Science.gov

Sample records for 10-20 cm soil

  1. Estimation of CO2 diffusion coefficient at 0-10 cm depth in undisturbed and tilled soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion coefficients (D) of CO2 at 0 – 10 cm layers in undisturbed and tilled soil conditions were estimated using Penman, Millington-Quirk, Ridgwell et al. (1999), Troeh et al., and Moldrup et al. models. Soil bulk density and volumetric soil water content ('v) at 0 – 10 cm were measured on April...

  2. Biocrusts serve as biomarkers for the upper 30 cm soil water content

    NASA Astrophysics Data System (ADS)

    Kidron, Giora J.; Benenson, Itzhak

    2014-02-01

    Knowledge regarding the spatial distribution of moisture in soil is of great importance especially in arid regions where water is scarce. Following a previous research that showed a significant relationship between daylight surface wetness duration and the average chlorophyll content of 5 biocrusts in the Negev Desert (Israel), and the resultant outcome that pointed to the possible use of biocrusts as biomarkers for surface wetness duration, we hypothesize that biocrusts may also serve as biomarkers for the moisture content of the upper soil layer. Toward this end, daylight surface wetness duration was measured at 5 crust types following rain events during 1993-1995 along with periodical soil sampling of the upper 30 cm (at 5 cm intervals) of the soil profiles underlying these biocrusts. The findings showed a positive linear relationship between daylight surface wetness duration and the chlorophyll content of the crusts (r2 = 0.96-0.97). High correlations were also found between daylight surface wetness duration and the available water content (r2 = 0.96) and duration (r2 = 0.85-0.88) of the upper 30 cm soil and between the chlorophyll content of the crust and the available water content (r2 = 0.93-0.96) and duration (r2 = 0.78-0.84). Topography-induced shading and slope position (which determined additional water either by runoff or subsurface flow) are seen responsible for the clear link between subsurface moisture content, daylight surface wetness duration and chlorophyll content of the crust. This link points to the possible use of biocrusts as biomarkers for subsurface water content and highlights the importance of crust typology and mapping for the study of the spatial distribution of water and their potential use for the study of ecosystem structure and function.

  3. A case study demonstration of the soil temperature extrema recovery rates after precipitation cooling at 10-cm soil depth

    NASA Technical Reports Server (NTRS)

    Welker, Jean Edward

    1991-01-01

    Since the invention of maximum and minimum thermometers in the 18th century, diurnal temperature extrema have been taken for air worldwide. At some stations, these extrema temperatures were collected at various soil depths also, and the behavior of these temperatures at a 10-cm depth at the Tifton Experimental Station in Georgia is presented. After a precipitation cooling event, the diurnal temperature maxima drop to a minimum value and then start a recovery to higher values (similar to thermal inertia). This recovery represents a measure of response to heating as a function of soil moisture and soil property. Eight different curves were fitted to a wide variety of data sets for different stations and years, and both power and exponential curves were fitted to a wide variety of data sets for different stations and years. Both power and exponential curve fits were consistently found to be statistically accurate least-square fit representations of the raw data recovery values. The predictive procedures used here were multivariate regression analyses, which are applicable to soils at a variety of depths besides the 10-cm depth presented.

  4. Effects of modified soil water-heat physics on RegCM4 simulations of climate over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Xuejia; Pang, Guojin; Yang, Meixue; Wan, Guoning

    2016-06-01

    To optimize the description of land surface processes and improve climate simulations over the Tibetan Plateau (TP), a modified soil water-heat parameterization scheme (SWHPS) is implemented into the Community Land Model 3.5 (CLM3.5), which is coupled to the regional climate model 4 (RegCM4). This scheme includes Johansen's soil thermal conductivity scheme together with Niu's groundwater module. Two groups of climate simulations are then performed using the original RegCM4 and revised RegCM4 to analyze the effects of the revised SWHPS on regional climate simulations. The effect of the revised RegCM4 on simulated air temperature is relatively small (with mean biases changing by less than 0.1°C over the TP). There are overall improvements in the simulation of winter and summer air temperature but increased errors in the eastern TP. It has a significant effect on simulated precipitation. There is also a clear improvement in simulated annual and winter precipitation, particularly over the northern TP, including the Qilian Mountains and the source region of the Yellow River. There are, however, increased errors in precipitation simulation in parts of the southern TP. The precipitation difference between the two models is caused mainly by their convective precipitation difference, particularly in summer. Overall, the implementation of the new SWHPS into the RegCM4 has a significant effect not only on land surface variables but also on the overlying atmosphere through various physical interactions.

  5. Thermal emission measurements 2000-400/cm (5-25 micrometers) of Hawaiian palagonitic soils and their implications for Mars

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Bell, James F., III

    1995-01-01

    The thermal emision of two palagonitic soils, common visible and near infrared spectral analogs for bright soils on Mars, was measured over the wavelength range of 5 to 25 micrometers (2000 to 400/cm) for several partical size separates. All spectra exhibit emissivity features due to vibrations associated with H2O and SiO. The maximum variability of emissivity is approximately 20% in the short wavelength region (5 to 6.5 mirometers, 2000 to 1500/cm), and is more subdued, less than 4%, at longer wavelengths. The strengths of features present in the infrared spectra of Mars cannot be solely provided by emissivity variations of palagonite; some other material or mechanism must provide additional absorptions(s).

  6. Assessing potential of vertical average soil moisture (0-40cm) estimation for drought monitoring using MODIS data: a case study

    NASA Astrophysics Data System (ADS)

    Ma, Jianwei; Huang, Shifeng; Li, Jiren; Li, Xiaotao; Song, Xiaoning; Leng, Pei; Sun, Yayong

    2015-12-01

    Soil moisture is an important parameter in the research of hydrology, agriculture, and meteorology. The present study is designed to produce a near real time soil moisture estimation algorithm by linking optical/IR measurements to ground measured soil moisture, and then used to monitoring region drought. It has been found that the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) are related to surface soil moisture. Therefore, a relationship between ground measurement soil moisture and NDVI and LST can be developed. Six days' NDVI and LST data calculated from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) of Shandong province during October in 2009 to May in 2010 were combined with ground measured volumetric soil moisture in different depth (10cm, 20cm, 40cm, and mean in vertical (0-40cm)) and different soil type to determine regression relationships at a 1 km scale. Based on the regression relationships, mean volumetric soil moisture in vertical (0-40cm) at 1 km resolution can be calculated over the Shandong province, and then drought maps were obtained. The result shows that significantly relationship exists between the NDVI and LST and soil moisture at different soil depths, and regression relationships are soil type dependent. What is more, the drought monitoring results agree well with actual situation.

  7. 31 CFR 10.20 - Information to be furnished.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Information to be furnished. 10.20 Section 10.20 Money and Finance: Treasury Office of the Secretary of the Treasury PRACTICE BEFORE THE... § 10.20 Information to be furnished. (a) To the Internal Revenue Service. (1) A practitioner must, on...

  8. 31 CFR 10.20 - Information to be furnished.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Information to be furnished. 10.20 Section 10.20 Money and Finance: Treasury Office of the Secretary of the Treasury PRACTICE BEFORE THE... § 10.20 Information to be furnished. (a) To the Internal Revenue Service. (1) A practitioner must, on...

  9. 31 CFR 10.20 - Information to be furnished.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Information to be furnished. 10.20 Section 10.20 Money and Finance: Treasury Office of the Secretary of the Treasury PRACTICE BEFORE THE... § 10.20 Information to be furnished. (a) To the Internal Revenue Service. (1) A practitioner must, on...

  10. 31 CFR 10.20 - Information to be furnished.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Information to be furnished. 10.20 Section 10.20 Money and Finance: Treasury Office of the Secretary of the Treasury PRACTICE BEFORE THE... § 10.20 Information to be furnished. (a) To the Internal Revenue Service. (1) A practitioner must, on...

  11. 10 CFR 10.20 - Purpose of the procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Purpose of the procedures. 10.20 Section 10.20 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO RESTRICTED DATA OR NATIONAL SECURITY INFORMATION OR AN EMPLOYMENT CLEARANCE Procedures § 10.20 Purpose of...

  12. [Carbon source utilization characteristics of microbial communities in a petroleum-contaminated soil in Daqing Oil Field, Northeast China].

    PubMed

    Yue, Bing-Bing; Li, Xin; Ren, Fang-Fei; Meng, Fan-Juan; Yin, Peng-Da; Zhang, Hui-Hui; Sun, Guang-Yu

    2011-12-01

    By using Biolog technique, this paper studied the carbon source utilization characteristics of microbial communities in different layers (0-10 cm, 10-20 cm, and 20-30 cm) of a petroleum-contaminated soil near an oil well having exploited for 36 years in Daqing Oil Field. Petroleum contamination enhanced the metabolic activity of the soil microbial communities obviously. In the three layers of the petroleum-contaminated soil, the metabolic activity of the microbes was higher than that of the control, and there existed significant differences between different layers of the petroleum-contaminated soil. The carbon source metabolic capacity of the microbes in different layers of the petroleum-contaminated soil was in the order of 20-30 cm > 10-20 cm > 0-10 cm. Petroleum contamination made the kinds of soil carbon source and the metabolic diversity of soil microbes increased, being more obvious in 10-20 cm and 20-30 cm soil layers but less change in 0-10 cm soil layer. In the contaminated soil, the majority of the carbon sources utilized by the microbes in 10-20 cm soil layer were carbohydrates instead of the carboxylic acids in non-contaminated soil, whereas the majority of the carbon substrates utilized in 20-30 cm soil layer were carboxylic acids. All the results suggested that petroleum-contaminated soil had its unique microbial community structure and peculiar microbial carbon source utilization characteristics.

  13. 31 CFR 10.20 - Information to be furnished.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Information to be furnished. 10.20... § 10.20 Information to be furnished. Link to an amendment published at 76 FR 32307, June 3, 2011. (a... to be furnished. (a) * * * (3) When a proper and lawful request is made by a duly authorized...

  14. General Music 10-20-30. Guide to Implementation.

    ERIC Educational Resources Information Center

    Crawford, Lorraine, Ed.

    In Canada's province of Alberta, senior high school General Music 10-20-30 is a sequence of courses for students who are interested in a broad spectrum of musical experiences within a nonperformance-based environment but not interested in specializing in choral or instrumental performance. General Music 10, 20, and 30 courses are offered for 3 or…

  15. 33 CFR 67.10-20 - Sound signal tests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Sound signal tests. 67.10-20... NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES General Requirements for Sound signals § 67.10-20 Sound signal tests. (a) Sound signal tests must: (1) Be made by the applicant in...

  16. 33 CFR 67.10-20 - Sound signal tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Sound signal tests. 67.10-20... NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES General Requirements for Sound signals § 67.10-20 Sound signal tests. (a) Sound signal tests must: (1) Be made by the applicant in...

  17. 33 CFR 67.10-20 - Sound signal tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Sound signal tests. 67.10-20... NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES General Requirements for Sound signals § 67.10-20 Sound signal tests. (a) Sound signal tests must: (1) Be made by the applicant in...

  18. Thermal emission measurements 2000-400 cm(exp -1) (5-25 microns) of Hawaiian palagonitic soils and their implications for Mars

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Bell, James F., III

    1995-01-01

    The thermal emission of two palagonitic soils, common visible and near infrared spectral analogs for bright soils on Mars, was measured over the wavelength range of 5 to 25 microns (2000 to 400 cm(exp -1) for several particle size separates. All spectra exhibit emissivity features due to vibrations associated with H2O and SiO. The maximum variability of emissivity is approx. = 20% in the short wavelength region (5 to 6.5 microns, 2000 to 1500 cm(exp -1)), and is more subdued, < 4%, at longer wavelengths. The strengths of features present in infrared spectra of Mars cannot be solely provided by emissivity variations of palagonite; some other material or mechanism must provide additional absorption(s).

  19. 46 CFR 105.10-20 - Pressure vacuum relief valve.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Pressure vacuum relief valve. 105.10-20 Section 105.10... Pressure vacuum relief valve. (a) The term pressure vacuum relief valve means any device or assembly of a mechanical, liquid, weight, or other type used for the automatic regulation of pressure or vacuum in...

  20. 46 CFR 105.10-20 - Pressure vacuum relief valve.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Pressure vacuum relief valve. 105.10-20 Section 105.10... Pressure vacuum relief valve. (a) The term pressure vacuum relief valve means any device or assembly of a mechanical, liquid, weight, or other type used for the automatic regulation of pressure or vacuum in...

  1. 46 CFR 105.10-20 - Pressure vacuum relief valve.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Pressure vacuum relief valve. 105.10-20 Section 105.10... Pressure vacuum relief valve. (a) The term pressure vacuum relief valve means any device or assembly of a mechanical, liquid, weight, or other type used for the automatic regulation of pressure or vacuum in...

  2. 46 CFR 105.10-20 - Pressure vacuum relief valve.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vacuum relief valve. 105.10-20 Section 105.10... Pressure vacuum relief valve. (a) The term pressure vacuum relief valve means any device or assembly of a mechanical, liquid, weight, or other type used for the automatic regulation of pressure or vacuum in...

  3. 46 CFR 105.10-20 - Pressure vacuum relief valve.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Pressure vacuum relief valve. 105.10-20 Section 105.10... Pressure vacuum relief valve. (a) The term pressure vacuum relief valve means any device or assembly of a mechanical, liquid, weight, or other type used for the automatic regulation of pressure or vacuum in...

  4. 46 CFR 54.10-20 - Marking and stamping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Inspection, Reports, and Stamping § 54.10-20 Marking and stamping. (a) Pressure vessels (replaces UG-116, except paragraph (k), and UG-118). Pressure vessels that are required by § 54.10-3 to be stamped with the...

  5. Social Studies 10, 20, 30: Teacher Resource Manual.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    This teacher resource manual was developed to help teachers implement the Canadian province of Alberta's new Social Studies 10, 20, 30 (high school) courses. It offers suggestions on teaching social studies, planning for instruction, and instruction/evaluation strategies. For each grade level, class activities on the two topical areas to be taught…

  6. Soil microbial communities associated to plant rhizospheres in an organic farming system in Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microbial communities under different organic crop rhizospheres (0-10 and 10-20 cm) were characterized using fatty acid methyl ester (FAME) and pyrosequencing techniques. The soil was a silt loam (12.8% clay, 71.8% silt and15.4% sand). Soils at this site are characterized as having pH of ~6.53, ...

  7. Soil Microbial Communities associated to Plant Rhizospheres in an Organic Farming System in Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microbial communities under different organic crop rhizospheres (0-10 and 10-20 cm) were characterized using fatty acid methyl ester (FAME) and pyrosequencing techniques. The soil was a silt loam (12.8% clay, 71.8% silt and15.4% sand). Soils at this site are characterized as having pH of ~6.53,...

  8. A CM chondrite cluster and CM streams

    NASA Technical Reports Server (NTRS)

    Dodd, R. T.; Lipschutz, M. E.

    1993-01-01

    An elongate year-day concentration of CM meteoroid falls between 1921 and 1969 is inconsistent with a random flux of CM meteoroids and suggests that most or all such meteorites, and perhaps the Kaidun C-E chondrite breccia, resulted from streams of meteoroids in nearly circular, Earth-like orbits. To establish whether the post-1920 cluster might have arisen from random sampling, we determined the year-day distribution of 14 falls between 1879 and 1969 by treating each as the corner of a cell of specified dimensions (e.g. 30 years x 30 days) and calculated how many falls occurred in that cell. We then compared the CM cell distribution with random distributions over the same range of years. The results show that for 30 x 30 and 45 x 45 cells, fewer than 5 percent of random sets match the CM distribution with respect to maximum cell content and number of one-fall cells.

  9. [Effects of different tillage methods and straw-returning on soil organic carbon content in a winter wheat field].

    PubMed

    Tian, Shen-Zhong; Ning, Tang-Yuan; Wang, Yu; Li, Hong-Jie; Zhong, Wei-Lei; Li, Zeng-Jia

    2010-02-01

    A two growth seasons experiment was conducted to study the effects of different tillage methods, straw-returning, and their interaction on the dynamic change of organic carbon content in 0-20 cm soil layer during the whole growth period of winter wheat. An obvious change was observed in the soil organic carbon content. Treatments with straw-returning had higher soil organic carbon content than treatments with no straw-returning, and conservation tillage induced higher soil organic carbon content than conventional tillage. In all treatments except conventional tillage, the organic carbon content in 0-10 cm soil layer was higher than that in 10-20 cm soil layer. In treatments with straw-returning, the organic carbon content in 0-10 cm soil layer decreased in order of deep soiling (PS) > rotary tillage (PR) > no tillage (PZ) > normal ploughing (PH) > conventional tillage (PC), while that in 10-20 cm soil layer was PC > PS > PR > PH > PZ, suggesting that conservation tillage could improve the organic carbon content in 0-10 cm soil layer. Multi factor variance analysis showed that tillage method, straw-returning, and their interaction had significant effects on the organic carbon content in 0-20 cm soil layer at various growth stages of winter wheat.

  10. [Effects of nitrogen addition on soil physico-chemical properties and enzyme activities in desertified steppe].

    PubMed

    Su, Jie-Qiong; Li, Xin-Rong; Bao, Jing-Ting

    2014-03-01

    To investigate the impacts of nitrogen (N) enrichment on soil physico-chemical property and soil enzyme activities in desert ecosystems, a field experiment by adding N at 0, 1.75, 3.5, 7, or 14 g N x m(-2) a(-1) was conducted in a temperate desert steppe in the southeastern fringe of the Tengger Desert. The results showed that N addition led to accumulations of total N, NO(3-)-N, NH(4+)-N, and available N in the upper soil (0-10 cm) and subsoil (10-20 cm), however, reductions in soil pH were observed, causing soil acidification to some extent. N addition pronouncedly inhibited soil enzyme activities, which were different among N addition levels, soil depths, and years, respectively. Soil enzyme activities were significantly correlated with the soil N level, soil pH, and soil moisture content, respectively.

  11. [Effect of Biochar Application on Soil Aggregates Distribution and Moisture Retention in Orchard Soil].

    PubMed

    An, Yan; Ji, Qiang; Zhao, Shi-xiang; Wang, Xu-dong

    2016-01-15

    Applying biochar to soil has been considered to be one of the important practices in improving soil properties and increasing carbon sequestration. In order to investigate the effects of biochar application on soil aggregates distribution and its organic matter content and soil moisture constant in different size aggregates, various particle-size fractions of soil aggregates were obtained with the dry-screening method. The results showed that, compared to the treatment without biochar (CK), the application of biochar reduced the mass content of 5-8 mm and < 0.25 mm soil aggregates at 0-10 cm soil horizon, while increased the content of 1-2 mm and 2-5 mm soil aggregates at this horizon, and the content of 1-2 mm aggregates significantly increased along with the rates of biochar application. The mean diameter of soil aggregates was reduced by biochar application at 0-10 cm soil horizon. However, the effect of biochar application on the mean diameter of soil aggregates at 10-20 cm soil horizon was not significant. Compared to CK, biochar application significantly increased soil organic carbon content in aggregates, especially in 1-2 mm aggregates which was increased by > 70% compared to CK. Both the water holding capacity and soil porosity were significantly increased by biochar application. Furthermore, the neutral biochar was more effective than alkaline biochar in increasing soil moisture. PMID:27078970

  12. [Effect of Biochar Application on Soil Aggregates Distribution and Moisture Retention in Orchard Soil].

    PubMed

    An, Yan; Ji, Qiang; Zhao, Shi-xiang; Wang, Xu-dong

    2016-01-15

    Applying biochar to soil has been considered to be one of the important practices in improving soil properties and increasing carbon sequestration. In order to investigate the effects of biochar application on soil aggregates distribution and its organic matter content and soil moisture constant in different size aggregates, various particle-size fractions of soil aggregates were obtained with the dry-screening method. The results showed that, compared to the treatment without biochar (CK), the application of biochar reduced the mass content of 5-8 mm and < 0.25 mm soil aggregates at 0-10 cm soil horizon, while increased the content of 1-2 mm and 2-5 mm soil aggregates at this horizon, and the content of 1-2 mm aggregates significantly increased along with the rates of biochar application. The mean diameter of soil aggregates was reduced by biochar application at 0-10 cm soil horizon. However, the effect of biochar application on the mean diameter of soil aggregates at 10-20 cm soil horizon was not significant. Compared to CK, biochar application significantly increased soil organic carbon content in aggregates, especially in 1-2 mm aggregates which was increased by > 70% compared to CK. Both the water holding capacity and soil porosity were significantly increased by biochar application. Furthermore, the neutral biochar was more effective than alkaline biochar in increasing soil moisture.

  13. Chernobyl fallout in the uppermost (0-3 cm) humus layer of forest soil in Finland, North East Russia and the Baltic countries in 2000--2003.

    PubMed

    Ylipieti, J; Rissanen, K; Kostiainen, E; Salminen, R; Tomilina, O; Täht, K; Gilucis, A; Gregorauskiene, V

    2008-12-15

    The situation resulting from the Chernobyl fallout in 1987 was compared to that in 2000--2001 in Finland and NW Russia and that in 2003 in the Baltic countries. 786 humus (0-3 cm layer) samples were collected during 2000--2001 in the Barents Ecogeochemistry Project, and 177 samples in the Baltic countries in 2003. Nuclides emitting gamma-radiation in the 0-3 cm humus layer were measured by the Radiation and Nuclear Safety Authority-STUK in Finland. In 1987 the project area was classified by the European Commission into four different fallout classes. 137Cs inventory Bg/m2 levels measured in 2000--2003 were compared to the EU's class ranges. Fitting over the whole project area was implemented by generalizing the results for samples from the Baltic countries, for which Bq/m2 inventories could be calculated. A rough estimation was made by comparing the mass of organic matter and humus with 137Cs concentrations in these two areas. Changes in 137Cs concentration levels are illustrated in both thematic maps and tables. Radionuclide 137Cs concentrations (Bq/kg d.w.) were detected in the humus layer at all the 988 sampling sites. 134Cs was still present in 198 sites 15 years after the nuclear accident in Chernobyl. No other anthropogenic nuclides emitting gamma-radiation were detected, but low levels of 60Co, 125Sb and 154Eu isotopes were found in 14 sites. Fifteen years after the Chernobyl accident, the radioactive nuclide 137Cs was and still is the most significant fallout radionuclide in the environment and in food chains. The results show that the fallout can still be detected in the uppermost humus layer in North East Europe.

  14. 46 CFR 30.10-20 - Deadweight or DWT-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... gravity 1.025 at the load waterline corresponding to the summer freeboard assigned according to 46 CFR... 46 Shipping 1 2010-10-01 2010-10-01 false Deadweight or DWT-TB/ALL. 30.10-20 Section 30.10-20...-20 Deadweight or DWT—TB/ALL. The term deadweight or DWT means the difference in metric tons...

  15. 46 CFR 38.10-20 - Liquid level gaging devices-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Liquid level gaging devices-TB/ALL. 38.10-20 Section 38... Piping, Valves, Fittings, and Accessory Equipment § 38.10-20 Liquid level gaging devices—TB/ALL. (a) Each tank shall be fitted with a liquid level gaging device of approved design to indicate the maximum...

  16. 46 CFR 38.10-20 - Liquid level gaging devices-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Liquid level gaging devices-TB/ALL. 38.10-20 Section 38... Piping, Valves, Fittings, and Accessory Equipment § 38.10-20 Liquid level gaging devices—TB/ALL. (a) Each tank shall be fitted with a liquid level gaging device of approved design to indicate the maximum...

  17. 46 CFR 38.10-20 - Liquid level gaging devices-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Liquid level gaging devices-TB/ALL. 38.10-20 Section 38... Piping, Valves, Fittings, and Accessory Equipment § 38.10-20 Liquid level gaging devices—TB/ALL. (a) Each tank shall be fitted with a liquid level gaging device of approved design to indicate the maximum...

  18. Small-scale spatial variability of soil microbial community composition and functional diversity in a mixed forest

    NASA Astrophysics Data System (ADS)

    Wang, Qiufeng; Tian, Jing; Yu, Guirui

    2014-05-01

    Patterns in the spatial distribution of organisms provide important information about mechanisms that regulate the diversity and complexity of soil ecosystems. Therefore, information on spatial distribution of microbial community composition and functional diversity is urgently necessary. The spatial variability on a 26×36 m plot and vertical distribution (0-10 cm and 10-20 cm) of soil microbial community composition and functional diversity were studied in a natural broad-leaved Korean pine (Pinus koraiensis) mixed forest soil in Changbai Mountain. The phospholipid fatty acid (PLFA) pattern was used to characterize the soil microbial community composition and was compared with the community substrate utilization pattern using Biolog. Bacterial biomass dominated and showed higher variability than fungal biomass at all scales examined. The microbial biomass decreased with soil depths increased and showed less variability in lower 10-20 cm soil layer. The Shannon-Weaver index value for microbial functional diversity showed higher variability in upper 0-10 cm than lower 10-20 cm soil layer. Carbohydrates, carboxylic acids, polymers and amino acids are the main carbon sources possessing higher utilization efficiency or utilization intensity. At the same time, the four carbon source types contributed to the differentiation of soil microbial communities. This study suggests the higher diversity and complexity for this mix forest ecosystem. To determine the driving factors that affect this spatial variability of microorganism is the next step for our study.

  19. Ubiquitous CM and DM

    NASA Technical Reports Server (NTRS)

    Crowley, Sandra L.

    2000-01-01

    Ubiquitous is a real word. I thank a former Total Quality Coach for my first exposure some years ago to its existence. My version of Webster's dictionary defines ubiquitous as "present, or seeming to be present, everywhere at the same time; omnipresent." While I believe that God is omnipresent, I have come to discover that CM and DM are present everywhere. Oh, yes; I define CM as Configuration Management and DM as either Data or Document Management. Ten years ago, I had my first introduction to the CM world. I had an opportunity to do CM for the Space Station effort at the NASA Lewis Research Center. I learned that CM was a discipline that had four areas of focus: identification, control, status accounting, and verification. I was certified as a CMIl graduate and was indoctrinated about clear, concise, and valid. Off I went into a world of entirely new experiences. I was exposed to change requests and change boards first hand. I also learned about implementation of changes, and then of technical and CM requirements.

  20. Soil warming affects soil organic matter chemistry of all density fractions of a mountain forest soil

    NASA Astrophysics Data System (ADS)

    Schnecker, Jörg; Wanek, Wolfgang; Borken, Werner; Schindlbacher, Andreas

    2016-04-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and increase thereby the soil CO2 efflux. Elevated microbial activity might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. We here investigated the chemical and isotopic composition of bulk soil and three different density fractions of forest soils from a long term warming experiment in the Austrian Alps. At the time of sampling the soils in this experiment had been warmed during the snow-free period for 8 consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results which included organic C content, total N content, δ13C, δ 14C, δ 15N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. The differences in the three individual fractions (free particulate organic matter, occluded particulate organic matter and mineral associated organic matter) were mostly small and the direction of warming induced change was variable with fraction and sampling depth. We did however find statistically significant effects of warming in all density fractions from 0-10 cm depth, 10-20 cm depth or both. Our results also including significant changes in the supposedly more stable mineral associated organic matter fraction where δ 13C values decreased at both sampling depths and the relative proportion of N-bearing compounds decreased at a sampling depth of 10-20 cm. All the observed changes can be attributed to an interplay of enhanced microbial decomposition of SOM and increased root litter input. This study suggests that soil warming destabilizes all density fractions of

  1. 10-20-30 training increases performance and lowers blood pressure and VEGF in runners.

    PubMed

    Gliemann, Lasse; Gunnarsson, Thomas P; Hellsten, Ylva; Bangsbo, Jens

    2015-10-01

    The present study examined the effect of training by the 10-20-30 concept on performance, blood pressure (BP), and skeletal muscle angiogenesis as well as the feasibility of completing high-intensity interval training in local running communities. One hundred sixty recreational runners were divided into either a control group (CON; n = 28), or a 10-20-30 training group (10-20-30; n = 132) replacing two of three weekly training sessions with 10-20-30 training for 8 weeks and performance of a 5-km run (5-K) and BP was measured. VO2max was measured and resting muscle biopsies were taken in a subgroup of runners (n = 18). 10-20-30 improved 5-K time (38 s) and lowered systolic BP (2 ± 1 mmHg). For hypertensive subjects in 10-20-30 (n = 30), systolic and diastolic BP was lowered by 5 ± 4 and 3 ± 2 mmHg, respectively, which was a greater reduction than in the non-hypertensive subjects (n = 102). 10-20-30 increased VO2max but did not influence muscle fiber area, distribution or capillarization, whereas the expression of the pro-angiogenic vascular endothelial growth factor (VEGF) was lowered by 22%. No changes were observed in CON. These results suggest that 10-20-30 training is an effective and easily implemented training intervention improving endurance performance, VO2max and lowering BP in recreational runners, but does not affect muscle morphology and reduces muscle VEGF. PMID:25439558

  2. Halogens in CM Chondrites

    NASA Astrophysics Data System (ADS)

    Menard, J. M.; Caron, B.; Jambon, A.; Michel, A.; Villemant, B.

    2013-09-01

    We set up an extraction line of halogens (fluorine, chlorine) by pyrohydrolysis with 50 mg of rock. We analyzed 7 CM2 chondrites found in Antarctica and found that the Cl content of meteorites with an intact fusion crust is higher than those without.

  3. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    PubMed

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska.

  4. [Effects of water managements on soil nematode communities in a paddy field].

    PubMed

    Ou, Wei; Li, Qi; Liang, Wenju; Jiang, Yong; Wen, Dazhong

    2004-10-01

    This paper studied the effect of water managements on the abundance, trophic groups and community composition of soil nematodes in a paddy field in the Lower Reaches of Liaohe Plain at the depths of 0-10 cm, 10-20 cm and 20-30 cm during rice (Oryza sativa L.) growth season. The total number of nematodes at 0-10 cm soil depth was lower in percolation-controlling treatments than in control during pre-tillage and yellow ripeness stage. No significant difference was found in the total number of nematodes at 10-20 cm soil depth during the study period, but significant difference was observed in 20-30 cm soil depth during pre-tillage and yellow ripeness stage. Sixteen families and 22 genera were observed, and Plectus, Tylenchus and Monhystera were the dominant genera. Plectus and Tylenchus were sensitive to different water managements. Significant difference was found in the number of bacterivores at 0-10 cm soil depth during pre-tillage and yellow ripeness stage in percolation-controlling treatments, which exhibited a similar trend with the total number of nematodes. Bacterivores and plant-parasites were the most abundant trophic groups in all plots and at all soil depths during the study period, averaging 60.8% and 33.8% of the nematode communities, respectively, and omnivores-predators were the least abundant groups.

  5. PAH-concentrations and compositions in the top 2 cm of forest soils along a 120 km long transect through agricultural areas, forests and the city of Oslo, Norway.

    PubMed

    Jensen, Henning; Reimann, Clemens; Finne, Tor Erik; Ottesen, Rolf Tore; Arnoldussen, Arnold

    2007-02-01

    The top 2 cm of forest soils were collected along a 120 km long south-north transect running through Norway's largest city Oslo. Forty samples were analysed for their polycyclic aromatic hydrocarbon (PAH(16) as defined by the U.S. Environmental Protection Agency) concentrations and compositions. Local variations in the PAH values are high and the reported concentrations are in general low (maximum sumPAH16: 2.6 mg/kg). The transect shows distinct differences of sumPAH16 values from south to north. PAH concentrations are substantially lower in the less populated areas at the north end of the transect than at the urbanised and much more populated south end. Several high values occur in a forested area to the north of Oslo, used for recreation purposes. The PAH distribution patterns point towards a predominantly pyrogenic origin. Local Cambrian carbon-rich black shales can be excluded as sources for PAHs in the forest soils. PMID:16787690

  6. Soil carbon stock and soil characteristics at Tasik Chini Forest Reserve, Pahang, Malaysia

    NASA Astrophysics Data System (ADS)

    Nur Aqlili Riana, R.; Sahibin A., R.

    2015-09-01

    This study was carried out to determine soil carbon stock and soil characteristic at Tasik Chini Forest Reserve (TCFR), Pahang. A total of 10 (20 m x 25 m) permanent sampling plot was selected randomly within the area of TCFR. Soil samples were taken from all subplots using dutch auger based on soil depth of 0-20cm, 20-40cm, 40-60cm. Soil parameters determined were size distribution, soil water content, bulk density, organic matter, organic carbon content, pH and electrical conductivity. All parameters were determined following their respective standard methods. Results obtained showed that the soil in TCFR was dominated by clay texture (40%), followed by sandy clay loam (30%), loam (20%). Silty clay, clay loam and sandy loam constitutes about 10% of the soil texture. Range of mean percentage of organic matter and bulk density are from 2.42±0.06% to 11.64±0.39% and 1.01 to 1.04 (gcm-ł), respectively. Soil pH are relatively very acidic and mean of electrical conductivity is low. Soil carbon content ranged from 0.83±0.03 to 1.87±0.41%. All soil parameter showed a decreasing trend with depth except electrical conductivity. ANOVA test of mean percentage of organic matter, soil water content, soil pH and electrical conductivity showed a significant difference between plot (p<0.05). However there are no significant difference of mean bulk density between plots (p>0.05). There are no significant difference in mean percentage of soil water content, organic matter and bulk density between three different depth (p>0.05). There were a significant difference on percentage of soil carbon organic between plots and depth. The mean of soil organic carbon stock in soil to a depth of 60 cm calculated was 35.50 t/ha.

  7. A simple procedure for estimating soil porosity

    NASA Astrophysics Data System (ADS)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Holden, Nick

    2016-04-01

    Soil degradation from mismanagement is of international concern. Simple, accessible tools for rapidly assessing impacts of soil management are required. Soil structure is a key component of soil quality and porosity is a useful indicator of structure. We outline a version of a procedure described by Piwowarczyk et al. (2011) used to estimate porosity of samples taken during a soil quality survey of 38 sites across Ireland as part of the Government funded SQUARE (Soil Quality Assessment Research) project. This required intact core (r = 2.5 cm, H = 5cm) samples taken at 5-10 cm and 10-20 cm depth, to be covered with muslin cloth at one end and secured with a jubilee clip. Samples were saturated in sealable water tanks for ≈ 64 hours, then allowed to drain by gravity for 24 hours, at which point Field Capacity (F.C.) was assumed to have been reached, followed by oven drying with weight determined at each stage. This allowed the calculation of bulk density and the estimation of water content at saturation and following gravitational drainage, thus total and functional porosity. The assumption that F.C. was reached following 24 hours of gravitational drainage was based on the Soil Moisture Deficit model used in Ireland to predict when soils are potentially vulnerable to structural damage and used nationally as a management tool. Preliminary results indicate moderately strong, negative correlations between estimated total porosity at 5-10 cm and 10-20 cm depth (rs = -0.7, P < 0.01 in both cases) and soil quality scores of the Visual Evaluation of Soil Structure (VESS) method which was conducted at each survey site. Estimated functional porosity at 5-10 cm depth was found to moderately, negatively correlate with VESS scores (rs = - 0.5, P < 0.05). This simple procedure requires inexpensive equipment and appears useful in indicating porosity of a large quantity of samples taken at numerous sites or if done periodically, temporal changes in porosity at a field scale

  8. Depth-Dependent Mineral Soil CO2 Production Processes: Sensitivity to Harvesting-Induced Changes in Soil Climate.

    PubMed

    Kellman, Lisa; Myette, Amy; Beltrami, Hugo

    2015-01-01

    Forest harvesting induces a step change in the climatic variables (temperature and moisture), that control carbon dioxide (CO2) production arising from soil organic matter decomposition within soils. Efforts to examine these vertically complex relationships in situ within soil profiles are lacking. In this study we examined how the climatic controls on CO2 production change within vertically distinct layers of the soil profile in intact and clearcut forest soils of a humid temperate forest system of Atlantic Canada. We measured mineral soil temperature (0, 5, 10, 20, 50 and 100 cm depth) and moisture (0-15 cm and 30-60 cm depth), along with CO2 surface efflux and subsurface concentrations (0, 2.5, 5, 10, 20, 35, 50, 75 and 100 cm depth) in 1 m deep soil pits at 4 sites represented by two forest-clearcut pairs over a complete annual cycle. We examined relationships between surface efflux at each site, and soil heat, moisture, and mineral soil CO2 production. Following clearcut harvesting we observed increases in temperature through depth (1-2°C annually; often in excess of 4°C in summer and spring), alongside increases in soil moisture (30%). We observed a systematic breakdown in the expected exponential relationship between CO2 production and heat with mineral soil depth, consistent with an increase in the role moisture plays in constraining CO2 production. These findings should be considered in efforts to model and characterize mineral soil organic matter decomposition in harvested forest soils. PMID:26263510

  9. Depth-Dependent Mineral Soil CO2 Production Processes: Sensitivity to Harvesting-Induced Changes in Soil Climate

    PubMed Central

    Kellman, Lisa; Myette, Amy; Beltrami, Hugo

    2015-01-01

    Forest harvesting induces a step change in the climatic variables (temperature and moisture), that control carbon dioxide (CO2) production arising from soil organic matter decomposition within soils. Efforts to examine these vertically complex relationships in situ within soil profiles are lacking. In this study we examined how the climatic controls on CO2 production change within vertically distinct layers of the soil profile in intact and clearcut forest soils of a humid temperate forest system of Atlantic Canada. We measured mineral soil temperature (0, 5, 10, 20, 50 and 100 cm depth) and moisture (0–15 cm and 30–60 cm depth), along with CO2 surface efflux and subsurface concentrations (0, 2.5, 5, 10, 20, 35, 50, 75 and 100 cm depth) in 1 m deep soil pits at 4 sites represented by two forest-clearcut pairs over a complete annual cycle. We examined relationships between surface efflux at each site, and soil heat, moisture, and mineral soil CO2 production. Following clearcut harvesting we observed increases in temperature through depth (1–2°C annually; often in excess of 4°C in summer and spring), alongside increases in soil moisture (30%). We observed a systematic breakdown in the expected exponential relationship between CO2 production and heat with mineral soil depth, consistent with an increase in the role moisture plays in constraining CO2 production. These findings should be considered in efforts to model and characterize mineral soil organic matter decomposition in harvested forest soils. PMID:26263510

  10. Accounting 10-20-30. Senior High School Teacher Resource Manual.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    This manual is intended to help teachers meet the objectives of the 1985 Alberta, Canada, Accounting 10-20-30 curriculum. The manual is organized in nine sections. The first section introduces the curriculum and lists the course objectives, and the following section provides a flowchart of the accounting modules. Information on planning the…

  11. 46 CFR 38.10-20 - Liquid level gaging devices-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., shall be so designed that the bleed valve maximum opening is not larger than a No. 54 drill size (0.055-inch diameter), unless provided with an excess flow valve. (e) For pressure vessel type tanks each... Piping, Valves, Fittings, and Accessory Equipment § 38.10-20 Liquid level gaging devices—TB/ALL. (a)...

  12. 38 CFR 10.20 - “Demand for payment” certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false âDemand for paymentâ... ADJUSTED COMPENSATION Adjusted Compensation; General § 10.20 “Demand for payment” certification. Certification to the execution of demand for payment forms appearing on the reverse side of adjusted...

  13. Total organic carbon in aggregates as a soil recovery indicator

    NASA Astrophysics Data System (ADS)

    Luciene Maltoni, Katia; Rodrigues Cassiolato, Ana Maria; Amorim Faria, Glaucia; Dubbin, William

    2015-04-01

    The soil aggregation promotes physical protection of organic matter, preservation of which is crucial to improve soil structure, fertility and ensure the agro-ecosystems sustainability. The no-tillage cultivation system has been considered as one of the strategies to increase total soil organic carbono (TOC) contents and soil aggregation, both are closely related and influenced by soil management systems. The aim of this study was to evaluate the distribution of soil aggregates and the total organic carbon inside aggregates, with regard to soil recovery, under 3 different soil management systems, i.e. 10 and 20 years of no-tillage cultivation as compared with soil under natural vegetation (Cerrado). Undisturbed soils (0-5; 5-10; and 10-20 cm depth) were collected from Brazil, Central Region. The soils, Oxisols from Cerrado, were collected from a field under Natural Vegetation-Cerrado (NV), and from fields that were under conventional tillage since 1970s, and 10 and 20 years ago were changed to no-tillage cultivation system (NT-10; NT-20 respectively). The undisturbed samples were sieved (4mm) and the aggregates retained were further fractionated by wet sieving through five sieves (2000, 1000, 500, 250, and 50 μm) with the aggregates distribution expressed as percentage retained by each sieve. The TOC was determined, for each aggregate size, by combustion (Thermo-Finnigan). A predominance of aggregates >2000 μm was observed under NV treatment (92, 91, 82 %), NT-10 (64, 73, 61 %), and NT-20 (71, 79, 63 %) for all three depths (0-5; 5-10; 10-20 cm). In addition greater quantities of aggregates in sizes 1000, 500, 250 and 50 μm under NT-10 and NT-20 treatments, explain the lower aggregate stability under these treatments compared to the soil under NV. The organic C concentration for NV in aggregates >2000 μm was 24,4; 14,2; 8,7 mg/g for each depth (0-5; 5-10; 10-20 cm, respectively), higher than in aggregates sized 250-50 μm (7,2; 5,5; 4,4 mg/g) for all depths

  14. [Transportation and risk assessment of heavy metal pollution in water-soil from the Riparian Zone of Daye Lake, China].

    PubMed

    Zhang, Jia-quan; Li, Xiu; Zhang, Quan-fa; Li, Qiong; Xiao, Wen-sheng; Wang, Yong-kui; Zhang, Jian-chun; Gai, Xi-guang

    2015-01-01

    Each 20 water samples and soil samples (0-10 cm, 10-20 cm) were collected from the riparian zone of Daye Lake in dry season during March 2013. Heavy metals (Cu, Ph, Cd, Zn) have been detected by flame atomic absorption spectrometric (FAAS). The results showed that the average concentrations of Cu, Pb, Cd, Zn in the water were 7.14, 25.94, 15.72 and 37.58 microg x L(-1), respectively. The concentration of Cu was higher than the five degree of the surface water environment quality standard. The average concentrations of Cu, Pb, Cd, Zn in soil(0-10 cm) were 108.38, 53.92, 3.55, 139.26 mg x kg(-1) in soil (10-20 cm) were 93.00, 51.72, 2.08, 171.00 mg x kg(-1), respectively. The Cd concentrations were higher than the three grade value of the national soil environment quality standard. The transportation of Pb from soil to water was relatively stable, and Zn was greatly influenced by soil property and the surrounding environment from soil to water. The transformation of heavy metal in west riparian zone was higher than that of east riparian zone. The potential environmental risk was relatively high. Cu, Pb, Cd, Zn were dominated by residue fraction of the modified BCR sequential extraction method. The overall migration order of heavy metal element was: Pb > Cu > Cd > Zn. There were stronger transformation and higher environmental pollution risk of Cu, Pb. The index of assessment and potential ecological risk coefficient indicated that heavy metal pollution in soil (0-10 cm) was higher than the soil (10-20 cm), Cd was particularly serious.

  15. Mercury accumulation in the surface layers of mountain soils: a case study from the Karkonosze Mountains, Poland.

    PubMed

    Szopka, Katarzyna; Karczewska, Anna; Kabała, Cezary

    2011-06-01

    The study was aimed to examine total concentrations and pools of Hg in surface layers of soils in the Karkonosze Mountains, dependent on soil properties and site locality. Soil samples were collected from a litter layer and the layers 0-10 cm and 10-20 cm, at 68 sites belonging to the net of a monitoring system, in two separate areas, and in three altitudinal zones: below 900 m, 900-1100 m, and over 1100 m. Air-borne pollution was the major source of mercury in soils. Hg has accumulated mainly in the litter (where its concentrations were the highest), and in the layer 0-10 cm. Hg concentrations in all samples were in the range 0.04-0.97 mg kg(-1), with mean values 0.38, 0.28, and 0.14 mg kg(-1) for litter and the layers 0-10 cm and 10-20 cm, respectively. The highest Hg concentrations in the litter layer were found in the intermediate altitudinal zone, whereas Hg concentrations in the layer 0-10 cm increased with increasing altitude. Soil quality standard for protected areas (0.50 mg kg(-1)) was exceeded in a few sites. The pools of Hg accumulated in soils were in the range: 0.8-84.8 mg m(-2), with a mean value of 16.5 mg m(-2), and they correlated strongly with the pools of stored organic matter.

  16. [Study on soil enzyme activities and microbial biomass carbon in greenland irrigated with reclaimed water].

    PubMed

    Pan, Neng; Hou, Zhen-An; Chen, Wei-Ping; Jiao, Wen-Tao; Peng, Chi; Liu, Wen

    2012-12-01

    The physicochemical properties of soils might be changed under the long-term reclaimed water irrigation. Its effects on soil biological activities have received great attentions. We collected surface soil samples from urban green spaces and suburban farmlands of Beijing. Soil microbial biomass carbon (SMBC), five types of soil enzyme activities (urease, alkaline phosphatase, invertase, dehydrogenase and catalase) and physicochemical indicators in soils were measured subsequently. SMBC and enzyme activities from green land soils irrigated with reclaimed water were higher than that of control treatments using drinking water, but the difference is not significant in farmland. The SMBC increased by 60.1% and 14.2% than those control treatments in 0-20 cm soil layer of green land and farmland, respectively. Compared with their respective controls, the activities of enzymes in 0-20 cm soil layer of green land and farmland were enhanced by an average of 36.7% and 7.4%, respectively. Investigation of SMBC and enzyme activities decreased with increasing of soil depth. Significantly difference was found between 0-10 cm and 10-20 cm soil layer in green land. Soil biological activities were improved with long-term reclaimed water irrigation in Beijing.

  17. Effect of soil coarseness on soil base cations and available micronutrients in a semi-arid sandy grassland

    NASA Astrophysics Data System (ADS)

    Lü, Linyou; Wang, Ruzhen; Liu, Heyong; Yin, Jinfei; Xiao, Jiangtao; Wang, Zhengwen; Zhao, Yan; Yu, Guoqing; Han, Xingguo; Jiang, Yong

    2016-04-01

    Soil coarseness is the main process decreasing soil organic matter and threatening the productivity of sandy grasslands. Previous studies demonstrated negative effect of soil coarseness on soil carbon storage, but less is known about how soil base cations (exchangeable Ca, Mg, K, and Na) and available micronutrients (available Fe, Mn, Cu, and Zn) response to soil coarseness. In a semi-arid grassland of Northern China, a field experiment was initiated in 2011 to mimic the effect of soil coarseness on soil base cations and available micronutrients by mixing soil with different mass proportions of sand: 0 % coarse elements (C0), 10 % (C10), 30 % (C30), 50 % (C50), and 70 % (C70). Soil coarseness significantly increased soil pH in three soil depths of 0-10, 10-20 and 20-40 cm with the highest pH values detected in C50 and C70 treatments. Soil fine particles (smaller than 0.25 mm) significantly decreased with the degree of soil coarseness. Exchangeable Ca and Mg concentrations significantly decreased with soil coarseness degree by up to 29.8 % (in C70) and 47.5 % (in C70), respectively, across three soil depths. Soil available Fe, Mn, and Cu significantly decreased with soil coarseness degree by 62.5, 45.4, and 44.4 %, respectively. As affected by soil coarseness, the increase of soil pH, decrease of soil fine particles (including clay), and decline in soil organic matter were the main driving factors for the decrease of exchangeable base cations (except K) and available micronutrients (except Zn) through soil profile. Developed under soil coarseness, the loss and redistribution of base cations and available micronutrients along soil depths might pose a threat to ecosystem productivity of this sandy grassland.

  18. Soil Organic Carbon Beneath Croplands and Re-established Grasslands in the North Dakota Prairie Pothole Region

    NASA Astrophysics Data System (ADS)

    Phillips, Rebecca L.; Eken, Mikki R.; West, Mark S.

    2015-05-01

    Grassland ecosystems established under the conservation reserve program (CRP) in the Prairie Pothole Region (PPR) currently provide soil conservation and wildlife habitat services. We aimed to determine if these lands also sequester soil organic carbon (SOC), as compared with neighboring croplands across multiple farms in the North Dakota PPR. We sampled soil from small plots at 17 private farms in the central North Dakota PPR, where long-term (≥15 years) grasslands managed under the CRP were paired with neighboring annual croplands. Cores were collected to 100 cm and split into 0-10, 10-20, 20-30, 30-40, 40-70, and 70-100 cm soil depth layers. We hypothesized the effect of land use on soil organic carbon (SOC), root carbon (C), and bulk density would be greatest near the surface. For 0-10 and 10-20 cm layers, grasslands managed under the CRP were lower in bulk density and higher in SOC. From 0 to 70 cm, grasslands managed under the CRP were higher in root C. Average (±standard error) SOC for re-established grasslands and croplands was 25.39 (0.91) and 21.90 (1.02), respectively, for the 0-10 cm soil layer and 19.88 (0.86) and 18.31 (0.82), respectively, for the 10-20 soil layer. Compared to croplands, re-established grasslands sampled in the North Dakota PPR were 3-13 % lower in bulk density and 9-16 % higher in SOC from 0 to 20 cm, while root C was 2-6 times greater from 0 to 70 cm.

  19. Soil organic carbon beneath croplands and re-established grasslands in the North Dakota Prairie Pothole Region.

    PubMed

    Phillips, Rebecca L; Eken, Mikki R; West, Mark S

    2015-05-01

    Grassland ecosystems established under the conservation reserve program (CRP) in the Prairie Pothole Region (PPR) currently provide soil conservation and wildlife habitat services. We aimed to determine if these lands also sequester soil organic carbon (SOC), as compared with neighboring croplands across multiple farms in the North Dakota PPR. We sampled soil from small plots at 17 private farms in the central North Dakota PPR, where long-term (≥15 years) grasslands managed under the CRP were paired with neighboring annual croplands. Cores were collected to 100 cm and split into 0-10, 10-20, 20-30, 30-40, 40-70, and 70-100 cm soil depth layers. We hypothesized the effect of land use on soil organic carbon (SOC), root carbon (C), and bulk density would be greatest near the surface. For 0-10 and 10-20 cm layers, grasslands managed under the CRP were lower in bulk density and higher in SOC. From 0 to 70 cm, grasslands managed under the CRP were higher in root C. Average (±standard error) SOC for re-established grasslands and croplands was 25.39 (0.91) and 21.90 (1.02), respectively, for the 0-10 cm soil layer and 19.88 (0.86) and 18.31 (0.82), respectively, for the 10-20 soil layer. Compared to croplands, re-established grasslands sampled in the North Dakota PPR were 3-13 % lower in bulk density and 9-16 % higher in SOC from 0 to 20 cm, while root C was 2-6 times greater from 0 to 70 cm.

  20. Comparative study on carbon accumulation in soils under managed and unmanaged forests in Central Balkan Mountains

    NASA Astrophysics Data System (ADS)

    Naydenova, Lora; Zhiyanski, Miglena; Leifeld, Jens

    2014-05-01

    Each soil has a carbon storage capacity, which depends on many factors including type of soil, vegetation, precipitation and temperature. The aim of this work is to compare the carbon accumulation in forest floor layers and mineral soil horizons under managed and unmanaged spruce and beech forest ecosystems developed on Cambisols in Central Balkan Mountains, Bulgaria. We have investigated two managed and two unmanaged forests - pure stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies Karst.). In each experimental site one representative soil profile was prepared with additional 4 sampling profiles for more precise determination of spatial variability of soil characteristic at site level. The forest floor was sampled in 3 repetitions per site, by a plastic frame (25:25 cm). The textural composition of soil, bulk density, coarse fraction content, pH, carbon and nitrogen content were analysed for forest floor layers and soil at different soil depths (0-10 cm, 10-20 cm, 20-30 cm and 30-50 cm). Both European beech and Norway spruce stands had higher accumulation of organic matter in the forest floor and the Ah horizon under unmanaged conditions. When managed, carbon contents tended to be higher in deeper horizons of the mineral soil, probably due to differences in microclimate after cutting. However, the variability in carbon storage was higher in managed sites which may reflect a higher degree of disturbance. Further work will analyse the soil carbon dynamics using radiocarbon as a tracer.

  1. Urbanization in China drives soil acidification of Pinus massoniana forests.

    PubMed

    Huang, Juan; Zhang, Wei; Mo, Jiangming; Wang, Shizhong; Liu, Juxiu; Chen, Hao

    2015-01-01

    Soil acidification instead of alkalization has become a new environmental issue caused by urbanization. However, it remains unclear the characters and main contributors of this acidification. We investigated the effects of an urbanization gradient on soil acidity of Pinus massoniana forests in Pearl River Delta, South China. The soil pH of pine forests at 20-cm depth had significantly positive linear correlations with the distance from the urban core of Guangzhou. Soil pH reduced by 0.44 unit at the 0-10 cm layer in urbanized areas compared to that in non-urbanized areas. Nitrogen deposition, mean annual temperature and mean annual precipitation were key factors influencing soil acidification based on a principal component analysis. Nitrogen deposition showed significant linear relationships with soil pH at the 0-10 cm (for ammonium N(NH4+(-N)), P < 0.05; for nitrate N(NO3-(-N)), P < 0.01) and 10-20 cm (for NO3-(-N), P < 0.05) layers. However, there was no significant loss of exchangeable non-acidic cations along the urbanization gradient, instead their levels were higher in urban than in urban/suburban area at the 0-10 cm layer. Our results suggested N deposition particularly under the climate of high temperature and rainfall, greatly contributed to a significant soil acidification occurred in the urbanized environment. PMID:26400019

  2. Urbanization in China drives soil acidification of Pinus massoniana forests

    NASA Astrophysics Data System (ADS)

    Huang, Juan; Zhang, Wei; Mo, Jiangming; Wang, Shizhong; Liu, Juxiu; Chen, Hao

    2015-09-01

    Soil acidification instead of alkalization has become a new environmental issue caused by urbanization. However, it remains unclear the characters and main contributors of this acidification. We investigated the effects of an urbanization gradient on soil acidity of Pinus massoniana forests in Pearl River Delta, South China. The soil pH of pine forests at 20-cm depth had significantly positive linear correlations with the distance from the urban core of Guangzhou. Soil pH reduced by 0.44 unit at the 0-10 cm layer in urbanized areas compared to that in non-urbanized areas. Nitrogen deposition, mean annual temperature and mean annual precipitation were key factors influencing soil acidification based on a principal component analysis. Nitrogen deposition showed significant linear relationships with soil pH at the 0-10 cm (for ammonium N (-N), P < 0.05 for nitrate N (-N), P < 0.01) and 10-20cm (for -N, P < 0.05) layers. However, there was no significant loss of exchangeable non-acidic cations along the urbanization gradient, instead their levels were higher in urban than in urban/suburban area at the 0-10 cm layer. Our results suggested N deposition particularly under the climate of high temperature and rainfall, greatly contributed to a significant soil acidification occurred in the urbanized environment.

  3. Urbanization in China drives soil acidification of Pinus massoniana forests.

    PubMed

    Huang, Juan; Zhang, Wei; Mo, Jiangming; Wang, Shizhong; Liu, Juxiu; Chen, Hao

    2015-09-24

    Soil acidification instead of alkalization has become a new environmental issue caused by urbanization. However, it remains unclear the characters and main contributors of this acidification. We investigated the effects of an urbanization gradient on soil acidity of Pinus massoniana forests in Pearl River Delta, South China. The soil pH of pine forests at 20-cm depth had significantly positive linear correlations with the distance from the urban core of Guangzhou. Soil pH reduced by 0.44 unit at the 0-10 cm layer in urbanized areas compared to that in non-urbanized areas. Nitrogen deposition, mean annual temperature and mean annual precipitation were key factors influencing soil acidification based on a principal component analysis. Nitrogen deposition showed significant linear relationships with soil pH at the 0-10 cm (for ammonium N(NH4+(-N)), P < 0.05; for nitrate N(NO3-(-N)), P < 0.01) and 10-20 cm (for NO3-(-N), P < 0.05) layers. However, there was no significant loss of exchangeable non-acidic cations along the urbanization gradient, instead their levels were higher in urban than in urban/suburban area at the 0-10 cm layer. Our results suggested N deposition particularly under the climate of high temperature and rainfall, greatly contributed to a significant soil acidification occurred in the urbanized environment.

  4. Effects of tree diversity and environmental factors on the soil microbial community in three soil depth in a Central European beech forest

    NASA Astrophysics Data System (ADS)

    Fornacon, C.; Jacob, M.; Guckland, A.; Meinen, C.; Gleixner, G.

    2009-04-01

    We investigated the link between aboveground and belowground diversity in forest ecosystems. Therefore, we determined the effect of tree composition on amount and composition of the soil microbial community using phospholipid fatty acid profiles in the Hainich National Park in Thuringia, a deciduous mixed forest on loess over limestone in Central Germany. On the one hand we investigated the composition of the microbial community in dependence of leave litter composition, hypothesizing that distinct leave litter compositions activated signature PLFA's. On the other hand we determined if environmental factor like clay content or nutrient status influence the microbial community in deeper soil horizons. Consequently soil was sampled from depth intervals of 0-5 cm, 5-10 cm and 10-20 cm. Plots with highest diversity of leave litter had highest total amounts of fatty acids in the upper 5 cm. Mainly PLFA 16:1?5 was activated in autumn, being a common marker for mycorrhizal fungi. In soil depth below 5 cm the environmental factors like clay and soil nutrients like phosphorus and carbon, explained most of the soil microbial variability. On pure beech sites the total phosphorus content of soil influenced soil microbial diversity, but on sites with higher tree diversity no single factor varying the microbial community could be identified. Tree diversity and environmental factors together effect soil microbial community and are closely related to the link between aboveground and belowground diversity.

  5. Evaluation of study patients with Lyme disease, 10-20-year follow-up.

    PubMed

    Kalish, R A; Kaplan, R F; Taylor, E; Jones-Woodward, L; Workman, K; Steere, A C

    2001-02-01

    To determine the long-term impact of Lyme disease, we evaluated 84 randomly selected, original study patients from the Lyme, Connecticut, region who had erythema migrans, facial palsy, or Lyme arthritis 10-20 years ago and 30 uninfected control subjects. The patients in the 3 study groups and the control group did not differ significantly in current symptoms or neuropsychological test results. However, patients with facial palsy, who frequently had more widespread nervous system involvement, more often had residual facial or peripheral nerve deficits. Moreover, patients with facial palsy who did not receive antibiotics for acute neuroborreliosis more often now had joint pain and sleep difficulty and lower scores on the body pain index and standardized physical component sections of the Short-Form 36 Health Assessment Questionnaire than did antibiotic-treated patients with facial palsy. Thus, the overall current health status of each patient group was good, but sequelae were apparent primarily among patients with facial palsy who did not receive antibiotics for acute neuroborreliosis.

