intraperitoneal injection of saline (0.1 mL/kg) or naloxone (1 mg/kg) on antinociception induced by a 20-minute period of 2-Hz or 100-Hz EA applied to the Zusanli (ST36) and Sanyinjiao (SP6) acupoints before surgical incision, or 10 minutes after or 100 minutes after surgical incision of the hind paw. The extent of mechanical hyperalgesia after the incision was significantly attenuated by the application of 100-Hz EA preoperatively, but not by its application at 10 minutes or 100 minutes postoperatively. By contrast, 2-Hz EA was effective against postoperative hyperalgesia when applied 10 minutes or 100 minutes after surgery but not when it was applied preoperatively. Only the effect of 2-Hz EA applied 10 minutes after surgery was sensitive to naloxone. The present study showed for the first time that 100-Hz EA, but not 2-Hz EA, exerts a nonopioidergic preemptive effect against postincision pain in rats. PMID:27555225

  10. Environmental and Pharmacological Modulation of Amphetamine-Induced 50-kHz Ultrasonic Vocalizations in Rats

    PubMed Central

    Rippberger, Henrike; van Gaalen, Marcel M.; Schwarting, Rainer K.W.; WÖhr, Markus

    2015-01-01

    Rats emit high-frequency 50-kHz ultrasonic vocalizations (USV) in appetitive situations like social interactions. Drugs of abuse are probably the most potent non-social elicitors of 50-kHz USV, possibly reflecting their euphorigenic properties. Psychostimulants induce the strongest elevation in 50-kHz USV emission, particularly amphetamine (AMPH), either when applied systemically or locally into the nucleus accumbens (Nacc). Emission of AMPH-induced 50-kHz USV depends on test context, such as the presence of conspecifics, and can be manipulated pharmacologically by targeting major neurotransmitter systems, including dopamine (DA), noradrenaline (NA), and serotonin (5-HT), but also protein kinase C (PKC) signaling. Several D1 and D2 receptor antagonists, as well as typical and atypical antipsychotics block the AMPH-induced elevation in 50-kHz USV. Inhibiting D1 and D2 receptors in the Nacc abolishes AMPH-induced 50-kHz USV, indicating a key role for this brain area. NA neurotransmission also regulates AMPH-induced 50-kHz USV emission given that α1 receptor antagonists and α2 receptor agonists exert attenuating effects. Supporting the involvement of the 5-HT system, AMPH-induced 50-kHz USV are attenuated by 5-HT2C receptor activation, whereas 5-HT2C receptor antagonism leads to the opposite effect. Finally, treatment with lithium, tamoxifen, and myricitrin was all found to result in a complete abolishment of the AMPH-induced increase in 50-kHz USV, suggesting the involvement of PKC signaling. Neurotransmitter systems involved in AMPH-induced 50-kHz USV emission only partially overlap with other AMPH-induced behaviors like hyperlocomotion. The validity of AMPH-induced 50-kHz USV as a preclinical model for neuropsychiatric disorders is discussed, particularly with relevance to altered drive and mood seen in bipolar disorder. PMID:26411764

  11. Variations of magnetic and electrostatic atmospheric parameters and dynamics of the heart rate in mHz range

    NASA Astrophysics Data System (ADS)

    Nagorskiy, Petr; Zenchenko, Tatiana; Breus, Tamara; Smirnov, Sergey

    and disappearance. The highest degree of synchronization of HR with the variations of the geomagnetic field (in all four conducted experiments in this day) was observed in the most geomagnetically quiet day - 04.10.12 (Ap = 1), while the lowest one - in the day of the geomagnetic disturbances - 01.10.12 (Ap = 32). The characteristics of the electric field variations in the time-frequency domain in the experiments conducted indoors and outdoors differ fundamentally.

  12. High spectral purity Kerr frequency comb radio frequency photonic oscillator.

    PubMed

    Liang, W; Eliyahu, D; Ilchenko, V S; Savchenkov, A A; Matsko, A B; Seidel, D; Maleki, L

    2015-01-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than -60 dBc Hz(-1) at 10 Hz, -90 dBc Hz(-1) at 100 Hz and -170 dBc Hz(-1) at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10(-10) at 1-100 s integration time-orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption. PMID:26260955

  13. High spectral purity Kerr frequency comb radio frequency photonic oscillator

    NASA Astrophysics Data System (ADS)

    Liang, W.; Eliyahu, D.; Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Seidel, D.; Maleki, L.

    2015-08-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than -60 dBc Hz-1 at 10 Hz, -90 dBc Hz-1 at 100 Hz and -170 dBc Hz-1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10-10 at 1-100 s integration time--orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption.

  14. Plasma antennas driven by 5–20 kHz AC power supply

    SciTech Connect

    Zhao, Jiansen Chen, Yuli; Sun, Yang; Wu, Huafeng; Liu, Yue; Yuan, Qiumeng

    2015-12-15

    The experiments described in this work were performed with the aim of introducing a new plasma antenna that was excited by a 5–20 kHz alternating current (AC) power supply, where the antenna was transformed into a U-shape. The results show that the impedance, voltage standing-wave ratio (VSWR), radiation pattern and gain characteristics of the antenna can be controlled rapidly by varying not only the discharge power, but also by varying the discharge frequency in the range from 5 to 20 kHz. When the discharge frequency is adjusted from 10 to 12 kHz, the gain is higher within a relatively broad frequency band and the switch-on time is less than 1 ms when the discharge power is less than 5 W, meaning that the plasma antenna can be turned on and off rapidly.

  15. Low frequency cultural noise

    NASA Astrophysics Data System (ADS)

    Sheen, Dong-Hoon; Shin, Jin Soo; Kang, Tae-Seob; Baag, Chang-Eob

    2009-09-01

    Abnormal cultural seismic noise is observed in the frequency range of 0.01-0.05 Hz. Cultural noise generated by human activities is generally observed in frequencies above 1 Hz, and is greater in the daytime than at night. The low-frequency noise presented in this paper exhibits a characteristic amplitude variation and can be easily identified from time domain seismograms in the frequency range of interest. The amplitude variation is predominantly in the vertical component, but the horizontal components also show variations. Low-frequency noise is markedly periodic, which reinforces its interpretation as cultural noise. Such noise is observed world-wide, but is limited to areas in the vicinity of railways. The amplitude variation in seismograms correlates strongly with railway timetables, and the waveform shows a wavelength shift associated with the Doppler effect, which indicates that the origin of seismic background noise in the frequency range 0.01-0.05 Hz is railways.

  16. Photometry of the old nova HZ Pup

    NASA Astrophysics Data System (ADS)

    Cassanelli, Tomas; Abbott, Tim

    2016-01-01

    This study of the old nova HZ Pup involved obtaining image data, removing the instrumental signature, performing photometry on the stellar images present, and generating light curves. Relative photometry between the target star and other stars in the image was used to remove atmospheric effects. A periodogram of this light curve shows the historically known periodicity close to 20 minutes. However, other periodicities are also present and it is not clear from the data which are real and which are artifacts of the sampling. These data will be combined with data from other telescopes collected contemporaneously in order to resolve this ambiguity.

  17. Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization.

    PubMed

    Miao, J; Wang, B; Bai, Y; Yuan, Y B; Gao, C; Wang, L J

    2015-05-01

    Frequency dissemination and synchronization in free space play an important role in global navigation satellite system, radio astronomy, and synthetic aperture radar. In this paper, we demonstrated a portable radio frequency dissemination scheme via free space using microwave antennas. The setup has a good environment adaptability and high dissemination stability. The frequency signal was disseminated at different distances ranging from 10 to 640 m with a fixed 10 Hz locking bandwidth, and the scaling law of dissemination stability on distance and averaging time was discussed. The preliminary extrapolation shows that the dissemination stability may reach 1 × 10(-12)/s in ground-to-satellite synchronization, which far exceeds all present methods, and is worthy for further study. PMID:26026543

  18. Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers.

    PubMed

    Triches, Marco; Michieletto, Mattia; Hald, Jan; Lyngsø, Jens K; Lægsgaard, Jesper; Bang, Ole

    2015-05-01

    Gas-filled hollow-core photonic crystal fibers are used to stabilize a fiber laser to the 13C2H2 P(16) (ν1+ν3) transition at 1542 nm using saturated absorption. Four hollow-core fibers with different crystal structure are compared in terms of long term lock-point repeatability and fractional frequency instability. The locked fiber laser shows a fractional frequency instability below 4 × 10(-12) for averaging time up to 10(4) s. The lock-point repeatability over more than 1 year is 1.3 × 10(-11), corresponding to a standard deviation of 2.5 kHz. A complete experimental investigation of the light-matter interaction between the spatial modes excited in the fibers and the frequency of the locked laser is presented. A simple theoretical model that explains the interaction is also developed. PMID:25969219

  19. Acute effect of carbamazepine on corticothalamic 5-9-Hz and thalamocortical spindle (10-16-Hz) oscillations in the rat.

    PubMed

    Zheng, Thomas W; O'Brien, Terence J; Kulikova, Sofya P; Reid, Christopher A; Morris, Margaret J; Pinault, Didier

    2014-03-01

    A major side effect of carbamazepine (CBZ), a drug used to treat neurological and neuropsychiatric disorders, is drowsiness, a state characterized by increased slow-wave oscillations with the emergence of sleep spindles in the electroencephalogram (EEG). We conducted cortical EEG and thalamic cellular recordings in freely moving or lightly anesthetized rats to explore the impact of CBZ within the intact corticothalamic (CT)-thalamocortical (TC) network, more specifically on CT 5-9-Hz and TC spindle (10-16-Hz) oscillations. Two to three successive 5-9-Hz waves were followed by a spindle in the cortical EEG. A single systemic injection of CBZ (20 mg/kg) induced a significant increase in the power of EEG 5-9-Hz oscillations and spindles. Intracellular recordings of glutamatergic TC neurons revealed 5-9-Hz depolarizing wave-hyperpolarizing wave sequences prolonged by robust, rhythmic spindle-frequency hyperpolarizing waves. This hybrid sequence occurred during a slow hyperpolarizing trough, and was at least 10 times more frequent under the CBZ condition than under the control condition. The hyperpolarizing waves reversed at approximately -70 mV, and became depolarizing when recorded with KCl-filled intracellular micropipettes, indicating that they were GABAA receptor-mediated potentials. In neurons of the GABAergic thalamic reticular nucleus, the principal source of TC GABAergic inputs, CBZ augmented both the number and the duration of sequences of rhythmic spindle-frequency bursts of action potentials. This indicates that these GABAergic neurons are responsible for the generation of at least the spindle-frequency hyperpolarizing waves in TC neurons. In conclusion, CBZ potentiates GABAA receptor-mediated TC spindle oscillations. Furthermore, we propose that CT 5-9-Hz waves can trigger TC spindles. PMID:24308357

  20. Ultrasonic Plastic Welding Using 90 kHz Upper and Lower Vibration Systems

    NASA Astrophysics Data System (ADS)

    Tsujino, Jiromaru; Ishii, Yasuhiro; Shiraki, Toshiyuki; Yamazaki, Hiroyuki

    1994-05-01

    Direct and transmission welding characteristics of an ultrasonic plastic welding system using 90 kHz upper and lower vibration systems are studied. By using high frequency, welding characteristics of plastic specimens may be improved because ultrasonic vibration absorption by plastic material increases as vibration frequency increases. The 90 kHz ultrasonic vibration source designed consists of a radial-to-longitudinal vibration direction converter with four bolt-clamped Langevin-type piezoelectric ceramic (lead-zircon-titanate; PZT) transducers of 15 mm in diameter. The 90 kHz welding equipment consists of two vibration sources positioned at upper and lower parts and a welding frame. In the case of direct welding of various sheet specimens, the required total velocity of 90 kHz upper and lower welding tips is less than 60% that of 27 kHz welding tips. Direct and transmission welding characteristics of a 90 kHz welding system with two vibration sources are significantly improved compared with those of conventional systems.

  1. Threshold received sound pressure levels of single 1-2 kHz and 6-7 kHz up-sweeps and down-sweeps causing startle responses in a harbor porpoise (Phocoena phocoena).

    PubMed

    Kastelein, Ronald A; Steen, Nele; Gransier, Robin; Wensveen, Paul J; de Jong, Christ A F

    2012-03-01

    Mid-frequency and low-frequency sonar systems produce frequency-modulated sweeps which may affect harbor porpoises. To study the effect of sweeps on behavioral responses (specifically "startle" responses, which we define as sudden changes in swimming speed and/or direction), a harbor porpoise in a large pool was exposed to three pairs of sweeps: a 1-2 kHz up-sweep was compared with a 2-1 kHz down-sweep, both with and without harmonics, and a 6-7 kHz up-sweep was compared with a 7-6 kHz down-sweep without harmonics. Sweeps were presented at five spatially averaged received levels (mRLs; 6 dB steps; identical for the up-sweep and down-sweep of each pair). During sweep presentation, startle responses were recorded. There was no difference in the mRLs causing startle responses for up-sweeps and down-sweeps within frequency pairs. For 1-2 kHz sweeps without harmonics, a 50% startle response rate occurred at mRLs of 133 dB re 1 μPa; for 1-2 kHz sweeps with strong harmonics at 99 dB re 1 μPa; for 6-7 kHz sweeps without harmonics at 101 dB re 1 μPa. Low-frequency (1-2 kHz) active naval sonar systems without harmonics can therefore operate at higher source levels than mid-frequency (6-7 kHz) active sonar systems without harmonics, with similar startle effects on porpoises. PMID:22423727

  2. The auditory transient 40-Hz response is insensitive to changes in stimulus features.

    PubMed

    Tiitinen, H; Sinkkonen, J; May, P; Näätänen, R

    1994-12-30

    Ten subjects were presented with tone pips occasionally interspersed with deviant tone pips of a higher frequency. The transient 40-Hz response was insensitive to change in qualitative stimulus features. In contrast, stimulus changes elicited a later and slower event-related potential, the mismatch negativity (MMN). As a response to changes in stimulus features implies the existence of a memory system, and because changes in qualitative stimulus aspects do not activate the generator mechanisms underlying the 40-Hz response, the 40-Hz response can be dissociated from memory mechanisms. Furthermore, the analysis of phase-locked (synchronous) and non-phase-locked (asynchronous) responses revealed that the 40-Hz response might be caused by the synchronization of already active oscillators. PMID:7703412

  3. SOFT LAGS IN NEUTRON STAR kHz QUASI-PERIODIC OSCILLATIONS: EVIDENCE FOR REVERBERATION?

    SciTech Connect

    Barret, Didier

    2013-06-10

    High frequency soft reverberation lags have now been detected from stellar mass and supermassive black holes. Their interpretation involves reflection of a hard source of photons onto an accretion disk, producing a delayed reflected emission, with a time lag consistent with the light travel time between the irradiating source and the disk. Independently of the location of the clock, the kHz quasi-periodic oscillation (QPO) emission is thought to arise from the neutron star boundary layer. Here, we search for the signature of reverberation of the kHz QPO emission, by measuring the soft lags and the lag energy spectrum of the lower kHz QPOs from 4U1608-522. Soft lags, ranging from {approx}15 to {approx}40 {mu}s, between the 3-8 keV and 8-30 keV modulated emissions are detected between 565 and 890 Hz. The soft lags are not constant with frequency and show a smooth decrease between 680 Hz and 890 Hz. The broad band X-ray spectrum is modeled as the sum of a disk and a thermal Comptonized component, plus a broad iron line, expected from reflection. The spectral parameters follow a smooth relationship with the QPO frequency, in particular the fitted inner disk radius decreases steadily with frequency. Both the bump around the iron line in the lag energy spectrum and the consistency between the lag changes and the inferred changes of the inner disk radius, from either spectral fitting or the QPO frequency, suggest that the soft lags may indeed involve reverberation of the hard pulsating QPO source on the disk.

  4. Coherent neocortical 40-Hz oscillations are not present during REM sleep.

    PubMed

    Castro, Santiago; Falconi, Atilio; Chase, Michael H; Torterolo, Pablo

    2013-04-01

    During cognitive processes there are extensive interactions between various regions of the cerebral cortex. Oscillations in the gamma frequency band (≈40 Hz) of the electroencephalogram (EEG) are involved in the binding of spatially separated but temporally correlated neural events, which results in a unified perceptual experience. The extent of these interactions can be examined by means of a mathematical algorithm called 'coherence', which reflects the 'strength' of functional interactions between cortical areas. The present study was conducted to analyse EEG coherence in the gamma frequency band of the cat during alert wakefulness (AW), quiet wakefulness (QW), non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. Cats were implanted with electrodes in the frontal, parietal and occipital cortices to monitor EEG activity. Coherence values within the gamma frequency (30-100 Hz) from pairs of EEG recordings were analysed. A large increase in coherence occurred between all cortical regions in the 30-45 Hz frequency band during AW compared with the other behavioral states. As the animal transitioned from AW to QW and from QW to NREM sleep, coherence decreased to a moderate level. Remarkably, there was practically no EEG coherence in the entire gamma band spectrum (30-100 Hz) during REM sleep. We conclude that functional interactions between cortical areas are radically different during sleep compared with wakefulness. The virtual absence of gamma frequency coherence during REM sleep may underlie the unique cognitive processing that occurs during dreams, which is principally a REM sleep-related phenomenon. PMID:23406153

  5. 78 FR 42102 - Termination of Radiotelephone Medium Frequency 2182 kHz Watchkeeping, 2187.5 kHz Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... coupled with antenna site deterioration, costly upkeep, and extensive maintenance required to support the... detailed review of several Coast Guard MF sites revealed significant antenna ground deterioration...

  6. Real-Time Determination of Absolute Frequency in Continuous-Wave Terahertz Radiation with a Photocarrier Terahertz Frequency Comb Induced by an Unstabilized Femtosecond Laser

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Hayashi, Kenta; Mizuguchi, Tatsuya; Hsieh, Yi-Da; Abdelsalam, Dahi Ghareab; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Yasui, Takeshi

    2016-05-01

    A practical method for the absolute frequency measurement of continuous-wave terahertz (CW-THz) radiation uses a photocarrier terahertz frequency comb (PC-THz comb) because of its ability to realize real-time, precise measurement without the need for cryogenic cooling. However, the requirement for precise stabilization of the repetition frequency ( f rep) and/or use of dual femtosecond lasers hinders its practical use. In this article, based on the fact that an equal interval between PC-THz comb modes is always maintained regardless of the fluctuation in f rep, the PC-THz comb induced by an unstabilized laser was used to determine the absolute frequency f THz of CW-THz radiation. Using an f rep-free-running PC-THz comb, the f THz of the frequency-fixed or frequency-fluctuated active frequency multiplier chain CW-THz source was determined at a measurement rate of 10 Hz with a relative accuracy of 8.2 × 10-13 and a relative precision of 8.8 × 10-12 to a rubidium frequency standard. Furthermore, f THz was correctly determined even when fluctuating over a range of 20 GHz. The proposed method enables the use of any commercial femtosecond laser for the absolute frequency measurement of CW-THz radiation.

  7. EV drivetrain inverter with V/HZ optimization

    DOEpatents

    Gritter, David J.; O'Neil, Walter K.

    1986-01-01

    An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer which calculates optimized machine control data signals from various parametric inputs and during steady state load conditions, seeks a best V/HZ ratio to minimize battery current drawn (system losses) from a D.C. power source (32). In the preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack and a three-phase induction motor (18).

  8. Influence of 60-Hz magnetic fields on sea urchin development

    SciTech Connect

    Zimmerman, S.; Zimmerman, A.M.; Winters, W.D.; Cameron, I.L. )

    1990-01-01

    Continuous exposure of sea urchin (Strongylocentrotus purpuratus) embryos at 18 degrees C to a cyclic 60-Hz magnetic field at 0.1 mT rms beginning 4 min after insemination caused a significant developmental delay during the subsequent 23 hours. No delay in development was recorded for periods up to 18 hours after fertilization. At 18 h, most embryos were in the mesenchyme blastula stage. At 23 h, most control embryos were in mid-gastrula whereas most magnetic-field-exposed embryos were in the early gastrula stage. Thus an estimated 1-h delay occurred between these developmental stages. The results are discussed in terms of possible magnetic-field modification of transcription as well as interference with cell migration during gastrulation. The present study extends and supports the growing body of information about potential effects of exposures to extremely-low-frequency (ELF) magnetic fields on developing organisms.

  9. 2- to 3-kHz continuum emissions as possible indications of global heliospheric 'breathing'

    NASA Technical Reports Server (NTRS)

    Grzedzielski, S.; Lazarus, A. J.

    1993-01-01

    The paper analyzes the main features of 2- to 3-kHz heliospheric emissions in the context of a general heliospheric 'breathing' as inferred from the Voyager 2 solar wind average ram pressure data. Triggers for the three 3-kHz emission events seen to date are suggested, and good agreement is obtained in timing and expected postshock frequency for termination shock distances of about 90 AU. It is suggested that the visibility of the individual 3-kHz events and their observed upward frequency drift are enhanced when the postulated global heliospheric expansion results in the formation of a transient, compressed external plasma barrier around the heliopause that prevents radiation escape for several months. The average termination shock distance is estimated to be in the range 80-90 AU.

  10. Long-term underwater sound measurements in the shipping noise indicator bands 63Hz and 125Hz from the port of Falmouth Bay, UK.

    PubMed

    Garrett, J K; Blondel, Ph; Godley, B J; Pikesley, S K; Witt, M J; Johanning, L

    2016-09-15

    Chronic low-frequency anthropogenic sound, such as shipping noise, may be negatively affecting marine life. The EU's Marine Strategy Framework Directive (MSFD) includes a specific indicator focused on this noise. This indicator is the yearly average sound level in third-octave bands with centre frequencies at 63Hz and 125Hz. These levels are described for Falmouth Bay, UK, an active port at the entrance to the English Channel. Underwater sound was recorded for 30min h(-1) over the period June 2012 to November 2013 for a total of 435days. Mean third-octave levels were louder in the 125-Hz band (annual mean level of 96.0dB re 1μPa) than in the 63-Hz band (92.6dB re 1 μPa). These levels and variations are assessed as a function of seasons, shipping activity and wave height, providing comparison points for future monitoring activities, including the MSFD and emerging international regulation. PMID:27393210

  11. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... do not exceed 15 uV/m, as measured at a distance of 47,715/(frequency in kHz) meters (equivalent to... of an AM broadcast station on a college or university campus or on the campus of any other...

  12. Thomson scattering at 250 kHz

    NASA Astrophysics Data System (ADS)

    Young, W. C.; Den Hartog, D. J.

    2015-12-01

    Several upgrades have been applied to the high-repetition-rate Thomson scattering diagnostic on the MST experiment, having increased the rate and number of electron temperature measurements. The detector portion of the Thomson scattering system requires 1.5-2.0 J, 10-20 ns laser pulses at 1064 nm. A high-repetition-rate laser produces suitable pulses for short 3-4 pulse bursts with only 3 μs pulse spacing. Alternatively, the laser timing can be optimized to maximize the number of pulses in a single burst, producing up to 44 pulses at a rate of 100 kHz. The laser follows a master oscillator, power amplifier architecture. Upgrades to the laser include: a new acousto-optic modulator chopped CW laser based master oscillator, a sixth power amplifier, optimized Nd doping within Nd:glass amplifiers via optical modeling of the pump chamber, and a yet to be installed new cavity reflector. Additionally, a new long wavelength filter has been added to the Thomson scattering diagnostic's polychromator based detector, allowing possible detection of net electron drift.

  13. Discovery of kHz Quasi-periodic Oscillations in the Z Source Cygnus X-2

    NASA Astrophysics Data System (ADS)

    Wijnands, Rudy; Homan, Jeroen; van der Klis, Michiel; Kuulkers, Erik; van Paradijs, Jan; Lewin, Walter H. G.; Lamb, Frederick K.; Psaltis, Dimitrios; Vaughan, Brian

    1998-02-01

    During observations with the Rossi X-Ray Timing Explorer from 1997 June 31 to July 3 we discovered two simultaneous kHz quasi-periodic oscillations (QPOs) near 500 and 860 Hz in the low-mass X-ray binary and Z source Cygnus X-2. In the X-ray color-color diagram and hardness-intensity diagram (HID), a clear Z track was traced out, which shifted in the HID within 1 day to higher count rates at the end of the observation. Z track shifts are well known to occur in Cyg X-2 our observation for the first time catches the source in the act. A single kHz QPO peak was detected at the left end of the horizontal branch (HB) of the Z track, with a frequency of 731+/-20 Hz and an amplitude of 4.7+0.8-0.6% rms in the energy band 5.0-60 keV. Further to the right on the HB, at somewhat higher count rates, an additional peak at 532+/-43 Hz was detected with an rms amplitude of 3.0+1.0-0.7%. When the source moved down the HB, thus when the inferred mass accretion rate increased, the frequency of the higher frequency QPO increased to 839+/-13 Hz, and its amplitude decreased to 3.5+0.4-0.3% rms. The higher frequency QPO was also detected on the upper normal branch (NB) with an rms amplitude of 1.8+0.6-0.4% and a frequency of 1007+/-15 Hz; its peak width did not show a clear correlation with inferred mass accretion rate. The lower frequency QPO was most of the time undetectable, with typical upper limits of 2% rms; no conclusion on how this QPO behaved with mass accretion rate can be drawn. If the peak separation between the QPOs is the neutron star spin frequency (as required in some beat-frequency models), then the neutron star spin period is 2.9+/-0.2 ms (346+/-29 Hz). This discovery makes Cyg X-2 the fourth Z source that displays kHz QPOs. The properties of the kHz QPOs in Cyg X-2 are similar to those of other Z sources. Simultaneous with the kHz QPOs, the well-known horizontal-branch QPOs (HBOs) were visible in the power spectra. At the left end of the HB, the second harmonic of

  14. Observations of backscatter from sand and gravel seafloors between 170 and 250 kHz.

    PubMed

    Weber, Thomas C; Ward, Larry G

    2015-10-01

    Interpreting observations of frequency-dependence in backscatter from the seafloor offers many challenges, either because multiple frequencies are used for different observations that will later be merged or simply because seafloor scattering models are not well-understood above 100 kHz. Hindering the understanding of these observations is the paucity of reported, calibrated acoustic measurements above 100 kHz. This manuscript seeks to help elucidate the linkages between seafloor properties and frequency-dependent seafloor backscatter by describing observations of backscatter collected from sand, gravel, and bedrock seafloors at frequencies between 170 and 250 kHz and at a grazing angle of 45°. Overall, the frequency dependence appeared weak for all seafloor types, with a slight increase in seafloor scattering strength with increasing frequency for an area with unimodal, very poorly to moderately well sorted, slightly granular to granular medium sand with significant amounts of shell debris and a slight decrease in all other locations. PMID:26520300

  15. 40 Hz auditory steady state response to linguistic features of stimuli during auditory hallucinations.

    PubMed

    Ying, Jun; Yan, Zheng; Gao, Xiao-rong

    2013-10-01

    The auditory steady state response (ASSR) may reflect activity from different regions of the brain, depending on the modulation frequency used. In general, responses induced by low rates (≤40 Hz) emanate mostly from central structures of the brain, and responses from high rates (≥80 Hz) emanate mostly from the peripheral auditory nerve or brainstem structures. Besides, it was reported that the gamma band ASSR (30-90 Hz) played an important role in working memory, speech understanding and recognition. This paper investigated the 40 Hz ASSR evoked by modulated speech and reversed speech. The speech was Chinese phrase voice, and the noise-like reversed speech was obtained by temporally reversing the speech. Both auditory stimuli were modulated with a frequency of 40 Hz. Ten healthy subjects and 5 patients with hallucination symptom participated in the experiment. Results showed reduction in left auditory cortex response when healthy subjects listened to the reversed speech compared with the speech. In contrast, when the patients who experienced auditory hallucinations listened to the reversed speech, the auditory cortex of left hemispheric responded more actively. The ASSR results were consistent with the behavior results of patients. Therefore, the gamma band ASSR is expected to be helpful for rapid and objective diagnosis of hallucination in clinic. PMID:24142731

  16. Laser frequency stabilization for LISA

    NASA Technical Reports Server (NTRS)

    Mueller, Guido; McNamara, Paul; Thorpe, Ira; Camp, Jordan

    2005-01-01

    The requirement on laser frequency noise in the Laser Interferometer Space Antenna (LISA) depends on the velocity and our knowledge of the position of each spacecraft of the interferometer. Currently it is assumed that the lasers must have a pre-stabilized frequency stability of 30Hz/square root of Hz over LISA'S most sensitive frequency band (3 mHz - 30 mHz). The intrinsic frequency stability of even the most stable com- mercial lasers is several orders of magnitude above this level. Therefore it is necessary to stabilize the laser frequency to an ultra-stable frequency reference which meets the LISA requirements. The baseline frequency reference for the LISA lasers are high finesse optical cavities based on ULE spacers. We measured the stability of two ULE spacer cavities with respect to each other. Our current best results show a noise floor at, or below, 30 Hz/square root of Hz above 3 mHz. In this report we describe the experimental layout of the entire experiment and discuss the limiting noise sources.

  17. Emergence of a 600-Hz buzz UP state Purkinje cell firing in alert mice.

    PubMed

    Cheron, G; Prigogine, C; Cheron, J; Márquez-Ruiz, J; Traub, R D; Dan, B

    2014-03-28

    Purkinje cell (PC) firing represents the sole output from the cerebellar cortex onto the deep cerebellar and vestibular nuclei. Here, we explored the different modes of PC firing in alert mice by extracellular recording. We confirm the existence of a tonic and/or bursting and quiescent modes corresponding to UP and DOWN state, respectively. We demonstrate the existence of a novel 600-Hz buzz UP state of firing characterized by simple spikes (SS) of very small amplitude. Climbing fiber (CF) input is able to switch the 600-Hz buzz to the DOWN state, as for the classical UP-to-DOWN state transition. Conversely, the CF input can initiate a typical SS pattern terminating into 600-Hz buzz. The 600-Hz buzz was transiently suppressed by whisker pad stimulation demonstrating that it remained responsive to peripheral input. It must not be mistaken for a DOWN state or the sign of PC inhibition. Complex spike (CS) frequency was increased during the 600-Hz buzz, indicating that this PC output actively contributes to the cerebello-olivary loop by triggering a disinhibition of the inferior olive. During the 600-Hz buzz, the first depolarizing component of the CS was reduced and the second depolarizing component was suppressed. Consistent with our experimental observations, using a 559-compartment single-PC model - in which PC UP state (of about -43mV) was obtained by the combined action of large tonic AMPA conductances and counterbalancing GABAergic inhibition - removal of this inhibition produced the 600-Hz buzz; the simulated buzz frequency decreased following an artificial CS. PMID:24440752

  18. High-frequency and high-quality silicon carbide optomechanical microresonators.

    PubMed

    Lu, Xiyuan; Lee, Jonathan Y; Lin, Qiang

    2015-01-01

    Silicon carbide (SiC) exhibits excellent material properties attractive for broad applications. We demonstrate the first SiC optomechanical microresonators that integrate high mechanical frequency, high mechanical quality, and high optical quality into a single device. The radial-breathing mechanical mode has a mechanical frequency up to 1.69 GHz with a mechanical Q around 5500 in atmosphere, which corresponds to a fm · Qm product as high as 9.47 × 10(12) Hz. The strong optomechanical coupling allows us to efficiently excite and probe the coherent mechanical oscillation by optical waves. The demonstrated devices, in combination with the superior thermal property, chemical inertness, and defect characteristics of SiC, show great potential for applications in metrology, sensing, and quantum photonics, particularly in harsh environments that are challenging for other device platforms. PMID:26585637

  19. Evidence for a High-Pressure Phase Transition of ε-2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) Using Vibrational Spectroscopy

    SciTech Connect

    Ciezak, J.; Jenkins, T; Liu, Z

    2007-01-01

    The high-pressure response of {epsilon}-2,4,6,8,10,12-hexanitrohexaazaisowurtizane (CL-20) has been examined to 27 GPa in diamond anvil cells using vibrational spectroscopy. The results reveal evidence of an {epsilon}{yields}{Upsilon} pressure-induced phase transition between 4.1 and 6.4 GPa and suggest the existence of a {Upsilon}{yields}{zeta} transition near 18.7 GPa. Several Raman and infrared frequencies were found to decrease in intensity as the phase boundaries are approached. An anomalous intensity increase was noted in the C-N-C infrared mode that is believed to result from an increase in the Raman cross-section due to a stronger interlayer coupling under pressure.

  20. Dynamics of Clothing II. Curriculum Guide. A Family and Consumer Sciences Education Course of Study for Grades 10-12.

    ERIC Educational Resources Information Center

    Hunger, Dean-Ellen, Ed.; Hancey, Helen-Louise; Hendrickson, Diane; Hicks, Camille; Munns, Barbara; Price, Barbara

    This document is a nine-unit curriculum guide for a high school (grades 10-12) course in clothing instruction. The units contain one or two lessons on the following topics: (1) psychological aspects of clothing (behavior, image, and dress; self-concept and self-image); (2) wardrobe selections (wardrobe consumerism, wardrobe evaluation and…

  1. Strand V: Education for Survival. First Aid and Survival Education. Health Curriculum Materials Grades 10-12.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    GRADES OR AGES: Grades 10-12. SUBJECT MATTER: First aid and survival education. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into six sections: transportation of the injured, automobile accidents, conditions resulting from nuclear explosion, chemical warfare, natural catastrophes, and psychological first aid. The publication format…

  2. Discovery of 800 HZ Quasi-Periodic Oscillations in 4U 1608-52

    NASA Astrophysics Data System (ADS)

    Berger, M.; van der Klis, M.; van Paradijs, J.; Lewin, W. H. G.; Lamb, F.; Vaughan, B.; Kuulkers, E.; Augusteijn, T.; Zhang, W.; Marshall, F. E.; Swank, J. H.; Lapidus, I.; Lochner, J. C.; Strohmayer, T. E.

    1996-09-01

    We present results of Rossi X-Ray Timing Explorer observations of the low-mass X-ray binary and atoll source 4U 1608-52 made over 9 days during the decline of an X-ray intensity outburst in 1996 March. A fast-timing analysis shows a strong and narrow quasi-periodic oscillation (QPO) peak at frequencies between 850 and 890 Hz on March 3 and 6, as well as a broad peak around 690 Hz on March 9. Observations on March 12 show no significant signal. On March 3, the X-ray spectrum of the QPO is quite hard; its strength increases steadily from 5% at ~2 keV to ~20% at ~12 keV. The QPO frequency varies between 850 and 890 Hz on that day, and the peak widens and its rms decreases with centroid frequency in a way very similar to the well-known horizontal branch oscillations (HBO) in Z sources. We apply the HBO beat frequency model to atoll sources and suggest that, whereas the model could produce QPOs at the observed frequencies, the lack of correlation we observe between QPO properties and X-ray count rate is hard to reconcile with this model.

  3. Statistical analysis of Stromboli VLP tremor in the band [0.1-0.5] Hz: some consequences for vibrating structures

    NASA Astrophysics Data System (ADS)

    de Lauro, E.; de Martino, S.; Falanga, M.; Palo, M.

    2006-08-01

    We analyze time series of Strombolian volcanic tremor, focusing our attention on the frequency band [0.1-0.5] Hz (very long period (VLP) tremor). Although this frequency band is largely affected by noise, we evidence two significant components by using Independent Component Analysis with the frequencies, respectively, of ~0.2 and ~0.4 Hz. We show that these components display wavefield features similar to those of the high frequency Strombolian signals (>0.5 Hz). In fact, they are radially polarised and located within the crater area. This characterization is lost when an enhancement of energy appears. In this case, the presence of microseismic noise becomes relevant. Investigating the entire large data set available, we determine how microseismic noise influences the signals. We ascribe the microseismic noise source to Scirocco wind. Moreover, our analysis allows one to evidence that the Strombolian conduit vibrates like the asymmetric cavity associated with musical instruments generating self-sustained tones.

  4. Adsorption of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) on a soil organic matter. A DFT M05 computational study.

    PubMed

    Sviatenko, Liudmyla K; Gorb, Leonid; Shukla, Manoj K; Seiter, Jennifer M; Leszczynska, Danuta; Leszczynski, Jerzy

    2016-04-01

    Adsorption of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) by soil organic matter considering the Leonardite Humic Acid (LHA) model at the M05/tzvp level of Density Functional Theory (DFT) applying cluster approximation has been investigated. Different orientations of CL-20 toward LHA surface were examined. It was found that deprotonation of LHA is required to obtain stable complexes with CL-20. Hydrogen bonds between CL-20 and deprotonated LHA were analyzed applying the atoms in molecules (AIM) theory. An attachment or removal of an electron with respect to the complex does not have significant effect on mutual orientation of the adsorbent in complexes. It was shown that adsorbed CL-20 does not undergo redox transformation and, therefore, adsorption on soil organic matter may be responsible for decrease of the degradation rate of CL-20 in soil. PMID:26814703

  5. A radio pulsar spinning at 716 Hz.

    PubMed

    Hessels, Jason W T; Ransom, Scott M; Stairs, Ingrid H; Freire, Paulo C C; Kaspi, Victoria M; Camilo, Fernando

    2006-03-31

    We have discovered a 716-hertz eclipsing binary radio pulsar in the globular cluster Terzan 5 using the Green Bank Telescope. It is the fastest spinning neutron star found to date, breaking the 24-year record held by the 642-hertz pulsar B1937+21. The difficulty in detecting this pulsar, because of its very low flux density and high eclipse fraction (approximately 40% of the orbit), suggests that even faster spinning neutron stars exist. If the pulsar has a mass less than twice the mass of the Sun, then its radius must be constrained by the spin rate to be <16 kilometers. The short period of this pulsar also constrains models that suggest that gravitational radiation, through an r-mode (Rossby wave) instability, limits the maximum spin frequency of neutron stars. PMID:16410486

  6. Deficits in the 30-Hz auditory steady-state response in patients with major depressive disorder.

    PubMed

    Chen, Jingjing; Gong, Qin; Wu, Fei

    2016-10-19

    The auditory steady-state response (ASSR) is an auditory evoked potential that occurs in response to periodically presented auditory stimuli. The ASSR has drawn attention as a biomarker of psychiatric disorders owing to its connection with neural oscillations as well as its easy and noninvasive recording. Abnormalities in the γ band ASSR have been found consistently in patients with schizophrenia and bipolar disorder. However, although major depressive disorder (MDD) is also part of the common psychiatric diseases, the relationship between the ASSR and MDD has not been characterized sufficiently. Thus, the aim of the present study was to examine the ASSRs from patients with MDD and compare them with those from healthy control (HC) participants. The experiment was designed to obtain the ASSRs elicited by 20-, 30-, and 40-Hz click trains. Patients and HCs were evaluated separately. The response power and phase synchronization were measured at each stimulation frequency. Patients with MDD showed significantly reduced ASSR power for 30-Hz stimuli compared with HC participants, whereas no significant differences in the power were observed at 20 and 40 Hz for patients with MDD. In addition, no significant difference in the phase synchronization was observed for 20-, 30-, and 40-Hz stimuli. Conclusively, patients with MDD were characterized by deficits in 30-Hz ASSR power, which may be associated with spontaneous γ activity dysfunction. The present findings suggest that ASSR could potentially be used as a biomarker for MDD. PMID:27563737

  7. The 40-Hz auditory steady-state response: a selective biomarker for cortical NMDA function.

    PubMed

    Sivarao, Digavalli V

    2015-05-01

    When subjected to a phasic input, sensory cortical neurons display a remarkable ability to entrain faithfully to the driving stimuli. The entrainment to rhythmic sound stimuli is often referred to as the auditory steady-state response (ASSR) and can be captured using noninvasive techniques, such as scalp-recorded electroencephalography (EEG). An ASSR to a driving frequency of approximately 40 Hz is particularly interesting in that it shows, in relative terms, maximal power, synchrony, and synaptic activity. Moreover, the 40-Hz ASSR has been consistently found to be abnormal in schizophrenia patients across multiple studies. The nature of the reported abnormality has been less consistent; while most studies report a deficit in entrainment, several studies have reported increased signal power, particularly when there are concurrent positive symptoms, such as auditory hallucinations. However, the neuropharmacological basis for the 40-Hz ASSR, as well as its dysfunction in schizophrenia, has been unclear until recently. On the basis of several recent reports, it is argued that the 40-Hz ASSR represents a specific marker for cortical NMDA transmission. If confirmed, the 40-Hz ASSR may be a simple and easy-to-access pharmacodynamic biomarker for testing the integrity of cortical NMDA neurotransmission that is robustly translational across species. PMID:25809615

  8. Doubly Fed Induction Generator in an Offshore Wind Power Plant Operated at Rated V/Hz: Preprint

    SciTech Connect

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2012-06-01

    This paper introduces the concept of constant Volt/Hz operation of offshore wind power plants. The deployment of offshore WPPs requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cables, there is a need to use High-Voltage Direct Current transmission, which is economical for transmission distances longer than 50 kilometers. In the concept presented here, the onshore substation is operated at 60 Hz synced with the grid, and the offshore substation is operated at variable frequency and voltage, thus allowing the WPP to be operated at constant Volt/Hz.

  9. Design studies for the LCLS 120 Hz RF gun

    SciTech Connect

    Wang, X.J.; Babzien, M.; Ben-Zvi, I.; Chang, X.Y.; Pjerov, S.; Woodle, M.

    2000-11-01

    A preliminary design studies were carried out at Brookhaven National Laboratory for a photocathode RF gun injection system for LCLS 120 Hz operation. The starting point for the design is 50 Hz BNL Gun IV developed by a BNL/KEK/SHI collaboration. The basic parameters of the 120 Hz gun is discussed in this report. The complete photocathode RF gun injection system is described for a 120 Hz operation. The injector system includes photocathode RF gun, emittance compensation solenoid magnet, laser system and laser beam delivery system, and electron beam diagnostics. The basic design parameters, mechanical modification and the performance will be presented in this report.

  10. Startle response of captive North Sea fish species to underwater tones between 0.1 and 64 kHz.

    PubMed

    Kastelein, Ronald A; Heul, Sander van der; Verboom, Willem C; Jennings, Nancy; Veen, Jan van der; de Haan, Dick

    2008-06-01

    World-wide, underwater background noise levels are increasing due to anthropogenic activities. Little is known about the effects of anthropogenic noise on marine fish, and information is needed to predict any negative effects. Behavioural startle response thresholds were determined for eight marine fish species, held in a large tank, to tones of 0.1-64 kHz. Response threshold levels varied per frequency within and between species. For sea bass, the 50% reaction threshold occurred for signals of 0.1-0.7 kHz, for thicklip mullet 0.4-0.7 kHz, for pout 0.1-0.25 kHz, for horse mackerel 0.1-2 kHz and for Atlantic herring 4 kHz. For cod, pollack and eel, no 50% reaction thresholds were reached. Reaction threshold levels increased from approximately 100 dB (re 1 microPa, rms) at 0.1 kHz to approximately 160 dB at 0.7 kHz. The 50% reaction thresholds did not run parallel to the hearing curves. This shows that fish species react very differently to sound, and that generalisations about the effects of sound on fish should be made with care. As well as on the spectrum and level of anthropogenic sounds, the reactions of fish probably depend on the context (e.g. location, temperature, physiological state, age, body size, and school size). PMID:18295877

  11. Observations of High Frequency Harmonics of the Ionospheric Alfven Resonator

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Usanova, Maria; Bortnik, Jacob; Milling, David; Kale, Andy; Shao, Leo; Miles, David; Rae, I. Jonathan

    We present observations of high frequency harmonics of the ionospheric Alfven Resonator (IAR). These are seen in the form of spectral resonance structures (SRS) recorded by a ground-based search coil magnetometer sampling at 100 samples/s at the Ministik Lake station at L=4.2 within the expanded CARISMA magnetometer array. Previous observational studies have indicated that such SRS are typically confined to frequencies <~5 Hz with only several SRS harmonics being observed. We report the first observations of clear and discrete SRS, which we believe are harmonics of the IAR, and which extend to around 20 Hz in at least 10-12 clear SRS harmonics. We additionally demonstrate the utility of the Bortnik et al. (2007) auto-detection algorithm, designed for Pc1 wavepackets, for characterising the properties of the IAR. Our results also indicate that the cavity supporting SRS in the IAR at this time must be structured to support and trap much higher frequency IAR harmonics than previously assumed. This impacts the potential importance of the IAR for magnetosphere-ionosphere coupling, especially in relation to the impacts of incident Alfven waves on the ionosphere including Alfvenic aurora. Our observations also highlight the potential value of IAR observations for diagnosing the structure of the topside ionosphere, not least using the observed structure of the SRS. These are the first mid-latitude observations demonstrating that the IAR can extend to frequencies beyond those of the lowest few harmonics of the Schumann resonances - significantly suggesting the possibility that the Schumann resonance modes and the IAR may be coupled. The in-situ structure of the IAR is also examined by combining satellite data with conjugate measurements from the ground, and the impacts of the IAR for magnetosphere-ionosphere-thermosphere coupling examined.

  12. 47 CFR 73.1545 - Carrier frequency departure tolerances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) The departure of the visual carrier frequency of a TV station may not exceed ±1000 Hz from the assigned visual carrier frequency. (2) The departure of the aural carrier frequency of a TV station may not exceed ±1000 Hz from the actual visual carrier frequency plus exactly 4.5 MHz. (d)...

  13. Rats selectively bred for low levels of 50 kHz ultrasonic vocalizations exhibit alterations in early social motivation.

    PubMed

    Harmon, K M; Cromwell, H C; Burgdorf, J; Moskal, J R; Brudzynski, S M; Kroes, R A; Panksepp, J

    2008-05-01

    In rats, the rates of 50 kHz ultrasonic vocalizations (USVs) can be used as a selective breeding phenotype and variations in this phenotype can be an indicator of affective states. The 50 kHz USV is elicited by rewarding stimuli (e.g., food, sexual behavior) and therefore can express a positive affective state. Conversely, the 22 kHz USV is elicited by aversive stimuli (e.g., presence of a predator, social defeat) indicating a negative affective state. In the present study, we tested the effect of selectively breeding for 50 kHz USVs on a variety of maternal social/emotional behaviors in young rat pups (PND 10-12). These measures consisted of an assessment of isolation calls and conditioned odor preference paradigm. Results indicate that animals selected for low levels of 50 kHz USVs show the greatest alterations in social behaviors compared to the control animals. The low line animals had an increase in isolation calls tested during place preference conditioning and a decrease in 50 kHz ultrasonic calls in all conditions. These same low line animals failed to show a typical preference for a maternally-associated odor during the place preference test. The different social behaviors of the high line animals did not consistently vary from those of the control group. These results have important implications for the study of genetic and epigenetic mechanisms underlying emotional states, and possibly contribute to the research underlying the emotional changes in developmental disorders such as autistic spectrum disorder by providing a novel animal model that displays communication deficits that are interdependent with significant social behavioral impairments. PMID:18393285

  14. Cavity-Enhanced Frequency-Agile Rapid Scanning (fars) Spectroscopy: Measurement Principles

    NASA Astrophysics Data System (ADS)

    Hodges, Joseph T.; Long, David A.; Truong, Gar-Wing; Douglass, Kevin O.; Maxwell, Stephen E.; Zee, Roger Van; Plusquellic, David F.

    2013-06-01

    We present the principles of frequency-agile, rapid scanning (FARS) spectroscopy, a new technique for high-bandwidth, cavity-enhanced, laser absorption measurements. This method enables a visible or near-infrared probe laser beam to be frequency tuned over several tens of GHz using a microwave source, a waveguide phase modulator and a filter cavity. For the types of cavity-enhanced methods discussed here, the optical resonator itself is used to select a single sideband of the modulated laser spectrum, obviating the need for a separate filter cavity. FARS offers several important advantages over conventional cw laser tuning methods based on thermal or mechanical methods. These include, high speed tuning with sub-ms switching times, the ability to select arbitrary frequency steps or chirp rates, and the realization of a spectrum detuning axis with sub-kHz level precision. We discuss how FARS can be applied to cavity ring-down spectroscopy and other cavity-enhanced methods to enable rapid and accurate measurements of line parameters and to give noise-equivalent absorption coefficients at the 10^{-12} cm^{-1} Hz^{-1/2} level.

  15. Low-frequency and high-frequency distortion product otoacoustic emission suppression in humans

    PubMed Central

    Gorga, Michael P.; Neely, Stephen T.; Dierking, Darcia M.; Kopun, Judy; Jolkowski, Kristin; Groenenboom, Kristin; Tan, Hongyang; Stiegemann, Bettina

    2008-01-01

    Distortion product otoacoustic emission suppression (quantified as decrements) was measured for f2=500 and 4000 Hz, for a range of primary levels (L2), suppressor frequencies (f3), and suppressor levels (L3) in 19 normal-hearing subjects. Slopes of decrement-versus-L3 functions were similar at both f2 frequencies, and decreased as f3 increased. Suppression tuning curves, constructed from decrement functions, were used to estimate (1) suppression for on- and low-frequency suppressors, (2) tip-to-tail differences, (3) QERB, and (4) best frequency. Compression, estimated from the slope of functions relating suppression “threshold” to L2 for off-frequency suppressors, was similar for 500 and 4000 Hz. Tip-to-tail differences, QERB, and best frequency decreased as L2 increased for both frequencies. However, tip-to-tail difference (an estimate of cochlear-amplifier gain) was 20 dB greater at 4000 Hz, compared to 500 Hz. QERB decreased to a greater extent with L2 when f2=4000 Hz, but, on an octave scale, best frequency shifted more with level when f2=500 Hz. These data indicate that, at both frequencies, cochlear processing is nonlinear. Response growth and compression are similar at the two frequencies, but gain is greater at 4000 Hz and spread of excitation is greater at 500 Hz. PMID:18397024

  16. A novel particle separation technique using 20-kHz-order ultrasound irradiation in water

    NASA Astrophysics Data System (ADS)

    Muramatsu, Hiroya; Yanai, Sayuri; Mizushima, Yuki; Saito, Takayuki

    2015-12-01

    Ultrasound techniques such as washing, fine-particle manipulation and mixing have been investigated. MHz-band ultrasound was usually used in the previous work, and studies of kHz-order ultrasound are very rare. In the usual manipulation technique, μm- order particles are targeted due to wavelength limitations. We discovered an interesting phenomenon that holds promise for a novel particle separation technique using kHz-order ultrasound. Here, particles with sub-mm- or mm-order diameters were flocculated into a swarm in water irradiated by 20-kHz ultrasound. To develop a practical separation process, we investigated the stationary position and dia. of the particle swarms and the sound- pressure profiles in a vessel, as well as the flocculation mechanism, by varying the irradiation frequency, water level, particle diameter and particle amount. The primary stationary position corresponded to the wavelength calculated from the resonant frequency regardless of the particle diameter. Subtle changes in the frequency and water level resulted in a significant change in the stationary position. Based on these results, we propose a new separation process based on the particle diameter for sub-mm- or mm-order particles.

  17. Simple sweep frequency generator

    NASA Astrophysics Data System (ADS)

    Yegorov, I.

    1985-01-01

    A sweep frequency generator is described whose center frequency can be varied from 10 kHz to 50 MHz, with seven 1 to 3 and 3 to 10 scales covering the 10 kHz to 30 MHz range and one 3 to 5 scale for the 30 to 50 MHz range. It consists of a tunable pulse generator with output voltage attenuator, a diode mixer for calibration, and a sawtooth voltage generator as a source of frequency deviation. The pulse generator is a multivibrator with two emitter coupled transistors and two diodes in the collector circuit of one. The first diode extends the tuning range and increases the frequency deviation, the second diode provides the necessary base bias to the other transistor. The pulse repetition rate is modulated either directly by the sweep voltage of the calibrating oscilloscope, this voltage being applied to the base of the transistor with the two diodes in its collector circuit through an additional attenuator or a special emitter follower, or by the separate sawtooth voltage generator. The latter is a conventional two transistor multivibrator and produces signals at any constant frequency within the 40 to 60 Hz range. The mixer receives unmodulated signals from a reference frequency source and produces different frequency signals which are sent through an RCR-filter to a calibrating oscilloscope.

  18. Microwave regenerative frequency dividers with low phase noise.

    PubMed

    Ferre-Pikal, E S; Walls, F L

    1999-01-01

    We demonstrate regenerative divide-by-two (halver) circuits with very low phase modulation (PM) noise at input frequencies of 18.4 GHz and 39.8 GHz. The PM noise of the 18.4 to 9.2 GHz divider pair was L(10 Hz)=-134 dB below the carrier in a 1 Hz bandwidth (dBc/Hz) and L(10 MHz)=-166 dBc/Hz, and the PM noise of the 39.8 GHz to 19.9 GHz divider pair was L(10 Hz)=-122 dBc/Hz and L(10 MHz)=-167 dBc/Hz. PMID:18238416

  19. Comparison of cardiac and 60 Hz magnetically induced electric fields measured in anesthetized rats

    SciTech Connect

    Miller, D.L.; Creim, J.A.

    1997-06-01

    Extremely low frequency magnetic fields interact with an animal by inducing internal electric fields, which are in addition to the normal endogenous fields present in living animals. Male rats weighing about 560 g each were anesthetized with ketamine and xylazine. Small incisions were made in the ventral body wall at the chest and upper abdomen to position a miniature probe for measuring internal electric fields. The calibration constant for the probe size was 5.7 mm, with a flat response from at least 12 Hz to 20 kHz. A cardiac signal, similar to the normal electrocardiogram with a heart rate of about 250 bpm, was readily obtained at the chest. Upon analysis of its spectrum, the cardiac field detected by the probe had a broad maximum at 32--95 Hz. When the rates were exposed to a 1 mT, 60 Hz magnetic field, a spike appeared in the spectrum at 60 Hz. The peak-to-peak magnitudes of electric fields associated with normal heart function were comparable to fields induced by a 1 mT magnetic field at 60 Hz for those positions measured on the body surface. Within the body, or in different directions relative to the applied field, the induced fields were reduced. The cardiac field increased near the heart, becoming much larger than the induced field. Thus, the cardiac electric field, together with the other endogenous fields, combine with induced electric fields and help to provide reference levels for the induced-field dosimetry of ELF magnetic field exposures of living animals.

  20. Compact frequency standard using atoms trapped on a chip

    NASA Astrophysics Data System (ADS)

    Ramírez-Martínez, F.; Lacroûte, C.; Rosenbusch, P.; Reinhard, F.; Deutsch, C.; Schneider, T.; Reichel, J.

    2011-01-01

    We present a compact atomic frequency standard based on the interrogation of magnetically trapped 87Rb atoms. Two photons, in the microwave and radiofrequency domain excite the atomic transition. At a magnetic field of 3.23 G this transition from ∣F = 1, mF = -1> to ∣F = 2, mF = 1> is 1st order insensitive to magnetic field variations. Long Ramsey interrogation times can thus be achieved, leading to a projected stability in the low 10-13 at 1 s. This makes this device a viable alternative to LITE and HORACE as a good candidate for replacing or complementing the rubidium frequency standards and passive hydrogen masers already on board of the GPS, GLONASS, and GALILEO satellites. Here we present preliminary results. We use an atom chip to cool and trap the atoms. A coplanar waveguide is integrated to the chip to carry the Ramsey interrogation signal, making the physics package potentially as small as (5 cm)3. We describe the experimental apparatus and show preliminary Ramsey fringes of 1.25 Hz linewidth. We also show a preliminary frequency stability σy = 1.5 × 10-12τ-1/2 for 10 < τ < 103 s. This represents one order of magnitude improvement with respect to previous experiments.

  1. Direction-Finding Measurements of Heliospheric 2-3 kHz Radio Emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1998-01-01

    Using data from the Voyager 1 plasma wave instrument, a series of direction-finding measurements is presented for the intense 1992-93 heliospheric 2- to 3-kHz radio emission event, and several weaker events extending into 1994. Direction-finding measurements can only be obtained during roll maneuvers, which are performed about once every three months. Two parameters can be determined from the roll-induced intensity modulation, the azimuthal direction of arrival (measured around the roll axis), and the modulation index (the peak-to-peak amplitude divided by the peak amplitude). Measurements were made at two frequencies, 1.78 and 3.11 kHz. No roll modulation was observed at 1.78 kHz, which is consistent with an isotropic source at this frequency. In most cases an easily measurable roll modulation was detectable at 3.11 kHz. Although the azimuth angles have considerable scatter, the directions of arrival at 3.11 kHz can be organized into three groups, each of which appears to be associated with a separate upward drifting feature in the radio emission spectrum. The first group, which is associated with the main 1992-93 event, is consistent with a source located near the nose of the heliosphere. The remaining two groups, which occur after the main 1992-93 event, have azimuth angles well away from the nose of the heliosphere. The modulation indexes vary over a large range, from 0.06 to 0.61, with no obvious trend. Although the variations in the directions of arrival and modulation indicies appear to reflect changes in the position and angular size of the source, it is also possible that they could be caused by refraction or scattering due to density structures in the solar wind.

  2. Frequency characteristics of electro-hydraulic vibrator.

    PubMed

    Satoh, Noriaki

    2002-12-01

    Frequency characteristics of an electro-hydraulic vibrator were measured using two kinds of test signals. First, sine signals had theoretically 1.0 m/s2 (root-mean-square) in the frequency range from 1 to 16 Hz at single axis. The frequency characteristics were flat from 1 to 12 Hz, but 14, 16 Hz was considerably poor. Second, the vibrator was excited when using a complex signal consisting of 12 components in the frequency range from 1 to 12 Hz at single axis. The overall acceleration was 3 and 1 m/s2. Flat characteristics were seen in the tested frequency range. Acceleration distortion was recognized in a higher frequency than the target frequency. This second method is effective for the efficiency of experimental procedure. PMID:12506857

  3. The crystal structure and morphology of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) p-xylene solvate: a joint experimental and simulation study.

    PubMed

    Shen, Fanfan; Lv, Penghao; Sun, Chenghui; Zhang, Rubo; Pang, Siping

    2014-01-01

    The crystal structure of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaiso-wurtzitane (CL-20) p-xylene solvate, and the solvent effects on the crystal faces of CL-20 were studied through a combined experimental and theoretical method. The properties were analyzed by thermogravimetry-differential scanning calorimetry (TG-DSC), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD).The growth morphology of CL-20p-xylene solvate crystal was predicted with a modified attachment energy model. The crystal structure of CL-20p-xylene solvate belonged to the Pbca space group with the unit cell parameters, a=8.0704(12) Å, b=13.4095(20) Å, c=33.0817(49) Å, and Z=4, which indicated that the p-xylene solvent molecules could enter the crystal lattice of CL-20 and thus the CL-20 p-xylene solvate is formed. According to the solvent-effected attachment energy calculations, (002) and (11-1) faces should not be visible at all, while the percentage area of the (011) face could be increased from 7.81% in vacuum to 12.51% in p-xylene solution. The predicted results from the modified attachment energy model agreed very well with the observed morphology of crystals grown from p-xylene solution. PMID:25401400

  4. Prevalence of Malocclusion among 10-12-year-old Schoolchildren in Kozhikode District, Kerala: An Epidemiological Study

    PubMed Central

    Jeseem, MT; Kumar, TV Anupam

    2016-01-01

    ABSTRACT Background: A malocclusion is an irregularity of the teeth or a malrelationship of the dental arches beyond the range of what is accepted as normal. Objectives: To determine the prevalence of malocclusion in children aged 10-12 years in Kozhikode district of Kerala, South India. Materials and methods: A descriptive cross-sectional study was conducted among schoolchildren aged 10-12 years in six schools in Kozhikode district of Kerala, South India. A total of 2,366 children satisfied the inclusion criteria. Occlusal characteristics like crossbite, open bite, deep bite, protrusion of teeth, midline deviations, midline diastema and tooth rotation were recorded. The data were tabulated and analyzed using Chi-square test. Results: The results revealed that the overall prevalence of malocclusion was 83.3%. Of this, 69.8% of the children had Angle’s class I malocclusion, 9.3% had class II malocclusion (division 1 = 8.85%, division 2 = 0.5%) and 4.1% had class III malocclusion; 23.2% showed an increased overjet (>3 mm), 0.4% reverse overjet, 35.6% increased overbite (>3 mm), 0.29% open bite, 7.2% crossbite with 4.6% crossbite of complete anterior teeth, 63.3% deviation of midline, 0.76% midline diastema and 3.25% rotated tooth. No significant differences in gender distributions of malocclusions were noted except for increased overjet and overbite. Conclusion: There is high prevalence of malocclusion among schoolchildren in Kozhikode district of Kerala. Early interception and early correction of these malocclusions will eliminate the potential irregularities and malpositions in the developing dentofacial complex. How to cite this article: Narayanan RK, Jeseem MT, Kumar TVA. Prevalence of Malocclusion among 10-12-year-old Schoolchildren in Kozhikode District, Kerala: An Epidemiological Study. Int J Clin Pediatr Dent 2016;9(1):50-55. PMID:27274156

  5. Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Nagel, A.; Wynands, R.; Meschede, D.

    1997-08-01

    When neon is introduced as a buffer gas the interaction time of cesium atoms in a vapor cell with resonant laser beams is drastically increased. Using a pair of phase-locked lasers we have observed linewidths as narrow as 42 Hz for coherent dark resonances in a cesium vapor cell. We study the influence of power and pressure broadening and systematic shifts of the resonance frequency. Our experiments demonstrate that coherent dark resonances could rival direct radio-frequency precision measurements, which have a wide range of applications in physics.

  6. 200 Deg C Demonstration Transformer Operates Efficiently at 50 kHz

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E. (Technical Monitor)

    2003-01-01

    A compact, high temperature demonstration transformer was constructed, using a moly permalloy powder core and Teflon -insulated copper wire. At 50 kHz and 200 C, this 1:2 ratio transformer is capable of 98 percent efficiency when operating at a specific power of 6.1 kW/kg at 4 kW. This roughly 7 cm diameter transformer has a mass of 0.65 kg. Although Teflon is unstable above 200 C, about the same electrical performance was seen at 250 C. A plot of winding loss versus frequency illustrates the need to control these losses at high frequency.

  7. Unstable Isomer of C90 Fullerene Isolated as Chloro Derivatives, C90 (1)Cl10/12.

    PubMed

    Chilingarov, Norbert S; Troyanov, Sergey I

    2016-07-01

    High-temperature chlorination of C90 -containing fullerene fraction resulted in the isolation and X-ray structural characterization of C90 (1)Cl10/12 , the first derivatives of a relatively unstable isomer D5h -C90 (1) with a nanotubular shape. In the crystal structure, three isomers of both C90 (1)Cl10 and C90 (1)Cl12 with similar chlorination patterns co-crystallize in the same crystallographic site. Thus, in contrast to the previous reports, D5h -C90 (1) is present, though with a low abundance, in the fullerene soot produced by arc-discharge method with undoped graphite rods. PMID:27311795

  8. A microrod-resonator Brillouin laser with 240 Hz absolute linewidth

    NASA Astrophysics Data System (ADS)

    Loh, William; Becker, Joe; Cole, Daniel C.; Coillet, Aurelien; Baynes, Fred N.; Papp, Scott B.; Diddams, Scott A.

    2016-04-01

    We demonstrate an ultralow-noise microrod-resonator based laser that oscillates on the gain supplied by the stimulated Brillouin scattering optical nonlinearity. Microresonator Brillouin lasers are known to offer an outstanding frequency noise floor, which is limited by fundamental thermal fluctuations. Here, we show experimental evidence that thermal effects also dominate the close-to-carrier frequency fluctuations. The 6 mm diameter microrod resonator used in our experiments has a large optical mode area of ∼100 μm2, and hence its 10 ms thermal time constant filters the close-to-carrier optical frequency noise. The result is an absolute laser linewidth of 240 Hz with a corresponding white-frequency noise floor of 0.1 Hz2 Hz‑1. We explain the steady-state performance of this laser by measurements of its operation state and of its mode detuning and lineshape. Our results highlight a mechanism for noise that is common to many microresonator devices due to the inherent coupling between intracavity power and mode frequency. We demonstrate the ability to reduce this noise through a feedback loop that stabilizes the intracavity power.

  9. The intermuscular 3–7 Hz drive is not affected by distal proprioceptive input in myoclonus-dystonia

    PubMed Central

    van der Meer, J. N.; Schouten, A. C.; Bour, L. J.; de Vlugt, E.; van Rootselaar, A. F.; van der Helm, F. C. T.

    2010-01-01

    In dystonia, both sensory malfunctioning and an abnormal intermuscular low-frequency drive of 3–7 Hz have been found, although cause and effect are unknown. It is hypothesized that sensory processing is primarily disturbed and induces this drive. Accordingly, experimenter-controlled sensory input should be able to influence the frequency of the drive. In six genetically confirmed myoclonus-dystonia (MD) patients and six matched controls, the low-frequency drive was studied with intermuscular coherence analysis. External perturbations were applied mechanically to the wrist joint in small frequency bands (0–4, 4–8 and 8–12 Hz; ‘angle protocol) and at single frequencies (1, 5, 7 and 9 Hz; ‘torque’ protocol). The low-frequency drive was found in the neck muscles of 4 MD patients. In these patients, its frequency did not shift due to the perturbation. In the torque protocol, the externally applied frequencies could be detected in all controls and in the two patients without the common drive. The common low-frequency drive was not be affected by external perturbations in MD patients. Furthermore, the torque protocol did not induce intermuscular coherences at the applied frequencies in these patients, as was the case in healthy controls and in patients without the drive. This suggests that the dystonic 3–7 Hz drive is caused by a sensory-independent motor drive and sensory malfunctioning in MD might rather be a consequence than a cause of dystonia. PMID:20157700

  10. Deficits in high- (>60 Hz) gamma-band oscillations during visual processing in schizophrenia

    PubMed Central

    Grützner, Christine; Wibral, Michael; Sun, Limin; Rivolta, Davide; Singer, Wolf; Maurer, Konrad; Uhlhaas, Peter J.

    2013-01-01

    Current theories of the pathophysiology of schizophrenia have focused on abnormal temporal coordination of neural activity. Oscillations in the gamma-band range (>25 Hz) are of particular interest as they establish synchronization with great precision in local cortical networks. However, the contribution of high gamma (>60 Hz) oscillations toward the pathophysiology is less established. To address this issue, we recorded magnetoencephalographic (MEG) data from 16 medicated patients with chronic schizophrenia and 16 controls during the perception of Mooney faces. MEG data were analysed in the 25–150 Hz frequency range. Patients showed elevated reaction times and reduced detection rates during the perception of upright Mooney faces while responses to inverted stimuli were intact. Impaired processing of Mooney faces in schizophrenia patients was accompanied by a pronounced reduction in spectral power between 60–120 Hz (effect size: d = 1.26) which was correlated with disorganized symptoms (r = −0.72). Our findings demonstrate that deficits in high gamma-band oscillations as measured by MEG are a sensitive marker for aberrant cortical functioning in schizophrenia, suggesting an important aspect of the pathophysiology of the disorder. PMID:23532620

  11. High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range

    SciTech Connect

    Lin, Tingting; Zhao, Jing; Zhang, Yi; Krause, Hans-Joachim; Lee, Yong-Ho; Lin, Jun

    2014-11-15

    In several low-field Nuclear Magnetic Resonance (LF-NMR) and surface nuclear magnetic resonance applications, i.e., in the frequency range of kHz, high sensitivity magnetic field detectors are needed. Usually, low-T{sub c} superconducting quantum interference devices (SQUIDs) with a high field sensitivity of about 1 fT/Hz{sup 1/2} are employed as detectors. Considering the flux trapping and operational difficulties associated with low-T{sub c} SQUIDs, we designed and fabricated liquid-nitrogen-cooled Cu coils for NMR detection in the kHz range. A cooled coil system consisting of a 9-cm diameter Cu coil and a low noise preamplifier was systematically investigated and reached a sensitivity of 2 fT/Hz{sup 1/2} at 77 K, which is 3 times better compared to the sensitivity at 300 K. A Q-switch circuit as an essential element for damping the ringing effects of the pickup coil was developed to acquire free induction decay signals of a water sample with minimum loss of signal. Our studies demonstrate that cooled Cu coils, if designed properly, can provide a comparable sensitivity to low-T{sub c} SQUIDs.

  12. Dynamic nuclear polarization at 40 kHz magic angle spinning.

    PubMed

    Chaudhari, Sachin R; Berruyer, Pierrick; Gajan, David; Reiter, Christian; Engelke, Frank; Silverio, Daniel L; Copéret, Christophe; Lelli, Moreno; Lesage, Anne; Emsley, Lyndon

    2016-04-21

    DNP-enhanced solid-state NMR spectroscopy under magic angle spinning (MAS) is rapidly developing into a powerful analytical tool to investigate the structure of a wide range of solid materials, because it provides unsurpassed sensitivity gains. Most developments and applications of DNP MAS NMR were so far reported at moderate spinning frequencies (up to 14 kHz using 3.2 mm rotors). Here, using a 1.3 mm MAS DNP probe operating at 18.8 T and ∼100 K, we show that signal amplification factors can be increased by up to a factor two when using smaller volume rotors as compared to 3.2 mm rotors, and report enhancements of around 60 over a range of sample spinning rates from 10 to 40 kHz. Spinning at 40 kHz is also shown to increase (29)Si coherence lifetimes by a factor three as compared to 10 kHz, substantially increasing sensitivity in CPMG type experiments. The contribution of quenching effects to the overall sensitivity gain at very fast MAS is evaluated, and applications are reported on a functionalised mesostructured organic-inorganic material. PMID:27035630

  13. Continuous hydroxyl radical planar laser imaging at 50 kHz repetition rate.

    PubMed

    Hammack, Stephen; Carter, Campbell; Wuensche, Clemens; Lee, Tonghun

    2014-08-10

    This study demonstrates high-repetition-rate planar laser-induced fluorescence (PLIF) imaging of hydroxyl radicals (OH) in flames at a continuous framing rate of 50 kHz. A frequency-doubled dye laser is pumped by the second harmonic of an Nd:YAG laser to generate laser radiation near 283 nm with a pulse width of 8 ns and rate of 50 kHz. Fluorescence is recorded by a two-stage image intensifier and complementary metal-oxide-semiconductor camera. The average power of the 283 nm beam reaches 7 W, yielding a pulse energy of 140 μJ. Both a Hencken burner and a DC transient-arc plasmatron are used to produce premixed CH4/air flames to evaluate the OH PLIF system. The average signal-to-noise ratio for the Hencken burner flame is greater than 20 near the flame front and greater than 10 further downstream in a region of the flame near equilibrium. Image sequences of the DC plasmatron discharge clearly illustrate development and evolution of flow features with signal levels comparable to those in the Hencken burner. The results are a demonstration of the ability to make high-fidelity OH PLIF measurements at 50 kHz using a Nd:YAG-pumped, frequency-doubled dye laser. PMID:25320935

  14. 1 Hz linewidth Ti:sapphire laser as local oscillator for (40)Ca(+) optical clocks.

    PubMed

    Bian, Wu; Huang, Yao; Guan, Hua; Liu, Peiliang; Ma, Longsheng; Gao, Kelin

    2016-06-01

    A Ti:sapphire laser at 729 nm is frequency stabilized to an ultra-stable ultra-low thermal expansion coefficient (ULE) cavity by means of Pound-Drever-Hall method. An acousto-optic modulator is used as the fast frequency feedback component. 1 Hz linewidth and 2 × 10(-15) frequency stability at 1-100 s are characterized by optical beating with a separated Fabry-Perot cavity stabilized diode laser. Compared to the universal method that the error signal feedback to inject current of a diode laser, this scheme is demonstrated to be simple and also effective for linewidth narrowing. The temperature of zero coefficient of the thermal expansion of the ULE cavity is measured with the help of a femto-second frequency comb. And the performance of the laser is well defined by locking it to the unperturbed clock transition line-center of 4 S1/2-3 D5/2 clock transition of a single laser cooled (40)Ca(+) ion. A Fourier-transform limited resonance of 6 Hz (Δv/v = 1.5 × 10(-14)) is observed. This laser is also used as the local oscillator for the comparison experiment of two (40)Ca(+) ion optical clocks and improves the stability of comparison for an order of magnitude better than the previous results. PMID:27370440

  15. Study on a Single-Stage 120 HZ Pulse Tube Cryocooler

    NASA Astrophysics Data System (ADS)

    Wu, Y. Z.; Gan, Z. H.; Qiu, L. M.; Chen, J.; Li, Z. P.

    2010-04-01

    Miniaturization of pulse tube cryocoolers is required for some particular applications where size and mass for devices are limited. In order to pack more cooling power in a small volume, higher operating frequencies are commonly used for Stirling-type pulse tube cryocoolers. To maintain high efficiency of the regenerator with a higher frequency, a higher charging pressure, smaller hydraulic diameters of regenerator material and a shorter regenerator length should be applied. A rapid growth of research and development on pulse tube cryocoolers operating at a high frequency over 100 Hz in the last 3 years has occurred. In this study, a single stage pulse tube cryocooler with 120 Hz to provide 10 W of lift at 80 K has been developed by using the numerical model, known as REGEN 3.2. Experiments performed on this cryocooler driven by a CFIC linear compressor show that a no-load temperature of 49.6 K was achieved and the net refrigeration power at 78.5 K was 8.0 W. The effect of pulse tube orientation was tested, and the copper velvet as a regenerator matrix was proposed for high frequency operation.

  16. 1 Hz linewidth Ti:sapphire laser as local oscillator for 40Ca+ optical clocks

    NASA Astrophysics Data System (ADS)

    Bian, Wu; Huang, Yao; Guan, Hua; Liu, Peiliang; Ma, Longsheng; Gao, Kelin

    2016-06-01

    A Ti:sapphire laser at 729 nm is frequency stabilized to an ultra-stable ultra-low thermal expansion coefficient (ULE) cavity by means of Pound-Drever-Hall method. An acousto-optic modulator is used as the fast frequency feedback component. 1 Hz linewidth and 2 × 10-15 frequency stability at 1-100 s are characterized by optical beating with a separated Fabry-Perot cavity stabilized diode laser. Compared to the universal method that the error signal feedback to inject current of a diode laser, this scheme is demonstrated to be simple and also effective for linewidth narrowing. The temperature of zero coefficient of the thermal expansion of the ULE cavity is measured with the help of a femto-second frequency comb. And the performance of the laser is well defined by locking it to the unperturbed clock transition line-center of 4 S1/2-3 D5/2 clock transition of a single laser cooled 40Ca+ ion. A Fourier-transform limited resonance of 6 Hz (Δv/v = 1.5 × 10-14) is observed. This laser is also used as the local oscillator for the comparison experiment of two 40Ca+ ion optical clocks and improves the stability of comparison for an order of magnitude better than the previous results.