  6. Effects of switchgrass cultivars and intraspecific differences in root structure on soil carbon inputs and accumulation

    SciTech Connect

    Adkins, Jaron; Jastrow, Julie D.; Morris, Geoffrey P.; Six, Johan; de Graaff, Marie-Anne

    2016-01-01

    Switchgrass (Panicum virgatum L), a cellulosic biofuel feedstock, may promote soil C 21 accumulation compared to annual cropping systems by increasing the amount and retention of 22 root-derived soil C inputs. The aim of this study was to assess how different switchgrass 23 cultivars impact soil C inputs and retention, whether these impacts vary with depth, and whether 24 specific root length (SRL) explains these impacts. We collected soil to a depth of 30 cm from six 25 switchgrass cultivars with root systems ranging from high to low SRL. The cultivars (C4 species) 26 were grown for 27 months on soils previously dominated by C3 plants, allowing us to use the 27 natural difference in 13C isotopic signatures between C3 soils and C4 plants to quantify 28 switchgrass-derived C accumulation. The soil was fractionated into coarse particulate organic 29 matter (CPOM), fine particulate organic matter (FPOM), silt, and clay-sized fractions. We 30 measured total C and plant-derived C in all soil fractions across all depths. The study led to two main results: (1) bulk soil C concentrations beneath switchgrass cultivars varied by 40% in the 0-32 10 cm soil depth and by 70% in the 10-20 cm soil depth, and cultivars with high bulk soil C 33 concentrations tended to have relatively high C concentrations in the mineral soil fractions and 34 relatively low C concentrations in the POM fractions; (2) there were significant differences in 35 switchgrass-derived soil C between cultivars at the 0-10 cm depth, where soil C inputs ranged 36 from 1.2 to 3.2 mg C g-1 dry soil. There was also evidence of a positive correlation between SRL 37 and switchgrass-derived C inputs when one outlier data point was removed. These results 38 indicate that switchgrass cultivars differentially impact mechanisms contributing to soil C accumulation.

  7. [Effects of understory removal on soil labile organic carbon pool in a Cinnamomum camphora plantation].

    PubMed

    Wu, Ya-Cong; Li, Zheng-Cai; Cheng, Cai-Fang; Liu, Rong-Jie; Wang, Bin; Geri, Le-Tu

    2013-12-01

    Taking a 48-year-old Cinnamomum camphora plantation in the eastern area of our subtropics as test object, this paper studied the labile organic carbon contents and their ratios to the total organic carbon (TOC) in 0-60 cm soil layer under effects of understory removal (UR). As compared with no understory removal (CK), the soil TOC and easily-oxidized carbon (EOC) contents under UR decreased, with a decrement of 4.8% - 34.1% and 27.1% - 36.2%, respectively, and the TOC and EOC contents had a significant difference in 0-10 cm and 0-20 cm layers, respectively. The water-soluble organic carbon (WSOC) (except in 0-10 cm and 10-20 cm layers) and light fraction organic matter (LFOM) under UR increaesd, but the difference was not significant. The ratio of soil WSOC to soil TOC in UR stand was higher than that in CK stand, while the ratio of soil EOC to soil TOC showed an opposite trend. In the two stands, soil WSOC, EOC, and LFOM had significant or extremely significant correlations with soil TOC, and the correlation coefficients of soil EOC and LFOM with soil TOC were higher in UR stand than in CK, but the correlation coefficient between soil WSOC and TOC was in opposite. The soil EOC, LFOM, and TOC in the two stands were significantly or extremely significantly correlated with soil nutrients, but the soil WSOC in UR stand had no significant correlations with soil hydrolyzable N, available P, exchangeable Ca, and exchangeable Mg.

  8. Observed soil temperature trends associated with climate change in Canada

    NASA Astrophysics Data System (ADS)

    Qian, Budong; Gregorich, Edward G.; Gameda, Sam; Hopkins, David W.; Wang, Xiaolan L.

    2011-01-01

    Trends in soil temperature are important, but rarely reported, indicators of climate change. On the basis of the soil temperature data from 30 climate stations across Canada during 1958-2008, trends in soil temperatures at 5, 10, 20, 50, 100, and 150 cm depths were analyzed, together with atmospheric variables, such as air temperature, precipitation, and depth of snow on the ground, observed at the same locations. There was a significant positive trend with soil temperatures in spring and summer means, but not for the winter and annual means. A positive trend with time in soil temperature was detected at about two-thirds of the stations at all depths below 5 cm. A warming trend of 0.26-0.30°C/decade was consistently detected in spring (March-April-May) at all depths between 1958 and 2008. The warming trend in soil temperatures was associated with trends in air temperatures and snow cover depth over the same period. A significant decreasing trend in snow cover depth in winter and spring was associated with increasing air temperatures. The combined effects of the higher air temperature and reduced snow depth probably resulted in an enhanced increasing trend in spring soil temperatures, but no significant trends in winter soil temperatures. The thermal insulation by snow cover appeared to play an important role in the response of soil temperatures to climate change and must be accounted for in projecting future soil-related impacts of climate change.

  9. Sludge quality after 10-20 years of treatment in reed bed systems.

    PubMed

    Nielsen, Steen; Bruun, Esben Wilson

    2015-09-01

    The effect on the environment of the operation of sludge treatment in reed beds (STRB) system is seen as quite limited compared to traditional sludge treatment systems such as mechanical dewatering, drying and incineration with their accompanying use of chemicals and energy consumption. There are several STRB systems in Denmark receiving sludge from urban wastewater treatment plants. Stabilization and mineralization of the sludge in the STRB systems occur during a period between 10 and 20 years, where after the basins are emptied and the sludge residue typically is spread on agricultural land. In the present study, the sludge residue quality after treatment periods of 10-20 years from four Danish STRBs is presented. After reduction, dewatering and mineralization of the feed sludge (dry solid content of 0.5-3 %) in the STRB systems, the sludge residue achieved up to 26 % dry solid, depending on the sludge quality and dimensioning of the STRB system. The concentration of heavy metals and hazardous organic compounds in the sludge residue that are listed in the Danish and EU legislation for farmland application of sludge was below the limit values. The nitrogen and phosphorus concentrations as an average in the sludge residue were 28 and 36 g/kg dry solid (DS), respectively. In addition, mineralization on average across the four STRB systems removed up to 27 % of the organic solids in the sludge. The investigation showed that the sludge residue qualities of the four STRBs after a full treatment period all complied with the Danish and European Union legal limits for agricultural land disposal.

  10. Sludge quality after 10-20 years of treatment in reed bed systems.

    PubMed

    Nielsen, Steen; Bruun, Esben Wilson

    2015-09-01

    The effect on the environment of the operation of sludge treatment in reed beds (STRB) system is seen as quite limited compared to traditional sludge treatment systems such as mechanical dewatering, drying and incineration with their accompanying use of chemicals and energy consumption. There are several STRB systems in Denmark receiving sludge from urban wastewater treatment plants. Stabilization and mineralization of the sludge in the STRB systems occur during a period between 10 and 20 years, where after the basins are emptied and the sludge residue typically is spread on agricultural land. In the present study, the sludge residue quality after treatment periods of 10-20 years from four Danish STRBs is presented. After reduction, dewatering and mineralization of the feed sludge (dry solid content of 0.5-3 %) in the STRB systems, the sludge residue achieved up to 26 % dry solid, depending on the sludge quality and dimensioning of the STRB system. The concentration of heavy metals and hazardous organic compounds in the sludge residue that are listed in the Danish and EU legislation for farmland application of sludge was below the limit values. The nitrogen and phosphorus concentrations as an average in the sludge residue were 28 and 36 g/kg dry solid (DS), respectively. In addition, mineralization on average across the four STRB systems removed up to 27 % of the organic solids in the sludge. The investigation showed that the sludge residue qualities of the four STRBs after a full treatment period all complied with the Danish and European Union legal limits for agricultural land disposal. PMID:25422113

  11. [Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area].

    PubMed

    Lü, Mao-Kui; Xie, Jin-Sheng; Zhou, Yan-Xiang; Zeng, Hong-Da; Jiang, Jun; Chen, Xi-Xiang; Xu, Chao; Chen, Tan; Fu, Lin-Chi

    2014-01-01

    By the method of spatiotemporal substitution and taking the bare land and secondary forest as the control, we measured light fraction and particulate organic carbon in the topsoil under the Pinus massoniana woodlands of different ages with similar management histories in a red soil erosion area, to determine their dynamics and evaluate the conversion processes from unprotected to protected organic carbon. The results showed that the content and storage of soil organic carbon increased significantly along with ages in the process of vegetation restoration (P < 0.01). The unprotected soil organic carbon content and distribution proportion to the total soil organic carbon increased significantly (P < 0.05) after 7-11 years' restoration but stabilized after 27 and 30 years of restoration. It suggested that soil organic carbon mostly accumulated in the form of unprotected soil organic carbon during the initial restoration period, and reached a stable level after long-term vegetation restoration. Positive correlations were found between restoration years and the rate constant for C transferring from the unprotected to the protected soil pool (k) in 0-10 cm and 10-20 cm soil layers, which demonstrated that the unprotected soil organic carbon gradually transferred to the protected soil organic carbon in the process of vegetation restoration. PMID:24765840

  12. [Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area].

    PubMed

    Lü, Mao-Kui; Xie, Jin-Sheng; Zhou, Yan-Xiang; Zeng, Hong-Da; Jiang, Jun; Chen, Xi-Xiang; Xu, Chao; Chen, Tan; Fu, Lin-Chi

    2014-01-01

    By the method of spatiotemporal substitution and taking the bare land and secondary forest as the control, we measured light fraction and particulate organic carbon in the topsoil under the Pinus massoniana woodlands of different ages with similar management histories in a red soil erosion area, to determine their dynamics and evaluate the conversion processes from unprotected to protected organic carbon. The results showed that the content and storage of soil organic carbon increased significantly along with ages in the process of vegetation restoration (P < 0.01). The unprotected soil organic carbon content and distribution proportion to the total soil organic carbon increased significantly (P < 0.05) after 7-11 years' restoration but stabilized after 27 and 30 years of restoration. It suggested that soil organic carbon mostly accumulated in the form of unprotected soil organic carbon during the initial restoration period, and reached a stable level after long-term vegetation restoration. Positive correlations were found between restoration years and the rate constant for C transferring from the unprotected to the protected soil pool (k) in 0-10 cm and 10-20 cm soil layers, which demonstrated that the unprotected soil organic carbon gradually transferred to the protected soil organic carbon in the process of vegetation restoration.

  13. Serpentine Nanotubes in CM Chondrites

    NASA Technical Reports Server (NTRS)

    Zega, Thomas J.; Garvie, Laurence A. J.; Dodony, Istvan; Buseck, Peter R.

    2004-01-01

    The CM chondrites are primitive meteorites that formed during the early solar system. Although they retain much of their original physical character, their matrices and fine-grained rims (FGRs) sustained aqueous alteration early in their histories [1- 3]. Serpentine-group minerals are abundant products of such alteration, and information regarding their structures, compositions, and spatial relationships is important for determining the reactions that produced them and the conditions under which they formed. Our recent work on FGRs and matrices of the CM chondrites has revealed new information on the structures and compositions of serpentine-group minerals [4,5] and has provided insights into the evolution of these primitive meteorites. Here we report on serpentine nanotubes from the Mighei and Murchison CM chondrites [6].

  14. Soil microbial properties under different vegetation types on Mountain Han.

    PubMed

    Wang, Miao; Qu, Laiye; Ma, Keming; Yuan, Xiu

    2013-06-01

    This study investigated the influence of broadleaf and conifer vegetation on soil microbial communities in a distinct vertical distribution belt in Northeast China. Soil samples were taken at 0-5, 5-10 and 10-20 cm depths from four vegetation types at different altitudes, which were characterized by poplar (Populus davidiana) (1250-1300 m), poplar (P. davidiana) mixed with birch (Betula platyphylla) (1370-1550 m), birch (B. platyphylla) (1550-1720 m), and larch (Larix principis-rupprechtii) (1840-1890 m). Microbial biomass and community structure were determined using the fumigation-extraction method and phospholipid fatty acid (PLFA) analysis, and soil fungal community level physiological profiles (CLPP) were characterized using Biolog FF Microplates. It was found that soil properties, especially soil organic carbon and water content, contributed significantly to the variations in soil microbes. With increasing soil depth, the soil microbial biomass, fungal biomass, and fungal catabolic ability diminished; however, the ratio of fungi to bacteria increased. The fungal ratio was higher under larch forests compared to that under poplar, birch, and their mixed forests, although the soil microbial biomass was lower. The direct contribution of vegetation types to the soil microbial community variation was 12%. If the indirect contribution through soil organic carbon was included, variations in the vegetation type had substantial influences on soil microbial composition and diversity.

  15. 344 cm x 86 cm low mass vacuum window

    SciTech Connect

    Reimers, R.M.; Porter, J.; Meneghetti, J.; Wilde, S.; Miller, R.

    1983-08-01

    The LBL Heavy Ion Spectrometer System (HISS) superconducting magnet contains a 1 m x 3.45 m x 2 m vacuum tank in its gap. A full aperture thin window was needed to minimize background as the products of nuclear collisions move from upstream targets to downstream detectors. Six windows were built and tested in the development process. The final window's unsupported area is 3m/sup 2/ with a 25 cm inward deflection. The design consists of a .11 mm Nylon/aluminum/polypropylene laminate as a gas seal and .55 mm woven aramid fiber for strength. Total mass is 80 milligrams per cm/sup 2/. Development depended heavily on past experience and testing. Safety considerations are discussed.

  16. Photodissolution of soil organic matter

    USGS Publications Warehouse

    Mayer, L.M.; Thornton, K.R.; Schick, L.L.; Jastrow, J.D.; Harden, J.W.

    2012-01-01

    Sunlight has been shown to enhance loss of organic matter from aquatic sediments and terrestrial plant litter, so we tested for similar reactions in mineral soil horizons. Losses of up to a third of particulate organic carbon occurred after continuous exposure to full-strength sunlight for dozens of hours, with similar amounts appearing as photodissolved organic carbon. Nitrogen dissolved similarly, appearing partly as ammonium. Modified experiments with interruption of irradiation to include extended dark incubation periods increased loss of total organic carbon, implying remineralization by some combination of light and microbes. These photodissolution reactions respond strongly to water content, with reaction extent under air-dry to fully wet conditions increasing by a factor of 3-4 fold. Light limitation was explored using lamp intensity and soil depth experiments. Reaction extent varied linearly with lamp intensity. Depth experiments indicate that attenuation of reaction occurs within the top tens to hundreds of micrometers of soil depth. Our data allow only order-of-magnitude extrapolations to field conditions, but suggest that this type of reaction could induce loss of 10-20% of soil organic carbon in the top 10. cm horizon over a century. It may therefore have contributed to historical losses of soil carbon via agriculture, and should be considered in soil management on similar time scales. ?? 2011 Elsevier B.V.

  17. [Effects of fertilization on the P accumulation and leaching in vegetable greenhouse soil].

    PubMed

    Zhao, Ya-jie; Zhao, Mu-qiu; Lu, Cai-yan; Shi, Yi; Chen, Xin

    2015-02-01

    A packed soil column experiment was conducted to investigate the effect of different fertilization practices on phosphorus (P) accumulation and leaching potential in a vegetable greenhouse soil with different fertility levels. The results showed that the leaching loss of total P in the leachates elevated with the increment of leaching time while the accumulative leaching loss of total P was relatively low, indicating P was mainly accumulated in the soil instead of in the leachate. At the end of the leaching experiment, soil fertility and fertilization treatment affected the content of total phosphorus and Olsen-P significantly. Compared with the low-level-fertility soil, the contents of total P and Olsen-P increased by 14.3% and 12.2% in the medium-level-fertility soil, 33.3% and 37.7% in the high-level-fertility soil. Total P in the combined application of poultry manure and chemical fertilizer (M+NPK) was elevated by 5.7% and 4.3%, compared with the NPK and M treatment. Compared with NPK treatment, Olsen-P in M and M + NPK treatments augmented by 13.0% and 3.1%, respectively. Soil total P and Olsen-P mainly accumulated in the 0-10 cm and 10-20 cm soil layers, and much less in the 20-40 cm soil layer. PMID:26094462

  18. Hydraulic and mechanical properties of soil aggregates under organic and conventional soil management

    NASA Astrophysics Data System (ADS)

    Wójciga, A.; Kuś, J.; Turski, M.; Lipiec, J.

    2009-04-01

    Variation in hydraulic and mechanical properties of soil aggregates is an important factor affecting water storage and infiltration because the large inter-aggregate pores are dewatered first and the transport of water and solutes is influenced by the properties of the individual aggregates and contacts between them. A high mechanical stability of soil aggregates is fundamental for the maintenance of proper tilth and provides stable traction for farm implements, but limit root growth inside aggregates. The aggregate properties are largely influenced by soil management practices. Our objective was to compare the effects of organic and conventional soil management on hydraulic and mechanical properties of soil aggregates. Experimental fields subjected to long-term organic (14 years) and conventional managements were located on loamy soil at the Institute of Soil Science and Plant Cultivation - National Research Institute in Pulawy, Poland. Soil samples were collected from two soil depths (0-10 cm and 10-20 cm). After air-drying, two size fractions of soil aggregates (15-20 and 30-35 mm) were manually selected and kept in the dried state in a dessicator in order to provide the same boundary conditions. Following properties of the aggregates were determined: porosity (%) using standard wax method, cumulative infiltration Q (mm3 s-1) and sorptivity S (mm s -1/2) of water and ethanol using a tube with a sponge inserted at the tip, wettability (by comparison of sorptivity of water and ethanol) using repellency index R, crushing strength q (MPa) using strength testing device (Zwick/Roell) and calculated by Dexter's formula. All properties were determined in 15 replicates for each treatment, aggregates size and depth. Organic management decreased porosity of soil aggregates and ethanol infiltration. All aggregates revealed rather limited wettability (high repellency index). In most cases the aggregate wettability was lower under conventional than organic soil management

  19. [Impact of tillage practices on microbial biomass carbon in top layer of black soils].

    PubMed

    Sun, Bing-jie; Jia, Shu-xia; Zhang, Xiao-ping; Liang, Ai-zhen; Chen, Xue-wen; Zhang, Shi-xiu; Liu, Si-yi; Chen, Sheng-long

    2015-01-01

    A study was conducted on a long-term (13 years) tillage and rotation experiment on black soil in northeast China to determine the effects of tillage, time and soil depth on soil microbial biomass carbon (MBC). Tillage systems included no tillage (NT), ridge tillage (RT) and mould-board plough (MP). Soil sampling was done at 0-5, 5-10 and 10-20 cm depths in June, August and September, 2013, and April, 2014 in the corn phase of corn-soybean rotation plots. MBC content was measured by the chloroform fumigation extraction (CFE) method. The results showed that the MBC content varied with sampling time and soil depth. Soil MBC content was the lowest in April for all three tillage systems, and was highest in June for MP, and highest in August for NT and RT. At each sampling time, tillage system had a significant effect on soil MBC content only in the top 0-5 cm layer. The MBC content showed obvious stratification under NT and RT with a higher MBC content in the top 0-5 cm layer than under MP. The stratification ratios under NT and RT were greatest in September when they were respectively 67.8% and 95.5% greater than under MP. Our results showed that soil MBC contents were greatly affected by the time and soil depth, and were more apparently accumulated in the top layer under NT and RT.

  20. Occurrence and distribution of PAHs, PCBs, and chlorinated pesticides in Tunisian soil irrigated with treated wastewater.

    PubMed

    Haddaoui, Imen; Mahjoub, Olfa; Mahjoub, Borhane; Boujelben, Abdelhamid; Di Bella, Giuseppa

    2016-03-01

    Treated wastewater (TWW) is a well recognized source of organic pollutants (OPs) that may accumulate during irrigation. For the first time, data on the occurrence of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyles (PCBs) and organochlorinated pesticides (OCPs) in wastewater irrigated soil in Nabeul (Tunisia) are reported. 13 PAHs, 18 PCBs and 16 OCPs were analyzed in soil samples collected at 0-10 and 10-20 cm depth before each and every irrigation and after the irrigation period expanding from June to October. Soil was extracted with an accelerated solvent extractor and analyzed by a tandem gas chromatograph in selected reaction monitoring mode (GC/MS/MS/SRM). OPs residues were detected before irrigation and accumulated at the end of the season for some of them. The total concentration of PAHs varied between 120.01 and 365.18 μg kg(-1) dry weight (dw) at 0-10 cm depth before and at the end of irrigation, respectively. The total concentration of PCBs varied between 11.26 and 21.89 μg kg(-1) dw at 0-10 cm, being higher than those reported for 10-20 cm. The six indicator PCB congeners (28, 52, 101, 138, 153, 180) were predominant. OCPs concentrations ranged between 12.49 and 21.81 μg kg(-1) at 0-10 cm and between 74.03 and 310.54 μg kg(-1) at 10-20 cm depth. DDT was predominant accounting for more than 94% of the total OCPs. In view of the present results, OPs are relevant to the agricultural environment, calling for more research on their persistence and potential transfer to plants and/or groundwater while taking into account farmers' practices.

  1. Occurrence and distribution of PAHs, PCBs, and chlorinated pesticides in Tunisian soil irrigated with treated wastewater.

    PubMed

    Haddaoui, Imen; Mahjoub, Olfa; Mahjoub, Borhane; Boujelben, Abdelhamid; Di Bella, Giuseppa

    2016-03-01

    Treated wastewater (TWW) is a well recognized source of organic pollutants (OPs) that may accumulate during irrigation. For the first time, data on the occurrence of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyles (PCBs) and organochlorinated pesticides (OCPs) in wastewater irrigated soil in Nabeul (Tunisia) are reported. 13 PAHs, 18 PCBs and 16 OCPs were analyzed in soil samples collected at 0-10 and 10-20 cm depth before each and every irrigation and after the irrigation period expanding from June to October. Soil was extracted with an accelerated solvent extractor and analyzed by a tandem gas chromatograph in selected reaction monitoring mode (GC/MS/MS/SRM). OPs residues were detected before irrigation and accumulated at the end of the season for some of them. The total concentration of PAHs varied between 120.01 and 365.18 μg kg(-1) dry weight (dw) at 0-10 cm depth before and at the end of irrigation, respectively. The total concentration of PCBs varied between 11.26 and 21.89 μg kg(-1) dw at 0-10 cm, being higher than those reported for 10-20 cm. The six indicator PCB congeners (28, 52, 101, 138, 153, 180) were predominant. OCPs concentrations ranged between 12.49 and 21.81 μg kg(-1) at 0-10 cm and between 74.03 and 310.54 μg kg(-1) at 10-20 cm depth. DDT was predominant accounting for more than 94% of the total OCPs. In view of the present results, OPs are relevant to the agricultural environment, calling for more research on their persistence and potential transfer to plants and/or groundwater while taking into account farmers' practices. PMID:26716883

  2. Soil organic phosphorus in soils under different land use systems in northeast Germany

    NASA Astrophysics Data System (ADS)

    Slazak, Anna; Freese, Dirk; Hüttl, Reinhard F.

    2010-05-01

    Phosphorus (P) is commonly known as a major plant nutrient, which can act as a limiting factor for plant growth in many ecosystems, including different land use systems. Organic P (Po), transformations in soil are important in determining the overall biological availability of P and additionally Po depletion is caused by land cultivation. It is expected that changes of land use modifies the distribution of soil P among the various P-pools (Ptotal, Plabile, Po), where the Plabile forms are considered to be readily available to plants and Po plays an important role with P nutrition supply for plants. The aim of the study was to measure the different soil P pools under different land use systems. The study was carried out in northeast of Brandenburg in Germany. Different land use systems were studied: i) different in age pine-oak mixed forest stands, ii) silvopastoral land, iii) arable lands. Samples were taken from two mineral soil layers: 0-10 and 10-20 cm. Recently, a variety of analytical methods are available to determine specific Po compounds in soils. The different P forms in the soil were obtained by a sequential P fractionation by using acid and alkaline extractants, which mean that single samples were subjected to increasingly stronger extractants, consequently separating the soil P into fractions based on P solubility. The soil Ptotal for the forest stands ranged from 100 to 183 mg kg -1 whereas Po from 77 to 148 mg kg -1. The Po and Plabile in both soil layers increased significantly with increase of age-old oak trees. The most available-P fraction was Plabile predominate in the oldest pine-oak forest stand, accounting for 29% of soil Ptotal. For the silvopasture and arable study sites the Ptotal content was comparable. However, the highest value of Ptotal was measured in the 30 years old silvopastoral system with 685 mg kg-1 and 728 mg kg-1 at 0-10 cm and 10-20 cm depth, respectively than in arable lands. The results have shown that the 30 years old

  3. Changes in soil carbon, nitrogen, and phosphorus due to land-use changes in Brazil

    NASA Astrophysics Data System (ADS)

    Groppo, J. D.; Lins, S. R. M.; Camargo, P. B.; Assad, E. D.; Pinto, H. S.; Martins, S. C.; Salgado, P. R.; Evangelista, B.; Vasconcellos, E.; Sano, E. E.; Pavão, E.; Luna, R.; Martinelli, L. A.

    2015-08-01

    In this paper, soil carbon, nitrogen and phosphorus concentrations and stocks were investigated in agricultural and natural areas in 17 plot-level paired sites and in a regional survey encompassing more than 100 pasture soils In the paired sites, elemental soil concentrations and stocks were determined in native vegetation (forests and savannas), pastures and crop-livestock systems (CPSs). Nutrient stocks were calculated for the soil depth intervals 0-10, 0-30, and 0-60 cm for the paired sites and 0-10, and 0-30 cm for the pasture regional survey by sum stocks obtained in each sampling intervals (0-5, 5-10, 10-20, 20-30, 30-40, 40-60 cm). Overall, there were significant differences in soil element concentrations and ratios between different land uses, especially in the surface soil layers. Carbon and nitrogen contents were lower, while phosphorus contents were higher in the pasture and CPS soils than in native vegetation soils. Additionally, soil stoichiometry has changed with changes in land use. The soil C : N ratio was lower in the native vegetation than in the pasture and CPS soils, and the carbon and nitrogen to available phosphorus ratio (PME) decreased from the native vegetation to the pasture to the CPS soils. In the plot-level paired sites, the soil nitrogen stocks were lower in all depth intervals in pasture and in the CPS soils when compared with the native vegetation soils. On the other hand, the soil phosphorus stocks were higher in all depth intervals in agricultural soils when compared with the native vegetation soils. For the regional pasture survey, soil nitrogen and phosphorus stocks were lower in all soil intervals in pasture soils than in native vegetation soils. The nitrogen loss with cultivation observed here is in line with other studies and it seems to be a combination of decreasing organic matter inputs, in cases where crops replaced native forests, with an increase in soil organic matter decomposition that leads to a decrease in the long

  4. Statistical evaluation of the relationships between spatial variability in the organic carbon content in gray forest soils, soil density, concentrations of heavy metals, and topography

    NASA Astrophysics Data System (ADS)

    Shary, P. A.; Pinskii, D. L.

    2013-11-01

    The spatial variability in the organic carbon content (Corg) in the gray forest soils was studied in relation to topography, soil density ( D); and concentrations of Al, Fe, K, Ca, Mg, Mn, Cu, and Zn measured at 47 points in the upper (0-10 cm) and lower (10-20 cm) layers by the X-ray fluorescent method. The study area (48 by 104 m) under meadow vegetation included the break of slope of a river valley with strongly eroded gray forest soils and active development of erosional processes. Methods of geomorphometry were used for the quantitative characterization of topographic conditions. Statistical relationships between the studied characteristics were investigated by multiple regression methods with verification of the models according to specially developed criteria. The obtained statistical relationships were used to develop 3D cartographic models of the Corg and D distribution in the two soil layers. It was shown that the content of Corg in the upper layer increased on south-facing slopes, whereas the content of Corg in the lower layer gained its maximum of southwestern slopes, and the reasons for this distribution were determined. The major characteristics of topography affecting the distribution of Corg in the different soil layers were identified. The Corg content in any soil layer was most tightly correlated with the D values; a less tight correlation was observed between the Corg and Mg contents. The Zn and Cu contents correlated with the Corg in the lower (10-20 cm) layer, whereas the Ca and Fe contents correlated with the Corg in the upper (0-10 cm) layer. The interpretation of the observed regularities involved data on the stability of metal complexes with humic acids under different conditions of the soil acidity; the effect of the erosional processes was also taken into account.

  5. Gene Expression Responses Linked to Reproduction Effect Concentrations (EC10,20,50,90) of Dimethoate, Atrazine and Carbendazim, in Enchytraeus albidus

    PubMed Central

    Novais, Sara C.; De Coen, Wim; Amorim, Mónica J. B.

    2012-01-01

    Background Molecular mechanisms of response to pesticides are scarce and information on such responses from soil invertebrates is almost inexistent. Enchytraeus albidus (Oligochaeta) is a standard soil ecotoxicology model species for which effects of many pesticides are known on survival, reproduction and avoidance behaviour. With the recent microarray development additional information can be retrieved on the molecular effects. Methodology/Principal Findings Experiments were performed to investigate the transcription responses of E. albidus when exposed to three pesticides – dimethoate (insecticide), atrazine (herbicide) and carbendazim (fungicide) – in a range of concentrations that inhibited reproduction by 10%, 20%, 50% and 90% (EC10, EC20, EC50 and EC90, respectively). The goal of this study was to further identify key biological processes affected by each compound and if dose-related. All three pesticides significantly affected biological processes like translation, regulation of the cell cycle or general response to stress. Intracellular signalling and microtubule-based movement were affected by dimethoate and carbendazim whereas atrazine affected lipid and steroid metabolism (also by dimethoate) or carbohydrate metabolism (also by carbendazim). Response to DNA damage/DNA repair was exclusively affected by carbendazim. Conclusions Changes in gene expression were significantly altered after 2 days of exposure in a dose-related manner. The mechanisms of response were comparable with the ones for mammals, suggesting across species conserved modes of action. The present results indicate the potential of using gene expression in risk assessment and the advantage as early markers. PMID:22558331

  6. The mobility of thiobencarb and fipronil in two flooded rice-growing soils.

    PubMed

    Doran, Gregory; Eberbach, Philip; Helliwell, Stuart

    2008-08-01

    The mobility of the rice pesticides thiobencarb (S-[(4-chlorophenyl) methyl] diethylcarbamothioate) and fipronil ([5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]pyrazole) were investigated in the glasshouse under flooded conditions using two Australian rice-growing soils. When using leakage rates of 10 mm day(-1), less than 20% of applied thiobencarb and fipronil remained in the water column after 10 days due to rapid transfer to the soil phase. Up to 70% and 65% of the applied thiobencarb and fipronil, respectively, were recovered from the 0-1 cm layer of soils. Only 5-7% of each pesticide was recovered from the 1-2 cm layer, and less than 2% was recovered from each 1 cm layer in the 2-10 cm region of the soils. Analysis of the water leaking from the base of the soil cores showed between 5-10% of the applied thiobencarb and between 10-20% of the applied fipronil leaching from the soil cores. The high levels of pesticide in the effluent was attributed to preferential flow of pesticide-laden water via soil macropores resulting from the wetting and drying process, worm holes and root channels. PMID:18665985

  7. Persistence of immunoglobulin M or immunoglobulin G antibody responses to Borrelia burgdorferi 10-20 years after active Lyme disease.

    PubMed

    Kalish, R A; McHugh, G; Granquist, J; Shea, B; Ruthazer, R; Steere, A C

    2001-09-15

    The interpretation of serological results for patients who had Lyme disease many years ago is not well defined. We studied the serological status of 79 patients who had had Lyme disease 10-20 years ago and did not currently have signs or symptoms of active Lyme disease. Of the 40 patients who had had early Lyme disease alone, 4 (10%) currently had IgM responses to Borrelia burgdorferi, and 10 (25%) still had IgG reactivity to the spirochete, as determined by a 2-test approach (enzyme-linked immunosorbent assay and Western blot). Of the 39 patients who had had Lyme arthritis, 6 (15%) currently had IgM responses and 24 (62%) still had IgG reactivity to the spirochete. IgM or IgG antibody responses to B. burgdorferi may persist for 10-20 years, but these responses are not indicative of active infection.

  8. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland.

    PubMed

    Zhou, Xiaoqi; Chen, Chengrong; Wang, Yanfen; Xu, Zhihong; Han, Hongyan; Li, Linghao; Wan, Shiqiang

    2013-02-01

    Few studies have conducted the responses of soil extracellular enzyme activities (EEA) to climate change, especially over the long term. In this study, we investigated the six-year responses of soil EEA to warming and increased precipitation in a temperate grassland of northern China at two depths of 0-10 and 10-20 cm. These extracellular enzymes included carbon-acquisition enzymes (β-glucosidase, BG), nitrogen-acquisition enzymes (N-acetylglucosaminidase, NAG; Leucine aminopeptidase, LAP) and phosphorus-acquisition enzymes (acid and alkaline phosphatases). The results showed that warming significantly increased acid phosphatase at the 0-10 cm depth and NAG at the 10-20 cm depth, but dramatically decreased BG and acid phosphatase in the subsurface. In contrast, increased precipitation significantly increased NAG, LAP and alkaline phosphatase in the surface and NAG, LAP and acid phosphatase in the subsurface. There was a significant warming and increased precipitation interaction on BG in the subsurface. Redundancy analysis indicated that the patterns of EEA were mainly driven by soil pH and NH(4)(+)-N and NO(3)(-)-N in the surface, while by NH(4)(+)-N and microbial biomass in the subsurface. Our results suggested that soil EEA responded differentially to warming and increased precipitation at two depths in this region, which may have implications for carbon and nutrient cycling under climate change.

  9. Column-centrifugation method for determining water retention curves of soils and disperse sediments

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.

    2012-04-01

    A new instrumental method was proposed for the rapid estimation of the water-retention capacity of soils and sediments. The method is based on the use of a centrifugal field to remove water from distributed soil columns. In distinction from the classical method of high columns, the use of a centrifugal force field stronger than the gravity field allowed reducing the height of the soil samples from several meters to 10-20 cm (the typical size of centrifuge bags). In distinction from equilibrium centrifugation, the proposed method obtained an almost continuous water retention curve during the rotation of the soil column only at one-two centrifuge speeds. The procedure was simple in use, had high accuracy, and obtained reliable relationships between the capillary-sorption water potential and the soil water content in a wide range from the total water capacity to the wilting point.

  10. Estimate the soil moisture over semi-arid region of Loess Plateau using Radarsat-2 SAR data

    NASA Astrophysics Data System (ADS)

    Hu, D.; Guo, N.; Wang, L. J.; Sha, S.

    2014-11-01

    Radarsat-2 Synthetic Aperature Radar (SAR) remote sensing data were used to record soil surface moisture and evaluate the utility of a cross polarization (VV/VH) combination. Studies were conducted at Dingxi, in the semi-arid region of the Loess Plateau, China. We combined these data with MODIS optical data, used a Water-Cloud model to correct for the influence of vegetation, and then estimated the soil moisture under crop cover. For bare surfaces, the value of the cross polarization combination model was highly correlated to the measurement of soil moisture at 10~20 cm depth (R=0.75, P<0.01). The correlations between estimated values and the measured soil moisture at 0~10 cm and 20~30 cm depths were lower but still significant (R=0.47 and R=0.52, respectively, P<0.05). For soil surfaces covered with vegetation the model significantly underestimated soil moisture. After vegetation removal, the correlation coefficient increased from 0.30 to 0.70, the standard deviation decreased from 4.99 to 3.05, and the accuracy of the soil moisture model improved. Most soil moisture readings in the study area were 10~30% and these were consistent with the actual field moisture levels. Improving the accuracy of soil moisture readings in agricultural fields using optical and microwave remote sensing data will promote increased use of this technology.

  11. Soil temperature regime and vulnerability due to extreme soil temperatures in Croatia

    NASA Astrophysics Data System (ADS)

    Sviličić, Petra; Vučetić, Višnja; Filić, Suzana; Smolić, Ante

    2016-10-01

    Soil temperature is an important factor within the climate system. Changes of trends in soil temperature and analysis of vulnerability due to heat stress can provide useful information on climate change. In this paper, the soil temperature regime was analyzed on seasonal and annual scales at depths of 2, 5, 10, 20, 30, and 50 cm at 26 sites in Croatia. Trends of maximal, mean, and minimal soil temperatures were analyzed in the periods 1961-2010 and 1981-2010. Duration of extreme soil temperatures and vulnerability due to high or low soil temperatures in the recent standard period 1981-2010 was compared with the reference climate period 1961-1990. The results show a general warming in all seasons and depths for maximal and mean temperatures in both observed periods, while only at some locations for minimal soil temperature. Warming is more pronounced in the eastern and coastal parts of Croatia in the surface layers, especially in the spring and summer season in the second period. Significant trends of maximal, minimal, and mean soil temperature in both observed periods range from 2.3 to 6.6 °C/decade, from -1.0 to 1.3 °C/decade, and from 0.1 to 2.5 °C/decade, respectively. The highest vulnerability due to heat stress at 35 °C is noted in the upper soil layers of the coastal area in both observed periods. The mountainous and northwestern parts of Croatia at surface soil layers are the most vulnerable due to low soil temperature below 0 °C. Vulnerability due to high or low soil temperature decreases with depth.

  12. Soil temperature regime and vulnerability due to extreme soil temperatures in Croatia

    NASA Astrophysics Data System (ADS)

    Sviličić, Petra; Vučetić, Višnja; Filić, Suzana; Smolić, Ante

    2015-08-01

    Soil temperature is an important factor within the climate system. Changes of trends in soil temperature and analysis of vulnerability due to heat stress can provide useful information on climate change. In this paper, the soil temperature regime was analyzed on seasonal and annual scales at depths of 2, 5, 10, 20, 30, and 50 cm at 26 sites in Croatia. Trends of maximal, mean, and minimal soil temperatures were analyzed in the periods 1961-2010 and 1981-2010. Duration of extreme soil temperatures and vulnerability due to high or low soil temperatures in the recent standard period 1981-2010 was compared with the reference climate period 1961-1990. The results show a general warming in all seasons and depths for maximal and mean temperatures in both observed periods, while only at some locations for minimal soil temperature. Warming is more pronounced in the eastern and coastal parts of Croatia in the surface layers, especially in the spring and summer season in the second period. Significant trends of maximal, minimal, and mean soil temperature in both observed periods range from 2.3 to 6.6 °C/decade, from -1.0 to 1.3 °C/decade, and from 0.1 to 2.5 °C/decade, respectively. The highest vulnerability due to heat stress at 35 °C is noted in the upper soil layers of the coastal area in both observed periods. The mountainous and northwestern parts of Croatia at surface soil layers are the most vulnerable due to low soil temperature below 0 °C. Vulnerability due to high or low soil temperature decreases with depth.

  13. Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil.

    PubMed

    Kuśmierz, Marcin; Oleszczuk, Patryk; Kraska, Piotr; Pałys, Edward; Andruszczak, Sylwia

    2016-03-01

    In the present study the persistence of polycyclic aromatic hydrocarbons (PAHs) applied with biochar to acidic soil (loamy sand) was studied in two and half year field experiment. An experiment was carried out in three experimental plots (15 m(2) each). The biochar was introduced in the following doses: soil without fertilization - control (C-BC00), soil with 30 t ha(-1) (B-BC30) and soil with 45 t ha(-1) (A-BC45) of biochar. Biochar addition to soils resulted in an increase in the PAHs content from 0.239 μg g(-1) in control soil to 0.526 μg g(-1) and 1.310 μg g(-1) in 30 and 45 t ha(-1) biochar-amended soil respectively. However during the experimental period the PAHs content decreased to a level characteristic for the control soil. The highest losses of PAHs were observed during the first 105 days of the experiment. Three and four rings PAHs were the most susceptible for degradation and leaching. Migration of PAHs from 0-10 cm to 10-20 cm soil horizon was also observed.

  14. [Reponses of soil total organic carbon and dissolved organic carbon to simulated nitrogen deposition in temperate typical steppe in Inner Mongolia, China].

    PubMed

    Qi, Yu-Chun; Peng, Qin; Dong, Yun-She; Xiao, Sheng-Sheng; Sun, Liang-Jie; Liu, Xin-Chao; He, Ya-Ting; Jia, Jun-Qiang; Cao, Cong-Cong

    2014-08-01

    Based on a field manipulative nitrogen (N) addition experiment, the effects of atmospheric N deposition level change on the contents, inter-annual variation and profile distribution of soil total organic carbon (TOC) and dissolved organic carbon (DOC) were investigated from May, 2008 to October, 2011 in a temperate typical steppe in Inner Mongolia of China, and the relationship between TOC and DOC was also discussed. The treatments in the manipulative experiment included N additions at rates of 0, 5, 10, and 20 g x (m2 x a)(-1), representing the control (CK), low N (LN), medium N (MN), and high N (HN) treatment, respectively. The results indicated that the concentrations of soil TOC and DOC decreased progressively with soil depth in all cases except for the DOC at 10-20 cm depth in individual years. The increase of N input in typical steppe did not change the vertical distribution of soil TOC and DOC, but reduced the vertical variation of TOC and increased the vertical variation of DOC in the surface soil horizon. In addition, the contents of soil TOC and DOC at 0- 10 cm and 10- 20 cm soil layers changed insignificantly after the continuous increase in anthropogenic N input for four years. The soil organic C density of 0-20 cm soil layer for different N treatment levels varied between 3.9 kg x m(-2) and 5.6 kg x m(-2), and the soil organic C densities of fertilized treatments in the first two years were similar to or slightly lower than those of CK, while in the following two years, the increase in N deposition gradually played a positive role in increasing soil organic C density, but the differences in soil TOC and DOC contents between CK and fertilized plots were not significant (P > 0.05). The ratio of soil DOC to TOC (DOC/TOC) varied from 0.32% to 1.09%. The increase in N deposition generally lowered the proportion of DOC in soil TOC, which was conducive to the accumulation of soil organic C. The change of soil DOC was positively correlated with that of TOC (P

  15. The ( 3He, tf) as a surrogate reaction to determine ( n, f) cross sections in the 10-20 MeV energy range

    NASA Astrophysics Data System (ADS)

    Basunia, M. S.; Clark, R. M.; Goldblum, B. L.; Bernstein, L. A.; Phair, L.; Burke, J. T.; Beausang, C. W.; Bleuel, D. L.; Darakchieva, B.; Dietrich, F. S.; Evtimova, M.; Fallon, P.; Gibelin, J.; Hatarik, R.; Jewett, C. C.; Lesher, S. R.; McMahan, M. A.; Rodriguez-Vieitez, E.; Wiedeking, M.

    2009-06-01

    The surrogate reaction 238U( 3He, tf) is used to determine the 237Np( n, f) cross section indirectly over an equivalent neutron energy range from 10 to 20 MeV. A self-supporting ˜761 μg/cm 2 metallic 238U foil was bombarded with a 42 MeV 3He 2+ beam from the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory (LBNL). Outgoing charged particles and fission fragments were identified using the Silicon Telescope Array for Reaction Studies (STARS) consisted of two 140 μm and one 1000 μm Micron S2 type silicon detectors. The 237Np( n, f) cross sections, determined indirectly, were compared with the 237Np( n, f) cross section data from direct measurements, the Evaluated Nuclear Data File (ENDF/B-VII.0), and the Japanese Evaluated Nuclear Data Library (JENDL 3.3) and found to closely follow those datasets. Use of the ( 3He, tf) reaction as a surrogate to extract ( n, f) cross sections in the 10-20 MeV equivalent neutron energy range is found to be suitable.

  16. Simulation using HYDRUS-2D for Soil Water and Heat Transfer under Drip Irrigation with 95oC Hot Water

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Noborio, K.

    2015-12-01

    In Japan, soil disinfection with hot water has been popular since the use of methyl bromide was restricted in 2005. Decreasing the amount of hot water applied may make farmers reduce the operation cost. To determine the appropriate amount of hot water needed for soil disinfection, HYDRUS-2D was evaluated. A field experiment was conducted and soil water content and soil temperature were measured at 5, 10, 20, 40, 60, 80 and 100 cm deep when 95oC hot water was applied. Irrigation tubing equipped with drippers every 30 cm were laid at the soil surface, z=0 cm. An irrigation rate for each dripper was 0.83 cm min-1 between t=0 and 120 min, and thereafter it was zero. Temperature of irrigation water was 95oC. Total simulation time with HYDRUS-2D was 720 min for a homogeneous soil. A simulating domain was selected as x=60 cm and z=100 cm. A potential evaporation rate was assumed to be 0 cm min-1 because the soil surface was covered with a plastic sheet. The boundary condition at the bottom was free drainage and those of both sides were no-flux conditions. Hydraulic properties and bulk densities measured at each depth were used for simulation. It was assumed that there was no organic matter contained. Soil thermal properties were adopted from previous study and HYDRUS 2D. Simulated temperatures at 5, 10, 20 and 40 cm deep agreed well with those measured although simulated temperatures at 60, 80, and 100 cm deep were overly estimated. Estimates of volumetric water content at 5 cm deep agreed well with measured values. Simulated values at 10 to 100 cm deep were overly estimated by 0.1 to 0.3 (m3 m-3). The deeper the soil became, the more the simulated wetting front lagged behind the measured one. It was speculated that water viscosity estimated smaller at high temperature might attributed to the slower advances of wetting front simulated with HYDRUS 2-D.

  17. Elemental concentration analysis in soil contaminated with recyclable urban garbage by tube-excited energy-dispersive X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Anjos, M. J.; Lopes, R. T.; Jesus, E. F. O.; Assis, J. T.; Cesareo, R.; Barroso, R. C.; Barradas, C. A. A.

    2002-11-01

    Soil and radish (Raphanus Sp) samples from areas treated with organic compost of recyclable urban garbage were quantitatively analyzed by using tube-excited energy-dispersive X-ray fluorescence analysis. Soils treated with 10, 20 and 30 t/ha of recyclable urban garbage and control soil were analyzed. The layer soils were collected at 0-5, 5-10, 10-20, 20-40, 40-60 cm depth. It was possible simultaneously to determine the elemental concentration of various elements: K, Ca, Ti, Mn, Fe, Cu, Zn, Br, Rb, Sr, Zr and Pb in recyclable urban garbage, soil treated with organic compost of recyclable urban garbage and radish plants cultivated in these soils. The elemental concentration of K, Ca, Ti and Fe were determined at percent level (macro-elements) and the other elements at ppm level (micro-elements). It was also possible to observe a significant increase in the contents of K, Ca, Zn, Rb, Sr, Zr and Pb in the soil treated in comparison with the control soil and it was also verified whether the transport of these elements to radish plants cultivated in these soils occurred.

  18. Monitoring of soil water storage along elevation transech on morphological diverse study-sites affected by soil erosion

    NASA Astrophysics Data System (ADS)

    Jaksik, Ondrej; Kodesova, Radka; Nikodem, Antonin; Fer, Miroslav; Klement, Ales; Kratina, Josef

    2015-04-01

    Soil water availability is one of the key factors determining plant growth. Spatial distribution of soil water content is influenced by many factors. For the field-scale, one of the most important factors is terrain and its shape. The goal of our study was to characterize soil water storage within the soil profile with respect to terrain attributes. Two morphologically diverse study sites were chosen, in order to monitor soil water storage during vegetation season. The first site Brumovice in located in the Southern Moravian Region. The original soil unit was Haplic Chernozem developed on loess, which was gradually degraded by soil erosion. In the steepest parts, due to substantial loss of soil material, soil is transformed to Regosol. As a result of consequently sedimentation of previously eroded material in toe slopes and terrain depressions colluvial soils are formed. The second site Vidim is placed in the Central Bohemia. Dominant soil unit in wider area is Haplic Luvisol on loess loam. Similar process of progressive soil transformation was identified. On each study site, two elevation transects were delimited, where each consists of 5 monitoring spots. Access tubes were installed in order to measure soil moisture in six different depths (10, 20, 30 40, 60 a 100 cm) using Profile Probe PR2. The monitoring was conducted during vegetation season: April - July 2012 in Brumovice and May - July 2013 in Vidim. The average soil water contents were calculated for following three layers: topsoil A (0-20 cm), subsoil B (20-40cm), and substrate (40-100cm). The soil water storage within the soil profile was also expressed. Sensors TMS3 were also used for continual soil water content monitoring in the depth of 0-15 cm. In addition undisturbed soil samples were taken from topsoil to measure soil hydraulic properties using the multistep outflow experiment. Data were used to assess retention ability of erosion affected soils. The soil water storage and particularly average

  19. Soil Respiration Responses to Variation in Temperature Treatment and Vegetation Type

    NASA Astrophysics Data System (ADS)

    Liu, S.; Pavao-zuckerman, M.

    2013-12-01

    Complex linkages exist between terrestrial vegetation, soil moisture, soil organic matter (SOM), local climate, and soil microorganisms. Thus, large-scale changes in vegetation, such as the woody plant encroachment observed in many historically semiarid and arid grasslands worldwide, could potentially alter the flux of carbon from soil reserves to the atmosphere. Mathematical models that attempt to project the long-term impact of vegetative shifts on soil fluxes largely rely on assumptions such as first-order donor control rather than incorporate the biological aspects of soil respiration such as microbial activity. To examine the impact of vegetation type on soil physicochemical properties and soil microbial respiration and provide experimental data to refine existing predictive models, we compared soil (ground basalt from northern Arizona) in mesocosms established with no vegetation, velvet mesquites (Prosopis velutina; woody shrub), or sideoats gramas (Bouteloua curtipendula; grass) for 2 years, The temperature sensitivity of soil respiration was examined by incubating soil (0-10 and 10-30 cm depth fractions) from each vegetation treatment at 10, 20, 30, and 40 °C for 24 hours. Vegetated soils contained more SOM (~0.1% for mesquite and grass mesocosms) than non-vegetated soils (~0.02%). Respiration rates were generally highest from grass-established soils, intermediate from mesquite-established soils, and lowest from non-vegetated soils. Respiration rates of samples incubated without the addition of substrate peaked at approximately 30 °C, whereas respiration rates of samples incubated with dextrose were highest at 40 °C. Further, the respiration assays suggest that while respiration rates are overall higher in grass-established soils, mesquite-established soils are more temperature sensitive which may have significant implications in the context of global warming and current fire management practices.

  20. Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India.

    PubMed

    Ahmad Dar, Javid; Somaiah, Sundarapandian

    2015-02-01

    Soil organic carbon stocks were measured at three depths (0-10, 10-20, and 20-30 cm) in seven altitudes dominated by different forest types viz. Populus deltoides, 1550-1800 m; Juglans regia, 1800-2000 m; Cedrus deodara, 2050-2300 m; Pinus wallichiana, 2000-2300 m; mixed type, 2200-2400 m; Abies pindrow, 2300-2800 m; and Betula utilis, 2800-3200 m in temperate mountains of Kashmir Himalayas. The mean range of soil organic carbon (SOC) stocks varied from 39.07 to 91.39 Mg C ha(-1) in J. regia and B. utilis forests at 0-30 cm depth, respectively. Among the forest types, the lowest mean range of SOC at three depths (0-10, 10-20, and 20-30 cm) was observed in J. regia (18.55, 11.31, and 8.91 Mg C ha(-1), respectively) forest type, and the highest was observed in B. utilis (54.10, 21.68, and 15.60 Mg C ha(-1), respectively) forest type. SOC stocks showed significantly (R (2) = 0.67, P = 0.001) an increasing trend with increase in altitude. On average, the percentages of SOC at 0-10-, 10-20-, and 20-30-cm depths were 53.2, 26.5, and 20.3 %, respectively. Bulk density increased significantly with increase in soil depth and decreased with increase in altitude. Our results suggest that SOC stocks in temperate forests of Kashmir Himalaya vary greatly with forest type and altitude. The present study reveals that SOC stocks increased with increase in altitude at high mountainous regions. Climate change in these high mountainous regions will alter the carbon sequestration potential, which would affect the global carbon cycle.

  1. 77 FR 8877 - ICD-9-CM Coordination and Maintenance (C&M) Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... HUMAN SERVICES Centers for Disease Control and Prevention ICD-9-CM Coordination and Maintenance (C&M... Standards Staff, announces the following meeting. Name: ICD-9-CM Coordination and Maintenance (C&M... attend the ICD- 9-CM C&M meeting on March 5, 2012, must submit their name and organization by February...

  2. Estimation of Soil Organic Carbon Stock in the Midtre Lovénbreen Moraine, Svalbard

    NASA Astrophysics Data System (ADS)

    Jung, J. Y.; Lee, Y. K.; Kwon, H.; Kim, S. E.; Laffly, D.; Le NIR, Y.; Nilsen, L.; Moreau, M.

    2014-12-01

    As a glacier retreats, land surface beneath the glacier is newly exposed, and changes in soil have initiated as well as microbial and plants species. Numerous studies have been done on soil development along the chronosequence in the glacier moraine, and mostly undisturbed areas were selected as sampling sites to represent soil age well. However, the surface of glacier moraine is remodeled by active flows, and terrain attributes are very diverse, thus soil organic carbon (SOC) accumulation is not always a linear function of soil age in the glacier moraine. Therefore, we examined the distribution of SOC in the Midtre Lovénbreen morain with a consideration of soil age, microtopography, and runoff activity in this study. Forty two soil sampling sites were selected among previously observed 300 points of plant species via the systematic random sampling method with a consideration of soil age, runoff activities, slope, aspect, and X, Y coordinates. Three close to the glacier terminus and nine sites outside of moraine were additionally sampled. Four different depths (0-5, 5-10, 10-20, and 20-30 cm) of soil were collected, and soil volume was measured by the excavation method in summer 2014. Currently, we are in a status of acquiring microtopographic information from digital elevation model, calculating bulk density, and preparing soil samples for SOC analysis. Once we gather all data, corresponding analysis and classification will be conducted to characterize sampling sites. Then, SOC distribution over the glacier moraine using microtopographic information will be estimated through modelling.

  3. 239+240Pu, 90Sr and 137Cs inventories in surface soils of Vietnam.

    PubMed

    Quang, N H; Long, N Q; Lieu, D B; Mai, T T; Ha, N T; Nhan, D D; Hien, P D

    2004-01-01

    Fallout 239+240Pu, 238Pu, 90Sr and 137Cs inventories in surface soils were measured for 20 locations in northern Vietnam yielding the mean values (+/- standard error) of 26.5+/-3.8 Bq m(-2) for 239+240Pu, 1048+/-143 Bq m(-2) for 137Cs and 212+/-28 Bq m(-2) for 90Sr. The concentrations of 137Cs and plutonium isotopes strongly correlate with each other resulting in a stable 239+240Pu/137Cs inventory ratio of 0.025+/-0.002. Among soil parameters, organic matter and fulvic acids strongly correlate with caesium and plutonium isotopes, especially in the 0-10 cm layer. 137Cs and 239+240Pu are distributed rather similarly over the 0-10 cm and 10-20 cm layers. At locations with high contents of sand (82-93%) along the South China Sea coast, the downward percolation by rainwater results in a higher accumulation of 239+240Pu and 137Cs in the 10-20 cm layer. The mean 137Cs/ 90Sr inventory ratio is 9.3+/-2.2, and the correlation is weak between these isotopes.

  4. Compositional Homogeneity of CM Parent Bodies

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Marsset, M.; Beck, P.; Binzel, R. P.; Birlan, M.; Cloutis, E. A.; DeMeo, F. E.; Dumas, C.; Hiroi, T.

    2016-09-01

    CM chondrites are the most common type of hydrated meteorites, making up ˜1.5% of all falls. Whereas most CM chondrites experienced only low-temperature (˜0°C–120°C) aqueous alteration, the existence of a small fraction of CM chondrites that suffered both hydration and heating complicates our understanding of the early thermal evolution of the CM parent body(ies). Here, we provide new constraints on the collisional and thermal history of CM-like bodies from a comparison between newly acquired spectral measurements of main-belt Ch/Cgh-type asteroids (70 objects) and existing laboratory spectral measurements of CM chondrites. It first appears that the spectral variation observed among CM-like bodies is essentially due to variations in the average regolith grain size. Second, the spectral properties of the vast majority (unheated) of CM chondrites resemble both the surfaces and the interiors of CM-like bodies, implying a “low” temperature (<300°C) thermal evolution of the CM parent body(ies). It follows that an impact origin is the likely explanation for the existence of heated CM chondrites. Finally, similarly to S-type asteroids and (2) Pallas, the surfaces of large (D > 100 km)—supposedly primordial—Ch/Cgh-type main-belt asteroids likely expose the interiors of the primordial CM parent bodies, a possible consequence of impacts by small asteroids (D < 10 km) in the early solar system.

  5. Compositional Homogeneity of CM Parent Bodies

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Marsset, M.; Beck, P.; Binzel, R. P.; Birlan, M.; Cloutis, E. A.; DeMeo, F. E.; Dumas, C.; Hiroi, T.

    2016-09-01

    CM chondrites are the most common type of hydrated meteorites, making up ˜1.5% of all falls. Whereas most CM chondrites experienced only low-temperature (˜0°C-120°C) aqueous alteration, the existence of a small fraction of CM chondrites that suffered both hydration and heating complicates our understanding of the early thermal evolution of the CM parent body(ies). Here, we provide new constraints on the collisional and thermal history of CM-like bodies from a comparison between newly acquired spectral measurements of main-belt Ch/Cgh-type asteroids (70 objects) and existing laboratory spectral measurements of CM chondrites. It first appears that the spectral variation observed among CM-like bodies is essentially due to variations in the average regolith grain size. Second, the spectral properties of the vast majority (unheated) of CM chondrites resemble both the surfaces and the interiors of CM-like bodies, implying a “low” temperature (<300°C) thermal evolution of the CM parent body(ies). It follows that an impact origin is the likely explanation for the existence of heated CM chondrites. Finally, similarly to S-type asteroids and (2) Pallas, the surfaces of large (D > 100 km)—supposedly primordial—Ch/Cgh-type main-belt asteroids likely expose the interiors of the primordial CM parent bodies, a possible consequence of impacts by small asteroids (D < 10 km) in the early solar system.

  6. [Soil salinity in greenland irrigated with reclaimed water and risk assessment].

    PubMed

    Pan, Neng; Chen, Wei-Ping; Jiao, Wen-Tao; Zhao, Zhong-Ming; Hou, Zhen-An

    2012-12-01

    Compared to drinking water or groundwater, reclaimed water contains more salts. Therefore, the effects of application of reclaimed water on the soil salinity have received great attentions. To evaluate the potential risks posed by long-term reclaimed water irrigation, we collected surface soil samples from urban green lands and suburban farmlands of Beijing represented different irrigation durations. The electrical conductivity (EC) and sodium adsorption ratio (SAR) in soils were measured subsequently. Both EC1:5 and SAR1.5 from the green land and farmland soils irrigated with reclaimed water were significantly higher than those of control treatments (drinking water or groundwater irrigation). The EC1:5 values increased by 12.4% and 84.2% than control treatments in the greenland and farmland, respectively. The SAR1:5 values increased by 64.5% and 145.8% than control treatments, respectively. No significant differences of both EC1:5 and SAR1:5 were found between of 0-10 cm and 10-20 cm soil layer. A slight decrease of soil porosity was observed. The field investigation suggested there was a high potential of soil salinization under long-term reclaimed water irrigation. Proper management practices should be implemented to minimize the soil salinity accumulation risk when using reclaimed water for irrigation in Beijing.