  17. Underwater detection of tonal signals between 0.125 and 100 kHz by harbor seals (Phoca vitulina).

    PubMed

    Kastelein, Ronald A; Wensveen, Paul J; Hoek, Lean; Verboom, Willem C; Terhune, John M

    2009-02-01

    The underwater hearing sensitivities of two 1-year-old female harbor seals were quantified in a pool built for acoustic research, using a behavioral psychoacoustic technique. The animals were trained to respond when they detected an acoustic signal and not to respond when they did not (go/no-go response). Pure tones (0.125-0.25 kHz) and narrowband frequency modulated (tonal) signals (center frequencies 0.5-100 kHz) of 900 ms duration were tested. Thresholds at each frequency were measured using the up-down staircase method and defined as the stimulus level resulting in a 50% detection rate. The audiograms of the two seals did not differ statistically: both plots showed the typical mammalian U-shape, but with a wide and flat bottom. Maximum sensitivity (54 dB re 1 microPa, rms) occurred at 1 kHz. The frequency range of best hearing (within 10 dB of maximum sensitivity) was from 0.5 to 40 kHz (6(1/3) octaves). Higher hearing thresholds (indicating poorer sensitivity) were observed below 1 and above 40 kHz. Thresholds below 4 kHz were lower than those previously described for harbor seals, which demonstrates the importance of using quiet facilities, built specifically for acoustic research, for hearing studies in marine mammals. The results suggest that under unmasked conditions many anthropogenic noise sources and sounds from conspecifics are audible to harbor seals at greater ranges than formerly believed. PMID:19206895

  18. Picosesond pulses in deep ultraviolet produced by a 100 kHz solid-state thin disk laser

    NASA Astrophysics Data System (ADS)

    Turčičová, H.; Novák, O.; Smrž, M.; Miura, T.; Endo, A.; Mocek, T.

    2015-05-01

    We report on the generation of 100 kHz 0.1mJ-level deep ultraviolet pulses based on frequency-quadrupled (257.5 nm) beam of a diode pumped Yb:YAG thin disk laser at the HiLASE Centre. The 100-kHz beamline used for the generation of the harmonic frequencies is operated at an average output power of 100 W level and 2 picosecond duration of pulses. The amplification of the oscillator beam is performed in a regenerative amplifier where the thin disk serves as an active mirror. The CPA technique is used for achieving high average output power of the whole system. The outcoming laser beam at 1030 nm wavelength is frequency-doubled in an LBO crystal and then frequency-quadrupled in BBO crystal, conversion efficiencies being 40% and 19%, resp. The basic characteristics of the harmonics generation in both crystals are given.

  19. Surface complexation studied via combined grazing-incidence EXAFS and surface diffraction: Arsenate on hematite (0001) and (10-12)

    USGS Publications Warehouse

    Waychunas, G.; Trainor, T.; Eng, P.; Catalano, J.; Brown, G.; Davis, J.; Rogers, J.; Bargar, J.

    2005-01-01

    X-ray diffraction [crystal-truncation-rod (CTR)] studies of the surface structure of moisture-equilibrated hematite reveal sites for complexation not present on the bulk oxygen-terminated surface, and impose constraints on the types of inner-sphere sorption topologies. We have used this improved model of the hematite surface to analyze grazing-incidence EXAFS results for arsenate sorption on the c(0001) and r(10-12) surfaces measured in two electric vector polarizations. This work shows that the reconfiguration of the surface under moist conditions is responsible for an increased adsorption density of arsenate complexes on the (0001) surface relative to predicted ideal termination, and an abundance of "edge-sharing" bidentate complexes on both studied surfaces. We consider possible limitations on combining the methods due to differing surface sensitivities, and discuss further analysis possibilities using both methods. ?? Springer-Verlag 2005.

  20. Colorimetric Detection of Some Highly Hydrophobic Flavonoids Using Polydiacetylene Liposomes Containing Pentacosa-10,12-diynoyl Succinoglycan Monomers

    PubMed Central

    Yun, Deokgyu; Jeong, Daham; Cho, Eunae; Jung, Seunho

    2015-01-01

    Flavonoids are a group of plant secondary metabolites including polyphenolic molecules, and they are well known for antioxidant, anti-allergic, anti-inflammatory and anti-viral propertied. In general, flavonoids are detected with various non-colorimetric detection methods such as column liquid chromatography, thin-layer chromatography, and electrochemical analysis. For the first time, we developed a straightforward colorimetric detection system allowing recognition of some highly hydrophobic flavonoids such as alpha-naphthoflavone and beta-naphthoflavone, visually using 10,12-pentacosadiynoic acid (PCDA) derivatized with succinoglycan monomers isolated from Sinorhizobium meliloti. Besides changes in visible spectrum, we also demonstrate fluorescence changes using our detection system in the presence of those flavonoids. The succinoglycan monomers attached to PCDA molecules may function as an unstructured molecular capturer for some highly hydrophobic flavonoids by hydrophobic interactions, and transmit their molecular interactions as a color change throughout the PCDA liposome. PMID:26600071

  1. Performance of a 30-kV, 1-kHz, nanosecond source

    SciTech Connect

    Cravey, W.R.; Freytag, K.; Goerz, D.

    1992-06-01

    An existing pulser at LLNL was modified to increase its repetition rate to 1000 Hz. Spark gap recovery measurements were made for both the Marx and the Blumlein output switches. Recovery times of less than 1 ms were recorded without gas flow in the switch chambers. Low pressure synthetic air was used as the switch dielectric. Longer recovery times were necessary to over-voltage the switch. The output of the pulser was used to drive a log-periodic-dipole-array. Measurements were made on the transmitted pulses in an anechoic chamber and yielded a center frequency of 80 MHz. This paper describes the modifications made on the pulse generator, discusses the spark gap recovery data, and summarizes the performance of the pulser at 1 kHz. In addition, a brief description of the antenna is given along with the field measurements that were made in the EMPEROR facility.

  2. Lack of Teratological Effects in Rats Exposed to 20 or 60 kHz Magnetic Fields

    PubMed Central

    Nishimura, Izumi; Oshima, Atsushi; Shibuya, Kazumoto; Negishi, Tadashi

    2011-01-01

    BACKGROUND: A risk assessment of magnetic field (MF) exposure conducted by the World Health Organization indicated the need for biological studies on primary hazard identification and quantitative risk evaluation of intermediate frequency (300 Hz–100 kHz) MFs. Because induction heating cookers generate such MFs for cooking, reproductive and developmental effects are a concern due to the close proximity of the fields' source to a cook's abdomen. METHODS: Pregnant Crl:CD(SD) rats (25/group) were exposed to a 20 kHz, 0.2 mT(rms) or 60 kHz, 0.1 mT(rms) sinusoidal MF or sham-exposed for 22 hr/day during organogenesis, and their fetuses were examined for malformations on gestation day 20. All teratological evaluations were conducted in a blind fashion, and experiments were duplicated for each frequency to confirm consistency of experimental outcomes. RESULTS: No exposure-related changes were found in clinical signs, gross pathology, or number of implantation losses. The number of live fetuses and low-body-weight fetuses as well as the incidence of external, visceral, and skeletal malformations in the fetuses did not indicate significant differences between MF-exposed and sham-exposed groups. Although some fetuses showed isolated changes in sex ratio and skeletal variation and ossification, such changes were neither reproduced in duplicate experiments nor were they common to specific field frequencies. CONCLUSIONS: Exposure of rats to MFs during organogenesis did not show significant reproducible teratogenicity under experimental conditions. Present findings do not support the hypothesis that intermediate frequency MF exposure after implantation carries a significant risk for developing mammalian fetuses. Birth Defects Res (Part B) 92:469–477, 2011. © 2011 Wiley Periodicals, Inc. PMID:21770026

  3. Ultra wideband (0.5-16 kHz) MR elastography for robust shear viscoelasticity model identification

    NASA Astrophysics Data System (ADS)

    Liu, Yifei; Yasar, Temel K.; Royston, Thomas J.

    2014-12-01

    Changes in the viscoelastic parameters of soft biological tissues often correlate with progression of disease, trauma or injury, and response to treatment. Identifying the most appropriate viscoelastic model, then estimating and monitoring the corresponding parameters of that model can improve insight into the underlying tissue structural changes. MR Elastography (MRE) provides a quantitative method of measuring tissue viscoelasticity. In a previous study by the authors (Yasar et al 2013 Magn. Reson. Med. 70 479-89), a silicone-based phantom material was examined over the frequency range of 200 Hz-7.75 kHz using MRE, an unprecedented bandwidth at that time. Six viscoelastic models including four integer order models and two fractional order models, were fit to the wideband viscoelastic data (measured storage and loss moduli as a function of frequency). The ‘fractional Voigt’ model (spring and springpot in parallel) exhibited the best fit and was even able to fit the entire frequency band well when it was identified based only on a small portion of the band. This paper is an extension of that study with a wider frequency range from 500 Hz to 16 kHz. Furthermore, more fractional order viscoelastic models are added to the comparison pool. It is found that added complexity of the viscoelastic model provides only marginal improvement over the ‘fractional Voigt’ model. And, again, the fractional order models show significant improvement over integer order viscoelastic models that have as many or more fitting parameters.

  4. Effect of infrasound on cochlear damage from exposure to a 4-kHz octave band of noise

    PubMed Central

    Harding, Gary W.; Bohne, Barbara A.; Lee, Steve C.; Salt, Alec N.

    2008-01-01

    Infrasound (i.e., < 20 Hz for humans; < 100 Hz for chinchillas) is not audible, but exposure to high levels of infrasound will produce large movements of cochlear fluids. We speculated that high-level infrasound might bias the basilar membrane and perhaps be able to minimize noise-induced hearing loss. Chinchillas were simultaneously exposed to a 30 Hz tone at 100 dB SPL and a 4-kHz OBN at either 108 dB SPL for 1.75 h or 86 dB SPL for 24 h. For each animal, the tympanic membrane (TM) in one ear was perforated (~1 mm2) prior to exposure to attenuate infrasound transmission to that cochlea by about 50 dB SPL. Controls included animals that were exposed to the infrasound only or the 4-kHz OBN only. ABR threshold shifts (TSs) and DPOAE level shifts (LSs) were determined pre- and post-TM-perforation and immediately post-exposure, just before cochlear fixation. The cochleae were dehydrated, embedded in plastic, and dissected into flat preparations of the organ of Corti (OC). Each dissected segment was evaluated for losses of inner hair cells (IHCs) and outer hair cells (OHCs). For each chinchilla, the magnitude and pattern of functional and hair cell losses were compared between their right and left cochleae. The TM perforation produced no ABR TS across frequency but did produce a 10–21 dB DPOAE LS from 0.6–2 kHz. The infrasound exposure alone resulted in a 10–20 dB ABR TS at and below 2 kHz, no DPOAE LS and no IHC or OHC losses. Exposure to the 4-kHz OBN alone at 108 dB produced a 10–50 dB ABR TS for 0.5–12 kHz, a 10–60 dB DPOAE LS for 0.6–16 kHz and severe OHC loss in the middle of the first turn. When infrasound was present during exposure to the 4-kHz OBN at 108 dB, the functional losses and OHC losses extended much further toward the apical and basal tips of the OC than in cochleae exposed to the 4-kHz OBN alone. Exposure to only the 4-kHz OBN at 86 dB produces a 10–40 dB ABR TS for 3–12 kHz and 10–30 dB DPOAE LS for 3–8 kHz but little or no

  5. High frequency testing of rubber mounts.

    PubMed

    Vahdati, Nader; Saunders, L Ken Lauderbaugh

    2002-04-01

    Rubber and fluid-filled rubber engine mounts are commonly used in automotive and aerospace applications to provide reduced cabin noise and vibration, and/or motion accommodations. In certain applications, the rubber mount may operate at frequencies as high as 5000 Hz. Therefore, dynamic stiffness of the mount needs to be known in this frequency range. Commercial high frequency test machines are practically nonexistent, and the best high frequency test machine on the market is only capable of frequencies as high as 1000 Hz. In this paper, a high frequency test machine is described that allows test engineers to study the high frequency performance of rubber mounts at frequencies up to 5000 Hz. PMID:12071247

  6. Coherent 40-Hz Oscillation Characterizes Dream State in Humans

    NASA Astrophysics Data System (ADS)

    Llinas, Rodolfo; Ribary, Urs

    1993-03-01

    Magnetic recording from five normal human adults demonstrates large 40-Hz coherent magnetic activity in the awake and in rapid-eye-movement (REM) sleep states that is very reduced during delta sleep (deep sleep characterized by delta waves in the electroencephalogram). This 40-Hz magnetic oscillation has been shown to be reset by sensory stimuli in the awake state. Such resetting is not observed during REM or delta sleep. The 40 Hz in REM sleep is characterized, as is that in the awake state, by a fronto-occiptal phase shift over the head. This phase shift has a maximum duration of thickapprox12-13 msec. Because 40-Hz oscillation is seen in wakefulness and in dreaming, we propose it to be a correlate of cognition, probably resultant from coherent 40-Hz resonance between thalamocortical-specific and nonspecific loops. Moreover, we proposed that the specific loops give the content of cognition, and a nonspecific loop gives the temporal binding required for the unity of cognitive experience.

  7. Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes.

    PubMed

    Danion, Gwennaël; Hamel, Cyril; Frein, Ludovic; Bondu, François; Loas, Goulchen; Alouini, Mehdi

    2014-07-28

    A dual-frequency 1.55 µm laser for CW low noise microwave, millimeter and sub millimeter wave synthesis is demonstrated, where frequency stabilization is possible on each wavelength independently. The solid state Er:Yb laser output power is 7 mW. The amplitude noise is -150 dBc/Hz at 1 MHz offset frequency. In free running regime, the frequency noise is 3.10(5)/f Hz/sqrt(Hz) (800 Hz on a 1µs timescale), better than commercial fibered or semi-conductor sources at this wavelength. PMID:25089387

  8. Three-dimensional magnetic cloak working from d.c. to 250 kHz.

    PubMed

    Zhu, Jianfei; Jiang, Wei; Liu, Yichao; Yin, Ge; Yuan, Jun; He, Sailing; Ma, Yungui

    2015-01-01

    Invisible cloaking is one of the major outcomes of the metamaterial research, but the practical potential, in particular for high frequencies (for example, microwave to visible light), is fatally challenged by the complex material properties they usually demand. On the other hand, it will be advantageous and also technologically instrumental to design cloaking devices for applications at low frequencies where electromagnetic components are favourably uncoupled. In this work, we vastly develop the bilayer approach to create a three-dimensional magnetic cloak able to work in both static and dynamic fields. Under the quasi-static approximation, we demonstrate a perfect magnetic cloaking device with a large frequency band from 0 to 250 kHz. The practical potential of our device is experimentally verified by using a commercial metal detector, which may lead us to having a real cloaking application where the dynamic magnetic field can be manipulated in desired ways. PMID:26596641

  9. Three-dimensional magnetic cloak working from d.c. to 250 kHz

    NASA Astrophysics Data System (ADS)

    Zhu, Jianfei; Jiang, Wei; Liu, Yichao; Yin, Ge; Yuan, Jun; He, Sailing; Ma, Yungui

    2015-11-01

    Invisible cloaking is one of the major outcomes of the metamaterial research, but the practical potential, in particular for high frequencies (for example, microwave to visible light), is fatally challenged by the complex material properties they usually demand. On the other hand, it will be advantageous and also technologically instrumental to design cloaking devices for applications at low frequencies where electromagnetic components are favourably uncoupled. In this work, we vastly develop the bilayer approach to create a three-dimensional magnetic cloak able to work in both static and dynamic fields. Under the quasi-static approximation, we demonstrate a perfect magnetic cloaking device with a large frequency band from 0 to 250 kHz. The practical potential of our device is experimentally verified by using a commercial metal detector, which may lead us to having a real cloaking application where the dynamic magnetic field can be manipulated in desired ways.

  10. 0.26-Hz-linewidth ultrastable lasers at 1557 nm

    PubMed Central

    Wu, Lifei; Jiang, Yanyi; Ma, Chaoqun; Qi, Wen; Yu, Hongfu; Bi, Zhiyi; Ma, Longsheng

    2016-01-01

    Narrow-linewidth ultrastable lasers at 1.5 μm are essential in many applications such as coherent transfer of light through fiber and precision spectroscopy. Those applications all rely on the ultimate performance of the lasers. Here we demonstrate two ultrastable lasers at 1557 nm with a most probable linewidth of 0.26 Hz by independently frequency-stabilizing to the resonance of 10-cm-long ultrastable Fabry-Pérot cavities at room temperature. The fractional frequency instability of each laser system is nearly 8 × 10−16 at 1–30 s averaging time, approaching the thermal noise limit of the reference cavities. A remarkable frequency instability of 1 × 10−15 is achieved on the long time scale of 100–4000 s. PMID:27117356

  11. Three-dimensional magnetic cloak working from d.c. to 250 kHz

    PubMed Central

    Zhu, Jianfei; Jiang, Wei; Liu, Yichao; Yin, Ge; Yuan, Jun; He, Sailing; Ma, Yungui

    2015-01-01

    Invisible cloaking is one of the major outcomes of the metamaterial research, but the practical potential, in particular for high frequencies (for example, microwave to visible light), is fatally challenged by the complex material properties they usually demand. On the other hand, it will be advantageous and also technologically instrumental to design cloaking devices for applications at low frequencies where electromagnetic components are favourably uncoupled. In this work, we vastly develop the bilayer approach to create a three-dimensional magnetic cloak able to work in both static and dynamic fields. Under the quasi-static approximation, we demonstrate a perfect magnetic cloaking device with a large frequency band from 0 to 250 kHz. The practical potential of our device is experimentally verified by using a commercial metal detector, which may lead us to having a real cloaking application where the dynamic magnetic field can be manipulated in desired ways. PMID:26596641

  12. 33 CFR 86.03 - Limits of fundamental frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... frequency of a whistle shall be between the following limits: (a) 70-200 Hz, for a vessel 200 meters or more in length; (b) 130-350 Hz, for a vessel 75 meters but less than 200 meters in length; (c) 250-525 Hz, for a vessel less than 75 meters in length....

  13. High spectral purity Kerr frequency comb radio frequency photonic oscillator

    PubMed Central

    Liang, W.; Eliyahu, D.; Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Seidel, D.; Maleki, L.

    2015-01-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than −60 dBc Hz−1 at 10 Hz, −90 dBc Hz−1 at 100 Hz and −170 dBc Hz−1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10−10 at 1–100 s integration time—orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption. PMID:26260955

  14. ABR frequency tuning curves in dolphins.

    PubMed

    Supin, A Y; Popov, V V; Klishin, V O

    1993-11-01

    Tone-tone masking was used to determine auditory brain-stem response tuning curves in dolphins (Tursiops truncatus) in a simultaneous-masking paradigm. The Q10 of the curves was as large as 16-19 in the frequency range 64-128 kHz. In the range 45-16 kHz, Q10 decreased proportionally to the frequency with the bandwidth of the curves being constant, about 3.5-4 kHz at the 10-dB level. Tuning curves below 45 kHz are supposed to reflect broad spectral bandwidth of the probe's effective part which is no longer than 0.5 ms, irrespective of actual probe duration. Tuning curves above 64 kHz are supposed to reflect the real frequency tuning of the dolphin's auditory system. PMID:8263842

  15. Acute and subchronic toxicity of 20  kHz and 60  kHz magnetic fields in rats.

    PubMed

    Nishimura, Izumi; Oshima, Atsushi; Shibuya, Kazumoto; Mitani, Takashi; Negishi, Tadashi

    2016-02-01

    Despite increasing use of intermediate frequency (IF) magnetic fields (MFs) in occupational and domestic settings, scientific evidence necessary for health risk assessments of IF MF is insufficient. Male and female Crl:CD(SD) rats (12 per sex per group) were exposed to 20 kHz, 0.20 mT(root mean square, rms) or 60 kHz, 0.10 mT(rms) sinusoidal MFs for 22 h day(-1) for 14 days (acute) or 13 weeks (subchronic). Experiments were duplicated for each frequency to ensure outcome reproducibility, and examinations were blinded for quality assurance. All rats survived without significant clinical signs until the end of experiments. Some changes in body weight between the MF-exposed and control groups were observed over the course of exposure, although the directions of the changes were inconsistent and not statistically significant after subchronic exposure. There were significant differences between MF-exposed and control groups in some organ weights and parameters in hematology and clinical chemistry, but these were minor in magnitude and not repeated in duplicate experiments. Histopathological findings reflecting toxicity were sporadic. Frequencies of other findings were similar to historic data in this rat strain, and findings had no specific relationship to changes in organ weight or parameters of hematology and clinical chemistry in each animal. The changes observed throughout this study were considered biologically isolated and were attributable to chance associations rather than to MF exposure. The results, in particular the histopathological evidence, indicate an absence of toxicity in IF MF-exposed rats and do not support the hypothesis that IF MF exposure produces significant toxicity. PMID:25982482

  16. Characterization of Hearing Thresholds from 500 to 16,000 Hz in Dentists: A Comparative Study

    PubMed Central

    Gonçalves, Claudia Giglio de Oliveira; Santos, Luciana; Lobato, Diolen; Ribas, Angela; Lacerda, Adriana Bender Moreira; Marques, Jair

    2014-01-01

    Introduction High-level noise exposure in dentists' workplaces may cause damages to the auditory systems. High-frequency audiometry is an important tool in the investigation in the early diagnosis of hearing loss. Objectives To analyze the auditory thresholds at frequencies from 500 to 16,000 Hz of dentists in the city of Curitiba. Methods This historic cohort study retrospectively tested hearing thresholds from 500 to 16,000 Hz with a group of dentists from Curitiba, in the state of Paraná, Brazil. Eighty subjects participated in the study, separated into a dentist group and a control group, with the same age range and gender across groups but with no history of occupational exposure to high levels of sound pressure in the control group. Subjects were tested with conventional audiometry and high-frequency audiometry and answered a questionnaire about exposure to noise. Results Results showed that 81% of dentists did not receive any information regarding noise at university; 6 (15%) dentists had sensorineural hearing impairment; significant differences were observed between the groups only at frequencies of 500 Hz and 1,000, 6,000 and 8,000 Hz in the right ear. There was no significant difference between the groups after analysis of mean hearing thresholds of high frequencies with the average hearing thresholds in conventional frequencies; subjects who had been working as dentists for longer than 10 years had worse tonal hearing thresholds at high frequencies. Conclusions In this study, we observed that dentists are at risk for the development of sensorineural hearing loss especially after 10 years of service. PMID:25992172

  17. Reducing the Heat Load on the LCLS 120 Hz RF Gun with RF Pulse Shaping

    SciTech Connect

    Schmerge, J.

    2005-01-31

    The LCLS injector must operate at 120 Hz repetition frequency but to date the maximum operating frequency of an S-band rf gun has been 50 Hz. The high fields desired for the LCLS gun operation limit the repetition frequency due to thermal expansion causing rf detuning and field redistribution. One method of addressing the thermal loading problem is too reduce the power lost on the cavity walls by properly shaping the rf pulse incident on the gun. The idea is to reach the steady state field value in the gun faster than the time constant of the gun would allow when using a flat incident rf pulse. By increasing the incident power by about a factor of three and then decreasing the incident power when the field reaches the desired value in the gun, the field build up time can be decreased by more than a factor of three. Using this technique the heat load is also decreased by more than a factor of three. In addition the rf coupling coefficient can be increased from the typical critically coupled designs to an overcoupled design which also helps reduce the field build up time. Increasing the coupling coefficient from 1 to 2 reduces the heat load by another 25% and still limits the reflected power and coupling hole size to manageable levels.

  18. a Thermoacoustically-Driven Pulse Tube Cryocryocooler Operating around 300HZ

    NASA Astrophysics Data System (ADS)

    Yu, G. Y.; Zhu, S. L.; Dai, W.; Luo, E. C.

    2008-03-01

    High frequency operation of the thermoacoustic cryocooler system, i.e. pulse tube cryocooler driven by thermoacoustic engine, leads to reduced size, which is quite attractive to small-scale cryogenic applications. In this work, a no-load coldhead temperature of 77.8 K is achieved on a 292 Hz pulse tube cryocooler driven by a standing-wave thermoacoustic engine with 3.92 MPa helium gas and 1750 W heat input. To improve thermal efficiency, a high frequency thermoacoustic-Stirling heat engine is also built to drive the same pulse tube cryocooler, and a no-load temperature of 109 K was obtained with 4.38 MPa helium gas, 292 Hz working frequency and 400W heating power. Ideas such as tapered resonators, acoustic amplifier tubes and simple thin tubes without reservoir are used to effectively suppress harmonic modes, amplify the acoustic pressure wave available to the pulse tube cryocooler and provide desired acoustic impedance for the pulse tube cryocooler, respectively. Comparison of systems with different thermoacoustic engines is made. Numerical simulations based on the linear thermoacoustic theory have also been done for comparison with experimental results, which shows reasonable agreement.

  19. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities.

    PubMed

    Numata, Kenji; Kemery, Amy; Camp, Jordan

    2004-12-17

    We evaluate thermal noise (Brownian motion) in a rigid reference cavity used for frequency stabilization of lasers, based on the mechanical loss of cavity materials and the numerical analysis of the mirror-spacer mechanics with the direct application of the fluctuation dissipation theorem. This noise sets a fundamental limit for the frequency stability achieved with a rigid frequency-reference cavity of order 1 Hz/ square root Hz (0.01 Hz/ square root Hz) at 10 mHz (100 Hz) at room temperature. This level coincides with the world-highest level stabilization results. PMID:15697887

  20. Optimizations of ozone generator at low resonance frequency

    NASA Astrophysics Data System (ADS)

    Garamoon, A. A.; Elakshar, F. F.; Elsawah, M.

    2009-11-01

    The effect of the frequency on the different parameters of ozone generation in the dielectric barrier discharge (DBD) has been investigated. It is found that at low frequency, (f0 = 325 Hz), an electric resonance can be obtained in the electric circuit. The onset voltage, at which the ozone starts to build up, was reduced from 3.25 kV at 50 Hz to 1.57 kV at 325 Hz. The efficiency has been increased from nearly zero at 50 Hz to 232.94 g/kW h at 200 Hz under applied voltage of 2.025 kV. in here

  1. Unified studies of chemical bonding structures and resonant scattering in light neutron-excess systems, 10,12Be.

    PubMed

    Ito, Makoto; Ikeda, Kiyomi

    2014-09-01

    The generalized two-center cluster model (GTCM), which can treat covalent, ionic and atomic configurations in general systems with two inert cores plus valence nucleons, is formulated in the basis of the microscopic cluster model. In this model, the covalent configurations constructed by the molecular orbital (MO) method and the atomic (or ionic) configuration obtained by the valence bonding (VB) method can be handled in a consistent manner. The GTCM is applied to the light neutron-rich system (10,12)Be = α + α + Xn (X = 2, 4). The continuous and smooth changes of the neutron orbits from the covalent MO states to the ionic VB states are clearly observed in the adiabatic energy surfaces (AESs), which are the energy curves obtained with a variation of the α-α distance. The energy levels obtained from the AESs nicely reproduce the recent observations over a wide energy region. The individual spectra are characterized in terms of chemical-bonding-like structures, such as the covalent MO or ionic VB structures, according to analysis of their intrinsic wave functions. From the analysis of AESs, the formation of the mysterious 0(2)(+) states in (10,12)Be, which have anomalously small excitation energies in comparison to a naive shell-model prediction, is investigated. A large enhancement in a monopole transition from a ground MO state to an ionic α + (6,8)He VB state is found, which seems to be consistent with a recent observation. In the unbound region, the structure problem, which handles the total system of α + α + Xn (X = 2, 4) as a bound or quasi-bound state, and the reaction problem, induced by the collision of an asymptotic VB state of α + (6,8)He, are combined by the GTCM. The properties of unbound resonant states are discussed in close connection to the reaction mechanism, and some enhancement factors originating from the properties of the intrinsic states are predicted in the reaction observables. PMID:25222183

  2. A four kHz repetition rate compact TEA CO2 laser

    NASA Astrophysics Data System (ADS)

    Zheng, Yijun; Tan, Rongqing

    2013-09-01

    A compact transversely excited atmospheric (TEA) CO2 laser with high repetition-rate was reported. The size of the laser is 380 mm×300 mm×200 mm, and the discharge volume is 12×103 mm3. The laser cavity has a length of 320mm and consists of a totally reflective concave mirror with a radius of curvature of 4 m (Cu metal substrate coated with Au) and a partially reflecting mirror. The ultraviolet preionization makes the discharge even and stable,the output energy can be as high as 28 mJ under the circumstance of free oscillation, and the width of the light pulse is 60ns.To acquire the high wind velocity, a turbocharger is used in the system of the fast-gas flow cycle. When the wind speed is 100m/s, the repetition rate of the transversely excited atmospheric CO2 laser is up to 2 kHz. On this basis, a dual modular structure with two sets of the gas discharge unit is adopted to obtain a higher pulse repetition frequency output. The dual discharge unit composed two sets of electrodes and two sets of turbo fan. Alternate trigger technology is used to make the two sets of discharge module work in turn with repetition frequency of 2 kHz, the discharge interval of two sets of the gas discharge unit can be adjusted continuously from 20 microseconds to 250 microseconds. Under the conditions of maintaining the other parameters constant, the repetition frequency of the laser pulse is up to 4 kHz. The total size of laser with dual modular structure is 380mm×520mm×200mm, and the discharge volume is 24×103 mm3 with the cavity length of 520mm.

  3. Diode-Pumped Long-Pulse-Length Ho:Tm:YLiF4 Laser at 10 Hz

    NASA Technical Reports Server (NTRS)

    Jani, Mahendra G.; Naranjo, Felipe L.; Barnes, Norman P.; Murray, Keith E.; Lockard, George E.

    1995-01-01

    An optical efficiency of 0.052 under normal mode operation for diode-pumped Ho:Tm:YLiF4 at a pulse repetition frequency of 10 Hz has been achieved. Laser output energy of 30 mJ in single Q-switched pulses with 600-ns pulse length were obtained for an input energy of 3 J. A diffusion-bonded birefringent laser rod consisting of Ho:Tm-doped and undoped pieces of YLF was utilized for 10-Hz operation.

  4. Variation of 40 kHz Signal Level in Relation to Sunrise, Sunset and Climatic Condition

    NASA Astrophysics Data System (ADS)

    Guha, A.; De, B. K.; Saha, A.; Das, T. K.

    2007-07-01

    The sunrise effect, sunset effect, the diurnal and seasonal variations are the characteristic feature of low frequency (LF) radio wave propagated over a large distance. The normal character has been found to be perturbed during rainy days. The amplitude of 40 kHz signal transmitted from Miyakoji station, Japan and received in North-East India is remarkably attenuated after the commencement of rain. On the basis of nature of attenuation the observed records have been classified into two different forms viz., F1 and F2. An analysis in this regard is represented in this paper.

  5. 8-kHz bottom backscattering measurements at low grazing angles in shallow water.

    PubMed

    La, Hyoungsul; Choi, Jee Woong

    2010-04-01

    8-kHz bottom backscattering measurements at low grazing angles (6 degrees -31 degrees ) are presented. The experiment was performed at a very shallow water site with a silty bottom on the south coast of Korea. Backscattering strengths between -42 and -30 dB were obtained and were compared to a theoretical backscattering model and Lambert's law. The fit of the theoretical model to the measurements suggests that sediment volume scattering is dominant over scattering from bottom interface roughness. Combining these results with previous measurements found in the published literature implies that backscattering strengths from silty sediment increase slightly as the frequency increases. PMID:20369984

  6. Frequency-Shift Hearing Aid

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.

    1994-01-01

    Proposed hearing aid maps spectrum of speech into band of lower frequencies at which ear remains sensitive. By redirecting normal speech frequencies into frequency band from 100 to 1,500 Hz, hearing aid allows people to understand normal conversation, including telephone calls. Principle operation of hearing aid adapted to other uses such as, clearing up noisy telephone or radio communication. In addition, loud-speakers more easily understood in presence of high background noise.

  7. A calculable, transportable audio-frequency AC reference standard

    SciTech Connect

    Oldham, N.M.; Hetrick, P.S. ); Zeng, X. )

    1989-04-01

    A transportable ac voltage source is described, in which sinusoidal signals are synthesized digitally in the audio-frequency range. The rms value of the output waveform may be calculated by measuring the dc level of the individual steps used to generate the waveform. The uncertainty of this calculation at the 7-V level is typically less than +-5 ppm from 60 Hz to 2 kHz and less than +-10 ppm from 30 Hz to 15 kHz.

  8. Wideband impedance spectroscopy from 1 mHz to 10 MHz by combination of four- and two-electrode methods

    NASA Astrophysics Data System (ADS)

    Volkmann, J.; Klitzsch, N.

    2015-03-01

    Impedance Spectroscopy (IS) measurements allow to study a wide range of polarization mechanisms associated with different frequency ranges. Experimental devices usually cover limited frequency ranges with sufficient accuracy. We propose (a) a combination of four-electrode and two-electrode devices and (b) a data combination and mutual verification procedure using the actual sample under test. Hereby, we cover a frequency range from 1 mHz to 10 MHz. The data combination relies on the precondition that any dispersive disturbance decayed at some mutual point within an overlapping frequency range between 1 Hz and 45 kHz. We validate our data combination procedure by IS measurements on simple reference systems and comparison with widely accepted model functions, e.g. the complex refractive index model (CRIM) for high frequency behavior and Kramers-Kronig relations in terms of data consistency. In this respect, our suggested processing approach is superior to two selected alternative approaches. We successfully adapt typical empirical model functions, e.g. multi-Cole-Cole, to the resulting wideband data to show that they are fully applicable for further data analysis.

  9. Behavioral and prenatal effects of 60-Hz fields

    SciTech Connect

    Not Available

    1983-08-01

    Purpose was to determine possible neural, behavioral, and reproductive effects of low-intensity 60-Hz electric fields on mammals (rats) exposed in-utero. The tests used shortly after birth included negative geotaxis, the acoustic startle response, surface righting, in-air righting, cliff avoidance, emotionality, and swimming endurance. Variations between the exposed and control groups are discussed. 9 tables. (DLC)

  10. EFFECTS OF 60-HZ FIELDS ON HUMAN HEALTH PARAMETERS

    EPA Science Inventory

    Specific results of research on the effects of exposure to 60-Hz electric and magnetic fields have often been contradictory and difficult to replicate. The study reported here used quantitative exercise testing techniques to evaluate whether increases in metabolism, caused by mod...

  11. Evaluation of the economic burden of Herpes Zoster (HZ) infection

    PubMed Central

    Panatto, Donatella; Bragazzi, Nicola Luigi; Rizzitelli, Emanuela; Bonanni, Paolo; Boccalini, Sara; Icardi, Giancarlo; Gasparini, Roberto; Amicizia, Daniela

    2014-01-01

    The main objective of this systematic review was to evaluate the economic burden of Herpes Zoster (HZ) infection. The review was conducted in accordance with the standards of the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” guidelines. The following databases were accessed: ISI/Web of Knowledge (WoS), MEDLINE/PubMed, Scopus, ProQuest, the Cochrane Library and EconLit. Specific literature on health economics was also manually inspected. Thirty-three studies were included. The quality of the studies assessed in accordance with the Consolidated Health Economic Evaluation Reporting Standards checklist was good. All studies evaluated direct costs, apart from one which dealt only with indirect costs. Indirect costs were evaluated by 12 studies. The economic burden of HZ has increased over time. HZ management and drug prescriptions generate the highest direct costs. While increasing age, co-morbidities and drug treatment were found to predict higher direct costs, being employed was correlated with higher indirect costs, and thus with the onset age of the disease. Despite some differences among the selected studies, particularly with regard to indirect costs, all concur that HZ is a widespread disease which has a heavy social and economic burden. PMID:25483704

  12. Study on Electric field assisted low frequency (20 kHz) ultrasonic spray

    NASA Astrophysics Data System (ADS)

    Chae, Ilkyeong; Seong, Baekhoon; Marten, Darmawan; Byun, Doyoung

    2015-11-01

    Ultrasonic spray is one of the fabulous techniques to discharge small size of droplets because it utilizes ultrasonic vibration on nozzle. However, spray patterns and size of ejected droplet is hardly controlled in conventional ultrasonic spray method. Therefore, here we present electric field assisted ultrasonic spray, which combined conventional technique with electric field in order to control spray pattern and droplet size precisely. Six kinds of various liquid (D.I water, Ethanol, Acetone, Iso-propanol, Toluene, Hexane) with various dielectric constants were used to investigate the mechanism of this method. Also, PIV (Particle Image Velocimetry) was used and various variables were obtained including spray angle, amplitude of liquid vibration, current, and size distribution of ejected droplets. Our electric field assisted ultrasonic spray show that the standard deviation of atomized droplet was decreased up to 39.6%, and it shows the infinite possibility to be utilized in various applications which require precise control of high transfer efficiency. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2014-023284).

  13. A 1microW 85nV/ radicalHz pseudo open-loop preamplifier with programmable band-pass filter for neural interface system.

    PubMed

    Chang, Sun-Il; Yoon, Euisik

    2009-01-01

    We report an energy efficient pseudo open-loop amplifier with programmable band-pass filter developed for neural interface systems. The proposed amplifier consumes 400nA at 2.5V power supply. The measured thermal noise level is 85nV/ radicalHz and input-referred noise is 1.69microV(rms) from 0.3Hz to 1 kHz. The amplifier has a noise efficiency factor of 2.43, the lowest in the differential topologies reported up to date to our knowledge. By programming the switched-capacitor frequency and bias current, we could control the bandwidth of the preamplifier from 138 mHz to 2.2 kHz to meet various application requirements. The entire preamplifier including band-pass filters has been realized in a small area of 0.043mm(2) using a 0.25microm CMOS technology. PMID:19964762

  14. Extended frequency turbofan model

    NASA Technical Reports Server (NTRS)

    Mason, J. R.; Park, J. W.; Jaekel, R. F.

    1980-01-01

    The fan model was developed using two dimensional modeling techniques to add dynamic radial coupling between the core stream and the bypass stream of the fan. When incorporated into a complete TF-30 engine simulation, the fan model greatly improved compression system frequency response to planar inlet pressure disturbances up to 100 Hz. The improved simulation also matched engine stability limits at 15 Hz, whereas the one dimensional fan model required twice the inlet pressure amplitude to stall the simulation. With verification of the two dimensional fan model, this program formulated a high frequency F-100(3) engine simulation using row by row compression system characteristics. In addition to the F-100(3) remote splitter fan, the program modified the model fan characteristics to simulate a proximate splitter version of the F-100(3) engine.

  15. A recirculating delayed self-heterodyne method using a Mach-Zehnder modulator for kHz-linewidth measurement

    NASA Astrophysics Data System (ADS)

    Deng, Shuo; Li, Min; Gao, Hongyun; Dai, Yawen

    2016-09-01

    A laser linewidth measurement method which uses a Mach-Zehnder electro-optic modulator (MZM) is proposed in a loss-compensated recirculating delayed self-heterodyne interferometer (LC-RDSHI). Compared with the traditional acousto-optic modulator (AOM), the electro-optic modulator has the merits of broader bandwidth, lower insertion loss, higher extinction ratio and thus, a wider application. A theoretical analysis shows that the power spectrum curve of the novel measurement system is a Lorentzian line, which fits well with experiment. The linewidth is measured to be 137 ± 7 kHz at a frequency shift of 4 GHz. Measurement of a distributed feedback Bragg (DFB) laser has manifested that the linewidth broadens from 98.5 kHz to 137.4 kHz as the operating temperature changes by 16 °C. This work will allow investigation of narrow linewidth semiconductor and fiber laser stability.

  16. Frequency Responses of Rat Retinal Ganglion Cells

    PubMed Central

    Cloherty, Shaun L.; Hung, Yu-Shan; Kameneva, Tatiana; Ibbotson, Michael R.

    2016-01-01

    There are 15–20 different types of retinal ganglion cells (RGC) in the mammalian retina, each encoding different aspects of the visual scene. The mechanism by which post-synaptic signals from the retinal network generate spikes is determined by each cell’s intrinsic electrical properties. Here we investigate the frequency responses of morphologically identified rat RGCs using intracellular injection of sinusoidal current waveforms, to assess their intrinsic capabilities with minimal contributions from the retinal network. Recorded cells were classified according to their morphological characteristics (A, B, C or D-type) and their stratification (inner (i), outer (o) or bistratified) in the inner plexiform layer (IPL). Most cell types had low- or band-pass frequency responses. A2, C1 and C4o cells were band-pass with peaks of 15–30 Hz and low-pass cutoffs above 56 Hz (A2 cells) and ~42 Hz (C1 and C4o cells). A1 and C2i/o cells were low-pass with peaks of 10–15 Hz (cutoffs 19–25 Hz). Bistratified D1 and D2 cells were also low-pass with peaks of 5–10 Hz (cutoffs ~16 Hz). The least responsive cells were the B2 and C3 types (peaks: 2–5 Hz, cutoffs: 8–11 Hz). We found no difference between cells stratifying in the inner and outer IPL (i.e., ON and OFF cells) or between cells with large and small somas or dendritic fields. Intrinsic physiological properties (input resistance, spike width and sag) had little impact on frequency response at low frequencies, but account for 30–40% of response variability at frequencies >30 Hz. PMID:27341669

  17. Hemodynamic responses can modulate the brain oscillations in low frequency

    NASA Astrophysics Data System (ADS)

    Lu, Feng-Mei; Wang, Yi-Feng; Yuan, Zhen

    2016-03-01

    Previous studies have showed that the steady-state responses were able to be used as an effective index for modulating the neural oscillations in the high frequency ranges (> 1 Hz). However, the neural oscillations in low frequency ranges (<1 Hz) remain unknown. In this study, a series of fNIRS experimental tests were conducted to validate if the low frequency bands (0.1 Hz - 0.8 Hz) steady-state hemoglobin responses (SSHbRs) could be evoked and modulate the neural oscillation during a serial reaction time (SRT) task.

  18. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 77, RBRC SCIENTIFIC REVIEW COMMITTEE MEETING, OCTOBER 10-12, 2005

    SciTech Connect

    SAMIOS, N.P.

    2005-10-10

    The eighth evaluation of the RIKEN BNL Research Center (RBRC) took place on October 10-12, 2005, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Jean-Paul Blaizot, Professor Makoto Kobayashi, Dr. Akira Masaike, Professor Charles Young Prescott (Chair), Professor Stephen Sharpe (absent), and Professor Jack Sandweiss. We are grateful to Professor Akira Ukawa who was appointed to the SRC to cover Professor Sharpe's area of expertise. In addition to reviewing this year's program, the committee, augmented by Professor Kozi Nakai, evaluated the RBRC proposal for a five-year extension of the RIKEN BNL Collaboration MOU beyond 2007. Dr. Koji Kaya, Director of the Discovery Research Institute, RIKEN, Japan, presided over the session on the extension proposal. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on higher research efforts. In addition, a special session was held in connection with the RBRC QCDSP and QCDOC supercomputers. Professor Norman H. Christ, a collaborator from Columbia University, gave a presentation on the progress and status of the project, and Professor Frithjof Karsch of BNL presented the first physics results from QCDOC. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

  19. 47 CFR 18.301 - Operating frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operating frequencies. 18.301 Section 18.301 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL INDUSTRIAL, SCIENTIFIC, AND MEDICAL EQUIPMENT Technical Standards § 18.301 Operating frequencies. ISM equipment may be operated on any frequency above 9 kHz...

  20. 47 CFR 18.301 - Operating frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operating frequencies. 18.301 Section 18.301 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL INDUSTRIAL, SCIENTIFIC, AND MEDICAL EQUIPMENT Technical Standards § 18.301 Operating frequencies. ISM equipment may be operated on any frequency above 9 kHz...

  1. 47 CFR 18.301 - Operating frequencies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operating frequencies. 18.301 Section 18.301 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL INDUSTRIAL, SCIENTIFIC, AND MEDICAL EQUIPMENT Technical Standards § 18.301 Operating frequencies. ISM equipment may be operated on any frequency above 9 kHz...

  2. 47 CFR 18.301 - Operating frequencies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operating frequencies. 18.301 Section 18.301 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL INDUSTRIAL, SCIENTIFIC, AND MEDICAL EQUIPMENT Technical Standards § 18.301 Operating frequencies. ISM equipment may be operated on any frequency above 9 kHz...

  3. 47 CFR 18.301 - Operating frequencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operating frequencies. 18.301 Section 18.301 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL INDUSTRIAL, SCIENTIFIC, AND MEDICAL EQUIPMENT Technical Standards § 18.301 Operating frequencies. ISM equipment may be operated on any frequency above 9 kHz...

  4. Assessment of "non-recordable" electroretinograms by 9 Hz flicker stimulation under scotopic conditions.

    PubMed

    Schatz, Andreas; Wilke, Robert; Strasser, Torsten; Gekeler, Florian; Messias, Andre; Zrenner, Eberhart

    2012-02-01

    To refine methods of electroretinographical (ERG) recording for the analysis of low retinal potentials under scotopic conditions in advanced retinal degenerative diseases. Standard Ganzfeld ERG equipment (Diagnosys LLC, Cambridge, UK) was used in 27 healthy volunteers (mean age 28 ± SD 8.5 years) to define the stimulation protocol. The protocol was then applied in clinical routine and 992 recordings were obtained from patients (mean age 40.6 ± 18.3 years) over a period of 5 years. A blue stimulus with a flicker frequency of 9 Hz was specified under scotopic conditions to preferentially record rod-driven responses. A range of stimulus strengths (0.0000012-6.32 scot. cd s/m² and 6-14 ms flash duration) was tested for maximal amplitudes and interference between rods and cones. Analysis of results was done by standard Fourier Transformation and assessment of signal-to-noise ratio. Optimized stimulus parameters were found to be a time-integrated luminance of 0.012 scot. cd s/m² using a blue (470 nm) flash of 10 ms duration at a repetition frequency of 9 Hz. Characteristic stimulus strength versus amplitude curves and tests with stimuli of red or green wavelength suggest a predominant rod-system response. The 9 Hz response was found statistically distinguishable from noise in 38% of patients with otherwise non-recordable rod responses according to International Society for Clinical Electrophysiology of Vision standards. Thus, we believe this protocol can be used to record ERG potentials in patients with advanced retinal diseases and in the evaluation of potential treatments for these patients. The ease of implementation in clinical routine and of statistical evaluation providing an observer-independent evaluation may further facilitate its employment. PMID:22179598

  5. The gravitational resolving power of global seismic networks in the 0.1-10 Hz band

    NASA Astrophysics Data System (ADS)

    Mulargia, Francesco; Kamenshchik, Alexander

    2016-04-01

    Among the first attempts to detect gravitational waves, the seismic approach pre-dates the digital era. Major advances in computational power, seismic instrumentation and in the knowledge of seismic noise suggest to reappraise its potential. Using the whole earth as a detector, with the thousands of digital seismometers of seismic global networks as a single phased array, more than two decades of continuous seismic noise data are available and can be readily sifted at the only cost of (a pretty gigantic) computation. Using a subset of data, we show that absolute strains h ≲10-17 on burst gravitational pulses and h ≲10-21 on periodic signals may be feasibly resolved in the frequency range 0.1-10 Hz, only marginally covered by current advanced LIGO and future eLISA. However, theoretical predictions for the largest cosmic gravitational emissions at these frequencies are a few orders of magnitude lower.

  6. High-energy, efficient, 30-Hz ultraviolet laser sources for airborne ozone-lidar systems.

    PubMed

    Elsayed, Khaled A; Chen, Songsheng; Petway, Larry B; Meadows, Byron L; Marsh, Waverly D; Edwards, William C; Barnes, James C; DeYoung, Russell J

    2002-05-20

    Two compact, high-pulse-energy, injection-seeded, 30-Hz frequency-doubled Nd:YAG-laser-pumped Ti: sapphire lasers were developed and operated at infrared wavelengths of 867 and 900 nm. Beams with laser pulse energy >30 mJ at ultraviolet wavelengths of 289 and 300 nm were generated through a tripling of the frequencies of these Ti:sapphire lasers. This work is directed at the replacement of dye lasers for use in an airborne ozone differential absorption lidar system. The ultraviolet pulse energy at 289 and 300 nm had 27% and 31% absolute optical energy conversion efficiencies from input pulse energies at 867 and 900 nm, respectively. PMID:12027160

  7. A broadband, capacitive, surface-micromachined, omnidirectional microphone with more than 200 kHz bandwidth.

    PubMed

    Kuntzman, Michael L; Hall, Neal A

    2014-06-01

    A surface micromachined microphone is presented with 230 kHz bandwidth. The structure uses a 2.25 μm thick, 315 μm radius polysilicon diaphragm suspended above an 11 μm gap to form a variable parallel-plate capacitance. The back cavity of the microphone consists of the 11 μm thick air volume immediately behind the moving diaphragm and also an extended lateral cavity with a radius of 504 μm. The dynamic frequency response of the sensor in response to electrostatic signals is presented using laser Doppler vibrometry and indicates a system compliance of 0.4 nm/Pa in the flat-band of the response. The sensor is configured for acoustic signal detection using a charge amplifier, and signal-to-noise ratio measurements and simulations are presented. A resolution of 0.80 mPa/√Hz (32 dB sound pressure level in a 1 Hz bin) is achieved in the flat-band portion of the response extending from 10 kHz to 230 kHz. The proposed sensor design is motivated by defense and intelligence gathering applications that require broadband, airborne signal detection. PMID:24907805

  8. 35 Hz shape memory alloy actuator with bending-twisting mode

    NASA Astrophysics Data System (ADS)

    Song, Sung-Hyuk; Lee, Jang-Yeob; Rodrigue, Hugo; Choi, Ik-Seong; Kang, Yeon June; Ahn, Sung-Hoon

    2016-02-01

    Shape Memory Alloy (SMA) materials are widely used as an actuating source for bending actuators due to their high power density. However, due to the slow actuation speed of SMAs, there are limitations in their range of possible applications. This paper proposes a smart soft composite (SSC) actuator capable of fast bending actuation with large deformations. To increase the actuation speed of SMA actuator, multiple thin SMA wires are used to increase the heat dissipation for faster cooling. The actuation characteristics of the actuator at different frequencies are measured with different actuator lengths and results show that resonance can be used to realize large deformations up to 35 Hz. The actuation characteristics of the actuator can be modified by changing the design of the layered reinforcement structure embedded in the actuator, thus the natural frequency and length of an actuator can be optimized for a specific actuation speed. A model is used to compare with the experimental results of actuators with different layered reinforcement structure designs. Also, a bend-twist coupled motion using an anisotropic layered reinforcement structure at a speed of 10 Hz is also realized. By increasing their range of actuation characteristics, the proposed actuator extends the range of application of SMA bending actuators.

  9. 35 Hz shape memory alloy actuator with bending-twisting mode

    PubMed Central

    Song, Sung-Hyuk; Lee, Jang-Yeob; Rodrigue, Hugo; Choi, Ik-Seong; Kang, Yeon June; Ahn, Sung-Hoon

    2016-01-01

    Shape Memory Alloy (SMA) materials are widely used as an actuating source for bending actuators due to their high power density. However, due to the slow actuation speed of SMAs, there are limitations in their range of possible applications. This paper proposes a smart soft composite (SSC) actuator capable of fast bending actuation with large deformations. To increase the actuation speed of SMA actuator, multiple thin SMA wires are used to increase the heat dissipation for faster cooling. The actuation characteristics of the actuator at different frequencies are measured with different actuator lengths and results show that resonance can be used to realize large deformations up to 35 Hz. The actuation characteristics of the actuator can be modified by changing the design of the layered reinforcement structure embedded in the actuator, thus the natural frequency and length of an actuator can be optimized for a specific actuation speed. A model is used to compare with the experimental results of actuators with different layered reinforcement structure designs. Also, a bend-twist coupled motion using an anisotropic layered reinforcement structure at a speed of 10 Hz is also realized. By increasing their range of actuation characteristics, the proposed actuator extends the range of application of SMA bending actuators. PMID:26892438

  10. Quasi-periodic (~mHz) dayside auroral brightennings associated with high-speed solar wind

    NASA Astrophysics Data System (ADS)

    Liou, K.

    2013-12-01

    It has been reported that dayside auroral pulsations of a few mHz frequency can occur when variations of solar wind dynamic pressure at the same frequency appear. Magnetospheric compression/decompression is attributed to the auroral pulsations. Here we report another type of dayside auroral pulsations not associated with solar wind dynamic pressure changes by using global auroral images acquired from the Ultraviolet Imager (UVI) on board the Polar satellite. From one periodic (~2 - 8 mHz) auroral event that occurred on February 8, 2000, it is found that the auroral enhancements covered most of the day (~05 - 16 MLT) sector and did not show a latitudinal dependence. Based on in situ particle data from DMSP SSJ/4, the brightennings were associated mainly with enhanced particle precipitations from the central plasma sheet (i.e., diffuse aurora). There was no geomagnetic pulsation on the ground and in the dawn sector of the magnetosheath as indicated by the Geotail measurements. While the auroral pulsations occurred during high solar wind speed (> 600 km/s), they commenced when the interplanetary magnetic field turned northward, suggesting the Kelvin-Helmholtz instability being a source of the pulsations. We will present detail analysis results and discuss other possible mechanisms in the context of current theories.

  11. Multi-mJ, kHz, ps deep-ultraviolet source.

    PubMed

    Chang, Chun-Lin; Krogen, Peter; Liang, Houkun; Stein, Gregory J; Moses, Jeffrey; Lai, Chien-Jen; Siqueira, Jonathas P; Zapata, Luis E; Kärtner, Franz X; Hong, Kyung-Han

    2015-02-15

    We demonstrate a 0.56-GW, 1-kHz, 4.2-ps, 2.74-mJ deep-ultraviolet (DUV) laser at ∼257.7  nm with a beam propagation factor (M2) of ∼2.54 from a frequency-quadrupled cryogenic multi-stage Yb-doped chirped-pulse amplifier. The frequency quadrupling is achieved using LiB3O5 and β-BaB2O4 crystals for near-infrared (NIR)-to-green and green-to-DUV conversion, respectively. An overall NIR-to-DUV efficiency of ∼10% has been achieved, which is currently limited by the thermal-induced phase mismatching and the DUV-induced degradation of transmittance. To the best of our knowledge, this is the highest peak-power picosecond DUV source from a diode-pumped solid-state laser operating at kHz repetition rates. PMID:25680176

  12. The effect of wind-generated bubbles on sea-surface backscattering at 940 Hz.

    PubMed

    van Vossen, Robbert; Ainslie, Michael A

    2011-11-01

    Reliable predictions of sea-surface backscattering strength are required for sonar performance modeling. These are, however, difficult to obtain as measurements of sea-surface backscattering are not available at small grazing angles relevant to low-frequency active sonar (1-3 kHz). Accurate theoretical predictions of scattering strength require a good understanding of physical mechanisms giving rise to the scattering and the relative importance of these. In this paper, scattering from individual resonant bubbles is introduced as a potential mechanism and a scattering model is derived that incorporates the contribution from these together with that of rough surface scattering. The model results are fitted to Critical Sea Test (CST) measurements at a frequency of 940 Hz, treating the number of large bubbles, parameterized through the spectral slope of the size spectrum for bubbles whose radii exceed 1 mm, as a free parameter. This procedure illustrates that the CST data can be explained by scattering from a small number of large resonant bubbles, indicating that these provide an alternative mechanism to that of scattering from bubble clouds. PMID:22088015

  13. Reducing the linewidth of a diode laser below 30 Hz by stabilization to a reference cavity with a finesse above 10(5).

    PubMed

    Schoof, A; Grünert, J; Ritter, S; Hemmerich, A

    2001-10-15

    An extended-cavity diode laser operating in the Littrow configuration emitting near 657 nm is stabilized through its injection current to a reference cavity with a finesse of more than 10(5) and a corresponding resonance linewidth of 14 kHz. The laser linewidth is reduced from a few megahertz to a value below 30 Hz. The compact and robust setup appears ideal as a portable optical frequency standard that uses the calcium intercombination line. PMID:18049663

  14. The 67 Hz Feature in the Black Hole Candidate GRS 1915+105 as a Possible Diskoseismic Mode

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Wagoner, Robert V.; Begelman, Mitchell C.; Lehr, Dana E.

    1997-01-01

    The Rossi X-Ray Timing Explorer has made feasible for the first time the search for high-frequency (greater than or equal to 100 Hz) periodic features in Black Hole Candidate (BHC) systems. Such a feature, with a 67 Hz frequency, recently has been discovered in the BHC GRS 1915+105 (Morgan, Remillard, & Greiner). This feature is weak (rms variability approx. 0.3%-1.6%), stable in frequency (to within approx. 2 Hz) despite appreciable luminosity fluctuations, and narrow (quality factor Q approx. 20). Several of these properties are what one expects for a 'diskoseismic' g-mode in an accretion disk about a 10.6 M(solar mass) (nonrotating) to 36.3 M(solar mass) (maximally rotating) black hole (if we are observing the fundamental-mode frequency). We explore this possibility by considering the expected luminosity modulation, as well as possible excitation and growth mechanisms-including turbulent excitation, damping, and 'negative' radiation damping. We conclude that a diskoseismic interpretation of the observations is viable.

  15. Null polarimetry near shot noise limit at 1 Hz

    NASA Astrophysics Data System (ADS)

    He, Dechao; Xie, Boya; Feng, Sheng

    2016-04-01

    We describe the principle and report on the realization of a null polarimeter with two demonstrated features: (1) the sensitivity of the system is near shot noise limit and (2) quasi-stationary signals at 1 Hz can be measured without signal modulation. The achieved single-pass sensitivity is 7 × 10-9 rad/ √{ Hz } with a pair of Glan-Taylor polarizers, which should be of great interest for experiments such as observation of vacuum magnetic birefringence and search for new particles. The system is brought near its shot noise limit by appropriate polarization control and coherent heterodyne detection of light, resulting in a sensitivity improvement by two orders of magnitude in comparison with the case of no control on light polarization.

  16. 10-Hz kilowatt-class dye laser system

    NASA Astrophysics Data System (ADS)

    Klimek, Daniel E.; Aldag, Henry R.

    1993-06-01

    Textron Defense Systems (Formerly Avco Research Laboratory) has developed a kilowatt class dye laser. The device is a transverse flow, flashlamp pumped laser that operates at greater than 100 Joules per pulse, and at a repetition rate up to 10 Hz. Operating at 10 Hz, an average power of 1.04 kW was obtained at 585 nm using rhodamine 590 in a methanol/water solvent mixture. The output power was increased to 1.4 kW by adding the triplet quencher cyclooctatetraene to the solution. Under these conditions, the measured efficiency (average laser pulse energy/energy stored in flashlamp capacitors) was 1.8%. A limited series of experiments using alternative dyes was also carried out. Comparable energies and average powers were obtained at 610 nm using rhodamine 610, and 660 nm using sulforhodamine 640.

  17. Null polarimetry near shot noise limit at 1 Hz.

    PubMed

    He, Dechao; Xie, Boya; Feng, Sheng

    2016-04-01

    We describe the principle and report on the realization of a null polarimeter with two demonstrated features: (1) the sensitivity of the system is near shot noise limit and (2) quasi-stationary signals at 1 Hz can be measured without signal modulation. The achieved single-pass sensitivity is 7 × 10(-9) rad/Hz with a pair of Glan-Taylor polarizers, which should be of great interest for experiments such as observation of vacuum magnetic birefringence and search for new particles. The system is brought near its shot noise limit by appropriate polarization control and coherent heterodyne detection of light, resulting in a sensitivity improvement by two orders of magnitude in comparison with the case of no control on light polarization. PMID:27131649

  18. Further observations of nonperiodic optical flickering in HZ Herculis

    NASA Technical Reports Server (NTRS)

    Vanden Bout, P. A.; Moffett, T. J.

    1978-01-01

    High-speed photometric observations of the HZ Her/Her X-1 system show that nonperiodic optical flickering is present during both the ON and OFF portions of the 35-day cycle. The optical flickering is broad band and not confined to emission lines. There is a weak correlation between the amplitude of the flickering and orbital phase but efforts to identify the source of the flickering were unsuccessful.

  19. Surface gravity waves and their acoustic signatures, 1-30 Hz, on the mid-Pacific sea floor.

    PubMed

    Farrell, W E; Munk, Walter

    2013-10-01

    In 1999, Duennebier et al. deployed a hydrophone and geophone below the conjugate depth in the abyssal Pacific, midway between Hawaii and California. Real time data were transmitted for 3 yr over an abandoned ATT cable. These data have been analyzed in the frequency band 1 to 30 Hz. Between 1 and 6 Hz, the bottom data are interpreted as acoustic radiation from surface gravity waves, an extension to higher frequencies of a non-linear mechanism proposed by Longuet-Higgins in 1950 to explain microseisms. The inferred surface wave spectrum for wave lengths between 6 m and 17 cm is saturated (wind-independent) and roughly consistent with the traditional Phillips κ(-4) wave number spectrum. Shorter ocean waves have a strong wind dependence and a less steep wave number dependence. Similar features are found in the bottom record between 6 and 30 Hz. But this leads to an enigma: The derived surface spectrum inferred from the Longuet-Higgins mechanism with conventional assumptions for the dispersion relation is associated with mean square slopes that greatly exceed those derived from glitter. Regardless of the generation mechanism, the measured bottom intensities between 10 and 30 Hz are well below minimum noise standards reported in the literature. PMID:24116511

  20. Two different mechanisms associated with ripple-like oscillations (100-250 Hz) in the human epileptic subiculum in vitro

    PubMed Central

    Alvarado-Rojas, C; Huberfeld, G; Baulac, M; Clemenceau, S; Charpier, S; Miles, R; Menendez de la Prida, L; Le Van Quyen, M

    2015-01-01

    Transient high-frequency oscillations (150-600 Hz) in local field potential generated by human hippocampal and parahippocampal areas have been related to both physiological and pathological processes. The cellular basis and effects of normal and abnormal forms of high-frequency oscillations (HFO) has been controversial. Here, we searched for HFOs in slices of the subiculum prepared from human hippocampal tissue resected for treatment of pharmacoresistant epilepsy. HFOs occurred spontaneously in extracellular field potentials during interictal discharges (IID) and also during pharmacologically induced preictal discharges (PID) preceding ictal-like events. While most of these events might be considered pathological since they invaded the fast ripple band (>250 Hz), others were spectrally similar to physiological ripples (150-250 Hz). Do similar cellular mechanisms underly IID-ripples and PID-ripples? Are ripple-like oscillations a valid proxy of epileptogenesis in human TLE? With combined intra- or juxta-cellular and extracellular recordings, we showed that, despite overlapping spectral components, ripple-like IID and PID oscillations were associated with different cellular and synaptic mechanisms. IID-ripples were associated with rhythmic GABAergic and glutamatergic synaptic potentials with moderate neuronal firing. In contrast, PID-ripples were associated with depolarizing synaptic inputs frequently reaching the threshold for bursting in most cells. Thus ripple-like oscillations (100-250 Hz) in the human epileptic hippocampus are associated with different mechanisms for synchrony reflecting distinct dynamic changes in inhibition and excitation during interictal and pre-ictal states. PMID:25448920

  1. A laser-cooled cesium fountain frequency standard and a measurement of the frequency shift due to ultra-cold collisions

    NASA Technical Reports Server (NTRS)

    Gibble, Kurt; Kasapi, Steven; Chu, Steven

    1993-01-01

    A frequency standard based on an atomic fountain of cesium atoms may have an accuracy of 10(exp -16) due to longer interaction times and smaller anticipated systematic errors. All of the known systematic effects that now limit the accuracy of the Cs frequency standard increase either linearly or as some higher power of the atom's velocity. The one systematic frequency shift which is dramatically different is the frequency shift due to the collisions between the laser cooled atoms. At a temperature of a few micro-K, the de Broglie wavelength (lambda(sub deB) = h/p, where h is Planck's constant and p is the momentum of the atom) is much larger than the scale of the interatomic potential. Under these conditions the collision cross sections can be as large as (lambda(sub deB)(sup 2))/Pi and the frequency shift due to these collisions was recently calculated. In our Cs atomic fountain, we laser cooled and trapped 10(exp 10) Cs atoms in 0.4 s. By shifting the frequencies of the laser beams, the atoms were launched upwards at 2.5 m/s and a fraction of the atoms were optically pumped into the F=3 ground state. The unwanted atoms in the F=4 ground state were removed from the fountain with radiation pressure from a laser beam tuned to excite only those atoms. The Cs atoms in the F=3 state traveled ballistically upwards, were excited by the microwave cavity, and then returned back through the same cavity in the atomic fountain configuration. By varying the cold atom density, a density dependent shift of -12.9 +/- 0.7 mHz or -1.4 x 10-12 for an average fountain density of (2.7 +/- 1.5) 10(exp 9) atoms/cm(sup 3) was measured.

  2. Upper Limits on a Stochastic Gravitational-Wave Background Using LIGO and Virgo Interferometers at 600-1000 Hz

    NASA Technical Reports Server (NTRS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Blackburn, L.; Cannizzo, J.

    2012-01-01

    A stochastic background of gravitational waves is expected to arise from a superposition of many incoherent sources of gravitational waves, of either cosmological or astrophysical origin. This background is a target for the current generation of ground-based detectors. In this article we present the first joint search for a stochastic background using data from the LIGO and Virgo interferometers. In a frequency band of 600-1000 Hz, we obtained a 95% upper limit on the amplitude of omega(sub GW)(f) = omega(sub 3) (f/900Hz)3, of omega(sub 3) < 0.33, assuming a value of the Hubble parameter of h(sub 100) = 0.72. These new limits are a factor of seven better than the previous best in this frequency band.

  3. Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600-1000 Hz

    NASA Astrophysics Data System (ADS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C..; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kranz, O.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; McWilliams, S.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow–Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sainathan, P.; Salemi, F.; Sammut, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Stein, L. C.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tseng, K.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2012-06-01

    A stochastic background of gravitational waves is expected to arise from a superposition of many incoherent sources of gravitational waves, of either cosmological or astrophysical origin. This background is a target for the current generation of ground-based detectors. In this article we present the first joint search for a stochastic background using data from the LIGO and Virgo interferometers. In a frequency band of 600-1000 Hz, we obtained a 95% upper limit on the amplitude of ΩGW(f)=Ω3(f/900Hz)3, of Ω3<0.32, assuming a value of the Hubble parameter of h100=0.71. These new limits are a factor of seven better than the previous best in this frequency band.

  4. 47 CFR 90.214 - Transient frequency behavior.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Behavior for Equipment Designed to Operate on 25 kHz Channels t1 4 ±25.0 kHz 5.0 ms 10.0 ms t2 ±12.5 kHz 20.0 ms 25.0 ms t3 4 ±25.0 kHz 5.0 ms 10.0 ms Transient Frequency Behavior for Equipment Designed to Operate on 12.5 kHz Channels t1 4 ±12.5 kHz 5.0 ms 10.0 ms t2 ±6.25 kHz 20.0 ms 25.0 ms t3 4 ±12.5 kHz...

  5. 47 CFR 90.214 - Transient frequency behavior.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Behavior for Equipment Designed to Operate on 25 kHz Channels t1 4 ±25.0 kHz 5.0 ms 10.0 ms t2 ±12.5 kHz 20.0 ms 25.0 ms t3 4 ±25.0 kHz 5.0 ms 10.0 ms Transient Frequency Behavior for Equipment Designed to Operate on 12.5 kHz Channels t1 4 ±12.5 kHz 5.0 ms 10.0 ms t2 ±6.25 kHz 20.0 ms 25.0 ms t3 4 ±12.5 kHz...

  6. 47 CFR 90.214 - Transient frequency behavior.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Behavior for Equipment Designed to Operate on 25 kHz Channels t1 4 ±25.0 kHz 5.0 ms 10.0 ms t2 ±12.5 kHz 20.0 ms 25.0 ms t3 4 ±25.0 kHz 5.0 ms 10.0 ms Transient Frequency Behavior for Equipment Designed to Operate on 12.5 kHz Channels t1 4 ±12.5 kHz 5.0 ms 10.0 ms t2 ±6.25 kHz 20.0 ms 25.0 ms t3 4 ±12.5 kHz...

  7. 47 CFR 90.214 - Transient frequency behavior.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Behavior for Equipment Designed to Operate on 25 kHz Channels t1 4 ±25.0 kHz 5.0 ms 10.0 ms t2 ±12.5 kHz 20.0 ms 25.0 ms t3 4 ±25.0 kHz 5.0 ms 10.0 ms Transient Frequency Behavior for Equipment Designed to Operate on 12.5 kHz Channels t1 4 ±12.5 kHz 5.0 ms 10.0 ms t2 ±6.25 kHz 20.0 ms 25.0 ms t3 4 ±12.5 kHz...

  8. 47 CFR 90.214 - Transient frequency behavior.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Behavior for Equipment Designed to Operate on 25 kHz Channels t1 4 ±25.0 kHz 5.0 ms 10.0 ms t2 ±12.5 kHz 20.0 ms 25.0 ms t3 4 ±25.0 kHz 5.0 ms 10.0 ms Transient Frequency Behavior for Equipment Designed to Operate on 12.5 kHz Channels t1 4 ±12.5 kHz 5.0 ms 10.0 ms t2 ±6.25 kHz 20.0 ms 25.0 ms t3 4 ±12.5 kHz...

  9. Ultra Wideband (0.5 – 16 kHz) MR Elastography for Robust Shear Viscoelasticity Model Identification

    PubMed Central

    Liu, Yifei; Yasar, Temel K.; Royston, Thomas J.

    2014-01-01

    Changes in the viscoelastic parameters of soft biological tissues often correlate with progression of disease, trauma or injury, and response to treatment. Identifying the most appropriate viscoelastic model, then estimating and monitoring the corresponding parameters of that model can improve insight into the underlying tissue structural changes. MR Elastography (MRE) provides a quantitative method of measuring tissue viscoelasticity. In a previous study of the authors [Mag. Res. Med. 70:479–89;2013. doi: 10.1002/mrm.24495], a silicone-based phantom material was examined over the frequency range of 200 Hz to 7.75 kHz using MRE, an unprecedented bandwidth at that time. Six viscoelastic models including four integer order models and two fractional order models, were fit to the wideband viscoelastic data (measured storage and loss moduli as a function of frequency). The “fractional Voigt” model (spring and springpot in parallel) exhibited the best fit and was even able to fit the entire frequency band well when it was identified based only on a small portion of the band. This paper is an extension of that study with a wider frequency range from 500 Hz to 16 kHz. Furthermore, more fractional order viscoelastic models are added to the comparison pool. It is found that added complexity of the viscoelastic model provides only marginal improvement over the “fractional Voigt” model. And, again, the fractional order models show significant improvement over integer order viscoelastic models that have as many or more fitting parameters. PMID:25419651

  10. A 1.6-kW, 110-kHz dc-dc converter optimized for IGBT's

    NASA Technical Reports Server (NTRS)

    Chen, Keming; Stuart, Thomas A.

    1993-01-01

    A full bridge dc-dc converter using a zero-current and zero-voltage switching technique is described. This circuit utilizes the characteristics of the IGBT to achieve power and frequency combinations that are much higher than previously reported for this device. Experimental results are included for a 1.6-kW, 110-kHz converter with 95 percent efficiency.

  11. Frequencies of Inaudible High-Frequency Sounds Differentially Affect Brain Activity: Positive and Negative Hypersonic Effects

    PubMed Central

    Fukushima, Ariko; Yagi, Reiko; Kawai, Norie; Honda, Manabu; Nishina, Emi; Oohashi, Tsutomu

    2014-01-01

    The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10–13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC. PMID:24788141

  12. Frequencies of inaudible high-frequency sounds differentially affect brain activity: positive and negative hypersonic effects.

    PubMed

    Fukushima, Ariko; Yagi, Reiko; Kawai, Norie; Honda, Manabu; Nishina, Emi; Oohashi, Tsutomu

    2014-01-01

    The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10-13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC. PMID:24788141

  13. Sub-kHz traceable characterization of stroboscopic scanning white light interferometer

    NASA Astrophysics Data System (ADS)

    Heikkinen, V.; Kassamakov, I.; Paulin, T.; Nolvi, A.; Seppä, J.; Lassila, A.; Hæggström, E.

    2014-05-01

    Scanning white light interferometry (SWLI) is an established methodology for non-destructive testing of MEMS/NEMS. In contrast to monochromatic interference microcopy SWLI can unambiguously resolve surfaces featuring tall vertical steps. Oscillating samples can be imaged using a stroboscopic SWLI (SSWLI) equipped with a pulsed light source. To measure static samples the lateral and vertical scales of the SSWLI can be calibrated using transfer standards with calibrated dimensions such as line scales, 2D gratings, gauge blocks, and step height standards. However, traceable dynamic characterization of SSWLI requires a transfer standard (TS) providing repeatable traceable periodic movement. A TS based on a piezo-scanned flexure guided stage with capacitive feedback was designed and manufactured. The trajectories of the stage motion for different amplitude and frequency settings were characterized to have ~2 nm standard uncertainty. Characterization was made using a symmetric differential heterodyne laser interferometer (SDHLI). The TS was first used to characterize quasidynamic measurements across the vertical range of the SSWLI, 100 μm. Dynamic measurement properties of the SSWLI were then characterized using a sinusoidal vertical trajectory with 2 μm nominal amplitude and 50 Hz frequency. The motion amplitude of the TS, 2038 nm, measured with the SSWLI was 6 nm smaller than the amplitude measured with SDHLI. The repeatability of SSWLI expressed as experimental standard deviation of the mean was 8.8 nm. The maximum deviation in instantaneous displacement and oscillation velocity were 49 nm and 27 μm/s, respectively. A traceable method to characterize the capacity of the SSWLI to perform dynamic measurements at sub-kHz frequencies was demonstrated.

  14. Discussion of human resonant frequency

    NASA Astrophysics Data System (ADS)

    Brownjohn, James M. W.; Zheng, Xiahua

    2001-06-01

    Human bodies are often exposed to vertical vibrations when they are in the workplace or on vehicles. Prolonged exposure may cause undue stress and discomfort in the human body especially at its resonant frequency. By testing the response of the human body on a vibrating platform, many researchers found the human whole-body fundamental resonant frequency to be around 5 Hz. However, in recent years, an indirect method has been prosed which appears to increase the resonant frequency to approximately 10 Hz. To explain this discrepancy, experimental work was carried out in NTU. The study shows that the discrepancy lies in the vibration magnitude used in the tests. A definition of human natural frequency in terms of vibration magnitude is proposed.

  15. Synthetic aperture acoustic imaging of canonical targets with a 2-15 kHz linear FM chirp

    NASA Astrophysics Data System (ADS)

    Vignola, Joseph F.; Judge, John A.; Good, Chelsea E.; Bishop, Steven S.; Gugino, Peter M.; Soumekh, Mehrdad

    2011-06-01

    Synthetic aperture image reconstruction applied to outdoor acoustic recordings is presented. Acoustic imaging is an alternate method having several military relevant advantages such as being immune to RF jamming, superior spatial resolution, capable of standoff side and forward-looking scanning, and relatively low cost, weight and size when compared to 0.5 - 3 GHz ground penetrating radar technologies. Synthetic aperture acoustic imaging is similar to synthetic aperture radar, but more akin to synthetic aperture sonar technologies owing to the nature of longitudinal or compressive wave propagation in the surrounding acoustic medium. The system's transceiver is a quasi mono-static microphone and audio speaker pair mounted on a rail 5meters in length. Received data sampling rate is 80 kHz with a 2- 15 kHz Linear Frequency Modulated (LFM) chirp, with a pulse repetition frequency (PRF) of 10 Hz and an inter-pulse period (IPP) of 50 milliseconds. Targets are positioned within the acoustic scene at slant range of two to ten meters on grass, dirt or gravel surfaces, and with and without intervening metallic chain link fencing. Acoustic image reconstruction results in means for literal interpretation and quantifiable analyses. A rudimentary technique characterizes acoustic scatter at the ground surfaces. Targets within the acoustic scene are first digitally spotlighted and further processed, providing frequency and aspect angle dependent signature information.