  7. [Soil microbial community structure of two types of forests in the mid-subtropics of China].

    PubMed

    Han, Shi-zhong; Gao, Ren; Li, Ai-ping; Ma, Hong-liang; Yin, Yun-feng; Si, You-tao; Chen, Shi-dong; Zheng, Qun-rui

    2015-07-01

    Soil microbial community structures were analyzed by biomarker method of phospholipid fatty acid (PLFA) for a natural forest dominated by Castanopsis fabri (CF) and an adjacent plantation of Cunninghamia lanceolata (CL) in the mid-subtropics of China. The results showed that the amounts of total PLFAs, bacterial PLFAs, fungal PLFAs, gram-positive bacterial PLFAs and gramnegative bacterial PLFAs in the 0-10 cm soil layer were higher than in the 10-20 cm soil layer, and each type of PLFAs in CF were higher than in CL. In either soil layer of the two forest types, the contents of bacterial PLFAs were significantly higher than those of fungal PLFAs. In the two forests, the contents of bacterial PLFAs accounted for 44%-52% of total PLFAs, while the contents of fungal PLFAs just accounted for 6%-8%, indicating the bacteria were dominant in the soils of the two vegetation types. Principal component analysis showed that the influence of vegetation types was greater than soil depth on the microbial community structures. Correlation analysis showed that gram-negative bacterial PLFAs, gram-positive bacterial PLFAs and bacterial PLFAs were significantly negatively correlated with pH, positively with water content, and the PLFAs of main soil microorganism groups were significantly positively correlated with soil total nitrogen, organic carbon, C/N and ammonium.

  8. [Soil salinity in greenland irrigated with reclaimed water and risk assessment].

    PubMed

    Pan, Neng; Chen, Wei-Ping; Jiao, Wen-Tao; Zhao, Zhong-Ming; Hou, Zhen-An

    2012-12-01

    Compared to drinking water or groundwater, reclaimed water contains more salts. Therefore, the effects of application of reclaimed water on the soil salinity have received great attentions. To evaluate the potential risks posed by long-term reclaimed water irrigation, we collected surface soil samples from urban green lands and suburban farmlands of Beijing represented different irrigation durations. The electrical conductivity (EC) and sodium adsorption ratio (SAR) in soils were measured subsequently. Both EC1:5 and SAR1.5 from the green land and farmland soils irrigated with reclaimed water were significantly higher than those of control treatments (drinking water or groundwater irrigation). The EC1:5 values increased by 12.4% and 84.2% than control treatments in the greenland and farmland, respectively. The SAR1:5 values increased by 64.5% and 145.8% than control treatments, respectively. No significant differences of both EC1:5 and SAR1:5 were found between of 0-10 cm and 10-20 cm soil layer. A slight decrease of soil porosity was observed. The field investigation suggested there was a high potential of soil salinization under long-term reclaimed water irrigation. Proper management practices should be implemented to minimize the soil salinity accumulation risk when using reclaimed water for irrigation in Beijing. PMID:23379127

  9. [Characteristics of soil organic carbon and enzyme activities in soil aggregates under different vegetation zones on the Loess Plateau].

    PubMed

    Li, Xin; Ma, Rui-ping; An, Shao-shan; Zeng, Quan-chao; Li, Ya-yun

    2015-08-01

    In order to explore the distribution characteristics of organic carbon of different forms and the active enzymes in soil aggregates with different particle sizes, soil samples were chosen from forest zone, forest-grass zone and grass zone in the Yanhe watershed of Loess Plateau to study the content of organic carbon, easily oxidized carbon, and humus carbon, and the activities of cellulase, β-D-glucosidase, sucrose, urease and peroxidase, as well as the relations between the soil aggregates carbon and its components with the active soil enzymes were also analyzed. It was showed that the content of organic carbon and its components were in order of forest zone > grass zone > forest-grass zone, and the contents of three forms of organic carbon were the highest in the diameter group of 0.25-2 mm. The content of organic carbon and its components, as well as the activities of soil enzymes were higher in the soil layer of 0-10 cm than those in the 10-20 cm soil layer of different vegetation zones. The activities of cellulase, β-D-glucosidase, sucrose and urease were in order of forest zone > grass zone > forest-grass zone. The peroxidase activity was in order of forest zone > forest-grass zone > grass zone. The activities of various soil enzymes increased with the decreasing soil particle diameter in the three vegetation zones. The activities of cellulose, peroxidase, sucrose and urease had significant positive correlations with the contents of various forms of organic carbon in the soil aggregates.

  10. Levels of depleted uranium in Kosovo soils.

    PubMed

    Sansone, U; Stellato, L; Jia, G; Rosamilia, S; Gaudino, S; Barbizzi, S; Belli, M

    2001-01-01

    The United Nations Environment Programme (UNEP) has performed a field survey at 11 sites located in Kosovo, where depleted uranium (DU) ammunitions were used by the North Atlantic Treaty Organization (NATO) during the last Balkans conflict (1999). Soil sampling was performed to assess the spread of DU ground contamination around and within the NATO target sites and the migration of DU along the soil profile. The 234U/238U and 235U/238U activity concentration ratios have been used as an indicator of natural against anthropogenic sources of uranium. The results show that levels of 238U activity concentrations in soils above 100 Bq x kg(-1) can be considered a 'tracer' of the presence of DU in soils. The results also indicate that detectable ground surface contamination by DU is limited to areas within a few metres from localised points of concentrated contamination caused by penetrator impacts. Vertical distribution of DU along the soil profile is measurable up to a depth of 10-20 cm. This latter aspect is of particular relevance for the potential risk of future contamination of groundwater.

  11. Gas-Phase Oxidation of Cm+ and Cm2+ -- Thermodynamics of neutral and ionized CmO

    SciTech Connect

    Gibson, John K; Haire, Richard G.; Santos, Marta; Pires de Matos, Antonio; Marcalo, Joaquim

    2008-12-08

    Fourier transform ion cyclotron resonance mass spectrometry was employed to study the products and kinetics of gas-phase reactions of Cm+ and Cm2+; parallel studies were carried out with La+/2+, Gd+/2+ and Lu+/2+. Reactions with oxygen-donor molecules provided estimates for the bond dissociation energies, D[M+-O](M = Cm, Gd, Lu). The first ionization energy, IE[CmO], was obtained from the reactivity of CmO+ with dienes, and the second ionization energies, IE[MO+](M = Cm, La, Gd, Lu), from the rates of electron-transfer reactions from neutrals to the MO2+ ions. The following thermodynamic quantities for curium oxide molecules were obtained: IE[CmO]= 6.4+-0.2 eV; IE[CmO+]= 15.8+-0.4 eV; D[Cm-O]= 710+-45 kJ mol-1; D[Cm+-O]= 670+-40 kJ mol-1; and D[Cm2+-O]= 342+-55 kJ mol-1. Estimates for the M2+-O bond energies for M = Cm, La, Gd and Lu are all intermediate between D[N2-O]and D[OC-O]--i.e., 167 kJ mol-1< D[M2+-O]< 532 kJ mol-1 -- such that the four MO2+ ions fulfill the thermodynamic requirement for catalytic O-atom transport from N2O to CO. It was demonstrated that the kinetics are also favorable and that the CmO2+, LaO2+, GdO2+ and LuO2+ dipositive ions each catalyze the gas-phase oxidation of CO to CO2 by N2O. The CmO2+ ion appeared during the reaction of Cm+ with O2 when the intermediate, CmO+, was not collisionally cooled -- although its formation is kinetically and/or thermodynamically unfavorable, CmO2+ is a stable species.

  12. [Microbial community abundance and diversity in typical karst ecosystem to indicate soil carbon cycle].

    PubMed

    Jin, Zhen-Jiang; Tang, Hua-Feng; Li, Min; Huang, Bing-Fu; Li, Qiang; Zhang, Jia-Yu; Li, Gui-Wen

    2014-11-01

    The soil microbial characteristics were detected to clarify their indications in organic carbon cycle in karst system. Soil samples from three karst types (saddle, depression and slop) at 0-10 cm, 10-20 cm and 20-30 cm layers were collected in the Yaji Karst Experimental Site, a typical karst ecosystem. The microbial diversity and abundance were assayed using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and fluorescence quantitative PCR. The data showed that the highest abundance of 16S rRNA and 18S rRNA were in depression with 1.32 x 10(11) copies x g(-1) and in saddle with 1.12 x 10(10) copies x g(-1), respectively. The abundance of 16S rRNA in saddle and depression decreased from top to bottom, while that of 18S rRNA in three karst forms decreased, which showed that the abundance changed consistently with soil organic carbon (SOC). The 3 diversity indices of 16S rRNA and 6 diversity indices of 18S rRNA increased from top to bottom in soil profiles of three karst forms. These results showed that microbial diversity changed conversely with the abundance and SOC in soil profile. It can be concluded that the abundance was more important than the diversity index for soil carbon cycle in karst system.

  13. [Latitudinal Changes in Plant Stoichiometric and Soil C, N, P Stoichiometry in Loess Plateau].

    PubMed

    Li, Ting; Deng, Qiang; Yuan, Zhi-you; Jiao, Feng

    2015-08-01

    Field investigations and sampling were conducted in Loess Plateau, including Fu County, Ganquan County, Ansai County, Jingbian County and Hengshan County and Yuyang District. Our objective was to examine changes of leaf and soil stoichiometry characteristics along latitudinal gradient in Loess Plateau, and to provide references for the prediction of soil nutrient status of the ecosystem and constraints of plant nutrition elements in Loess Plateau. The results showed that (1) Across the 35.95 degrees-38.36 degrees N latitude gradient, leaf C, N and P stoichiometry were ranging from 336.95 to 477.38 mg x g(-1) for C, from 18.09 to 33.173 mg x g(-1) for N and from 1.07 to 1.73 mg x g(-1) for P, the arithmetic means were 442.9 mg x g(-1), 25.79 mg x g(-1) and 1.37 mg x g(-1), separately, the variation coefficients were 11.9%, 17.4% and 13.3%. There were obvious correlation between leaf C, N, P and latitude, leaf C, C : N ratio and C: P ratio significantly decreased with the increasing latitude, while leaf N and P significantly increased with the increasing latitude. The relationship between N: P ratio and latitude was not significant. (2) The content of soil organic C and soil total N decreased with increasing latitude and soil layer. In contrast, with the increase of latitude, soil P increased and then decreased. In the 0-10 cm, 10-20 cm soil layers, soil C: N ratio did not change significantly with latitude, while in the 20-40 cm layer, C: N ratio decreased obviously, but soil C: P and N: P ratios decreased with the increasing latitude in all soil layers. (3) Leaf C, C: N and C: P ratios were correlated to soil organic C, soil total N and soil total P in all soil layers, leaf N and P were correlated to soil organic C and soil total N, while leaf N: P ratio was not correlated to soil organic C, soil total N and soil total P. There was a certain correlation between the leaf C, N, P and latitude, however, the correlations between leaf and soil C, N, P were inconsistent

  14. The success of shock wave lithotripsy (SWL) in treating moderate-sized (10-20 mm) renal stones.

    PubMed

    Chung, Vera Y; Turney, Benjamin W

    2016-10-01

    Many centres favour endourological management over shock wave lithotripsy (SWL) in the management of moderate-sized (10-20 mm) renal stones. International guidelines support all available modalities for the treatment of these stones. The aim of this study was to evaluate the efficacy of SWL in the treatment of 10- to 20-mm renal stones. From January 2013 to October 2014, all patients with a renal stone measuring between 10 and 20 mm in maximum diameter on CT scan that were eligible for lithotripsy were included. 130 consecutive patients were evaluated. Demographics, location of stone within the kidney, number of SWL sessions and treatment outcomes were analysed. Treatment success was classified into complete stone clearance and the presence of clinically insignificant residual fragments <4 mm (CIRF). 119 patients (92 %) completed treatment and radiological follow-up. Eleven patients were excluded due to incomplete follow-up data. The mean age was 56.8 (23-88). Male to female ratio was 1.9:1 (78:41) and the mean BMI was 28.4 (17.9-58). The mean stone size was 12.8 mm (10-14 mm: n = 87; 15-20 mm: n = 32). The mean number of treatments was 2.14 and 2.82 for stones 10-14 and 15-20 mm, respectively. Overall treatment success was 66.4 % (combined complete stone clearance and CIRFs). Subdivided by stone size <15 mm and ≥15 mm, the success rate was 70.4 and 53.1 %, respectively. The treatment success by stone location was 65, 64 and 70 % for upper, middle and lower pole stones, respectively and 67 % for PUJ stones. For those who failed SWL treatment, the majority 50 % (n = 20) were managed expectantly, 42.5 % (n = 17) required URS, and 7.5 % (n = 3) required PNL. This study suggests that SWL has an efficacy for treating larger renal stones (10-20 mm) that is equivalent to success rates for smaller stones in other series. As a low-risk and non-invasive procedure SWL should be considered a first-line treatment for these stones. PMID:26743071

  15. Metals distribution in soils around the cement factory in southern Jordan.

    PubMed

    Al-Khashman, Omar A; Shawabkeh, Reyad A

    2006-04-01

    Thirty one soil samples were collected from south Jordan around the cement factory in Qadissiya area. The samples were obtained at two depths, 0-10 cm and 10-20 cm and were analyzed by atomic absorption spectrophotometery for Pb, Zn, Cd, Fe, Cu and Cr. Physicochemical factors believed to affect their mobility of metals in soil of the study area were examined such as; pH, TOM, CaCO3, CEC and conductivity. The relatively high concentrations of lead, zinc and cadmium in the soil samples of the investigated area were related to anthropogenic sources such as cement industry, agriculture activities and traffic emissions. It was found that the lead, zinc and cadmium have the highest level in area close to the cement factory, while the concentration of chromium was low. This study indicate that all of the metals are concentrated on the surface soil, and decreased in the lower part of the soil, this due to reflects their mobility and physical properties of soil and its alkaline pH values. The use of factor analysis showed that anthropogenic activities seem to be the responsible source of pollution for metals in urban soils. PMID:16361028

  16. Metals distribution in soils around the cement factory in southern Jordan.

    PubMed

    Al-Khashman, Omar A; Shawabkeh, Reyad A

    2006-04-01

    Thirty one soil samples were collected from south Jordan around the cement factory in Qadissiya area. The samples were obtained at two depths, 0-10 cm and 10-20 cm and were analyzed by atomic absorption spectrophotometery for Pb, Zn, Cd, Fe, Cu and Cr. Physicochemical factors believed to affect their mobility of metals in soil of the study area were examined such as; pH, TOM, CaCO3, CEC and conductivity. The relatively high concentrations of lead, zinc and cadmium in the soil samples of the investigated area were related to anthropogenic sources such as cement industry, agriculture activities and traffic emissions. It was found that the lead, zinc and cadmium have the highest level in area close to the cement factory, while the concentration of chromium was low. This study indicate that all of the metals are concentrated on the surface soil, and decreased in the lower part of the soil, this due to reflects their mobility and physical properties of soil and its alkaline pH values. The use of factor analysis showed that anthropogenic activities seem to be the responsible source of pollution for metals in urban soils.

  17. Evaluation of soil moisture sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the measurement accuracy and repeatability of the EC-5 and 5TM soil volumetric water content (SVWC) sensors, MPS-2 and 200SS soil water potential (SWP) sensors, and 200TS soil temperature sensor. Six 183cm x 183cm x 71cm wooden compartments were built inside a greenhouse, and e...

  18. [Effects of the different land use on soil labile organic matter and carbon management index in Junyun Mountain].

    PubMed

    Xu, Peng; Jiang, Chang-Sheng; Hao, Qing-Ju; Zhu, Tao

    2013-10-01

    The impacts of different land use on soil organic matter (SOM), soil labile organic matter (SLOM) and their efficiency ratios (ER), and soil carbon management index (CMI) were studied in this study. Subtropical evergreen broad-leaved forest (abbreviation: forest) , sloping farmland, orchard and abandoned land were selected and soils at the depths of 0-10, 10-20, 20-30, 30-40, 40-50 and 50-60 cm were sampled in the spring of 2011 to determine the contents of soil organic matter and labile organic matter. The results showed that the contents of soil organic matter and soil labile organic matter both decreased with the increase of soil depth under all four land use types; however, forest and orchard enriched SOM and SLOM contents in the 0-10 cm and 0-20 cm soil layers, respectively, while the contents of SOM and SLOM decreased evenly in sloping farmland and abandoned land. In the whole soil layer (0-60 cm) , the order of SOM and SLOM contents was abandoned land > forest > orchard > sloping farmland, indicating that at the conversion from forest into orchard or sloping farmland, SOM was reduced by 21.56% (P >0.05) and 55.90% (P <0.05), respectively, and at the conversion from sloping farmland into abandoned land, the low SLOM, middle SLOM and high SLOM increased by 144.2% (P<0.05) , 153.3% (P <0.05) and 242.7% (P <0.05), respectively. There was no significant difference in low ER, middle ER and high ER among the four land uses as suggested by ANOVA which showed that SRs were not sensible to the change of land use. All three CMis were in the order of abandoned land > forest > orchard > sloping farmland, revealing that forest reclamation resulted in the reduction of soil organic carbon storage and the decline of soil quality, and the abandonment of sloping farmland would increase soil carbon sink and improve soil quality. Three kinds of SLOM were all positively correlated with soil total nitrogen, available phosphorus and available potassium, while negatively correlated

  19. The spatiotemporal characteristics of soil physio-chemical parameters and their influence on cotton growth under mulched drip irrigation

    NASA Astrophysics Data System (ADS)

    Hu, H.; Tian, F.; Zhang, Z.; Hu, H.

    2013-12-01

    The spatiotemporal characteristics of the physio-chemical parameters of soil and their impacts on crop growth are the key issues affecting precision agriculture. However, quantitative research in cotton fields under mulched drip irrigation is rare. One hundred experimental plots (6 m× 6 m) were set up for the above purpose in an agricultural experimental field in Xinjiang Uygur Autonomous Region of China. Soil samples were collected to measure the soil texture, moisture and salinity at depths of 5, 10, 20, 30, 50 and 80 cm in the near-tape zone and the inter-film zone in each experimental plot in March, April, June and September of 2012. The number and height of the cotton plants in June and the yield of cotton in September were also surveyed in 3 sample units (75 cm × 75 cm) in each experimental plot. The results indicate that the soil composition of clay and silt was highest at a soil depth of 5 to 20 cm due to the cultivation practices, and the Cv (coefficient of variation) values of soil texture increased with depth. The spring flush led to an 8% decrease in soil salinity and reduced the Cv values of soil salinity, soil moisture and soil texture. The Cv values of soil salinity and soil moisture increased as mulched drip irrigation was applied. The Cv values of soil salinity and moisture under the near tape zone were higher than under the interfilm zone; the difference was up to twofold in September. The validity of a theoretical semivariogram model of soil moisture is greater than that of texture, soil salinity and crop trait when comparing the estimation of the theoretical semivariogram with measured values. The influence of soil physiochemical characteristics on the number of cotton plants is largest in April, and their influence on the height of cotton plants is greatest in June. However, the influence of soil physiochemical characteristics on cotton yield is smaller than that on cotton number and height in April and June. The soil salt under the near tape

  20. Sleep characteristics, chronotype and winter depression in 10-20-year-olds in northern European Russia.

    PubMed

    Borisenkov, Mikhail F; Petrova, Natalia B; Timonin, Vladimir D; Fradkova, Lyudmila I; Kolomeichuk, Sergey N; Kosova, Anna L; Kasyanova, Olga N

    2015-06-01

    The purpose of this work was to examine the relationships between geographical coordinates and the prevalence of winter depression (SADW ), and to compare the sleep characteristics and chronotype of youths with and without SADW . We conducted a cross-sectional study of self-reported sleep characteristics, chronotype and winter depression in northern European Russia. Two questionnaires, the Munich Chronotype Questionnaire (MCTQ) and the Seasonal Pattern Assessment Questionnaire (SPAQ), were administered to a total of 3435 adolescents aged 10-20 years (1517 males and 1918 females). The prevalence of SADW in the study population was 8.4% and sub-SADW 11.8%. Four variables predicted the likelihood of SADW in youths: sex [higher in females: odds ratio (OR): 1.87, P < 0.0001], age (increases with age: OR: 1.09, P < 0.001), latitude (higher in the North: OR: 1.49, P < 0.029) and position in the time zone (higher in the West: OR: 1.61, P < 0.001). Later sleeping and waking, longer sleep latencies, more severe sleep inertia, shorter total sleep times and lower sleep efficiencies were observed in both males and females with SADW . The influence of SADW on sleep characteristics was more pronounced on school days. Significant phase delays of the sleep-wake rhythm and severe social jetlag (the difference between the mid-point of sleep phase at weekends and on workdays) were observed in females with SADW , but not in males. There are significant differences in sleep characteristics and chronotype between people with SADW and no-SAD. We demonstrate that both latitude of residence and location within the time zone are significant predictors of SADW in young inhabitants of the North.

  1. Photoionization mass spectrometric study of the prebiotic species formamide in the 10-20 eV photon energy range.

    PubMed

    Leach, Sydney; Jochims, Hans-Werner; Baumgärtel, Helmut

    2010-04-15

    A photoion mass spectrometry study of the prebiotic species formamide was carried out using synchrotron radiation over the photon energy range 10-20 eV. Photoion yield curves were measured for the parent ion and seven fragment ions. The ionization energy of formamide was determined as IE (1(2)A') = 10.220 +/- 0.005 eV, in agreement with a value obtained by high resolution photoelectron spectroscopy. The adiabatic energy of the first excited state of the ion, 1(2)A'', was revised to 10.55 eV. A comparison of the ionization energies of related formamides, amino acids, and polypeptides provides useful information on the varied effects of methylation and shows that polymerization does not substantially alter the ionization properties of the amino acid monomer units. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made on the basis of ion appearance energies in conjunction with thermochemical data and the results of earlier electron impact mass spectral studies. Some of the dissociation pathways are considered to involve coupling between the 1(2)A' ground state and the low-lying 1(2)A'' excited state of the cation. Heats of formation are derived for all ions detected and are compared with literature values where they exist. Formation of the HNCO(+) ion occurs by two separate paths, one involving H(2) loss, the other H + H. In the conclusion a brief discussion is given of some astrophysical implications of these results. PMID:20085361

  2. Comparison of artificial intelligence techniques for prediction of soil temperatures in Turkey

    NASA Astrophysics Data System (ADS)

    Citakoglu, Hatice

    2016-08-01

    Soil temperature is a meteorological data directly affecting the formation and development of plants of all kinds. Soil temperatures are usually estimated with various models including the artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models. Soil temperatures along with other climate data are recorded by the Turkish State Meteorological Service (MGM) at specific locations all over Turkey. Soil temperatures are commonly measured at 5-, 10-, 20-, 50-, and 100-cm depths below the soil surface. In this study, the soil temperature data in monthly units measured at 261 stations in Turkey having records of at least 20 years were used to develop relevant models. Different input combinations were tested in the ANN and ANFIS models to estimate soil temperatures, and the best combination of significant explanatory variables turns out to be monthly minimum and maximum air temperatures, calendar month number, depth of soil, and monthly precipitation. Next, three standard error terms (mean absolute error (MAE, °C), root mean squared error (RMSE, °C), and determination coefficient (R 2 )) were employed to check the reliability of the test data results obtained through the ANN, ANFIS, and MLR models. ANFIS (RMSE 1.99; MAE 1.09; R 2 0.98) is found to outperform both ANN and MLR (RMSE 5.80, 8.89; MAE 1.89, 2.36; R 2 0.93, 0.91) in estimating soil temperature in Turkey.

  3. Impact of orchard and tillage management practices on soil leaching of atrazine, potassium, magnesium, manganese, iron, ammonium, nitrates and phosphates

    NASA Astrophysics Data System (ADS)

    Szajdak, L.; Lipiec, J.; Siczek, A.; Kotowska, U.; Nosalewicz, A.

    2009-04-01

    The experiments were carried out on an Orthic Luvisol developed from loess, over limestone, at the experimental field of Lublin Agricultural University in Felin (51o15'N, 22o35'E), Poland. The investigation deals with the problems of leaching's rate of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,2,3-triazine), potassium, magnesium, manganese, iron, ammonium, nitrates and phosphates from two management systems of soil: (i) conventionally tilled field with main tillage operations including stubble cultivator (10 cm) + harrowing followed by mouldboard ploughing to 20 cm depth, and crop rotation including selected cereals, root crops and papillionaceous crops, (ii) 35-year-old apple orchard field (100x200m) with a permanent sward that was mown in the inter-rows during the growing season. The conventionally tilled plot was under the current management practice for approximately 30 years. Field sites were close to each other (about 150 m). Core samples of 100 cm3 volume and 5 cm diameter were taken from two depths 0-10 cm and 10-20 cm, and were used to determine the soil water characteristic curve. It was observed that management practices impacted on the physic-chemical properties of soils. pH (in H2O) in tilled soil ranged from 5.80 to 5.91. However soil of orchard soil revealed higher values of pH than tilled soil and ranged from 6.36 to 6.40. The content of organic carbon for tilled soil ranged from 1.13 to 1.17%, but in orchard soil from 1.59 to 1.77%. Tillled soil showed broader range of bulk density 1.38-1.62 mg m-3, than orchard soil 1.33-134 mg m-3. The first-order kinetic reaction model was fitted to the experimental atrazine, potassium, magnesium, manganese, iron, nitrates, ammonium and phosphates leaching vs. time data. The concentrations of leached chemical compounds revealed linear curves. The correlation coefficients ranged from -0.873 to -0.993. The first-order reaction constants measured for the orchard soils were from 3.8 to 19 times higher than

  4. [Distribution characteristics of soil organic carbon under different forest restoration modes on opencast coal mine dump].

    PubMed

    Wen, Yue-rong; Dang, Ting-hui; Tang, Jun; Li, Jun-chao

    2016-01-01

    The content and storage of soil organic carbon (SOC) were compared in six wood restoration modes and adjacent abandoned land on opencast coal mine dump, and the mechanisms behind the differences and their influencing factors were analyzed. Results showed that the contents of SOC in six wood lands were significantly higher (23.8%-53.2%) than that of abandoned land (1.92 g · kg⁻¹) at 0-10 cm soil depth, the index were significantly higher (5.8%-70.4%) at 10-20 cm soil depth than the abandoned land (1.39 g · kg⁻¹), and then the difference of the contents of SOC in the deep soil (20-100 cm) were not significant. The contents of SOC decreased with increase of soil depth, but the decreasing magnitude of the topsoil (0-20 cm) was higher than that of the deep soil (20-100 cm). Compared with the deep soil, the topsoil significant higer storage of SOC in different woods, the SOC storage decreased with the soil depth. Along the 0-100 cm soil layer, the storage of SOC in six wood lands higher (18.1%-42.4%) than that of the abandoned land (17.52 t · hm⁻²). The SOC storage of Amorpha fruticosa land (24.95 t · hm⁻²) was obviously higher than that in the other wood lands. The SOC storage in the shrub lands was 12.4% higher than that of the arbor woods. There were significantly positive correlations among forest litter, fine root biomass, soil water content and SOC on the dump. Consequently, different plantation restorations significantly improved the SOC level on the dump in 0-100 cm soil, especially the topsoil. But there was still a big gap about SOC level between the wood restoration lands and the original landform. To improve the SOC on opencast coal mine dump, A. fruticosa could be selected as the main wood vegetation.

  5. Influence of soil moisture on soil respiration

    NASA Astrophysics Data System (ADS)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes

  6. Chilled Mirror Dew Point Hygrometer (CM) Handbook

    SciTech Connect

    Ritsche, MT

    2005-01-01

    The CM systems have been developed for the ARM Program to act as a moisture standard traceable to National Institute of Standards and Technology (NIST). There are three CM systems that are each fully portable, self-contained, and require only 110 V AC power. The systems include a CM sensor, air sampling and filtration system, a secondary reference (Rotronic HP043 temperature and relative humidity sensor) to detect system malfunctions, a data acquisition system, and data storage for more than one month of 1-minute data. The CM sensor directly measures dew point temperature at 1 m, air temperature at 2 m, and relative humidity at 2 m. These measurements are intended to represent self-standing data streams that can be used independently or in combinations.

  7. [Vertical distribution patterns of nitrogen, phosphorus, and potassium in Chinese pine forest soils developed from different parent materials in Songshan Mountain Nature Reserve, Beijing of China].

    PubMed

    Gou, Li-hui; Sun, Zhao-di; Nie, Li-shui; Luo, Pan-pan; Wu, Ji-Gui; Xu, Wu-de

    2013-04-01

    Taking the soils developed from two kinds of parent materials (granite and limestone) under Pinus tabulaeformis forest at the same altitude in Songshan Mountain Nature Reserve of Beijing as test objects, this paper studied the vertical distribution patterns of soil total nitrogen, available phosphorus, and available potassium. The soil developed from granite had the total nitrogen, available phosphorus, and available potassium contents being 1.61-2. 35 g kg-1, 5. 84-10.74 mg kg- 1, and 39.33-93.66 mg kg-1, while that developed from limestone had the total nitrogen, available phosphorus, and available potassium contents being 1. 69 -2. 36 g kg-1, 4.45-8.57 mg . kg-1, and 60.66-124.00 mg kg-1, respectively. The total nitrogen, available phosphorus, and available potassium contents in the two soils were the highest in 0-10 cm layer, decreased with increasing depth, and had significant differences between different layers, showing that the soil total nitrogen, available phosphorus, and available potassium had a strong tendency to accumulate in surface layer. Such a tendency was more obvious for the soil developed from limestone. The paired t-test for the two soils indicated that the total nitrogen content in different layers had no significant difference, whereas the available phosphorus content in 0-10 cm layer and the available potassium content in 10-20 cm layer differed significantly. PMID:23898652

  8. [Vertical distribution patterns of nitrogen, phosphorus, and potassium in Chinese pine forest soils developed from different parent materials in Songshan Mountain Nature Reserve, Beijing of China].

    PubMed

    Gou, Li-hui; Sun, Zhao-di; Nie, Li-shui; Luo, Pan-pan; Wu, Ji-Gui; Xu, Wu-de

    2013-04-01

    Taking the soils developed from two kinds of parent materials (granite and limestone) under Pinus tabulaeformis forest at the same altitude in Songshan Mountain Nature Reserve of Beijing as test objects, this paper studied the vertical distribution patterns of soil total nitrogen, available phosphorus, and available potassium. The soil developed from granite had the total nitrogen, available phosphorus, and available potassium contents being 1.61-2. 35 g kg-1, 5. 84-10.74 mg kg- 1, and 39.33-93.66 mg kg-1, while that developed from limestone had the total nitrogen, available phosphorus, and available potassium contents being 1. 69 -2. 36 g kg-1, 4.45-8.57 mg . kg-1, and 60.66-124.00 mg kg-1, respectively. The total nitrogen, available phosphorus, and available potassium contents in the two soils were the highest in 0-10 cm layer, decreased with increasing depth, and had significant differences between different layers, showing that the soil total nitrogen, available phosphorus, and available potassium had a strong tendency to accumulate in surface layer. Such a tendency was more obvious for the soil developed from limestone. The paired t-test for the two soils indicated that the total nitrogen content in different layers had no significant difference, whereas the available phosphorus content in 0-10 cm layer and the available potassium content in 10-20 cm layer differed significantly.

  9. Impacts of land use changes on physical and chemical soil properties in the Central Pyrenees

    NASA Astrophysics Data System (ADS)

    Nadal Romero, Estela; Hoitinga, Leo; Valdivielso, Sergio; Pérez Cardiel, Estela; Serrano Muela, Pili; Lasanta, Teodoro; Cammeraat, Erik

    2015-04-01

    Soils and vegetation tend to evolve jointly in relation to climate evolution and the impacts of human activity. Afforestation has been one of the main policies for environmental management of forest landscapes in Mediterranean areas. Afforestation has been based mainly on conifers because they are fast-growing species, and also because it was believed that this would lead to rapid restoration of soil properties and hydrological processes, and the formation of protective vegetation cover. This study analyses the effects of afforestation on physical and chemical soil properties. Specifically, we addressed this research question: (i) How do soil properties change after land abandonment? The 11 microsites considered were: Afforestation Pinus sylvestris (escarpment, terrace and close to the stem), Afforestation Pinus nigra (escarpment, terrace and close to the stem), natural shrubland, grasslands, bare lands, and undisturbed forest site (pine cover and close to the stem). An extensive single sampling was carried out in September 2014. We systematically collected 5 top soil samples (0-10 cm) and 3 deep soil samples (10-20 cm) per microsite (88 composite samples in total). These properties were analysed: (i) soil texture, (ii) bulk density, (iii) pH and electrical conductivity, (iv) total SOC, (v) Total Nitrogen, (vi) organic matter, (vii) CaCO3 and (viii) aggregate stability. Statistical tests have been applied to determine relationships between the different soil properties and are used to assess differences between different soil samples, land use areas and soil depths. Implications of reafforestation for soil development and environmental response are discussed. Acknowledgments This research was supported by a Marie Curie Intra-European Fellowship in the project "MED-AFFOREST" (PIEF-GA-2013-624974).

  10. Feedback of 10-20-day intraseasonal oscillations on seasonal mean SST in the tropical Western North Pacific during boreal spring through fall

    NASA Astrophysics Data System (ADS)

    Wu, Renguang

    2016-09-01

    The present study documents the factors for year-to-year changes in the intensity of 10-20-day intraseasonal oscillations (ISOs) and investigates the feedback of the 10-20-day ISO intensity on seasonal mean sea surface temperature (SST) change in the tropical western North Pacific during boreal spring through fall. An analysis of local correlation reveals a significant negative correlation of the 10-20-day ISO intensity and the seasonal mean SST tendency in the tropical western North Pacific during spring, summer, and fall, suggesting a plausible feedback of the ISO intensity on seasonal mean SST anomaly. The 10-20-day ISO intensity change over the tropical western North Pacific is influenced by El Niño-Southern Oscillation (ENSO) through modulation of vertical shear of zonal winds, lower-level moisture, and upward motion. Due to the phase dependence of location of these ENSO-induced background field changes, the ISO intensity is subject to ENSO influence in different regions during the three seasons. The feedback of the 10-20-day ISO intensity on local seasonal mean SST change in the tropical western North Pacific is demonstrated by separating latent heat flux anomalies into components on different time scales. The ISO-induced latent heat flux anomalies may accumulate in a season and overcome interannual anomalies due to seasonal mean changes. Thus, the ISO-induced surface heat flux change may play an important role in the seasonal mean SST anomaly in the tropical western North Pacific.

  11. Source identification and apportionment of heavy metals in urban soil profiles.

    PubMed

    Luo, Xiao-San; Xue, Yan; Wang, Yan-Ling; Cang, Long; Xu, Bo; Ding, Jing

    2015-05-01

    Because heavy metals (HMs) occurring naturally in soils accumulate continuously due to human activities, identifying and apportioning their sources becomes a challenging task for pollution prevention in urban environments. Besides the enrichment factors (EFs) and principal component analysis (PCA) for source classification, the receptor model (Absolute Principal Component Scores-Multiple Linear Regression, APCS-MLR) and Pb isotopic mixing model were also developed to quantify the source contribution for typical HMs (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) in urban park soils of Xiamen, a representative megacity in southeast China. Furthermore, distribution patterns of their concentrations and sources in 13 soil profiles (top 20 cm) were investigated by different depths (0-5, 5-10, 10-20 cm). Currently the principal anthropogenic source for HMs in urban soil of China is atmospheric deposition from coal combustion rather than vehicle exhaust. Specifically for Pb source by isotopic model ((206)Pb/(207)Pb and (208)Pb/(207)Pb), the average contributions were natural (49%)>coal combustion (45%)≫traffic emissions (6%). Although the urban surface soils are usually more contaminated owing to recent and current human sources, leaching effects and historic vehicle emissions can also make deep soil layer contaminated by HMs.

  12. A field study of the effects of soil structure and irrigation method on preferential flow of pesticides in unsaturated soil

    NASA Astrophysics Data System (ADS)

    Ghodrati, Masoud; Jury, William A.

    1992-10-01

    A large number of field plot experiments were performed to characterize the downward flow of three pesticides (atrazine, napropamide and prometryn) and a water tracer (chloride) under various soil water regimes and soil surface conditions. Each experiment consisted of the uniform application of a 0.4-cm pulse of a solution containing a mixture of the four chemicals to the surface of a 1.5 × 1.5-m plot. The plot was then irrigated with 12 cm of water and soil samples were collected and analyzed to a depth of 150 cm. In all, 64 different plots were employed to study individual as well as interactive effects of such variables as irrigation method (continuous or intermittent sprinkling or ponding), pesticide formulation method (technical grade dissolved in water, wettable powder, or emulsifiable concentrate), and tillage (undisturbed or tilled and repacked surface layer) on pesticide transport. While all three pesticides were expected to be retained in the top 10-20 cm, there was considerable movement below this zone. When averaged over all the treatments, 18.8% of the recovered mass of atrazine, 9.4% of the prometryn and 16.4% of the napropamide were found between 30- and 150cm depth. Moreover, all pesticides were highly mobile in the surface 30 cm regardless of their adsorption coefficient. There were occureences of extreme mobility or "preferential flow" of pesticide under every experimental condition except where the pesticides were applied in wettable powder form to plots which had their surface tilled and repacked. This finding implies that there may be fine preferential flow pathways through which solution may move but particulates may not.

  13. Detection of Thermal 2 cm and 1 cm Formaldehyde Emission in NGC 7538

    NASA Astrophysics Data System (ADS)

    Yuan, Liang; Araya, E. D.; Hofner, P.; Kurtz, S.; Pihlstrom, Y.

    2011-05-01

    Formaldehyde is a tracer of high density gas in massive star forming regions. The K-doublet lines from the three lowest rotational energy levels of ortho-formaldehyde correspond to wavelengths of 6, 2 and 1 cm. Thermal emission of these transitions is rare, and maser emission has only been detected in the 6 cm line. NGC 7538 is an active site of massive star formation in the Galaxy, and one of only a few regions known to harbor 6 cm formaldehyde (H2CO) masers. Using the NRAO 100 m Green Bank Telescope (GBT), we detected 2 cm H2CO emission toward NGC 7538 IRS1. The velocity of the 2 cm H2CO line is very similar to the velocity of one of the 6 cm H2CO masers but the linewidth is greater. To investigate the nature of the 2 cm emission, we conducted observations of the 1 cm H2CO transition, and obtained a cross-scan map of the 2 cm line. We detected 1 cm emission and found that the 2 cm emission is extended (greater than 30"), which implies brightness temperatures of ˜0.2 K. Assuming optically thin emission, LTE, and that the 1 cm and 2 cm lines originate from the same volume of gas, both these detections are consistent with thermal emission of gas at ˜30 K. We conclude that the 1 cm and 2 cm H2CO lines detected with the GBT are thermal, which implies molecular densities above ˜105 cm-3. LY acknowledges support from WIU. PH acknowledges partial support from NSF grant AST-0908901.

  14. Winter effect on soil microorganisms under different tillage and phosphorus management practices in eastern Canada.

    PubMed

    Shi, Yichao; Lalande, Roger; Hamel, Chantal; Ziadi, Noura

    2015-05-01

    Determining how soil microorganisms respond to crop management systems during winter could further our understanding of soil phosphorus (P) transformations. This study assessed the effects of tillage (moldboard plowing or no-till) and P fertilization (0, 17.5, or 35 kg P·ha(-1)) on soil microbial biomass, enzymatic activity, and microbial community structure in winter, in a long-term (18 years) corn (Zea mays L.) and soybean (Glycine max L.) rotation established in 1992 in the province of Quebec, Canada. Soil samples were collected at 2 depths (0-10 and 10-20 cm) in February 2010 and 2011 after the soybean and the corn growing seasons, respectively. Winter conditions increased the amounts of soil microbial biomasses but reduced the overall enzymatic activity of the soil, as compared with fall levels after corn. P fertilization had a quadratic effect on the amounts of total, bacterial, arbuscular mycorrhizal fungi phospholipid fatty acid markers after corn but not after soybean. The soil microbial community following the soybean and the corn crops in winter had a different structure. These findings suggest that winter conditions and crop-year could be important factors affecting the characteristics of the soil microbial community under different tillage and mineral P fertilization.

  15. [Spatial heterogeneity of soil moisture after raining at forest-grassland landscape boundary in hilly area of Loess Plateau].

    PubMed

    You, Wenzhong; Zeng, Dehui; Liu, Mingguo; Song, Xide; Ye, Yaohui; Zhang, Yong

    2005-09-01

    Soil moisture is a main factor limiting vegetation restoration in semi-arid region. In this paper, the spatial variability of different layers soil moisture after raining at the forest-grassland boundary in hilly area of Loess Plateau were studied by traditional and geostatistical analysis methods. The results showed that the moisture content in surface (0 - 10 cm) and subsurface soil layer (10 - 20 cm) of grassland was higher than that of forestland. The two layers soil moisture content at forest-grassland boundary showed a small variation but an obvious ecological distribution. By using moving split-window techniques, it was obtained that the width of edge influence in surface and subsurface layer was 8 and 6 m, respectively. Geostatistical analyses showed that the spatial distribution of two layers soil moisture had a pure nugget effect in grassland, linear model in forestland, and spherical model in forest-grassland boundary. The spatial heterogeneity of two layers soil moisture was higher at forest-grassland boundary than at forestland and grassland, which had a stronger spatial dependence and autorelation. Kriging maps expressed the spatial structural characters. The distribution of soil moisture in two layers showed a strip shape near forest edge, and a patch shape far from the edge.

  16. Probing lepton asymmetry with 21 cm fluctuations

    SciTech Connect

    Kohri, Kazunori; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: oyamayo@post.kek.jp E-mail: tomot@cc.saga-u.ac.jp

    2014-09-01

    We investigate the issue of how accurately we can constrain the lepton number asymmetry ξ{sub ν}=μ{sub ν}/T{sub ν} in the Universe by using future observations of 21 cm line fluctuations and cosmic microwave background (CMB). We find that combinations of the 21 cm line and the CMB observations can constrain the lepton asymmetry better than big-bang nucleosynthesis (BBN). Additionally, we also discuss constraints on ξ{sub ν} in the presence of some extra radiation, and show that the 21 cm line observations can substantially improve the constraints obtained by CMB alone, and allow us to distinguish the effects of the lepton asymmetry from the ones of extra radiation.

  17. Soil organic carbon and nitrogen accumulation on coal mine spoils reclaimed with maritime pine (Pinus pinaster Aiton) in Agacli-Istanbul.

    PubMed

    Sever, Hakan; Makineci, Ender

    2009-08-01

    Mining operations on open coal mines in Agacli-Istanbul have resulted in the destruction of vast amounts of land. To rehabilitate these degraded lands, plantations on this area began in 1988. Twelve tree species were planted, however, the most planted tree species was maritime pine (Pinus pinaster Aiton). This study performed on 14 sample plots randomly selected in maritime pine plantations on coal mine soil/spoils in 2005. Soil samples were taken from eight different soil layers (0-1, 1-3, 3-5, 5-10, 10-20, 20-30, 30-40 and 40-50 cm) into the soil profile. On soil samples; fine soil fraction (<2 mm), soil acidity (pH), organic carbon (C(org)) and total nitrogen (N(t)) contents were investigated, and results were compared statistically among soil layers. As a result, 17 years after plantations, total forest floor accumulation determined as 17,973.20 kg ha(-1). Total nitrogen and organic matter amounts of forest floor were 113.90 and 14,640.92 kg ha(-1) respectively. Among soil layers, the highest levels of organic carbon (1.77%) and total nitrogen (0.096%) and the lowest pH value (pH 5.38) were found in 0-1 cm soil layer, and the variation differs significantly among soil layers. Both organic carbon and total nitrogen content decreased, pH values increased from 0-1 to 5-10 cm layer. In conclusion, according to results obtained maritime pine plantations on coal mine spoils; slow accumulation and decomposition of forest floor undergo simultaneously. Depending on these changes organic carbon and total nitrogen contents increased in upper layer of soil/spoil. PMID:18604588

  18. Soil organic carbon and nitrogen accumulation on coal mine spoils reclaimed with maritime pine (Pinus pinaster Aiton) in Agacli-Istanbul.

    PubMed

    Sever, Hakan; Makineci, Ender

    2009-08-01

    Mining operations on open coal mines in Agacli-Istanbul have resulted in the destruction of vast amounts of land. To rehabilitate these degraded lands, plantations on this area began in 1988. Twelve tree species were planted, however, the most planted tree species was maritime pine (Pinus pinaster Aiton). This study performed on 14 sample plots randomly selected in maritime pine plantations on coal mine soil/spoils in 2005. Soil samples were taken from eight different soil layers (0-1, 1-3, 3-5, 5-10, 10-20, 20-30, 30-40 and 40-50 cm) into the soil profile. On soil samples; fine soil fraction (<2 mm), soil acidity (pH), organic carbon (C(org)) and total nitrogen (N(t)) contents were investigated, and results were compared statistically among soil layers. As a result, 17 years after plantations, total forest floor accumulation determined as 17,973.20 kg ha(-1). Total nitrogen and organic matter amounts of forest floor were 113.90 and 14,640.92 kg ha(-1) respectively. Among soil layers, the highest levels of organic carbon (1.77%) and total nitrogen (0.096%) and the lowest pH value (pH 5.38) were found in 0-1 cm soil layer, and the variation differs significantly among soil layers. Both organic carbon and total nitrogen content decreased, pH values increased from 0-1 to 5-10 cm layer. In conclusion, according to results obtained maritime pine plantations on coal mine spoils; slow accumulation and decomposition of forest floor undergo simultaneously. Depending on these changes organic carbon and total nitrogen contents increased in upper layer of soil/spoil.

  19. CV and CM chondrite impact melts

    NASA Astrophysics Data System (ADS)

    Lunning, Nicole G.; Corrigan, Catherine M.; McSween, Harry Y.; Tenner, Travis J.; Kita, Noriko T.; Bodnar, Robert J.

    2016-09-01

    Volatile-rich and typically oxidized carbonaceous chondrites, such as CV and CM chondrites, potentially respond to impacts differently than do other chondritic materials. Understanding impact melting of carbonaceous chondrites has been hampered by the dearth of recognized impact melt samples. In this study we identify five carbonaceous chondrite impact melt clasts in three host meteorites: a CV3red chondrite, a CV3oxA chondrite, and a regolithic howardite. The impact melt clasts in these meteorites respectively formed from CV3red chondrite, CV3oxA chondrite, and CM chondrite protoliths. We identified these impact melt clasts and interpreted their precursors based on their texture, mineral chemistry, silicate bulk elemental composition, and in the case of the CM chondrite impact melt clast, in situ measurement of oxygen three-isotope signatures in olivine. These impact melts typically contain euhedral-subhedral olivine microphenocrysts, sometimes with relict cores, in glassy groundmasses. Based on petrography and Raman spectroscopy, four of the impact melt clasts exhibit evidence for volatile loss: these melt clasts either contain vesicles or are depleted in H2O relative to their precursors. Volatile loss (i.e., H2O) may have reduced the redox state of the CM chondrite impact melt clast. The clasts that formed from the more oxidized precursors (CV3oxA and CM chondrites) exhibit phase and bulk silicate elemental compositions consistent with higher intrinsic oxygen fugacities relative to the clast that formed from a more reduced precursor (CV3red chondrite). The mineral chemistries and assemblages of the CV and CM chondrite impact melt clasts identified here provide a template for recognizing carbonaceous chondrite impact melts on the surfaces of asteroids.

  20. [Effects of different straw-returning regimes on soil organic carbon and carbon pool management index in Guanzhong Plain, Northwest China].

    PubMed

    Li, Shuo; Li, You-bing; Wang, Shu-juan; Shi, Jiang-lan; Tian, Xiao-hong

    2015-04-01

    A four-year (2008-2012) field experiment was conducted to investigate the effects of different straw-returning regimes on soil total organic carbon (TOC), labile organic carbon (LOC) and the ratio of LOC to TOC (LOC/TOC) as well as TOC stock (SCS) and soil carbon pool management index (CPMI) in a farmland with maize-wheat double cropping system in Guanzhong Plain area, Shaanxi Province, China. The results indicated that soil TOC and LOC contents and SCS were significantly increased when wheat or maize straw was returned to field, and the increasing extent showed the rising order as follows: double straw-returning > single straw-returning > no straw-returning. Compared to no straw returning, a significant increase of TOC and LOC contents and SCS was found in the treatment of wheat straw chopping retention combined with maize straw chopping subsoiling retention (WC-MM), and CPMI of WC-MM was significantly higher than in the other treatments in 0-20 cm soil layer. Compared to no wheat straw returning, soil CPMIs in 0-10 cm and 10-20 cm soil layer increased by 19.1% and 67.9% for the wheat straw chopping returning treatment, and by 22.6% and 32.4% for the maize straw chopping subsoiling treatment, respectively. Correlation analysis showed that soil CPMI was a more effective index reflecting the sequestration of soil organic carbon in 0-30 cm soil layer than the ratio of LOC to TOC. This study thus suggested that WC-MM regime is the best straw-returning regime for soil organic carbon sequestration.

  1. Characterization of 8-cm engineering model thruster

    NASA Technical Reports Server (NTRS)

    Williamson, W. S.

    1984-01-01

    Development of 8 cm ion thruster technology which was conducted in support of the Ion Auxiliary Propulsion System (IAPS) flight contract (Contract NAS3-21055) is discussed. The work included characterization of thruster performance, stability, and control; a study of the effects of cathode aging; environmental qualification testing; and cyclic lifetesting of especially critical thruster components.

  2. The Multidimensional Curriculum Model (MdCM)

    ERIC Educational Resources Information Center

    Vidergor, Hava E.

    2010-01-01

    The multidimensional Curriculum Model (MdCM) helps teachers to better prepare gifted and able students for our changing world, acquiring much needed skills. It is influenced by general learning theory of constructivism, notions of preparing students for 21st century, Teaching the Future Model, and current comprehensive curriculum models for…

  3. Disruption of the naturally evolved N conservation strategy in soil under grassland at a sports field in York, UK.

    PubMed

    Bhatti, Ambreen; Cresser, Malcolm S

    2014-11-01

    Water- and KCl-extractable ammonium-N and nitrate-N concentrations have been monitored at approximately monthly intervals over a year in soils from 0-10 and 10-20 cm depths under permanent grass at a sports field in York, UK. Measurements were made on both fresh, field-moist soils and after the same soils had been incubated for 7 days at ambient outdoor temperatures, to assess seasonal changes in the capacity of the soils to produce mineral-N species in the absence of plant uptake and other effects. Water extracts allowed potential mobility of N species to be assessed. Comparison of seasonal trends in mineral-N species concentrations in pre- and post-incubation soils confirmed depletion of exchangeable ammonium-N from the winter to summer. Mineral-N in fresh and incubated soils displayed summer minima and also low production in winter, associated with the effects of low temperature on nitrate production and probably microbial immobilization of nitrate produced by residual senescent plant litter with a higher C:N ratio from the previous autumn. The results support the concept that plant/soil systems co-evolved under more pristine conditions to conserve soil N by matching the dynamics of soil mineral N production and plant N uptake, but now N pollution has resulted in a dynamic mismatch.

  4. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry.

    PubMed

    Hamscher, Gerd; Sczesny, Silke; Höper, Heinrich; Nau, Heinz

    2002-04-01

    Little is known about the occurrence and the fate of veterinary drugs in the environment. Therefore, a liquid chromatography/tandem mass spectrometry method was developed and employed to investigate in detail the distribution and persistence of the frequently used tetracyclines and tylosin in a field fertilized with liquid manure on April 2000 and April 2001; soil sampling was performed in May 2000, November 2000, and May 2001. We detected 4.0 mg/kg tetracycline and 0.1 mg/kg chlortetracycline in the liquid manure of April 2000, as well as comparable amounts in the liquid manure of April 2001. In the soil samples of May 2001, the highest average concentrations of 86.2 (0-10 cm), 198.7 (10-20 cm), and 171.7 microg/kg (20-30 cm) tetracycline and 4.6-7.3 micro/kg chlortetracycline (all three sublayers) were found. At soil depths between 30 and 90 cm, as well as in soil or groundwater, tetracyclines could not be detected. In addition, oxytetracycline and tylosin could not be detected in any sample investigated. We conclude that tetracyclines enter the environment in significant concentrations via repeated fertilizations with liquid manure, build up persistent residues, and accumulate in soil. Therefore, tetracyclines may have a potential risk and investigations on the environmental effects of these antibiotics are necessary.

  5. Decomposition and humification of soil organic carbon after land use change on erosion prone slopes

    NASA Astrophysics Data System (ADS)

    Häring, Volker; Fischer, Holger; Cadisch, Georg; Stahr, Karl

    2014-05-01

    Soil organic carbon decline after land use change from forest to maize usually lead to soil degradation and elevated CO2 emissions. However, limited knowledge is available on the interactions between rates of SOC change and soil erosion and how SOC dynamics vary with soil depth and clay contents. The 13C isotope based CIDE approach (Carbon Input, Decomposition and Erosion) was developed to determine SOC dynamics on erosion prone slopes. The aims of the present study were: (1) to test the applicability of the CIDE approach to determine rates of decomposition and SOC input under particular considerations of concurrent erosion events on three soil types (Alisol, Luvisol, Vertisol), (2) to adapt the CIDE approach to deeper soil layers (10-20 and 20-30 cm) and (3) to determine the variation of decomposition and SOC input with soil depth and soil texture. SOC dynamics were determined for bulk soil and physically separated SOC fractions along three chronosequences after land use change from forest to maize (up to 21 years) in northwestern Vietnam. Consideration of the effects of soil erosion on SOC dynamics by the CIDE approach yielded a higher total SOC loss (6 to 32%), a lower decomposition (13 to 40%) and a lower SOC input (14 to 31%) relative to the values derived from a commonly applied 13C isotope based mass balance approach. Comparison of decomposition between depth layers revealed that tillage accelerated decomposition in the plough layer (0-10 cm), accounting for 3 to 34% of total decomposition. With increasing clay contents SOC input increased. In addition, decomposition increased with increasing clay contents, too, being attributed to decomposition of exposed labile SOC which was attached to clay particles in the sand sized stable aggregate fraction. This study suggests that in situ SOC dynamics on erosion prone slopes are commonly misrepresented by erosion unadjusted approaches.

  6. Identifying the water source for subsurface flow with deuterium and oxygen-18 isotopes of soil water collected from tension lysimeters and cores

    NASA Astrophysics Data System (ADS)

    Zhao, Pei; Tang, Xiangyu; Zhao, Peng; Wang, Chao; Tang, Jialiang

    2013-10-01

    The conventional identification of soil water with pre-event water limits deep insights into the involvement of stationary and mobile soil water in subsurface hydrological processes. In three tilled sloping field plots at a hilly area of southwestern China dominated by Entisols, soil water collected with a suction lysimeter was distinguished from the total soil water through an analysis of the stable isotopes deuterium and oxygen-18. Differences in the depth profile of soil water before and after storm events were observed and used to examine how rainwater mixes with soil water and to identify the source contribution of different fractions of soil water in subsurface flow generation. Only water in the 0-10 cm soil layer was significantly affected by evaporation and infiltration. Water in the top 5 cm layer of the soil exhibited the lowest residence time because a storm can replace a substantial proportion of the pre-event water. Soil water at the 10-20 cm depth showed the longest residence time, as indicated by its high proportion of pre-event water. The isotopic signatures demonstrated that piston flow and preferential flow coexisted in this soil. High antecedent soil water content and high rain intensity favor the formation of piston flow. The water collected with the suction lysimeter represented the mobile fraction of the pre-event water in the soil, which effectively participates in the generation of subsurface flow. Newly infiltrated rainwater did not well mix with stationary pre-event water in the soil. The use of recent rainfall to represent mobile soil water may provide a practical solution for overcoming the negative effect of the spatial heterogeneity of the isotopic composition of soil water on hydrograph separation results. Bulk soil water and lysimeter water showed significant differences in isotopic composition under low soil water content or in the top soil layer. Stable isotopes in bulk and lysimeter soil water should be monitored synchronously to

  7. Numerical Analysis of coupled liquid water, water vapor and heat transport in a sandy loam soil

    NASA Astrophysics Data System (ADS)

    Shukla, M. K.; Deb, S.; Sharma, P.

    2009-12-01

    Water vapor transport could be significant in arid areas such as southern New Mexico. Temporal soil moisture variations in unsaturated soils due to temperature gradients are characterized by the water vapor transport in the surface soil layer as liquid water movement could be very small especially when surface soil moisture is low. Numerical model Hydrus-1D was applied to investigate non-isothermal liquid and vapor flow closely coupled with the heat transport in a furrow-irrigated onion field located at Leyendecker Plant Science Research Center, Las Cruces. TDR and temperature sensors were installed to continuously monitor diurnal soil moisture and temperature variations in sandy loam onion beds at 5, 10, 20, and 50 cm depths during the entire growing season. Meteorological data were obtained from PSRC weather station. Hydrus-1D simulated soil moisture and temperature favorably contrasted against measured data at different depths. Simulations indicated that both liquid and vapor fluxes contributed to the water transport near surface. Liquid flux dominated the water movement during an irrigation event, while contribution of vapor flux increased with increasing soil drying. Vapor flux decreased from 5 cm to 25 cm depth, indicating that water vapor flux is much higher in the layer near soil surface. Both diffusive and dispersive transports are responsible for the vapor flux in the near-surface dry zone, while convective liquid flux was the main transport mechanism in the near-surface wet lower zone. In near-surface wet zone, diffusive flux decreased and changed from upward to downward flux.

  8. Soil moisture content assessment based on Landsat 8 red, near-infrared, and thermal channels

    NASA Astrophysics Data System (ADS)

    Mobasheri, Mohammad Reza; Amani, Meisam

    2016-04-01

    Soil moisture content (SMC) plays an important role in different environmental. In this study, four different soil moisture indices, namely, SOMID, SOMID-FS, SOMID-FT, and CSOMID-FT, were introduced. In this work, the following parameters were used to estimate SMC at a depth of 5 cm: (a) the distance of pixels from the origin in the scatter-plot of near-infrared (NIR) and red bands (SNIR-R), (b) the fraction of soil cover in each pixel, and (c) the land surface temperature. It was concluded that the CSOMID-FT was the most accurate index for estimation of SMC (RMSE=0.045, R=0.92). This index divides the SNIR-R into three separate regions based on the pixels' normalized difference vegetation index (NDVI) values and assigns a specific regression equation to each region. The results showed that as the NDVI values increase, the accuracy of the proposed indices decreases. Furthermore, the SOMID-FT and CSOMID-FT were used to estimate SMC at five different depths of 5, 10, 20, 50, and 100 cm. It was concluded that the satellite-estimated SMC was highly correlated with the field-measured data at 5-cm soil depth.

  9. Soil moisture content assessment based on Landsat 8 red, near-infrared, and thermal channels

    NASA Astrophysics Data System (ADS)

    Mobasheri, Mohammad Reza; Amani, Meisam

    2016-04-01

    Soil moisture content (SMC) plays an important role in different environmental. In this study, four different soil moisture indices, namely, SOMID, SOMID-FS, SOMID-FT, and CSOMID-FT, were introduced. In this work, the following parameters were used to estimate SMC at a depth of 5 cm: (a) the distance of pixels from the origin in the scatter-plot of near-infrared (NIR) and red bands (SNIR-R), (b) the fraction of soil cover in each pixel, and (c) the land surface temperature. It was concluded that the CSOMID-FT was the most accurate index for estimation of SMC (RMSE=0.045, R=0.92). This index divides the SNIR-R into three separate regions based on the pixels' normalized difference vegetation index (NDVI) values and assigns a specific regression equation to each region. The results showed that as the NDVI values increase, the accuracy of the proposed indices decreases. Furthermore, the SOMID-FT and CSOMID-FT were used to estimate SMC at five different depths of 5, 10, 20, 50, and 100 cm. It was concluded that the satellite-estimated SMC was highly correlated with the field-measured data at 5-cm soil depth.

  10. Nitrogen release from rock and soil under simulated field conditions

    USGS Publications Warehouse

    Holloway, J.M.; Dahlgren, R.A.; Casey, W.H.

    2001-01-01

    A laboratory study was performed to simulate field weathering and nitrogen release from bedrock in a setting where geologic nitrogen has been suspected to be a large local source of nitrate. Two rock types containing nitrogen, slate (1370 mg N kg-1) and greenstone (480 mg N kg-1), were used along with saprolite and BC horizon sand from soils derived from these rock types. The fresh rock and weathered material were used in batch reactors that were leached every 30 days over 6 months to simulate a single wet season. Nitrogen was released from rock and soil materials at rates between 10-20 and 10-19 mo1 N cm-2 s-1. Results from the laboratory dissolution experiments were compared to in situ soil solutions and available mineral nitrogen pools from the BC horizon of both soils. Concentrations of mineral nitrogen (NO3- + NH4+) in soil solutions reached the highest levels at the beginning of the rainy season and progressively decreased with increased leaching. This seasonal pattern was repeated for the available mineral nitrogen pool that was extracted using a KCl solution. Estimates based on these laboratory release rates bracket stream water NO3-N fluxes and changes in the available mineral nitrogen pool over the active leaching period. These results confirm that geologic nitrogen, when present, may be a large and reactive pool that may contribute as a non-point source of nitrate contamination to surface and ground waters. ?? 2001 Elsevier Science B.V. All rights reserved.

  11. Measurements of Output Factors For Small Photon Fields Up to 10 cm x 10 cm

    NASA Astrophysics Data System (ADS)

    Bacala, Angelina

    Field output factors (OF) for photon beams from a 6 MV medical accelerator were measured using five different detectors in a scanning water phantom. The measurements were taken for square field sizes of integral widths ranging from 1 cm to 10 cm for two reference source-to-surface distances (SSD) and depths in water. For the diode detectors, square field widths as small as 2.5 mm were also studied. The photon beams were collimated by using either the jaws or the multileaf collimators. Measured OFs are found to depend upon the field size, SSD, depth and also upon the type of beam collimation, size and type of detector used. For field sizes larger than 3 cm x 3 cm, the OF measurements agree to within 1% or less. The largest variation in OF occurs for jawsshaped field of size 1 cm x 1cm, where a difference of more than 18% is observed.

  12. Interpreting Sky-Averaged 21-cm Measurements

    NASA Astrophysics Data System (ADS)

    Mirocha, Jordan

    2015-01-01

    Within the first ~billion years after the Big Bang, the intergalactic medium (IGM) underwent a remarkable transformation, from a uniform sea of cold neutral hydrogen gas to a fully ionized, metal-enriched plasma. Three milestones during this epoch of reionization -- the emergence of the first stars, black holes (BHs), and full-fledged galaxies -- are expected to manifest themselves as extrema in sky-averaged ("global") measurements of the redshifted 21-cm background. However, interpreting these measurements will be complicated by the presence of strong foregrounds and non-trivialities in the radiative transfer (RT) modeling required to make robust predictions.I have developed numerical models that efficiently solve the frequency-dependent radiative transfer equation, which has led to two advances in studies of the global 21-cm signal. First, frequency-dependent solutions facilitate studies of how the global 21-cm signal may be used to constrain the detailed spectral properties of the first stars, BHs, and galaxies, rather than just the timing of their formation. And second, the speed of these calculations allows one to search vast expanses of a currently unconstrained parameter space, while simultaneously characterizing the degeneracies between parameters of interest. I find principally that (1) physical properties of the IGM, such as its temperature and ionization state, can be constrained robustly from observations of the global 21-cm signal without invoking models for the astrophysical sources themselves, (2) translating IGM properties to galaxy properties is challenging, in large part due to frequency-dependent effects. For instance, evolution in the characteristic spectrum of accreting BHs can modify the 21-cm absorption signal at levels accessible to first generation instruments, but could easily be confused with evolution in the X-ray luminosity star-formation rate relation. Finally, (3) the independent constraints most likely to aide in the interpretation

  13. Agricultural use of soil, consequences in soil organic matter and hydraulic conductivity compared with natural vegetation in central Spain

    NASA Astrophysics Data System (ADS)

    Vega, Verónica; Carral, Pilar; Alvarez, Ana Maria; Marques, Maria Jose

    2014-05-01

    When ecosystems are under pressure due to high temperatures and water scarcity, the use of land for agriculture can be a handicap for soil and water conservation. The interactions between plants and soils are site-specific. This study provides information about the influence of the preence vs. The absence of vegetation on soil in a semi-arid area of the sout-east of Madrid (Spain, in the Tagus River basin. In this area soil materials are developed over a calcareous-evaporitic lithology. Soils can be classified as Calcisols, having horizons of accumulation with powdered limestone and irregular nodules of calcium carbonate. They can be defined as Haplic Cambisols and Leptic Calcisols (WRB 2006-FAO). The area is mainly used for rainfed agriculture, olive groves, vineyards and cereals. There are some patches of bushes (Quercus sp.) and grasses (Stipa tenacissima L.) although only found on the top of the hills. This study analyses the differences found in soils having three different covers: Quercus coccifera, Stipa tenacissima and lack of vegetation. This last condition was found in the areas between cultivated olive trees. Soil organic matter, porosity and hydraulic conductivity are key properties of soil to understand its ability to adapt to climate or land use changes. In order to measure the influence of different soil covers, four replicates of soil were sampled in each condition at two soil depth, (0-10 cm and 10-20 cm). Hydraulic conductivity was measured in each soil condition and replicate using a Mini-disk® infiltrometer. There were no differences between the two depths sampled. Similarly, there were no changes in electric conductivity (average 0.1±0.03 dS m-1); pH (8.7±0.2) or calcium carbonate content (43±20 %). Nevertheless, significant differences (p>0.001) were found in soil organic matter. The maximum was found in soils under Quercus (4.7±0.5 %), followed by Stipa (2.2±1.1 %). The soil without vegetation in the areas between olive trees had only 0

  14. [Effects of grazing disturbance on soil active organic carbon in mountain forest-arid valley ecotone in the upper reaches of Minjiang River].

    PubMed

    Liu, Shan-Shan; Zhang, Xing-Hua; Gong, Yuan-Bo; Li, Yuan; Wang, Yan; Yin, Yan-Jie; Ma, Jin-Song; Guo, Ting

    2014-02-01

    Effects of grazing disturbance on the soil carbon contents and active components in the four vegetations, i.e., artificial Robinia pseudoacacia plantation, artificial poplar plantation, Berberis aggregate shrubland and grassland, were studied in the mountain forest-arid valley ecotone in the upper Minjiang River. Soil organic carbon and active component contents in 0-10 cm soil layer were greater than in 10-20 cm soil layer at each level of grazing disturbance. With increasing the grazing intensity, the total organic carbon (TOC), light fraction organic carbon (LFOC), particulate organic carbon (POC) and easily oxidized carbon (LOC) contents in 0-10 cm soil layer decreased gradually in the artificial R. pseudoacacia plantation. The LFOC content decreased, the POC content increased, and the TOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the artificial poplar plantation. The POC content decreased, and the TOC, LFOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the B. aggregate shrubland. The POC and TOC contents decreased, and the LFOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the grassland. The decreasing ranges of LOC, LFOC and POC contents were 0.1-7.9 times more than that of TOC content. There were significant positive relationships between TOC and LOC, LFOC and POC, suggesting that the active organic carbon components could reflect the change of soil total carbon content.

  15. Balloon observations of the radiance of the earth between 2100 cm(-1) and 2700 cm(-1).

    PubMed

    Shaw, J H; McClatchey, R A; Schaper, P W

    1967-02-01

    A grating spectrometer capable of measuring small radiation fluxes with a spectral resolution of 95 at 4.3 micro is described. Bands of CO(2), N(2)O, and O(3) are identified in spectra between 2100 cm(-1) and 2700 cm(-1) of the earth and lower atmosphere obtained from an altitude of 30 km with this instrument. Scattering of solar radiation by clouds was observed between 2400 cm(-1) and 2700 cm(-1). A temperature profile of the atmosphere to 30 km determined from an analysis of the measurements in the region of the 4.3 micro CO(2) band is compared with radiosonde observations made during the flight.

  16. Hydrogen-Broadened Water from 50 to 300 cm-1 and 1300 to 4000 cm-1

    NASA Technical Reports Server (NTRS)

    Brown, L.; Peterson, D.; Plymate, C.

    1995-01-01

    To support remote sensing of the outer planets, absorption spectra of H2O broadened by H2 were recorded at room temperature using two Fourier transform spectrometers. The data from 1300 to 4000 cm-1 were obtained at 0.012 cm-1 resolution with the McMath FTS located at Kitt Peak National Observatory/National Solar Observatory. The remainder of the spectral data from 55 to 320 cm-1 were taken at 0.0056 cm-1 with the Bruker FTS.

  17. Magnetic susceptibility of curium pnictides. [/sup 248/CmP, /sup 248/CmSb

    SciTech Connect

    Nave, S.E.; Huray, P.G.; Peterson, J.R.; Damien, D.A.; Haire, R.G.

    1981-09-01

    The magnetic susceptibility of microgram quantities of /sup 248/CmP and /sup 248/CmSb has been determined with the use of a SQUID micromagnetic susceptometer over the temperature range 4.2 to 340 K and in the applied magnetic field range of 0.45 to 1600 G. The fcc (NaCl-type) samples yield magnetic transitions at 73K and 162 K for the phosphide and antimonide, respectively. Together with published magnetic data for CmN and CmAs, these results indicate spatially extended exchange interactions between the relatively localized 5f electrons of the metallic actinide atoms.

  18. Relationship of boreal summer 10-20-day and 30-60-day intraseasonal oscillation intensity over the tropical western North Pacific to tropical Indo-Pacific SST

    NASA Astrophysics Data System (ADS)

    Wu, Renguang; Cao, Xi

    2016-07-01

    The present study contrasts interannual variations in the intensity of boreal summer 10-20-day and 30-60-day intraseasonal oscillations (ISOs) over the tropical western North Pacific and their factors. A pronounced difference is found in the relationship of the two ISOs to El Niño-Southern Oscillation. The 10-20-day ISO intensity is enhanced during El Niño developing summer, whereas the 30-60-day ISO intensity is enhanced during La Niña decaying summer. The above different relationship is interpreted as follows. The equatorial central and eastern Pacific SST anomalies modify vertical wind shear, lower-level moisture, and vertical motion in a southeast-northwest oriented band from the equatorial western Pacific to the tropical western North Pacific where the 10-20-day ISOs originate and propagate. These background field changes modulate the amplitude of 10-20-day ISOs. Preceding equatorial central and eastern Pacific SST anomalies induce SST anomalies in the North Indian Ocean in summer, which in turn modify vertical wind shear and vertical motion over the tropical western North Pacific. The modified background fields influence the amplitude of the 30-60-day ISOs when they reach the tropical western North Pacific from the equatorial region. A feedback of ISO intensity on local SST change is identified in the tropical western North Pacific likely due to a net effect of ISOs on surface heat flux anomalies. This feedback is more prominent from the 10-20-day than the 30-60-day ISO intensity change.

  19. Extended Performance 8-cm Mercury Ion Thruster

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.

    1981-01-01

    A slightly modified 8-cm Hg ion thruster demonstrated significant increase in performance. Thrust was increased by almost a factor of five over that of the baseline thruster. Thruster operation with various three grid ion optics configurations; thruster performance as a function of accelerator grid open area, cathode baffle, and cathode orifice size; and a life test of 614 hours at a beam current of 250 mA (17.5 mN thrust) are discussed. Highest thruster efficiency was obtained with the smallest open area accelerator grid. The benefits in efficiency from the low neutral loss grids were mitigated, however, by the limitation such grids place on attainable ion beam current densities. The thruster components suffered negligible weight losses during a life test, which indicated that operation of the 8-cm thruster at extended levels of thrust and power is possible with no significant loss of lifetime.

  20. 15 cm multipole gas ion thruster

    NASA Technical Reports Server (NTRS)

    Isaacson, G. C.; Kaufman, H. R.

    1976-01-01

    A 15-cm multipole thruster was operated on argon and xenon. The multipole approach used has been shown capable of low discharge losses and flat ion beam profiles with a minimum of redesign. This approach employs low magnetic field strengths and flat or cylindrical sheet-metal parts, hence is suited to rapid optimization and scaling. Only refractory metal cathodes were used in this investigation.

  1. Late type close binary system CM Dra

    NASA Astrophysics Data System (ADS)

    Kalomeni, Belinda

    2015-08-01

    In this study, we present new observations of the close binary system CM Dra. We analyzed all the available data of the system and estimated the physical parameters of the system stars highly accurately. Using the newly obtained parameters the distance of the system is determined to be 11.6 pc. A possible giant planet orbiting the close binary system has been detected. This orbital period would likely make it one of the longest known orbital period planet.

  2. Constraining dark matter through 21-cm observations

    NASA Astrophysics Data System (ADS)

    Valdés, M.; Ferrara, A.; Mapelli, M.; Ripamonti, E.

    2007-05-01

    Beyond reionization epoch cosmic hydrogen is neutral and can be directly observed through its 21-cm line signal. If dark matter (DM) decays or annihilates, the corresponding energy input affects the hydrogen kinetic temperature and ionized fraction, and contributes to the Lyα background. The changes induced by these processes on the 21-cm signal can then be used to constrain the proposed DM candidates, among which we select the three most popular ones: (i) 25-keV decaying sterile neutrinos, (ii) 10-MeV decaying light dark matter (LDM) and (iii) 10-MeV annihilating LDM. Although we find that the DM effects are considerably smaller than found by previous studies (due to a more physical description of the energy transfer from DM to the gas), we conclude that combined observations of the 21-cm background and of its gradient should be able to put constrains at least on LDM candidates. In fact, LDM decays (annihilations) induce differential brightness temperature variations with respect to the non-decaying/annihilating DM case up to ΔδTb = 8 (22) mK at about 50 (15) MHz. In principle, this signal could be detected both by current single-dish radio telescopes and future facilities as Low Frequency Array; however, this assumes that ionospheric, interference and foreground issues can be properly taken care of.

  3. Polyhedral Serpentine Grains in CM Chondrites

    NASA Technical Reports Server (NTRS)

    Zega, Thomas J.; Garvie, Laurence A. J.; Dodony, Istvan; Stroud, Rhonda M.; Buseck, Peter R.

    2005-01-01

    CM chondrites are primitive rocks that experienced aqueous alteration in the early solar system. Their matrices and fine-grained rims (FGRs) sustained the effects of alteration, and the minerals within them hold clues to the aqueous reactions. Sheet silicates are an important product of alteration, and those of the serpentine group are abundant in the CM2 chondrites. Here we expand on our previous efforts to characterize the structure and chemistry of serpentines in CM chondrites and report results on a polyhedral form that is structurally similar to polygonal serpentine. Polygonal serpentine consists of tetrahedral (T) sheets joined to M(2+)-centered octahedral (O) sheets (where (M2+) is primarily Mg(2+) and Fe(2+)), which give rise to a 1:1 (TO) layered structure with a 0.7-nm layer periodicity. The structure is similar to chrysotile in that it consists of concentric lizardite layers wrapped around the fiber axis. However, unlike the rolled-up chrysotile, the tetrahedral sheets of the lizardite layers are periodically inverted and kinked, producing sectors. The relative angles between sectors result in 15- and 30-sided polygons in terrestrial samples.

  4. Human Health Risk Assessment of 16 Priority Polycyclic Aromatic Hydrocarbons in Soils of Chattanooga, Tennessee, USA

    PubMed Central

    Hussar, Erika; Richards, Sean; Lin, Zhi-Qing; Dixon, Robert P.; Johnson, Kevin A.

    2012-01-01

    South Chattanooga has been home to foundries, coke furnaces, chemical, wood preserving, tanning and textile plants for over 100 years. Most of the industries were in place before any significant development of residential property in the area. During the 1950s and 1960s, however, the government purchased inexpensive property and constructed public housing projects in South Chattanooga. Many neighborhoods that surround the Chattanooga Creek were previous dumping grounds for industry. Polycyclic aromatic hydrocarbons (PAHs) comprised the largest component of the dumping and airborne industrial emissions. To address the human exposure to these PAHs, a broad study of South Chattanooga soil contaminant concentrations was conducted on 20 sites across the city. Sixteen priority pollutant PAHs were quantified at two depths (0-10cm and 10-20cm) and compared against reference site soils, as well as to soils from industrially-impacted areas in Germany, China, and the US. From these data, the probability that people would encounter levels exceeding EPA Residential Preliminary Remediation Goals (PRG) was calculated. Results indicate that South Chattanooga soils have relatively high concentrations of total PAHs, specifically Benzo[a]pyrene (B[a]P). These high concentrations of B[a]P were somewhat ubiquitous in South Chattanooga. Indeed, there is a high probability (88%) of encountering soil in South Chattanooga that exceeds the EPA PRG for B[a]P. However, there is a low probability (15%) of encountering a site with ∑PAHs exceeding EPA PRG guidelines. PMID:23243323

  5. Effects of soil mechanical resistance on nematode community structure under conventional sugarcane and remaining of Atlantic Forest.

    PubMed

    de Oliveira Cardoso, Mércia; Pedrosa, Elvira M R; Rolim, Mário M; Silva, Enio F F E; de Barros, Patrícia A

    2012-06-01

    Nematodes present high potential as a biological indicator of soil quality. In this work, it was evaluated relations between soil physical properties and nematode community under sugarcane cropping and remaining of Atlantic Forest areas in Northeastern Pernambuco, Brazil. Soil samples were collected from September to November 2009 along two 200-m transects in both remaining of Atlantic Forest and sugarcane field at deeps of 0-10, 10-20, 20-30, 30-40, and 40-50 cm. For soil characterization, it was carried out analysis of soil size, water content, total porosity, bulk density, and particle density. The level of soil mechanical resistance was evaluated through a digital penetrometer. Nematodes were extracted per 300 cm(3) of soil through centrifugal flotation in sucrose being quantified, classified according trophic habit, and identified in level of genus or family. Data were analyzed using Pearson correlation at 5% of probability. Geostatistical analysis showed that the penetration resistance, water content, total porosity, and bulk density on both forest and cultivated area exhibited spatial dependence at the sampled scale, and their experimental semivariograms were fitted to spherical and exponential models. In forest area, the ectoparasites and free-living nematodes exhibited spherical model. In sugarcane field, the soil nematodes exhibited pure nugget effect. Pratylenchus sp. and Helicotylenchus sp. were prevalent in sugarcane field, but in forest, there was prevalence of Dorylaimidae and Rhabditidae. Total amount of nematode did not differ between environments; however, community trophic structure in forest presented prevalence of free-living nematodes: omnivores followed by bacterial-feeding soil nematodes, while plant-feeding nematodes were prevalent in sugarcane field. The nematode diversity was higher in the remaining of Atlantic Forest. However, the soil mechanical resistance was higher under sugarcane cropping, affecting more directly the free

  6. Impact of different tillage treatments on soil respiration and microbial activity for different agricultural used soils in Austria

    NASA Astrophysics Data System (ADS)

    Klik, Andreas; Scholl, Gerlinde; Baatar, Undrakh-Od

    2015-04-01

    Soils can act as a net sink for sequestering carbon and thus attenuating the increase in atmospheric carbon dioxide if appropriate soil and crop management is applied. Adapted soil management strategies like less intensive or even no tillage treatments may result in slower mineralization of soil organic carbon and enhanced carbon sequestration. In order to assess the impact of different soil tillage systems on carbon dioxide emissions due to soil respiration and on soil biological activity parameters, a field study of three years duration (2007-2010)has been performed at different sites in Austria. Following tillage treatments were compared: 1) conventional tillage (CT) with plough with and without cover crop during winter period, 2) reduced tillage (RT) with cultivator with cover crop, and 3) no-till (NT) with cover crop. Each treatment was replicated three times. At two sites with similar climatic conditions but different soil textures soil CO2 efflux was measured during the growing seasons in intervals of one to two weeks using a portable soil respiration system consisting of a soil respiration chamber attached to an infrared gas analyzer. Additionally, concurrent soil temperature and soil water contents of the top layer (0-5 cm)were measured. For these and additional three other sites with different soil and climatic conditions soil samples were taken to assess the impact of tillage treatment on soil biological activity parameters. In spring, summer and autumn samples were taken from each plot at the soil depth of 0-10, 10-20, and 20-30 cm to analyze soil microbial respiration (MR), substrate induced respiration (SIR), beta-glucasidase activity (GLU) and dehydrogenase (BHY). Samples were sieved (2 mm) and stored at 4 °C in a refrigerator. Analyses of were performed within one month after sampling. The measurements show a high spatial variability of soil respiration data even within one plot. Nevertheless, the level of soil carbon dioxide efflux was similar for

  7. Decay Data Evaluation Project (DDEP): evaluation of the main 243Cm and 245Cm decay characteristics.

    PubMed

    Chechev, Valery P

    2012-09-01

    The results of new decay data evaluations are presented for (243)Cm (α) decay to nuclear levels in (239)Pu and (245)Cm (α) decay to nuclear levels in (241)Pu. These evaluated data have been obtained within the Decay Data Evaluation Project using information published up to 2011.

  8. [Effects of irrigation quota on moisture and salt redistribution in apple orchard soil in arid region].

    PubMed

    Guo, Quan-En; Wang, Yi-Quan; Nan, Li-Li; Cao, Shi-Yu

    2013-07-01

    Taking the salinized apple orchard soil in Qin'an County of Gansu Province, Northwest China as test object, a field experiment was conducted to study the effects of different irrigation quota (0, 900, 1800, 2700, and 3600 m3 x hm(-2)) on the redistribution of moisture and salt in 0-100 cm soil profile on the 10, 20, and 30 d during apple florescence stage. With the increase of irrigation quota, the leached depth of Na+ increased and its hysteretic effect of redistribution was more obvious, "the zero flux plane" of Ca2+ disappeared gradually, the scope of "the zero flux plane" of Mg2+ increased gradually, the leaching-migration mode of Cl- changed from "fluctuation" to "straight-line" and the evaporation-migration changed from "fluctuation" to "ladder", the redistribution pattern of SO4(2-) showed "point", and the position of redistribution and accumulation of HCO3- shifted gradually from the bottom to upper layer in soil profile. In the middle of the soil profile with deeper groundwater table, there existed a "zero flux plane" of salt, which shifted gradually from the upper layer to the bottom during the redistribution of moisture in soil profile, embodying the characteristics of moisture depletion in upland soils. When the irrigation quota was between 2700 and 3600 m3 x hm(-2), irrigation was helpful to the leaching of salt and water-soluble Na+ in the 0-100 cm soil profile. However, when the irrigation quota was < 1800 m3 x hm(-2), irrigation accelerated the salt accumulation in surface soil. Therefore, from the viewpoints of salt leaching and water-saving, an irrigation quota of 1800-2700 m3 x hm(-2) in spring would be more appropriate for the salinized apple orchard soil in arid regions. PMID:24175515

  9. [Effects of irrigation quota on moisture and salt redistribution in apple orchard soil in arid region].

    PubMed

    Guo, Quan-En; Wang, Yi-Quan; Nan, Li-Li; Cao, Shi-Yu

    2013-07-01

    Taking the salinized apple orchard soil in Qin'an County of Gansu Province, Northwest China as test object, a field experiment was conducted to study the effects of different irrigation quota (0, 900, 1800, 2700, and 3600 m3 x hm(-2)) on the redistribution of moisture and salt in 0-100 cm soil profile on the 10, 20, and 30 d during apple florescence stage. With the increase of irrigation quota, the leached depth of Na+ increased and its hysteretic effect of redistribution was more obvious, "the zero flux plane" of Ca2+ disappeared gradually, the scope of "the zero flux plane" of Mg2+ increased gradually, the leaching-migration mode of Cl- changed from "fluctuation" to "straight-line" and the evaporation-migration changed from "fluctuation" to "ladder", the redistribution pattern of SO4(2-) showed "point", and the position of redistribution and accumulation of HCO3- shifted gradually from the bottom to upper layer in soil profile. In the middle of the soil profile with deeper groundwater table, there existed a "zero flux plane" of salt, which shifted gradually from the upper layer to the bottom during the redistribution of moisture in soil profile, embodying the characteristics of moisture depletion in upland soils. When the irrigation quota was between 2700 and 3600 m3 x hm(-2), irrigation was helpful to the leaching of salt and water-soluble Na+ in the 0-100 cm soil profile. However, when the irrigation quota was < 1800 m3 x hm(-2), irrigation accelerated the salt accumulation in surface soil. Therefore, from the viewpoints of salt leaching and water-saving, an irrigation quota of 1800-2700 m3 x hm(-2) in spring would be more appropriate for the salinized apple orchard soil in arid regions.

  10. An engineering model 30 cm ion thruster

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; King, H. J.; Schnelker, D. E.

    1973-01-01

    Thruster development at Hughes Research Laboratories and NASA Lewis Research Center has brought the 30-cm mercury bombardment ion thruster to the state of an engineering model. This thruster has been designed to have sufficient internal strength for direct mounting on gimbals, to weigh 7.3 kg, to operate with a corrected overall efficiency of 71%, and to have 10,000 hours lifetime. Subassemblies, such as the ion optical system, isolators, etc., have been upgraded to meet launch qualification standards. This paper presents a summary of the design specifications and performance characteristics which define the interface between the thruster module and the remainder of the propulsion system.

  11. Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor

    PubMed Central

    Kojima, Yuki; Shigeta, Ryo; Miyamoto, Naoya; Shirahama, Yasutomo; Nishioka, Kazuhiro; Mizoguchi, Masaru; Kawahara, Yoshihiro

    2016-01-01

    Soil moisture is an important property for agriculture, but currently commercialized soil moisture sensors are too expensive for many farmers. The objective of this study is to develop a low-cost soil moisture sensor using capacitors on a film substrate and a capacitive touch integrated circuit. The performance of the sensor was evaluated in two field experiments: a grape field and a mizuna greenhouse field. The developed sensor captured dynamic changes in soil moisture at 10, 20, and 30 cm depth, with a period of 10–14 days required after sensor installation for the contact between capacitors and soil to settle down. The measured soil moisture showed the influence of individual sensor differences, and the influence masked minor differences of less than 0.05 m3·m−3 in the soil moisture at different locations. However, the developed sensor could detect large differences of more than 0.05 m3·m−3, as well as the different magnitude of changes, in soil moisture. The price of the developed sensor was reduced to 300 U.S. dollars and can be reduced even more by further improvements suggested in this study and by mass production. Therefore, the developed sensor will be made more affordable to farmers as it requires low financial investment, and it can be utilized for decision-making in irrigation. PMID:27537881

  12. Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor.

    PubMed

    Kojima, Yuki; Shigeta, Ryo; Miyamoto, Naoya; Shirahama, Yasutomo; Nishioka, Kazuhiro; Mizoguchi, Masaru; Kawahara, Yoshihiro

    2016-08-15

    Soil moisture is an important property for agriculture, but currently commercialized soil moisture sensors are too expensive for many farmers. The objective of this study is to develop a low-cost soil moisture sensor using capacitors on a film substrate and a capacitive touch integrated circuit. The performance of the sensor was evaluated in two field experiments: a grape field and a mizuna greenhouse field. The developed sensor captured dynamic changes in soil moisture at 10, 20, and 30 cm depth, with a period of 10-14 days required after sensor installation for the contact between capacitors and soil to settle down. The measured soil moisture showed the influence of individual sensor differences, and the influence masked minor differences of less than 0.05 m³·m(-3) in the soil moisture at different locations. However, the developed sensor could detect large differences of more than 0.05 m³·m(-3), as well as the different magnitude of changes, in soil moisture. The price of the developed sensor was reduced to 300 U.S. dollars and can be reduced even more by further improvements suggested in this study and by mass production. Therefore, the developed sensor will be made more affordable to farmers as it requires low financial investment, and it can be utilized for decision-making in irrigation.

  13. Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor.

    PubMed

    Kojima, Yuki; Shigeta, Ryo; Miyamoto, Naoya; Shirahama, Yasutomo; Nishioka, Kazuhiro; Mizoguchi, Masaru; Kawahara, Yoshihiro

    2016-01-01

    Soil moisture is an important property for agriculture, but currently commercialized soil moisture sensors are too expensive for many farmers. The objective of this study is to develop a low-cost soil moisture sensor using capacitors on a film substrate and a capacitive touch integrated circuit. The performance of the sensor was evaluated in two field experiments: a grape field and a mizuna greenhouse field. The developed sensor captured dynamic changes in soil moisture at 10, 20, and 30 cm depth, with a period of 10-14 days required after sensor installation for the contact between capacitors and soil to settle down. The measured soil moisture showed the influence of individual sensor differences, and the influence masked minor differences of less than 0.05 m³·m(-3) in the soil moisture at different locations. However, the developed sensor could detect large differences of more than 0.05 m³·m(-3), as well as the different magnitude of changes, in soil moisture. The price of the developed sensor was reduced to 300 U.S. dollars and can be reduced even more by further improvements suggested in this study and by mass production. Therefore, the developed sensor will be made more affordable to farmers as it requires low financial investment, and it can be utilized for decision-making in irrigation. PMID:27537881

  14. Effects of short term bioturbation by common voles on biogeochemical soil variables.

    PubMed

    Wilske, Burkhard; Eccard, Jana A; Zistl-Schlingmann, Marcus; Hohmann, Maximilian; Methler, Annabel; Herde, Antje; Liesenjohann, Thilo; Dannenmann, Michael; Butterbach-Bahl, Klaus; Breuer, Lutz

    2015-01-01

    Bioturbation contributes to soil formation and ecosystem functioning. With respect to the active transport of matter by voles, bioturbation may be considered as a very dynamic process among those shaping soil formation and biogeochemistry. The present study aimed at characterizing and quantifying the effects of bioturbation by voles on soil water relations and carbon and nitrogen stocks. Bioturbation effects were examined based on a field set up in a luvic arenosol comprising of eight 50 × 50 m enclosures with greatly different numbers of common vole (Microtus arvalis L., ca. 35-150 individuals ha-1 mth-1). Eleven key soil variables were analyzed: bulk density, infiltration rate, saturated hydraulic conductivity, water holding capacity, contents of soil organic carbon (SOC) and total nitrogen (N), CO2 emission potential, C/N ratio, the stable isotopic signatures of 13C and 15N, and pH. The highest vole densities were hypothesized to cause significant changes in some variables within 21 months. Results showed that land history had still a major influence, as eight key variables displayed an additional or sole influence of topography. However, the δ15N at depths of 10-20 and 20-30 cm decreased and increased with increasing vole numbers, respectively. Also the CO2 emission potential from soil collected at a depth of 15-30 cm decreased and the C/N ratio at 5-10 cm depth narrowed with increasing vole numbers. These variables indicated the first influence of voles on the respective mineralization processes in some soil layers. Tendencies of vole activity homogenizing SOC and N contents across layers were not significant. The results of the other seven key variables did not confirm significant effects of voles. Thus overall, we found mainly a first response of variables that are indicative for changes in biogeochemical dynamics but not yet of those representing changes in pools. PMID:25954967

  15. Effects of short term bioturbation by common voles on biogeochemical soil variables.

    PubMed

    Wilske, Burkhard; Eccard, Jana A; Zistl-Schlingmann, Marcus; Hohmann, Maximilian; Methler, Annabel; Herde, Antje; Liesenjohann, Thilo; Dannenmann, Michael; Butterbach-Bahl, Klaus; Breuer, Lutz

    2015-01-01

    Bioturbation contributes to soil formation and ecosystem functioning. With respect to the active transport of matter by voles, bioturbation may be considered as a very dynamic process among those shaping soil formation and biogeochemistry. The present study aimed at characterizing and quantifying the effects of bioturbation by voles on soil water relations and carbon and nitrogen stocks. Bioturbation effects were examined based on a field set up in a luvic arenosol comprising of eight 50 × 50 m enclosures with greatly different numbers of common vole (Microtus arvalis L., ca. 35-150 individuals ha-1 mth-1). Eleven key soil variables were analyzed: bulk density, infiltration rate, saturated hydraulic conductivity, water holding capacity, contents of soil organic carbon (SOC) and total nitrogen (N), CO2 emission potential, C/N ratio, the stable isotopic signatures of 13C and 15N, and pH. The highest vole densities were hypothesized to cause significant changes in some variables within 21 months. Results showed that land history had still a major influence, as eight key variables displayed an additional or sole influence of topography. However, the δ15N at depths of 10-20 and 20-30 cm decreased and increased with increasing vole numbers, respectively. Also the CO2 emission potential from soil collected at a depth of 15-30 cm decreased and the C/N ratio at 5-10 cm depth narrowed with increasing vole numbers. These variables indicated the first influence of voles on the respective mineralization processes in some soil layers. Tendencies of vole activity homogenizing SOC and N contents across layers were not significant. The results of the other seven key variables did not confirm significant effects of voles. Thus overall, we found mainly a first response of variables that are indicative for changes in biogeochemical dynamics but not yet of those representing changes in pools.

  16. Polynomial response of 2,4-D mineralization to temperature in soils at varying soil moisture contents, slope positions and depths.

    PubMed

    Shymko, Janna L; Farenhorst, Annemieke; Zvomuya, Francis

    2011-01-01

    The herbicide 2,4-D [2,4-(dichlorophenoxy) acetic acid] is a widely used broadleaf control agent in cereal production systems. Although 2,4-D soil-residual activity (half-lives) are typically less than 10 days, this herbicide also has as a short-term leaching potential due to its relatively weak retention by soil constituents. Herbicide residual effects and leaching are influenced by environmental variables such as soil moisture and temperature. The objective of this study was to determine impacts of these environmental variables on the magnitude and extent of 2,4-D mineralization in a cultivated undulating Manitoba prairie landscape. Microcosm incubation experiments were utilized to assess 2,4-D half-lives and total mineralization using a 4 × 4 × 3 × 2 factorial design (with soil temperature at 4 levels: 5, 10, 20 and 40°C; soil moisture at 4 levels: 60, 85, 110, 135 % of field capacity; slope position at 3 levels: upper-, mid- and lower-slopes; and soil depth at 2 levels: 0-5 cm and 5-15 cm). Half-lives (t(½)) varied from 3 days to 51 days with the total 2,4-D mineralization (M(T)) ranging from 5.8 to 50.9 %. The four-way interaction (temperature × moisture × slope × depth) significantly (p < 0.001) influenced both t(½) and M(T). Second-order polynomial equations best described the relations of temperature with t(½) and M(T) as was expected from a biological system. However, the interaction and variability of t(½) and M(T) among different temperatures, soil moistures, slope positions, and soil depth combinations indicates that the complex nature of these interacting factors should be considered when applying 2,4-D in agricultural fields and in utilizing these parameters in pesticide fate models. PMID:21500076

  17. Polynomial response of 2,4-D mineralization to temperature in soils at varying soil moisture contents, slope positions and depths.

    PubMed

    Shymko, Janna L; Farenhorst, Annemieke; Zvomuya, Francis

    2011-01-01

    The herbicide 2,4-D [2,4-(dichlorophenoxy) acetic acid] is a widely used broadleaf control agent in cereal production systems. Although 2,4-D soil-residual activity (half-lives) are typically less than 10 days, this herbicide also has as a short-term leaching potential due to its relatively weak retention by soil constituents. Herbicide residual effects and leaching are influenced by environmental variables such as soil moisture and temperature. The objective of this study was to determine impacts of these environmental variables on the magnitude and extent of 2,4-D mineralization in a cultivated undulating Manitoba prairie landscape. Microcosm incubation experiments were utilized to assess 2,4-D half-lives and total mineralization using a 4 × 4 × 3 × 2 factorial design (with soil temperature at 4 levels: 5, 10, 20 and 40°C; soil moisture at 4 levels: 60, 85, 110, 135 % of field capacity; slope position at 3 levels: upper-, mid- and lower-slopes; and soil depth at 2 levels: 0-5 cm and 5-15 cm). Half-lives (t(½)) varied from 3 days to 51 days with the total 2,4-D mineralization (M(T)) ranging from 5.8 to 50.9 %. The four-way interaction (temperature × moisture × slope × depth) significantly (p < 0.001) influenced both t(½) and M(T). Second-order polynomial equations best described the relations of temperature with t(½) and M(T) as was expected from a biological system. However, the interaction and variability of t(½) and M(T) among different temperatures, soil moistures, slope positions, and soil depth combinations indicates that the complex nature of these interacting factors should be considered when applying 2,4-D in agricultural fields and in utilizing these parameters in pesticide fate models.

  18. Effects of Straw Return in Deep Soils with Urea Addition on the Soil Organic Carbon Fractions in a Semi-Arid Temperate Cornfield.

    PubMed

    Zou, Hongtao; Ye, Xuhong; Li, Jiaqi; Lu, Jia; Fan, Qingfeng; Yu, Na; Zhang, Yuling; Dang, Xiuli; Zhang, Yulong

    2016-01-01

    Returning straw to deep soil layers by using a deep-ditching-ridge-ploughing method is an innovative management practice that improves soil quality by increasing the soil organic carbon (SOC) content. However, the optimum quantity of straw return has not been determined. To solve this practical production problem, the following treatments with different amounts of corn straw were investigated: no straw return, CK; 400 kg ha-1 straw, S400; 800 kg ha-1 straw, S800; 1200 kg ha-1 straw, S1200; and 1600 kg ha-1 straw, S1600. After straw was returned to the soil for two years, the microbial biomass C (MBC), easily oxidized organic C (EOC), dissolved organic C (DOC) and light fraction organic C (LFOC) content were measured at three soil depths (0-10, 10-20, and 20-40 cm). The results showed that the combined application of 800 kg ha-1 straw significantly increased the EOC, MBC, and LFOC contents and was a suitable agricultural practice for this region. Moreover, our results demonstrated that returning straw to deep soil layers was effective for increasing the SOC content. PMID:27123594

  19. Redundant Array Configurations for 21 cm Cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Parsons, Aaron R.

    2016-08-01

    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.

  20. THE METALLICITY OF THE CM DRACONIS SYSTEM

    SciTech Connect

    Terrien, Ryan C.; Fleming, Scott W.; Mahadevan, Suvrath; Deshpande, Rohit; Bender, Chad F.; Ramsey, Lawrence W.; Feiden, Gregory A.

    2012-11-20

    The CM Draconis system comprises two eclipsing mid-M dwarfs of nearly equal mass in a 1.27 day orbit. This well-studied eclipsing binary has often been used for benchmark tests of stellar models, since its components are among the lowest mass stars with well-measured masses and radii ({approx}< 1% relative precision). However, as with many other low-mass stars, non-magnetic models have been unable to match the observed radii and effective temperatures for CM Dra at the 5%-10% level. To date, the uncertain metallicity of the system has complicated comparison of theoretical isochrones with observations. In this Letter, we use data from the SpeX instrument on the NASA Infrared Telescope Facility to measure the metallicity of the system during primary and secondary eclipses, as well as out of eclipse, based on an empirical metallicity calibration in the H and K near-infrared (NIR) bands. We derive an [Fe/H] = -0.30 {+-} 0.12 that is consistent across all orbital phases. The determination of [Fe/H] for this system constrains a key dimension of parameter space when attempting to reconcile model isochrone predictions and observations.

  1. Combining galaxy and 21-cm surveys

    NASA Astrophysics Data System (ADS)

    Cohn, J. D.; White, Martin; Chang, Tzu-Ching; Holder, Gil; Padmanabhan, Nikhil; Doré, Olivier

    2016-04-01

    Acoustic waves travelling through the early Universe imprint a characteristic scale in the clustering of galaxies, QSOs and intergalactic gas. This scale can be used as a standard ruler to map the expansion history of the Universe, a technique known as baryon acoustic oscillations (BAO). BAO offer a high-precision, low-systematics means of constraining our cosmological model. The statistical power of BAO measurements can be improved if the `smearing' of the acoustic feature by non-linear structure formation is undone in a process known as reconstruction. In this paper, we use low-order Lagrangian perturbation theory to study the ability of 21-cm experiments to perform reconstruction and how augmenting these surveys with galaxy redshift surveys at relatively low number densities can improve performance. We find that the critical number density which must be achieved in order to benefit 21-cm surveys is set by the linear theory power spectrum near its peak, and corresponds to densities achievable by upcoming surveys of emission line galaxies such as eBOSS and DESI. As part of this work, we analyse reconstruction within the framework of Lagrangian perturbation theory with local Lagrangian bias, redshift-space distortions, {k}-dependent noise and anisotropic filtering schemes.

  2. The Metallicity of the CM Draconis System

    NASA Astrophysics Data System (ADS)

    Terrien, Ryan C.; Fleming, Scott W.; Mahadevan, Suvrath; Deshpande, Rohit; Feiden, Gregory A.; Bender, Chad F.; Ramsey, Lawrence W.

    2012-11-01

    The CM Draconis system comprises two eclipsing mid-M dwarfs of nearly equal mass in a 1.27 day orbit. This well-studied eclipsing binary has often been used for benchmark tests of stellar models, since its components are among the lowest mass stars with well-measured masses and radii (lsim 1% relative precision). However, as with many other low-mass stars, non-magnetic models have been unable to match the observed radii and effective temperatures for CM Dra at the 5%-10% level. To date, the uncertain metallicity of the system has complicated comparison of theoretical isochrones with observations. In this Letter, we use data from the SpeX instrument on the NASA Infrared Telescope Facility to measure the metallicity of the system during primary and secondary eclipses, as well as out of eclipse, based on an empirical metallicity calibration in the H and K near-infrared (NIR) bands. We derive an [Fe/H] = -0.30 ± 0.12 that is consistent across all orbital phases. The determination of [Fe/H] for this system constrains a key dimension of parameter space when attempting to reconcile model isochrone predictions and observations.

  3. Fuel elements of research reactor CM

    SciTech Connect

    Kozlov, A.V.; Morozov, A.V.; Vatulin, A.V.; Ershov, S.A.

    2013-07-01

    In 1961 the CM research reactor was commissioned at the Research Institute of Atomic Reactors (Dimitrovgrad, Russia), it was intended to carry on investigations and the production of transuranium nuclides. The reactor is of a tank type. Original fuel assembly contained plate fuels that were spaced with vanes and corrugated bands. Nickel was used as a cladding material, fuel meat was produced from UO{sub 2} + electrolytic nickel composition. Fuel plates have been replaced by self-spacing cross-shaped dispersion fuels clad in stainless steel. In 2005 the reactor was updated. The purpose of this updating was to increase the quantity of irradiation channels in the reactor core and to improve the neutron balance. The updating was implemented at the expense of 20 % reduction in the quantity of fuel elements in the core which released a space for extra channels and decreased the mass of structural materials in the core. The updated reactor is loaded with modified standard fuel elements with 20 % higher uranium masses. At the same time stainless steel in fuel assembly shrouds was substituted by zirconium alloy. Today in progress are investigations and work to promote the second stage of reactor updating that involve developments of cross-shaped fuel elements having low neutron absorption matrix materials. This article gives an historical account of the design and main technical changes that occurred for the CM reactor since its commissioning.

  4. Aliphatic amines in Antarctic CR2, CM2, and CM1/2 carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Aponte, José C.; McLain, Hannah L.; Dworkin, Jason P.; Elsila, Jamie E.

    2016-09-01

    Meteoritic water-soluble organic compounds provide a unique record of the processes that occurred during the formation of the solar system and the chemistry preceding the origins of life on Earth. We have investigated the molecular distribution, compound-specific δ13C isotopic ratios and enantiomeric compositions of aliphatic monoamines present in the hot acid-water extracts of the carbonaceous chondrites LAP 02342 (CR2), GRA 95229 (CR2), LON 94101 (CM2), LEW 90500 (CM2), and ALH 83100 (CM1/2). Analyses of the concentration of monoamines in these meteorites revealed: (a) the CR2 chondrites studied here contain higher concentrations of monoamines relative to the analyzed CM2 chondrites; (b) the concentration of monoamines decreases with increasing carbon number; and (c) isopropylamine is the most abundant monoamine in these CR2 chondrites, while methylamine is the most abundant amine species in these CM2 and CM1/2 chondrites. The δ13C values of monoamines in CR2 chondrite do not correlate with the number of carbon atoms; however, in CM2 and CM1/2 chondrites, the 13C enrichment decreases with increasing monoamine carbon number. The δ13C values of methylamine in CR2 chondrites ranged from -1 to +10‰, while in CM2 and CM1/2 chondrites the δ13C values of methylamine ranged from +41 to +59‰. We also observed racemic compositions of sec-butylamine, 3-methyl-2-butylamine, and sec-pentylamine in the studied carbonaceous chondrites. Additionally, we compared the abundance and δ13C isotopic composition of monoamines to those of their structurally related amino acids. We found that monoamines are less abundant than amino acids in CR2 chondrites, with the opposite being true in CM2 and CM1/2 chondrites. We used these collective data to evaluate different primordial synthetic pathways for monoamines in carbonaceous chondrites and to understand the potential common origins these molecules may share with meteoritic amino acids.

  5. The Evidence for Intravenous Theophylline Levels between 10-20mg/L in Children Suffering an Acute Exacerbation of Asthma: A Systematic Review

    PubMed Central

    2016-01-01

    Background Intravenous theophyllines are a second line treatment for children suffering an acute exacerbation of asthma. Various guidelines and formularies recommend aiming for serum theophylline levels between 10-20mg/l. This review aims to assess the evidence underpinning this recommendation. Methods A systematic review comparing outcomes of children who achieved serum theophylline concentrations between 10-20mg/l with those who did not. Primary outcomes were time until resolution of symptoms, mortality and need for mechanical ventilation. Secondary outcomes were date until discharge criteria are met, actual discharge, adverse effects and FEV1. Data sources MEDLINE, CINAHL, CENTRAL and Web of Science. Search performed in October 2015. Eligibility criteria Interventional or observational studies utilizing intravenous theophyllines for an acute exacerbation of asthma in children where serum theophylline levels and clinical outcomes were measured. Findings 10 RCTs and 2 observational studies were included. Children with serum levels between 10-20mg/l did not have a reduction in duration of symptoms, length of hospital stay or need for mechanical ventilation or better spirometric results compared with levels <10mg/l. Levels above 20mg/l are not associated with higher rates of adverse effects. This study is limited due to heterogeneity in the way theophylline levels were reported and poor surveillance of adverse effects across studies. Conclusion Dosing strategies aiming for levels between 10-20mg/l are not associated with better outcomes. Clinicians should rely on clinical outcomes and not serum levels when using intravenous theophyllines in children suffering an acute exacerbation of asthma. PMID:27096742

  6. [Soil carbon and nitrogen sequestration following cropland to forage grassland conversion in the marginal land in the middle of Heihe River basin, northwest China].

    PubMed

    Su, Yong-zhong

    2006-07-01

    Changes in soil organic carbon (SOC) and total nitrogen (TN) stocks were studied following croplands were converted to forage grasslands (alfalfa) for five years on the marginal land at the edge of oasis in the middle reaches of Heihe river basin. Soil from 12 paired forage land/adjacent cropland on the two soil types (Typic Torripsamments and Typic Calciorthids) was sampled at the three depths of 0-5, 5-10 and 10-20 cm and analyzed for SOC and TN, particulate organic carbon (POC) and nitrogen (PON). The studied soils had very low SOC and N concentrations. SOC stock at the 0-20 cm depth increased by 22.1%-27.8% after conversion of annually crop to perennial alfalfa for four years, and carbon sequestration rate was estimated to be on average 0.47 Mg/(hm2 x a). The greatest change in SOC stock occurred at the 0-5 cm surface layer with an increase of 32%-66%. No significant TN stock was found at the 0-20 cm depth, however, it increased at the 0-5 cm surface layer by 12.8% and 48.1% for Typic Torripsamments and Typic Calciorthids, respectively. Changes in POC and PON stocks were more significant than those in SOC and total N following conversion of crop to forage, and the percentage of distributions of POC and PON increased. POC and PON stocks at the 0-20 cm depth increased by 22.8%-42.7% and 18.6%-57.6% with the greatest increases at the 0-5 cm layer. The increase in soil C pool was mainly attributed to the increase of POC formation after the marginal lands converted to perennial forage cover. Typic Calciorthids with lower SOC concentration had relatively lower C sequestration rate but more significant effects of C and N sequestration compared with Typic Torripsamments.

  7. Overcoming the Challenges of 21cm Cosmology

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan

    The highly-redshifted 21cm line of neutral hydrogen is one of the most promising and unique probes of cosmology for the next decade and beyond. The past few years have seen a number of dedicated experiments targeting the 21cm signal from the Epoch of Reionization (EoR) begin operation, including the LOw-Frequency ARray (LOFAR), the Murchison Widefield Array (MWA), and the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER). For these experiments to yield cosmological results, they require new calibration and analysis algorithms which will need to achieve unprecedented levels of separation between the 21cm signal and contaminating foreground emission. Although much work has been spent developing these algorithms over the past decade, their success or failure will ultimately depend on their ability to overcome the complications associated with real-world systems and their inherent complications. The work in this dissertation is closely tied to the late-stage commissioning and early observations with PAPER. The first two chapters focus on developing calibration algorithms to overcome unique problems arising in the PAPER system. To test these algorithms, I rely on not only simulations, but on commissioning observations, ultimately tying the success of the algorithm to its performance on actual, celestial data. The first algorithm works to correct gain-drifts in the PAPER system caused by the heating and cooling of various components (the amplifiers and above ground co-axial cables, in particular). It is shown that a simple measurement of the ambient temperature can remove ˜ 10% gain fluctuations in the observed brightness of calibrator sources. This result is highly encouraging for the ability of PAPER to remove a potentially dominant systematic in its power spectrum and cataloging measurements without resorting to a complicated system overhaul. The second new algorithm developed in this dissertation solves a major calibration challenge not

  8. Comparison of wheat and safflower cultivation areas in terms of total carbon and some soil properties under semi-arid climate conditions

    NASA Astrophysics Data System (ADS)

    Turgut, B.

    2015-03-01

    The aim of this study was to compare the soils of the wheat cultivation area (WCA) and the safflower cultivation area (SCA) within semi-arid climate zones in terms of their total carbon, nitrogen, sulphur contents, particle size distribution, aggregate stability, organic matter content, and pH values. This study presents the results from the analyses of 140 soil samples taken at two soil layers (0-10 and 10-20 cm) in the cultivation areas. At the end of the study, it has been established that there were significant differences between the cultivation areas in terms of soil physical properties such as total carbon (TC), total nitrogen (TN), total sulphur (TS) contents and pH, while only the TN content resulted in significantly different between the two soil layers. Moreover significant differences were identified in the cultivation areas in terms of soil physical properties including clay and sand contents, aggregate stability and organic matter content, whereas the only significant difference found among the soil layers was that of their silt content. Since safflower contains higher amounts of biomass than wheat, we found higher amounts of organic matter content and, therefore, higher amounts of TN and TS content in the soils of the SCA. In addition, due to the fact that wheat contains more cellulose - which takes longer to decompose - the TC content of the soil in the WCA were found to be higher than that of the SCA. The results also revealed that the WCA had a higher carbon storage capacity.

  9. Comparison of wheat and safflower cultivation areas in terms of total carbon and some soil properties under semi-arid climate conditions

    NASA Astrophysics Data System (ADS)

    Turgut, B.

    2015-06-01

    The aim of this study was to compare the soils of the wheat cultivation area (WCA) and the safflower cultivation area (SCA) within semi-arid climate zones in terms of their total carbon, nitrogen, and sulphur contents, particle size distribution, aggregate stability, organic matter content, and pH values. This study presents the results from the analyses of 140 soil samples taken at two soil layers (0-10 and 10-20 cm) in the cultivation areas. At the end of the study, it was established that there were significant differences between the cultivation areas in terms of soil physical properties such as total carbon (TC), total nitrogen (TN), total sulphur (TS) contents and pH, while only the TN content was significantly different between the two soil layers. Moreover, significant differences were identified between the cultivation areas in terms of soil physical properties including clay and sand contents, aggregate stability, and organic matter content, whereas the only significant difference found among the soil layers was that of their silt content. Since safflower contains higher amounts of biomass than wheat, we found higher amounts of organic matter content and, therefore, higher amounts of TN and TS content in the soils of the SCA. In addition, due to the fact that wheat contains more cellulose - which takes longer to decompose - the TC content of the soil in the WCA was found to be higher than that in the SCA. The results also revealed that the WCA had a higher carbon storage capacity.

  10. 70-cm radar observations of 433 Eros

    NASA Technical Reports Server (NTRS)

    Campbell, D. B.; Pettengill, G. H.; Shapiro, I. I.

    1976-01-01

    Radar observations of 433 Eros were made at the Arecibo Observatory using a wavelength of 70 cm during the close approach of Eros to earth in mid-January, 1975. A peak radar cross section of plus or minus 15 sq km was observed. The spectral broadening obtained was approximately 30 Hz, which is consistent with a value of 16 km for the maximum radius of the asteroid. The surface of Eros appears to be relatively rough at the scale of a wavelength as compared to the surfaces of the terrestrial planets and the moon. The composition of the surface is not well determined, except that it cannot be a highly conducting metal. A single measurement each of round-trip echo times delay and Doppler shift was made.

  11. NASA 30 Cm Ion Thruster Development Status

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Haag, Thomas W.; Rawlin, Vincent K.; Kussmaul, Michael T.

    1995-01-01

    A 30 cm diameter xenon ion thruster is under development at NASA to provide an ion propulsion option for missions of national interest and it is an element of the NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) program established to validate ion propulsion for space flight applications. The thruster has been developed to an engineering model level and it incorporates innovations in design, materials, and fabrication techniques compared to those employed to conventional ion thrusters. The performance of both functional and engineering model thrusters has been assessed including thrust stand measurements, over an input power range of 0.5-2.3 kW. Attributes of the engineering model thruster include an overall mass of 6.4 kg, and an efficiency of 65 percent and thrust of 93 mN at 2.3 kW input power. This paper discusses the design, performance, and lifetime expectations of the functional and engineering model thrusters under development at NASA.

  12. 21 Cm Tomography With the Alfalfa Survey

    NASA Astrophysics Data System (ADS)

    Fry, Alexander B.; Boutan, C.; Carroll, P. A.; Hazelton, B.; Morales, M. F.

    2011-01-01

    Neutral hydrogen (HI) 21cm intensity mapping, or HI tomography is a promising technique being utilized by several upcoming experiments (LOFAR, MWA, SKA). The measurement of volume averaged neutral hydrogen mass density in synoptic sky surveys can be applied to the study of the HI mass function, the distribution of large scale structure, the reionization of the universe, and the expansion history of the universe through such standard rulers as baryonic acoustic oscillations. In order to prepare for future experiments, in particular the Murchison Widefield Array (MWA), we analyze the Arecbo Legacy Fast ALFA (Arecibo L-Band Feed Array) Feed Array (ALFALFA) survey data to probe the spatial density variations of HI in our local universe (z <0.06) where data is currently available. We address challenges unique to data of this kind, such as identifying and subtracting out signal from RFI and local galactic sources, and characterizing the ALFA array beam pattern which dictates sensitivity and resolution.

  13. The 30-cm ion thruster power processor

    NASA Technical Reports Server (NTRS)

    Herron, B. G.; Hopper, D. J.

    1978-01-01

    A power processor unit for powering and controlling the 30 cm Mercury Electron-Bombardment Ion Thruster was designed, fabricated, and tested. The unit uses a unique and highly efficient transistor bridge inverter power stage in its implementation. The system operated from a 200 to 400 V dc input power bus, provides 12 independently controllable and closely regulated dc power outputs, and has an overall power conditioning capacity of 3.5 kW. Protective circuitry was incorporated as an integral part of the design to assure failure-free operation during transient and steady-state load faults. The implemented unit demonstrated an electrical efficiency between 91.5 and 91.9 at its nominal rated load over the 200 to 400 V dc input bus range.

  14. [Effects of converting cultivated land into forest land on the characteristics of soil organic carbon in limestone mountain area in Ruichang, Jiangxi].