  16. Detection of Direct-path Arrivals for Multi-Narrowband Sequences (3-30 kHz) In Shallow Water

    NASA Astrophysics Data System (ADS)

    Zoksimovski, A.; de Moustier, C.

    2004-11-01

    In an effort to measure underwater acoustic transmission loss over direct-path lengths ranging from a few hundred meters to ten kilometers in shallow water, a sequence of 16 gated pure tones (3-30 kHz) was transmitted every 10 s from a lowed source and received at moored sonobuoys. The magnitude of multipath arrivals often exceeded that of direct-path arrivals, resulting in variable detection performance of simple matched filtering techniques. More reliable signal recognition was obtained via iterative least square time constraints on the arrival times across all frequencies in a sequence, based on the known time intervals between transmitted tones. Signal detection improvement was obtained also by searching for the direct-path arrival near the global maximum of the sum of the rectified correlograms of the received sequences. These methods allowed detection in environments characterized by multipath interferences, as well as low signal-to-noise ratio and fading, and in the presence of other unrelated sonar signals that cause large detection errors. It also improved the direct-path signal strength estimation, and associated transmission loss computation, by bounding the time interval over which to compute the signals' autocorrelations and estimate their power. These algorithms were tested on a limited data set recorded in the Southern California Offshore Range, confirming that frequencies below 6 kHz suffered less direct-path transmission losses than higher frequencies (7-30 kHz).

  17. Frequency resolving power measured by rippled noise.

    PubMed

    Supin AYa; Popov, V V; Milekhina, O N; Tarakanov, M B

    1994-07-01

    Frequency resolving power (FRP) was measured in normal humans using rippled noise with a phase-reversal test. The principle of the test was to find the highest ripple density at which an interchange of mutual peak and trough position (the phase reversal) in the rippled spectrum is detectable. In the frequency range below 0.5 kHz FRP was found to be about 21 ripples per kHz when tested by both broad-band and narrow-band rippled noise. In the frequency range above 2 kHz, FRP measured by the narrow-band rippled noise was 22 to 23 relative units (relation of the noise central frequency to the ripple frequency spacing). PMID:7961175

  18. Design and performance of a 250 Hz alexandrite laser

    SciTech Connect

    Sam, R.C.; Yeh, J.J.; Leslie, K.R.; Rapoport, W.R.

    1988-06-01

    The design, analysis, and performance of a 250 Hz alexandrite laser are described. Built as the wavelength selective laser for a molecular laser isotope separation program, the laser has to satisfy specifications on its tuning band, linewidth, output energy, temporal behavior, and repetition rate required by the process. The key design feature is the use of a tandem rod oscillator with concave curvature on rod ends for thermal lensing compensation. A model was developed to project the stability range and beam quality relative to repetition rate. The performance results of a delivered system are presented and future developments are discussed.

  19. 1-kHz-repetition-rate femtosecond Raman laser

    NASA Astrophysics Data System (ADS)

    Didenko, N. V.; Konyashchenko, A. V.; Kostryukov, P. V.; Losev, L. L.; Pazyuk, V. S.; Tenyakov, S. Yu

    2016-07-01

    A femtosecond Raman laser utilising compressed hydrogen is experimentally investigated under pumping by radiation from a 1-kHz-repetition-rate Ti : sapphire laser. In the regime of double-pulse pumping, the conditions are determined, which correspond to the minimal energy dispersion of Stokes pulses. The optical scheme is realised, which is capable of ensuring the long-term stability of the average power of the first Stokes component with a variation of less than 2%. The Stokes pulses are produced with a pulse duration of 60 fs and energy of 0.26 mJ at a conversion efficiency of 14%.

  20. Residential 60-Hz magnetic fields and temporal variability

    NASA Astrophysics Data System (ADS)

    Banks, Robert Stephen

    1998-06-01

    The basic question addressed by this research is: How well can data from a single measurement visit estimate longer-term ambient residential 60-Hz magnetic field levels? We undertook repeat 60-Hz magnetic field measurements every two months for one year, plus one additional visit for 14 days of measurement. The study sample consisted of 51 single-family homes, 24 in Minneapolis-St. Paul and 27 in Detroit. Homes were selected by random-digit dialing; each was home to a child eligible to serve a control subject in the National Cancer Institute-Children's Cancer Group Electromagnetic Fields and Radon Study. Trained survey interviewers obtained all measurement data, using an expanded measurement protocol from the main study: (1) spot 60-Hz magnetic field measurements at the centers of three rooms and at the front door; (2) 24- hour (or 14 day) 60-Hz magnetic field measurement in the subject child's bedroom; and (3) geomagnetic field at the centers of two rooms and on the child's bed. The data set available for analysis consists of 349 out of 357 (97.8%) possible sets of spot measurements and 1060 out of 1071 (99.0%) possible days of 24-hour and two-week measurements. A Long-Term Estimate, Child's Bedroom, or LTECB, the geometric mean of the 24-hour measurement geometric means, was used as the reference for analysis. The LTECB was analyzed for house-level main effects and for repeated-measures (temporal) main effects. House-level main effects account for only 41% of the variability in the LTECB. The statistically significant main effects are study area, wire code and population density. A clear trend of increasing LTECB with population density is evident. The seasonal effect is small, but statistically significant. There is no evidence for a day-of-week effect, but a statistically significant diurnal effect is present. Correlation coefficients relating the LTECB to any of three primary single-visit measurement and exposure metric surrogates are >.9. However, when

  1. Frequency resolving power of the human's hearing.

    PubMed

    Supin AYa; Popov, V V; Milekhina, O N

    1994-01-01

    Frequency resolving power (FRP) of the human's hearing was measured using the rippled noise as a probe. To examine the ripple discrimination, a phase-reversal test was used: the rippled noise was replaced by that with the opposite peak and through positions. This switch can be detected only when rippled structure of the noise spectrum is discriminated. The highest ripple density when the switch was detectable was taken as a FRP measure. Narrow-band rippled spectra were used to measure the FRP within a frequency range of 0.175 to 11 kHz. The highest resolvable ripple density in absolute measure (ripples number per kHz) was about 21/kHz at frequencies below 0.5 kHz and fell down at higher frequencies. Resolvable ripple density in relative measure (central frequency divided by ripple spacing) was about 22 relative units at frequencies above 2.8 kHz and fell down at lower frequencies. PMID:8015725

  2. 40 Hz Auditory Steady-State Response Is a Pharmacodynamic Biomarker for Cortical NMDA Receptors.

    PubMed

    Sivarao, Digavalli V; Chen, Ping; Senapati, Arun; Yang, Yili; Fernandes, Alda; Benitex, Yulia; Whiterock, Valerie; Li, Yu-Wen; Ahlijanian, Michael K

    2016-08-01

    Schizophrenia patients exhibit dysfunctional gamma oscillations in response to simple auditory stimuli or more complex cognitive tasks, a phenomenon explained by reduced NMDA transmission within inhibitory/excitatory cortical networks. Indeed, a simple steady-state auditory click stimulation paradigm at gamma frequency (~40 Hz) has been reproducibly shown to reduce entrainment as measured by electroencephalography (EEG) in patients. However, some investigators have reported increased phase locking factor (PLF) and power in response to 40 Hz auditory stimulus in patients. Interestingly, preclinical literature also reflects this contradiction. We investigated whether a graded deficiency in NMDA transmission can account for such disparate findings by administering subanesthetic ketamine (1-30 mg/kg, i.v.) or vehicle to conscious rats (n=12) and testing their EEG entrainment to 40 Hz click stimuli at various time points (~7-62 min after treatment). In separate cohorts, we examined in vivo NMDA channel occupancy and tissue exposure to contextualize ketamine effects. We report a robust inverse relationship between PLF and NMDA occupancy 7 min after dosing. Moreover, ketamine could produce inhibition or disinhibition of the 40 Hz response in a temporally dynamic manner. These results provide for the first time empirical data to understand how cortical NMDA transmission deficit may lead to opposite modulation of the auditory steady-state response (ASSR). Importantly, our findings posit that 40 Hz ASSR is a pharmacodynamic biomarker for cortical NMDA function that is also robustly translatable. Besides schizophrenia, such a functional biomarker may be of value to neuropsychiatric disorders like bipolar and autism spectrum where 40 Hz ASSR deficits have been documented. PMID:26837462

  3. A standard frequency synthesizer using TV line synchronization signal.

    NASA Astrophysics Data System (ADS)

    Ren, Yan; Liang, Shuangyou

    1999-06-01

    A new standard frequency synthesizer is described. The device extracts line synchronization signal (15.625 kHz) from CCTV signal, then synchronizes another 15.625 kHz signal which is obtained from the 10 MHz VCO with temperature compensation. The synchronization is implemented by a phase-locked loop, the phase difference between these two 15.625 kHz signals is converted to voltage signal for adjusting the output frequency of VCO. So, the standard frequency at any frequency bands can be obtained from the output of controlled VCO.

  4. On the Solar Origin of the 220.7 μHz Signal

    NASA Astrophysics Data System (ADS)

    Jiménez, A.; García, R. A.

    2009-12-01

    Gravity modes in the Sun have been long searched for during the past decades. Using their asymptotic properties García et al. (2007) found the signature of the dipole g modes analyzing an spectral window between 25 and 140 μHz of velocity power spectrum obtained from the Global Oscillations at Low Frequencies (GOLF)/SoHO instrument. Using this result it has been possible to check some properties of the structure of the solar interior (García, Mathur & Ballot 2008) as well as some indications of the dynamics of the core. However, the individual detection of such modes remains evasive and they are needed to really improve our knowledge of the deepest layers in the Sun (Mathur et al. 2008). In this work we study the signal at 220.7 μHz which is present in most of the helioseismic instruments during the last 10 years. This signal has been previously identified as part of a g-mode candidate in the GOLF data (Turck-Chièze et al. 2004; Mathur et al. 2007) and in SPM/Variability of solar IRradiance and Gravity Oscillations (VIRGO) (García et al. 2008) with more than 90% confidence level. It could be labeled as the l=2 n=-3 g mode as it is in the region were this mode is expected. We have checked the possibility that the 220.7 μHz signal could have an instrumental origin without success by analyzing all available housekeeping data as well as information on the roll, pitch and yaw of the SoHO spacecraft. In consequence, we are confident that this signal has a solar origin.

  5. 40-Hz oscillations underlying perceptual binding in young and older adults.

    PubMed

    Ross, Bernhard; Fujioka, Takako

    2016-07-01

    Auditory object perception requires binding of elementary features of complex stimuli. Synchronization of high-frequency oscillation in neural networks has been proposed as an effective alternative to binding via hard-wired connections because binding in an oscillatory network can be dynamically adjusted to the ever-changing sensory environment. Previously, we demonstrated in young adults that gamma oscillations are critical for sensory integration and found that they were affected by concurrent noise. Here, we aimed to support the hypothesis that stimulus evoked auditory 40-Hz responses are a component of thalamocortical gamma oscillations and examined whether this oscillatory system may become less effective in aging. In young and older adults, we recorded neuromagnetic 40-Hz oscillations, elicited by monaural amplitude-modulated sound. Comparing responses in quiet and under contralateral masking with multitalker babble noise revealed two functionally distinct components of auditory 40-Hz responses. The first component followed changes in the auditory input with high fidelity and was of similar amplitude in young and older adults. The second, significantly smaller in older adults, showed a 200-ms interval of amplitude and phase rebound and was strongly attenuated by contralateral noise. The amplitude of the second component was correlated with behavioral speech-in-noise performance. Concurrent noise also reduced the P2 wave of auditory evoked responses at 200-ms latency, but not the earlier N1 wave. P2 modulation was reduced in older adults. The results support the model of sensory binding through thalamocortical gamma oscillations. Limitation of neural resources for this process in older adults may contribute to their speech-in-noise understanding deficits. PMID:27080577

  6. Thin disk amplifier-based 40 mJ, 1 kHz, picosecond laser at 515 nm.

    PubMed

    Novák, Jakub; Green, Jonathan T; Metzger, Thomas; Mazanec, Tomáš; Himmel, Bedřich; Horáček, Martin; Hubka, Zbyněk; Boge, Robert; Antipenkov, Roman; Batysta, František; Naylon, Jack A; Bakule, Pavel; Rus, Bedřich

    2016-03-21

    We report on a frequency-doubled picosecond Yb:YAG thin disk regenerative amplifier, developed as a pump laser for a kilohertz repetition rate OPCPA. At a repetition rate of 1 kHz, the compressed output of the regenerative amplifier has a pulse duration of 1.2 ps and pulse energy of 90 mJ with energy stability of σ < 0.8% and M2 < 1.2. The pulses are frequency doubled in an LBO crystal yielding 42 mJ at 515 nm. PMID:27136770

  7. U.S./U.S.S.R. SYMPOSIUM ON PARTICULATE CONTROL (3RD) HELD AT SUZDAL, U.S.S.R. ON SEPTEMBER 10-12, 1979

    EPA Science Inventory

    The proceedings document the Third U.S./U.S.S.R. Symposium on Particulate Control, September 10-12, 1979, in Suzdal, U.S.S.R. Papers covered such topics as: predicting back-corona formation and fly ash resistivity, improved electrostatic precipitator (ESP) mathematical modeling, ...

  8. Suggestions for Curriculum Development [And] Handbook High School Grades, Part D, 10-12. Environmental Education Interdependence: A Concept Approach. Revised.

    ERIC Educational Resources Information Center

    King, David C.; Wood, Jayne Millar

    Two booklets comprise the grades 10-12 component of a series of guides for incorporating environmental education into the existing curriculum. The guide and handbook emphasize a multidisciplinary approach, use the concept of interdependence as an organizing theme, and offer suggestions for using the local community as a resource. The guide…

  9. FPGA implementation of high-frequency multiple PWM for variable voltage variable frequency controller

    NASA Astrophysics Data System (ADS)

    Boumaaraf, Abdelâali; Mohamadi, Tayeb; Gourmat, Laïd

    2016-07-01

    In this paper, we present the FPGA implementation of the multiple pulse width modulation (MPWM) signal generation with repetition of data segments, applied to the variable frequency variable voltage systems and specially at to the photovoltaic water pumping system, in order to generate a signal command very easily between 10hz to 60 hz with a small frequency and reduce the cost of the control system.

  10. Endocrinological effects of strong 60-Hz electric fields on rats

    SciTech Connect

    Free, M.J.; Kaune, W.T.; Phillips, R.D.; Cheng, H.C.

    1981-01-01

    Adult male rats were exposed or sham-exposed to 60-Hz electric fields without spark discharges, ozone, or significant levels or other secondary variables. No effects were discharges, ozone, or significant levels of other secondary variables. No effects were observed on body weights or plasma hormone levels after 30 days of exposure at an effective field strength of 68 kV/m. After 120 days of exposure (effective field strength = 64 kV/m), effects were inconsistent, with signficant reductions in body weight and plasma levels of follicle-stimulating hormone and corticosterone occurring in one replicate experiment but not in the other. Plasma testosterone levels were significantly reduced after 120 days of exposure in one experiment, with a similar but not statistically significant reduction in a replicate experiment. Weanling rats, exposed or sham-exposed in electric fields with an effective field strength of 80 kV/m from 20 to 56 days of age, exhibited identical or closely similar growth trends in body and organ weights. Hormone levels in exposed and sham-exposed groups were also similar. However, there was an apparent phase shift between the two groups in the cyclic variations of concentrations of hormones at different stages of development, particularly with respect to follicle-stimulating hormone and corticosterone. We concluded that 60-Hz electric fields may bring about subtle changes in the endocrine system of rats, and that these changes may be related to alterations in episodic rhythms.

  11. Slip-stacking Dynamics and the 20 Hz Booster

    SciTech Connect

    Eldred, Jeffery; Zwaska, Robert

    2015-03-01

    Slip-stacking is an accumulation technique used at Fermilab since 2004 which nearly doubles the proton intensity. The Proton Improvement Plan II intensity upgrades require a reduction in slip-stacking losses by approximately a factor of 2. We study the single-particle dynamics that determine the stability of slip-stacking particles. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We show the particle loss as a function of time. We calculate the injection efficiency as a function of longitudinal emittance and aspect-ratio. We demonstrate that the losses from RF single particle dynamics can be reduced by a factor of 4-10 (depending on beam parameters) by upgrading the Fermilab Booster from a 15-Hz cycle-rate to a 20-Hz cycle-rate. We recommend a change in injection scheme to eliminate the need for a greater momentum aperture in the Fermilab Recycler.

  12. Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson’s disease

    PubMed Central

    Krause, Vanessa; Wach, Claudia; Südmeyer, Martin; Ferrea, Stefano; Schnitzler, Alfons; Pollok, Bettina

    2014-01-01

    Parkinson’s disease (PD) is associated with pathologically altered oscillatory activity. While synchronized oscillations between 13 and 30 Hz are increased within a cortico-subcortical network, cortico-muscular coupling (CMC) is decreased. The present study aims at investigating the effect of non-invasive transcranial alternating current stimulation (tACS) of the primary motor cortex (M1) on motor symptoms and motor-cortical oscillations in PD. In 10 PD patients and 10 healthy control subjects, static isometric contraction, dynamic fast finger tapping, and diadochokinesia of the more severely affected hand were investigated prior to and shortly after tACS of the contralateral M1 at 10 Hz vs. 20 Hz vs. sham. During isometric contraction, neuromagnetic activity was recorded using magnetoencephalography. 20 Hz tACS attenuated beta band CMC during isometric contraction and amplitude variability during finger tapping in PD patients but not in healthy control subjects. 10 Hz tACS yielded no significant after-effects. The present data suggest that PD is associated with pathophysiological alterations which abet a higher responsiveness toward frequency-specific tACS – possibly due to pathologically altered motor-cortical oscillatory synchronization at frequencies between 13 and 30 Hz. PMID:24474912

  13. Psychophysical tuning curves at very high frequencies

    NASA Astrophysics Data System (ADS)

    Yasin, Ifat; Plack, Christopher J.

    2005-10-01

    For most normal-hearing listeners, absolute thresholds increase rapidly above about 16 kHz. One hypothesis is that the high-frequency limit of the hearing-threshold curve is imposed by the transmission characteristics of the middle ear, which attenuates the sound input [Masterton et al., J. Acoust. Soc. Am. 45, 966-985 (1969)]. An alternative hypothesis is that the high-frequency limit of hearing is imposed by the tonotopicity of the cochlea [Ruggero and Temchin, Proc. Nat. Acad. Sci. U.S.A. 99, 13206-13210 (2002)]. The aim of this study was to test these hypotheses. Forward-masked psychophysical tuning curves (PTCs) were derived for signal frequencies of 12-17.5 kHz. For the highest signal frequencies, the high-frequency slopes of some PTCs were steeper than the slope of the hearing-threshold curve. The results also show that the human auditory system displays frequency selectivity for characteristic frequencies (CFs) as high as 17 kHz, above the frequency at which absolute thresholds begin to increase rapidly. The findings suggest that, for CFs up to 17 kHz, the high-frequency limitation in humans is imposed in part by the middle-ear attenuation, and not by the tonotopicity of the cochlea.

  14. Investigation of geomagnetic disturbances (F=1-5 Hz) before strong EQs in Kamchatka region

    NASA Astrophysics Data System (ADS)

    Kopytenko, Y.; Ismaguilov, V.; Schekotov, A.; Molchanov, O.; Hayakawa, M.

    2007-05-01

    Regular observations of ULF electromagnetic disturbances at st. Karymshino in seismic active zone of Kamchatka peninsula were carried out by induction three-component high-sensitive magnetometer during 2001- 2003 years. Five seismic active periods with strong earthquakes (M>5) were displayed during this period. These EQs occurred at the Pacific at 20-60 km depth at 100-140 km distances to the East from the st. Karymshino. Analysis of normalized dynamic power spectra of data of high-sensitive (0.2 pT/sqrt(Hz)) three- component induction magnetometer achieved a significant disorder of daily variation and increasing of the magnetic disturbance intensities (from 0.2 to ~ 1 pT) in the whole investigated frequency range (1 - 5 Hz). The anomaly intensity increasing was observed during the 12-18 hours before main seismic shocks. Maximum of the increasing occurred during 4-6 hours before the EQs. A sharp decreasing of the magnetic disturbance intensities was observed 2-4 hours before the EQs. We suppose that physical processes in a hearth of forthcoming EQ lead to an irreversible avalanche-like formation of cracks and stimulation of the ULF electromagnetic disturbances.

  15. Resonant frequency tuning of an industrial vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Toh, T. T.; Wright, S. W.; Mitcheson, P. D.

    2014-11-01

    This paper presents preliminary results of tuning the resonant frequency of two industrial vibration energy harvesters. The VEH-450 from Ferro Solutions and the PMG17-50 from Perpetuum were tested using discrete reactive electrical loads. The former could be tuned to +0.5 Hz and -2 Hz from its natural resonant frequency of 50.5 Hz at 0.1g. The latter, however, has a broadband output power spectrum that spans ±10 Hz and its output voltage saturates at 7 Vrms, thereby rendering it un-tunable using the method presented here. A comparison of output power between a tuned VEH-450 and an un-tuned PMG17-50, normalised by harvester weight, shows that the former outperforms the latter only at a tuned frequency of 49.8 Hz. A discussion of a resonant frequency tuning circuit that can be fitted to an existing harvester without making modifications to the harvester is presented.

  16. Are the kHz QPO Lags in Neutron Star 4U 1608–52 due to Reverberation?

    NASA Astrophysics Data System (ADS)

    Cackett, Edward M.

    2016-08-01

    X-ray reverberation lags have recently been discovered in both active galactic nuclei (AGNs) and black hole X-ray binaries. A recent study of the neutron star low-mass X-ray binary (LMXB) 4U 1608‑52 has also shown significant lags, whose properties hint at a reverberation origin. Here, we adapt general relativistic ray tracing impulse response functions used to model X-ray reverberation in AGNs for neutron star LMXBs. Assuming that relativistic reflection forms the broad iron line and associated reflection continuum, we use reflection fits to the energy spectrum along with the impulse response functions to calculate the expected lags as a function of energy over the range of observed kHz quasi-periodic oscillation (QPO) frequencies in 4U 1608‑52. We find that the lag energy spectrum is expected to increase with increasing energy above 8 keV, while the observed lags in 4U 1608‑52 show the opposite behavior. This demonstrates that the lags in the lower kHz QPO of 4U 1608‑52 are not solely due to reverberation. We do note, however, that the models appear to be more consistent with the much flatter lag energy spectrum observed in the upper kHz QPO of several neutron star LMXBs, suggesting that lower and upper kHz QPOs may have different origins.

  17. Are the kHz QPO Lags in Neutron Star 4U 1608-52 due to Reverberation?

    NASA Astrophysics Data System (ADS)

    Cackett, Edward M.

    2016-08-01

    X-ray reverberation lags have recently been discovered in both active galactic nuclei (AGNs) and black hole X-ray binaries. A recent study of the neutron star low-mass X-ray binary (LMXB) 4U 1608‑52 has also shown significant lags, whose properties hint at a reverberation origin. Here, we adapt general relativistic ray tracing impulse response functions used to model X-ray reverberation in AGNs for neutron star LMXBs. Assuming that relativistic reflection forms the broad iron line and associated reflection continuum, we use reflection fits to the energy spectrum along with the impulse response functions to calculate the expected lags as a function of energy over the range of observed kHz quasi-periodic oscillation (QPO) frequencies in 4U 1608‑52. We find that the lag energy spectrum is expected to increase with increasing energy above 8 keV, while the observed lags in 4U 1608‑52 show the opposite behavior. This demonstrates that the lags in the lower kHz QPO of 4U 1608‑52 are not solely due to reverberation. We do note, however, that the models appear to be more consistent with the much flatter lag energy spectrum observed in the upper kHz QPO of several neutron star LMXBs, suggesting that lower and upper kHz QPOs may have different origins.

  18. Are the kHz QPO lags in neutron star 4U 1608-52 due to reverberation?

    NASA Astrophysics Data System (ADS)

    Cackett, Edward

    2016-04-01

    X-ray reverberation lags have recently been discovered in both active galactic nuclei (AGN) and black hole X-ray binaries. A recent study of the neutron star low-mass X-ray binary 4U 1608-52 has also shown significant lags, whose properties hint at a reverberation origin. Here, we adapt general relativistic ray tracing impulse response functions used to model X-ray reverberation in AGN for neutron star low-mass X-ray binaries, and calculate the expected lags as a function of energy over the range of observed kHz QPO frequencies in 4U 1608-52. We find that the lag energy spectrum is expected to increase with increasing energy above 8 keV, while the observed lags in 4U 1608-52 show the opposite behavior. This demonstrates that the lags in the lower kHz QPO of 4U 1608-52 are not solely due to reverberation. We do note, however, that the models appear to be more consistent with the much flatter lag energy spectrum observed in the upper kHz QPO of several neutron star low-mass X-ray binaries, suggesting that lower and upper kHz QPOs may have different origins.

  19. The Nature of the mHz X-ray QPOs from the Ultraluminous X-ray Source M82 X-1: Timing-Spectral (anti)-correlation?

    NASA Astrophysics Data System (ADS)

    Ranga Reddy Pasham, Dheeraj; Strohmayer, T. E.

    2013-04-01

    We have analyzed all archival XMM-Newton observations of the ultraluminous X-ray source (ULX) M82 X-1 in order to search for a correlation between its mHz quasiperiodic oscillation (QPO) frequency and energy spectral power-law index. These quantities are known to correlate in stellar mass black holes (StMBHs) exhibiting so-called Type-C QPOs. The detection of a similar relation in M82 X-1 would strengthen the identification of its mHz QPOs as Type-C and thus enable more reliable mass estimates by scaling of the QPO frequencies in X-1 to those of Type-C QPOs in StMBHs of known mass. We used surface brightness modeling to estimate the count rates produced by X-1 and a nearby (5'') bright source that can contribute substantial flux in XMM-Newton's 15'' (HPD) beam. We thus identify the observations in which M82 X-1 is at least as bright as the nearby source. In these observations we detect mHz QPOs with centroid frequencies spanning the range from 36 mHz to 210 mHz (the lowest and the highest yet reported from X-1). We model the 3-10 keV spectrum and find that the power-law index changes significantly from 1.7 - 2.2 during these observations. With all observations included we find evidence for an anti-correlation between the centroid frequency of the mHz QPOs and the power-law index. The value of the Pearson's correlation coefficient is -0.95. While such an anti-correlation is observed in StMBHs at high Type-C QPO frequencies (5-15 Hz), the frequency range over which it holds in StMBHs is significantly smaller (factor of 1-3) than the QPO range now reported here for X-1, which varies over a factor of 5.8 (36-210 mHz). However, we note that the correlation hinges on the observation with the lowest inferred energy spectral index and for which the fitted count rate ratio of X-1 to the nearby source is 1.1. So the implied anti-correlation needs to be confirmed with either less ``contaminated" observations or higher angular resolution spectral measurements made in tandem

  20. 300 Hz thermoacoustically driven pulse tube cooler for temperature below 100 K

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Yu, Guoyao; Zhu, Shanglong; Luo, Ercang

    2007-01-01

    This letter introduces a thermoacoustically driven pulse tube cooler system working at around 300Hz. In the system, a thermoacoustic standing-wave engine is used to drive a Stirling-type pulse tube cooler. Besides the design considerations for key components in each subsystem, the benefits of using the acoustic amplifier tube to couple the engine and the cooler have been analyzed through both calculations and experiments. So far, a lowest no-load temperature of 95K has been obtained on the system with the acoustic amplifier tube being used. Since high frequency operation of the system could lead to a much reduced system size, the result shows the potential of using the system in small-scale cryogenic applications.

  1. Influence of Liquid Height on Mechanical and Chemical Effects in 20 kHz Sonication

    NASA Astrophysics Data System (ADS)

    Tran, Khuyen Viet Bao; Asakura, Yoshiyuki; Koda, Shinobu

    2013-07-01

    We examined the influence of liquid height on mechanical and chemical effects in 20 kHz sonication with a new Langevin-type transducer. Mechanical effects were evaluated from the degradation of polyethylene oxide in aqueous solution and chemical effects were measured with potassium iodide solution. Standing waves or reactive zones were observed using sonochemical luminescence and aluminum foil erosion. The observed wavelength was reduced by coupled vibration, compared with the wavelength calculated by dividing velocity by irradiation frequency. As liquid height increased, mechanical effects were suppressed. In the case of chemical effects, the stable sonochemical efficiency gained at a height of over 120 mm, and the sonochemical efficiency were also markedly higher than those of a conventional horn-type one.

  2. Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor

    PubMed Central

    Guentner, Manuel; Schildhauer, Monika; Thumser, Stefan; Mayer, Peter; Stephenson, David; Mayer, Peter J.; Dube, Henry

    2015-01-01

    Photodriven molecular motors are able to convert light energy into directional motion and hold great promise as miniaturized powering units for future nanomachines. In the current state of the art, considerable efforts have still to be made to increase the efficiency of energy transduction and devise systems that allow operation in ambient and non-damaging conditions with high rates of directional motions. The need for ultraviolet light to induce the motion of virtually all available light-driven motors especially hampers the broad applicability of these systems. We describe here a hemithioindigo-based molecular motor, which is powered exclusively by nondestructive visible light (up to 500 nm) and rotates completely directionally with kHz frequency at 20 °C. This is the fastest directional motion of a synthetic system driven by visible light to date permitting materials and biocompatible irradiation conditions to establish similarly high speeds as natural molecular motors. PMID:26411883

  3. Mechanism for generation of 2-3 kHz radiation in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Macek, W. M.

    1995-01-01

    The question of how low-frequency non-thermal radio emissions at the boundary of the heliosphere might be generated is considered. The mechanism consists of two steps. First, the beam of energetic electrons generates a high level of electrostatic Langmuir plasma waves. Second, electromagnetic radiation results from the non-linear interaction between Langmuir waves. Intensity of radio emissions at 2 to 3 kHz detected by the Voyager plasma wave instrument in the outer heliosphere can be explained provided that the electron beams generating Langmuir waves exist also in the postshock plasma due to secondary shocks in the compressed solar wind beyond the termination shock. Modification of the heliospheric shocks by the cosmic ray pressure is also taken into account. The field strengths of Langmuir waves required to generate the second harmonic emissions are of 50 to 100 microvolts per meter. These waves may be observed in situ by Voyager 1 and 2 in the near future.

  4. Mitigation of 50-60 Hz power line interference in geophysical data

    NASA Astrophysics Data System (ADS)

    Cohen, M. B.; Said, R. K.; Inan, U. S.

    2010-12-01

    The analysis of ELF/VLF radio data has broad applications for ionospheric and magnetospheric phenomena, lightning activity, long-range communications, and geophysical prospecting. However, recordings of ELF/VLF data on the ground are adversely affected by the presence of electromagnetic fields from 50-60 Hz power lines, whose harmonics can extend to many kilohertz and interfere with the detection of natural and man-made signals. Removal of this interference is complicated by the time-varying fundamental frequency of power lines and strongly varying characteristics across different power grids. We discuss two methods for isolation and then subtraction of this interference, by an adaptive filtering technique and with least squares matrix analysis. Methods for estimating the time-varying frequency are also discussed. A few variants of these techniques are applied both to simulated data and then to real data. It is found that least squares isolation gives superior results, although the adaptive filter is potentially more effective for poorly behaved power line interference with rapidly changing fundamental frequencies as well as being computationally more efficient.

  5. DISCOVERY OF A 7 mHz X-RAY QUASI-PERIODIC OSCILLATION FROM THE MOST MASSIVE STELLAR-MASS BLACK HOLE IC 10 X-1

    SciTech Connect

    Pasham, Dheeraj R.; Mushotzky, Richard F.; Strohmayer, Tod E. E-mail: richard@astro.umd.edu

    2013-07-10

    We report the discovery with XMM-Newton of an Almost-Equal-To 7 mHz X-ray (0.3-10.0 keV) quasi-periodic oscillation (QPO) from the eclipsing, high-inclination black hole binary IC 10 X-1. The QPO is significant at >4.33{sigma} confidence level and has a fractional amplitude (% rms) and a quality factor, Q {identical_to} {nu}/{Delta}{nu}, of Almost-Equal-To 11 and 4, respectively. The overall X-ray (0.3-10.0 keV) power spectrum in the frequency range 0.0001-0.1 Hz can be described by a power-law with an index of Almost-Equal-To - 2, and a QPO at 7 mHz. At frequencies {approx}>0.02 Hz there is no evidence for significant variability. The fractional amplitude (rms) of the QPO is roughly energy-independent in the energy range of 0.3-1.5 keV. Above 1.5 keV the low signal-to-noise ratio of the data does not allow us to detect the QPO. By directly comparing these properties with the wide range of QPOs currently known from accreting black hole and neutron stars, we suggest that the 7 mHz QPO of IC 10 X-1 may be linked to one of the following three categories of QPOs: (1) the 'heartbeat' mHz QPOs of the black hole sources GRS 1915+105 and IGR J17091-3624, or (2) the 0.6-2.4 Hz 'dipper QPOs' of high-inclination neutron star systems, or (3) the mHz QPOs of Cygnus X-3.

  6. Effects of a 60 Hz Magnetic Field Exposure Up to 3000 μT on Human Brain Activation as Measured by Functional Magnetic Resonance Imaging

    PubMed Central

    Legros, Alexandre; Modolo, Julien; Brown, Samantha; Roberston, John; Thomas, Alex W.

    2015-01-01

    Several aspects of the human nervous system and associated motor and cognitive processes have been reported to be modulated by extremely low-frequency (ELF, < 300 Hz) time-varying Magnetic Fields (MF). Due do their worldwide prevalence; power-line frequencies (60 Hz in North America) are of particular interest. Despite intense research efforts over the last few decades, the potential effects of 60 Hz MF still need to be elucidated, and the underlying mechanisms to be understood. In this study, we have used functional Magnetic Resonance Imaging (fMRI) to characterize potential changes in functional brain activation following human exposure to a 60 Hz MF through motor and cognitive tasks. First, pilot results acquired in a first set of subjects (N=9) were used to demonstrate the technical feasibility of using fMRI to detect subtle changes in functional brain activation with 60 Hz MF exposure at 1800 μT. Second, a full study involving a larger cohort of subjects tested brain activation during 1) a finger tapping task (N=20), and 2) a mental rotation task (N=21); before and after a one-hour, 60 Hz, 3000 μT MF exposure. The results indicate significant changes in task-induced functional brain activation as a consequence of MF exposure. However, no impact on task performance was found. These results illustrate the potential of using fMRI to identify MF-induced changes in functional brain activation, suggesting that a one-hour 60 Hz, 3000 μT MF exposure can modulate activity in specific brain regions after the end of the exposure period (i.e., residual effects). We discuss the possibility that MF exposure at 60 Hz, 3000 μT may be capable of modulating cortical excitability via a modulation of synaptic plasticity processes. PMID:26214312

  7. Discovery of a 7 mHz X-Ray Quasi-Periodic Oscillation from the Most Massive Stellar-Mass Black Hole IC 10 X-1

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Mushotzky, Richard F.

    2013-01-01

    We report the discovery with XMM-Newton of an approx.. = 7 mHz X-ray (0.3-10.0 keV) quasi-periodic oscillation (QPO) from the eclipsing, high-inclination black hole binary IC 10 X-1. The QPO is significant at >4.33 sigma confidence level and has a fractional amplitude (% rms) and a quality factor, Q is identical with nu/delta nu, of approx. = 11 and 4, respectively. The overall X-ray (0.3-10.0 keV) power spectrum in the frequency range 0.0001-0.1 Hz can be described by a power-law with an index of approx. = -2, and a QPO at 7 mHz. At frequencies approx. > 0.02 Hz there is no evidence for significant variability. The fractional amplitude (rms) of the QPO is roughly energy-independent in the energy range of 0.3-1.5 keV. Above 1.5 keV the low signal-to-noise ratio of the data does not allow us to detect the QPO. By directly comparing these properties with the wide range of QPOs currently known from accreting black hole and neutron stars, we suggest that the 7 mHz QPO of IC 10 X-1 may be linked to one of the following three categories of QPOs: (1) the "heartbeat" mHz QPOs of the black hole sources GRS 1915+105 and IGR J17091-3624, or (2) the 0.6-2.4 Hz "dipper QPOs" of high-inclination neutron star systems, or (3) the mHz QPOs of Cygnus X-3.

  8. Ultra-low-noise EEG/MEG systems enable bimodal non-invasive detection of spike-like human somatosensory evoked responses at 1 kHz.

    PubMed

    Fedele, T; Scheer, H J; Burghoff, M; Curio, G; Körber, R

    2015-02-01

    Non-invasive EEG detection of very high frequency somatosensory evoked potentials featuring frequencies up to and above 1 kHz has been recently reported. Here, we establish the detectability of such components by combined low-noise EEG/MEG. We recorded SEP/SEF simultaneously using median nerve stimulation in five healthy human subjects inside an electromagnetically shielded room, combining a low-noise EEG custom-made amplifier (4.7 nV/√Hz) and a custom-made single-channel low-noise MEG (0.5 fT/√Hz @ 1 kHz). Both, low-noise EEG and MEG revealed three spectrally distinct and temporally overlapping evoked components: N20 (<100 Hz), sigma-burst (450-750 Hz), and kappa-burst (850-1200 Hz). The two recording modalities showed similar relative scaling of signal amplitude in all three frequencies domains (EEG [10 nV] ≅ MEG [1 fT]). Pronounced waveform (peak-by-peak) overlap of EEG and MEG signals is observed in the sigma band, whereas in the kappa band overlap was only partial. A decreasing signal-to-noise ratio (SNR; calculated for n = 12.000 averages) from sigma to kappa components characterizes both, electric and magnetic field recordings: Sigma-band SNR was 12.9  ±  5.5/19.8  ±  12.6 for EEG/MEG, and kappa-band SNR at 3.77  ±  0.8/4.5  ±  2.9. High-frequency performance of a tailor-made MEG matches closely with simultaneously recorded low-noise EEG for the non-invasive detection of somatosensory evoked activity at and above 1 kHz. Thus, future multi-channel dual-mode low-noise technology could offer complementary views for source reconstruction of the neural generators underlying such high-frequency responses, and render neural high-frequency processes related to multi-unit spike discharges accessible in non-invasive recordings. PMID:25612926

  9. Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider.