    PubMed

    Liu, Yuan-qiu; Wang, Fang; Ke, Guo-qing; Wang, Ying-ying; Guo, Shen-mao; Fan, Cheng-fang

    2011-04-01

    Taking the forest lands having been converted from cultivated land for 5 years in Ruichang City of Jiangxi Province as test objects, this paper studied the characteristics of soil organic carbon (SOC) under 4 different conversion models (forest-seedling integration, pure medicinal forest, bamboo-broadleaved mixed forest, and multi-species mixed forest). After the conversion from cultivated land into forestlands, the contents of SOC, microbial biomass carbon (MBC), and mineralizable carbon (PMC) in 0-20 cm soil layer increased by 24.4%, 29%, and 18.4%, respectively, compared with those under the conversion from cultivated land into wasteland (P < 0.05), which indicated that the conversion from cultivated land into forest lands significantly increased the SOC content and SOC storage. The SOC, MBC, and PMC contents in 0-10 cm soil layer were significantly higher than those in 10-20 cm soil layer (P < 0.01), and the differences between the soil layers of the four forest lands were higher than those of the wasteland. Among the 4 conversion models, forest-seedling integration had more obvious effects on SOC. PMID:21774308

  15. Evaluation of Argonne 9-cm and 10-cm Annular Centrifugal Contactors for SHINE Solution Processing

    SciTech Connect

    Wardle, Kent E.; Pereira, Candido; Vandegrift, George

    2015-02-01

    Work is in progress to evaluate the SHINE Medical Technologies process for producing Mo-99 for medical use from the fission of dissolved low-enriched uranium (LEU). This report addresses the use of Argonne annular centrifugal contactors for periodic treatment of the process solution. In a letter report from FY 2013, Pereira and Vandegrift compared the throughput and physical footprint for the two contactor options available from CINC Industries: the V-02 and V-05, which have rotor diameters of 5 cm and 12.7 cm, respectively. They suggested that an intermediately sized “Goldilocks” contactor might provide a better balance between throughput and footprint to meet the processing needs for the uranium extraction (UREX) processing of the SHINE solution to remove undesired fission products. Included with the submission of this letter report are the assembly drawings for two Argonne-design contactors that are in this intermediate range—9-cm and 10-cm rotors, respectively. The 9-cm contactor (drawing number CE-D6973A, stamped February 15, 1978) was designed as a single-stage unit and built and tested in the late 1970s along with other size units, both smaller and larger. In subsequent years, a significant effort to developed annular centrifugal contactors was undertaken to support work at Hanford implementing the transuranic extraction (TRUEX) process. These contactors had a 10-cm rotor diameter and were fully designed as multistage units with four stages per assembly (drawing number CMT-E1104, stamped March 14, 1990). From a technology readiness perspective, these 10-cm units are much farther ahead in the design progression and, therefore, would require significantly less re-working to make them ready for UREX deployment. Additionally, the overall maximum throughput of ~12 L/min is similar to that of the 9-cm unit (10 L/min), and the former could be efficiently operated over much of the same range of throughput. As a result, only the 10-cm units are considered here

  16. Soil fungal community shift evaluation as a potential cadaver decomposition indicator.

    PubMed

    Chimutsa, Monica; Olakanye, Ayodeji O; Thompson, Tim J U; Ralebitso-Senior, T Komang

    2015-12-01

    Fungi metabolise organic matter in situ and so alter both the bio-/physico-chemical properties and microbial community structure of the ecosystem. In particular, they are responsible reportedly for specific stages of decomposition. Therefore, this study aimed to extend previous bacteria-based forensic ecogenomics research by investigating soil fungal community and cadaver decomposition interactions in microcosms with garden soil (20 kg, fresh weight) and domestic pig (Sus scrofa domesticus) carcass (5 kg, leg). Soil samples were collected at depths of 0-10 cm, 10-20 cm and 20-30 cm on days 3, 28 and 77 in the absence (control -Pg) and presence (experimental +Pg) of Sus scrofa domesticus and used for total DNA extraction and nested polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) profiling of the 18S rRNA gene. The Shannon-Wiener (H') community diversity indices were 1.25±0.21 and 1.49±0.30 for the control and experimental microcosms, respectively, while comparable Simpson species dominance (S) values were 0.65±0.109 and 0.75±0.015. Generally, and in contrast to parallel studies of the bacterial 16S rRNA and 16S rDNA profiles, statistical analysis (t-test) of the 18S dynamics showed no mathematically significant shifts in fungal community diversity (H'; p=0.142) and dominance (S; p=0.392) during carcass decomposition, necessitating further investigations.

  17. In vitro percutaneous absorption of cadmium from water and soil into human skin.

    PubMed

    Wester, R C; Maibach, H I; Sedik, L; Melendres, J; DiZio, S; Wade, M

    1992-07-01

    The objective was to determine percutaneous absorption of cadmium as the chloride salt from water and soil into and through human skin. Soil (Yolo County 65-California-57-8) was passed through 10-, 20-, and 48-mesh sieves. Soil retained by 80 mesh was mixed with radioactive cadmium-109 at 13 ppb. Water solutions of cadmium-109 at 116 ppb were prepared for comparative analysis. Human cadaver skin was dermatomed to 500-microns, and used in glass diffusion cells with human plasma as the receptor fluid (3 ml/hr flow rate) for a 16-hr skin application time. Cadmium in water (5 microliters/cm2) penetrated skin to concentrations of 8.8 +/- 0.6 and 12.7 +/- 11.7% of the applied dose from two human skin sources. Percentage doses absorbed into plasma were 0.5 +/- 0.2 and 0.6 +/- 0.6%, respectively. Cadmium from soil (0.04 g soil/cm2) penetrated skin at concentrations of 0.06 +/- 0.02 and 0.13 +/- 0.05% for the two human skin sources. Amounts absorbed into plasma were 0.01 +/- 0.01 and 0.07 +/- 0.03%. Most of the nonabsorbed cadmium was recovered in the soap and water skin surface wash. Binding of cadmium from water to soil was greater than binding from water to powdered human stratum corneum, supporting the lower absorption from soil than from water. Short-term exposure of cadmium in water to human skin for 30 min (bath or swim) resulted in skin uptake, which upon further perfusion (48 hr), absorbed into the plasma receptor fluid (systemic). Cadmium in soil was increased from 6.5 to 65 ppb.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1397789

  18. In vitro percutaneous absorption of cadmium from water and soil into human skin

    SciTech Connect

    Wester, R.C.; Maibach, H.I.; Sedik, L.; Melendres, J.; DiZio, S.; Wade, M. )

    1992-07-01

    The objective was to determine percutaneous absorption of cadmium as the chloride salt from water and soil into and through human skin. Soil (Yolo County 65-California-57-8) was passed through 10-, 20-, and 48-mesh sieves. Soil retained by 80 mesh was mixed with radioactive cadmium-109 at 13 ppb. Water solutions of cadmium-109 at 116 ppb were prepared for comparative analysis. Human cadaver skin was dermatomed to 500-microns, and used in glass diffusion cells with human plasma as the receptor fluid (3 ml/hr flow rate) for a 16-hr skin application time. Cadmium in water (5 microliters/cm2) penetrated skin to concentrations of 8.8 +/- 0.6 and 12.7 +/- 11.7% of the applied dose from two human skin sources. Percentage doses absorbed into plasma were 0.5 +/- 0.2 and 0.6 +/- 0.6%, respectively. Cadmium from soil (0.04 g soil/cm2) penetrated skin at concentrations of 0.06 +/- 0.02 and 0.13 +/- 0.05% for the two human skin sources. Amounts absorbed into plasma were 0.01 +/- 0.01 and 0.07 +/- 0.03%. Most of the nonabsorbed cadmium was recovered in the soap and water skin surface wash. Binding of cadmium from water to soil was greater than binding from water to powdered human stratum corneum, supporting the lower absorption from soil than from water. Short-term exposure of cadmium in water to human skin for 30 min (bath or swim) resulted in skin uptake, which upon further perfusion (48 hr), absorbed into the plasma receptor fluid (systemic). Cadmium in soil was increased from 6.5 to 65 ppb.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. In vitro percutaneous absorption of cadmium from water and soil into human skin.

    PubMed

    Wester, R C; Maibach, H I; Sedik, L; Melendres, J; DiZio, S; Wade, M

    1992-07-01

    The objective was to determine percutaneous absorption of cadmium as the chloride salt from water and soil into and through human skin. Soil (Yolo County 65-California-57-8) was passed through 10-, 20-, and 48-mesh sieves. Soil retained by 80 mesh was mixed with radioactive cadmium-109 at 13 ppb. Water solutions of cadmium-109 at 116 ppb were prepared for comparative analysis. Human cadaver skin was dermatomed to 500-microns, and used in glass diffusion cells with human plasma as the receptor fluid (3 ml/hr flow rate) for a 16-hr skin application time. Cadmium in water (5 microliters/cm2) penetrated skin to concentrations of 8.8 +/- 0.6 and 12.7 +/- 11.7% of the applied dose from two human skin sources. Percentage doses absorbed into plasma were 0.5 +/- 0.2 and 0.6 +/- 0.6%, respectively. Cadmium from soil (0.04 g soil/cm2) penetrated skin at concentrations of 0.06 +/- 0.02 and 0.13 +/- 0.05% for the two human skin sources. Amounts absorbed into plasma were 0.01 +/- 0.01 and 0.07 +/- 0.03%. Most of the nonabsorbed cadmium was recovered in the soap and water skin surface wash. Binding of cadmium from water to soil was greater than binding from water to powdered human stratum corneum, supporting the lower absorption from soil than from water. Short-term exposure of cadmium in water to human skin for 30 min (bath or swim) resulted in skin uptake, which upon further perfusion (48 hr), absorbed into the plasma receptor fluid (systemic). Cadmium in soil was increased from 6.5 to 65 ppb.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. ICD-9-CM to ICD-10-CM Codes: What? Why? How?

    PubMed Central

    Cartwright, Donna J.

    2013-01-01

    The wound care industry will gain many benefits when International Classification of Diseases (ICD)-10-Clinical Modification (CM) is implemented. One of the main benefits is that the disease classifications will be consistent with current clinical practice and medical technology advances. The new classification codes will be very granular, which means the level of specificity will greatly improve. Numerous new codes will represent more specific anatomic sites, etiologies, comorbidities, and complications, and will improve the ability to demonstrate severity of illness. For instance, the new feature of laterality is directly built into the new codes: separate codes will distinguish right, left, and bilateral, where needed. The increased granularity will provide better analysis of disease patterns and outbreak of disease. Additionally, the United States will finally be using the same diagnosis coding system as the rest of the world. This article will describe what the ICD-9-CM/ICD-10-CM codes are, why they are so important, and how clinicians and researchers will convert from ICD-9-CM to ICD-10-CM effective October 1, 2014. PMID:24761333

  1. [Effects of Long-term Different Tillage Methods on Mercury and Methylmercury Contents in Purple Paddy Soil and Overlying Water].

    PubMed

    Wang, Xin-yue; Tang, Zhen-ya; Zhang, Cheng; Wang, Yong-min; Wang, Ding-yong

    2016-03-15

    A long-term experiment was conducted to evaluate the effect of tillage methods on mercury and methylmercury contents in the purple paddy soil and overlying water. The experiment included five tillage methods: no-tillage and fallow in winter, ridge-no-tillage, compartments-no-tillage, paddy-upland rotation and conventional tillage. The results showed that the content of total mercury in soil had the maximum value in the 10-20 cm layer of no-tillage and fallow in winter, ridge-no-tillage and compartments-no-tillage, and the enrichment effect of no-tillage and fallow in winter was especially significant. The concentration of total mercury in soil of paddy-upland rotation and conventional tillage decreased with the increase of the soil depth, and paddy-upland rotation was specifically beneficial to the migration of mercury. The distribution of soil methylmercury was similar to that of total mercury in the soil profile. The methylation ability of soil mercury in the surface and middle of the soil profile was weaker than that at the bottom, while there was an opposite trend for other tillage methods. The concentrations of dissolved mercury ( DHg) and dissolved methylmercury ( DMeHg) in the overlaying water declined with the rise of the water depth in all treatments. The content of DHg in sediment porewater was related to the value of soil total mercury, and they had the same distribution in the soil profile. The content of DMeHg and its proportion accounted for DHg in porewater owned their largest value in the 10-20 cm layer of no-tillage and fallow in winter and ridge-no-tillage, where showed the lowest value of DMeHg in porewater for paddy-upland rotation and conventional tillage. And the percentage of DMeHg in DHg in porewater grew with the increase of soil depth of the latter two methods. Noticeably, the concentration of DMeHg and its proportion accounted for DHg in porewater were both higher than the values in overlying water for all tillage methods.

  2. The 15 cm diameter ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1974-01-01

    The startup reliability of a 15 cm diameter mercury bombardment ion thruster which employs a pulsed high voltage tickler electrode on the main and neutralizer cathodes is examined. Startup of the thruster is achieved 100% of the time on the main cathode and 98.7% of the time on the neutralizer cathode over a 3640 cycle test. The thruster was started from a 20 C initial condition and operated for an hour at a 600 mA beam current. An energy efficiency of 75% and a propellant utilization efficiency of 77% was achieved over the complete cycle. The effect of a single cusp magnetic field thruster length on its performance is discussed. Guidelines are formulated for the shaping of magnetic field lines in thrusters. A model describing double ion production in mercury discharges is presented. The production route is shown to occur through the single ionic ground state. Photographs of the interior of an operating-hollow cathode are presented. A cathode spot is shown to be present if the cathode is free of low work-function surfaces. The spot is observed if a low work-function oxide coating is applied to the cathode insert. Results show that low work-function oxide coatings tend to migrate during thruster operation.

  3. Engineering model 8-cm thruster subsystem

    NASA Technical Reports Server (NTRS)

    Herron, B. G.; Hyman, J.; Hopper, D. J.; Williamson, W. S.; Dulgeroff, C. R.; Collett, C. R.

    1978-01-01

    An Engineering Model (EM) 8 cm Ion Thruster Propulsion Subsystem was developed for operation at a thrust level 5 mN (1.1 mlb) at a specific impulse 1 sub sp = 2667 sec with a total system input power P sub in = 165 W. The system dry mass is 15 kg with a mercury-propellant-reservoir capacity of 8.75 kg permitting uninterrupted operation for about 12,500 hr. The subsystem can be started from a dormant condition in a time less than or equal to 15 min. The thruster has a design lifetime of 20,000 hr with 10,000 startup cycles. A gimbal unit is included to provide a thrust vector deflection capability of + or - 10 degrees in any direction from the zero position. The EM subsystem development program included thruster optimization, power-supply circuit optimization and flight packaging, subsystem integration, and subsystem acceptance testing including a cyclic test of the total propulsion package.

  4. Application of magnetic tracer method for quantification of pedoturbations in soils under different land use

    NASA Astrophysics Data System (ADS)

    Zhidkin, Andrey; Gennadiyev, Alexander

    2014-05-01

    Pedoturbations are widely known and good classified by scientists. It is known 10 types of pedoturbations, allocated by F.D. Hole (1961) and supplemented by D.L. Johnson and collaborators (1987). They influence on many soil properties and also on migration substances (including pollutants). But there is a lack of data of quantitative assessments of pedoturbations especially in soils under different land use. In this paper are shown approaches for the use of magnetic tracer method for assessments of pedoturbation processes. This method is widely spread for study lateral solid phase soil matter (soil erosion), but first use for study pedoturbations. Magnetic tracer method is based on study of spherical magnetic particles (SMP) in soils. Origin of SMP is mainly connected with atmospheric deposition of fly ash, resulting from coal burning in steam engines of locomotives and thermal electric power stations. The period of active emission of SMP is the last 150 years. Magnetic spherules are stable and resistant to soil weathering and can be preserved in soils for decades without any clear signs of destruction. In European part of Russia and Middle West USA were analyzed 63 soil profiles under virgin forest and steppe vegetation and croplands. Vertical distribution of SMP in the upper 30 cm divided into 5 types: a) residually accumulative, b) not uniform with maximum in the upper 10 cm, c) not uniform with maximum in the 10-20 cm, d) not uniform with maximum in the 20-30 cm, e) gomogeneous. Vertical distribution of SMP reflects intensity of pedoturbations, because SMP migrate into the soils only from the atmospheric depositions. Labeled types of SMP vertical distribution are listed in order of increasing intensity of the pedoturbation. Most intensive pedoturbations are detected in arable soils. Depending on the region arable soils characterized by highest percentage of soil profiles with homogenous type of SMP distribution (up to 17%) and lowest percentage of soil profiles

  5. Application of atomic force microscopy to the study of natural and model soil particles.

    PubMed

    Cheng, S; Bryant, R; Doerr, S H; Rhodri Williams, P; Wright, C J

    2008-09-01

    The structure and surface chemistry of soil particles has extensive impact on many bulk scale properties and processes of soil systems and consequently the environments that they support. There are a number of physiochemical mechanisms that operate at the nanoscale which affect the soil's capability to maintain native vegetation and crops; this includes soil hydrophobicity and the soil's capacity to hold water and nutrients. The present study used atomic force microscopy in a novel approach to provide unique insight into the nanoscale properties of natural soil particles that control the physiochemical interaction of material within the soil column. There have been few atomic force microscopy studies of soil, perhaps a reflection of the heterogeneous nature of the system. The present study adopted an imaging and force measurement research strategy that accounted for the heterogeneity and used model systems to aid interpretation. The surface roughness of natural soil particles increased with depth in the soil column a consequence of the attachment of organic material within the crevices of the soil particles. The roughness root mean square calculated from ten 25 microm(2) images for five different soil particles from a Netherlands soil was 53.0 nm, 68.0 nm, 92.2 nm and 106.4 nm for the respective soil depths of 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm. A novel analysis method of atomic force microscopy phase images based on phase angle distribution across a surface was used to interpret the nanoscale distribution of organic material attached to natural and model soil particles. Phase angle distributions obtained from phase images of model surfaces were found to be bimodal, indicating multiple layers of material, which changed with the concentration of adsorbed humic acid. Phase angle distributions obtained from phase images of natural soil particles indicated a trend of decreasing surface coverage with increasing depth in the soil column. This was consistent with

  6. Effect of different crops on soil organic matter and biological activity in Oxisols under three different crops

    NASA Astrophysics Data System (ADS)

    Toledo, Diana Marcela; Arzuaga, Silvia; Dalurzo, Humberto; Zornoza, Raúl; Vazquez, Sara

    2015-04-01

    The objective of this work was to evaluate changes in soil organic matter in Oxisols under different crops compared to native rainforest, and to assess if acid phosphatase activity (APA) could be a good indicator for SOC changes and soil quality. The experimental design consisted of four completely randomized blocks with four treatments: subtropical rainforest (F); yerba mate crop (I) (Ilex paraguariensis SH.); citrus crop (C) (Citrus unshiu Marc); and tobacco crop (T) (Nicotiana tabacum L.). Soil samples were taken at 0-10; 10-20 and 20-30 cm depths. The variables measured were soil organic carbon (SOC), APA, clay content, pH, total nitrogen (Nt), available phosphorus (P) and CO2 emissions. All data were analyzed by ANOVA to assess the effects of land-use changes. The treatment means were compared through Duncan's multiple range tests (p<0.05). The relationship between variables was determined with a simple correlation analysis and with a multiple linear regression analysis through the stepwise method. These soils showed an acid reaction and their clay content was over 650 g kg-1 for the three depths. SOC and N contents were higher in native soils, intermediate for the citrus crop, and lower under both tobacco and yerba mate crops. CO2 emissions were higher in the rainforest (47.32 kg ha-1 of CO2) than in cultivated soils, which indicates that biological activity is enhanced in rainforest soils where substrates for soil biota and fauna are more readily available. The variability of 76% in APA was explained by total nitrogen, which is closely related to soil organic matter, and by available P. Conversion of subtropical rainforests into agricultural lands reduced SOC content and acid phosphatase activity, thereby lowering soil quality. In this study, acid phosphatase activity proved to be a sensitive indicator to detect changes from pristine to cropped soils, but it failed to distinguish differences among crop systems.

  7. Leaf nutrient contents and morphology of invasive tamarisk in different soil conditions in the lower Virgin River

    NASA Astrophysics Data System (ADS)

    Imada, S.; Acharya, K.; Tateno, R.; Yamanaka, N.

    2012-12-01

    Invasive plants can alter ecosystem nitrogen (N) cycling. To increase our understanding of nutrient use strategy of invasive tamarisk (Tamarix spp.) on an arid riparian ecosystem, we examined leaf nutrient contents and morphology of Tamarix ramosissima and its relationship with soil properties in the lower Virgin River floodplain, Nevada, U.S. Leaves were collected in three different locations; near the river, near the stand edge (60-70 m from the river edge) and at 30-40 m from the river edge in the summer of 2011. Leaves were analyzed for carbon (C) and N contents, and specific leaf area (SLA). Soil samples at 10-20 cm depths and under the canopy were also collected for soil water, pH, electrical conductivity (EC) and inorganic nitrogen (NO3- and NH4+) analysis. Results suggested that tree size and SLA increased with decreasing distance from the river, whereas C isotope discrimination did not differ among the samples based on distance from the river. Nitrogen content per unit mass and N isotope discrimination (δ15N) were significantly higher in the trees near the river. Soil NO3- and total inorganic N had positive relationships with δ15N in leaves, which suggests that leaf δ15N may be influenced by N concentrations on the soil surface. Negative correlations were found between soil EC and leaf N contents, suggesting that high soil salinity may decrease Tamarix leaf N and thus limit tree growth.

  8. Small Scale Spatial Variability of Soil Properties and Nutrients in a Ferralsol under Corn

    NASA Astrophysics Data System (ADS)

    Alves, M. C.; Vidal Vázquez, E.; Pereira de Almeida, V.; Paz-Ferreiro, J.

    2012-04-01

    Spatial variability of soil attributes, both in natural and agricultural landscapes can be rather large. This heterogeneity results from interactions between pedogenetic processes and soil formation factors. In cultivated soils much variability can also occur as a result of land use and management effect, i.e. agricultural systems and practices. Therefore, the main objectives of this work were to investigate the statistical and geostatistical variability of selected properties in a soil cultivated with corn. The experimental work was carried out in Ilha Solteira, São Paulostate, Brazil and the soil was classified as an Oxisol (SSA), i.e. "Latossolo Vermelho" according to the Brazilian Soil Classification System. Eighty-four soil samples were collected at each of two different depths (0-10 and 10-20 cm) from the one-hectare plot studied. Sampling included a combination of grid and nesting schemes in order to allow description of the spatial variability at different scales. Soil texture fractions (sand, silt clay), organic matter content and pH (CaCl2) were determined using standard methods. Moreover, exchangeable bases (Ca, Mg, K), cation exchange capacity (CEC) and P were determined after exchange resin extraction. In the two depths studied, extractable P, K and Mg contents were found to be highly variable (C.V. > 30%), organic matter content and CEC showed a medium variability (C.V. ≈ 15-30%) and base percent saturation and pH exhibited a low variation (< 15%). Experimental semivariograms were computed and modeled and used to map the spatial variability of the study properties. Semivariograms provided a description of the pattern of spatial variability and some insight into possible process affecting the spatial distribution of the assessed soil properties. Sensitivity of nutrient spatial requirements to between field variability was discussed on the basis of the results obtained. In addition, the usefulness of kriging maps to improve and optimize productivity

  9. A sub-cm micromachined electron microscope

    NASA Technical Reports Server (NTRS)

    Feinerman, A. D.; Crewe, D. A.; Perng, D. C.; Shoaf, S. E.; Crewe, A. V.

    1993-01-01

    A new approach for fabricating macroscopic (approximately 10x10x10 mm(exp 3)) structures with micron accuracy has been developed. This approach combines the precision of semiconductor processing and fiber optic technologies. A (100) silicon wafer is anisotropically etched to create four orthogonal v-grooves and an aperture on each 10x12 mm die. Precision 308 micron optical fibers are sandwiched between the die to align the v-grooves. The fiber is then anodically bonded to the die above and below it. This procedure is repeated to create thick structures and a stack of 5 or 6 die will be used to create a miniature scanning electron microscope (MSEM). Two die in the structure will have a segmented electrode to deflect the beam and correct for astigmatism. The entire structure is UHV compatible. The performance of an SEM improves as its length is reduced and a sub-cm 2 keV MSEM with a field emission source should have approximately 1 nm resolution. A low voltage high resolution MSEM would be useful for the examination of biological specimens and semiconductors with a minimum of damage. The first MSEM will be tested with existing 6 micron thermionic sources. In the future a micromachined field emission source will be used. The stacking technology presented in this paper can produce an array of MSEMs 1 to 30 mm in length with a 1 mm or larger period. A key question being addressed by this research is the optimum size for a low voltage MSEM which will be determined by the required spatial resolution, field of view, and working distance.

  10. Carbon storage potential in size-density fractions from semi-natural grassland ecosystems with different productivities over varying soil depths.

    PubMed

    Breulmann, Marc; Boettger, Tatjana; Buscot, François; Gruendling, Ralf; Schulz, Elke

    2016-03-01

    Researchers have increasingly recognised a profound need for more information on SOC stocks in the soil and the factors governing their stability and dynamics. Many questions still remain unanswered about the interplay between changes in plant communities and the extent to which changes in aboveground productivity affect the carbon dynamics in soils through changes in its quantity and quality. Therefore, the main aim of this research was to examine the SOC accumulation potential of semi-natural grasslands of different productivities and determine the distribution of SOM fractions over varying soil depth intervals (0-10, 10-20, 20-30 30-50 50-80 and 80+cm). SOM fractionation was considered as a relative measure of stability to separate SOM associated with clay minerals from SOM of specific light densities less than 2 g cm(-3) (size-density fractionation). Two clay-associated fractions (CF1, <1 μm; and CF2, 1-2 μm) and two light fractions (LF1, <1.8 g cm(-3); and LF2, 1.8-2.0 g cm(-3)) were separated. The stability of these fractions was characterised by their carbon hot water extractability (CHWE) and stable carbon isotope composition. In the semi-natural grasslands studied, most OC was stored in the top 30 cm, where turnover is rapid. Effects of low productivity grasslands became only significantly apparent when fractional OC contributions of total SOM was considered (CF1 and LF1). In deeper soil depths OC was largely attributed to the CF1 fraction of low productivity grasslands. We suggest that the majority of OM in deeper soil depth intervals is microbially-derived, as evidenced by decreasing C/N ratios and decreasing δ(13)C values. The hot water extraction and natural δ(13)C abundance, employed here allowed the characterisation of SOM stabilisation properties, however how climatic changes affect the fate of OM within different soil depth intervals is still unknown.

  11. Soil Carbon Variability and Change Detection in the Forest Inventory Analysis Database of the United States

    NASA Astrophysics Data System (ADS)

    Wu, A. M.; Nater, E. A.; Dalzell, B. J.; Perry, C. H.

    2014-12-01

    The USDA Forest Service's Forest Inventory Analysis (FIA) program is a national effort assessing current forest resources to ensure sustainable management practices, to assist planning activities, and to report critical status and trends. For example, estimates of carbon stocks and stock change in FIA are reported as the official United States submission to the United Nations Framework Convention on Climate Change. While the main effort in FIA has been focused on aboveground biomass, soil is a critical component of this system. FIA sampled forest soils in the early 2000s and has remeasurement now underway. However, soil sampling is repeated on a 10-year interval (or longer), and it is uncertain what magnitude of changes in soil organic carbon (SOC) may be detectable with the current sampling protocol. We aim to identify the sensitivity and variability of SOC in the FIA database, and to determine the amount of SOC change that can be detected with the current sampling scheme. For this analysis, we attempt to answer the following questions: 1) What is the sensitivity (power) of SOC data in the current FIA database? 2) How does the minimum detectable change in forest SOC respond to changes in sampling intervals and/or sample point density? Soil samples in the FIA database represent 0-10 cm and 10-20 cm depth increments with a 10-year sampling interval. We are investigating the variability of SOC and its change over time for composite soil data in each FIA region (Pacific Northwest, Interior West, Northern, and Southern). To guide future sampling efforts, we are employing statistical power analysis to examine the minimum detectable change in SOC storage. We are also investigating the sensitivity of SOC storage changes under various scenarios of sample size and/or sample frequency. This research will inform the design of future FIA soil sampling schemes and improve the information available to international policy makers, university and industry partners, and the public.

  12. Landscape controls on long-term fluxes of water, energy and soil formation in a Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Román Sánchez, Andrea; Giráldez, Juan V.; Vanwalleghem, Tom

    2015-04-01

    Soil formation is a complex process that depends on factors such as bedrock, climate, relief, vegetation and time. Despite of the great effort dedicated to explore these processes, little is known there is not a precise about the quantitative relationship between geomorphology and soil formation, especially on long timescales. In order to understand this complex interaction is important to investigate some quantitative aspects of the processes that drive pedogenesis. The integration of quantitative aspects by means of modeling will help us to understand better the soil formation upscaling this information at large scales of time. In this study the effect of aspect and relative elevation on long- term soil formation has been studied on two converging slopes. The geometry generates microclimates that can structure ecosystems and affect depth and surface processes regimes. In our study area, located in Sierra Morena, in Cordoba, S Spain, we studied 10 soil profiles along a catena distributed in various topographic conditions: plateau area, north and south facing slope. These profiles were sampled each 10-20 cm depth in order to study the quantitative differences in physical and chemical soil properties. A new, spatially explicit model is presented of water infiltration and redistribution, temperature coupled to soil forming processes as a function of properties such as topographical variables, like aspect, slope, climate variables and vegetation. This model is based on a simple soil water balance model and runs at a daily time step. As paleoclimate data for rainfall and temperature is generally only available at the yearly or seasonal time scale, a weather generator was used in order to generate the necessary input data. Model output, for example mean annual water percolation, are then compared against field observations to evaluate whether the model can explain important soil properties, such as for example total weathered soil depth or texture. This model allows to

  13. PROCESS OF PRODUCING Cm$sup 244$ AND Cm$sup 24$$sup 5$

    DOEpatents

    Manning, W.M.; Studier, M.H.; Diamond, H.; Fields, P.R.

    1958-11-01

    A process is presented for producing Cm and Cm/sup 245/. The first step of the process consists in subjecting Pu/sup 2339/ to a high neutron flux and subsequently dissolving the irradiated material in HCl. The plutonium is then oxidized to at least the tetravalent state and the solution is contacted with an anion exchange resin, causing the plutonium values to be absorbed while the fission products and transplutonium elements remain in the effluent solution. The effluent solution is then contacted with a cation exchange resin causing the transplutonium, values to be absorbed while the fission products remain in solution. The cation exchange resin is then contacted with an aqueous citrate solution and tbe transplutonium elements are thereby differentially eluted in order of decreasing atomic weight, allowing collection of the desired fractions.

  14. Biokinetics and dosimetry of inhaled Cm aerosols in beagles: effect of aerosol chemical form.

    PubMed

    Guilmette, R A; Kanapilly, G M

    1988-12-01

    This study was designed to provide tissue distribution data of 244Cm that was inhaled by beagle dogs. Two chemical forms that were presumed to bracket the solubility of pure Cm compounds in vivo were used: 244Cm2O3 (oxide) and 244Cm(NO3)3 (nitrate). Adult dogs of both sexes received a single brief pernasal exposure to either a monodisperse aerosol of 244Cm2O3 (1.4 micron activity median aerodynamic diameter, AMAD, and 1.16 geometric standard deviation, sigma g) or a polydisperse aerosol of 244Cm(NO3)3 (1.1 micron AMAD, 1.74 sigma g). The resulting initial pulmonary burdens (IPB) were 1.5 and 1.7 kBq kg-1 body mass for the oxide and nitrate groups, respectively. The tissue distribution data obtained from the dogs that were serially sacrificed from 4 h to 2 y after exposure showed that both chemical forms were very soluble in vivo. For the oxide group, 78% IPB was cleared from the lung with a T 1/2 of 7.6 d, whereas for the nitrate group, 42% IPB cleared with a T 1/2 of 0.6 d. The lung retention for each group was described by three-component exponential functions. Most of the Cm that cleared the lung was redeposited in the liver (37% IPB) and skeleton (27% IPB), with lesser amounts in the muscle, fat and connective tissue (3.5% IPB) and kidney (approximately 2% IPB). The only significant difference noted in the biokinetics of Cm for the two exposure groups was a more rapid translocation of Cm from the lung to liver and bone during the first 10-20 d after exposure to the nitrate compared to the oxide chemical form. Extrapolation of these data to obtain estimates of committed dose equivalents for man indicate substantial agreement with the limits for occupational exposure specified by ICRP 30 (1979). PMID:3198400

  15. Volatiles in interplanetary dust particles: A comparison with CI and CM chondrites

    NASA Technical Reports Server (NTRS)

    Bustin, Roberta

    1992-01-01

    In an effort to classify and determine the origin of interplanetary dust particles (IDPs), 14 of these particles were studied using a laser microprobe/mass spectrometer. The mass spectra for these particles varied dramatically. Some particles released hydroxide or water which probably originated in hydroxide-bearing minerals or hydrates. Others produced spectra which included a number of hydrocarbons and resembled meteorite spectra. However, none of the individual IDPs gave spectra which could be matched identically with a particular meteorite type such as a CI or CM carbonaceous chondrite. We believe this was due to the fact that 10-20 micron size IDPs are too small to be representative of the parent body. To verify that the diversity was due primarily to the small particle sizes, small grains of approximately the same size range as the IDPs were obtained from two primitive meteorites, Murchison and Orgueil, and these small meteorite particles were treated exactly like the IDPs. Considerable diversity was observed among individual grains, but a composite spectrum of all the grains from one meteorite closely resembled the spectrum obtained from a much larger sample of that meteorite. A composite spectrum of the 14 IDPs also resembled the spectra of the CM and CI meteorites, pointing to a possible link between IDPs and carbonaceous chondrites. This also illustrates that despite the inherent diversity in particles as small as 10-20 micron, conclusions can be drawn about the possible origin and overall composition of such particles by looking not only at results from individual particles but also by including many particles in a study and basing conclusions on some kind of composite data.

  16. In vivo and in vitro percutaneous absorption and skin decontamination of arsenic from water and soil.

    PubMed

    Wester, R C; Maibach, H I; Sedik, L; Melendres, J; Wade, M

    1993-04-01

    The objective was to determine the percutaneous absorption of arsenic-73 as H3ASO4 from water and soil. Soil (Yolo County 65-California-57-8) was passed through 10-, 20-, and 48-mesh sieves. Soil retained by 80 mesh was mixed with radioactive arsenic-73 at a low (trace) level of 0.0004 microgram/cm2 (micrograms arsenic per square centimeter skin surface area) and a higher dose of 0.6 micrograms/cm2. Water solutions of arsenic-73 at a low (trace) level of 0.000024 micrograms/cm2 and a higher dose of 2.1 micrograms/cm2 were prepared for comparative analysis. In vivo in Rhesus monkey a total of 80.1 +/- 6.7% (SD) intravenous arsenic-73 dose was recovered in urine over 7 days; the majority of the dose was excreted in the first day. With topical administration for 24 hr, absorption of the low dose from water was 6.4 +/- 3.9% and 2.0 +/- 1.2% from the high dose. In vitro percutaneous absorption of the low dose from water with human skin resulted in 24-hr receptor fluid (phosphate-buffered saline) accumulation of 0.93 +/- 1.1% dose and skin concentration (after washing) of 0.98 +/- 0.96%. Combining receptor fluid accumulation and skin concentration gave a combined amount of 1.9%, a value less than that in vivo (6.4%) in the Rhesus monkey. From soil, receptor fluid accumulation was 0.43 +/- 0.54% and skin concentration was 0.33 +/- 0.25%. Combining receptor fluid plus skin concentrations gave an absorption value of 0.8%, an amount less than that with in vivo absorption (4.5%) in the Rhesus. These absorption values did not match current EPA default assumptions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8504907

  17. Metal distribution in urban soil around steel industry beside Queen Alia Airport, Jordan.

    PubMed

    Al-Khashman, Omar A; Shawabkeh, Reyad A

    2009-12-01

    The objective of this study was to assess the extent and severity of metal contamination in urban soil around Queen Alia Airport, Jordan. Thirty-two soil samples were collected around steel manufacturing plants located in the Al-Jiza area, south Jordan, around the Queen Alia Airport. The samples were obtained at two depths, 0-10 and 10-20 cm, and were analyzed by atomic absorption spectrophotometry for lead (Pb), zinc (Zn), cadmium (Cd), iron (Fe), copper (Cu) and chromium (Cr) levels. The physicochemical factors believed to affect the mobility of metals in the soil of the study area were also examined, including pH, electrical conductivity, total organic matter, calcium carbonate (CaCO(3)) content and cation exchange capacity. The high concentrations of Pb, Zn and Cd in the soil samples were found to be related to anthropogenic sources, such as the steel manufacturing plants, agriculture and traffic emissions, with the highest concentrations of these metals close to the site of the steel plants; in contrast the concentration of Cr was low in the soil sampled close to the steel plants. The metals were concentrated in the surface soil, and concentrations decreased with increasing depth, reflecting the physical properties of the soil and its alkaline pH. The mineralogical composition of the topsoil, identified by X-ray diffraction, was predominantly quartz, calcite, dolomite and minor minerals, such as gypsum and clay minerals. Metal concentrations were compared using one-way analysis of variance (ANOVA) to compute the statistical significance of the mean. The results of the ANOVA showed significant differences between sites for Pb, Cd and Cu, but no significant differences for the remaining metals tested. Factor analysis revealed that polluted soil occurs predominantly at sites around the steel plants and that there is no significant variation in the characteristics of the unpolluted soil, which are uniform in the study area.

  18. Uptake of 244Cm, 238Pu and other radionuclides by trees inhabiting a contaminated flood plain.

    PubMed

    Pinder, J E; McLeod, K W; Alberts, J J; Adriano, D C; Corey, J C

    1984-09-01

    The plant uptake of 244Cm, 137Cs, 238Pu and 90Sr was measured for trees in a flood plain forest whose soils were contaminated by aqueous discharges from a nuclear-fuel chemical separations facility. Uptake of the naturally occurring radionuclide 226Ra was also measured. The relative availability of the nuclides was 238Pu less than 244Cm less than 137Cs less than 226Ra less than or equal to 90Sr. The concentration ratios for 238Pu and 244Cm, 3 X 10(-4) and 3.6 X 10(-3), respectively, were similar to those reported for other plant-soil systems. The ratios for 137Cs and 90Sr, 0.11 and 3.9, were similar to those reported for other southeastern soils. However, the ratio for 226Ra, 2.1, was greater than that normally reported. These ratios, which were determined in the field, were generally similar to those reported for greenhouse studies on the same soil.

  19. Moisture and vegetation controls on decadal-scale accrual of soil organic carbon and total nitrogen in restored grasslands

    USGS Publications Warehouse

    O'Brien, S. L.; Jastrow, J.D.; Grimley, D.A.; Gonzalez-Meler, M. A.

    2010-01-01

    Revitalization of degraded landscapes may provide sinks for rising atmospheric CO2, especially in reconstructed prairies where substantial belowground productivity is coupled with large soil organic carbon (SOC) deficits after many decades of cultivation. The restoration process also provides opportunities to study the often-elusive factors that regulate soil processes. Although the precise mechanisms that govern the rate of SOC accrual are unclear, factors such as soil moisture or vegetation type may influence the net accrual rate by affecting the balance between organic matter inputs and decomposition. A resampling approach was used to assess the control that soil moisture and plant community type each exert on SOC and total nitrogen (TN) accumulation in restored grasslands. Five plots that varied in drainage were sampled at least four times over two decades to assess SOC, TN, and C4- and C3-derived C. We found that higher long-term soil moisture, characterized by low soil magnetic susceptibility, promoted SOC and TN accrual, with twice the SOC and three times the TN gain in seasonally saturated prairies compared with mesic prairies. Vegetation also influenced SOC and TN recovery, as accrual was faster in the prairies compared with C3-only grassland, and C4-derived C accrual correlated strongly to total SOC accrual but C3-C did not. High SOC accumulation at the surface (0-10 cm) combined with losses at depth (10-20 cm) suggested these soils are recovering the highly stratified profiles typical of remnant prairies. Our results suggest that local hydrology and plant community are critical drivers of SOC and TN recovery in restored grasslands. Because these factors and the way they affect SOC are susceptible to modification by climate change, we contend that predictions of the C-sequestration performance of restored grasslands must account for projected climatic changes on both soil moisture and the seasonal productivity of C4 and C3 plants. ?? 2009 Blackwell

  20. Modeling and fixed bed column adsorption of As(V) on laterite soil.

    PubMed

    Maji, Sanjoy K; Pal, Anjali; Pal, Tarasankar; Adak, Asok

    2007-09-01

    Laterite soil, an abundant locally available natural adsorbent, has been evaluated for As(V) removal from aqueous solutions in column mode operation. The column studies were conducted using columns of 10, 20, 30 cm bed depth with 2 cm internal diameter. Initial As(V) concentration was 0.5 mg/L and flow rate was 7.75 mL/min. Bohart and Adams sorption model was employed for the determination of different parameters like height of exchange zone, adsorption rate, time required for exchange zone to move, and the adsorption capacity. Effect of flow rate and initial concentration was studied. The adsorption capacity of the laterite soil for 0.5 mg/L of As(V) was found to be 62.32 mg/L, and the adsorption rate constant was 1.0911 L/mg h for the minimum bed depth of 8.47 cm. The column was designed by the BDST model. Freundlich isotherm model was used to compare the theoretical and experimental breakthrough profile in the dynamic process. The bed saturation obtained was 36-80%. Regeneration of the exhausted column was possible with 1M NaOH. PMID:17849300

  1. Modeling and fixed bed column adsorption of As(V) on laterite soil.

    PubMed

    Maji, Sanjoy K; Pal, Anjali; Pal, Tarasankar; Adak, Asok

    2007-09-01

    Laterite soil, an abundant locally available natural adsorbent, has been evaluated for As(V) removal from aqueous solutions in column mode operation. The column studies were conducted using columns of 10, 20, 30 cm bed depth with 2 cm internal diameter. Initial As(V) concentration was 0.5 mg/L and flow rate was 7.75 mL/min. Bohart and Adams sorption model was employed for the determination of different parameters like height of exchange zone, adsorption rate, time required for exchange zone to move, and the adsorption capacity. Effect of flow rate and initial concentration was studied. The adsorption capacity of the laterite soil for 0.5 mg/L of As(V) was found to be 62.32 mg/L, and the adsorption rate constant was 1.0911 L/mg h for the minimum bed depth of 8.47 cm. The column was designed by the BDST model. Freundlich isotherm model was used to compare the theoretical and experimental breakthrough profile in the dynamic process. The bed saturation obtained was 36-80%. Regeneration of the exhausted column was possible with 1M NaOH.

  2. Soil Phosphorus Stoichiometry Drives Carbon Turnover Along a Soil C Gradient Spanning Mineral and Organic Soils Under Rice Cultivation

    NASA Astrophysics Data System (ADS)

    Hartman, W.; Ye, R.; Horwath, W. R.; Tringe, S. G.

    2014-12-01

    Soil carbon (C) cycling is linked to the availability of nutrients like nitrogen (N) and phosphorus (P). However, the role of soil P in influencing soil C turnover and accumulation is poorly understood, with most models focusing on C:N ratios based on the assumption that terrestrial ecosystems are N limited. To determine the effects of N and P availability on soil C turnover, we compared soil respiration over the course of a growing season in four adjacent rice fields with 5%, 10%, 20% and 25% soil C. In each of these fields, plots were established to test the effect of N additions on plant growth, using control and N addition treatments (80 kg N/ha urea). Although soil P was not manipulated in parallel, prior work has shown soil P concentrations decline markedly with increasing soil C content. Soil CO2 flux was monitored using static chambers at biweekly intervals during the growing season, along with porewater dissolved organic C and ammonium. Soils were collected at the end of the growing season, and tested for total C, N, and P, extractable N and P, pH, base cations and trace metals. Soil DNA was also extracted for 16S rRNA sequencing to profile microbial communities. Soil N additions significantly increased CO2 flux and soil C turnover (seasonal CO2 flux per unit soil C) in 5% and 10% C fields, but not in 20% or 25% C fields. Soil C content was closely related to soil N:P stoichiometry, with N:P ratios of ca. 12, 16, 24, and 56 respectively in the 5, 10, 20 and 25% C fields. Seasonal CO2 fluxes (per m2) were highest in 10% C soils. However, soil C turnover was inversely related to soil C concentrations, with the greatest C turnover at the lowest values of soil C. Soil C turnover showed stronger relationships with soil chemical parameters than seasonal CO2 fluxes alone, and the best predictors of soil C turnover were soil total and extractable N:P ratios, along with extractable P alone. Our results show that soil P availability and stoichiometry influence the

  3. Landslide-induced changes in soil phosphorus speciation and availability in Xitou, Central Taiwan

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Hsin; Hsiao, Sheng-Che; Huang, Yu-Sheng; Chen, Chiu-Ping; Menyailo, Oleg

    2016-04-01

    Phosphorus is an important nutrient in forest ecosystem. In tropical/subtropical areas, phosphorus is generally limited because of strong soil weathering but its speciation and availability can be changed by disturbances, such as the geological landslide events. In this study, we evaluated the changes in soil P speciation and availability after landslide in a mountainous forest ecosystem in Xitou, central Taiwan. Five soil pedons along a landslide/nonlanslide affected sequence from deep landslide deposit to nonlandslide were collected. The Hedley's sequential extraction procedure and synchrotron-based phosphorus x-ray adsorption near edge structure (XANES) spectroscopy were applied for the surface 0-10 cm and 10-20 cm soils to provide information concerning chemical and structural composition of phosphorus. The results indicated that plant available P (Resin-P + NaHCO3 extract P) and total P were reduced after landslide, from 150 and 500 mg kg-1, respectively, at nonlandsliding sites to 50 and 350 mg kg-1 at landsliding sites. However, the apatite-type P was significantly increased after landslide, from about 70 mg kg-1 at nonlandsliding sites to around 200 mg kg-1 at landsliding sites. Similar trend of enhanced apatite-type P after landslide was also observed in the XANES spectra. The ryegrass pot experiment confirmed that the landsliding soils were less fertile and had less growth rate. However, both nitrogen and phosphorus nutrients were limited at landsliding sites. The results demonstrated that soil P speciation and availability were significantly altered after landslide; these resultant changes are expected to influence functions in forest ecosystems.

  4. Radionuclides in the soil around the largest coal-fired power plant in Serbia: radiological hazard, relationship with soil characteristics and spatial distribution.

    PubMed

    Ćujić, Mirjana; Dragović, Snežana; Đorđević, Milan; Dragović, Ranko; Gajić, Boško; Miljanić, Šćepan

    2015-07-01

    Primordial radionuclides, (238)U, (232)Th and (40)K were determined in soil samples collected at two depths (0-10 and 10-20 cm) in the vicinity of the largest coal-fired power plant in Serbia, and their spatial distribution was analysed using ordinary kriging. Mean values of activity concentrations for these depths were 50.7 Bq kg(-1) for (238)U, 48.7 Bq kg(-1) for (232)Th and 560 Bq kg(-1) for (40)K. Based on the measured activity concentrations, the radiological hazard due to naturally occurring radionuclides in soil was assessed. The value of the mean total absorbed dose rate was 76.3 nGy h(-1), which is higher than the world average. The annual effective dose due to these radionuclides ranged from 51.4 to 114.2 μSv. Applying cluster analysis, correlations between radionuclides and soil properties were determined. The distribution pattern of natural radionuclides in the environment surrounding the coal-fired power plant and their enrichment in soil at some sampling sites were in accordance with dispersion models of fly ash emissions. From the results obtained, it can be concluded that operation of the coal-fired power plant has no significant negative impact on the surrounding environment with regard to the content of natural radionuclides.

  5. Radionuclides in the soil around the largest coal-fired power plant in Serbia: radiological hazard, relationship with soil characteristics and spatial distribution.

    PubMed

    Ćujić, Mirjana; Dragović, Snežana; Đorđević, Milan; Dragović, Ranko; Gajić, Boško; Miljanić, Šćepan

    2015-07-01

    Primordial radionuclides, (238)U, (232)Th and (40)K were determined in soil samples collected at two depths (0-10 and 10-20 cm) in the vicinity of the largest coal-fired power plant in Serbia, and their spatial distribution was analysed using ordinary kriging. Mean values of activity concentrations for these depths were 50.7 Bq kg(-1) for (238)U, 48.7 Bq kg(-1) for (232)Th and 560 Bq kg(-1) for (40)K. Based on the measured activity concentrations, the radiological hazard due to naturally occurring radionuclides in soil was assessed. The value of the mean total absorbed dose rate was 76.3 nGy h(-1), which is higher than the world average. The annual effective dose due to these radionuclides ranged from 51.4 to 114.2 μSv. Applying cluster analysis, correlations between radionuclides and soil properties were determined. The distribution pattern of natural radionuclides in the environment surrounding the coal-fired power plant and their enrichment in soil at some sampling sites were in accordance with dispersion models of fly ash emissions. From the results obtained, it can be concluded that operation of the coal-fired power plant has no significant negative impact on the surrounding environment with regard to the content of natural radionuclides. PMID:25716901

  6. Soil carbon storage in silvopasture and related land-use systems in the brazilian cerrado.

    PubMed

    Tonucci, Rafael G; Nair, P K Ramachandran; Nair, Vimala D; Garcia, Rasmo; Bernardino, Fernando S

    2011-01-01

    Silvopastoral management of fast-growing tree plantations is becoming popular in the Brazilian Cerrado (savanna). To understand the influence of such systems on soil carbon (C) storage, we studied C content in three aggregate size classes in six land-use systems (LUS) on Oxisols in Minas Gerais, Brazil. The systems were a native forest, a treeless pasture, 24- and 4-yr-old eucalyptus ( sp.) plantations, and 15- and 4-yr-old silvopastures of fodder grass plus animals under eucalyptus. From each system, replicated soil samples were collected from four depths (0-10, 10-20, 20-50, and 50-100 cm), fractionated into 2000- to 250-, 250- to 53-, and <53-μm size classes representing macroaggregates, microaggregates, and silt + clay, respectively, and their C contents determined. Macroaggregate was the predominant size fraction under all LUS, especially in the surface soil layers of tree-based systems. In general, C concentrations (g kg soil) in the different aggregate size fractions did not vary within the same depth. The soil organic carbon (SOC) stock (Mg C ha) to 1-m depth was highest under pasture compared with other LUS owing to its higher soil bulk density. The soils under all LUS had higher C stock compared with other reported values for managed tropical ecosystems: down to 1 m, total SOC stock values ranged from 461 Mg ha under pasture to 393 Mg ha under old eucalyptus. Considering the possibility for formation and retention of microaggregates within macroggregates in low management-intensive systems such as silvopasture, the macroaggregate dynamics in the soil seem to be a good indicator of its C storage potential. PMID:21546669

  7. Responses of soil CO(2) efflux to precipitation pulses in two subtropical forests in southern China.

    PubMed

    Deng, Qi; Zhou, Guoyi; Liu, Shizhong; Chu, Guowei; Zhang, Deqiang

    2011-12-01

    This study was designed to examine the responses of soil CO(2) efflux to precipitation pulses of varying intensities using precipitation simulations in two subtropical forests [i.e., mixed and broadleaf forests (MF and BF)] in southern China. The artificial precipitation event was achieved by spraying a known amount of water evenly in a plot (50 × 50 cm(2)) over a 30 min period, with intensities ranging from 10, 20, 50 and 100 mm within the 30 min. The various intensities were simulated in both dry season (in December 2007) and wet (in May 2008) season. We characterized the dynamic patterns of soil CO(2) efflux rate and environmental factors over the 5 h experimental period. Results showed that both soil moisture and soil CO(2) efflux rate increased to peak values for most of the simulated precipitation treatments, and gradually returned to the pre-irrigation levels after irrigation in two forests. The maximum peak of soil CO(2) efflux rate occurred at the 10 mm precipitation event in the dry season in BF and was about 3.5 times that of the pre-irrigation value. The change in cumulative soil CO(2) efflux following precipitation pulses ranged from -0.68 to 1.72 g CO(2) m(-2) over 5 h compared to the pre-irrigation levels and was generally larger in the dry season than in the wet season. The positive responses of soil CO(2) efflux to precipitation pulses declined with the increases in precipitation intensity, and surprisingly turned to negative when precipitation intensity reached 50 and 100 mm in the wet season. These findings indicated that soil CO(2) efflux could be changed via pulse-like fluxes in subtropical forests in southern China as fewer but extreme precipitation events occur in the future. PMID:21822858

  8. Soil carbon storage in silvopasture and related land-use systems in the brazilian cerrado.

    PubMed

    Tonucci, Rafael G; Nair, P K Ramachandran; Nair, Vimala D; Garcia, Rasmo; Bernardino, Fernando S

    2011-01-01

    Silvopastoral management of fast-growing tree plantations is becoming popular in the Brazilian Cerrado (savanna). To understand the influence of such systems on soil carbon (C) storage, we studied C content in three aggregate size classes in six land-use systems (LUS) on Oxisols in Minas Gerais, Brazil. The systems were a native forest, a treeless pasture, 24- and 4-yr-old eucalyptus ( sp.) plantations, and 15- and 4-yr-old silvopastures of fodder grass plus animals under eucalyptus. From each system, replicated soil samples were collected from four depths (0-10, 10-20, 20-50, and 50-100 cm), fractionated into 2000- to 250-, 250- to 53-, and <53-μm size classes representing macroaggregates, microaggregates, and silt + clay, respectively, and their C contents determined. Macroaggregate was the predominant size fraction under all LUS, especially in the surface soil layers of tree-based systems. In general, C concentrations (g kg soil) in the different aggregate size fractions did not vary within the same depth. The soil organic carbon (SOC) stock (Mg C ha) to 1-m depth was highest under pasture compared with other LUS owing to its higher soil bulk density. The soils under all LUS had higher C stock compared with other reported values for managed tropical ecosystems: down to 1 m, total SOC stock values ranged from 461 Mg ha under pasture to 393 Mg ha under old eucalyptus. Considering the possibility for formation and retention of microaggregates within macroggregates in low management-intensive systems such as silvopasture, the macroaggregate dynamics in the soil seem to be a good indicator of its C storage potential.

  9. The impact of climate change on carbon storage of urban soils

    NASA Astrophysics Data System (ADS)

    Bidló, András; Gálos, Borbála; Horváth, Adrienn

    2014-05-01

    The soil carbon stock has a very significant role in the global carbon cycle. In many ecosystems the carbon content of soils is higher, than what is stored in plants and this is typical for urban soils too. In order to investigate the carbon content of the soils we have collected samples from the upper layer of sampling sites in the following Hungarian towns: Sopron, Szombathely, Székesfehérvár. In these towns there are significant differences in land use, as besides the old downtown there are also younger suburbs and suburban forests, vineyards, pastures, gardens and agricultural areas. Cause the location of towns will be another determining factor the effect of climate change in future. Samples were collected from soil spots from 0-10 and 10-20 cm depth as well as from soil profiles, where samples were taken from each of the profile layers. First we selected the appropriate method for the measurement of the soil carbon content, as there are several possible methods for this. Carbon content cannot be determined in calcareous soils using the C/N/S apparatus, thus we used wet-burning methods with potassium-permanganate. The results of the field and laboratory measurements were represented in a GIS system (Digiterra Map). The highest average carbon content has been determined in the upper layer of forest lands of Sopron (4.6 % C). The lowest values have been measured in both layers on the agricultural areas of Székesfehérvár (1.72 % C). Differences between carbon results can be explained by the effects of the vegetation and land use. Land use is also significantly determined by ecological conditions and now the whole ecological system depends on effect of climate change. Research was supported financially by the TÁMOP-4.2.2.A-11/1/KONV-2012-0013 project.

  10. Drug Resistance of Enteric Bacteria VI. Introduction of Bacteriophage P1CM into Salmonella typhi and Formation of P1dCM and F-CM Elements

    PubMed Central

    Kondo, Eiko; Mitsuhashi, Susumu

    1966-01-01

    Kondo, Eiko (Gunma University, Maebashi, Japan), and Susumu Mitsuhashi. Drug resistance of enteric bacteria. VI. Introduction of bacteriophage P1CM into Salmonella typhi and formation of P1dCM and F-CM elements. J. Bacteriol. 91:1787–1794. 1966.—Bacteriophage P1CM was introduced into Salmonella typhi by means of both phage infection and conjugation with Escherichia coli F+ lysogenic for the phage. Upon incubation with a P1CM phage lysate, S. typhi and S. abony yield CMr cells which are lysogenic for P1CM, but S. typhimurium LT2 does not. The P1CM phage is adsorbed slightly to S. typhi, but no infectious centers are formed when the phage is plated on this strain. Tests on P1CM-adsorbing capacity of the S. typhi P1CM+ strain and on plaque formation and transduction ability of the recovered phage from this strain indicated that the cell and the phage population did not have any special advantage over the original cell and phage population. Conjugation of S. typhi with E. coli F+ carrying P1CM+ gave three types of S. typhi CMr clones: those which carry the whole P1CM phage, those with the P1dCM element, and those with nontransferable CMr. The second type has the F factor and is sensitive to f phages in spite of its typical behavior, serologically and biochemically, as S. typhi. It can donate the P1dCM and F+ characters to E. coli F− or F−/P1 strains. As a consequence of conjugation with the E. coli F+ strain, the CMr character of the third type of S. typhi, the nontransferable CMr element, acquired conjugational transferability, owing to the formation of the element, F-CM. This element can be transferred to an E. coli F− strain at a very high frequency (ca. 100). Both the F and CMr determinants are jointly transduced with P1 phage and are jointly eliminated by acridine dye treatment. PMID:5327907

  11. Soil and Solution Based Assessments of Weathering along a Hillslope Transect in Coastal California

    NASA Astrophysics Data System (ADS)

    Yoo, K.; Sanderman, J.; Mudd, S. M.; Amundson, R.

    2007-12-01

    Understanding the genesis of hillslope soils is challenging. They are the products of geomorphic, hydrologic, and geochemical processes that are interacting among themselves and are affected by the soils they shape. Our goal is to mechanically and quantitatively integrate the soil production and transport, chemical weathering of minerals, and solute fluxes with the observed topographic variation of soil elemental compositions. We studied a grass covered hillslope in coastal California where geomorphic processes of soil production and transport are well characterized. The parent material is clay-rich sandstone and bioturbation drives the slope- dependent soil transport. 10 sites were excavated to the depth of 10-20 cm beyond the soil-saprolite boundary, and soil and saprolite samples were collected for total chemical analyses of major elements. Soil solution was sampled throughout the year at multiple depths at 6 hillslope locations, along with outflow stream samples. We report that long term weathering rates, determined by the enrichment of weathering resistant element (Zr), are approximately proportional to soil production rates, whereas solute measurements indicate fastest chemical weathering rate near the toeslope where the soil production rate is lowest due to the thick soils. In saprolite, the Zr enrichment increased with increasing soil thickness, a trend consistent with the fact that soil production rate declines with soil thickness. If we assume mineral residence time in the saprolite increases with a decreasing conversion rate of saprolite to soil, the saprolite residence time may explain the greater degrees of saprolite chemical alteration in the depositional slope. Comparisons of elemental compositions of the soils and saprolite suggest that less than 10 % of the original saprolite mass has been lost via dissolution and leaching during the soil formation. Despite the mass losses of most elements, phosphorous and calcium appear to be selectively retained

  12. Characterizing Soil Organic Carbon Recalcitrance in Longleaf Pine (Pinus palustris Mill) Stands

    NASA Astrophysics Data System (ADS)

    Butnor, J. R.; Samuelson, L. J.; Anderson, P. H.; Gonzalez-Benecke, C. A.; Boot, C. M.; Cotrufo, M. F.; Heckman, K. A.; Jackson, J. A.; Johnsen, K. H.; Stokes, T.; Swanston, C.

    2015-12-01

    Historically, longleaf pine (LLP) stands in the southeastern US experienced frequent fires. Today managed LLP stands are burned at 2-5 year intervals to reduce fuels and hardwood competition and manage for biodiversity. These are not stand replacing fires, though considerable amounts of biomass are burned and the conversion rate to biochemically stabilized black carbon (BC) is unknown. The primary mechanisms for long-term carbon sequestration in soil are mineral association, biochemical transformation (e.g. pyrogenesis) and physical protection. We quantified the recalcitrance of soil organic carbon (SOC) and its oxidation resistant fraction (SOCR; defined as residual SOC following H2O2 treatment and dilute HNO3 digestion) using radiocarbon dating (SOC and SOCR) and benzene polycarboxylic acids (BPCA) as molecular markers for polyaromatic C associated with BC. Mineral stabilized C is largely represented by SOCR contents and BC by total BPCA contents. Soils were collected by depth (0-10, 10-20, 20-50, 50-100 cm) at 14 managed LLP stands in Louisiana (LA), Georgia (GA) and North Carolina (NC) burned every two to five years. Across all sites, SOC and SOCR contents declined with soil depth, though SOCR:SOC increased with depth (0.13, 0.15, 0.22, 0.31). SOCR was more 14C depleted than SOC and Δ14C values became more negative with soil depth (SOCR: -195, -318, -458, -553 vs. SOC 23, -39, -156, -334), indicating that SOCR had a much longer mean residence time. The Δ14C values correspond to mean ages of SOCR ranging from 1777 to 6969 years and of SOC from 84 to 3319 years. We obtained very low BPCA yield from SOCR, and it is unclear whether BC was absent or not accessible with the BPCA method. Preliminary analysis of total BPCA (bulk soil) indicates interactions between soil series and depth. Total BPCA concentration of SOC in the upper 10 cm was 136 g kg-1 C in LA and more than six times the concentration in GA and NC. On deep sands in NC, the highest BPCA concentration

  13. Pharmacokinetics, Safety and Cognitive Function Profile of Rupatadine 10, 20 and 40 mg in Healthy Japanese Subjects: A Randomised Placebo-Controlled Trial

    PubMed Central

    Täubel, Jörg; Ferber, Georg; Fernandes, Sara; Lorch, Ulrike; Santamaría, Eva; Izquierdo, Iñaki

    2016-01-01

    Introduction Rupatadine is a marketed second generation antihistamine, with anti-PAF activity, indicated for symptomatic treatment of allergic rhinitis and urticaria. This study was conducted to evaluate the pharmacokinetics (PK), pharmacodynamics (PD), safety and tolerability of rupatadine in healthy Japanese subjects after single and multiple oral doses. Methods In this randomised, double-blind, placebo-controlled study, 27 male and female healthy Japanese subjects were administered single and multiple escalating rupatadine dose of 10, 20 and 40 mg or placebo. Blood samples were collected at different time points for PK measurements and subjects were assessed for safety and tolerability. The effect of rupatadine on cognitive functioning was evaluated by means of computerized cognitive tests: rapid visual information processing (RVP), reaction time (RT), spatial working memory (SWM) and visual analogue scales (VAS). Results Exposure to rupatadine as measured by Cmax and AUC was found to increase in a dose dependent manner over the dose range of 10–40 mg for both single and multiple dose administration. The safety assessments showed that all treatment related side effects were of mild intensity and there were no serious adverse events (SAEs) or withdrawals due to treatment–emergent adverse events (TEAEs) in this study. The therapeutic dose of rupatadine did not show any CNS impairment in any of the cognitive tests. Conclusions This study demonstrated that rupatadine is safe and well tolerated by Japanese healthy subjects. The PK-PD profile confirmed previous experience with rupatadine. PMID:27632557

  14. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material

    USGS Publications Warehouse

    Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.

  15. Spatial variability and stocks of soil organic carbon in the Gobi desert of Northwestern China.

    PubMed

    Zhang, Pingping; Shao, Ming'an

    2014-01-01

    Soil organic carbon (SOC) plays an important role in improving soil properties and the C global cycle. Limited attention, though, has been given to assessing the spatial patterns and stocks of SOC in desert ecosystems. In this study, we quantitatively evaluated the spatial variability of SOC and its influencing factors and estimated SOC storage in a region (40 km2) of the Gobi desert. SOC exhibited a log-normal depth distribution with means of 1.6, 1.5, 1.4, and 1.4 g kg(-1) for the 0-10, 10-20, 20-30, and 30-40 cm layers, respectively, and was moderately variable according to the coefficients of variation (37-42%). Variability of SOC increased as the sampling area expanded and could be well parameterized as a power function of the sampling area. Significant correlations were detected between SOC and soil physical properties, i.e. stone, sand, silt, and clay contents and soil bulk density. The relatively coarse fractions, i.e. sand, silt, and stone contents, had the largest effects on SOC variability. Experimental semivariograms of SOC were best fitted by exponential models. Nugget-to-sill ratios indicated a strong spatial dependence for SOC concentrations at all depths in the study area. The surface layer (0-10 cm) had the largest spatial dependency compared with the other layers. The mapping revealed a decreasing trend of SOC concentrations from south to north across this region of the Gobi desert, with higher levels close to an oasis and lower levels surrounded by mountains and near the desert. SOC density to depths of 20 and 40 cm for this 40 km2 area was estimated at 0.42 and 0.68 kg C m(-2), respectively. This study provides an important contribution to understanding the role of the Gobi desert in the global carbon cycle. PMID:24733073

  16. Spatial variability and stocks of soil organic carbon in the Gobi desert of Northwestern China.

    PubMed

    Zhang, Pingping; Shao, Ming'an

    2014-01-01

    Soil organic carbon (SOC) plays an important role in improving soil properties and the C global cycle. Limited attention, though, has been given to assessing the spatial patterns and stocks of SOC in desert ecosystems. In this study, we quantitatively evaluated the spatial variability of SOC and its influencing factors and estimated SOC storage in a region (40 km2) of the Gobi desert. SOC exhibited a log-normal depth distribution with means of 1.6, 1.5, 1.4, and 1.4 g kg(-1) for the 0-10, 10-20, 20-30, and 30-40 cm layers, respectively, and was moderately variable according to the coefficients of variation (37-42%). Variability of SOC increased as the sampling area expanded and could be well parameterized as a power function of the sampling area. Significant correlations were detected between SOC and soil physical properties, i.e. stone, sand, silt, and clay contents and soil bulk density. The relatively coarse fractions, i.e. sand, silt, and stone contents, had the largest effects on SOC variability. Experimental semivariograms of SOC were best fitted by exponential models. Nugget-to-sill ratios indicated a strong spatial dependence for SOC concentrations at all depths in the study area. The surface layer (0-10 cm) had the largest spatial dependency compared with the other layers. The mapping revealed a decreasing trend of SOC concentrations from south to north across this region of the Gobi desert, with higher levels close to an oasis and lower levels surrounded by mountains and near the desert. SOC density to depths of 20 and 40 cm for this 40 km2 area was estimated at 0.42 and 0.68 kg C m(-2), respectively. This study provides an important contribution to understanding the role of the Gobi desert in the global carbon cycle.

  17. Determination of metals in Brazilian soils by inductively coupled plasma mass spectrometry.

    PubMed

    de Carvalho, Rui M; dos Santos, Jéssica A; Silva, Jessee A S; do Prado, Thiago G; da Fonseca, Adriel Ferreira; Chaves, Eduardo S; Frescura, Vera L A

    2015-08-01

    The concentration of metals in Brazilian soil under no-tillage (NT) and an area under native vegetation (NV) was determined by inductively coupled plasma mass spectrometry. The applied method was based on microwave-assisted acid digestion using HNO3, HCl, H2O2, and HF. The accuracy of the method was evaluated by analyzing two certified reference materials (BCR-142 and RS-3). The relative standard deviation for all target elements was below 8% indicating an adequate precision and the limit of detection ranged from 0.03 μg g(-1) (Cd) to 24.0 μg g(-1) (Fe). The concentrations of Al, As, Ba, Cd, Cu, Fe, Mg, Mn, Ni, Pb, Sr, and Zn in the different layers (0-10, 10-20, 20-40, and 40-60 cm) were determined in two types of soils, located in Paraná State in Brazil. The soil layers analysis revealed a different behavior of metals concentrations in soil samples under NT and NV. The obtained results showed a clear impact of anthropogenic action with respect to specific metals due to many years of uncontrolled application rates of limestone and phosphate fertilizers.

  18. Priming effects and enzymatic activity in Israeli soils under treated wastewater and freshwater irrigation

    NASA Astrophysics Data System (ADS)

    Anissimova, Marina; Heinze, Stefanie; Chen, Yona; Tarchitzky, Jorge; Marschner, Bernd

    2014-05-01

    Irrigation of soils with treated wastewater (TWW) directly influences microbial processes of soil. TWW contains easily decomposable organic material, which can stimulate the activity of soil microorganisms and, as a result, lead to the excessive consumption of soil organic carbon pool. We investigated the effects of irrigation with TWW relative to those of irrigation with freshwater (FW) on the microbial parameters in soils with low (7%) and medium (13%) clay content in a lysimeter experiment. The objectives of our study were to (i) determine the impact of water quality on soil respiration and enzymatic activity influenced by clay content and depth, and (ii) work out the changes in the turnover of soil organic matter (PE, priming effects). Samples were taken from three soil depths (0-10, 10-20, and 40-60 cm). Soil respiration and PE were determined in a 21-days incubation experiment after addition of uniformly 14C-labeled fructose. Activity of 10 extracellular enzymes (EEA, from C-, N-, P-, and S-cycle), phenol oxidase and peroxidase activity (PO+PE), and dehydrogenase activity (DHA) were assayed. Microbial Community-Level Physiological Profiles (CLPP) using four substrates, and microbial biomass were determined. The results showed that the clay content acted as the main determinative factor. In the soil with low clay content the water quality had a greater impact: the highest PE (56%) was observed in the upper layer (0-10cm) under FW irrigation; EEA of C-, P-, and S-cycles was significantly higher in the upper soil layer under TWW irrigation. Microbial biomass was higher in the soil under TWW irrigation and decreased with increasing of depth (50 μg/g soil in the upper layer, 15 μg/g soil in the lowest layer). This tendency was also observed for DHA. Contrary to the low clay content, in the soil with medium clay content both irrigation types caused the highest PE in the lowest layer (65% under FW irrigation, 48% under TWW irrigation); the higher substrate

  19. Influence of elevated ozone concentration on methanotrophic bacterial communities in soil under field condition

    NASA Astrophysics Data System (ADS)

    Huang, Y. Z.; Zhong, M.

    2015-05-01

    The open top chamber (OTC) method was used in combination with real-time quantitative PCR and terminal restriction fragment length polymorphism (T-RFLP) techniques in the wheat field to study the influence of different levels of O3 concentrations (ambient air filtered by activated carbons, 40 ppb, 80 ppb and 120 ppb) on the quantity and community structure of methanotrophic bacteria. O3 stress can influence the potential methane oxidation rate (PMOR) and potential methane production rate (PMPR) in the farmland soil. O3 treatment of 40 ppb improved significantly the 16S rRNA gene copy number in the total methanotrophic bacteria pmoA, and type I and type II methanotrophic bacteria in the soil depth of 0-20 cm. When the O3 concentration reached 120 ppb, the 16S rRNA gene copy number in the total methanotrophic bacteria pmoA and type I methanotrophic bacteria decreased significantly as compared to the control treatment in 10-20 cm layer. The 16s rRNA gene copy number of total methanotrophic bacteria pmoA and type I and type II methanotrophic bacteria were influenced by different O3 concentration and soil depth. The T-RFLP analysis indicated that O3 stress influenced significantly the community structure of the methanotrophic bacteria in soil, causing potential threat to the diversity of methanotrophic bacteria. It seems to imply that the rise of O3 concentration could produce an impact on the carbon cycling and the methane emission of the wheat field soil by changing the community structure and diversity of methanotrophic bacteria, which then influences the global climate change.

  20. Evaluating management-induced soil salinization in golf courses in semi-arid landscapes

    NASA Astrophysics Data System (ADS)

    Young, J.; Udeigwe, T. K.; Weindorf, D. C.; Kandakji, T.; Gautam, P.; Mahmoud, M. M. A.

    2015-01-01

    Site-specific information on land management practices are often desired to make better assertions of their environmental impacts. A study was conducted in Lubbock, TX, in the Southern High Plains of the United States, an area characterized by semi-arid climatic conditions, to (1) examine the potential management-induced alteration in soil salinity indicators in golf course facilities and (2) develop predictive relationships for a more rapid soil salinity examination within these urban landscape soils using findings from portable x-ray fluorescence (PXRF) spectrometer. Soil samples were collected from the managed (well irrigated) and non-managed (non irrigated) areas of seven golf course facilities at 0-10, 10-20, and 20-30 cm depths, and analyzed for a suite of chemical properties. Among the extractable cations, sodium (Na) was significantly (p < 0.05) higher in the managed zones of all the golf facilities. Soil electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR), parameters often used in characterizing soil salinity and sodicity, were in most part significantly (p < 0.05) higher in the managed areas. Water quality report collected over a 22-year period (1991-2013, all years not available) indicated a gradual increase in pH, EC, SAR, total alkalinity, and extractable ions, thus, supporting the former findings. Findings from the PXRF suggested possible differences in chemical species and sources that contribute to salinity between the managed and non-managed zones. PXRF quantified Cl and S, and to a lesser extent Ca, individually and collectively explained 23-85% of the variability associated with soil salinity at these facilities.

  1. Evaluating management-induced soil salinization in golf courses in semi-arid landscapes

    NASA Astrophysics Data System (ADS)

    Young, J.; Udeigwe, T. K.; Weindorf, D. C.; Kandakji, T.; Gautam, P.; Mahmoud, M. A.

    2015-04-01

    Site-specific information on land management practices are often desired to make better assessments of their environmental impacts. A study was conducted in Lubbock, Texas, in the Southern High Plains of the United States, an area characterized by semi-arid climatic conditions, to (1) examine the potential management-induced alterations in soil salinity indicators in golf course facilities and (2) develop predictive relationships for a more rapid soil salinity examination within these urban landscape soils using findings from a portable X-ray fluorescence (PXRF) spectrometer. Soil samples were collected from managed (well irrigated) and non-managed (non-irrigated) areas of seven golf course facilities at 0-10, 10-20, and 20-30 cm depths and analyzed for a suite of chemical properties. Among the extractable cations, sodium (Na) was significantly (p < 0.05) higher in the managed zones of all the golf facilities. Soil electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR), parameters often used in characterizing soil salinity and sodicity, were for the most part significantly (p < 0.05) higher in the managed areas. Water quality reports collected over a 22-year period (1991-2013, all years not available) indicated a gradual increase in pH, EC, SAR, total alkalinity, and extractable ions, thus supporting the former findings. Findings from the PXRF suggested possible differences in chemical species and sources that contribute to salinity between the managed and non-managed zones. PXRF-quantified Cl and S, and to a lesser extent Ca, individually and collectively explained 23-85% of the variability associated with soil salinity at these facilities.

  2. An evaluation of the mobility of pathogen indicators, Escherichia coli and bacteriophage MS-2, in a highly weathered tropical soil under unsaturated conditions

    USGS Publications Warehouse

    Wong, T.-P.; Byappanahalli, M.; Yoneyama, B.; Ray, C.

    2008-01-01

    Laboratory column experiments were conducted to study the effects of anionic polyacrylamide (PAM) polymer and surfactant linear alkylbenzene sulfonate (LAS) on the movement of Escherichia coli and the FRNA phage MS-2. The study was designed to evaluate if PAM or PAM + LAS would enhance the mobility of human pathogens in tropical soils under unsaturated conditions. No breakthrough of phage was observed in a 10 cm column after passing 100 pore volumes of solution containing 1 ?? 108 plaque-forming units (PFU)/ml. In later experiments, after passing 10-20 pore volumes of influent containing 1 ?? 108/ml MS-2 or E. coli through 15 cm columns, the soil was sliced and the organisms eluted. Phage moved slightly deeper in the polymer-treated column than in the control column. There was no measurable difference in the movement of E. coli in either polymer-treated or control columns. The properties of the soil (high amounts of metal oxides, kaolinitic clay), unsaturated flow conditions, and relatively high ionic strengths of the leaching solution attributed to significant retention of these indicators. The impacts of PAM and LAS on the mobility of E. coli or MS-2 phage in the chosen soils were not significant. ?? IWA Publishing 2008.

  3. Lessons Learned From CM-2 Modal Testing and Analysis

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Goodnight, Thomas W.; Carney, Kelly S.; Otten, Kim D.

    2002-01-01

    The Combustion Module-2 (CM-2) is a space experiment that launches on Shuttle mission STS-107 in the SPACEHAB Double Research Module. The CM-2 flight hardware is installed into SPACEHAB single and double racks. The CM-2 flight hardware was vibration tested in the launch configuration to characterize the structure's modal response. Cross-orthogonality between test and analysis mode shapes were used to assess model correlation. Lessons learned for pre-test planning and model verification are discussed.

  4. Energy Levels of the Nitrate Radical Below 2000 CM-1

    NASA Astrophysics Data System (ADS)

    Stanton, J. F.; Simmons, C. S.

    2012-06-01

    Highly sophisticated quantum chemistry techniques have been employed to build a three-state diabatic Hamiltonian for the nitrate radical (NO_3). Eigenvalues of this Hamiltonian (which includes effects beyond the Born-Oppenheimer approximation) are consistent with the known ``vibrational'' levels of NO_3 up to ca. 2100 cm-1 above the zero-point level; with a small empirical adjustment of the diabatic coupling strength, calculated levels are within 20 cm-1 of the measured level positions for those that have been observed experimentally. Of the eleven states with e' symmetry calculated below 2000 cm-1, nine of these have been observed either in the gas phase by Hirota and collaborators as well as Neumark and Johnston, or in frozen argon by Jacox. However, the Hamiltonian produces two levels that have not been seen experimentally: one calculated to lie at 1075 cm-1 (which is the third e' state, above ν_4 and 2ν_4) and another at 1640 cm-1 which is best assigned as one of the two e' sublevels of 4ν_4. A significant result is that the state predicted at 1075 cm-1 is not far enough above the predicted 2ν_4 level (777 cm-1 v. ca. 760 cm-1 from experiment) to be plausibly assigned as 3ν_4 (which is at 1155 cm-1: experimental position: 1173 cm-1), nor is its nodal structure consistent with such an idea. Rather, it is quite unambiguously the ν_3 level. Given the fidelity of the results generated by this model Hamiltonian as compared to experiment, it can safely be concluded that the prominent infrared band seen at 1492 cm-1 (corresponding to a calculated level at 1500 cm-1) is not ν_3, but rather a multiquantum state best viewed as a sublevel of the ν_3 + ν_4 combination.

  5. Occurrence and fate of the norsesquiterpene glucoside ptaquiloside (PTA) in soils

    NASA Astrophysics Data System (ADS)

    Zaccone, Claudio; Cavoski, Ivana; Costi, Roberta; Sarais, Giorgia; Caboni, Pierluigi; Miano, Teodoro M.; Lattanzio, Vincenzo

    2014-05-01

    The bracken fern Pteridium aquilinum (L.) Kuhn, one of the most common plant species on Earth, produces a wide range of secondary metabolites including the norsesquiterpene glucoside ptaquiloside (PTA). This bracken constituent causes acute poisoning, blindness and cancer in animals, and can be transferred to man when bracken is utilized as food. Also milk from cows eating bracken is thought to be the vector for the transfer of PTA to humans, as well as PTA-contaminated drinking waters. Although some studies on the effect of growth conditions and soil properties on the production and mobility of PTA have been carried out (mainly in the North of Europe), results are sometimes conflicting and further investigations are needed. The aim of the present work is to study the occurrence and the fate of PTA in soils showing different physico-chemical features, collected in different pedoclimatic areas (from the South of Italy), but having the extensive ("wild") livestock farming as common denominator. The PTA content was determined in both soil and fern samples by GC-MS; both the extraction protocol and recovery were previously tested through incubation studies. Soils samples were also characterizes from the physical and chemical point of view (pH, EC, texture, total carbonates, cation exchange capacity, organic C, total N, available nutrients and heavy metal concentration) in order to correlate the possible influence of soil parameters on PTA production, occurrence and mobility. PTA concentration in soil samples was always soil organic matter content (ranging from 3.4 to 22.8%), iii) the soil pH (ranging from 5.9 to 6.6), iv) the soil texture, v) the depth (0-10 cm; 10-20 cm), and vi) precipitations (ranging from 780 to 960 mm/a). This seems to suggest the degradation of the PTA by indigenous microbial community

  6. Effects of electron irradiation and temperature on 1 ohm-cm and 10 ohm-cm silicon solar cells

    NASA Technical Reports Server (NTRS)

    Nicoletta, C. A.

    1973-01-01

    One OHM-cm and 10 OHM-cm silicon solar cells were exposed to 1.0 MeV electrons at a fixed flux of 10 to the 11th power e/sq cm/sec and fluences of 10 to the 13th power, 10 to the 14th power and 10 to the 15th power e/sq.cm. 1-V curves of the cells were made at room temperature, - 63 C and + or - 143 C after each irradiation. A value of 139.5 mw/sq cm was used as AMO incident energy rate per unit area. The 10 OHM-cm cells appear more efficient than 1 OHM-cm cells after exposure to a fluence greater than 10 to the 14th power e/sq cm. The 1.0 MeV electron damage coefficients for both 1 OHM-cm and 10 OHM-cm cells are somewhat less than those for previously irradiated cells at room temperature. The values of the damage coefficients increase as the cell temperatures decrease. Efficiencies pertaining to maximum power output are about the same as those of n on p silicon cells evaluated previously.

  7. Effects of long-term irrigation with treated wastewater on the hydraulic properties, and the water and air regime in the root zone of a clayey soil.

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel

    2013-04-01

    With increasing water scarcity, treated wastewater (TW) appears as an attractive alternative source of water for irrigation, especially in arid and semi-arid regions where freshwater is naturally scarce. However, it seems that long-term use of TW for irrigation of orchards planted on heavy soils cause to yield reduction and crop damages. In terms of water quality, TW are characterized by higher concentrations of sodium and dissolved organic content (DOC) that affect soil exchangeable sodium percentage (ESP) on one hand and soil wettability, on the other hand. The working hypothesis of this study is that long-term use of TW for irrigation of clayey soils causes significant changes in the soil hydraulic properties. Such changes might affect the water and air regime in the root zone, and the hydrological balance components at the field scale. High-resolution field sampling determined the spatial distribution of chloride, ESP and DOC below the dripper, revealing higher salinity and sodicity, lower hydraulic conductivity, and possible preferential flow pattern linked to wettability in WW-irrigated soils. Laboratory experiments involving infiltration, evaporation, and swelling pressure measurements provide quantitative estimates of the impact of TW for irrigation on the soil hydraulic properties. The upper soil layer of TW-irrigated plots is more affected by the impact of DOC on soil wettability, while the lower layers are more affected by the impact of the increased ESP on soil hydraulic conductivity. Continuous monitoring of oxygen concentration at 10, 20 and 30 cm depths in the root zone near the trees and at mid-distance between trees revealed that the air regime in the root zone is significantly affected by the TW use as a consequence for the effect on the water regime.

  8. The amino acid composition of the Sutter's Mill CM2 carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Burton, Aaron S.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.; Jenniskens, Peter; Yin, Qing-Zhu

    2014-11-01

    We determined the abundances and enantiomeric compositions of amino acids in Sutter's Mill fragment #2 (designated SM2) recovered prior to heavy rains that fell April 25-26, 2012, and two other meteorite fragments, SM12 and SM51, that were recovered postrain. We also determined the abundance, enantiomeric, and isotopic compositions of amino acids in soil from the recovery site of fragment SM51. The three meteorite stones experienced terrestrial amino acid contamination, as evidenced by the low D/L ratios of several proteinogenic amino acids. The D/L ratios were higher in SM2 than in SM12 and SM51, consistent with rain introducing additional L-amino acid contaminants to SM12 and SM51. Higher percentages of glycine, β-alanine, and γ-amino-n-butyric acid were observed in free form in SM2 and SM51 compared with the soil, suggesting that these free amino acids may be indigenous. Trace levels of D+L-β-aminoisobutyric acid (β-AIB) observed in all three meteorites are not easily explained as terrestrial contamination, as β-AIB is rare on Earth and was not detected in the soil. Bulk carbon and nitrogen and isotopic ratios of the SM samples and the soil also indicate terrestrial contamination, as does compound-specific isotopic analysis of the amino acids in the soil. The amino acid abundances in SM2, the most pristine SM meteorite analyzed here, are approximately 20-fold lower than in the Murchison CM2 carbonaceous chondrite. This may be due to thermal metamorphism in the Sutter's Mill parent body at temperatures greater than observed for other aqueously altered CM2 meteorites.

  9. Effect of DTPA on concentration ratios of /sup 237/Np and /sup 244/Cm in vegetative parts of bush bean and barley

    SciTech Connect

    Romney, E.M.; Wallace, A.; Mueller, R.T.; Cha, J.W.; Wood, R.A.

    1981-07-01

    We grew bush beans, barley, and rice in two different soils in a glasshouse with /sup 237/Np or /sup 244/Cm mixed into separate containers of the soil. The chelating agent DTPA at 100 ..mu..g/g soil was added to half of the containers. The concentration ratio (CR) for /sup 237/Np without DTPA was two orders of magnitude higher than for /sup 244/Cm without DTPA for all three plant species. The DTPA increased the CR of /sup 244/Cm by two to three orders of magnitude, but had no influence on that for /sup 237/Np. In bush beans, both /sup 237/Np and /sup 244/Cm CRs were higher in primary leaves than in trifoliate leaves, which were higher than for stems. The CRs for bush beans were generally higher for both /sup 237/Np and /sup 244/Cm than for either barley or rice, especially without DTPA.

  10. "The 5 cm Rule": Biopower, Sexuality and Schooling

    ERIC Educational Resources Information Center

    Allen, Louisa

    2009-01-01

    This paper explores "the 5 cm rule", a regulation around student contact discovered during an investigation of the sexual culture of schooling with 16-19-year-olds in New Zealand. Implemented to stem "inappropriate and unwanted" touching, it stipulates that students must maintain a physical distance of 5 cm at all times. It is argued this rule…

  11. Design and Performance of 40 cm Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    A 40 cm ion thruster is being developed at the NASA Glenn Research Center to obtain input power and propellant throughput capabilities of 10 kW and 550 kg. respectively. The technical approach here is a continuation of the "derating" technique used for the NSTAR ion thruster. The 40 cm ion thruster presently utilizes the NSTAR ion optics aperture geometry to take advantage of the large database of lifetime and performance data already available. Dome-shaped grids were chosen for the design of the 40 cm ion optics because this design is naturally suited for large-area ion optics. Ion extraction capabilities and electron backstreaming limits for the 40 cm ion optics were estimated by utilizing NSTAR 30 cm ion optics data. A preliminary service life assessment showed that the propellant throughput goal of 550 kg of xenon may be possible with molybdenum 40 cm ion optics. One 40 cm ion optics' set has been successfully fabricated to date. Additional ion optics' sets are presently being fabricated. Preliminary performance tests were conducted on a laboratory model 40 cm ion thruster.

  12. Effects of proton irradiation and temperature on 1 ohm-cm and 10 ohm-cm silicon solar cells

    NASA Technical Reports Server (NTRS)

    Nicoletta, C. A.

    1973-01-01

    The 1 ohm-cm and 10 ohm-cm silicon solar cells were exposed to 1.0 MeV protons at a fixed flux of 10 to the 9th power P/sq cm-sec and fluences of 10 to the 10th power, 10 to the 11th power, 10 to the 12th power and 3 X 10 to the 12th power P/sq cm. I-V curves of the cells were made at room temperature, 65 C and 165 C after each irradiation. A value of 139.5 mw/sq cm was taken as AMO incident energy rate per unit area. Degradation occurred for both uncovered 1 ohm-cm and 10 ohm-cm cells. Efficiencies are generally higher than those of comparable U.S. cells tested earlier. Damage (loss in maximum power efficiency) with proton fluence is somewhat higher for 10 ohm-cm cells, measured at the three temperatures, for fluences above 2 X 10 to the 11th power P/sq cm. Cell efficiency, as expected, changes drastically with temperature.

  13. Acidification of soil-water in low base-saturated sand soils of the superior uplands under acid and normal precipitation.

    PubMed

    Harris, A R

    1989-04-01

    Lakes and streams are acidified by direct precipitation and water channeled through nearby soils, but water in low base-saturation soils can produce highly acidic percolate after prolonged contact and subsequent degassing in surface waters. Theories advanced by Reuss (1983), Reuss and Johnson (1985), and Seip and Rustad (1984) suggest that soils with less than 15% base saturation are susceptible to soil-water pH depression of up to 0.4 unit, which is sufficient to cause negative alkalinity in soil solutions. High concentrations of mobile anions (notably sulfate) are responsible for the negative alkalinity and these solutions on CO2 degassing in surface waters can retain acidities equivalent to a pH value of 5.0 or less. This mechanism purports to explain why some lakes acidify when they are surrounded by acid soils and cation leaching is not required.Ambient precipitation set to pH 5.4 and pH 4.2 was applied to columns of low base-saturated, sand, soils, starting in 1985. The columns (15 cm diameter and 150 cm long) were collected from soils with base saturations falling into one of three groups (0-10, 10-20, and 20-40%) from national forests in the Superior Uplands area (includes Boundary Waters Canoe Area, Rainbow Lakes, Sylvania, Moquah Barrens, and other Wilderness and Natural areas). The soils were Haplorthods and Udipsamments mainly from outwash plains.The soil columns were instrumented and reburied around a subterranean structure used to collect leachate water and to maintain natural temperature, air, and light conditions. Three humus treatments were applied to soil column (none, northern hardwood, and jack pine) to measure the effect of natural acidification compared to acidification by acid precipitation. The cores were treated with precipitation buffered to pH 5.4 to simulate natural rain and pH 4.2 to simulate acid rain.Columns were treated in 1985 and 1986 with approximately 200 cm of buffered precipitation each year over the frost-free season. Data is

  14. Acidification of soil-water in low base-saturated sand soils of the superior uplands under acid and normal precipitation.

    PubMed

    Harris, A R

    1989-04-01

    Lakes and streams are acidified by direct precipitation and water channeled through nearby soils, but water in low base-saturation soils can produce highly acidic percolate after prolonged contact and subsequent degassing in surface waters. Theories advanced by Reuss (1983), Reuss and Johnson (1985), and Seip and Rustad (1984) suggest that soils with less than 15% base saturation are susceptible to soil-water pH depression of up to 0.4 unit, which is sufficient to cause negative alkalinity in soil solutions. High concentrations of mobile anions (notably sulfate) are responsible for the negative alkalinity and these solutions on CO2 degassing in surface waters can retain acidities equivalent to a pH value of 5.0 or less. This mechanism purports to explain why some lakes acidify when they are surrounded by acid soils and cation leaching is not required.Ambient precipitation set to pH 5.4 and pH 4.2 was applied to columns of low base-saturated, sand, soils, starting in 1985. The columns (15 cm diameter and 150 cm long) were collected from soils with base saturations falling into one of three groups (0-10, 10-20, and 20-40%) from national forests in the Superior Uplands area (includes Boundary Waters Canoe Area, Rainbow Lakes, Sylvania, Moquah Barrens, and other Wilderness and Natural areas). The soils were Haplorthods and Udipsamments mainly from outwash plains.The soil columns were instrumented and reburied around a subterranean structure used to collect leachate water and to maintain natural temperature, air, and light conditions. Three humus treatments were applied to soil column (none, northern hardwood, and jack pine) to measure the effect of natural acidification compared to acidification by acid precipitation. The cores were treated with precipitation buffered to pH 5.4 to simulate natural rain and pH 4.2 to simulate acid rain.Columns were treated in 1985 and 1986 with approximately 200 cm of buffered precipitation each year over the frost-free season. Data is

  15. Peat fires as source of polycyclic aromatic hydrocarbons in soils

    NASA Astrophysics Data System (ADS)

    Tsibart, Anna

    2013-04-01

    Polycyclic aromatic hydrocarbons (PAHs) arrive from pyrogenic sources including volcanism and the combustion of oil products and plant materials. The production of PAHs during the combustion of plant materials was considered in a number of publications, but their results were mainly obtained in laboratory experiments. Insufficient data are available on the hightemperature production of PAHs in environmental objects. For example, natural fires are frequently related to the PAH sources in landscapes, but very little factual data are available on this topic. On Polistovskii reserve (Russia, Pskov region) the soil series were separated depending on the damage to the plants; these series included soils of plots subjected to fires of different intensities, as well as soils of the background plots. The series of organic and organomineral soils significantly differed in their PAH distributions. In this series, the concentration of PAHs in the upper horizons of the peat soils little varied or slightly decreased, but their accumulation occurred at a depth of 5-10 or 10-20 cm in the soils after the fires. For example, in the series of high moor soils, the content of PAHs in the upper horizons remained almost constant; significant differences were observed in the subsurface horizons: from 2 ng/g in the background soil to 70 ng/g after the fire. In the upper horizons of the oligotrophic peat soils under pine forests, the total PAH content also varied only slightly. At the same time, the content of PAHs in the soil series increased from 15 to 90 ng/g with the increasing pyrogenic damage to the plot. No clear trends of the PAH accumulation were recorded in the organomineral soils. The content of PAHs in the soddy-podzolic soil subjected to fire slightly decreased (from 20 to 10 ng/g) compared to the less damaged soil. In peat fires, the access of oxygen to the fire zone is lower than in forest fires. The oxygen deficit acts as a factor of the organic fragments recombination and

  16. 12 years of intensive management increases soil carbon stocks in Loblolly pine and Sweetgum stands

    NASA Astrophysics Data System (ADS)

    Sanchez, F. G.; Samuelson, L.; Johnsen, K.

    2009-12-01

    To achieve and maintain productivity goals, forest managers rely on intensive management strategies. These strategies have resulted in considerable gains in forest productivity. However, the impacts of these strategies on belowground carbon dynamics is less clear. Carbon dynamics are influenced by a multitude of factors including soil moisture, nutrient status, net primary productivity and carbon allocation patterns. In this study, we describe the impact of four management strategies on soil carbon and nitrogen stocks in 12-year-old loblolly pine and sweetgum plantations. The management strategies are: (1) complete understory control, (2) complete understory control + drip irrigation, (3) complete understory control + drip irrigation and fertilization and (4) complete understory control + drip irrigation and fertilization and pest control. These management strategies were replicated on 3 blocks in a randomized complete block design. After 12 years, soil carbon stocks increased with increasing management intensity for both tree species. This effect was consistent throughout the depth increments measured (0-10, 10-20, 20-30 cm). Alternatively, no significant effect was detected for soil nitrogen at any depth increment. Sweetgum had higher soil carbon and nitrogen stocks at each depth increment than loblolly pine. There was a greater difference in nitrogen stocks than carbon stocks between the two species resulting in lower soil C:N ratios in the sweetgum stands. These observations may be due to differences in net primary productivity, rooting structure and carbon allocation patterns of sweetgum compared with loblolly pine. To determine the relative stability of the carbon and nitrogen stocks for the different treatments and tree species, we sequentially fractionated the soil samples into six fractions of differing stability. Although soil carbon stocks for both species increased with management intensity, there was no detectable difference in the soil carbon

  17. Long-term effect of land use change on soil quality: Afforestation and land abandonment in semi-arid Spain

    NASA Astrophysics Data System (ADS)

    Zethof, Jeroen; Cammeraat, Erik; Nadal-Romero, Estela

    2016-04-01

    similar values as the semi-natural sites, while the open areas in the afforested sites lag behind. Especially the soil at a depth of 10-20 cm showed a clear decrease in aggregate stability, while the surface layer showed a clear increase in aggregate stability. Abandonment sites showed a non-linear increase in soil quality, which means that aggregate stability slightly declines after 20 year of abandonment, but the positive change was less than on the afforested sites. Changes in vegetation along the chronosequence studied, could be expected to have an impact on organic matter input quality and quantity. Such changes in vegetation cover, structure and composition were not observed for the afforested sites in the field, but preliminary results suggest that the 40-year-old afforested sites could have a higher soil quality than the semi-natural sites.

  18. A study of Cs-137 spatial distribution in soil thin sections by digital autoradiography

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Dogadkin, Nikolay; Shiryaev, Andrey; Kolotov, Vladimir; Turkov, Victor

    2013-04-01

    Recent studies have proved autoradiography to have high potential in detection of radiation in particles including geological objects [1-3]. We applied digital autoradiography based on usage of image plates to study Cs-137 microdistribution in thin sections of the podzolic sandy soil typical for the Chernobyl remote impact zone 25 years after the accident. The zone is noted for contamination of the so-called condensation type where the contribution of the "hot" fuel particles has been comparatively low. The initial 137Cs contamination level of the study plot approximated 40 Ci/km2. According to the soil core data twenty five years after the accident the main portion of cesium radioisotopes is still concentrated in the 10-20 cm thick surface layer. Thin sections have been prepared from the top 0-10 cm soil layer of the soil profile located on the shoulder of the relatively steep northern slope of the forested hill formed on the Iput river terrace ca 20 km to the east of the town of Novozybkov, Bryansk region. Undisturbed soil sample was impregnated with epoxy resin, then dissected in vertical triplicates and polished to obtain open surface. Autoradiography of the thin sections has clearly shown different patterns of Cs-137 distribution related to its concentration in organic material and on the surface of soil particles. High sensitivity and resolution of the applied technique enables to reveal concentration and dispersion zones on microscale level. Soil micro-morphology has shown to be helpful in deciphering soil components and properties responsible for Cs-137 retention in the soil top layer. References 1. Mihoko Hareyama, Noriyoshi Tsuchiya, Masahiro Takebe and Tadashi Chida. Two-dimensional measurement of natural radioactivity of granitic rocks by photostimulated luminescence technique Geochemical Journal, 2000, 34, 1- 9. 2. Zeissler C. J., R. M. Lindstrom, J. P. McKinley. Radioactive particle analysis by digital autoradiography. Journal of Radioanalytical and

  19. [Pharmacological effects of CM6912 and its main metabolites].

    PubMed

    Morishita, H; Kushiku, K; Furukawa, T; Yamaki, Y; Izawa, M; Shibazaki, Y; Shibata, U

    1985-07-01

    Pharmacodynamic effects of ethyl 7-chloro-2,3-dihydro-5-(2-fluorophenyl)-2-oxo-1H-1,4- benzodiazepine-3-carboxylate (CM6912), a new benzodiazepine derivative, and its main metabolites (CM6913 = M1, CM7116 = M2) on the peripheral systems were investigated in several species of animals. In pentobarbital-anesthetized rabbits, CM6912 and M2 (1 or 5 mg/kg, i.v.) had little effect on blood pressure, heart rate and ECG, but it slightly reduced the respiration rate. M1 decreased the heart rate without affecting respiration, blood pressure and ECG. In conscious rabbits, CM6912 and M2 (1 mg/kg, i.v.) did not affect respiration, blood pressure, heart rate and ECG, but M1 (1 mg/kg, i.v.) increased the heart rate. CM6912 (5 or 30 mg/kg), when administered orally, also increased heart rate. In pentobarbital-anesthetized dogs, CM6912 and its metabolites (5 mg/kg, i.v.) decreased respiration and heart rate without affecting blood pressure and ECG. CM 6912 (5 mg/kg, i.v.) did not affect cardiovascular responses to the carotid occlusion, vagus stimulation, and pre- and post-ganglionic stimulation of cardiac ganglion in anesthetized dogs. CM6912 and its metabolites affected neither the spontaneous contraction nor the heart rate of isolated rabbit atria. These compounds also had no action on isolated aortic strips from rabbits. CM6912 and its metabolites did not affect the muscle tone of isolated guinea pig intestine, and it had no effects on the contractile responses to acetylcholine, histamine, serotonin and barium chloride. In isolated rabbit intestine, CM6912 and M2 slightly reduced the amplitude of contraction, while M1 had no effect. CM6912 and its metabolites did not affect the spontaneous motility of isolated non-pregnant and pregnant rat uteri as well as in situ non-pregnant rat uterus and isolated guinea pig vas deferens, including the contractile response to adrenaline. CM6912 and M2 relaxed isolated guinea pig trachea strips only at high concentrations. CM6912 and its

  20. Evaluation of CM5 Charges for Condensed-Phase Modeling.

    PubMed

    Vilseck, Jonah Z; Tirado-Rives, Julian; Jorgensen, William L

    2014-07-01

    The recently developed Charge Model 5 (CM5) is tested for its utility in condensed-phase simulations. The CM5 approach, which derives partial atomic charges from Hirshfeld population analyses, provides excellent results for gas-phase dipole moments and is applicable to all elements of the periodic table. Herein, the adequacy of scaled CM5 charges for use in modeling aqueous solutions has been evaluated by computing free energies of hydration (ΔG hyd) for 42 neutral organic molecules via Monte Carlo statistical mechanics. An optimal scaling factor for the CM5 charges was determined to be 1.27, resulting in a mean unsigned error (MUE) of 1.1 kcal/mol for the free energies of hydration. Testing for an additional 20 molecules gave an MUE of 1.3 kcal/mol. The high precision of the results is confirmed by free energy calculations using both sequential perturbations and complete molecular annihilation. Performance for specific functional groups is discussed; sulfur-containing molecules yield the largest errors. In addition, the scaling factor of 1.27 is shown to be appropriate for CM5 charges derived from a variety of density functional methods and basis sets. Though the average errors from the 1.27*CM5 results are only slightly lower than those using 1.14*CM1A charges, the broader applicability and easier access to CM5 charges via the Gaussian program are additional attractive features. The 1.27*CM5 charge model can be used for an enormous variety of applications in conjunction with many fixed-charge force fields and molecular modeling programs. PMID:25061445

  1. Managing compost stability and amendment to soil to enhance soil heating during soil solarization.

    PubMed

    Simmons, Christopher W; Guo, Hongyun; Claypool, Joshua T; Marshall, Megan N; Perano, Kristen M; Stapleton, James J; Vandergheynst, Jean S

    2013-05-01

    Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10%(g/g) compost containing 16.9 mg CO2/gdry weight organic carbon resulted in soil temperatures that were 2-4 °C higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization.

  2. Managing compost stability and amendment to soil to enhance soil heating during soil solarization.

    PubMed

    Simmons, Christopher W; Guo, Hongyun; Claypool, Joshua T; Marshall, Megan N; Perano, Kristen M; Stapleton, James J; Vandergheynst, Jean S

    2013-05-01

    Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10%(g/g) compost containing 16.9 mg CO2/gdry weight organic carbon resulted in soil temperatures that were 2-4 °C higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization. PMID:23422041

  3. Ion accelerator systems for high power 30 cm thruster operation

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1982-01-01

    Two and three-grid accelerator systems for high power ion thruster operation were investigated. Two-grid translation tests show that over compensation of the 30 cm thruster SHAG grid set spacing the 30 cm thruster radial plasma density variation and by incorporating grid compensation only sufficient to maintain grid hole axial alignment, it is shown that beam current gains as large as 50% can be realized. Three-grid translation tests performed with a simulated 30 cm thruster discharge chamber show that substantial beamlet steering can be reliably affected by decelerator grid translation only, at net-to-total voltage ratios as low as 0.05.

  4. Eight-cm mercury ion thruster system technology

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The technology status of 8 cm diameter electron bombardment ion thrusters is presented. Much of the technology resulting from the 5 cm diameter thruster has been adapted and improved upon to increase the reliability, durability, and efficiency of the 8 cm thruster. Technology discussed includes: dependence of neutralizer tip erosion upon neutralizer flow rate; impregnated and rolled-foil insert cathode performance and life testing; neutralizer position studies; thruster ion beam profile measurements; high voltage pulse ignition; high utilization ion machined accelerator grids; deposition internal and external to the thruster; thruster vectoring systems; thruster cycling life testing and thruster system weights for typical mission applications.

  5. Influence of single administration of different diets on the energy metabolism at temperatures of 10,20 and 30 degrees C in the golden hamster.

    PubMed

    Simek, V

    1976-01-01

    Fed animals have a higher resting metabolic rate in the thermoneutral zone than fasting ones. The metabolic increase is due to the specific dynamic action of food. With a decline of environmental temperature this increase in metabolism either declines or remains unchanged; decisive is whether the heat is used for thermoregulation or not (Mejsnar and Janský 1971). The objective of our work was to find out to what extent a single intake of a diet with a different ratio of nutrients can influence resting metabolism in the golden hamster and whether this heat can be used for thermoregulation in the cold. Female golden hamsters aged 6-8 weeks kept at a constant temperature of 22 +/-1 degrees C with twelve-hour alternation of light (6 a.m. - 6 p.m.) and darkness ( 6 p.m. - 6 a.m.) were used for the experiments. The oxygen consumption was assessed after a single intake of a standard, high-carbohydrate (76 cal.% starch), high-fat (80 cal.% margarine) and high-protein (82 cal.% casein) diet-for detailed composition see Fábry (1959). The food was given at 6.m. after previous 20 hours of fasting. Animals were then transferred into the respiration chamber and kept there for three hours, including one hour when they were left to settle down; during this period the oxygen consumption was not measured. Oxygen consumption measurement started at 9 a.m. and lasted till 11 a.m. The metabolism of the animals at rest was assessed at temperatures of 10, 20 and 30 degrees C by measuring the oxygen consumption by the interferometric method (Wollschitt et al. 1935). The results are expressed in ml of oxygen per g of body weight per hour. The relationship between the metabolism at rest and environmental temperatures in hamsters given a single dose of standard, high-proetin, high-fat or high-carbohydrate diet is apparent from Table 1. The maximum increase of oxygen consumption after administration of the experimental diets was found at a temperature of 30 degrees C. At an environmental

  6. Park size and disturbance: impact on soil heterogeneity - a case study Tel-Aviv- Jaffa.

    NASA Astrophysics Data System (ADS)

    Zhevelev, Helena; Sarah, Pariente; Oz, Atar

    2015-04-01

    Parks and gardens are poly-functional elements of great importance in urban areas, and can be used for optimization of physical and social components in these areas. This study aimed to investigate alteration of soil properties with land usages within urban park and with area size of park. Ten parks differed by size (2 - 50 acres) were chosen, in random, in Tel-Aviv- Jaffa city. Soil was sampled in four microenvironments ((lawn, path, picnic and peripheral area (unorganized area) of each the park)), in three points and three depth (0-2, 5-10 and 10-20 cm). Penetration depth was measured in all point of sampling. For each soil sample electrical conductivity and organic matter content were determined. Averages of penetration depth drastically increased from the most disturbed microenvironments (path and picnic) to the less disturbed ones (lawn and peripheral). The maximal heterogeneity (by variances and percentiles) of penetration depth was found in the peripheral area. In this area, penetration depth increased with increasing park size, i.e., from 2.6 cm to 3.7 cm in the small and large parks, respectively. Averages of organic matter content and electrical conductivity decreased with soil depth in all microenvironments and increased with decreasing disturbance of microenvironments. Maximal heterogeneity for both of these properties was found in the picnic area. Increase of park size was accompanied by increasing of organic matter content in the upper depth in the peripheral area, i.e., from 2.4% in the small parks to 4.5% in the large ones. In all microenvironments the increasing of averages of all studied soil properties was accompanied by increasing heterogeneity, i.e., variances and upper percentiles. The increase in the heterogeneity of the studied soil properties is attributed to improved ecological soil status in the peripheral area, on the one hand, and to the high anthropogenic pressure in the picnic area, on the other. This means that the urban park offers

  7. Models of the Cosmological 21 cm Signal from the Epoch of Reionization Calibrated with Lyα and CMB Data

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Choudhury, Tirthankar Roy; Puchwein, Ewald; Haehnelt, Martin G.

    2016-08-01

    We present here 21 cm predictions from high dynamic range simulations for a range of reionization histories that have been tested against available Lyα and CMB data. We assess the observability of the predicted spatial 21 cm fluctuations by ongoing and upcoming experiments in the late stages of reionization in the limit in which the hydrogen spin temperature is significantly larger than the CMB temperature. Models consistent with the available Lyα data and CMB measurement of the Thomson optical depth predict typical values of 10-20 mK2 for the variance of the 21 cm brightness temperature at redshifts z = 7-10 at scales accessible to ongoing and upcoming experiments (k ≲ 1 cMpc-1h). This is within a factor of a few magnitude of the sensitivity claimed to have been already reached by ongoing experiments in the signal rms value. Our different models for the reionization history make markedly different predictions for the redshift evolution and thus frequency dependence of the 21 cm power spectrum and should be easily discernible by LOFAR (and later HERA and SKA1) at their design sensitivity. Our simulations have sufficient resolution to assess the effect of high-density Lyman limit systems that can self-shield against ionizing radiation and stay 21 cm bright even if the hydrogen in their surroundings is highly ionized. Our simulations predict that including the effect of the self-shielded gas in highly ionized regions reduces the large scale 21 cm power by about 30%.

  8. Analysis of fern spore banks from the soil of three vegetation types in the central region of Mexico.

    PubMed

    Ramírez-Trejo, María Del Rosario; Pérez-García, Blanca; Orozco-Segovia, Alma

    2004-05-01

    The vertical structure of fern spore banks was studied in a xerophilous shrubland, montane rain forest, and pine-oak forest in Hidalgo, Mexico, using the emergence method. Soil samples were collected in April 1999 at depths of 0-10, 10-20, and 20-30 cm. Viable spores decreased significantly with depth in all vegetation types, and the highest number of prothallia and sporophytes was found in the uppermost layer. The montane rain forest and the xerophilous shrubland had the largest and the richest banks, respectively. Twenty-three fern taxa were registered in the aboveground vegetation, 12 in the soil banks, and 43.5% were in both. Aboveground and in the soil bank, the xerophilous shrubland, the montane rain forest, and the pine-oak forest had, 17 and 7, 1 and 6, and 7 and 3 taxa, respectively. These were distributed differentially in relation to depth. The Sørensen index indicated a similarity of 61.5% between the xerophilous shrubland and the montane rain forest, and the Czeckanovsky index indicated 19.75%. The presence of viable spores in the soil of all vegetation types confirmed the existence of natural spore banks. Long-distance dispersal was an important factor determining the specific composition of the xerophilous shrubland and the pine-oak forest.

  9. CM Process Improvement and the International Space Station Program (ISSP)

    NASA Technical Reports Server (NTRS)

    Stephenson, Ginny

    2007-01-01

    This viewgraph presentation reviews the Configuration Management (CM) process improvements planned and undertaken for the International Space Station Program (ISSP). It reviews the 2004 findings and recommendations and the progress towards their implementation.

  10. Benchmarking and performance analysis of the CM-2. [SIMD computer

    NASA Technical Reports Server (NTRS)

    Myers, David W.; Adams, George B., II

    1988-01-01

    A suite of benchmarking routines testing communication, basic arithmetic operations, and selected kernel algorithms written in LISP and PARIS was developed for the CM-2. Experiment runs are automated via a software framework that sequences individual tests, allowing for unattended overnight operation. Multiple measurements are made and treated statistically to generate well-characterized results from the noisy values given by cm:time. The results obtained provide a comparison with similar, but less extensive, testing done on a CM-1. Tests were chosen to aid the algorithmist in constructing fast, efficient, and correct code on the CM-2, as well as gain insight into what performance criteria are needed when evaluating parallel processing machines.

  11. Spectral reflectance properties of carbonaceous chondrites: 2. CM chondrites

    NASA Astrophysics Data System (ADS)

    Cloutis, E. A.; Hudon, P.; Hiroi, T.; Gaffey, M. J.; Mann, P.

    2011-11-01

    We have examined the spectral reflectance properties and available modal mineralogies of 39 CM carbonaceous chondrites to determine their range of spectral variability and to diagnose their spectral features. We have also reviewed the published literature on CM mineralogy and subclassification, surveyed the published spectral literature and added new measurements of CM chondrites and relevant end members and mineral mixtures, and measured 11 parameters and searched pair-wise for correlations between all quantities. CM spectra are characterized by overall slopes that can range from modestly blue-sloped to red-sloped, with brighter spectra being generally more red-sloped. Spectral slopes, as measured by the 2.4:0.56 μm and 2.4 μm:visible region peak reflectance ratios, range from 0.90 to 2.32, and 0.81 to 2.24, respectively, with values <1 indicating blue-sloped spectra. Matrix-enriched CM spectra can be even more blue-sloped than bulk samples, with ratios as low as 0.85. There is no apparent correlation between spectral slope and grain size for CM chondrite spectra - both fine-grained powders and chips can exhibit blue-sloped spectra. Maximum reflectance across the 0.3-2.5 μm interval ranges from 2.9% to 20.0%, and from 2.8% to 14.0% at 0.56 μm. Matrix-enriched CM spectra can be darker than bulk samples, with maximum reflectance as low as 2.1%. CM spectra exhibit nearly ubiquitous absorption bands near 0.7, 0.9, and 1.1 μm, with depths up to 12%, and, less commonly, absorption bands in other wavelength regions (e.g., 0.4-0.5, 0.65, 2.2 μm). The depths of the 0.7, 0.9, and 1.1 μm absorption features vary largely in tandem, suggesting a single cause, specifically serpentine-group phyllosilicates. The generally high Fe content, high phyllosilicate abundance relative to mafic silicates, and dual Fe valence state in CM phyllosilicates, all suggest that the phyllosilicates will exhibit strong absorption bands in the 0.7 μm region (due to Fe 3+-Fe 2+ charge

  12. Ferrihydrite in soils

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Shoba, S. A.

    2016-07-01

    Ferrihydrite—an ephemeral mineral—is the most active Fe-hydroxide in soils. According to modern data, the ferrihydrite structure contains tetrahedral lattice in addition to the main octahedral lattice, with 10-20% of Fe being concentrated in the former. The presence of Fe tetrahedrons influences the surface properties of this mineral. The chemical composition of ferrihydrite samples depends largely on the size of lattice domains ranging from 2 to 6 nm. Chemically pure ferrihydrite rarely occurs in the soil; it usually contains oxyanion (SiO14 4-, PO4 3-) and cation (Al3+) admixtures. Aluminum replace Fe3+ in the structure with a decrease in the mineral particle size. Oxyanions slow down polymerization of Fe3+ aquahydroxomonomers due to the films at the surface of mineral nanoparticles. Si- and Al-ferrihydrites are more resistant to the reductive dissolution than the chemically pure ferrihydrite. In addition, natural ferrihydrite contains organic substance that decreases the grain size of the mineral. External organic ligands favor ferrihydrite dissolution. In the European part of Russia, ferrihydrite is more widespread in the forest soils than in the steppe soils. Poorly crystallized nanoparticles of ferrihydrite adsorb different cations (Zn, Cu) and anions (phosphate, uranyl, arsenate) to immobilize them in soils; therefore, ferrihydrite nanoparticles play a significant role in the biogeochemical cycle of iron and other elements.

  13. CmWRKY15 Facilitates Alternaria tenuissima Infection of Chrysanthemum.

    PubMed

    Fan, Qingqing; Song, Aiping; Xin, Jingjing; Chen, Sumei; Jiang, Jiafu; Wang, Yinjie; Li, Xiran; Chen, Fadi

    2015-01-01

    Abscisic acid (ABA) has an important role in the responses of plants to pathogens due to its ability to induce stomatal closure and interact with salicylic acid (SA) and jasmonic acid (JA). WRKY transcription factors serve as antagonistic or synergistic regulators in the response of plants to a variety of pathogens. Here, we demonstrated that CmWRKY15, a group IIa WRKY family member, was not transcriptionally activated in yeast cells. Subcellular localization experiments in which onion epidermal cells were transiently transfected with CmWRKY15 indicated that CmWRKY15 localized to the nucleus in vivo. The expression of CmWRKY15 could be markedly induced by the presence of Alternaria tenuissima inoculum in chrysanthemum. Furthermore, the disease severity index (DSI) data of CmWRKY15-overexpressing plants indicated that CmWRKY15 overexpression enhanced the susceptibility of chrysanthemum to A. tenuissima infection compared to controls. To illustrate the mechanisms by which CmWRKY15 regulates the response to A. tenuissima inoculation, the expression levels of ABA-responsive and ABA signaling genes, such as ABF4, ABI4, ABI5, MYB2, RAB18, DREB1A, DREB2A, PYL2, PP2C, RCAR1, SnRK2.2, SnRK2.3, NCED3A, NCED3B, GTG1, AKT1, AKT2, KAT1, KAT2, and KC1were compared between transgenic plants and controls. In summary, our data suggest that CmWRKY15 might facilitate A. tenuissima infection by antagonistically regulating the expression of ABA-responsive genes and genes involved in ABA signaling, either directly or indirectly. PMID:26600125

  14. New results on the ternary fission of 243Cm

    NASA Astrophysics Data System (ADS)

    Heyse, J.; Wagemans, C.; Vermote, S.; Serot, O.; Geltenbort, P.; Soldner, T.; Van Gils, J.

    2005-11-01

    Ternary fission is an important source of He and tritium gas in nuclear reactors and used fuel elements. Therefore a systematic study of the ternary fission yields for 4He and tritons (t) is being performed. In recent years the influence of the excitation energy of the fissioning nucleus on the triton emission probability (t/B) has been investigated for different Cm and Cf isotopes. In this paper we report on new results on the neutron induced fission of 243Cm.

  15. CmWRKY15 Facilitates Alternaria tenuissima Infection of Chrysanthemum

    PubMed Central

    Fan, Qingqing; Song, Aiping; Xin, Jingjing; Chen, Sumei; Jiang, Jiafu; Wang, Yinjie; Li, Xiran; Chen, Fadi

    2015-01-01

    Abscisic acid (ABA) has an important role in the responses of plants to pathogens due to its ability to induce stomatal closure and interact with salicylic acid (SA) and jasmonic acid (JA). WRKY transcription factors serve as antagonistic or synergistic regulators in the response of plants to a variety of pathogens. Here, we demonstrated that CmWRKY15, a group IIa WRKY family member, was not transcriptionally activated in yeast cells. Subcellular localization experiments in which onion epidermal cells were transiently transfected with CmWRKY15 indicated that CmWRKY15 localized to the nucleus in vivo. The expression of CmWRKY15 could be markedly induced by the presence of Alternaria tenuissima inoculum in chrysanthemum. Furthermore, the disease severity index (DSI) data of CmWRKY15-overexpressing plants indicated that CmWRKY15 overexpression enhanced the susceptibility of chrysanthemum to A. tenuissima infection compared to controls. To illustrate the mechanisms by which CmWRKY15 regulates the response to A. tenuissima inoculation, the expression levels of ABA-responsive and ABA signaling genes, such as ABF4, ABI4, ABI5, MYB2, RAB18, DREB1A, DREB2A, PYL2, PP2C, RCAR1, SnRK2.2, SnRK2.3, NCED3A, NCED3B, GTG1, AKT1, AKT2, KAT1, KAT2, and KC1were compared between transgenic plants and controls. In summary, our data suggest that CmWRKY15 might facilitate A. tenuissima infection by antagonistically regulating the expression of ABA-responsive genes and genes involved in ABA signaling, either directly or indirectly. PMID:26600125

  16. Soil carbon dynamics

    NASA Astrophysics Data System (ADS)

    Trumbore, Susan; Barbosa de Camargo, Plínio

    The amount of organic carbon (C) stored in the upper meter of mineral soils in the Amazon Basin (˜40 Pg C) represents ˜3% of the estimated global store of soil carbon. Adding surface detrital C stocks and soil carbon deeper than 1 m can as much as quadruple this estimate. The potential for Amazon soil carbon to respond to changes in land use, climate, or atmospheric composition depends on the form and dynamics of soil carbon. Much (˜30% in the top ˜10 cm but >85% in soils to 1 m depth) of the carbon in mineral soils of the Oxisols and Ultisols that are the predominant soil types in the Amazon Basin is in forms that are strongly stabilized, with mean ages of centuries to thousands of years. Measurable changes in soil C stocks that accompany land use/land cover change occur in the upper meter of soil, although the presence of deep roots in forests systems drives an active C cycle at depths >1 m. Credible estimates of the potential for changes in Amazon soil C stocks with future land use and climate change are much smaller than predictions of aboveground biomass change. Soil organic matter influences fertility and other key soil properties, and thus is important independent of its role in the global C cycle. Most work on C dynamics is limited to upland soils, and more is needed to investigate C dynamics in poorly drained soils. Work is also needed to relate cycles of C with water, N, P, and other elements.