    PubMed

    Quinlan, Franklyn; Fortier, Tara M; Kirchner, Matthew S; Taylor, Jennifer A; Thorpe, Michael J; Lemke, Nathan; Ludlow, Andrew D; Jiang, Yanyi; Diddams, Scott A

    2011-08-15

    We present an optical frequency divider based on a 200 MHz repetition rate Er:fiber mode-locked laser that, when locked to a stable optical frequency reference, generates microwave signals with absolute phase noise that is equal to or better than cryogenic microwave oscillators. At 1 Hz offset from a 10 GHz carrier, the phase noise is below -100 dBc/Hz, limited by the optical reference. For offset frequencies >10 kHz, the phase noise is shot noise limited at -145 dBc/Hz. An analysis of the contribution of the residual noise from the Er:fiber optical frequency divider is also presented. PMID:21847227

  10. A 100 kV, 60 A solid state 4 kHz switching modulator for high power klystron driving

    NASA Astrophysics Data System (ADS)

    Cortázar, O. D.; Ganuza, D.; De La Fuente, J. M.; Zulaika, M.; Pérez, A.; Anderson, D. E.

    2013-05-01

    A solid state high power modulator capable of delivering 120 kV and 60 A developed in collaboration with the JEMA Corporation, ESS Bilbao, and the SNS (ORNL) for driving high power klystrons is presented. Pulses with less than 10 μs risetime and flatness under 0.1% are obtained with programmable frequency pulses between 2 and 50 Hz. Eight solid state switches combined with custom air-insulated high voltage transformers working at a switching frequency of 4 kHz produce high quality pulses by phase shifting the transformer drives. Each relative high frequency stage pumps a double stage high voltage Marx generator that supplies the output pulse shape and frequency. This merged topology between a Marx generator and direct modulator takes advantage of the strengths of both approaches. Low energy storage in the output stages assures safe operation in case of a load arc discharge. Real time voltage correction during the pulse is also provided to compensate for the droop inherent with the use of low energy storage in the output stages. Data at full power with a dummy resistive load are presented.

  11. A 100 kV, 60 A solid state 4 kHz switching modulator for high power klystron driving.

    PubMed

    Cortázar, O D; Ganuza, D; De La Fuente, J M; Zulaika, M; Pérez, A; Anderson, D E

    2013-05-01

    A solid state high power modulator capable of delivering 120 kV and 60 A developed in collaboration with the JEMA Corporation, ESS Bilbao, and the SNS (ORNL) for driving high power klystrons is presented. Pulses with less than 10 μs risetime and flatness under 0.1% are obtained with programmable frequency pulses between 2 and 50 Hz. Eight solid state switches combined with custom air-insulated high voltage transformers working at a switching frequency of 4 kHz produce high quality pulses by phase shifting the transformer drives. Each relative high frequency stage pumps a double stage high voltage Marx generator that supplies the output pulse shape and frequency. This merged topology between a Marx generator and direct modulator takes advantage of the strengths of both approaches. Low energy storage in the output stages assures safe operation in case of a load arc discharge. Real time voltage correction during the pulse is also provided to compensate for the droop inherent with the use of low energy storage in the output stages. Data at full power with a dummy resistive load are presented. PMID:23742574

  12. On the Nature of the mHz X-Ray QPOs from ULX M82 X-1: Evidence for Timing-Spectral (anti) Correlation

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    Using all the archival XMM-Newton X-ray (3-10 keV) observations of the ultraluminous X-ray source (ULX) M82 X-1 we searched for a correlation between its variable mHz quasi-periodic oscillation (QPO) frequency and its energy spectral power-law index. These quantities are known to correlate in stellar mass black holes (StMBHs) exhibiting Type-C QPOs (approx 0.2-15 Hz). The detection of such a correlation would strengthen the identification of its mHz QPOs as Type-C and enable a more reliable mass estimate by scaling its QPO frequencies to those of Type-C QPOs in StMBHs of known mass. We resolved the count rates of M82 X-1 and a nearby bright ULX (source 5/X42.3+59) through surface brightness modeling and identify observations in which M82 X-1 was at least as bright as source 5. Using only those observations, we detect QPOs in the frequency range of 36-210 mHz during which the energy spectral power-law index varied from 1.7-2.2. Interestingly, we find evidence for an anti-correlation (Pearsons correlation coefficient = -0.95) between the power-law index and the QPO centroid frequency. While such an anti-correlation is observed in StMBHs at high Type-C QPO frequencies (approx 5-15 Hz), the frequency range over which it holds in StMBHs is significantly smaller (factor of approx 1.5-3) than the QPO range reported here from M82 X-1 (factor of 6). However, it remains possible that contamination from source 5 can bias our result. Joint Chandra/XMM-Newton observations in the future can resolve this problem and confirm the timing-spectral anti-correlation reported here.

  13. Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics.

    PubMed

    Zhou, Hong; Melloni, Lucia; Poeppel, David; Ding, Nai

    2016-01-01

    Brain activity can follow the rhythms of dynamic sensory stimuli, such as speech and music, a phenomenon called neural entrainment. It has been hypothesized that low-frequency neural entrainment in the neural delta and theta bands provides a potential mechanism to represent and integrate temporal information. Low-frequency neural entrainment is often studied using periodically changing stimuli and is analyzed in the frequency domain using the Fourier analysis. The Fourier analysis decomposes a periodic signal into harmonically related sinusoids. However, it is not intuitive how these harmonically related components are related to the response waveform. Here, we explain the interpretation of response harmonics, with a special focus on very low-frequency neural entrainment near 1 Hz. It is illustrated why neural responses repeating at f Hz do not necessarily generate any neural response at f Hz in the Fourier spectrum. A strong neural response at f Hz indicates that the time scales of the neural response waveform within each cycle match the time scales of the stimulus rhythm. Therefore, neural entrainment at very low frequency implies not only that the neural response repeats at f Hz but also that each period of the neural response is a slow wave matching the time scale of a f Hz sinusoid. PMID:27375465

  14. Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics

    PubMed Central

    Zhou, Hong; Melloni, Lucia; Poeppel, David; Ding, Nai

    2016-01-01

    Brain activity can follow the rhythms of dynamic sensory stimuli, such as speech and music, a phenomenon called neural entrainment. It has been hypothesized that low-frequency neural entrainment in the neural delta and theta bands provides a potential mechanism to represent and integrate temporal information. Low-frequency neural entrainment is often studied using periodically changing stimuli and is analyzed in the frequency domain using the Fourier analysis. The Fourier analysis decomposes a periodic signal into harmonically related sinusoids. However, it is not intuitive how these harmonically related components are related to the response waveform. Here, we explain the interpretation of response harmonics, with a special focus on very low-frequency neural entrainment near 1 Hz. It is illustrated why neural responses repeating at f Hz do not necessarily generate any neural response at f Hz in the Fourier spectrum. A strong neural response at f Hz indicates that the time scales of the neural response waveform within each cycle match the time scales of the stimulus rhythm. Therefore, neural entrainment at very low frequency implies not only that the neural response repeats at f Hz but also that each period of the neural response is a slow wave matching the time scale of a f Hz sinusoid. PMID:27375465

  15. kHz Quasiperiodic Oscillations in Low-Mass X-Ray Binaries as Probes of General Relativity in the Strong-Field Regime

    NASA Astrophysics Data System (ADS)

    Stella, Luigi; Vietri, Mario

    1999-01-01

    We consider the interpretation of a pair of kHz quasiperiodic oscillations (QPOs) in the Fourier spectra of two low-mass x-ray binaries, Sco X-1 and 4U1608-52, hosting an old accreting neutron star. The observed frequency difference of these QPOs decreases as their frequency increases, contrary to simple beat frequency models. We show that the behavior of these QPOs is instead well matched in terms of the fundamental frequencies for test particle motion in the gravitational field of the neutron star, for reasonable star masses, and nearly independent of the star spin. These results are not reproduced through the post-Newtonian approximation of general relativity. kHz QPOs from x-ray binaries likely provide an accurate laboratory for strong-field general relativity.

  16. development of a medium repetition rate (10 Hz - 500 Hz) diode pumped laser transmitter for airborne scanning altimetry

    NASA Technical Reports Server (NTRS)

    Coyle, D. Barry; Lindauer, Steven J., II; Kay, Richard B.

    1998-01-01

    Since the late 1980's, NASA has developed several small, all-solid state lasers of low repetition rates for use as transmitters in prototype LIDAR and raster scanned altimetry retrieval systems. Our early laser transmitters were developed for high resolution airborne altimetry which employed cavity dumping techniques to produce a pulse shape with a 1 ns rise time. The first such laser was the SUMR (Sub-millimeter resolution) transmitter which used a side pumped, D-shaped half-rod of Nd:YAG for the oscillator active media and produced approximately 3 ns pulses of 100 micro-J energy at a 40 Hz repetition rate. (Coyle and Blair, 1993; Coyle et al., 1995) After several upgrades to improve rep rate and pulse energy, the final version produced 1.2 mJ pulses at 120 Hz with a 3.7 ns pulse width. The laser has become known as SPLT (Sharp Pulsed Laser Transmitter), and has flown successfully on a variety of airborne altimetry missions. (Coyle and Blair, 1995; Blair et al., 1994) From building these systems, we have accrued valuable experience in delivering field-deployable lasers and have become aware of the advantages and disadvantages of employing new technologies. For example, even though the laser's main operating environment is in a "cold" aircraft during flight, the laser must still operate in very warm temperatures. This is important if the mission is based in the desert or a tropical climate since ground calibration data from stationary targets must be gathered before and after each data flight. Because conductive cooling is much more convenient than closed loop water flow, achieving the highest possible laser efficiency is becoming a high priority when designing a flight laser. This is especially true for lasers with higher pulse energies and repetition rates which are needed for high altitude scanning altimeters and LIDARs.

  17. Power line harmonic radiation observed by the DEMETER spacecraft at 50/60 Hz and low harmonics

    NASA Astrophysics Data System (ADS)

    Němec, F.; Parrot, M.; Santolík, O.

    2015-10-01

    We present a low-altitude satellite survey of Power Line Harmonic Radiation (PLHR), i.e., electromagnetic waves radiated by electric power systems on the ground. We focus on frequencies corresponding to the first few harmonics of the base power system frequencies (50 Hz or 60 Hz, depending on the region). It is shown that the intensities of electromagnetic waves detected at these frequencies at an altitude of about 700 km are significantly enhanced above industrialized areas. The frequencies at which the wave intensities are increased are in excellent agreement with base power system frequencies just below the satellite location. We also investigate a possible presence of the weekend effect, i.e., if the situation is different during the weekends when the power consumption is lower than during the weekdays. Such an effect might be possibly present in the European region, but it is very weak. PLHR effects are less often detected in the summer, as the ionospheric absorption increases, and also, the radiation is obscured by lightning generated emissions. This difference is smaller in the U.S. region, in agreement with the monthly variations of the power consumption. The analysis of the measured frequency spectra reveals that although intensity increases at low odd harmonics of base power system frequencies are routinely detected, low even harmonics are generally absent. Finally, we verify the relation of PLHR intensities to the geomagnetically induced currents (GICs) proxy. It is shown that the PLHR intensity is increased at the times of higher GIC proxy values during the night.

  18. New insights into the structure, assembly and biological roles of 10-12 nm connective tissue microfibrils from fibrillin-1 studies.

    PubMed

    Jensen, Sacha A; Handford, Penny A

    2016-04-01

    The 10-12 nm diameter microfibrils of the extracellular matrix (ECM) impart both structural and regulatory properties to load-bearing connective tissues. The main protein component is the calcium-dependent glycoprotein fibrillin, which assembles into microfibrils at the cell surface in a highly regulated process involving specific proteolysis, multimerization and glycosaminoglycan interactions. In higher metazoans, microfibrils act as a framework for elastin deposition and modification, resulting in the formation of elastic fibres, but they can also occur in elastin-free tissues where they perform structural roles. Fibrillin microfibrils are further engaged in a number of cell matrix interactions such as with integrins, bone morphogenetic proteins (BMPs) and the large latent complex of transforming growth factor-β (TGFβ). Fibrillin-1 (FBN1) mutations are associated with a range of heritable connective disorders, including Marfan syndrome (MFS) and the acromelic dysplasias, suggesting that the roles of 10-12 nm diameter microfibrils are pleiotropic. In recent years the use of molecular, cellular and whole-organism studies has revealed that the microfibril is not just a structural component of the ECM, but through its network of cell and matrix interactions it can exert profound regulatory effects on cell function. In this review we assess what is known about the molecular properties of fibrillin that enable it to assemble into the 10-12 nm diameter microfibril and perform such diverse roles. PMID:27026396

  19. High-frequency electroacupuncture evidently reinforces hippocampal synaptic transmission in Alzheimer's disease rats

    PubMed Central

    Li, Wei; Kong, Li-hong; Wang, Hui; Shen, Feng; Wang, Ya-wen; Zhou, Hua; Sun, Guo-jie

    2016-01-01

    The frequency range of electroacupuncture in treatment of Alzheimer's disease in rats is commonly 2–5 Hz (low frequency) and 50–100 Hz (high frequency). We established a rat model of Alzheimer's disease by injecting β-amyloid 1–42 (Aβ1–42) into the bilateral hippocampal dentate gyrus to verify which frequency may be better suited in treatment. Electroacupuncture at 2 Hz or 50 Hz was used to stimulate Baihui (DU20) and Shenshu (BL23) acupoints. The water maze test and electrophysiological studies demonstrated that spatial memory ability was apparently improved, and the ranges of long-term potentiation and long-term depression were increased in Alzheimer's disease rats after electroacupuncture treatment. Moreover, the effects of electroacupuncture at 50 Hz were better than that at 2 Hz. These findings suggest that high-frequency electroacupuncture may enhance hippocampal synaptic transmission and potentially improve memory disorders in Alzheimer's disease rats. PMID:27335565

  20. Expression of c-Fos in rat auditory and limbic systems following 22-kHz calls.

    PubMed

    Ouda, Ladislav; Jílek, Milan; Syka, Josef

    2016-07-15

    In the present study, adult Long-Evans rats were exposed either to natural conspecific aversive 22-kHz vocalizations or to artificial call-like stimuli with comparable frequency-temporal features, followed by c-Fos immunohistochemistry. The natural 22-kHz vocalizations was either played from a recording or produced by a foot-shocked animal located nearby (live vocalizations). In comparison with controls (non-exposed animals), c-Fos immunoreactivity was significantly increased in the inferior colliculus (IC), auditory cortex (AC), periaqueductal grey (PAG), basolateral amygdala (BA), and hippocampus (Hip) of rats exposed to either live or recorded 22-kHz natural vocalizations. Exposure to live natural vocalizations of the foot-shocked animal resulted in a similar pattern of c-Fos activity, as did exposure to the playback of the natural vocalizations. In contrast to this, foot-shocked rats (emitting the 22-kHz vocalizations) had the c-Fos positivity increased markedly in the PAG and only slightly in the AC. The expression of c-Fos also increased in the IC, AC, and in the PAG in animals exposed to the artificial call-like stimuli, when compared to controls; however, the increase was much less pronounced. In this case, c-Fos expression was not increased in the hippocampus or basolateral amygdala. Interestingly, almost no c-Fos expression was found in the medial nucleus of the geniculate body in any of the experimental groups. These findings suggest that differences exist between the processing of important natural conspecific vocalizations and artificial call-like stimuli with similar frequency-temporal features, and moreover they suggest the specific role of individual brain structures in the processing of such calls. PMID:27102341

  1. Optical frequency comb spectroscopy.

    PubMed

    Foltynowicz, A; Masłowski, P; Ban, T; Adler, F; Cossel, K C; Briles, T C; Ye, J

    2011-01-01

    Optical frequency combs offer enormous potential in the detection and control of atoms and molecules by combining their vast spectral coverage with the extremely high spectral resolution of each individual comb component. Sensitive and multiplexed trace gas detection via cavity-enhanced direct frequency comb spectroscopy has been demonstrated for various molecules and applications; however, previous demonstrations have been confined to the visible and near-infrared wavelength range. Future spectroscopic capabilities are created by developing comb sources and spectrometers for the deep ultraviolet and mid-infrared spectral regions. Here we present a broadband high resolution mid-infrared frequency comb-based Fourier transform spectrometer operating in the important molecular fingerprint spectral region of 2100-3600 cm(-1) (2.8-4.8 microm). The spectrometer, employing a multipass cell, allows simultaneous acquisition of broadband, high resolution spectra (down to 0.0035 cm(-1) of many molecular species at concentrations in the part-per-billion range in less than 1 min acquisition time. The system enables precise measurements of concentration even in gas mixtures that exhibit continuous absorption bands. The current sensitivity, 2 x 10(-8) cm(-1) Hz-1/2 per spectral element, is expected to improve by two orders of magnitude with an external enhancement cavity. We have demonstrated this sensitivity increase by combining cavity-enhanced frequency comb spectroscopy with a scanning Fourier transform spectrometer in the near-infrared region and achieving a sensitivity of 4.7 x 10(-10) cm(-1) Hz(-1/2). A cavity-enhanced mid-infrared comb spectrometer will provide a near real-time, high sensitivity, high resolution, precisely frequency calibrated, broad bandwidth system for many applications. PMID:22457942

  2. Frequency division using a micromechanical resonance cascade

    SciTech Connect

    Qalandar, K. R. Gibson, B.; Sharma, M.; Ma, A.; Turner, K. L.; Strachan, B. S.; Shaw, S. W.

    2014-12-15

    A coupled micromechanical resonator array demonstrates a mechanical realization of multi-stage frequency division. The mechanical structure consists of a set of N sequentially perpendicular microbeams that are connected by relatively weak elastic elements such that the system vibration modes are localized to individual microbeams and have natural frequencies with ratios close to 1:2:⋯:2{sup N}. Conservative (passive) nonlinear inter-modal coupling provides the required energy transfer between modes and is achieved by finite deformation kinematics. When the highest frequency beam is excited, this arrangement promotes a cascade of subharmonic resonances that achieve frequency division of 2{sup j} at microbeam j for j = 1, …, N. Results are shown for a capacitively driven three-stage divider in which an input signal of 824 kHz is passively divided through three modal stages, producing signals at 412 kHz, 206 kHz, and 103 kHz. The system modes are characterized and used to delineate the range of AC input voltages and frequencies over which the cascade occurs. This narrow band frequency divider has simple design rules that are scalable to higher frequencies and can be extended to a larger number of modal stages.

  3. Homodyne digital interferometry for a sensitive fiber frequency reference.

    PubMed

    Ngo, Silvie; McRae, Terry G; Gray, Malcolm B; Shaddock, Daniel A

    2014-07-28

    Digitally enhanced homodyne interferometry enables robust interferometric sensitivity to be achieved in an optically simple configuration by shifting optical complexity into the digital signal processing regime. We use digitally enhanced homodyne interferometry in a simple, all-fiber Michelson interferometer to achieve a frequency reference stability of better than 20 Hz/√Hz from 10 mHz to 1 Hz, satisfying, for the first time in an all fiber system, the stability requirements for the Gravity Recovery and Climate Experiment Follow On mission. In addition, we have demonstrated stability that satisfies the future mission objectives at frequencies down to 1 mHz. This frequency domain stability translates into a fractional Allan deviation of 3.3 × 10(-17) for an integration time of 55 seconds. PMID:25089435

  4. Modulatory frequency of lasers in connection to laser beam therapeutic effect

    NASA Astrophysics Data System (ADS)

    Kucerova, Hana; Bartova, Jirina; Himmlova, Lucia; Dostalova, Tatjana; Mazanek, Jiri

    1998-04-01

    The subject of this work follows changes of the sIgA and albumin levels in the saliva of 48 patients treated after the extraction of their lower molars with either diode or He-Ne biostimulatory laser, using different modulatory frequencies (5 Hz, 292 Hz, 9000 Hz). The results were compared to the sIgA and albumin levels in the saliva of the control, i.e. not- treated group. For the tests radial immunodiffusion (RID) method was used (commercial RID kit of the Binding Site, Birmingham, Great Britain). Appropriately chosen laser beam modulatory frequency should influence the increase in the sIgA and albumin levels against the base level. In our study, this hypothesis was confirmed in the group treated with the frequency of 292 Hz and 9000 Hz (both diode GaAIAs, 670 nm, red, 20 mW, energy density 1.5 Jcm2) on albumin levels and 9000 Hz on sIgA levels. The changes of the levels of the watched markers versus the control group were at this frequencies (292 Hz and 9000 Hz) statistically significant. At the others used frequencies (5 Hz diode laser and 5 Hz He-Ne laser) the changes of the levels of the watched markers versus control group were statistically insignificant. The aim of this study was to contribute to the evaluation of specific modulatory frequencies (5 Hz, 292 Hz, 9000 Hz) for therapeutical use in a given pathological case of the oral cavity. We can conclude that using frequency 9000 Hz had best immunomodulatory effect.

  5. Electrical stimulation of the frontal cortex enhances slow-frequency EEG activity and sleepiness.

    PubMed

    D'Atri, A; De Simoni, E; Gorgoni, M; Ferrara, M; Ferlazzo, F; Rossini, P M; De Gennaro, L

    2016-06-01

    Our aim was to enhance the spontaneous slow-frequency EEG activity during the resting state using oscillating transcranial direct currents (tDCS) with a stimulation frequency that resembles the spontaneous oscillations of sleep onset. Accordingly, in this preliminary study, we assessed EEG after-effects of a frontal oscillatory tDCS with different frequency (0.8 vs. 5Hz) and polarity (anodal, cathodal, and sham). Two single-blind experiments compared the after effects on the resting EEG of oscillatory tDCS [Exp. 1=0.8Hz, 10 subjects (26.2±2.5years); Exp. 2=5Hz, 10 subjects (27.4±2.4years)] by manipulating its polarity. EEG signals recorded (28 scalp derivations) before and after stimulation [slow oscillations (0.5-1Hz), delta (1-4Hz), theta (5-7Hz), alpha (8-12Hz), beta 1 (13-15Hz) and beta 2 (16-24Hz)] were compared between conditions as a function of polarity (anodal vs. cathodal vs. sham) and frequency of stimulation (0.8 vs. 5Hz). We found a significant relative enhancement of the delta activity after the anodal tDCS at 5Hz compared to that at 0.8Hz. This increase, even though not reaching the statistical significance compared to sham, is concomitant to a significant increase of subjective sleepiness, as assessed by a visual analog scale. These two phenomena are linearly related with a regional specificity, correlations being restricted to cortical areas perifocal to the stimulation site. We have shown that a frontal oscillating anodal tDCS at 5Hz results in an effective change of both subjective sleepiness and spontaneous slow-frequency EEG activity. These changes are critically associated to both stimulation polarity (anodal) and frequency (5Hz). However, evidence of frequency-dependence seems more unequivocal than evidence of polarity-dependence. PMID:26964682

  6. 47 CFR 80.147 - Watch on 2182 kHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Watch on 2182 kHz. 80.147 Section 80.147 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... 2182 kHz. Ship stations must maintain a watch on 2182 kHz as prescribed by § 80.304....

  7. 47 CFR 80.147 - Watch on 2182 kHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Watch on 2182 kHz. 80.147 Section 80.147 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... 2182 kHz. Ship stations must maintain a watch on 2182 kHz as prescribed by § 80.304....

  8. 47 CFR 80.147 - Watch on 2182 kHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Watch on 2182 kHz. 80.147 Section 80.147 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... 2182 kHz. Ship stations must maintain a watch on 2182 kHz as prescribed by § 80.304....

  9. 47 CFR 80.147 - Watch on 2182 kHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Watch on 2182 kHz. 80.147 Section 80.147 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... 2182 kHz. Ship stations must maintain a watch on 2182 kHz as prescribed by § 80.304....

  10. CELL CULTURE STUDIES WITH THE IMC-HZ-1 NONOCCLUDED VIRUS

    EPA Science Inventory

    Studies were conducted on an adventitious agent (Hz-lv) isolated from the IMC-Hz-1 cell line. It appeared identical to the virus first obtained by Granados et al. from a persistent infection of this cell line. Restriction endonuclease digestion of Hz-lv DNA indicated the agent wa...

  11. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated...

  12. 47 CFR 80.147 - Watch on 2182 kHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Watch on 2182 kHz. 80.147 Section 80.147 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... 2182 kHz. Ship stations must maintain a watch on 2182 kHz as prescribed by § 80.304....

  13. The Effect of the 226-Hz Probe Level on Contralateral Acoustic Stapedius Reflex Thresholds

    ERIC Educational Resources Information Center

    Day, Jessica E.; Feeney, M. Patrick

    2008-01-01

    Purpose: The purpose of this study was to examine the effect of the 226-Hz probe level on the acoustic stapedius reflex threshold. Method: Contralateral reflex thresholds for a 1000-Hz pure-tone stimulus were obtained from 40 young adults with normal hearing using an experimental system at four 226-Hz probe levels (70, 75, 80, and 85 dB SPL) with…

  14. CHARACTERIZATION OF THE DNA OF A NONOCCLUDED BACULOVIRUS, HZ-1V

    EPA Science Inventory

    The DNA of the nonoccluded baculovirus (Hz-1V) obtained from the IMC-Hz-1 cell line was characterized by physicochemical and restriction endonuclease techniques. Hz-1V DNA isolated from purified virus had buoyant densities of 1.58 and 1.54 g/ml in CsC1-ethidium bromide density gr...

  15. Cardiovascular response of rats exposed to 60-Hz electric fields

    SciTech Connect

    Hilton, D.I.; Phillips, R.D.

    1980-01-01

    Recently, it has been reported that exposure to high-strength electric fields can influence electrocardiogram (ECG) patterns, heart rates, and blood pressures in various species of animals. Our studies were designed to evaluate these reported effects and to help clarify some of the disagreement present in the literature. Various cardiovascular variables were measured in Sprague-Dawley rats exposed or sham-exposed to 60-Hz electric fields at 80 to 100 kV/m for periods up to four months. No significant differences in heart rates, ECG patterns, blood pressures, or vascular reactivity were observed between exposed and sham-exposed rats after 8 hours, 40 hours, 1 month, or 4 months of exposure. Our studies cannot be directly compared to the work of other investigators because of differences in animal species and electric-field characteristics. However, our failure to detect any cardiovascular changes may have been the result of (1) eliminating secondary field effects such as shocks, audible noise, corona, and ozone; (2) minimizing steady-state microcurrents between the mouth of the animal and watering devices; and (3) minimizing electric-field-induced vibration of the electrodes and animal cages.

  16. Cardiovascular rhythms in the 0.15-Hz band: common origin of identical phenomena in man and dog in the reticular formation of the brain stem?

    PubMed

    Perlitz, Volker; Lambertz, Manfred; Cotuk, Birol; Grebe, Reinhard; Vandenhouten, Ralf; Flatten, Guido; Petzold, Ernst Richard; Schmid-Schönbein, Holger; Langhorst, Peter

    2004-09-01

    Selected examples from experiments in humans and dogs with time series of reticular neurons, respiration, arterial blood pressure and cutaneous forehead blood content fluctuations were analysed using multiscaled time-frequency distribution, post-event-scan and pointwise transinformation. We found in both experiments a "0.15-Hz rhythm" exhibiting periods of spindle waves (increasing and decreasing amplitudes), phase synchronized with respiration at 1:2 and 1:1 integer number ratios. At times of wave-epochs and n:m phase synchronization, the 0.15-Hz rhythm appeared in heart rate and arterial blood pressure. As phase synchronization of the 0.15-Hz rhythm with respiration was established at a 1:1 integer number ratio, all cardiovascular-respiratory oscillations were synchronized at 0.15 Hz. Analysis of a canine experiment supplied evidence that the emergence of the 0.15-Hz rhythm and n:m phase synchronization appears to result from a decline in the level of the general activity of the organism associated with a decline in the level of activity of reticular neurons in the lower brainstem network. These findings corroborate the notion of the 0.15-Hz rhythm as a marker of the "trophotropic mode of operation" first introduced by W.R. Hess. PMID:15138824

  17. Electroacupuncture at 2/100 Hz Activates Antinociceptive Spinal Mechanisms Different from Those Activated by Electroacupuncture at 2 and 100 Hz in Responder Rats

    PubMed Central

    da Silva, Josie Resende Torres; da Silva, Marcelo Lourenço; Prado, Wiliam Alves

    2013-01-01

    We examined the effects of intrathecal injection of desipramine and fluoxetine (selective inhibitors of norepinephrine and 5-HT uptake, resp.), thiorphan and neostigmine (inhibitors of enkephalinase and acetylcholinesterase, resp.), gabapentin (a GABA releaser), and vigabatrin (an inhibitor of GABA-transaminase) on the antinociception induced by 2 Hz, 100 Hz, or 2/100 Hz electroacupuncture (EA) applied bilaterally to the Zusanli (ST36) and Sanyinjiao (SP6) acupoints using the rat tail-flick test. We show that 2 Hz EA antinociception lasts longer after the administration of drugs that increase the spinal availability of norepinephrine, acetylcholine, or GABA; 100 Hz EA antinociception lasts longer after drug that increases the spinal availability of norepinephrine; 2/100 Hz EA antinociception lasts longer after drugs that increase the spinal availability of endogenous opioids or GABA. We conclude that the antinociceptive effect of 2/100 Hz EA is different from the synergistic effect of alternate stimulation at 2 and 100 Hz because the effect of the former is not changed by increasing the spinal availability of serotonin and lasts longer after the administration of vigabatrin. The combination of EA with drugs that increase the availability of spinal neurotransmitters involved in the modulation of nociceptive inputs may result in a synergistic antinociceptive effect in the rat tail-flick test. PMID:24159340

  18. The Dielectric Properties of Martian Soil Simulant JSC Mars-1 in the Range from 20Hz to 10kHz

    NASA Astrophysics Data System (ADS)

    Simões, F.; Trautner, R.; Grard, R.; Hamelin, M.

    2004-03-01

    A laboratory facility has been setup to measure the complex permittivity of soil mixtures as a function of porosity, humidity, and temperature in the range 20 Hz 10 kHz. The influence of porosity and temperature are discussed, and a measurable gravimetric water content threshold is evaluated.

  19. A 2.2-Hz modulation of auroral electrons imposed at the geomagnetic equator

    NASA Astrophysics Data System (ADS)

    Lepine, D. R.; Bryant, D. A.; Hall, D. S.

    1980-07-01

    The direct observation of 2.2-Hz oscillations in the intensities of 4-25 keV electrons producing a pulsating aurora is reported. Electrons were measured by a Petrel sounding rocket launched from Kiruna, Sweden in conjunction with measurements made by the geomagnetically conjugate GEOS 2 satellite. Measured precipitated energy flux variations only amounted to 3% of the energy flux at pulsation maximum, and thus do not permit the confirmation of particle modulations as the source of optical brightness modulations. The oscillations, like the previously observed 1-20 sec pulsations, are found to exhibit a marked velocity dispersion, implying an equatorial origin for both forms of modulation. A comparison of the rocket results with GEOS 2 measurements indicates VLF hiss emissions to be modulated at a frequency close to that of electron intensity oscillations, however isotropic angular distributions observed suggest that low-frequency micropulsations cannot cause auroral pulsations by modulating whistler-mode wave amplitudes which induce variations in the rate of pitch-angle scattering of electrons from the magnetosphere.

  20. Task-sensitive reconfiguration of corticocortical 6-20 Hz oscillatory coherence in naturalistic human performance.

    PubMed

    Saarinen, Timo; Jalava, Antti; Kujala, Jan; Stevenson, Claire; Salmelin, Riitta

    2015-07-01

    Electrophysiological oscillatory coherence between brain regions has been proposed to facilitate functional long-range connectivity within neurocognitive networks. This notion is supported by intracortical recordings of coherence in singled-out corticocortical connections in the primate cortex. However, the manner in which this operational principle manifests in the task-sensitive connectivity that supports human naturalistic performance remains undercharacterized. Here, we demonstrate task-sensitive reconfiguration of global patterns of coherent connectivity in association with a set of easier and more demanding naturalistic tasks, ranging from picture comparison to speech comprehension and object manipulation. Based on whole-cortex neuromagnetic recording in healthy behaving individuals, the task-sensitive component of long-range corticocortical coherence was mapped at spectrally narrow-band oscillatory frequencies between 6 and 20 Hz (theta to alpha and low-beta bands). This data-driven cortical mapping unveiled markedly distinct and topologically task-relevant spatiospectral connectivity patterns for the different tasks. The results demonstrate semistable oscillatory states relevant for neurocognitive processing. The present findings decisively link human behavior to corticocortical coherence at oscillatory frequencies that are widely thought to convey long-range, feedback-type neural interaction in cortical functional networks. PMID:25760689

  1. Comparison of real beat-to-beat signals with commercially available 4 Hz sampling on the evaluation of foetal heart rate variability.

    PubMed

    Gonçalves, Hernâni; Costa, Antónia; Ayres-de-Campos, Diogo; Costa-Santos, Cristina; Rocha, Ana Paula; Bernardes, João

    2013-06-01

    Evaluation of foetal heart rate (FHR) variability is an essential part of foetal monitoring, but a precise quantification of this parameter depends on the quality of the signal. In this study, we compared real FHR beat-to-beat signals with 4 Hz sampling provided by commercial foetal monitors on linear and nonlinear indices and analysed their clinical implications. Simultaneous acquisition of beat-to-beat signals and their 4 Hz sampling rate counterparts was performed using a scalp electrode, during the last hour of labour in 21 fetuses born with an umbilical artery blood (UAB) pH ≥ 7.20 and 6 born with an UAB pH < 7.20. For each case, the first and last 10 min segments were analysed, using time and frequency domain linear, and nonlinear FHR indices, namely mean FHR, low frequency, high frequency, approximate, sample and multiscale entropy. Significant differences in variability indices were found between beat-to-beat and 4 Hz sampled signals, with a lesser effect seen with 2 Hz sampling. These differences did not affect physiological changes observed during labour progression, such as decreased entropy and linear time domain indices, and increased frequency domain indices. However, significant differences were found in the discrimination between fetuses born with different UAB pHs, with beat-to-beat sampling providing better results in linear indices and 4 Hz sampling better results in entropy indices. In conclusion, different FHR sampling frequencies can significantly affect the quantification of variability indices. This needs to be taken into account in the interpretation of FHR variability and in the development of new equipment. PMID:23345009

  2. 47 CFR 2.106 - Table of Frequency Allocations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... amateur service using frequencies in the band 135.7-137.8 kHz shall not exceed a maximum radiated power of... kHz the carrier power of broadcasting stations shall not exceed 1 kW during the day and 250 W at.... The radiated mean power of these stations shall not exceed 50 W. 5.93Additional allocation: in...

  3. A wide range sigma—delta fractional-N frequency synthesizer with adaptive frequency calibration

    NASA Astrophysics Data System (ADS)

    Jianjun, Wei; Hanjun, Jiang; Lingwei, Zhang; Jingjing, Dong; Fule, Li; Zhihua, Wang; Chun, Zhang

    2013-06-01

    A wide range fractional-N frequency synthesizer in 0.18 μm RF CMOS technology is implemented. A switched-capacitors bank LC-tank VCO and an adaptive frequency calibration technique are used to expand the frequency range. A 16-bit third-order sigma—delta modulator with dither is used to randomize the fractional spur. The active area is 0.6 mm2. The experimental results show the proposed frequency synthesizer consumes 4.3 mA from a single 1.8 V supply voltage except for buffers. The frequency range is 1.44-2.11 GHz and the frequency resolution is less than 0.4 kHz. The phase noise is -94 dBc/Hz @ 100 kHz and -121 dBc/Hz @ 1 MHz at the output of the prescaler with a loop bandwidth of approximately 120 kHz. The performance meets the requirements for the multi-band and multi-mode transceiver applications.

  4. Cavity-dumped Yb:YAG ceramic in the 20  W, 12  mJ range at 6.7  ns operating from 20  Hz to 5  kHz with fluorescence feedback control.

    PubMed

    Fries, Christian; Weitz, Marco; Theobald, Christian; Löwis Of Menar, Patric V; Bartschke, Jürgen; L'huillier, Johannes A

    2016-08-20

    Increasing data acquisition rates in metrology applications based on optical parametric oscillators (OPOs) can accelerate measurement processes. To achieve this, flash-lamp systems with low pulse repetition frequencies of 10-100 Hz used as a pump source for the OPOs could be replaced by diode-pumped solid-state lasers in the kHz range. We demonstrate a 969 nm pumped Yb:YAG ceramic laser yielding 21.6 W output power, 12.5 mJ pulse energy, and excellent beam quality. Fluorescence feedback control, developed from gain dynamics simulations in two operating regimes, allows stable operation at 6.7 ns from 20 to 5000 Hz. Third harmonic generation to 343 nm yields 3.24 W at 2 kHz. The system provides constant pulse duration in a huge repetition rate interval, which is beneficial for pump sources for future metrology devices. PMID:27556969

  5. Compact dual-frequency fiber laser accelerometer with sub-μg resolution

    NASA Astrophysics Data System (ADS)

    Cao, Qian; Jin, Long; Liang, Yizhi; Cheng, Linghao; Guan, Bai-Ou

    2016-06-01

    We demonstrate a compact and high-resolution dual-polarization fiber laser accelerometer. A spring-mass like scheme is constructed by fixing a 10-gram proof mass on the laser cavity to transduce applied vibration into beat-frequency change. The loading is located at the intensity maximum of intracavity light to maximize the optical response. The detection limit reaches 107 ng/Hz1/2 at 200 Hz. The working bandwidth ranges from 60 Hz to 600 Hz.