  17. Fine root dynamics for forests on contrasting soils in the Colombian Amazon

    NASA Astrophysics Data System (ADS)

    Jiménez, E. M.; Moreno, F. H.; Peñuela, M. C.; Patiño, S.; Lloyd, J.

    2009-12-01

    It has been hypothesized that as soil fertility increases, the amount of carbon allocated to below-ground production (fine roots) should decrease. To evaluate this hypothesis, we measured the standing crop fine root mass and the production of fine roots (<2 mm) by two methods: (1) ingrowth cores and, (2) sequential soil coring, during 2.2 years in two lowland forests growing on different soils types in the Colombian Amazon. Differences of soil resources were defined by the type and physical and chemical properties of soil: a forest on clay loam soil (Endostagnic Plinthosol) at the Amacayacu National Natural Park and, the other on white sand (Ortseinc Podzol) at the Zafire Biological Station, located in the Forest Reservation of the Calderón River. We found that the standing crop fine root mass and the production was significantly different between soil depths (0-10 and 10-20 cm) and also between forests. The loamy sand forest allocated more carbon to fine roots than the clay loam forest with the production in loamy sand forest twice (mean±standard error=2.98±0.36 and 3.33±0.69 Mg C ha-1 yr-1, method 1 and 2, respectively) as much as for the more fertile loamy soil forest (1.51±0.14, method 1, and from 1.03±0.31 to 1.36±0.23 Mg C ha-1 yr-1, method 2). Similarly, the average of standing crop fine root mass was higher in the white-sands forest (10.94±0.33 Mg C ha-1) as compared to the forest on the more fertile soil (from 3.04±0.15 to 3.64±0.18 Mg C ha-1). The standing crop fine root mass also showed a temporal pattern related to rainfall, with the production of fine roots decreasing substantially in the dry period of the year 2005. These results suggest that soil resources may play an important role in patterns of carbon allocation to the production of fine roots in these forests as the proportion of carbon allocated to above- and below-ground organs is different between forest types. Thus, a trade-off between above- and below-ground growth seems to exist

  18. Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Schulz, M.S.; Bullen, T.D.; Harden, J.W.; Peterson, M.L.

    1996-01-01

    Mineral weathering rates are determined for a series of soils ranging in age from 0.2-3000 Ky developed on alluvial terraces near Merced in the Central Valley of California. Mineralogical and elemental abundances exhibit time-dependent trends documenting the chemical evolution of granitic sand to residual kaolinite and quartz. Mineral losses with time occur in the order: hornblende > plagioclase > K-feldspar. Maximum volume decreases of >50% occur in the older soils. BET surface areas of the bulk soils increase with age, as do specific surface areas of aluminosilicate mineral fractions such as plagioclase, which increases from 0.4-1.5 m2 g-1 over 600 Ky. Quartz surface areas are lower and change less with time (0.11-0.23 m2 g-1). BET surface areas correspond to increasing external surface roughness (?? = 10-600) and relatively constant internal surface area (??? 1.3 m2 g-1). SEM observations confirm both surface pitting and development of internal porosity. A numerical model describes aluminosilicate dissolution rates as a function of changes in residual mineral abundance, grain size distributions, and mineral surface areas with time. A simple geometric treatment, assuming spherical grains and no surface roughness, predicts average dissolution rates (plagioclase, 10-17.4; K-feldspar, 10-17.8; and hornblende, 10-17.5 mol cm-1 s-1) that are constant with time and comparable to previous estimates of soil weathering. Average rates, based on BET surface area measurements and variable surface roughnesses, are much slower (plagioclase, 10-19.9; K-feldspar, 10-20.5; and hornblende 10-20.1 mol cm-2 s-1). Rates for individual soil horizons decrease by a factor of 101.5 over 3000 Ky indicating that the surface reactivities of minerals decrease as the physical surface areas increase. Rate constants based on BET estimates for the Merced soils are factors of 103-104 slower than reported experimental dissolution rates determined from freshly prepared silicates with low surface

  19. Spatial and Seasonal Variability of Extreme Soil Temperature in Croatia

    NASA Astrophysics Data System (ADS)

    Sviličić, Petra; Vučetić, Višnja

    2015-04-01

    In terms of taking the temperature of the Earth in Croatia, first measurements began in 1898 in Križevci, but systematic measurements of soil temperature started in 1951. Today, the measurements are performed at 55 meteorological stations. The process of setting up, calibration, measurement, input, control and data processing is done entirely within the Meteorological and Hydrological Service. Due to the lack of funds, but also as a consequence of the Homeland War, network density in some areas is very rare, leading to aggravating circumstances during analysis. Also, certain temperature series are incomplete or are interrupted and therefore the number of long-term temperature series is very small. This particularly presents problems in coastal area, which is geographically diversified and is very difficult to do a thorough analysis of the area. Using mercury angle geothermometer daily at 7, 14 and 21 h CET, thermal state of soil is measured at 2, 5, 10, 20, 30, 50 and 100 cm depth. Thermometers are placed on the bare ground within the meteorological circle and facing north to reduce the direct impact of solar radiation. Lack of term measurements is noticed in the analysis of extreme soil temperatures, which are not real extreme values, but derived from three observational times. On the basis of fifty year series (1961-2010) at 23 stations, the analysis of trends of the surface maximal and minimal soil temperature, as well as the appearance of freezing is presented. Trends were determined by Sen's slope estimator, and statistical significance on 5% level was determined using the Mann-Kendall test. It was observed that the variability of the surface maximal soil temperature on an annual and seasonal level is much higher than those for surface minimal soil temperature. Trends in the recent period show a statistically significant increase in the maximal soil temperature in the eastern and the coastal regions, especially in the spring and summer season. Also, the

  20. CM Carbonaceous Chondrite Lithologies and Their Space Exposure Ages

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Gregory, Timothy; Takenouchi, Atsushi; Nishiizumi, Kunihiko; Trieman, Alan; Berger, Eve; Le, Loan; Fagan, Amy; Velbel, Michael; Imae, Naoya; Yamaguchi, Akira

    2015-01-01

    The CMs are the most commonly falling C chondrites, and therefore may be a major component of C-class asteroids, the targets of several current and future space missions. Previous work [1] has concluded that CM chondrites fall into at least four distinct cosmic ray space exposure (CRE) age groups (0.1 million years, 0.2 million years, 0.6 million years and greater than 2.0 million years), an unusually large number, but the meaning of these groupings is unclear. It is possible that these meteorites came from different parent bodies which broke up at different times, or instead came from the same parent body which underwent multiple break-up events, or a combination of these scenarios, or something else entirely. The objective of this study is to investigate the diversity of lithologies which make up CM chondrites, in order to determine whether the different exposure ages correspond to specific, different CM lithologies, which permit us to constrain the history of the CM parent body(ies). We have already reported significant petrographic differences among CM chondrites [2-4]. We report here our new results.

  1. CM-2 Environmental / Modal Testing of Spacehab Racks

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Goodnight, Thomas W.; Farkas, Michael A.

    2001-01-01

    Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that launches on Shuttle mission STS 107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the Shuttle.

  2. VLA observations of Uranus at 1. 3-20 cm

    SciTech Connect

    De Pater, I.; Gulkis, S.

    1988-08-01

    Observations of Uranus, obtained with resolution 0.5-1.2 arcsec at wavelengths 1.3, 2, 6, and 20 cm using the A and B configurations of the VLA in June-July 1982, October 1983, and February 1984, are reported. The disk-averaged brightness temperatures (DABTs) are determined by model fitting, and the results are presented in extensive graphs and contour maps and characterized in detail. Findings discussed include: (1) an overall spectrum which is relatively flat above 6 cm, (2) 1.3-6-cm brightness which is concentrated nearer to the pole than to the subsolar point, and (3) small changes in DABT from 1982 to 1983/1984 (consistent with an explanation based on a pole-equator temperature gradient). 16 references.

  3. Soil water repellency of Antarctic soils (Elephant Point). First results

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Oliva, Marc; Ruiz Fernández, Jesus

    2015-04-01

    Hydrophobicity it is a natural properties of many soils around the world. Despite the large body of research about soil water hydrophobicity (SWR) in many environments, little information it is available about Antarctic soils and their hydro-geomorphological consequences. According to our knowledge, no previous work was carried out on this environment. Soil samples were collected in the top-soil (0-5 cm) and SWR was analysed according to the water drop penetration test. The preliminary results showed that all the soils collected were hydrophilic, however further research should be carried out in order to understand if SWR changes with soil depth and if have implications on soil infiltration during the summer season.

  4. Profiling soil water content sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A waveguide-on-access-tube (WOAT) sensor system based on time domain reflectometry (TDR) principles was developed to sense soil water content and bulk electrical conductivity in 20-cm (8 inch) deep layers from the soil surface to depths of 3 m (10 ft) (patent No. 13/404,491 pending). A Cooperative R...

  5. Evidence for live Cm-247 in the early solar system

    NASA Technical Reports Server (NTRS)

    Tatsumoto, M.; Shimamura, T.

    1980-01-01

    Variations of the U-238/U-235 ratio in the Allende meteorite, ranging from -35% to +19% are interpreted as evidence of live Cm-247 in the early solar system. The amounts of these and other r-products in the solar system indicate values of (9000 + or - 3000) million years for the age of the Galaxy and approximately 8 million years for the time between the end of nucleosynthesis and the formation of meteoritic grains. Three possible explanations are presented for the different values of the latter time period which are indicated by the decay of products of Cm-247, Al-27, Pu-244, and I-129.

  6. WSRC Am/Cm Stabilization Program - Cylindrical Induction Melter Studies

    SciTech Connect

    Henderson, W.A.

    1999-02-17

    1.1.1 Kilogram quantities of Americium and Curium isotopes (Am/Cm) have been produced at the U.S. Department of Energy (DOE), Savannah River Site (SRS), Aiken, South Carolina. These highly radioactive isotopes have both government and commercial value and are currently stored as a nitric acid solution at the Savannah River Site. The material represents the largest source term in the F canyon at SRS. It is proposed that the Am/Cm material be vitrified to stabilize the material for long term, recoverable storage. This paper reviews the progress made during the process development phase of this program using the Cylindrical Induction Melter.

  7. Precise measurements of primordial power spectrum with 21 cm fluctuations

    SciTech Connect

    Kohri, Kazunori; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: oyamayo@post.kek.jp E-mail: tomot@cc.saga-u.ac.jp

    2013-10-01

    We discuss the issue of how precisely we can measure the primordial power spectrum by using future observations of 21 cm fluctuations and cosmic microwave background (CMB). For this purpose, we investigate projected constraints on the quantities characterizing primordial power spectrum: the spectral index n{sub s}, its running α{sub s} and even its higher order running β{sub s}. We show that future 21 cm observations in combinations with CMB would accurately measure above mentioned observables of primordial power spectrum. We also discuss its implications to some explicit inflationary models.

  8. Evidence for live 247Cm in the early solar system

    USGS Publications Warehouse

    Tatsumoto, M.; Shimamura, T.

    1980-01-01

    Variations of the 238U/235U ratio in the Allende meteorite, ranging from -35% to + 19%, are interpreted as evidence of live 247Cm in the early Solar System. The amounts of these and other r-products in the Solar System indicate values of (9,000??3,000) Myr for the age of the Galaxy and ??? 8 Myr for the time between the end of nucleosynthesis and the formation of meteoritic grains. Three possible explanations are presented for the different values of the latter time period which are indicated by the decay products of 247Cm, 26Al, 244Pu and 129I. ?? 1980 Nature Publishing Group.

  9. Fine root dynamics for forests on contrasting soils in the colombian Amazon

    NASA Astrophysics Data System (ADS)

    Jiménez, E. M.; Moreno, F. H.; Lloyd, J.; Peñuela, M. C.; Patiño, S.

    2009-03-01

    It has been hypothesized that in a gradient of increase of soil resources carbon allocated to belowground production (fine roots) decreases. To evaluate this hypothesis, we measured the mass and production of fine roots (<2 mm) by two methods: 1) ingrowth cores and, 2) sequential soil coring, during 2.2 years in two lowland forests with different soils in the colombian Amazon. Differences of soil resources were determined by the type and physical and chemical properties of soil: a forest on loamy soil (Ultisol) at the Amacayacu National Natural Park and, the other on white sands (Spodosol) at the Zafire Biological Station, located in the Forest Reservation of the Calderón River. We found that mass and production of fine roots was significantly different between soil depths (0-10 and 10-20 cm) and also between forests. White-sand forest allocated more carbon to fine roots than the clayey forest; the production in white-sand forest was twice (2.98 and 3.33 Mg C ha-1 year-1, method 1 and 2, respectively) as much as in clayey forest (1.51 and 1.36-1.03 Mg C ha-1 year-1, method 1 and 2, respectively); similarly, the average of fine root mass was higher in the white-sand forest (10.94 Mg C ha-1) than in the forest on clay soils (3.04-3.64 Mg C ha-1). The mass of fine roots also showed a temporal variation related to rainfall, such that production of fine roots decreased substantially in the dry period of the year 2005. Our results suggest that soil resources play an important role in patterns of carbon allocation in these forests; carbon allocated to above-and belowground organs is different between forest types, in such a way that a trade-off above/belowground seems to exist; as a result, it is probable that there are not differences in total net primary productivity between these two forests: does belowground offset lower aboveground production in poorer soils?

  10. [Soil moisture dynamics of apple orchard in Loess Plateau dryland].

    PubMed

    Zhao, Gang; Fan, Ting-lu; Li, Shang-zhong; Zhang, Jian-jun; Wang, Yong; Dang, Yi; Wang, Lei

    2015-04-01

    The soil moisture of 0-500 cm soil layer in a dryland orchard at its full fruit period was measured from 2009 to 2013 to explore the soil moisture dynamics. Results indicated that soil water consumption mainly occurred in the soil layer of 0-300 cm in normal rainfall year and below the 300 cm soil layer when the annual rainfall was less than 400 mm. The soil moisture in the 200-300 cm soil layer fluctuated most and was affected by rainfall and apple consumption. Seasonal drought usually happened between April and late June, while the accumulation of soil moisture mainly occurred in the rainy season from July to mid-October to alleviate the drought effectively in next spring.

  11. The Complexity and Challenges of the ICD-9-CM to ICD-10-CM Transition in Emergency Departments

    PubMed Central

    Krive, Jacob; Patel, Mahatkumar; Gehm, Lisa; Mackey, Mark; Kulstad, Erik; Li, Jianrong ‘John’; Lussier, Yves A.; Boyd, Andrew D.

    2015-01-01

    Beginning October 2015, the Center for Medicare and Medicaid Services (CMS) will require medical providers to utilize the vastly expanded ICD-10-CM system. Despite wide availability of information and mapping tools for the next generation of the ICD classification system, some of the challenges associated with transition from ICD-9-CM to ICD-10-CM are not well understood. To quantify the challenges faced by emergency physicians, we analyzed a subset of a 2010 Illinois Medicaid database of emergency department ICD-9-CM codes, seeking to determine the accuracy of existing mapping tools in order to better prepare emergency physicians for the change to the expanded ICD-10-CM system. We found that 27% of 1,830 codes represented convoluted multidirectional mappings. We then analyzed the convoluted transitions and found 8% of total visit encounters (23% of the convoluted transitions) were clinically incorrect. The ambiguity and inaccuracy of these mappings may impact the work flow associated with the translation process and affect the potential mapping between ICD codes and CPT (Current Procedural Codes) codes, which determine physician reimbursement. PMID:25863652

  12. Microwave remote sensing of soil water content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1975-01-01

    Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.

  13. The effects of land use changes on some soil properties in Indaği Mountain Pass--Cankiri, Turkey.

    PubMed

    Başaran, M; Erpul, G; Tercan, A E; Canga, M R

    2008-01-01

    Understanding spatial variability of dynamic soil attributes provides information for suitably using land and avoiding environmental degradation. In this paper, we examined five neighboring land use types in Indagi Mountain Pass--Cankiri, Turkey to spatially predict variability of the soil organic carbon (SOC), bulk density (BD), textural composition, and soil reaction (pH) as affected by land use changes. Plantation, recreational land, and cropland were the lands converted from the woodland and grassland which were original lands in the study area. Total of 578 disturbed and undisturbed soil samples were taken with irregular intervals from five sites and represented the depths of 0-10 and 10-20 cm. Soil pH and BD had the lower coefficient of variations (CV) while SOC had the highest value for topsoil. Clay content showed greater CV than silt and sand contents. The geostatistics indicated that the soil properties examined were spatially dependent to the different degrees and interpolations using kriging showed the dynamic relationships between soil properties and land use types. The topsoil spatial distribution of SOC highly reflected the changes in the land use types, and kriging anticipated significant decreases of SOC in the recreational land and cropland. Accordingly, BD varied depending on the land use types, and also, the topsoil spatial distribution of BD differed significantly from that of the subsoil. Generally, BD greatly decreased in places where the SOC was relatively higher except in the grassland where overgrazing was the more important factor than SOC to determine BD. The topsoil spatial distributions of clay, silt, and sand contents were rather similar to those of the subsoil. The cropland and grassland were located on the very fine textured soils whereas the woodland and plantation were on the coarse textured soils. Although it was observed a clear pattern for the spatial distributions of the clay and sand changing with land uses, this was not the

  14. Does Miscanthus cultivation on organic soils compensate for carbon loss from peat oxidation? A dual label study

    NASA Astrophysics Data System (ADS)

    Bader, Cédric; Leifeld, Jens; Müller, Moritz; Schulin, Rainer

    2016-04-01

    Agricultural use of organic soils requires drainage and thereby changes conditions in these soils from anoxic to oxic. As a consequence, organic carbon that had been accumulated over millennia is rapidly mineralized, so that these soils are converted from a CO2 sink to a source. The peat mineralization rate depends mainly on drainage depth, but also on crop type. Various studies show that Miscanthus, a C4 bioenergy plant, shows potential for carbon sequestration in mineral soils because of its high productivity, its dense root system, absence of tillage and high preharvest litterfall. If Miscanthus cropping would have a similar effect in organic soils, peat consumption and thus CO2 emissions might be reduced. For our study we compared two adjacent fields, on which organic soil is cultivated with Miscanthus (since 20 years) and perennial grass (since 6 years). Both sites are located in the Bernese Seeland, the largest former peatland area of Switzerland. To determine wether Miscanthus-derived carbon accumulated in the organic soil, we compared the stable carbon isotopic signatures of the experimental soil with those of an organic soil without any C4-plant cultivation history. To analyze the effect of C4-C accumulation on peat degradability we compared the CO2 emissions by incubating 90 soil samples of the two fields for more than one year. Additionally, we analysed the isotopic CO2 composition (13C, 14C) during the first 25 days of incubation after trapping the emitted CO2 in NaOH and precipitating it as BaCO3. The ∂13C values of the soil imply, that the highest share of C4-C of around 30% is situated at a depth of 10-20 cm. Corn that used to be cultivated on the grassland field before 2009 still accounts for 8% of SOC. O/C and H/C ratios of the peat samples indicate a stronger microbial imprint of organic matter under Miscanthus cultivation. The amount of CO2 emitted was not affected by the cultivation type. On average 57% of the CO2 was C4 derived in the

  15. [Contamination Assessment and Sources Analysis of Soil Heavy Metals in Opencast Mine of East Junggar Basin in Xinjiang].

    PubMed

    Liu, Wei; Yang, Jian-jun; Wang, Jun; Wang, Guo; Cao, Yue-e

    2016-05-15

    The opencast mine of East Junggar Basin in Xinjiang is the largest self-contained coalfield in China, and the ecological environment of the opencast is very fragile because of its arid climate and poor soil. In this study, 50 soil samples (from 0 to 30 cm depth soil at intervals of 10 cm) in opencast Mine of East Junggar Basin in Xinjiang were collected in order to explore the heavy metals contamination of the coal mining. The contents of zinc (Zn), copper (Cu), cadmium (Cr), lead (Pb), mercury (Hg) and arsenic (As) were measured and the degree of pollution was assessed by Nemerow index, geo-accumulation (Igeo) index and potential ecological risk index. In addition, the layered comparison, dust fall and the distance between coal mine and samples location were used to analyze the source of heavy metals contamination. The results showed that value of As surpassed the Chinese soil quality standard class I (GB 15618-1995) mostly severely, followed by Cr, a relatively lower surpass was obtained by Hg and Cu, while Zn and Pb did not surpass the standard. According to the standard, the soil heavy metals content of research region was in light pollution status and the pollution index for each heavy metal followed the order of As (2.07) > Cr (0.95) > Cu (0.55) > Zn (0.48) > Hg (0.45) > Pb (0.38), which demonstrated a heavy pollution of As and clean status of others. Additionally, an Igeo value of 1.14 for Hg reflected a moderated pollution. The major contribution factor was Hg with a risk index of 251.40. The source analysis showed that the content of Pb in the surface soil (10-20 cm) was different from that in the deep layer (20-30 cm), which may be caused by coal combustion and other human activities. The sources of Hg and As were similar and may come from coal combustion. The distance to the mining area was not the major factor affecting the diffusion of heavy metals, other candidate factors included terrain, aspect and wind direction, etc. PMID:27506051

  16. [Contamination Assessment and Sources Analysis of Soil Heavy Metals in Opencast Mine of East Junggar Basin in Xinjiang].

    PubMed

    Liu, Wei; Yang, Jian-jun; Wang, Jun; Wang, Guo; Cao, Yue-e

    2016-05-15

    The opencast mine of East Junggar Basin in Xinjiang is the largest self-contained coalfield in China, and the ecological environment of the opencast is very fragile because of its arid climate and poor soil. In this study, 50 soil samples (from 0 to 30 cm depth soil at intervals of 10 cm) in opencast Mine of East Junggar Basin in Xinjiang were collected in order to explore the heavy metals contamination of the coal mining. The contents of zinc (Zn), copper (Cu), cadmium (Cr), lead (Pb), mercury (Hg) and arsenic (As) were measured and the degree of pollution was assessed by Nemerow index, geo-accumulation (Igeo) index and potential ecological risk index. In addition, the layered comparison, dust fall and the distance between coal mine and samples location were used to analyze the source of heavy metals contamination. The results showed that value of As surpassed the Chinese soil quality standard class I (GB 15618-1995) mostly severely, followed by Cr, a relatively lower surpass was obtained by Hg and Cu, while Zn and Pb did not surpass the standard. According to the standard, the soil heavy metals content of research region was in light pollution status and the pollution index for each heavy metal followed the order of As (2.07) > Cr (0.95) > Cu (0.55) > Zn (0.48) > Hg (0.45) > Pb (0.38), which demonstrated a heavy pollution of As and clean status of others. Additionally, an Igeo value of 1.14 for Hg reflected a moderated pollution. The major contribution factor was Hg with a risk index of 251.40. The source analysis showed that the content of Pb in the surface soil (10-20 cm) was different from that in the deep layer (20-30 cm), which may be caused by coal combustion and other human activities. The sources of Hg and As were similar and may come from coal combustion. The distance to the mining area was not the major factor affecting the diffusion of heavy metals, other candidate factors included terrain, aspect and wind direction, etc.

  17. Search for Cm-248 in the early solar system

    NASA Technical Reports Server (NTRS)

    Lavielle, B.; Marti, K.; Pellas, P.; Perron, C.

    1992-01-01

    Possible evidence for the presence of Cm-248 in the early solar system was reported from fission gas studies (Rao and Gopalan, 1973) and recently from studies of very high nuclear track densities (not less than 5 x 10 exp 8/sq cm) in the merrillite of the H4 chondrite Forest Vale (F.V.) (Pellas et al., 1987). We report here an analysis of the isotopic abundances of xenon in F.V. phosphates and results of track studies in phosphate/pyroxene contacts. The fission xenon isotopic signature clearly identifies Pu-244 as the extinct progenitor. We calculate an upper limit Cm-248/Pu-244 to be less than 0.0015 at the beginning of Xe retention in F.V. phosphates. This corresponds to an upper limit of the ratio Cm-248/U-235 of not greater than 5 x 10 exp -5 further constraining the evidence for any late addition of freshly synthesized actinide elements just prior to solar system formation. The fission track density observed after annealing the phosphates at 290C (1 hr, which essentially erases spallation recoil tracks) is also in agreement with the Pu-244 abundance inferred from fission Xe. The spallation recoil tracks produced during the 76 Ma cosmic-ray exposure account for the very high track density in merrillites.

  18. Retrofit and acceptance test of 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1981-01-01

    Six 30 cm mercury thrusters were modified to the J-series design and evaluated using standardized test procedures. The thruster performance meets the design objectives (lifetime objective requires verification), and documentation (drawings, etc.) for the design is completed and upgraded. The retrofit modifications are described and the test data for the modifications are presented and discussed.

  19. Preparing for ICD-10-CM in physician practices.

    PubMed

    Kuehn, Lynn

    2009-08-01

    What will change under CD-10-CM, and what must be done to prepare? This is the year for physician practices to get their ducks in a row: become informed, assess their IT and training needs, and make a plan that leads to the October 1, 2013, deadline.

  20. Calorimetric determination of kQ factors for NE 2561 and NE 2571 ionization chambers in 5 cm × 5 cm and 10 cm × 10 cm radiotherapy beams of 8 MV and 16 MV photons

    NASA Astrophysics Data System (ADS)

    Krauss, Achim; Kapsch, Ralf-Peter

    2007-10-01

    The relative uncertainty of the ionometric determination of the absorbed dose to water, Dw, in the reference dosimetry of high-energy photon beams is in the order of 1.5% and is dominated by the uncertainty of the calculated chamber- and energy-dependent correction factors kQ. In the present investigation, kQ values were determined experimentally in 5 cm × 5 cm and 10 cm × 10 cm radiotherapy beams of 8 MV and 16 MV bremsstrahlung by means of a water calorimeter operated at 4 °C. Ionization chambers of the types NE 2561 and NE 2571 were calibrated directly in the water phantom of the calorimeter. The measurements were carried out at the linear accelerator of the Physikalisch-Technische Bundesanstalt. It is shown that the kQ factor of a single ionization chamber can be measured with a standard uncertainty of less than 0.3%. No significant variations of kQ were found for the different lateral sizes of the radiation fields used in this investigation.

  1. The 21 cm signature of a cosmic string loop

    SciTech Connect

    Pagano, Michael; Brandenberger, Robert E-mail: rhb@physics.mcgill.ca

    2012-05-01

    Cosmic string loops lead to nonlinear baryon overdensities at early times, even before the time which in the standard LCDM model corresponds to the time of reionization. These overdense structures lead to signals in 21 cm redshift surveys at large redshifts. In this paper, we calculate the amplitude and shape of the string loop-induced 21 cm brightness temperature. We find that a string loop leads to a roughly elliptical region in redshift space with extra 21 cm emission. The excess brightness temperature for strings with a tension close to the current upper bound can be as high as 1deg K for string loops generated at early cosmological times (times comparable to the time of equal matter and radiation) and observed at a redshift of z+1 = 30. The angular extent of these predicted 'bright spots' is x{sup '}. These signals should be detectable in upcoming high redshift 21 cm surveys. We also discuss the application of our results to global monopoles and primordial black holes.

  2. Adaptation of California Measure of Mental Motivation-CM3

    ERIC Educational Resources Information Center

    Özdemir, Hasan Fehmi; Demirtasli, Nükhet Çikrikçi

    2015-01-01

    Education without doubt, plays a vital role for individuals to gain the essential personal traits of the 21st century, also known as "knowledge age". One of the most important skills among these fundamental qualities which the individuals should be equipped with is critical thinking. California Measure of Mental Motivation-CM3 was…

  3. Surface Drainage and Mulching Drip-Irrigated Tomatoes Reduces Soil Salinity and Improves Fruit Yield

    PubMed Central

    Hou, Maomao; Zhu, Lvdan; Jin, Qiu

    2016-01-01

    A study on the effects of mulched drip irrigation combined with surface drainage on saline soil and tomatoes was conducted in coastal areas of eastern China, where the crops are subjected to excessive salt. The treatments contained three irrigation rates—200, 250 and 300 m3/ha—and three drain ditch depths—10, 20 and 30 cm. The contents of soil salinity, organic matter and available nutrient were observed, and the tomato plant height, stem diameter and leaf area index during different growth periods were recorded. Results showed that the total removal rate of salt from soil at a 0–1 m depth was 8.7–13.2% for the three drainages. Compared with the control, the treatments increased the content of available N (by 12.1–47.1%) and available K (by 5.0–21.9%) in the soils inside the mulch and decreased the content of available N (by 3.4–22.1%) and available K (by 7.5–16.4%) in the soils outside the mulch. For tomatoes, the plant height and the stem diameter was increased significantly by the irrigations but was not significantly affected by the drainages, and the leaf area index was increased by 0.39~1.76, 1.10~2.90 and 2.80~6.86 respectively in corresponding to the seedling, flowering and fruit-set stage. Moreover, yield-increase rates of 7.9–27.6% were found for the treatments compared to the control with a similar amount of applied water. PMID:27153110

  4. Surface Drainage and Mulching Drip-Irrigated Tomatoes Reduces Soil Salinity and Improves Fruit Yield.

    PubMed

    Hou, Maomao; Zhu, Lvdan; Jin, Qiu

    2016-01-01

    A study on the effects of mulched drip irrigation combined with surface drainage on saline soil and tomatoes was conducted in coastal areas of eastern China, where the crops are subjected to excessive salt. The treatments contained three irrigation rates-200, 250 and 300 m3/ha-and three drain ditch depths-10, 20 and 30 cm. The contents of soil salinity, organic matter and available nutrient were observed, and the tomato plant height, stem diameter and leaf area index during different growth periods were recorded. Results showed that the total removal rate of salt from soil at a 0-1 m depth was 8.7-13.2% for the three drainages. Compared with the control, the treatments increased the content of available N (by 12.1-47.1%) and available K (by 5.0-21.9%) in the soils inside the mulch and decreased the content of available N (by 3.4-22.1%) and available K (by 7.5-16.4%) in the soils outside the mulch. For tomatoes, the plant height and the stem diameter was increased significantly by the irrigations but was not significantly affected by the drainages, and the leaf area index was increased by 0.39~1.76, 1.10~2.90 and 2.80~6.86 respectively in corresponding to the seedling, flowering and fruit-set stage. Moreover, yield-increase rates of 7.9-27.6% were found for the treatments compared to the control with a similar amount of applied water.

  5. Surface Drainage and Mulching Drip-Irrigated Tomatoes Reduces Soil Salinity and Improves Fruit Yield.

    PubMed

    Hou, Maomao; Zhu, Lvdan; Jin, Qiu

    2016-01-01

    A study on the effects of mulched drip irrigation combined with surface drainage on saline soil and tomatoes was conducted in coastal areas of eastern China, where the crops are subjected to excessive salt. The treatments contained three irrigation rates-200, 250 and 300 m3/ha-and three drain ditch depths-10, 20 and 30 cm. The contents of soil salinity, organic matter and available nutrient were observed, and the tomato plant height, stem diameter and leaf area index during different growth periods were recorded. Results showed that the total removal rate of salt from soil at a 0-1 m depth was 8.7-13.2% for the three drainages. Compared with the control, the treatments increased the content of available N (by 12.1-47.1%) and available K (by 5.0-21.9%) in the soils inside the mulch and decreased the content of available N (by 3.4-22.1%) and available K (by 7.5-16.4%) in the soils outside the mulch. For tomatoes, the plant height and the stem diameter was increased significantly by the irrigations but was not significantly affected by the drainages, and the leaf area index was increased by 0.39~1.76, 1.10~2.90 and 2.80~6.86 respectively in corresponding to the seedling, flowering and fruit-set stage. Moreover, yield-increase rates of 7.9-27.6% were found for the treatments compared to the control with a similar amount of applied water. PMID:27153110

  6. Maribo—A new CM fall from Denmark

    NASA Astrophysics Data System (ADS)

    Haack, Henning; Grau, Thomas; Bischoff, Addi; Horstmann, Marian; Wasson, John; Sørensen, Anton; Laubenstein, Matthias; Ott, Ulrich; Palme, Herbert; Gellissen, Marko; Greenwood, Richard C.; Pearson, Victoria K.; Franchi, Ian A.; Gabelica, Zelimir; Schmitt-Kopplin, Philippe

    2012-01-01

    Maribo is a new Danish CM chondrite, which fell on January 17, 2009, at 19:08:28 CET. The fall was observed by many eye witnesses and recorded by a surveillance camera, an all sky camera, a few seismic stations, and by meteor radar observatories in Germany. A single fragment of Maribo with a dry weight of 25.8 g was found on March 4, 2009. The coarse-grained components in Maribo include chondrules, fine-grained olivine aggregates, large isolated lithic clasts, metals, and mineral fragments (often olivine), and rare Ca,Al-rich inclusions. The components are typically rimmed by fine-grained dust mantles. The matrix includes abundant dust rimmed fragments of tochilinite with a layered, fishbone-like texture, tochilinite-cronstedtite intergrowths, sulfides, metals, and carbonates often intergrown with tochilinite. The oxygen isotopic composition: (δ17O = -1.27‰; δ18O = 4.96‰; Δ17O = -3.85‰) plots at the edge of the CM field, close to the CCAM line. The very low Δ17O and the presence of unaltered components suggest that Maribo is among the least altered CM chondrites. The bulk chemistry of Maribo is typical of CM chondrites. Trapped noble gases are similar in abundance and isotopic composition to other CM chondrites, stepwise heating data indicating the presence of gas components hosted by presolar diamond and silicon carbide. The organics in Maribo include components also seen in Murchison as well as nitrogen-rich components unique to Maribo.

  7. The impact of soil compaction and freezing-thawing cycles on soil structure and yield in Mollisol region of China

    NASA Astrophysics Data System (ADS)

    Wang, Enheng; Zhao, Yusen; Chen, Xiangwei

    2015-04-01

    Agricultural machinery tillage and alternating freezing and thawing are two critical factors associated with soil structure change and accelerates soil erosion in the black soil region of Northeast China. Combining practical machinery operation and natural freeze-thaw cycles with artificial machinery compaction in the field and artificial freeze-thaw cycles in the lab, the plus and minus benefits of machinery tillage, characterization of seasonal freeze-thaw cycles, and their effects on soil structure and yield were studied. Firstly,the effects of machinery type and antecedent water content on soil structure and soil available nutrient were investigated by measuring soil bulk density, soil strength, soil porosity, soil aggregate distribution and stability, and three soil phases. The results showed that: Machinery tillage had positive and negative influence on soil structure, soil in top cultivated layer can be loosened and ameliorated however the subsoil accumulation of compaction was resulted. For heavy and medium machinery, subsoil compaction formed in the soil depth of 41~60cm and 31~40cm, respectively; however during the soil depth of 17.5~30cm under medium machinery operation there was a new plow pan produced because of the depth difference between harvesting and subsoiling. Antecedent water content had a significant effect on soil structure under machinery operations. Higher water antecedent resulted in deeper subsoil compaction at 40cm,which was deeper by 10cm than lower water content and soil compaction accumulation occurred at the first pass under higher water content condition. Besides water content and bulk density, soil organic matter is another key factor for affecting compressive-resilient performance of tillage soil. Secondly, based on the soils sampled from fields of the black soil region, the effects of freeze-thaw cycles on soil structure at different soil depths (0 -- 40 cm, 40 -- 80 cm, 120 -- 160 cm) and size scales (field core sampling

  8. Prediction of soil organic carbon concentration and soil bulk density of mineral soils for soil organic carbon stock estimation

    NASA Astrophysics Data System (ADS)

    Putku, Elsa; Astover, Alar; Ritz, Christian

    2016-04-01

    Soil monitoring networks provide a powerful base for estimating and predicting nation's soil status in many aspects. The datasets of soil monitoring are often hierarchically structured demanding sophisticated data analyzing methods. The National Soil Monitoring of Estonia was based on a hierarchical data sampling scheme as each of the monitoring site was divided into four transects with 10 sampling points on each transect. We hypothesized that the hierarchical structure in Estonian Soil Monitoring network data requires a multi-level mixed model approach to achieve good prediction accuracy of soil properties. We used this database to predict soil bulk density and soil organic carbon concentration of mineral soils in arable land using different statistical methods: median approach, linear regression and mixed model; additionally, random forests for SOC concentration. We compared the prediction results and selected the model with the best prediction accuracy to estimate soil organic carbon stock. The mixed model approach achieved the best prediction accuracy in both soil organic carbon (RMSE 0.22%) and bulk density (RMSE 0.09 g cm-3) prediction. Other considered methods under- or overestimated higher and lower values of soil parameters. Thus, using these predictions we calculated the soil organic carbon stock of mineral arable soils and applied the model to a specific case of Tartu County in Estonia. Average estimated SOC stock of Tartu County is 54.8 t C ha-1 and total topsoil SOC stock 1.8 Tg in humus horizon.

  9. Laboratory Experiment on Electrokinetic Remediation of Soil

    ERIC Educational Resources Information Center

    Elsayed-Ali, Alya H.; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E.

    2011-01-01

    Electrokinetic remediation is a method of decontaminating soil containing heavy metals and polar organic contaminants by passing a direct current through the soil. An undergraduate chemistry laboratory is described to demonstrate electrokinetic remediation of soil contaminated with copper. A 30 cm electrokinetic cell with an applied voltage of 30…

  10. An Infiltration Exercise for Introductory Soil Science

    ERIC Educational Resources Information Center

    Barbarick, K. A.; Ippolito, J. A.; Butters, G.; Sorge, G. M.

    2005-01-01

    One of the largest challenges in teaching introductory soil science is explaining the dynamics of soil infiltration. To aid students in understanding the concept and to further engage them in active learning in the soils laboratory course, we developed an exercise using Decagon Mini-Disk Infiltrometers with a tension head (h[subscript o]) of 2 cm.…

  11. Orion Landing Simulation Eight Soil Model Comparison

    NASA Technical Reports Server (NTRS)

    Mark, Stephen D.

    2009-01-01

    LS-DYNA finite element simulations of a rigid Orion Crew Module (CM) were used to investigate the CM impact behavior on eight different soil models. Ten different landing conditions, characterized by the combination of CM vertical and horizontal velocity, hang angle, and roll angle were simulated on the eight different soils. The CM center of gravity accelerations, pitch angle, kinetic energy, and soil contact forces were the outputs of interest. The simulation results are presented, with comparisons of the CM behavior on the different soils. The soils analyzed in this study can be roughly categorized as soft, medium, or hard, according to the CM accelerations that occur when landing on them. The soft group is comprised of the Carson Sink Wet soil and the Kennedy Space Center (KSC) Low Density Dry Sand. The medium group includes Carson Sink Dry, the KSC High Density In-Situ Moisture Sand and High Density Flooded Sand, and Cuddeback B. The hard soils are Cuddeback A and the Gantry Unwashed Sand. The softer soils were found to produce lower peak accelerations, have more stable pitch behavior, and to be less sensitive to the landing conditions. This investigation found that the Cuddeback A soil produced the highest peak accelerations and worst stability conditions, and that the best landing performance was achieved on the KSC Low Density Dry Sand.

  12. Assessing the effects of land use changes on soil sensitivity to erosion in a highland ecosystem of semi-arid Turkey.

    PubMed

    Bayramin, Ilhami; Basaran, Mustafa; Erpul, Günay; Canga, Mustafa R

    2008-05-01

    There has been increasing concern in highlands of semiarid Turkey that conversion of these systems results in excessive soil erosion, ecosystem degradation, and loss of sustainable resources. An increasing rate of land use/cover changes especially in semiarid mountainous areas has resulted in important effects on physical and ecological processes, causing many regions to undergo accelerated environmental degradation in terms of soil erosion, mass movement and reservoir sedimentation. This paper, therefore, explores the impact of land use changes on land degradation in a linkage to the soil erodibility, RUSLE-K, in Cankiri-Indagi Mountain Pass, Turkey. The characterization of soil erodibility in this ecosystem is important from the standpoint of conserving fragile ecosystems and planning management practices. Five adjacent land uses (cropland, grassland, woodland, plantation, and recreational land) were selected for this research. Analysis of variance showed that soil properties and RUSLE-K statistically changed with land use changes and soils of the recreational land and cropland were more sensitive to water erosion than those of the woodland, grassland, and plantation. This was mainly due to the significant decreases in soil organic matter (SOM) and hydraulic conductivity (HC) in those lands. Additionally, soil samples randomly collected from the depths of 0-10 cm (D1) and 10-20 cm (D2) with irregular intervals in an area of 1,200 by 4,200 m sufficiently characterized not only the spatial distribution of soil organic matter (SOM), hydraulic conductivity (HC), clay (C), silt (Si), sand (S) and silt plus very fine sand (Si + VFS) but also the spatial distribution of RUSLE-K as an algebraically estimate of these parameters together with field assessment of soil structure to assess the dynamic relationships between soil properties and land use types. In this study, in order to perform the spatial analyses, the mean sampling intervals were 43, 50, 64, 78, 85 m for

  13. Lipid-altering efficacy of switching from atorvastatin 10 mg/day to ezetimibe/simvastatin 10/20 mg/day compared to doubling the dose of atorvastatin in hypercholesterolaemic patients with atherosclerosis or coronary heart disease.

    PubMed

    Barrios, V; Amabile, N; Paganelli, F; Chen, J-W; Allen, C; Johnson-Levonas, A O; Massaad, R; Vandormael, K

    2005-12-01

    This randomised, double-blind study evaluated the efficacy and safety of ezetimibe/simvastatin (EZE/SIMVA) 10/20 mg tablet compared to doubling the atorvastatin (ATV) dose in hypercholesterolaemic patients with atherosclerotic or coronary heart disease (CHD). The study group included 435 male and female CHD patients (aged >or=18 years) who had not achieved their low-density lipoprotein cholesterol (LDL-C) goal of <2.50 mmol/l while on a stable dose of ATV 10 mg for >or=6 weeks. After a 1-week diet/stabilisation period, patients with LDL-C >or=2.50 mmol/l and 10/20 mg/day (n = 221) or ATV 20 mg/day (n = 214) for 6 weeks. The primary efficacy objective was to determine the per cent reduction from baseline in LDL-C at week 6. EZE/SIMVA 10/20 mg produced significantly greater mean per cent changes from baseline in LDL-C compared with ATV 20 mg (-32.8 vs. -20.3%; p 10/20 mg for 6 weeks (p < 0.05 for all parameters). EZE/SIMVA 10/20 mg was generally well tolerated, with an overall safety profile similar to that of ATV 20 mg. EZE/SIMVA 10/20 mg produced superior lipid-altering efficacy by dual inhibition of cholesterol synthesis and intestinal absorption compared with doubling the dose of ATV from 10 to 20 mg.

  14. The Paris meteorite, the least altered CM chondrite so far

    NASA Astrophysics Data System (ADS)

    Hewins, Roger H.; Bourot-Denise, Michèle; Zanda, Brigitte; Leroux, Hugues; Barrat, Jean-Alix; Humayun, Munir; Göpel, Christa; Greenwood, Richard C.; Franchi, Ian A.; Pont, Sylvain; Lorand, Jean-Pierre; Cournède, Cécile; Gattacceca, Jérôme; Rochette, Pierre; Kuga, Maïa; Marrocchi, Yves; Marty, Bernard

    2014-01-01

    The Paris chondrite provides an excellent opportunity to study CM chondrules and refractory inclusions in a more pristine state than currently possible from other CMs, and to investigate the earliest stages of aqueous alteration captured within a single CM bulk composition. It was found in the effects of a former colonial mining engineer and may have been an observed fall. The texture, mineralogy, petrography, magnetic properties and chemical and isotopic compositions are consistent with classification as a CM2 chondrite. There are ∼45 vol.% high-temperature components mainly Type I chondrules (with olivine mostly Fa0-2, mean Fa0.9) with granular textures because of low mesostasis abundances. Type II chondrules contain olivine Fa7 to Fa76. These are dominantly of Type IIA, but there are IIAB and IIB chondrules, II(A)B chondrules with minor highly ferroan olivine, and IIA(C) with augite as the only pyroxene. The refractory inclusions in Paris are amoeboid olivine aggregates (AOAs) and fine-grained spinel-rich Ca-Al-rich inclusions (CAIs). The CAI phases formed in the sequence hibonite, perovskite, grossite, spinel, gehlenite, anorthite, diopside/fassaite and forsterite. The most refractory phases are embedded in spinel, which also occurs as massive nodules. Refractory metal nuggets are found in many CAI and refractory platinum group element abundances (PGE) decrease following the observed condensation sequences of their host phases. Mn-Cr isotope measurements of mineral separates from Paris define a regression line with a slope of 53Mn/55Mn = (5.76 ± 0.76) × 106. If we interpret Cr isotopic systematics as dating Paris components, particularly the chondrules, the age is 4566.44 ± 0.66 Myr, which is close to the age of CAI and puts new constraints on the early evolution of the solar system. Eleven individual Paris samples define an O isotope mixing line that passes through CM2 and CO3 falls and indicates that Paris is a very fresh sample, with variation explained

  15. [Impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain].

    PubMed

    Li, Jian-Lin; Jiang, Chang-Sheng; Hao, Qing-Ju

    2014-12-01

    land will enhance the stability of soil aggregates, and improve the ability of soil to resist external damage. The organic carbon content in each soil aggregate of four land use types decreased with the increase of soil depth. In soil depth of 0-60 cm, the storage of organic carbon of large macroaggregates in each soil are in orders of woodland (14.98 Mg x hm(-2)) > abandoned land (8.71 Mg x hm(-2)) > orchard (5.82 Mg x hm(-2)) > sloping farmland (2.13 Mg x hm(-2)), and abandoned land (35.61 Mg x hm(-2)) > woodland (20.38 Mg x hm-(-2)) > orchard (13.83 Mg x hm(-2)) > sloping farmland (6.77 Mg x hm(-2)) in small macroaggregates, and abandoned land (22.44 Mg x hm(-2)) > woodland (10.20 Mg x hm(-2)) > orchard (6.80 Mg x hm(-2)) > sloping farmland (5. 60 Mg x hm(-2)) in microaggregates, and abandoned land (22.21 Mg x hm(-2)) > woodland (17.01 Mg x hm(-2)) > orchard (16.70 Mg x hm(-2)) > sloping farmland (9.85 Mg x hm(-2)) in silt and clay fraction. Storage of organic carbon in each aggregate in the soils of woodland and abandoned land were higher than those in the soils of orchard and sloping farmland, which indicated that reclamation of woodland will lead to a loss of organic carbon in each soil aggregate fraction, while after changing the sloping farmland to abandoned land will contribute to restore and sequestrate the soil organic carbon. In addition, it showed that most organic carbon accumulated in small macroaggregate in soils of woodland and abandoned land, while they are in silt and clay in soils of orchard and sloping farmland, indicating that organic carbon in larger aggregates is unstable and is easier to convert during the land use change. PMID:25826943

  16. [Impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain].

    PubMed

    Li, Jian-Lin; Jiang, Chang-Sheng; Hao, Qing-Ju

    2014-12-01

    land will enhance the stability of soil aggregates, and improve the ability of soil to resist external damage. The organic carbon content in each soil aggregate of four land use types decreased with the increase of soil depth. In soil depth of 0-60 cm, the storage of organic carbon of large macroaggregates in each soil are in orders of woodland (14.98 Mg x hm(-2)) > abandoned land (8.71 Mg x hm(-2)) > orchard (5.82 Mg x hm(-2)) > sloping farmland (2.13 Mg x hm(-2)), and abandoned land (35.61 Mg x hm(-2)) > woodland (20.38 Mg x hm-(-2)) > orchard (13.83 Mg x hm(-2)) > sloping farmland (6.77 Mg x hm(-2)) in small macroaggregates, and abandoned land (22.44 Mg x hm(-2)) > woodland (10.20 Mg x hm(-2)) > orchard (6.80 Mg x hm(-2)) > sloping farmland (5. 60 Mg x hm(-2)) in microaggregates, and abandoned land (22.21 Mg x hm(-2)) > woodland (17.01 Mg x hm(-2)) > orchard (16.70 Mg x hm(-2)) > sloping farmland (9.85 Mg x hm(-2)) in silt and clay fraction. Storage of organic carbon in each aggregate in the soils of woodland and abandoned land were higher than those in the soils of orchard and sloping farmland, which indicated that reclamation of woodland will lead to a loss of organic carbon in each soil aggregate fraction, while after changing the sloping farmland to abandoned land will contribute to restore and sequestrate the soil organic carbon. In addition, it showed that most organic carbon accumulated in small macroaggregate in soils of woodland and abandoned land, while they are in silt and clay in soils of orchard and sloping farmland, indicating that organic carbon in larger aggregates is unstable and is easier to convert during the land use change.

  17. The 12 micron band of ethane: A spectral catalog from 765 cm(-1) to 900 cm(-1)

    NASA Technical Reports Server (NTRS)

    Atakan, A. K.; Blass, W. E.; Brault, J. W.; Daunt, S. J.; Halsey, G. W.; Jennings, D. E.; Reuter, D. C.; Susskind, J.

    1983-01-01

    The high resolution laboratory absorption spectrum of the 12 micro band of ethane gas is studied. The data were obtained using the McMath Solar Telescope 1 meter Fourier Transform interferometer at Kitt Peak National Observatory and tunable diode laser spectrometers at the University of Tennessee and NASA/Goddard Space Flight Center. Over 200 individual vibration rotation transitions were analyzed taking into account many higher order effects including torsional splitting. Line positions were reproduced to better than 0.001/cm. Both ground and upper state molecular constants were determined in the analysis. The experimental details, the analysis procedures and the results are addressed. A list of ethane transitions occurring near (14)CO2 laser lines needed for heterodyne searches for C2H6 in extraterrestrial sources is also included. A spectral catalog of the ethane nu sub g fundamental from 765/cm to 900/cm is provided. A high dispersion (1/cm 12 in.) plot of both the Kitt Peak interferometric data and a simulated spectrum with Doppler limited resolution, a table of over 8500 calculated transitions listed quantum number assignments, frequencies and intensities are provided.

  18. Application of time-lapse ERT to Characterize Soil-Water-Disease Interactions of Citrus Orchard - Case Study

    NASA Astrophysics Data System (ADS)

    Peddinti, S. R.; Kbvn, D. P.; Ranjan, S.; Suradhaniwar, S.; J, P. A.; R M, G.

    2015-12-01

    Vidarbha region in Maharashtra, India (home for mandarin Orange) experience severe climatic uncertainties resulting in crop failure. Phytopthora are the soil-borne fungal species that accumulate in the presence of moisture, and attack the root / trunk system of Orange trees at any stage. A scientific understanding of soil-moisture-disease relations within the active root zone under different climatic, irrigation, and crop cycle conditions can help in practicing management activities for improved crop yield. In this study, we developed a protocol for performing 3-D time-lapse electrical resistivity tomography (ERT) at micro scale resolution to monitor the changes in resistivity distribution within the root zone of Orange trees. A total of 40 electrodes, forming a grid of 3.5 m x 2 m around each Orange tree were used in ERT survey with gradient and Wenner configurations. A laboratory test on un-disturbed soil samples of the region was performed to plot the variation of electrical conductivity with saturation. Curve fitting techniques were applied to get the modified Archie's model parameters. The calibrated model was further applied to generate the 3-D soil moisture profiles of the study area. The point estimates of soil moisture were validated using TDR probe measurements at 3 different depths (10, 20, and 40 cm) near to the root zone. In order to understand the effect of soil-water relations on plant-disease relations, we performed ERT analysis at two locations, one at healthy and other at Phytopthora affected Orange tree during the crop cycle, under dry and irrigated conditions. The degree to which an Orange tree is affected by Phytopthora under each condition is evaluated using 'grading scale' approach following visual inspection of the canopy features. Spatial-temporal distribution of moisture profiles is co-related with grading scales to comment on the effect of climatic and irrigation scenarios on the degree and intensity of crop disease caused by Phytopthora.

  19. Carbon storage potential in size-density fractions from semi-natural grassland ecosystems with different productivities over varying soil depths.

    PubMed

    Breulmann, Marc; Boettger, Tatjana; Buscot, François; Gruendling, Ralf; Schulz, Elke

    2016-03-01

    Researchers have increasingly recognised a profound need for more information on SOC stocks in the soil and the factors governing their stability and dynamics. Many questions still remain unanswered about the interplay between changes in plant communities and the extent to which changes in aboveground productivity affect the carbon dynamics in soils through changes in its quantity and quality. Therefore, the main aim of this research was to examine the SOC accumulation potential of semi-natural grasslands of different productivities and determine the distribution of SOM fractions over varying soil depth intervals (0-10, 10-20, 20-30 30-50 50-80 and 80+cm). SOM fractionation was considered as a relative measure of stability to separate SOM associated with clay minerals from SOM of specific light densities less than 2 g cm(-3) (size-density fractionation). Two clay-associated fractions (CF1, <1 μm; and CF2, 1-2 μm) and two light fractions (LF1, <1.8 g cm(-3); and LF2, 1.8-2.0 g cm(-3)) were separated. The stability of these fractions was characterised by their carbon hot water extractability (CHWE) and stable carbon isotope composition. In the semi-natural grasslands studied, most OC was stored in the top 30 cm, where turnover is rapid. Effects of low productivity grasslands became only significantly apparent when fractional OC contributions of total SOM was considered (CF1 and LF1). In deeper soil depths OC was largely attributed to the CF1 fraction of low productivity grasslands. We suggest that the majority of OM in deeper soil depth intervals is microbially-derived, as evidenced by decreasing C/N ratios and decreasing δ(13)C values. The hot water extraction and natural δ(13)C abundance, employed here allowed the characterisation of SOM stabilisation properties, however how climatic changes affect the fate of OM within different soil depth intervals is still unknown. PMID:26745290

  20. Remote sensing of soil moisture - Recent advances

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1983-01-01

    Recent advancements in microwave remote sensing of soil moisture include a method for estimating the dependence of the soil dielectric constant on its texture, the use of a percent of field capacity to express soil moisture magnitudes independently of soil texture, methods of estimating soil moisture sampling depth, and models for describing the effect of surface roughness on microwave response in terms of surface height variance and horizontal correlation length, as well as the verification of radiative transfer model predictions of microwave emission from soils and methods for the estimation of vegetation effects on the microwave response to soil moisture. Such researches have demonstrated that it is possible to remotely sense soil moisture in the 0-5 cm soil surface layer, and simulation studies have indicated how remotely sensed surface soil moisture may be used to estimate evapotranspiration rates and root-zone soil moisture.

  1. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin.

    PubMed

    Maliki, Raphiou; Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0-10 and 10-20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems. PMID:27446635

  2. Development of a 60 cm Magnetic Suspension System

    NASA Astrophysics Data System (ADS)

    Sawada, Hideo; Kunimasu, Tetsuya

    A 60cm Magnetic Suspension Balance System (MSBS), which has been developed in the National Aerospace Laboratory of Japan (NAL), is described in detail. Magnetic field in the MSBS is evaluated analytically and is compared with measured one. Available magnet kinds for the MSBS are selected analytically. The optimum ratio of diameter to length of cylindrical magnet for the MSBS is also evaluated. A model position sensing and the control systems are described with calibration test results. A model holding system is also shown, which is necessary for worker’s safety at suspending a large and massive model. The control system is presented and the measured model position during suspension is examined. The balance accuracy is examined and its error of drag force can be improved by restricting the calibration test to an expected drag range. Flow of the 60cm low-speed wind tunnel equipped with the MSBS is examined to be available for wind tunnel tests.

  3. Precision measurement of cosmic magnification from 21 cm emitting galaxies

    SciTech Connect

    Zhang, Pengjie; Pen, Ue-Li; /Canadian Inst. Theor. Astrophys.

    2005-04-01

    We show how precision lensing measurements can be obtained through the lensing magnification effect in high redshift 21cm emission from galaxies. Normally, cosmic magnification measurements have been seriously complicated by galaxy clustering. With precise redshifts obtained from 21cm emission line wavelength, one can correlate galaxies at different source planes, or exclude close pairs to eliminate such contaminations. We provide forecasts for future surveys, specifically the SKA and CLAR. SKA can achieve percent precision on the dark matter power spectrum and the galaxy dark matter cross correlation power spectrum, while CLAR can measure an accurate cross correlation power spectrum. The neutral hydrogen fraction was most likely significantly higher at high redshifts, which improves the number of observed galaxies significantly, such that also CLAR can measure the dark matter lensing power spectrum. SKA can also allow precise measurement of lensing bispectrum.

  4. Lensing of 21-cm fluctuations by primordial gravitational waves.

    PubMed

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-25

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed. PMID:23003237

  5. Intensity Mapping During Reionization: 21 cm and Cross-correlations

    NASA Astrophysics Data System (ADS)

    Aguirre, James E.; HERA Collaboration

    2016-01-01

    The first generation of 21 cm epoch of reionization (EoR) experiments are now reaching the sensitivities necessary for a detection of the power spectrum of plausible reionization models, and with the advent of next-generation capabilities (e.g. the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometer Array Phase I Low) will move beyond the power spectrum to imaging of the EoR intergalactic medium. Such datasets provide context to galaxy evolution studies for the earliest galaxies on scales of tens of Mpc, but at present wide, deep galaxy surveys are lacking, and attaining the depth to survey the bulk of galaxies responsible for reionization will be challenging even for JWST. Thus we seek useful cross-correlations with other more direct tracers of the galaxy population. I review near-term prospects for cross-correlation studies with 21 cm and CO and CII emission, as well as future far-infrared misions suchas CALISTO.

  6. POLYSHIFT Communications Software for the Connection Machine System CM-200

    DOE PAGES

    George, William; Brickner, Ralph G.; Johnsson, S. Lennart

    1994-01-01

    We describe the use and implementation of a polyshift function PSHIFT for circular shifts and end-offs shifts. Polyshift is useful in many scientific codes using regular grids, such as finite difference codes in several dimensions, and multigrid codes, molecular dynamics computations, and in lattice gauge physics computations, such as quantum chromodynamics (QCD) calculations. Our implementation of the PSHIFT function on the Connection Machine systems CM-2 and CM-200 offers a speedup of up to a factor of 3–4 compared with CSHIFT when the local data motion within a node is small. The PSHIFT routine is included in the Connection Machine Scientificmore » Software Library (CMSSL).« less

  7. 21 cm cosmology in the 21st century.