  6. Seismic exploration-scale velocities and structure from ambient seismic noise (>1 Hz)

    NASA Astrophysics Data System (ADS)

    Draganov, Deyan; Campman, Xander; Thorbecke, Jan; Verdel, Arie; Wapenaar, Kees

    2013-08-01

    The successful surface waves retrieval in solid-Earth seismology using long-time correlations and subsequent tomographic images of the crust have sparked interest in extraction of subsurface information from noise in the exploration seismology. Subsurface information in exploration seismology is usually derived from body-wave reflections > 1 Hz, which is challenging for utilization of ambient noise. We use 11 h of noise recorded in the Sirte basin, Libya. First, we study the characteristics of the noise. We show that the bulk of the noise is composed of surface waves at frequencies below 6 Hz. Some noise panels contain nearly vertically traveling events. We further characterize these events using a beamforming algorithm. From the beamforming, we conclude that these events represent body-wave arrivals with a fairly rich azimuthal distribution. Having body-wave arrivals in the noise is a prerequisite for body-wave reflections retrieval. We crosscorrelate and sum the recorded ambient-noise panels to retrieve common-source gathers, following two approaches—using all the noise and using only noise panels containing body-wave arrivals likely to contribute to the reflections retrieval. Comparing the retrieved gathers with active seismic data, we show that the two-way traveltimes at short offsets of several retrieved events coincide with those of reflections in the active data and thus correspond to apexes of reflections. We then compare retrieved stacked sections of the subsurface from both approaches with the active-data stacked section and show that the reflectors are consistent along a line. The results from the second approach exhibit the reflectors better.

  7. Theory for 2-3 kHz radiation from the outer heliosphere

    NASA Astrophysics Data System (ADS)

    Mitchell, J. J.; Cairns, Iver H.; Robinson, P. A.

    2004-06-01

    High-intensity radio emission events at 2-3 kHz were observed by the Voyager spacecraft during 1983-1984 and 1992-1993. Such events are thought to occur when shock waves associated with global merged interaction regions (GMIRs) enter a region of the outer heliosheath where the electron speed distribution is primed with a superthermal tail, generated by lower hybrid drive. Previously, this priming mechanism was combined with a theory for type II solar radio bursts to predict the flux of radio emission in the outer heliosphere. Here this theory is extended in a number of ways. First, theoretical arguments regarding the availability of Langmuir and ion sound waves are used to determine whether emission occurs via three-wave processes or processes involving wave scattering off thermal ions (STI). New expressions for conversion efficiencies into radio emission associated with STI are then implemented where appropriate. Next, the dependence of the predicted fluxes on plasma and shock parameters are determined. Lastly, dynamic spectra are calculated for the radio emission generated by shocks traveling from the inner solar wind to beyond the heliopause and into the very local interstellar medium (VLISM). It is found that the predicted fluxes of fundamental radiation are comparable with those observed for plausible shock and plasma parameters. The theory can also predict radio-quiet GMIRs to be smaller and slower and to propagate through heliosheath regions with weaker superthermal tails. The calculated dynamic spectra have predicted fluxes below the Voyager detection thresholds in the solar wind, inner heliosheath, and VLISM. However, the predicted fluxes and frequency-time behavior are very similar to the 2 kHz component observed by the Voyager spacecraft when the GMIR is in the primed region.

  8. Energy dependent time delays of kHz oscillations due to thermal Comptonization

    NASA Astrophysics Data System (ADS)

    Kumar, Nagendra; Misra, Ranjeev

    2014-12-01

    We study the energy dependent photon variability from a thermal Comptonizing plasma that is oscillating at kHz frequencies. In particular, we solve the linearized time-dependent Kompaneets equation and consider the oscillatory perturbation to be either in the soft photon source or in the heating rate of the plasma. For each case, we self consistently consider the energy balance of the plasma and the soft photon source. The model incorporates the possibility of a fraction of the Comptonized photons impinging back into the soft photon source. We find that when the oscillation is due to the soft photon source, the variation of the fractional root mean sqaure (rms) is nearly constant with energy and the time-lags are hard. However, for the case when the oscillation is due to variation in the heating rate of the corona, and when a significant fraction of the photons impinge back into the soft photon source, the rms increases with energy and the time-lags are soft. As an example, we compare the results with the ˜850 Hz oscillation observed on 1996 March 3 for 4U 1608-52 and show that both the observed soft time-lags as well as the rms versus energy can be well described by such a model where the size of the Comptonizing plasma is ˜1 km. Thus, modelling of the time-lags as due to Comptonization delays, can provide tight constraints on the size and geometry of the system. Detailed analysis would require well-constrained spectral parameters.

  9. Jovian radio emission below 5 mHz

    NASA Technical Reports Server (NTRS)

    Evans, D. R.

    1983-01-01

    The GS2 and GS3 operational modes of the planetary radio astronomy experiment on the Voyager 1 spacecraft are described as well as the dynamic spectra obtained. Repeated pulses of unpolarized emission (P bursts) recorded by GS2 were studied and attempts were made to correlate their occurrences, which have sudden onset and conclusion, with features in the GS3 dynamic spectra. The influence of the phase of any of the Galilean satellites or the subspacecraft system 3 longitude on P bursts was also investigated. Tables show Voyage 1 GS2 frequencies, high quality Jovian P bursts, and the geometry and pulse repetition frequency of the P burst groups. Plotted bursts are included.

  10. Development and validation of a 10 kHz-1 MHz magnetic susceptometer with constant excitation field

    NASA Astrophysics Data System (ADS)

    Tafur, Javier; Herrera, Adriana P.; Rinaldi, Carlos; Juan, Eduardo J.

    2012-04-01

    The design and validation of a mutual inductance AC susceptometer with constant excitation field of up to 4.25 Oe, operating at frequencies from 10 kHz to 1 MHz, is presented. Considerations such as parasitic capacitances between wire turns and sensing bridge electronics were taken into account in order to extend the operating frequency range. An 18AWG wire with considerable insulator thickness was used for coil construction to keep parasitic capacitive reactance negligible relative to coil inductive reactance, and to obtain controlled field operation. A high speed instrumentation amplifier (slew rate over 33 V/μs) was designed and constructed using voltage feedback LM7171 operational amplifiers. The system was calibrated with Dy2O3 to account for mismatches in signal amplitude and phase shifts due to the electronics, coil coupling and imperfections, and external disturbances. AC susceptometer operation in the 10 kHz-1 MHz frequency range was validated by measuring the complex susceptibility of cobalt ferrite nanoparticles suspended in solvents of different viscosities. Good agreement was found between the experimental Brownian relaxation times and those predicted theoretically from the viscosity of the suspending media and the hydrodynamic diameter of the nanoparticles.

  11. Cavitation thresholds of contrast agents in an in vitro human clot model exposed to 120-kHz ultrasound

    PubMed Central

    Gruber, Matthew J.; Bader, Kenneth B.; Holland, Christy K.

    2014-01-01

    Ultrasound contrast agents (UCAs) can be employed to nucleate cavitation to achieve desired bioeffects, such as thrombolysis, in therapeutic ultrasound applications. Effective methods of enhancing thrombolysis with ultrasound have been examined at low frequencies (<1 MHz) and low amplitudes (<0.5 MPa). The objective of this study was to determine cavitation thresholds for two UCAs exposed to 120-kHz ultrasound. A commercial ultrasound contrast agent (Definity®) and echogenic liposomes were investigated to determine the acoustic pressure threshold for ultraharmonic (UH) and broadband (BB) generation using an in vitro flow model perfused with human plasma. Cavitation emissions were detected using two passive receivers over a narrow frequency bandwidth (540–900 kHz) and a broad frequency bandwidth (0.54–1.74 MHz). UH and BB cavitation thresholds occurred at the same acoustic pressure (0.3 ± 0.1 MPa, peak to peak) and were found to depend on the sensitivity of the cavitation detector but not on the nucleating contrast agent or ultrasound duty cycle. PMID:25234874

  12. Deep frequency modulation interferometry.

    PubMed

    Gerberding, Oliver

    2015-06-01

    Laser interferometry with pm/Hz precision and multi-fringe dynamic range at low frequencies is a core technology to measure the motion of various objects (test masses) in space and ground based experiments for gravitational wave detection and geodesy. Even though available interferometer schemes are well understood, their construction remains complex, often involving, for example, the need to build quasi-monolithic optical benches with dozens of components. In recent years techniques have been investigated that aim to reduce this complexity by combining phase modulation techniques with sophisticated digital readout algorithms. This article presents a new scheme that uses strong laser frequency modulations in combination with the deep phase modulation readout algorithm to construct simpler and easily scalable interferometers. PMID:26072834

  13. Phoneme categorization relying solely on high-frequency energy.

    PubMed

    Vitela, A Davi; Monson, Brian B; Lotto, Andrew J

    2015-01-01

    Speech perception studies generally focus on the acoustic information present in the frequency regions below 6 kHz. Recent evidence suggests that there is perceptually relevant information in the higher frequencies, including information affecting speech intelligibility. This experiment examined whether listeners are able to accurately identify a subset of vowels and consonants in CV-context when only high-frequency (above 5 kHz) acoustic information is available (through high-pass filtering and masking of lower frequency energy). The findings reveal that listeners are capable of extracting information from these higher frequency regions to accurately identify certain consonants and vowels. PMID:25618101

  14. Phoneme categorization relying solely on high-frequency energy

    PubMed Central

    Vitela, A. Davi; Monson, Brian B.; Lotto, Andrew J.

    2015-01-01

    Speech perception studies generally focus on the acoustic information present in the frequency regions below 6 kHz. Recent evidence suggests that there is perceptually relevant information in the higher frequencies, including information affecting speech intelligibility. This experiment examined whether listeners are able to accurately identify a subset of vowels and consonants in CV-context when only high-frequency (above 5 kHz) acoustic information is available (through high-pass filtering and masking of lower frequency energy). The findings reveal that listeners are capable of extracting information from these higher frequency regions to accurately identify certain consonants and vowels. PMID:25618101

  15. Terahertz spectrum analyzer based on frequency and power measurement.

    PubMed

    Yee, Dae-Su; Jang, Yudong; Kim, Youngchan; Seo, Dae-Cheol

    2010-08-01

    We demonstrate a terahertz (THz) spectrum analyzer based on frequency and power measurement. A power spectrum of a continuous THz wave is measured through optical heterodyne detection using an electromagnetic THz frequency comb and a bolometer and power measurement using a bolometer with a calibrated responsivity. The THz spectrum analyzer has a frequency precision of 1x10(-11), a frequency resolution of 1Hz, a frequency band up to 1.7THz, and an optical noise equivalent power of approximately 1 pW/Hz(1/2). PMID:20680048

  16. Nonuniform High-Gamma (60–500 Hz) Power Changes Dissociate Cognitive Task and Anatomy in Human Cortex

    PubMed Central

    Gaona, Charles M.; Sharma, Mohit; Freudenburg, Zachary V.; Breshears, Jonathan D.; Bundy, David T.; Roland, Jarod; Barbour, Dennis L.; Schalk, Gerwin

    2011-01-01

    High-gamma-band (>60 Hz) power changes in cortical electrophysiology are a reliable indicator of focal, event-related cortical activity. Despite discoveries of oscillatory subthreshold and synchronous suprathreshold activity at the cellular level, there is an increasingly popular view that high-gamma-band amplitude changes recorded from cellular ensembles are the result of asynchronous firing activity that yields wideband and uniform power increases. Others have demonstrated independence of power changes in the low- and high-gamma bands, but to date, no studies have shown evidence of any such independence above 60 Hz. Based on nonuniformities in time-frequency analyses of electrocorticographic (ECoG) signals, we hypothesized that induced high-gamma-band (60–500 Hz) power changes are more heterogeneous than currently understood. Using single-word repetition tasks in six human subjects, we showed that functional responsiveness of different ECoG high-gamma sub-bands can discriminate cognitive task (e.g., hearing, reading, speaking) and cortical locations. Power changes in these sub-bands of the high-gamma range are consistently present within single trials and have statistically different time courses within the trial structure. Moreover, when consolidated across all subjects within three task-relevant anatomic regions (sensorimotor, Broca's area, and superior temporal gyrus), these behavior- and location-dependent power changes evidenced nonuniform trends across the population. Together, the independence and nonuniformity of power changes across a broad range of frequencies suggest that a new approach to evaluating high-gamma-band cortical activity is necessary. These findings show that in addition to time and location, frequency is another fundamental dimension of high-gamma dynamics. PMID:21307246

  17. 78 FR 45479 - Frequency Response and Frequency Bias Setting Reliability Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... frequency response, and encourages coordinated automatic generation control (AGC) operation.\\6\\ These... in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's inverse Frequency Response contribution to the Interconnection, and...

  18. Frequency curves

    USGS Publications Warehouse

    Riggs, H.C.

    1968-01-01

    This manual describes graphical and mathematical procedures for preparing frequency curves from samples of hydrologic data. It also discusses the theory of frequency curves, compares advantages of graphical and mathematical fitting, suggests methods of describing graphically defined frequency curves analytically, and emphasizes the correct interpretations of a frequency curve.

  19. Upper limit on a stochastic background of gravitational waves from seismic measurements in the range 0.05-1 Hz.

    PubMed

    Coughlin, Michael; Harms, Jan

    2014-03-14

    In this Letter, we present an upper limit of ΩGW<1.2×108 on an isotropic stochastic gravitational-wave (GW) background integrated over a year in the frequency range 0.05-1 Hz, which improves current upper limits from high-precision laboratory experiments by about 9 orders of magnitude. The limit is obtained using the response of Earth itself to GWs via a free-surface effect described more than 40 years ago by Dyson. The response was measured by a global network of broadband seismometers selected to maximize the sensitivity. PMID:24679277

  20. Numerical investigation on operation mode influenced by external frequency in atmospheric pressure barrier discharge

    SciTech Connect

    Wang Qi; Sun Jizhong; Wang Dezhen

    2011-10-15

    The influence of external driving frequency on the discharge mode in the dielectric barrier discharge was investigated with a two-dimensional, self-consistent fluid model. The simulation results show that the helium discharge exhibits three operation modes: Townsend, homogeneous glow, and local glow discharges from the lower frequency (1 kHz) to the higher frequency (100 kHz) under discharge parameters specified in this work. The discharge operates in a Townsend mode when the driving frequency varies from 1 to about 7 kHz; while it exhibits homogenous glow characteristics in an approximate range from 7 to 65 kHz; when the external frequency exceeds 65 kHz, it turns into a local glow discharge. The effects of external driving frequency on the discharge mode were revealed and the physical reasons were discussed.

  1. Study of the 20,22Ne+20,22Ne and 10,12,13,14,15C+12C Fusion Reactions with MUSIC

    NASA Astrophysics Data System (ADS)

    Avila, M. L.; Rehm, K. E.; Almaraz-Calderon, S.; Carnelli, P. F. F.; DiGiovine, B.; Esbensen, H.; Hoffman, C. R.; Jiang, C. L.; Kay, B. P.; Lai, J.; Nusair, O.; Pardo, R. C.; Santiago-Gonzalez, D.; Talwar, R.; Ugalde, C.

    2016-05-01

    A highly efficient MUlti-Sampling Ionization Chamber (MUSIC) detector has been developed for measurements of fusion reactions. A study of fusion cross sections in the 10,12,13,14,15C+12C and 20,22Ne+20,22Ne systems has been performed at ATLAS. Experimental results and comparison with theoretical predictions are presented. Furthermore, results of direct measurements of the 17O(α, n)20Ne, 23Ne(α, p)26Mg and 23Ne(α, n)26Al reactions will be discussed.

  2. [19th annual conference of the working group on kidney transplantation of the academy of german urologists : mainz, 10-12 november 2011].

    PubMed

    Mehralivand, S; Giessing, M; Fornara, P; Engehausen, D; Heynemann, H; Wunderlich, H; Dreikorn, K; Thüroff, J W; Stein, R

    2012-04-01

    The 19th Annual Conference of the Working Group on Kidney Transplantation (KTX) of the Academy of German Urologists took place on 10-12 November 2011 in Mainz. The main topics at the meeting were surgical and technical aspects, immunosuppressive therapy, transplant rejection, pregnancy, sexuality, and psychological conflicts of kidney transplant recipients. The speakers documented the pertinence of interdisciplinarity for KTX and were not only from the field of urology but also from anesthesiology, gynecology, surgery, dermatology, nephrology, radiology, and psychosomatic medicine. The Bernd Schönberger Prize was awarded at the end of the event. PMID:22437445

  3. Underwater hearing sensitivity of harbor seals (Phoca vitulina) for narrow noise bands between 0.2 and 80 kHz.

    PubMed

    Kastelein, Ronald A; Wensveen, Paul; Hoek, Lean; Terhune, John M

    2009-07-01

    The underwater hearing sensitivities of two 1.5-year-old female harbor seals were quantified in a quiet pool built specifically for acoustic research, by using a behavioral psychoacoustic technique. The animals were trained to respond when they detected an acoustic signal and not to respond when they did not ("go/no-go" response). Fourteen narrowband noise signals (1/3-octave bands but with some energy in adjacent bands), at 1/3-octave center frequencies of 0.2-80 kHz, and of 900 ms duration, were tested. Thresholds at each frequency were measured using the up-down staircase method and defined as the stimulus level resulting in a 50% detection rate. Between 0.5 and 40 kHz, the thresholds corresponded to a 1/3-octave band noise level of approximately 60 dB re 1 microPa (SD+/-3.0 dB). At lower frequencies, the thresholds increased to 66 dB re 1 microPa and at 80 kHz the thresholds rose to 114 dB re 1 microPa. The 1/3-octave noise band thresholds of the two seals did not differ from each other, or from the narrowband frequency-modulated tone thresholds at the same frequencies obtained a few months before for the same animals. These hearing threshold values can be used to calculate detection ranges of underwater calls and anthropogenic noises by harbor seals. PMID:19603905

  4. Frequency synthesizers for telemetry receivers

    NASA Astrophysics Data System (ADS)

    Stirling, Ronald C.

    1990-07-01

    The design of a frequency synthesizer is presented for telemetry receivers. The synthesizer contains two phase-locked loops, each with a programmable frequency counter, and incorporates fractional frequency synthesis but does not use a phase accumulator. The selected receiver design has a variable reference loop operating as a part of the output loop. Within the synthesizer, a single VTO generates the output frequency that is voltage-tunable from 375-656 MHz. The single-sideband phase noise is measured with an HP 8566B spectrum analyzer, and the receiver's bit error rate (BER) is measured with a carrier frequency of 250 MHz, synthesized LO at 410 MHz, and the conditions of BPSK, NRZ-L, and 2.3 kHz bit rate. The phase noise measurement limits and the BER performance data are presented in tabular form.

  5. 20 kHz toluene planar laser-induced fluorescence imaging of a jet in nearly sonic crossflow

    NASA Astrophysics Data System (ADS)

    Miller, V. A.; Troutman, V. A.; Mungal, M. G.; Hanson, R. K.

    2014-10-01

    This manuscript describes continuous, high-repetition-rate (20 kHz) toluene planar laser-induced fluorescence (PLIF) imaging in an expansion tube impulse flow facility. Cinematographic image sequences are acquired that visualize an underexpanded jet of hydrogen in Mach 0.9 crossflow, a practical flow configuration relevant to aerospace propulsion systems. The freestream gas is nitrogen seeded with toluene; toluene broadly absorbs and fluoresces in the ultraviolet, and the relatively high quantum yield of toluene produces large signals and high signal-to-noise ratios. Toluene is excited using a commercially available, frequency-quadrupled (266 nm), high-repetition-rate (20 kHz), pulsed (0.8-0.9 mJ per pulse), diode-pumped solid-state Nd:YAG laser, and fluorescence is imaged with a high-repetition-rate intensifier and CMOS camera. The resulting PLIF movie and image sequences are presented, visualizing the jet start-up process and the dynamics of the jet in crossflow; the freestream duration and a measure of freestream momentum flux steadiness are also inferred. This work demonstrates progress toward continuous PLIF imaging of practical flow systems in impulse facilities at kHz acquisition rates using practical, turn-key, high-speed laser and imaging systems.

  6. 33 CFR 86.03 - Limits of fundamental frequencies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... INLAND NAVIGATION RULES ANNEX III: TECHNICAL DETAILS OF SOUND SIGNAL APPLIANCES Whistles § 86.03 Limits... frequency of a whistle shall be between the following limits: (a) 70-200 Hz, for a vessel 200 meters or...

  7. Frequency- and intensity-noise suppression in Yb3+-doped single-frequency fiber laser by a passive optical-feedback loop.

    PubMed

    Hou, Yubin; Zhang, Qian; Wang, Pu

    2016-06-13

    The frequency and intensity noise of an Yb3+-doped single-frequency distributed Bragg reflector (DBR) fiber laser are effectively reduced by a simple, passive optical-feedback loop (POFL), which consists of only two optical couplers. The feedback loop, which has resonance with the high reflective grating of the DBR laser and relative long optical path compared to the DBR cavity, results in narrower linewidth and lower relative intensity noise (RIN) in the feedback signal. The RIN of relaxation oscillation is reduced by 20dB from -99.9dB/Hz @ 993 kHz to -119.4dB/Hz @ 192 kHz, and the frequency noise was suppressed at frequencies higher than 1 kHz, with a maximum reduction of about 30 dB from 10 kHz to 100 kHz, which results in a spectral linewidth compression from 3.96 kHz to 540 Hz. Even after one fiber amplification stage, the noise did not increase significantly, and a spectral linewidth well below 1 kHz were also achieved at output power of 10W. PMID:27410318

  8. Very Broadband Rayleigh-Wave Dispersion (0.06 - 60 Hz) and Shear-Wave Velocity Structure Under Yucca Flat, Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Schramm, K. A.; Bilek, S. L.; Patton, H. J.; Abbott, R. E.; Stead, R.; Pancha, A.; White, R.

    2009-12-01

    Earth structure plays an important role in the generation of seismic waves for all sources. Nowhere is this more evident than at near-surface depths where man-made sources, such as explosions, are conducted. For example, short-period Rayleigh waves (Rg) are excited and propagate in the upper 2 km of Earth's crust. The importance of Rg in the generation of S waves from explosion sources through near-source scattering depends greatly on the shear-wave velocity structure at very shallow depths. Using three distinct datasets, we present a very broadband Rayleigh-wave phase velocity dispersion curve for the Yucca Flat (YF) region of the Nevada Test Site (NTS). The first dataset consists of waveforms of historic NTS explosions recorded on regional seismic networks and will provide information for the lowest frequencies (0.06-0.3 Hz). The second dataset is comprised of waveforms from a non-nuclear explosion on YF recorded at near-local distances and will be used for mid-range frequencies (0.2-1.5 Hz). The third dataset contains high-frequency waveforms recorded from refraction microtremor surveys on YF. This dataset provides information between 1.5 and 60 Hz. Initial results from the high frequency dataset indicate velocities range from 0.45-0.9 km/s at 1.5 Hz and 0.25-0.45 km/s at 60 Hz. The broadband nature of the dispersion curve will allow us to invert for the shear-wave velocity structure to 10 km depth, with focus on shallow depths where nuclear tests were conducted in the YF region. The velocity model will be used by researchers as a tool to aid the development of new explosion source models that incorporate shear wave generation. The new model can also be used to help improve regional distance yield estimation and source discrimination for small events.

  9. Mitigation of Laser Frequency Noise for LISA

    NASA Technical Reports Server (NTRS)

    Thorpe, Ira J.

    2009-01-01

    The Laser Interferometer Space Antenna (LISA) is a proposed detector of gravitational waves in the 0.1 mHz - 0.1 Hz band. LISA will measure gravitational wave strain at the 10(exp -21) level by monitoring the distance between freely-falling test masses s(exp -11) m. These distance measurements will be made using heterodyne interferometry with multiple light sources on moving platforms with changing baselines, all of which cause frequency noise to couple into the displacement measurement. I will describe how LISA interferometry mitigates the effects of laser frequency noise through active suppression and common mode rejection. Recent laboratory developments will also be discussed.

  10. Geometry: Grades 10-12.

    ERIC Educational Resources Information Center

    Instructional Objectives Exchange, Los Angeles, CA.

    Behavioral objectives, each accompanied by six sample test items, for secondary school geometry are presented. Objectives were determined by surveying the most widely used secondary school geometry textbooks, and cover 14 major categories of geometry, with sections on set theory and introductory trigonometry. Answers are provided. Categories…

  11. Physics: Grades 10-12.

    ERIC Educational Resources Information Center

    Instructional Objectives Exchange, Los Angeles, CA.

    The physics objectives are geared to use in college preparatory, high school physics courses and are based on the three most common physics curricula: (1) Physical Science Study Committee (PSSC); (2) The Project Physics Course; and (3) Modern Physics by Dull, Metcalf, and Williams. Since many of the sample items can be answered in various ways,…

  12. Preferred frequencies for three unconsolidated earth materials

    NASA Astrophysics Data System (ADS)

    Gilcrist, Laura E.; Baker, Gregory S.; Sen, Surajit

    2007-12-01

    Exploring near-surface mechanical wave propagation through cohesive and noncohesive soils is important for detecting buried objects (i.e., landmines and unexploded ordnance). Here, we determine that certain preferred frequencies travel through specific soils more efficiently. A controlled-frequency acoustic seismic source was developed to modulate the applied frequency and amplitude. Surface response due to continuous waves traveling through soils was recorded both instantaneously and after a finite load time. Preferred frequencies for sand, clay loam, and silt loam were measured to be 300-330, 100-140, and 140-260Hz, respectively. Observed frequency shifts were dependent upon applied amplitude and load time.

  13. 47 CFR 90.723 - Selection and assignment of frequencies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES PRIVATE LAND MOBILE RADIO SERVICES Regulations Governing Licensing and Use of Frequencies in the... A 221-222 MHz frequencies 200 kHz or less removed. (i) A mobile station is authorized to transmit on any frequency assigned to its associated base station. Mobile units not associated with base...

  14. 47 CFR 90.723 - Selection and assignment of frequencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES PRIVATE LAND MOBILE RADIO SERVICES Regulations Governing Licensing and Use of Frequencies in the... A 221-222 MHz frequencies 200 kHz or less removed. (i) A mobile station is authorized to transmit on any frequency assigned to its associated base station. Mobile units not associated with base...

  15. 33 CFR 86.03 - Limits of fundamental frequencies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Limits of fundamental frequencies... of fundamental frequencies. To ensure a wide variety of whistle characteristics, the fundamental frequency of a whistle shall be between the following limits: (a) 70-200 Hz, for a vessel 200 meters or...

  16. 33 CFR 86.03 - Limits of fundamental frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Limits of fundamental frequencies... of fundamental frequencies. To ensure a wide variety of whistle characteristics, the fundamental frequency of a whistle shall be between the following limits: (a) 70-200 Hz, for a vessel 200 meters or...

  17. 47 CFR 80.143 - Required frequencies for radiotelephony.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Required frequencies for radiotelephony. 80.143... Stations § 80.143 Required frequencies for radiotelephony. (a) Except for compulsory vessels, each ship... emission on the frequency 2182 kHz. Ship stations are additionally authorized to receive and transmit...

  18. 33 CFR 86.03 - Limits of fundamental frequencies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Limits of fundamental frequencies... of fundamental frequencies. To ensure a wide variety of whistle characteristics, the fundamental frequency of a whistle shall be between the following limits: (a) 70-200 Hz, for a vessel 200 meters or...

  19. 47 CFR 90.723 - Selection and assignment of frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES PRIVATE LAND MOBILE RADIO SERVICES Regulations Governing Licensing and Use of Frequencies in the... A 221-222 MHz frequencies 200 kHz or less removed. (i) A mobile station is authorized to transmit on any frequency assigned to its associated base station. Mobile units not associated with base...

  20. 47 CFR 90.723 - Selection and assignment of frequencies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES PRIVATE LAND MOBILE RADIO SERVICES Regulations Governing Licensing and Use of Frequencies in the... A 221-222 MHz frequencies 200 kHz or less removed. (i) A mobile station is authorized to transmit on any frequency assigned to its associated base station. Mobile units not associated with base...

  1. 47 CFR 90.723 - Selection and assignment of frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES PRIVATE LAND MOBILE RADIO SERVICES Regulations Governing Licensing and Use of Frequencies in the... A 221-222 MHz frequencies 200 kHz or less removed. (i) A mobile station is authorized to transmit on any frequency assigned to its associated base station. Mobile units not associated with base...

  2. Human teeth model using photoacoustic frequency response

    NASA Astrophysics Data System (ADS)

    El-Sharkawy, Yasser H.; El-Sherif, Ashraf F.

    2012-03-01

    In this paper, a novel photo-acoustic technique modality utilizing a frequency- modulated Q-switch Nd:YAG laser at 1064 nm and coherent frequency domain signal processing is introduced for impulse and frequency responses of biological tissues. We present a photoacoustic technique to monitor the temporal behavior of temperature and pressure in an excised sample of human teeth after either a single laser pulse or during multiple laser pulses at pulse repetition frequencies (PRF) from 5 Hz to 100 Hz. Knowledge of the dynamic characteristics of structural elements often means the difference between normal and abnormal tissue. The determination of the resonance characteristics of structures is termed "modal analysis." The results of our study suggest that it is possible to identify the impulse, frequency response and resonance modes of simplified human teeth. This data provided a powerful tool to differentiate between normal and decay teeth.

  3. Estimation of skin conductance at low frequencies using measurements at higher frequencies for EDA applications.

    PubMed

    Nordbotten, Bernt J; Tronstad, Christian; Martinsen, Ørjan G; Grimnes, Sverre

    2014-06-01

    Using low-frequency (LF) alternating current skin conductance (SC) has recently been recommended for electrodermal activity (EDA) measurement, but the method may imply some limitations in sampling rate, which are insufficient for capturing the complete SC waveform. The aim of this study was to assess whether LF SC can be estimated based on skin admittance (SA) measurements at higher frequencies allowing higher sampling rates. SA measurements from 1 Hz to 70 kHz were gathered from 20 healthy human participants, and an interval from 500 Hz to 10 kHz was used to fit a Cole model to the measured SA by means of the nonlinear least squares method. The LF extrapolation of this fit was used to estimate the LF SC at 1, 10, 22 and 30 Hz. The method produced an overestimation of SC by approximately 20%, and the variation in LF SC was preserved by approximately 95%. The overestimation is most likely due to different frequency dependence behavior (dispersion) of SC at the lowest frequencies, which is not accounted for by a single dispersion model. In conclusion, the SA method using high frequency is unsuitable for estimation of the LF SC level, but can probably be used in EDA measurements, which are scored based on the variations in SC. PMID:24844405

  4. Successful Treatment of Phantom Limb Pain by 1 Hz Repetitive Transcranial Magnetic Stimulation Over Affected Supplementary Motor Complex: A Case Report

    PubMed Central

    Lee, Jong-Hoo; Byun, Jeong-Hyun; Choe, Yu-Ri; Lim, Seung-Kyu; Lee, Ka-Young

    2015-01-01

    A 37-year-old man with a right transfemoral amputation suffered from severe phantom limb pain (PLP). After targeting the affected supplementary motor complex (SMC) or primary motor cortex (PMC) using a neuro-navigation system with 800 stimuli of 1 Hz repetitive transcranial magnetic stimulation (rTMS) at 85% of resting motor threshold, the 1 Hz rTMS over SMC dramatically reduced his visual analog scale (VAS) of PLP from 7 to 0. However, the 1 Hz rTMS over PMC failed to reduce pain. To our knowledge, this is the first case report of a successfully treated severe PLP with a low frequency rTMS over SMC in affected hemisphere. PMID:26361601

  5. Successful Treatment of Phantom Limb Pain by 1 Hz Repetitive Transcranial Magnetic Stimulation Over Affected Supplementary Motor Complex: A Case Report.

    PubMed

    Lee, Jong-Hoo; Byun, Jeong-Hyun; Choe, Yu-Ri; Lim, Seung-Kyu; Lee, Ka-Young; Choi, In-Sung

    2015-08-01

    A 37-year-old man with a right transfemoral amputation suffered from severe phantom limb pain (PLP). After targeting the affected supplementary motor complex (SMC) or primary motor cortex (PMC) using a neuro-navigation system with 800 stimuli of 1 Hz repetitive transcranial magnetic stimulation (rTMS) at 85% of resting motor threshold, the 1 Hz rTMS over SMC dramatically reduced his visual analog scale (VAS) of PLP from 7 to 0. However, the 1 Hz rTMS over PMC failed to reduce pain. To our knowledge, this is the first case report of a successfully treated severe PLP with a low frequency rTMS over SMC in affected hemisphere. PMID:26361601

  6. Characterization of a partially-stabilized frequency comb

    NASA Astrophysics Data System (ADS)

    Gold Dahl, M. E.; Erikson, Alex; Woodbury, Daniel; Bergeson, Scott

    2015-05-01

    We present measurements of well-known frequency intervals in Cs, Rb, and Ca. These measurements are used to determine the accuracy of a partially-stabilized ti:sapphire frequency comb. One mode of our frequency comb is offset-locked to a Rb-stabilized diode laser. The comb's repetition rate is counted but not locked. A second laser is used to probe well-known atomic transitions in Cs, Rb, and Ca. We describe our offset locking and scanning techniques and demonstrate a frequency precision of 10 kHz in a 30 second measurement time. The accuracy of our laser frequency interval measurements is approximately 40 kHz. However, cell-based frequency references can be off by several hundred kHz. Research supported by the National Science Foundation (Grant No. PHY-0969856) and the Air Force (Grant No. FA9950-12-1-0308).

  7. Electromagnetic radiation trapped in the magnetosphere above the plasma frequency

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Shaw, R. R.

    1973-01-01

    An electromagnetic noise band is frequently observed in the outer magnetosphere by the Imp 6 spacecraft at frequencies from about 5 to 20 kHz. This noise band generally extends throughout the region from near the plasmapause boundary to near the magnetopause boundary. The noise typically has a broadband field strength of about 5 microvolts/meter. The noise band often has a sharp lower cutoff frequency at about 5 to 10 kHz, and this cutoff has been identified as the local electron plasma frequency. Since the plasma frequency in the plasmasphere and solar wind is usually above 20 kHz, it is concluded that this noise must be trapped in the low-density region between the plasmapause and magnetopause boundaries. The noise bands often contain a harmonic frequency structure which suggests that the radiation is associated with harmonics of the electron cyclotron frequency.

  8. The Event-Related Low-Frequency Activity of Highly and Average Intelligent Children

    ERIC Educational Resources Information Center

    Liu, Tongran; Shi, Jiannong; Zhao, Daheng; Yang, Jie

    2008-01-01

    Using time-frequency analysis techniques to investigate the event-related low-frequency (delta: 0.5-4 Hz; theta: 4-8 Hz) activity of auditory event-related potentials (ERPs) data of highly and average intelligent children, 18 intellectually gifted children, and 18 intellectually average children participated the present study. Present findings…

  9. Vibration of the human tympanic membrane measured with OCT in a range between 0.4 kHz and 6.4 kHz on an ex vivo sample

    NASA Astrophysics Data System (ADS)

    Burkhardt, Anke; Kirsten, Lars; Bornitz, Matthias; Zahnert, Thomas; Koch, Edmund

    2013-06-01

    Vibrations of the tympanic membrane (TM) play a key role for the transmission of sound to the inner ear. Today, there exist still problems in measuring the movement of the TM and there are unresolved issues in understanding the TM and its behavior. A non-invasive and contact-free in vivo investigation of the structure and the functional behavior of the TM would be a big step forward. In the presented study, the suitability of optical coherence tomography (OCT) for measuring the oscillation patterns of the TM in the frequency range covering the range of the human speech perception should be tested. For functional imaging a sound chirp was generated in the frequency range between 0.4 kHz - 6.4 kHz. To obtain the movement within a sufficient resolution, a grid of 25 x 25 measurement points was generated over the whole TM. The information of the oscillatory movement was encoded in the Doppler signal, provided by M-scans at several points of the TM. The frequency response functions of each frequency showed different oscillation patterns on the TM. The acquisition time of one single M-scan was only 8.5 ms and of the entire TM 5.3 s, emphasizing the potential of the method for future in vivo applications. Furthermore, the morphology was acquired with the same OCT-system, showing the feasibility for structural imaging and differentiation between typical regions of the TM. Thus, OCT was shown as a suitable method for the simultaneous measurement of the functional and structural behavior of the TM.

  10. Breathing frequency bias in fractal analysis of heart rate variability.

    PubMed

    Perakakis, Pandelis; Taylor, Michael; Martinez-Nieto, Eduardo; Revithi, Ioanna; Vila, Jaime

    2009-09-01

    Detrended Fluctuation Analysis (DFA) is an algorithm widely used to determine fractal long-range correlations in physiological signals. Its application to heart rate variability (HRV) has proven useful in distinguishing healthy subjects from patients with cardiovascular disease. In this study we examined the effect of respiratory sinus arrhythmia (RSA) on the performance of DFA applied to HRV. Predictions based on a mathematical model were compared with those obtained from a sample of 14 normal subjects at three breathing frequencies: 0.1Hz, 0.2Hz and 0.25Hz. Results revealed that: (1) the periodical properties of RSA produce a change of the correlation exponent in HRV at a scale corresponding to the respiratory period, (2) the short-term DFA exponent is significantly reduced when breathing frequency rises from 0.1Hz to 0.2Hz. These findings raise important methodological questions regarding the application of fractal measures to short-term HRV. PMID:19559748

  11. The influence of 70 and 120 kHz tonal signals on the behavior of harbor porpoises (Phocoena phocoena) in a floating pen.

    PubMed

    Kastelein, Ronald A; Verboom, Willem C; Jennings, Nancy; de Haan, Dick; van der Heul, Sander

    2008-09-01

    Two harbor porpoises in a floating pen were subjected to five pure tone underwater signals of 70 or 120 kHz with different signal durations, amplitudes and duty cycles (% of time sound is produced). Some signals were continuous, others were intermittent (duty cycles varied between 8% and 100%). The effect of each signal was judged by comparing the animals' surfacing locations and number of surfacings (i.e. number of respirations) during test periods with those during baseline periods. In all cases, both porpoises moved away from the sound source, but the effect of the signals on respiration rates was negligible. Pulsed 70 kHz signals with a source level (SL) of 137 dB had a similar effect as a continuous 70 kHz signal with an SL of 148 dB (re 1 microPa, rms). Also, a pulsed 70 kHz signal with an SL of 147 dB had a much stronger deterring effect than a continuous 70 kHz signal with a similar SL. For pulsed 70 kHz signals (2 s pulse duration, 4s pulse interval, SL 147 dB re 1 microPa, rms), the avoidance threshold sound pressure level (SPL), in the context of the present study, was estimated to be around 130 dB (re 1 microPa, rms) for porpoise 064 and around 124 dB (re 1 microPa, rms) for porpoise 047. This study shows that ultrasonic pingers (70 kHz) can deter harbor porpoises. Such ultrasonic pingers have the advantage that they do not have a "dinner bell" effect on pinnipeds, and probably have no, or less, effect on other marine fauna, which are often sensitive to low frequency sounds. PMID:18599117

  12. Distortion effects in primary calibration of low-frequency accelerometers

    NASA Astrophysics Data System (ADS)

    Scott, D. A.; Dickinson, L. P.

    2014-06-01

    According to ISO 16063-11 (1999), at frequencies below 1600 Hz primary calibration of accelerometers may employ two methods: fringe counting or sine approximation. During a recent intercomparison (APMP.AUV.V-S1) small but systematic differences were found between the results obtained by using these two methods, and by the use of different amplifier modes to drive the shaker at frequencies between 0.5 Hz and 20 Hz. The influences of distortion and noise on the two methods are explored. The results and a discussion of the differences are presented in this paper.

  13. Improved frequency resolution for characterization of complex fractionated atrial electrograms

    PubMed Central

    2012-01-01

    Background The dominant frequency of the Fourier power spectrum is useful to analyze complex fractionated atrial electrograms (CFAE), but spectral resolution is limited and uniform from DC to the Nyquist frequency. Herein the spectral resolution of a recently described and relatively new spectral estimation technique is compared to the Fourier radix-2 implementation. Methods In 10 paroxysmal and 10 persistent atrial fibrillation patients, 216 CFAE were acquired from the pulmonary vein ostia and left atrial free wall (977 Hz sampling rate, 8192 sample points, 8.4 s duration). With these parameter values, in the physiologic range of 3–10 Hz, two frequency components can theoretically be resolved at 0.24 Hz using Fourier analysis and at 0.10 Hz on average using the new technique. For testing, two closely-spaced periodic components were synthesized from two different CFAE recordings, and combined with two other CFAE recordings magnified 2×, that served as interference signals. The ability to resolve synthesized frequency components in the range 3–4 Hz, 4–5 Hz, …, 9–10 Hz was determined for 15 trials each (105 total). Results With the added interference, frequency resolution averaged 0.29 ± 0.22 Hz for Fourier versus 0.16 ± 0.10 Hz for the new method (p < 0.001). The misalignment error of spectral peaks versus actual values was ±0.023 Hz for Fourier and ±0.009 Hz for the new method (p < 0.001). One or both synthesized peaks were lost in the noise floor 13/105 times using Fourier versus 4/105 times using the new method. Conclusions Within the physiologically relevant frequency range for characterization of CFAE, the new method has approximately twice the spectral resolution of Fourier analysis, there is less error in estimating frequencies, and peaks appear more readily above the noise floor. Theoretically, when interference is not present, to resolve frequency components separated by 0.10 Hz using Fourier analysis

  14. Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz

    NASA Astrophysics Data System (ADS)

    Graves, W. S.; Bessuille, J.; Brown, P.; Carbajo, S.; Dolgashev, V.; Hong, K.-H.; Ihloff, E.; Khaykovich, B.; Lin, H.; Murari, K.; Nanni, E. A.; Resta, G.; Tantawi, S.; Zapata, L. E.; Kärtner, F. X.; Moncton, D. E.

    2014-12-01

    A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standing-wave linac and rf photoinjector powered by a single ultrastable rf transmitter at X-band rf frequency. The high efficiency permits operation at repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating with trains of 100 bunches of 100 pC charge, each separated by 5 ns. The entire accelerator is approximately 1 meter long and produces hard x rays tunable over a wide range of photon energies. The colliding laser is a Yb ∶YAG solid-state amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as the accelerator. The laser pulse is frequency-doubled and stored for many passes in a ringdown cavity to match the linac pulse structure. At a photon energy of 12.4 keV, the predicted x-ray flux is 5 ×1 011 photons /second in a 5% bandwidth and the brilliance is 2 ×1 012 photons /(sec mm2 mrad2 0.1 %) in pulses with rms pulse length of 490 fs. The nominal electron beam parameters are 18 MeV kinetic energy, 10 microamp average current, 0.5 microsecond macropulse length, resulting in average electron beam power of 180 W. Optimization of the x-ray output is presented along with design of the accelerator, laser, and x-ray optic components that are specific to the particular characteristics of the Compton scattered x-ray pulses.

  15. Coils performances of superconducting cables for 50/60 Hz applications

    SciTech Connect

    Lacaze, A.; Laumond, Y. ); Tavergnier, J.P.; Fevrier, A.; Verhaege, T. ); Dalle, B.; Ansart, A. )

    1991-03-01

    Multifilamentary superconducting wires with a greatly reduced level of losses have been produced with unit lengths of several tens of kilometers by AISA (GEC ALSTHOM - IGC). With the reduction of the filament diameter, proximity effects are avoided and the authors take a maximum advantage of the reversible motion of flux lines, so that the hysteretic and matrix losses are lower. In this paper the authors report on 50 Hz and DC quench currents, 50 Hz AC losses, 50 Hz electromagnetic stability results.

  16. 47 CFR 15.217 - Operation in the band 160-190 kHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the band 160-190 kHz. 15.217... Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.217 Operation in the band 160-190 k... lead (if used) shall not exceed 15 meters. (c) All emissions below 160 kHz or above 190 kHz shall...

  17. Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames

    NASA Astrophysics Data System (ADS)

    Boxx, I.; Stöhr, M.; Carter, C.; Meier, W.

    2009-04-01

    We describe an approach of imaging the dynamic interaction of the flamefront and flowfield. Here, a diode-pumped Nd:YLF laser operating at 5 kHz is used to pump a dye laser, which is then frequency doubled to 283 nm to probe flamefront OH, while a dual cavity diode-pumped Nd:YAG system produces pulse-pairs for particle image velocimetry (PIV). CMOS digital cameras are used to detect both planar laser-induced fluorescence (PLIF) and particle scattering (in a stereo arrangement) such that a 5 kHz measurement frequency is attained. This diagnostic is demonstrated in lifted-jet and swirl-stabilized flames, wherein the dynamics of the flame stabilization processes are seen. Nonperiodic effects such as local ignition and/or extinction, lift-off and flashback events, and their histories can be captured by this technique. As such, this system has the potential to significantly extend our understanding of nonstationary combustion processes relevant to industrial and technical applications.

  18. Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique

    NASA Astrophysics Data System (ADS)

    Triches, Marco; Brusch, Anders; Hald, Jan

    2015-12-01

    A portable stand-alone optical frequency standard based on a gas-filled hollow-core photonic crystal fiber is developed to stabilize a fiber laser to the ^{13}{C}_2{H}_2 P(16) (ν _1 + ν _3) transition at 1542 nm using saturated absorption. A novel encapsulation technique is developed to permanently seal the hollow-core fiber with easy light coupling, showing negligible pressure increase over two months. The locked laser shows a fractional frequency instability below 8 × 10^{-12} for an averaging time up to 104 s. The lock-point repeatability over one month is 2.6 × 10^{-11}, corresponding to a standard deviation of 5.3 kHz. The system is also assembled in a more compact and easy-to-use configuration ( Plug&Play), showing comparable performance with previously published work. The real portability of this technology is proved by shipping the system to a collaborating laboratory, showing unchanged performance after the return.

  19. Statistical analysis of Stromboli VLP tremor in the band (0.1-0.5)Hz: Some consequences for geometrical vibrating structure

    NASA Astrophysics Data System (ADS)

    Palo, M.; de Lauro, E.; de Martino, S.; Falanga, M.

    2006-12-01

    We analyze time series of strombolian volcanic tremor recorded during the experiment performed in 1997 by using 21 three-component broadband seismometers. This work is devoted to the careful analysis of the frequency band [0.1-0.5] Hz in order to obtain information about the properties of volcanic tremor and the microseismic noise. In fact, although this frequency band is largely affected by noise, we infer the possibility of simpler hidden structures. We evidence two significant components by using Independent Component Analysis with the frequencies, respectively, of about 0.2 and 0.4 Hz. We show that these components display wavefield features similar to those of the high frequency strombolian signals (greater than 0.5 Hz). In fact they are radially polarised and located within the crater area. This characterization is lost when an enhancement of energy appears. In this case the presence of microseismic noise becomes relevant. Investigating the entire large data- set available, we determine how microseismic noise influences the signals. We ascribed the microseismic noise source to Scirocco wind. Moreover, our analysis allows one to affirm that the strombolian conduit vibrates like the asymmetric cavity associated with musical instruments generating self-sustained tones.

  20. Breeding for 50-kHz positive affective vocalization in rats.

    PubMed

    Burgdorf, Jeffrey; Panksepp, Jaak; Brudzynski, Stefan M; Kroes, Roger; Moskal, Joseph R

    2005-01-01

    Adolescent and adult rats exhibit at least two distinct ultrasonic vocalizations that reflect distinct emotional states. Rats exhibit 22-kHz calls during social defeat, drug withdrawal, as well as in anticipation of aversive events. In contrast, 50-kHz calls are exhibited in high rates during play behavior, mating, as well as in anticipation of rewarding events. The neurochemistry of 22-kHz and 50-kHz calls closely matches that of negative and positive emotional systems in humans, respectively. The aim of this study was to replicate and further evaluate selective breeding for 50-kHz vocalization, in preparation for the analysis of the genetic underpinnings of the 50-kHz ultrasonic vocalization (USV). Isolate housed adolescent rats (23-26 days old) received experimenter administered tactile stimulation (dubbed "tickling"), which mimicked the rat rough-and-tumble play behavior. This stimulation has previously been shown to elicit high levels of 50-kHz USVs and to be highly rewarding in isolate-housed animals. Each tickling session consisted of 4 cycles of 15 seconds stimulation followed by 15 seconds no stimulation for a total of 2 min, and was repeated once per day across 4 successive days. Rats were then selected for either High or Low levels of sonographically verified 50-kHz USVs in response to the stimulation, and a randomly selected line served as a control (Random group). Animals emitted both 22-kHz and 50-kHz types of calls. After 5 generations, animals in the High Line exhibited significantly more 50-kHz and fewer 22-kHz USVs than animals in the Low Line. Animals selected for low levels of 50-kHz calls showed marginally more 22-kHz USVs then randomly selected animals but did not differ in the rate of 50-kHz calls. These results extend our previous findings that laboratory rats could be bred for differential rates of sonographically verified 50-kHz USVs. PMID:15674533

  1. Alarm pheromone does not modulate 22-kHz calls in male rats.

    PubMed

    Muyama, Hiromi; Kiyokawa, Yasushi; Inagaki, Hideaki; Takeuchi, Yukari; Mori, Yuji

    2016-03-15

    Rats are known to emit a series of ultrasonic vocalizations, termed 22-kHz calls, when exposed to distressing stimuli. Pharmacological studies have indicated that anxiety mediates 22-kHz calls in distressed rats. We previously found that exposure to the rat alarm pheromone increases anxiety in rats. Therefore, we hypothesized that the alarm pheromone would increase 22-kHz calls in pheromone-exposed rats. Accordingly, we tested whether exposure to the alarm pheromone induced 22-kHz calls, as well as whether the alarm pheromone increased 22-kHz calls in response to an aversive conditioned stimulus (CS). Rats were first fear-conditioned to an auditory and contextual CS. On the following day, the rats were either exposed to the alarm pheromone or a control odor that was released from the neck region of odor-donor rats. Then, the rats were re-exposed to the aversive CS. The alarm pheromone neither induced 22-kHz calls nor increased 22-kHz calls in response to the aversive CS. In contrast, the control odor unexpectedly reduced the total number and duration of 22-kHz calls elicited by the aversive CS, as well as the duration of freezing. These results suggest that the alarm pheromone does not affect 22-kHz calls in rats. However, we may have found evidence for an appeasing olfactory signal, released from the neck region of odor-donor rats. PMID:26796788

  2. What the [bleep]? Enhanced absolute pitch memory for a 1000Hz sine tone.

    PubMed

    Van Hedger, Stephen C; Heald, Shannon L M; Nusbaum, Howard C

    2016-09-01

    Many individuals are able to perceive when the tuning of familiar stimuli, such as popular music recordings, has been altered. This suggests a kind of ubiquitous pitch memory, though it is unclear how this ability differs across individuals with and without absolute pitch (AP) and whether it plays any role in AP. In the present study, we take advantage of a salient single frequency - the 1000Hz sine tone used to censor taboo words in broadcast media - to assess the nature of this kind of pitch memory across individuals with and without AP. We show that non-AP participants are accurate at selecting the correct version of the censor tone among incorrect versions shifted by either one or two semitones, though their accuracy was still below that of an AP population (Experiment 1). This suggests a benefit for AP listeners that could be due to the use of explicit note categories or greater amounts of musical training. However, AP possessors still outperformed all non-AP participants when incorrect versions of the censor tone were shifted within a note category, even when controlling for musical experience (Experiment 2). Experiment 3 demonstrated that AP listeners did not appear to possess a category label for the censor tone that could have helped them differentiate the censor tones used in Experiment 2. Overall, these results suggest that AP possessors may have better pitch memory, even when divorced from pitch labeling (note categories). As such, these results have implications for how AP may develop and be maintained. PMID:27289485

  3. Effects of a 50 Hz magnetic field on Dictyostelium discoideum (Protista).

    PubMed

    Amaroli, Andrea; Trielli, Francesca; Bianco, Bruno; Giordano, Stefano; Moggia, Elsa; Corrado, Maria Umberta Delmonte

    2006-10-01

    Some studies have demonstrated that a few biological systems are affected by weak, extremely low frequency (ELF) electromagnetic fields (EMFs), lower than 10 mT. However, to date there is scanty evidence of this effect on Protists in the literature. Due to their peculiarity as single-cell eukaryotic organisms, Protists respond directly to environmental stimuli, thus appearing as very suitable experimental systems. Recently, we showed the presence of propionylcholinesterase (PrChE) activity in single-cell amoebae of Dictyostelium discoideum. This enzyme activity was assumed to be involved in cell-cell and cell-environment interactions, as its inhibition affects cell aggregation and differentiation. In this work, we have exposed single-cell amoebae of D. discoideum to an ELF-EMF of about 200 microT, 50 Hz, for 3 h or 24 h at 21 degrees C. A delay in the early phase of the differentiation was observed in 3 h exposed cells, and a significant decrease in the fission rate appeared in 24 h exposed cells. The PrChE activity was significantly lower in 3 h exposed cells than in the controls, whereas 24 h exposed cells exhibited an increase in this enzyme activity. However, such effects appeared to be transient, as the fission rate and PrChE activity values returned to the respective control values after a 24 h stay under standard conditions. PMID:16715524

  4. 1-Hz Repetitive Transcranial Magnetic Stimulation over the Posterior Parietal Cortex Modulates Spatial Attention

    PubMed Central

    Xu, Guang-qing; Lan, Yue; Zhang, Qun; Liu, Dong-xu; He, Xiao-fei; Lin, Tuo

    2016-01-01

    Lesion and neuroimaging studies have suggested that regions in the posterior parietal cortex (PPC) are involved in visual spatial attention. The aim of this study was to investigate the potential effects on spatial attention resulting from a transient parietal impairment induced by 1-Hz repetitive transcranial magnetic stimulation (rTMS). We examined 50 healthy subjects using the attention network test (ANT) after first applying rTMS to right or left PPC. The right parietal rTMS, but not left PPC rTMS, caused a significant slowing in the mean reaction time (RT) to target presentation following a spatial cue during the ANT test. There were no significant effects of rTMS on mean RT under the no-cue, center-cue, and double-cue conditions, or for each flanker type among the experimental groups. Moreover, after rTMS to the right PPC, test subjects displayed deficits in networks related to alerting and orienting, whereas they exhibited improvement following rTMS to the left PPC. These findings indicate that the right PPC serves an important function in spatial orienting and the alerting activities. We interpreted the enhancement in alerting and spatial orienting function following low-frequency rTMS of left PPC as reflecting a disinhibition of right PPC via an inter-hemispheric inhibition account. PMID:26869911

  5. Coherent 25- to 35-Hz Oscillations in the Sensorimotor Cortex of Awake Behaving Monkeys

    NASA Astrophysics Data System (ADS)

    Murthy, Venkatesh N.; Fetz, Eberhard E.

    1992-06-01

    Synchronous 25- to 35-Hz oscillations were observed in local field potentials and unit activity in sensorimotor cortex of awake rhesus monkeys. The oscillatory episodes occurred often when the monkeys retrieved raisins from a Kluver board or from unseen locations using somatosensory feedback; they occurred less often during performance of repetitive wrist flexion and extension movements. The amplitude, duration, and frequency of oscillations were not directly related to movement parameters in behaviors studied so far. The occurrence of the oscillations was not consistently related to bursts of activity in forearm muscles, but cycle-triggered averages of electromyograms revealed synchronous modulation in flexor and extensor muscles. The phase of the oscillations changed continuously from the surface to the deeper layers of the cortex, reversing their polarity completely at depths exceeding 800 μm. The oscillations could become synchronized over a distance of 14 mm mediolaterally in precentral cortex. Coherent oscillations could also occur at pre- and postcentral sites separated by an estimated tangential intracortical distance of 20 mm. Activity of single units was commonly seen to burst in synchrony with field potential oscillations. These findings suggest that such oscillations may facilitate interactions between cells during exploratory and manipulative movements, requiring attention to sensorimotor integration.

  6. Numerical calculation and measurement of 60-Hz current densities induced in an upright grounded cylinder.

    PubMed

    Kaune, W T; McCreary, F A

    1985-01-01

    Power-frequency electric fields are strongly perturbed in the vicinity of human beings and experimental animals. As a consequence, the extrapolation of biological data from laboratory animals to human-exposure situations cannot use the unperturbed exposure field strength as a common exposure parameter. Rather, comparisons between species must be based on the actual electric fields at the outer surfaces of and inside the bodies of the subjects. Experimental data have been published on surface and internal fields for a few exposure situations, but it is not feasible to characterize experimentally more than a small fraction of the diverse types of exposures which occur in the laboratory and in the field. A predictive numerical model is needed, one whose predictions have been verified in situations where experimental data are available, and one whose results can be used with confidence in new exposure situations. This paper describes a numerical technique which can be used to develop such a model, and it carries out this development for a test case, that of a homogeneous right-circular cylinder resting upright on-end on a ground plane and exposed to a vertical, uniform, 60-Hz electric field. The accuracy of the model is tested by comparing short-circuit currents and induced current densities predicted by it to measured values: Agreement is good. PMID:3836665

  7. Rodent cell transformation and immediate early gene expression following 60-Hz magnetic field exposure.

    PubMed Central

    Balcer-Kubiczek, E K; Zhang, X F; Harrison, G H; McCready, W A; Shi, Z M; Han, L H; Abraham, J M; Ampey, L L; Meltzer, S J; Jacobs, M C; Davis, C C

    1996-01-01

    Some epidemiological studies suggest that exposure to power frequency magnetic fields (MFs) may be associated with an elevated risk of human cancer, but the experimental database remains limited and controversial. We investigated the hypothesis that 60-Hz MF action at the cellular level produces changes in gene expression that can result in neoplastic transformation. Twenty-four hour 200 microT continuous MF exposure produced negative results in two standard transformation systems (Syrian hamster embryo cells and C3H/10T1/2 murine fibroblasts) with or without postexposure to a chemical promoter. This prompted a reexamination of previously reported MF-induced changes in gene expression in human HL60 cells. Extensive testing using both coded and uncoded analyses was negative for an MF effect. Using the same exposure conditions as in the transformation studies, no MF-induced changes in ornithine decarboxylase expression were observed in C3H/10T1/2 cells, casting doubt on a promotional role of MF for the tested cells and experimental conditions. Images Figure 1. Figure 2. A Figure 2. B Figure 2. C Figure 2. D Figure 3. A Figure 3. B Figure 4. Figure 5. A Figure 5. B Figure 5. C Figure 5. D Figure 5. E Figure 6. A Figure 6. B Figure 6. C Figure 6. D Figure 6. E Figure 7. Figure 8. A Figure 8. B Figure 8. C Figure 9. Figure 10. A Figure 10. B PMID:8959408

  8. Correlations between X-ray Spectra and kHz QPOS in Sco X-1

    NASA Astrophysics Data System (ADS)

    Bradshaw, Charles F.; Titarchuk, Lev; Kuznetsov, Sergey

    2008-05-01

    Recent analysis of the RXTE X-ray spectra of Sco X-1 discovered that Sco X-1 can be adequately modeled by a simple two-component model of Compton up-scattering with a soft photon electron temperature of about 0.4 keV, plus an Iron K-line. The results show a strong correlation between spectral power law index and kHz QPOs. Sco X-1 is the prototypical Z-source low-mass X-ray binary (LMXB) system radiating near the Eddington limit. This radiation produces a high radiation pressure in its Compton cloud. We infer that the radiation pressure produces a geometrical configuration of the cloud that is quasi-spherical. We conclude that the high Thomson optical depth of the Compton cloud, in the range of 5-6 from the best-fit model parameters, is consistent with the neutron star's surface being obscured by material, which would likely suppress a spin frequency of Sco X-1 due to photon scattering off cloud electrons. We also demonstrate the evolution of its power spectrum when Sco X-1 transitions from the horizontal branch to the normal branch.

  9. 1-Hz Repetitive Transcranial Magnetic Stimulation over the Posterior Parietal Cortex Modulates Spatial Attention.

    PubMed

    Xu, Guang-Qing; Lan, Yue; Zhang, Qun; Liu, Dong-Xu; He, Xiao-Fei; Lin, Tuo

    2016-01-01

    Lesion and neuroimaging studies have suggested that regions in the posterior parietal cortex (PPC) are involved in visual spatial attention. The aim of this study was to investigate the potential effects on spatial attention resulting from a transient parietal impairment induced by 1-Hz repetitive transcranial magnetic stimulation (rTMS). We examined 50 healthy subjects using the attention network test (ANT) after first applying rTMS to right or left PPC. The right parietal rTMS, but not left PPC rTMS, caused a significant slowing in the mean reaction time (RT) to target presentation following a spatial cue during the ANT test. There were no significant effects of rTMS on mean RT under the no-cue, center-cue, and double-cue conditions, or for each flanker type among the experimental groups. Moreover, after rTMS to the right PPC, test subjects displayed deficits in networks related to alerting and orienting, whereas they exhibited improvement following rTMS to the left PPC. These findings indicate that the right PPC serves an important function in spatial orienting and the alerting activities. We interpreted the enhancement in alerting and spatial orienting function following low-frequency rTMS of left PPC as reflecting a disinhibition of right PPC via an inter-hemispheric inhibition account. PMID:26869911

  10. Constraining the size of the Comptonizing medium by modelling the energy-dependent time lags of kHz QPOs of neutron star system

    NASA Astrophysics Data System (ADS)

    Kumar, Nagendra; Misra, Ranjeev

    2016-09-01

    We study the dependence of the estimated size and geometry of the medium on the time-averaged spectral model assumed and on the frequency of the kHz quasi-periodic oscillation (QPO) in the framework of a thermal Comptonization model. We use the high-quality time lag and rms obtained during 1996 March 3 observation of 4U 1608-52 by RXTE as well as other observations of the source at different QPO frequencies where a single time lag between two broad energy bands has been reported. We compare the results obtained when assuming that the time-averaged spectra are represented by the spectrally degenerate `hot (kTb ≥ 1 keV)' and `cold (kTb ≤ 0.5 keV)' seed spectral models where Tb is seed source temperature. We find that for the `hot-seed' model the medium size is in the range of 0.3-2.0 km and the size decreases with increasing QPO frequency. On the other hand, for the `cold-seed' model, the range for the sizes is much larger 0.5-20 km and hence perhaps show no variation with QPO frequency. Our results emphasize the need for broad-band spectral information combined with high-frequency timing to lift this degeneracy. We further compare the rms as a function of energy for the upper kHz QPO, and indeed we find that the driver for this QPO should be temperature variations of the corona identical to the lower kHz QPO. However, the time lag reported for the upper kHz QPO is hard, which if confirmed would challenge the simple Comptonization model presented here.

  11. EEG frequency analysis of cortical brain activities induced by effect of light touch.

    PubMed

    Ishigaki, Tomoya; Ueta, Kozo; Imai, Ryota; Morioka, Shu

    2016-06-01

    In human postural control, touching a fingertip to a stable object with a slight force (<1 N) reduces postural sway independent of mechanical support, which is referred to as the effect of light touch (LT effect). The LT effect is achieved by the spatial orientation according to haptic feedback acquired from an external spatial reference. However, the neural mechanism of the LT effect is incompletely understood. Therefore, the purpose of this study was to employ EEG frequency analysis to investigate the cortical brain activity associated with the LT effect when attentional focus was strictly controlled with the eyes closed during standing (i.e., control, fixed-point touch, sway-referenced touch, and only fingertip attention). We used EEG to measure low-alpha (about 8-10 Hz) and high-alpha rhythm (about 10-12 Hz) task-related power decrease/increase (TRPD/TRPI). The LT effect was apparent only when the subject acquired the stable external spatial reference (i.e., fixed-point touch). Furthermore, the LT-specific effect increased the high-alpha TRPD of two electrodes (C3, P3), which were mainly projected from cortical brain activities of the left primary sensorimotor cortex area and left posterior parietal cortex area. Furthermore, there was a negative correlation between the LT effect and increased TRPD of C3. In contrast, the LT effect correlated positively with increased TRPD of P3. These results suggest that central and parietal high-alpha TRPD of the contralateral hemisphere reflects the sensorimotor information processing and sensory integration for the LT effect. These novel findings reveal a partial contribution of a cortical neural mechanism for the LT effect. PMID:26758719

  12. 20 kHz ultrasound assisted treatment of chronic wounds with concurrent optic monitoring

    NASA Astrophysics Data System (ADS)

    Bawiec, Christopher R.; Sunny, Youhan; Diaz, David; Nadkarni, Sumati; Weingarten, Michael S.; Neidrauer, Michael; Margolis, David J.; Zubkov, Leonid; Lewin, Peter A.

    2015-05-01

    This paper describes a novel, wearable, battery powered ultrasound applicator that was evaluated as a therapeutic tool for healing of chronic wounds, such as venous ulcers. The low frequency and low intensity (~100mW/cm2) applicator works by generating ultrasound waves with peak-to-peak pressure amplitudes of 55 kPa at 20 kHz. The device was used in a pilot human study (n=25) concurrently with remote optical (diffuse correlation spectroscopy - DCS) monitoring to assess the healing outcome. More specifically, the ulcers' healing status was determined by measuring tissue oxygenation and blood flow in the capillary network. This procedure facilitated an early prognosis of the treatment outcome and - once verified - may eventually enable customization of wound management. The outcome of the study shows that the healing patients of the ultrasound treated group had a statistically improved (p<0.05) average rate of wound healing (20.6%/week) compared to the control group (5.3%/week). In addition, the calculated blood flow index (BFI) decreased more rapidly in wounds that decreased in size, indicating a correlation between BFI and wound healing prediction. Overall, the results presented support the notion that active low frequency ultrasound treatment of chronic venous ulcers accelerates healing when combined with the current standard clinical care. The ultrasound applicator described here provides a user-friendly, fully wearable system that has the potential for becoming the first device suitable for treatment of chronic wounds in patient's homes, which - in turn - would increase patients' compliance and improve quality of life.

  13. Joint Inversion of 1-Hz GPS Data and Strong Motion Records for the Rupture Process of the 2008 Iwate-Miyagi Nairiku Earthquake: Objectively Determining Relative Weighting

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Kato, T.; Wang, Y.

    2015-12-01

    The spatiotemporal fault slip history of the 2008 Iwate-Miyagi Nairiku earthquake, Japan, is obtained by the joint inversion of 1-Hz GPS waveforms and near-field strong motion records. 1-Hz GPS data from GEONET is processed by GAMIT/GLOBK and then a low-pass filter of 0.05 Hz is applied. The ground surface strong motion records from stations of K-NET and Kik-Net are band-pass filtered for the range of 0.05 ~ 0.3 Hz and integrated once to obtain velocity. The joint inversion exploits a broader frequency band for near-field ground motions, which provides excellent constraints for both the detailed slip history and slip distribution. A fully Bayesian inversion method is performed to simultaneously and objectively determine the rupture model, the unknown relative weighting of multiple data sets and the unknown smoothing hyperparameters. The preferred rupture model is stable for different choices of velocity structure model and station distribution, with maximum slip of ~ 8.0 m and seismic moment of 2.9 × 1019 Nm (Mw 6.9). By comparison with the single inversion of strong motion records, the cumulative slip distribution of joint inversion shows sparser slip distribution with two slip asperities. One common slip asperity extends from the hypocenter southeastward to the ground surface of breakage; another slip asperity, which is unique for joint inversion contributed by 1-Hz GPS waveforms, appears in the deep part of fault where very few aftershocks are occurring. The differential moment rate function of joint and single inversions obviously indicates that rich high frequency waves are radiated in the first three seconds but few low frequency waves.

  14. Listening to the low-frequency gravitational-wave band

    NASA Astrophysics Data System (ADS)

    Hughes, Scott

    2016-03-01

    Ground-based gravitational-wave detectors are beginning to explore the high-frequency band of roughly 10 to 1000 Hz. These three decades in frequency represent one of several astrophysically important wavebands. In this talk, I will focus on the astrophysics of the low-frequency band, from roughly 30 microhertz to 0.1 Hz. This band is expected to be particularly rich with very loud sources. I will survey what we expect to be important sources of low-frequency gravitational waves, and review the scientific payoff that would come from measuring them.

  15. Real-Time, High-Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed

    2003-01-01

    An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction

  16. Frequency Combs

    NASA Astrophysics Data System (ADS)

    Hänsch, Theodor W.; Picqué, Nathalie

    Much of modern research in the field of atomic, molecular, and optical science relies on lasers, which were invented some 50 years ago and perfected in five decades of intense research and development. Today, lasers and photonic technologies impact most fields of science and they have become indispensible in our daily lives. Laser frequency combs were conceived a decade ago as tools for the precision spectroscopy of atomic hydrogen. Through the development of optical frequency comb techniques, technique a setup of the size 1 ×1 m2, good for precision measurements of any frequency, and even commercially available, has replaced the elaborate previous frequency-chain schemes for optical frequency measurements, which only worked for selected frequencies. A true revolution in optical frequency measurements has occurred, paving the way for the creation of all-optical clocks clock with a precision that might approach 10-18. A decade later, frequency combs are now common equipment in all frequency metrology-oriented laboratories. They are also becoming enabling tools for an increasing number of applications, from the calibration of astronomical spectrographs to molecular spectroscopy. This chapter first describes the principle of an optical frequency comb synthesizer. Some of the key technologies to generate such a frequency comb are then presented. Finally, a non-exhaustive overview of the growing applications is given.

  17. Widely tunable opto-electronic oscillator based on a dual frequency laser

    NASA Astrophysics Data System (ADS)

    Maxin, J.; Saleh, K.; Pillet, G.; Morvan, L.; Llopis, O.; Dolfi, D.

    2013-03-01

    We present the stabilization of the beatnote of an Er,Yb:glass Dual Frequency Laser at 1.53 μm with optical fiber delay lines. Instead of standard optoelectronics oscillators, this architecture does not need RF filter and offers a wide tunability from 2.5 to 5.5 GHz. Thank to a fine analysis of the laser RIN to phase noise conversion in the photodiodes, the expected RF-amplifiers noise limit is reached with a phase noise power spectral density of -25 dBc/Hz at 10 Hz (respectively -110 dBc/Hz at 10 kHz) from the carrier over the whole tuning range. Implementation of a double fiber coil architecture improves the oscillator spectral purity: the phase noise reaches a level of -35 dBc/Hz at 10 Hz (respectively -112 dBc/Hz respectively 10 kHz) from the carrier.

  18. Thermal Nondestructive Evaluation Report: Inspection of the Refurbished Manipulator Arm System in the Manipulator Development Facility at Johnson Space Center 10-12 January 2001

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott

    2002-01-01

    On 4 December 2002, a failure of the Refurbished Manipulator Arm System (RMAS) occurred in the Manipulator Development Facility (MDF) at Johnson Space Center. When the Test Director commanded a should pitch maneuver to lift the arm from its payload bay pedestal, the yaw controls failed. This, coupled with a gravitational forces (due to the angle of the shoulder joint with respect to vertical), resulted in uncontrolled arm motion. The shoulder yaw joint moved approximately 20 degrees, causing the extended arm to strike and severely damage the port side MDF catwalk handrails. The arm motion stopped after impact with the handrails. On 10-12 January 2001, inspections were performed on the port face of the lower and upper arms of the RMAS using a infrared thermography developed at Langley Research Center. This paper presents the results of those nondestructive inspections and provides a complete description of the anomalies found and their locations.

  19. ON THE NATURE OF THE mHz X-RAY QUASI-PERIODIC OSCILLATIONS FROM ULTRALUMINOUS X-RAY SOURCE M82 X-1: SEARCH FOR TIMING-SPECTRAL CORRELATIONS

    SciTech Connect

    Pasham, Dheeraj R.; Strohmayer, Tod E. E-mail: tod.strohmayer@nasa.gov

    2013-07-10

    Using all the archival XMM-Newton X-ray (3-10 keV) observations of the ultraluminous X-ray source (ULX) M82 X-1, we searched for a correlation between its variable mHz quasi-periodic oscillation (QPO) frequency and its hardness ratio (5-10 keV/3-5 keV), an indicator of the energy spectral power-law index. When stellar-mass black holes (StMBHs) exhibit type-C low-frequency QPOs ({approx}0.2-15 Hz), the centroid frequency of the QPO is known to correlate with the energy spectral index. The detection of such a correlation would strengthen the identification of M82 X-1's mHz QPOs as type-C and enable a more reliable mass estimate by scaling its QPO frequencies to those of type-C QPOs in StMBHs of known mass. We resolved the count rates and the hardness ratios of M82 X-1 and a nearby bright ULX (source 5/X42.3+59) through surface brightness modeling. We detected QPOs in the frequency range of 36-210 mHz during which M82 X-1's hardness ratio varied from 0.42 to 0.47. Our primary results are (1) that we do not detect any correlation between the mHz QPO frequency and the hardness ratio (a substitute for the energy spectral power-law index) and (2) similar to some accreting X-ray binaries, we find that M82 X-1's mHz QPO frequency increases with its X-ray count rate (Pearson's correlation coefficient = +0.97). The apparent lack of a correlation between the QPO centroid frequency and the hardness ratio poses a challenge to the earlier claims that the mHz QPOs of M82 X-1 are the analogs of the type-C low-frequency QPOs of StMBHs. On the other hand, it is possible that the observed relation between the hardness ratio and the QPO frequency represents the saturated portion of the correlation seen in type-C QPOs of StMBHs-in which case M82 X-1's mHz QPOs can still be analogous to type-C QPOs.

  20. On the Nature of the mHz X-ray Quasi-Periodic Oscillations from Ultraluminous X-ray source M82 X-1: Search for Timing-Spectral Correlations

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    Using all the archival XMM-Newton X-ray (3-10 keV) observations of the ultraluminous X-ray source (ULX) M82 X-1, we searched for a correlation between its variable mHz quasi-periodic oscillation (QPO) frequency and its hardness ratio (5-10 keV/3-5 keV), an indicator of the energy spectral power-law index. When stellar-mass black holes (StMBHs) exhibit type-C low-frequency QPOs (0.2-15 Hz), the centroid frequency of the QPO is known to correlate with the energy spectral index. The detection of such a correlation would strengthen the identification of M82 X-1's mHz QPOs as type-C and enable a more reliable mass estimate by scaling its QPO frequencies to those of type-C QPOs in StMBHs of known mass.We resolved the count rates and the hardness ratios of M82 X-1 and a nearby bright ULX (source 5/X42.3+59) through surface brightness modeling.We detected QPOs in the frequency range of 36-210 mHz during which M82 X-1's hardness ratio varied from 0.42 to 0.47. Our primary results are (1) that we do not detect any correlation between the mHz QPO frequency and the hardness ratio (a substitute for the energy spectral power-law index) and (2) similar to some accreting X-ray binaries, we find that M82 X-1's mHz QPO frequency increases with its X-ray count rate (Pearson's correlation coefficient = +0.97). The apparent lack of a correlation between the QPO centroid frequency and the hardness ratio poses a challenge to the earlier claims that the mHz QPOs of M82 X-1 are the analogs of the type-C low-frequency QPOs of StMBHs. On the other hand, it is possible that the observed relation between the hardness ratio and the QPO frequency represents the saturated portion of the correlation seen in type-C QPOs of StMBHs-in which case M82 X-1's mHz QPOs can still be analogous to type-C QPOs.