    PubMed

    Pritchard, Jonathan R; Loeb, Abraham

    2012-08-01

    Imaging the Universe during the first hundreds of millions of years remains one of the exciting challenges facing modern cosmology. Observations of the redshifted 21 cm line of atomic hydrogen offer the potential of opening a new window into this epoch. This will transform our understanding of the formation of the first stars and galaxies and of the thermal history of the Universe. A new generation of radio telescopes is being constructed for this purpose with the first results starting to trickle in. In this review, we detail the physics that governs the 21 cm signal and describe what might be learnt from upcoming observations. We also generalize our discussion to intensity mapping of other atomic and molecular lines.

  8. 21 cm cosmology in the 21st century.

    PubMed

    Pritchard, Jonathan R; Loeb, Abraham

    2012-08-01

    Imaging the Universe during the first hundreds of millions of years remains one of the exciting challenges facing modern cosmology. Observations of the redshifted 21 cm line of atomic hydrogen offer the potential of opening a new window into this epoch. This will transform our understanding of the formation of the first stars and galaxies and of the thermal history of the Universe. A new generation of radio telescopes is being constructed for this purpose with the first results starting to trickle in. In this review, we detail the physics that governs the 21 cm signal and describe what might be learnt from upcoming observations. We also generalize our discussion to intensity mapping of other atomic and molecular lines. PMID:22828208

  9. Search for the astrophysical sources of the Fly's Eye event with the highest to date cosmic ray energy E=3.2\\cdot10^{20} eV

    NASA Astrophysics Data System (ADS)

    Gnatyk, R. B.; Kudrya, Yu. N.; Zhdanov, V. I.

    2016-09-01

    Among the registered extremely high energy cosmic rays (EHECR, E>10^{20} eV) an event with the highest to date energy of E=3.2\\cdot10^{20} eV was detected by the Fly's Eye experiment (FE event) in 1991. With the use of the back-tracking method for the calculation of the EHECR trajectories in Galactic and extragalactic magnetic fields, we show that the galaxies UGC 03574 and UGC 03394 are the most promising candidates among the nearby extragalactic sources for the cases of iron and C-N-O group primary nucleus respectively. The most likely accelerating mechanisms are the newly-born millisecond pulsars, magnetar flares and tidal disruption events in these galaxies.

  10. OH 18 cm TRANSITION AS A THERMOMETER FOR MOLECULAR CLOUDS

    SciTech Connect

    Ebisawa, Yuji; Inokuma, Hiroshi; Yamamoto, Satoshi; Sakai, Nami; Menten, Karl M.; Maezawa, Hiroyuki

    2015-12-10

    We have observed the four hyperfine components of the 18 cm OH transition toward the translucent cloud eastward of Heiles Cloud 2 (HCL2E), the cold dark cloud L134N, and the photodissociation region of the ρ-Ophiuchi molecular cloud with the Effelsberg 100 m telescope. We have found intensity anomalies among the hyperfine components in all three regions. In particular, an absorption feature of the 1612 MHz satellite line against the cosmic microwave background has been detected toward HCL2E and two positions of the ρ-Ophiuchi molecular cloud. On the basis of statistical equilibrium calculations, we find that the hyperfine anomalies originate from the non-LTE population of the hyperfine levels, and can be used to determine the kinetic temperature of the gas over a wide range of H{sub 2} densities (10{sup 2}–10{sup 7} cm{sup −3}). Toward the center of HCL2E, the gas kinetic temperature is determined to be 53 ± 1 K, and it increases toward the cloud peripheries (∼60 K). The ortho-to-para ratio of H{sub 2} is determined to be 3.5 ± 0.9 from the averaged spectrum for the eight positions. In L134N, a similar increase of the temperature is also seen toward the periphery. In the ρ-Ophiuchi molecular cloud, the gas kinetic temperature decreases as a function of the distance from the exciting star HD 147889. These results demonstrate a new aspect of the OH 18 cm line that can be used as a good thermometer of molecular cloud envelopes. The OH 18 cm line can be used to trace a new class of warm molecular gas surrounding a molecular cloud, which is not well traced by the emission of CO and its isotopologues.

  11. OH 18 cm Transition as a Thermometer for Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Ebisawa, Yuji; Inokuma, Hiroshi; Sakai, Nami; Menten, Karl M.; Maezawa, Hiroyuki; Yamamoto, Satoshi

    2015-12-01

    We have observed the four hyperfine components of the 18 cm OH transition toward the translucent cloud eastward of Heiles Cloud 2 (HCL2E), the cold dark cloud L134N, and the photodissociation region of the ρ-Ophiuchi molecular cloud with the Effelsberg 100 m telescope. We have found intensity anomalies among the hyperfine components in all three regions. In particular, an absorption feature of the 1612 MHz satellite line against the cosmic microwave background has been detected toward HCL2E and two positions of the ρ-Ophiuchi molecular cloud. On the basis of statistical equilibrium calculations, we find that the hyperfine anomalies originate from the non-LTE population of the hyperfine levels, and can be used to determine the kinetic temperature of the gas over a wide range of H2 densities (102-107 cm-3). Toward the center of HCL2E, the gas kinetic temperature is determined to be 53 ± 1 K, and it increases toward the cloud peripheries (˜60 K). The ortho-to-para ratio of H2 is determined to be 3.5 ± 0.9 from the averaged spectrum for the eight positions. In L134N, a similar increase of the temperature is also seen toward the periphery. In the ρ-Ophiuchi molecular cloud, the gas kinetic temperature decreases as a function of the distance from the exciting star HD 147889. These results demonstrate a new aspect of the OH 18 cm line that can be used as a good thermometer of molecular cloud envelopes. The OH 18 cm line can be used to trace a new class of warm molecular gas surrounding a molecular cloud, which is not well traced by the emission of CO and its isotopologues.

  12. Control of a 30 cm diameter mercury bombardment thruster

    NASA Technical Reports Server (NTRS)

    Terdan, F. F.; Bechtel, R. T.

    1973-01-01

    Control logic functions were established for three automatic modes of operation of a 30-cm thruster using a power conditioner console with flight-like characteristics. The three modes provide: (1) automatic startup to reach thermal stability, (2) steady-state closed-loop control, and (3) the reliable recycling of the high voltages following an arc breakdown to reestablish normal operation. Power supply impedance characteristics necessary for stable operation and the effect of the magnetic baffle on the reliable recycling was studied.

  13. Semi-Lagrangian shallow water modeling on the CM-5

    SciTech Connect

    Nadiga, B.T.; Margolin, L.G.; Smolarkiewicz, P.K.

    1995-09-01

    We discuss the parallel implementation of a semi-Lagrangian shallow-water model on the massively parallel Connection Machine CM-5. The four important issues we address in this article are (i) two alternative formulations of the elliptic problem and their relative efficiencies, (ii) the performance of two successive orders of a generalized conjugate residual elliptic solver, (iii) the time spent in unstructured communication -- an unavoidable feature of semi-Lagrangian schemes, and (iv) the scalability of the algorithm.

  14. The future of primordial features with 21 cm tomography

    NASA Astrophysics Data System (ADS)

    Chen, Xingang; Meerburg, P. Daniel; Münchmeyer, Moritz

    2016-09-01

    Detecting a deviation from a featureless primordial power spectrum of fluctuations would give profound insight into the physics of the primordial Universe. Depending on their nature, primordial features can either provide direct evidence for the inflation scenario or pin down details of the inflation model. Thus far, using the cosmic microwave background (CMB) we have only been able to put stringent constraints on the amplitude of features, but no significant evidence has been found for such signals. Here we explore the limit of the experimental reach in constraining such features using 21 cm tomography at high redshift. A measurement of the 21 cm power spectrum from the Dark Ages is generally considered as the ideal experiment for early Universe physics, with potentially access to a large number of modes. We consider three different categories of theoretically motivated models: the sharp feature models, resonance models, and standard clock models. We study the improvements on bounds on features as a function of the total number of observed modes and identify parameter degeneracies. The detectability depends critically on the amplitude, frequency and scale-location of the features, as well as the angular and redshift resolution of the experiment. We quantify these effects by considering different fiducial models. Our forecast shows that a cosmic variance limited 21 cm experiment measuring fluctuations in the redshift range 30 <= z <= 100 with a 0.01-MHz bandwidth and sub-arcminute angular resolution could potentially improve bounds by several orders of magnitude for most features compared to current Planck bounds. At the same time, 21 cm tomography also opens up a unique window into features that are located on very small scales.

  15. The 21 cm signature of cosmic string wakes

    SciTech Connect

    Brandenberger, Robert H.; Danos, Rebecca J.; Hernández, Oscar F.; Holder, Gilbert P. E-mail: rjdanos@physics.mcgill.ca E-mail: holder@physics.mcgill.ca

    2010-12-01

    We discuss the signature of a cosmic string wake in 21cm redshift surveys. Since 21cm surveys probe higher redshifts than optical large-scale structure surveys, the signatures of cosmic strings are more manifest in 21cm maps than they are in optical galaxy surveys. We find that, provided the tension of the cosmic string exceeds a critical value (which depends on both the redshift when the string wake is created and the redshift of observation), a cosmic string wake will generate an emission signal with a brightness temperature which approaches a limiting value which at a redshift of z+1 = 30 is close to 400 mK in the limit of large string tension. The signal will have a specific signature in position space: the excess 21cm radiation will be confined to a wedge-shaped region whose tip corresponds to the position of the string, whose planar dimensions are set by the planar dimensions of the string wake, and whose thickness (in redshift direction) depends on the string tension. For wakes created at z{sub i}+1 = 10{sup 3}, then at a redshift of z+1 = 30 the critical value of the string tension μ is Gμ = 6 × 10{sup −7}, and it decreases linearly with redshift (for wakes created at the time of equal matter and radiation, the critical value is a factor of two lower at the same redshift). For smaller tensions, cosmic strings lead to an observable absorption signal with the same wedge geometry.

  16. A box corer 30 cm square and 4 m long

    NASA Astrophysics Data System (ADS)

    Foster Johnson, Richard

    1988-08-01

    To collect long, large-volume cores of diatomaceous sediment on the continental shelf off Namibia, we built a box corer that is 30 cm square and 4 m long. This paper describes the corer and the tools and procedures for sampling the covers. In terms of volume of sediment recovered in a single penetration, the corer may be among the largest ever used. The corer itself consists of a barrel with segments 20 cm long, a release mechanism at top and a thin fiberglass curtain at bottom. To support the large load of sediment without distortion, the curtain follows a semi-circular track, concave upward. During assembly and disassembly, the corer hangs vertically over the side, enabling it to operate from a relatively small ship. To sample the core, an extruding device pushes the sediment from each segment into boxes made of polyurethane foam. Ashore a specially designed jig helps slice these boxes into vertical slabs as thin as 1 cm. In the 6 days at sea that we had to test the corer and collect samples for the project, we took 9 cores, the longest of which was 3 m.

  17. Am/Cm Vitrification Process: Vitrification Material Balance Calculations

    SciTech Connect

    Smith, F.G.

    2000-08-15

    This report documents material balance calculations for the Americium/Curium vitrification process and describes the basis used to make the calculations. The material balance calculations reported here start with the solution produced by the Am/Cm pretreatment process as described in ``Material Balance Calculations for Am/Cm Pretreatment Process (U)'', SRT-AMC-99-0178 [1]. Following pretreatment, small batches of the product will be further treated with an additional oxalic acid precipitation and washing. The precipitate from each batch will then be charged to the Am/Cm melter with glass cullet and vitrified to produce the final product. The material balance calculations in this report are designed to provide projected compositions of the melter glass and off-gas streams. Except for decanted supernate collected from precipitation and precipitate washing, the flowsheet neglects side streams such as acid washes of empty tanks that would go directly to waste. Complete listings of the results of the material balance calculations are provided in the Appendices to this report.

  18. The wedge bias in reionization 21-cm power spectrum measurements

    NASA Astrophysics Data System (ADS)

    Jensen, Hannes; Majumdar, Suman; Mellema, Garrelt; Lidz, Adam; Iliev, Ilian T.; Dixon, Keri L.

    2016-02-01

    A proposed method for dealing with foreground emission in upcoming 21-cm observations from the epoch of reionization is to limit observations to an uncontaminated window in Fourier space. Foreground emission can be avoided in this way, since it is limited to a wedge-shaped region in k∥, k⊥ space. However, the power spectrum is anisotropic owing to redshift-space distortions from peculiar velocities. Consequently, the 21-cm power spectrum measured in the foreground avoidance window - which samples only a limited range of angles close to the line-of-sight direction - differs from the full redshift-space spherically averaged power spectrum which requires an average over all angles. In this paper, we calculate the magnitude of this `wedge bias' for the first time. We find that the bias amplifies the difference between the real-space and redshift-space power spectra. The bias is strongest at high redshifts, where measurements using foreground avoidance will overestimate the redshift-space power spectrum by around 100 per cent, possibly obscuring the distinctive rise and fall signature that is anticipated for the spherically averaged 21-cm power spectrum. In the later stages of reionization, the bias becomes negative, and smaller in magnitude (≲20 per cent).

  19. Distinct Distribution of Purines in CM and CR Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Stern, Jennifer C.; Glavin, Daniel P.; Smith, Karen E.; Martin, Mildred G.; Dworkin, Jason P.

    2010-01-01

    Carbonaceous meteorites contain a diverse suite of organic molecules and delivered pre biotic organic compounds, including purines and pyrimidines, to the early Earth (and other planetary bodies), seeding it with the ingredients likely required for the first genetic material. We have investigated the distribution of nucleobases in six different CM and CR type carbonaceous chondrites, including fivc Antarctic meteorites never before analyzed for nucleobases. We employed a traditional formic acid extraction protocol and a recently developed solid phase extraction method to isolate nucleobases. We analyzed these extracts by high performance liquid chromatography with UV absorbance detection and tandem mass spectrometry (HPLC-UV -MS/MS) targeting the five canonical RNAIDNA bases and hypoxanthine and xanthine. We detected parts-per-billion levels of nucleobases in both CM and CR meteorites. The relative abundances of the purines found in Antarctic CM and CR meteorites were clearly distinct from each other suggesting that these compounds are not terrestrial contaminants. One likely source of these purines is formation by HCN oligomerization (with other small molecules) during aqueous alteration inside the meteorite parent body. The detection of the purines adenine (A), guanine (0), hypoxanthine (HX), and xanthine (X) in carbonaceous meteorites indicates that these compounds should have been available on the early Earth prior to the origin of the first genetic material.

  20. BRIGHT SOURCE SUBTRACTION REQUIREMENTS FOR REDSHIFTED 21 cm MEASUREMENTS

    SciTech Connect

    Datta, A.; Bowman, J. D.; Carilli, C. L.

    2010-11-20

    The H I 21 cm transition line is expected to be an important probe into the cosmic dark ages and epoch of reionization. Foreground source removal is one of the principal challenges for the detection of this signal. This paper investigates the extragalactic point source contamination and how accurately bright sources ({approx}>1 Jy) must be removed in order to detect 21 cm emission with upcoming radio telescopes such as the Murchison Widefield Array. We consider the residual contamination in 21 cm maps and power spectra due to position errors in the sky model for bright sources, as well as frequency-independent calibration errors. We find that a source position accuracy of 0.1 arcsec will suffice for detection of the H I power spectrum. For calibration errors, 0.05% accuracy in antenna gain amplitude is required in order to detect the cosmic signal. Both sources of subtraction error produce residuals that are localized to small angular scales, k{sub perpendicular} {approx}> 0.05 Mpc{sup -1}, in the two-dimensional power spectrum.

  1. Co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in subtropical acidic forest soils.

    PubMed

    Meng, Han; Wang, Yong-Feng; Chan, Ho-Wang; Wu, Ruo-Nan; Gu, Ji-Dong

    2016-09-01

    Anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) are two new processes of recent discoveries linking the microbial nitrogen and carbon cycles. In this study, 16S ribosomal RNA (rRNA) gene of anammox bacteria and pmoA gene of n-damo bacteria were used to investigate their distribution and diversity in natural acidic and re-vegetated forest soils. The 16S rRNA gene sequences retrieved featured at least three species in two genera known anammox bacteria, namely Candidatus Brocadia anammoxidans, Candidatus Brocadia fulgida, and Candidatus Kuenenia stuttgartiensis while the pmoA gene amplified was affiliated with two species of known n-damo bacteria Candidatus Methylomirabilis oxyfera and a newly established Candidatus Methylomirabilis sp. According to the results, the diversity of anammox bacteria in natural forests was lower than in re-vegetated forests, but no significant difference was observed in n-damo community between them. Quantitative real-time PCR showed that both anammox and n-damo bacteria were more abundant in the lower layer (10-20 cm) than the surface layer (0-5 cm). The abundance of anammox bacteria varied from 2.21 × 10(5) to 3.90 × 10(6) gene copies per gram dry soil, and n-damo bacteria quantities were between 1.69 × 10(5) and 5.07 × 10(6) gene copies per gram dry soil in the two different layers. Both anammox and n-damo bacteria are reported for the first time to co-occur in acidic forest soil in this study, providing a more comprehensive information on more defined microbial processes contributing to C and N cycles in the ecosystems. PMID:27178181

  2. [Effect of fertilization levels on soil microorganism amount and soil enzyme activities].

    PubMed

    Wang, Wei-Ling; Du, Jun-Bo; Xu, Fu-Li; Zhang, Xiao-Hu

    2013-11-01

    Field experiments were conducted in Shangluo pharmaceutical base in Shaanxi province to study the effect of nitrogen, phosphorus and potassium in different fertilization levels on Platycodon grandiflorum soil microorganism and activities of soil enzyme, using three-factor D-saturation optimal design with random block design. The results showed that N0P2K2, N2P2K0, N3P1K3 and N3P3K1 increased the amount of bacteria in 0-20 cm of soil compared with N0P0K0 by 144.34%, 39.25%, 37.17%, 53.58%, respectively. The amount of bacteria in 2040 cm of soil of N3P1K3 increased by 163.77%, N0P0K3 increased the amount of soil actinomycetes significantly by 192.11%, while other treatments had no significant effect. N2P0K2 and N3P1K3 increased the amounts of fungus significantly in 0-20 cm of soil compared with N0P0K0, increased by 35.27% and 92.21%, respectively. N3P0K0 increased the amounts of fungus significantly in 20-40 cm of soil by 165.35%, while other treatments had no significant effect. All treatments decrease soil catalase activity significantly in 0-20 cm of soil except for N2P0K2, and while N2P2K0 and NPK increased catalase activity significantly in 2040 cm of soil. Fertilization regime increased invertase activity significantly in 2040 cm of soil, and decreased phosphatase activity inordinately in 0-20 cm of soil, while increased phosphatase activity in 2040 cm of soil other than N1P3K3. N3P0K0, N0P0K3, N2P0K2, N2P2K0 and NPK increased soil urease activity significantly in 0-20 cm of soil compared with N0P0K0 by 18.22%, 14.87%,17.84%, 27.88%, 24.54%, respectively. Fertilization regime increased soil urease activity significantly in 2040 cm of soil other than N0P2K2. PMID:24558863

  3. [Concentrations and pollution assessment of soil heavy metals at different water-level altitudes in the draw-down areas of the Three Gorges Reservoir].

    PubMed

    Wang, Ye-Chun; Lei, Bo; Yang, San-Ming; Zhang, Sheng

    2012-02-01

    To investigate the effect of 175 m trial impounding (2008 and 2009) of the Three Gorges Reservoir on soil heavy metals, three draw-down areas with similar geological environment and history of land-use in Zhongxian County were chosen. Altogether 36 surface soil samples (including 0-10 cm and 10-20 cm soil layer) from water-level altitude of 160 m and 170 m were obtained, and their heavy metals concentrations (As, Cd, Cr, Cu, Ni, Pb and Zn) were measured by the X-ray fluorescence spectrometric method. Geoaccumulation index (I(geo)) and Håkanson potential ecological risk index were applied to assess the heavy metals pollution status and potential ecological risk, respectively. Results indicated that although the inundation period of 160 m was 224 d longer than that of 170 m, significant difference in concentrations of heavy metals were not found between the two water-level altitudes. Except for Cd, most of the heavy metals highly related with each other positively. According to the geoaccumulation index, the pollution extent of the heavy metals followed the order: As > Cd > Cu > Ni > Zn = Pb > Cr. The I(geo) value of As, Cd and Cu were 0.45, 0.39 and 0.06, respectively, indicating that the soil was only lightly polluted by these heavy metals. Håkanson single potential ecological risk index followed the order: Cd > As > Cu > Pb > Ni > Cr > Zn. Cd with E(i) values of 59.10, had a medium potential for ecological risk,while As, Cr, Cu, Pb, Ni and Zn only had a light potential. Consequently, although As, Cd and Cu were the major heavy metals with potential ecological risk for surface soil pollution in the draw-down areas in Zhongxian County, the Three Gorges Reservoir.

  4. [Concentrations and pollution assessment of soil heavy metals at different water-level altitudes in the draw-down areas of the Three Gorges Reservoir].

    PubMed

    Wang, Ye-Chun; Lei, Bo; Yang, San-Ming; Zhang, Sheng

    2012-02-01

    To investigate the effect of 175 m trial impounding (2008 and 2009) of the Three Gorges Reservoir on soil heavy metals, three draw-down areas with similar geological environment and history of land-use in Zhongxian County were chosen. Altogether 36 surface soil samples (including 0-10 cm and 10-20 cm soil layer) from water-level altitude of 160 m and 170 m were obtained, and their heavy metals concentrations (As, Cd, Cr, Cu, Ni, Pb and Zn) were measured by the X-ray fluorescence spectrometric method. Geoaccumulation index (I(geo)) and Håkanson potential ecological risk index were applied to assess the heavy metals pollution status and potential ecological risk, respectively. Results indicated that although the inundation period of 160 m was 224 d longer than that of 170 m, significant difference in concentrations of heavy metals were not found between the two water-level altitudes. Except for Cd, most of the heavy metals highly related with each other positively. According to the geoaccumulation index, the pollution extent of the heavy metals followed the order: As > Cd > Cu > Ni > Zn = Pb > Cr. The I(geo) value of As, Cd and Cu were 0.45, 0.39 and 0.06, respectively, indicating that the soil was only lightly polluted by these heavy metals. Håkanson single potential ecological risk index followed the order: Cd > As > Cu > Pb > Ni > Cr > Zn. Cd with E(i) values of 59.10, had a medium potential for ecological risk,while As, Cr, Cu, Pb, Ni and Zn only had a light potential. Consequently, although As, Cd and Cu were the major heavy metals with potential ecological risk for surface soil pollution in the draw-down areas in Zhongxian County, the Three Gorges Reservoir. PMID:22509605

  5. Vegetation-induced soil water repellency as a strategy in arid ecosystems. A geochemical approach in Banksia woodlands (SW Australia)

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Jiménez-Morillo, Nicasio T.; González-Pérez, Jose Antonio; Zavala, Lorena M.; Stevens, Jason; Jordan, Antonio

    2016-04-01

    research aims to study SWR and its impact on water economy in relation with soil functioning and plant strategies for water uptake in pristine BW. Results are expected to shed light on the origin and implications of SWR in the area and provide useful information for improving ongoing restoration plans. Materials and methods The study was conducted in natural BW of WA. Soil samples were collected at different soil depths (0-1, 1-10, 20-30 and 40-50 cm). Rationale for sampling depths was based on the different severities of SWR at each layer under field conditions. Soil water repellency was assessed under laboratory conditions in oven-dry samples (48 h, 105 °C) and the chemical organic assemblage of bulked soil subsamples from each layer was analysed by direct analytical pyrolysis (Py-GC/MS). Results and discussion Soil water repellency distributed discontinuously through the soil profile. The first thin layer (0-1 cm) composed of coarse sand and litter, located immediately above Banksia root clusters, showed wettable conditions. In contrast, the relatively well aggregated soil layer where the Banksia cluster root system is located (1-10 cm) was severely water-repellent. The 20-30 and 40-50 cm deep layers rendered wettable or subcritically water-repellent. After Py-GC/MS analysis, major compounds were identified and grouped according to their probable biogenic origin (lignin, polysaccharides, peptides, etc.). Among other soil organic compounds, well resolved bimodal alkane/akene (C8-C31, maxima at C13 and C26) and fatty acids series (short-chained, C5-C9, and long-chained even-numbered C12-C18) were associated to the root cluster soil layer (1-10 cm). Also, a relatively high contribution of fire-derived polycyclic aromatic hydrocarbons (PAHs) was observed (7%), which is consistent with frequent fires occurring in BW. These results point to possible indirect links between organic substances released by roots and soil wettability involving soil microorganisms. Further

  6. Soil CO₂ dynamics in a tree island soil of the Pantanal: the role of soil water potential.

    PubMed

    Johnson, Mark S; Couto, Eduardo Guimarães; Pinto, Osvaldo B; Milesi, Juliana; Santos Amorim, Ricardo S; Messias, Indira A M; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO₂ research has been conducted in this region. We evaluated soil CO₂ dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO₂ concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO₂ efflux and related environmental parameters. Soil CO₂ efflux during the study averaged 3.53 µmol CO₂ m⁻² s⁻¹, and was equivalent to an annual soil respiration of 1220 g C m⁻² y⁻¹. This efflux value, integrated over a year, is comparable to soil C stocks for 0-20 cm. Soil water potential was the measured parameter most strongly associated with soil CO₂ concentrations, with high CO₂ values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO₂ efflux from the tree island soil, with soil CO₂ dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO₂ efflux from soil. The annual flood arrives later, and saturates soil from below. While CO₂ concentrations in soil grew very high under both wetting mechanisms, the change in soil CO₂ efflux was only significant when soils were wet from above. PMID:23762259

  7. Soil CO₂ dynamics in a tree island soil of the Pantanal: the role of soil water potential.

    PubMed

    Johnson, Mark S; Couto, Eduardo Guimarães; Pinto, Osvaldo B; Milesi, Juliana; Santos Amorim, Ricardo S; Messias, Indira A M; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO₂ research has been conducted in this region. We evaluated soil CO₂ dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO₂ concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO₂ efflux and related environmental parameters. Soil CO₂ efflux during the study averaged 3.53 µmol CO₂ m⁻² s⁻¹, and was equivalent to an annual soil respiration of 1220 g C m⁻² y⁻¹. This efflux value, integrated over a year, is comparable to soil C stocks for 0-20 cm. Soil water potential was the measured parameter most strongly associated with soil CO₂ concentrations, with high CO₂ values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO₂ efflux from the tree island soil, with soil CO₂ dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO₂ efflux from soil. The annual flood arrives later, and saturates soil from below. While CO₂ concentrations in soil grew very high under both wetting mechanisms, the change in soil CO₂ efflux was only significant when soils were wet from above.

  8. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential

    PubMed Central

    Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259

  9. 10 cm x 10 cm Single Gas Electron Multiplier (GEM) X-ray Fluorescence Detector for Dilute Elements

    NASA Astrophysics Data System (ADS)

    Shaban, E. H.; Siddons, D. P.; Seifu, D.

    2014-03-01

    We have built and tested a 10 cm × 10 cm single Gas Electron Multiplier (GEM) X-ray detector to probe dilute amounts of Fe in a prepared sample. The detector uses Argon/Carbon Dioxide (75/25) gas mixture flowing at a slow rate through a leak proof Plexi-glass enclosure held together by O-rings and screws. The Fluorescence X-ray emitted by the element under test is directed through a Mylar window into the drift region of the detector where abundant gas is flowing. The ionized electrons are separated, drifted into the high electric field of the GEM, and multiplied by impact ionization. The amplified negatively charged electrons are collected and further amplified by a Keithley amplifier to probe the absorption edge of the element under test using X-ray absorption spectroscopy technique. The results show that the GEM detector provided good results with less noise as compared with a Silicon drift detector (SDD).

  10. The GLOBE Soil Moisture Campaign's Light Bulb Oven

    NASA Astrophysics Data System (ADS)

    Whitaker, M. P.; Tietema, D.; Ferre, T. P.; Nijssen, B.; Washburne, J.

    2003-12-01

    The GLOBE Soil Moisture Campaign (SMC) (www.hwr.arizona.edu/globe/sci/SM/SMC) has developed a light bulb oven to provide a low budget, low-technology method for drying soil samples. Three different soils were used to compare the ability of the light bulb oven to dry soils against a standard laboratory convection oven. The soils were: 1) a very fine sandy loam (the "Gila" soil); 2) a silty clay (the "Pima" soil); and 3) a sandy soil (the "Sonoran" soil). A large batch of each soil was wetted uniformly in the laboratory. Twelve samples of each soil were placed in the light bulb oven and twelve samples were placed in the standard oven. The average gravimetric soil moisture of the Gila soil was 0.214 g/cm3 for both ovens; the average Pima soil moisture was 0.332 g/cm3 and 0.331 g/cm3 for the traditional and light bulb ovens, respectively; and the Sonoran soil moisture was 0.077 g/cm3 for both ovens. These results demonstrate that the low technology light-bulb oven was able to dry the soil samples as well as a standard laboratory oven, offering the ability to make gravimetric water content measurements when a relatively expensive drying oven is not available.

  11. Moisture and vegetation controls on decadal-scale accrual of soil organic carbon and total nitrogen in restored grasslands.

    SciTech Connect

    O'Brien, S. L.; Jastrow, J. D.; Grimley, D. A.; Gonzalez-Meler, M. A.

    2010-09-01

    Revitalization of degraded landscapes may provide sinks for rising atmospheric CO{sub 2}, especially in reconstructed prairies where substantial belowground productivity is coupled with large soil organic carbon (SOC) deficits after many decades of cultivation. The restoration process also provides opportunities to study the often-elusive factors that regulate soil processes. Although the precise mechanisms that govern the rate of SOC accrual are unclear, factors such as soil moisture or vegetation type may influence the net accrual rate by affecting the balance between organic matter inputs and decomposition. A resampling approach was used to assess the control that soil moisture and plant community type each exert on SOC and total nitrogen (TN) accumulation in restored grasslands. Five plots that varied in drainage were sampled at least four times over two decades to assess SOC, TN, and C{sub 4}- and C{sub 3}-derived C. We found that higher long-term soil moisture, characterized by low soil magnetic susceptibility, promoted SOC and TN accrual, with twice the SOC and three times the TN gain in seasonally saturated prairies compared with mesic prairies. Vegetation also influenced SOC and TN recovery, as accrual was faster in the prairies compared with C{sub 3}-only grassland, and C{sub 4}-derived C accrual correlated strongly to total SOC accrual but C{sub 3}-C did not. High SOC accumulation at the surface (0-10 cm) combined with losses at depth (10-20 cm) suggested these soils are recovering the highly stratified profiles typical of remnant prairies. Our results suggest that local hydrology and plant community are critical drivers of SOC and TN recovery in restored grasslands. Because these factors and the way they affect SOC are susceptible to modification by climate change, we contend that predictions of the C-sequestration performance of restored grasslands must account for projected climatic changes on both soil moisture and the seasonal productivity of C

  12. The Transition to ICD-10-CM: Challenges for Pediatric Practice

    PubMed Central

    Zaman, Jeffrey; Nam, Hannah; Chae, Sae-Rom; Williams, Lauren; Mathew, Gina; Burton, Michael; Li, Jiarong “John”; Lussier, Yves A.

    2014-01-01

    BACKGROUND AND OBJECTIVES: Diagnostic codes are used widely within health care for billing, quality assessment, and to measure clinical outcomes. The US health care system will transition to the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM), in October 2015. Little is known about how this transition will affect pediatric practices. The objective of this study was to examine how the transition to ICD-10-CM may result in ambiguity of clinical information and financial disruption for pediatricians. METHODS: Using a statewide data set from Illinois Medicaid specified for pediatricians, 2708 International Classification of Diseases, Ninth Revision, Clinical Modification, diagnosis codes were identified. Diagnosis codes were categorized into 1 of 5 categories: identity, class-to-subclass, subclass-to-class, convoluted, and no translation. The convoluted and high-cost diagnostic codes (n = 636) were analyzed for accuracy and categorized into “information loss,” “overlapping categories,” “inconsistent,” and “consistent.” Finally, reimbursement by Medicaid was calculated for each category. RESULTS: Twenty-six percent of pediatric diagnosis codes are convoluted, which represents 21% of Illinois Medicaid pediatric patient encounters and 16% of reimbursement. The diagnosis codes represented by information loss (3.6%), overlapping categories (3.2%), and inconsistent (1.2%) represent 8% of Medicaid pediatric reimbursement. CONCLUSIONS: The potential for financial disruption and administrative errors from 8% of reimbursement diagnosis codes necessitates special attention to these codes in preparing for the transition to ICD-10-CM for pediatric practices. PMID:24918217

  13. Multiple precursors of secondary mineralogical assemblages in CM chondrites

    NASA Astrophysics Data System (ADS)

    Pignatelli, Isabella; Marrocchi, Yves; Vacher, Lionel. G.; Delon, RéMi; Gounelle, Matthieu

    2016-04-01

    We report a petrographic and mineralogical survey of tochilinite/cronstedtite intergrowths (TCIs) in Paris, a new CM chondrite considered to be the least altered CM identified to date. Our results indicate that type-I TCIs consist of compact tochilinite/cronstedtite rims surrounding Fe-Ni metal beads, thus confirming kamacite as the precursor of type-I TCIs. In contrast, type-II TCIs are characterized by complex compositional zoning composed of three different Fe-bearing secondary minerals: from the outside inwards, tochilinite, cronstedtite, and amakinite. Type-II TCIs present well-developed faces that allow a detailed morphological analysis to be performed in order to identify the precursors. The results demonstrate that type-II TCIs formed by pseudomorphism of the anhydrous silicates, olivine, and pyroxene. Hence, there is no apparent genetic relationship between type-I and type-II TCIs. In addition, the complex chemical zoning observed within type-II TCIs suggests that the alteration conditions evolved dramatically over time. At least three stages of alteration can be proposed, characterized by alteration fluids with varying compositions (1) Fe- and S-rich fluids; (2) S-poor and Fe- and Si-rich fluids; and (3) S- and Si-poor, Fe-rich fluids. The presence of unaltered silicates in close association with euhedral type-II TCIs suggests the existence of microenvironments during the first alteration stages of CM chondrites. In addition, the absence of Mg-bearing secondary minerals in Paris TCIs suggests that the Mg content increases during the course of alteration.

  14. Performance of 30-cm ion thrusters with dished accelerator grids

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Thirteen sets of dished accelerator grids were tested on five different 30-cm diameter bombardment thrustors to evaluate the effects of grid geometry variations on thrustor discharge chamber performance. The dished grid parameters varied were: grid-to-grid spacing, screen and accelerator grid hole-diameter, screen and accelerator open area fraction, compensation for beam divergence losses, and accelerator grid thickness. Also investigated were the effects on discharge chamber performance of main magnetic field changes, magnetic baffle current cathode pole piece length and cathode position.

  15. Performance of 30-cm ion thrusters with dished accelerator grids

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Thirteen sets of dished accelerator grids were treated on five different 30 cm diameter bombardment thrusters to evaluate the effects of grid geometry variations on thruster discharge chamber performance. The dished grid parameters varied were: grid-to-grid spacing, screen and accelerator grid hole diameter, screen and accelerator open area fraction, compensation for beam divergence losses, and accelerator grid thickness. The effects on discharge chamber performance of main magnetic field changes, magnetic baffle current, cathode pole piece length and cathode position were also investigated.

  16. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Eighteen geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  17. Affordable échelle spectroscopy with a 60 cm telescope

    NASA Astrophysics Data System (ADS)

    Pribulla, T.; Garai, Z.; Hambálek, L.; Kollár, V.; Komžík, R.; Kundra, E.; Nedoroščík, J.; Sekeráš, M.; Vaňko, M

    2015-09-01

    A new fiber-fed spectrograph was installed at the 60 cm telescope of the Stará Lesná Observatory. The article presents tests of its performance (spectral resolution, signal-to-noise ratio, radial-velocity stability) and reports observations of selected variable stars and exoplanet host stars. First test observations show that the spectrograph is an ideal tool to observe bright eclipsing and spectroscopic binaries but also symbiotic and nova-like stars. The radial-velocity stability (60-80 ms-1) is sufficient to study spectroscopic binaries and to detect easily the orbital motion of hot-Jupiter extrasolar planets around bright stars.

  18. The 8-CM ion thruster characterization. [mercury ion engine

    NASA Technical Reports Server (NTRS)

    Wessel, F. J.; Williamson, W. S.

    1983-01-01

    The performance capabilities of the 8 cm diameter mercury ion thruster were increased by modifying the thruster operating parameters and component hardware. The initial performance levels, representative of the Hughes/NASA Lewis Research Center Ion Auxiliary Propulsion Subsystem (IAPS) thruster, were raised from the baseline values of thrust, T = 5 mN, and specific impulse, I sub sp = 2,900s, to thrust, T = 25 mN and specific impulse, I sub sp = 4,300 s. Performance characteristics including estmates of the erosion rates of various component surfaces are presented.

  19. Performance documentation of the engineering model 30-cm diameter thruster

    NASA Technical Reports Server (NTRS)

    Bechtel, R. T.; Rawlin, V. K.

    1976-01-01

    The results of extensive testing of two 30-cm ion thrusters which are virtually identical to the 900 series Engineering Model Thruster in an ongoing 15,000-hour life test are presented. Performance data for the nominal fullpower (2650 W) operating point; performance sensitivities to discharge voltage, discharge losses, accelerator voltage, and magnetic baffle current; and several power throttling techniques (maximum Isp, maximum thrust/power ratio, and two cases in between are included). Criteria for throttling are specified in terms of the screen power supply envelope, thruster operating limits, and control stability. In addition, reduced requirements for successful high voltage recycles are presented.

  20. Performance capabilities of the 8-cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.

    1981-01-01

    A preliminary characterization of the performance capabilities of the 8-cm thruster in order to initiate an evaluation of its application to LSS propulsion requirements is presented. With minor thruster modifications, the thrust was increased by about a factor of four while the discharge voltage was reduced from 39 to 22 volts. The thruster was operated over a range of specific impulse of 1950 to 3040 seconds and a maximum total efficiency of about 54 percent was attained. Preliminary analysis of component lifetimes, as determined by temperature and spectroscopic line intensity measurements, indicated acceptable thruster lifetimes are anticipated at the high power level operation.

  1. Status of 30 cm mercury ion thruster development

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.; King, H. J.

    1974-01-01

    Two engineering model 30-cm ion thrusters were assembled, calibrated, and qualification tested. This paper discusses the thruster design, performance, and power system. Test results include documentation of thrust losses due to doubly charged mercury ions and beam divergence by both direct thrust measurements and beam probes. Diagnostic vibration tests have led to improved designs of the thruster backplate structure, feed system, and harness. Thruster durability is being demonstrated over a thrust range of 97 to 113 mN at a specific impulse of about 2900 seconds. As of August 15, 1974, the thruster has successfully operated for over 4000 hours.

  2. Recycle Requirements for NASA's 30 cm Xenon Ion Thruster

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Rawlin, Vincent K.

    1994-01-01

    Electrical breakdowns have been observed during ion thruster operation. These breakdowns, or arcs, can be caused by several conditions. In flight systems, the power processing unit must be designed to handle these faults autonomously. This has a strong impact on power processor requirements and must be understood fully for the power processing unit being designed for the NASA Solar Electric Propulsion Technology Application Readiness program. In this study, fault conditions were investigated using a NASA 30 cm ion thruster and a power console. Power processing unit output specifications were defined based on the breakdown phenomena identified and characterized.

  3. Control of a 30 cm diameter mercury bombardment thruster

    NASA Technical Reports Server (NTRS)

    Terdan, F. F.; Bechtel, R. T.

    1973-01-01

    Increased thruster performance has made closed-loop automatic control more difficult than previously. Specifically, high perveance optics tend to make reliable recycling more difficult. Control logic functions were established for three automatic modes of operation of a 30-cm thruster using a power conditioner console with flight-like characteristics. The three modes provide (1) automatic startup to reach thermal stability, (2) steady-state closed-loop control, and (3) the reliable recycling of the high voltages following an arc breakdown to reestablish normal operation. Power supply impedance characteristics necessary for stable operation and the effect of the magnetic baffle on the reliable recycling was studied.

  4. Radiated and conducted EMI from a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Whittlesey, A. C.; Peer, W.

    1981-01-01

    In order to properly assess the interaction of a spacecraft with the EMI environment produced by an ion thruster, the EMI environment was characterized. Therefore, radiated and conducted emissions were measured from a 30-cm mercury ion thruster. The ion thruster beam current varied from zero to 2.0 amperes and the emissions were measured from 5 KHz to 200 MHz. Several different types of antennas were used to obtain the measurements. The various measurements that were made included: magnetic field due to neutralizer/beam current loop; radiated electric fields of thruster and plume; and conducted emissions on arc discharge, neutralizer keeper and magnetic baffle lines.

  5. Long lifetime hollow cathodes for 30-cm mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Kerslake, W. R.

    1976-01-01

    An experimental investigation of hollow cathodes for 30-cm Hg bombardment thrusters was carried out. Both main and neutralizer cathode configurations were tested with both rolled foil inserts coated with low work function material and impregnated porous tungsten inserts. Temperature measurements of an impregnated insert at various positions in the cathode were made. These, along with the cathode thermal profile are presented. A theory for rolled foil and impregnated insert operation and lifetime in hollow cathodes is developed. Several endurance tests, as long as 18000 hours at emission currents of up to 12 amps were attained with no degradation in performance.

  6. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to the dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  7. Performance mapping of a 30 cm engineering model thruster

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Vahrenkamp, R. P.

    1975-01-01

    A 30 cm thruster representative of the engineering model design has been tested over a wide range of operating parameters to document performance characteristics such as electrical and propellant efficiencies, double ion and beam divergence thrust loss, component equilibrium temperatures, operational stability, etc. Data obtained show that optimum power throttling, in terms of maximum thruster efficiency, is not highly sensitive to parameter selection. Consequently, considerations of stability, discharge chamber erosion, thrust losses, etc. can be made the determining factors for parameter selection in power throttling operations. Options in parameter selection based on these considerations are discussed.

  8. The 100 cm solar telescope primary mirror study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The manufacturing impact of primary mirror configuration on the performance of a 100 cm aperture solar telescope was studied. Three primary mirror configurations were considered: solid, standard lightweight, and mushroom. All of these are of low expansion material. Specifically, the study consisted of evaluating the mirrors with regard to: manufacturing metrology, manufacturing risk factors and ultimate quality assessment. As a result of this evaluation, a performance comparison of the configurations was made, and a recommendation of mirror configuration is the final output. These evaluations, comparisons and recommendations are discussed in detail. Other investigations were completed and are documented in the appendices.

  9. Human Being Imaging with cm-Wave UWB Radar

    NASA Astrophysics Data System (ADS)

    Yarovoy, A.; Zhuge, X.; Savelyev, T.; Matuzas, J.; Levitas, B.

    Possibilities of high-resolution human body imaging and concealed weapon detection using centimeter-wave microwave frequencies are investigated. Dependencies of the cross-range resolution of different imaging techniques on operational bandwidth, center frequency, imaging aperture size, and imaging topology have been studied. It has been demonstrated that the cross-range resolution of 2 cm can be achieved using frequencies below 10 GHz. These findings have been verified experimentally by producing high-resolution images of a foil-covered doll and some weapons.

  10. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Oneill, P. E.; Wang, J. R.

    1985-01-01

    The AgRISTARS Soil Moisture Project has made significant progress in the quantification of microwave sensor capabilities for soil moisture remote sensing. The 21-cm wavelength has been verified to be the best single channel for radiometric observations of soil moisture. It has also been found that other remote sensing approaches used in conjunction with L-band passive data are more successful than multiple wavelength microwave radiometry in this application. AgRISTARS studies have also improved current understanding of noise factors affecting the interpretability of microwave emission data. The absorption of soil emission by vegetation has been quantified, although this effect is less important than absorption effects for microwave radiometry.

  11. Vertical distribution of soil removed by four species of burrowing rodents in disturbed and undisturbed soils.

    PubMed

    Reynolds, T D; Laundré, J W

    1988-04-01

    Burrow volumes were determined in disturbed and undisturbed soils for four species of rodents in southeastern Idaho. Comparisons were made between soil types for the average volume and the proportion of the total volume of soil excavated from 10-cm increments for each species, and the relative number of burrows and proportion of total soil removed from beneath the minimum thickness of soil covers over buried low-level radioactive wastes. Burrows of montane voles (Microtus montanus) and deer mice (Peromyscus maniculatus) rarely extended below 50 cm and neither volumes nor depths were influenced by soil disturbance. Townsend's ground squirrels (Spermophilus townsendii) had the deepest and most voluminous burrows that, along with Ord's kangaroo rat (Dipodomys ordii) burrows, were more prevalent beneath 50 cm in disturbed soils.

  12. Vertical distribution of soil removed by four species of burrowing rodents in disturbed and undisturbed soils

    SciTech Connect

    Reynolds, T.D.; Laundre, J.W.

    1988-04-01

    Burrow volumes were determined in disturbed and undisturbed soils for four species of rodents in southeastern Idaho. Comparisons were made between soil types for the average volume and the proportion of the total volume of soil excavated from 10-cm increments for each species, and the relative number of burrows and proportion of total soil removed from beneath the minimum thickness of soil covers over buried low-level radioactive wastes. Burrows of montane voles (Microtus montanus) and deer mice (Peromyscus maniculatus) rarely extended below 50 cm and neither volumes nor depths were influenced by soil disturbance. Townsend's ground squirrels (Spermophilus townsendii) had the deepest and most voluminous burrows that, along with Ord's kangaroo rat (Dipodomys ordii) burrows, were more prevalent beneath 50 cm in disturbed soils.

  13. Soil and Surface Runoff Phosphorus Relationships for Five Typical USA Midwest Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessively high soil P can increase P loss with surface runoff. This study used indoor rainfall simulations to characterize soil and runoff P relationships for five Midwest soils (Argiudoll, Calciaquaoll, Hapludalf, and two Hapludolls). Topsoil (15-cm depth, 241–289 g clay kg–1 and pH 6.0–8.0) was ...

  14. X-rays and hard ultraviolet radiation from the first galaxies: ionization bubbles and 21-cm observations

    NASA Astrophysics Data System (ADS)

    Venkatesan, Aparna; Benson, Andrew

    2011-11-01

    The first stars and quasars are known sources of hard ionizing radiation in the first billion years of the Universe. We examine the joint effects of X-rays and hard ultraviolet (UV) radiation from such first-light sources on the hydrogen and helium reionization of the intergalactic medium (IGM) at early times, and the associated heating. We study the growth and evolution of individual H II, He II and He III regions around early galaxies with first stars and/or quasi-stellar object populations. We find that in the presence of helium-ionizing radiation, X-rays may not dominate the ionization and thermal history of the IGM at z˜ 10-20, contributing relatively modest increases to IGM ionization and heating up to ˜103-105 K in IGM temperatures. We also calculate the 21-cm signal expected from a number of scenarios with metal-free starbursts and quasars in varying combinations and masses at these redshifts. The peak values for the spin temperature reach ˜104-105 K in such cases. The maximum values for the 21-cm brightness temperature are around 30-40 mK in emission, while the net values of the 21-cm absorption signal range from ˜a few to 60 mK on scales of 0.01-1 Mpc. We find that the 21-cm signature of X-ray versus UV ionization could be distinct, with the emission signal expected from X-rays alone occurring at smaller scales than that from UV radiation, resulting from the inherently different spatial scales at which X-ray and UV ionization/heating manifests. This difference is time-dependent and becomes harder to distinguish with an increasing X-ray contribution to the total ionizing photon production. Such differing scale-dependent contributions from X-ray and UV photons may therefore 'blur' the 21-cm signature of the percolation of ionized bubbles around early haloes (depending on whether a cosmic X-ray or UV background is built up first) and affect the interpretation of 21-cm data constraints on reionization.

  15. Changes in microbial activity of soils during the natural restoration of abandoned lands in central Russia

    NASA Astrophysics Data System (ADS)

    Ovsepyan, Lilit; Mostovaya, Anna; Lopes de Gerenyu, Valentin; Kurganova, Irina

    2015-04-01

    Most changes in land use affect significantly the amount of soil organic carbon (SOC) and alter the nutrition status of soil microbial community. The arable lands withdrawal induced usually the carbon sequestration in soil, the significant shifts in quality of soil organic matter and structure of microbial community. This study was aimed to determine the microbial activity of the abandoned lands in Central Russia due to the process of natural self-restoration. For the study, two representative chronosequences were selected in Central Russia: (1) deciduous forest area, DFA (Moscow region, 54o49N'; 37o34'E; Haplic Luvisols) and (2) forest steppe area, FSA (Belgorod region 50o36'N, 36o01'E Luvic Phaeozems). Each chronosequence included current arable, abandoned lands of different age, and forest plots. The total soil organic carbon (Corg, automatic CHNS analyzer), carbon immobilized in microbial biomass (Cmic, SIR method), and respiratory activity (RA) were determined in the topsoil (0-5, 5-10, 10-20 and 20-30 cm layers) for each plots. Relationships between Corg, Cmic, and RA were determined by liner regression method. Our results showed that the conversion of croplands to the permanent forest induced the progressive accumulation Corg, Cmic and acceleration of RA in the top 10-cm layer for both chronosequences. Carbon stock increased from 24.1 Mg C ha-1 in arable to 45.3 Mg C ha-1 in forest soil (Luvic Phaeozems, Belgorod region). In Haplic Luvisols (Moscow region), SOC build up was 2 time less: from 13.5 Mg C ha-1 in arable to 27.9 Mg C ha-1 in secondary forest. During post-agrogenic evolution, Cmic also increased significantly: from 0.34 to 1.43 g C kg-1 soil in Belgorod region and from 0.34 to 0.64 g C kg-1 soil in Moscow region. RA values varied widely in soils studied: from 0.54-0.63 mg C kg-1h-1 in arable plots to 2.02-3.4 mg C kg-1h-1 in forest ones. The close correlations between Cmic, RA and Corg in the top 0-5cm layer (R2 = 0.81-0.90; P<0.01-0.05) were

  16. Fast changes in seasonal forest communities due to soil moisture increase after damming.

    PubMed

    do Vale, Vagner Santiago; Schiavini, Ivan; Araújo, Glein Monteiro; Gusson, André Eduardo; Lopes, Sérgio de Faria; de Oliveira, Ana Paula; do Prado-Júnior, Jamir Afonso; Arantes, Carolina de Silvério; Dias-Neto, Olavo Custodio

    2013-12-01

    Local changes caused by dams can have drastic consequences for ecosystems, not only because they change the water regime but also the modification on lakeshore areas. Thus, this work aimed to determine the changes in soil moisture after damming, to understand the consequences of this modification on the arboreal community of dry forests, some of the most endangered systems on the planet. We studied these changes in soil moisture and the arboreal community in three dry forests in the Araguari River Basin, after two dams construction in 2005 and 2006, and the potential effects on these forests. For this, plots of 20 m x 10 m were distributed close to the impoundment margin and perpendicular to the dam margin in two deciduous dry forests and one semi-deciduous dry forest located in Southeastern Brazil, totaling 3.6 ha sampled. Besides, soil analysis were undertaken before and after impoundment at three different depths (0-10, 20-30 and 40-50 cm). A tree (minimum DBH of 4.77 cm) community inventory was made before (TO) and at two (T2) and four (T4) years after damming. Annual dynamic rates of all communities were calculated, and statistical tests were used to determine changes in soil moisture and tree communities. The analyses confirmed soil moisture increases in all forests, especially during the dry season and at sites closer to the reservoir; besides, an increase in basal area due to the fast growth of many trees was observed. The highest turnover occurred in the first two years after impoundment, mainly due to the higher tree mortality especially of those closer to the dam margin. All forests showed reductions in dynamic rates for subsequent years (T2-T4), indicating that these forests tended to stabilize after a strong initial impact. The modifications were more extensive in the deciduous forests, probably because the dry period resulted more rigorous in these forests when compared to semideciduous forest. The new shorelines created by damming increased soil

  17. Fast changes in seasonal forest communities due to soil moisture increase after damming.

    PubMed

    do Vale, Vagner Santiago; Schiavini, Ivan; Araújo, Glein Monteiro; Gusson, André Eduardo; Lopes, Sérgio de Faria; de Oliveira, Ana Paula; do Prado-Júnior, Jamir Afonso; Arantes, Carolina de Silvério; Dias-Neto, Olavo Custodio

    2013-12-01

    Local changes caused by dams can have drastic consequences for ecosystems, not only because they change the water regime but also the modification on lakeshore areas. Thus, this work aimed to determine the changes in soil moisture after damming, to understand the consequences of this modification on the arboreal community of dry forests, some of the most endangered systems on the planet. We studied these changes in soil moisture and the arboreal community in three dry forests in the Araguari River Basin, after two dams construction in 2005 and 2006, and the potential effects on these forests. For this, plots of 20 m x 10 m were distributed close to the impoundment margin and perpendicular to the dam margin in two deciduous dry forests and one semi-deciduous dry forest located in Southeastern Brazil, totaling 3.6 ha sampled. Besides, soil analysis were undertaken before and after impoundment at three different depths (0-10, 20-30 and 40-50 cm). A tree (minimum DBH of 4.77 cm) community inventory was made before (TO) and at two (T2) and four (T4) years after damming. Annual dynamic rates of all communities were calculated, and statistical tests were used to determine changes in soil moisture and tree communities. The analyses confirmed soil moisture increases in all forests, especially during the dry season and at sites closer to the reservoir; besides, an increase in basal area due to the fast growth of many trees was observed. The highest turnover occurred in the first two years after impoundment, mainly due to the higher tree mortality especially of those closer to the dam margin. All forests showed reductions in dynamic rates for subsequent years (T2-T4), indicating that these forests tended to stabilize after a strong initial impact. The modifications were more extensive in the deciduous forests, probably because the dry period resulted more rigorous in these forests when compared to semideciduous forest. The new shorelines created by damming increased soil

  18. Measuring the Cosmological 21 cm Monopole with an Interferometer

    NASA Astrophysics Data System (ADS)

    Presley, Morgan E.; Liu, Adrian; Parsons, Aaron R.

    2015-08-01

    A measurement of the cosmological 21 {cm} signal remains a promising but as-of-yet unattained ambition of radio astronomy. A positive detection would provide direct observations of key unexplored epochs of our cosmic history, including the cosmic dark ages and reionization. In this paper, we concentrate on measurements of the spatial monopole of the 21 {cm} brightness temperature as a function of redshift (the “global signal”). Most global experiments to date have been single-element experiments. In this paper, we show how an interferometer can be designed to be sensitive to the monopole mode of the sky, thus providing an alternate approach to accessing the global signature. We provide simple rules of thumb for designing a global signal interferometer and use numerical simulations to show that a modest array of tightly packed antenna elements with moderately sized primary beams (FWHM of ∼ 40^\\circ ) can compete with typical single-element experiments in their ability to constrain phenomenological parameters pertaining to reionization and the pre-reionization era. We also provide a general data analysis framework for extracting the global signal from interferometric measurements (with analysis of single-element experiments arising as a special case) and discuss trade-offs with various data analysis choices. Given that interferometric measurements are able to avoid a number of systematics inherent in single-element experiments, our results suggest that interferometry ought to be explored as a complementary way to probe the global signal.

  19. Power processor for a 20CM ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Schoenfeld, A. D.; Cohen, E.

    1973-01-01

    A power processor breadboard for the JPL 20CM Ion Engine was designed, fabricated, and tested to determine compliance with the electrical specification. The power processor breadboard used the silicon-controlled rectifier (SCR) series resonant inverter as the basic power stage to process all the power to the ion engine. The breadboard power processor was integrated with the JPL 20CM ion engine and complete testing was performed. The integration tests were performed without any silicon-controlled rectifier failure. This demonstrated the ruggedness of the series resonant inverter in protecting the switching elements during arcing in the ion engine. A method of fault clearing the ion engine and returning back to normal operation without elaborate sequencing and timing control logic was evolved. In this method, the main vaporizer was turned off and the discharge current limit was reduced when an overload existed on the screen/accelerator supply. After the high voltage returned to normal, both the main vaporizer and the discharge were returned to normal.

  20. Probing patchy reionization through τ-21 cm correlation statistics

    SciTech Connect

    Meerburg, P. Daniel; Spergel, David N.; Dvorkin, Cora E-mail: dns@astro.princeton.edu

    2013-12-20

    We consider the cross-correlation between free electrons and neutral hydrogen during the epoch of reionization (EoR). The free electrons are traced by the optical depth to reionization τ, while the neutral hydrogen can be observed through 21 cm photon emission. As expected, this correlation is sensitive to the detailed physics of reionization. Foremost, if reionization occurs through the merger of relatively large halos hosting an ionizing source, the free electrons and neutral hydrogen are anticorrelated for most of the reionization history. A positive contribution to the correlation can occur when the halos that can form an ionizing source are small. A measurement of this sign change in the cross-correlation could help disentangle the bias and the ionization history. We estimate the signal-to-noise ratio of the cross-correlation using the estimator for inhomogeneous reionization τ-hat {sub ℓm} proposed by Dvorkin and Smith. We find that with upcoming radio interferometers and cosmic microwave background (CMB) experiments, the cross-correlation is measurable going up to multipoles ℓ ∼ 1000. We also derive parameter constraints and conclude that, despite the foregrounds, the cross-correlation provides a complementary measurement of the EoR parameters to the 21 cm and CMB polarization autocorrelations expected to be observed in the coming decade.

  1. Characterization of an 8-cm Diameter Ion Source System

    NASA Technical Reports Server (NTRS)

    Li, Zhongmin; Hawk, C. W.; Hawk, Clark W.; Buttweiler, Mark S.; Williams, John D.; Buchholtz, Brett

    2005-01-01

    Results of tests characterizing an 8-cm diameter ion source are presented. The tests were conducted in three separate vacuum test facilities at the University of Alabama-Huntsville, Colorado State University, and L3 Communications' ETI division. Standard ion optics tests describing electron backstreaming and total-voltage-limited impingement current behavior as a function of beam current were used as guidelines for selecting operating conditions where more detailed ion beam measurements were performed. The ion beam was profiled using an in-vacuum actuating probe system to determine the total ion current density and the ion charge state distribution variation across the face of the ion source. Both current density and ExB probes were utilized. The ion current density data were used to obtain integrated beam current, beam flatness parameters, and general beam profile shapes. The ExB probe data were used to determine the ratio of doubly to singly charged ion current. The ion beam profile tests were performed at over six different operating points that spanned the expected operating range of the DAWN thrusters being developed at L3. The characterization tests described herein reveal that the 8-cm ion source is suitable for use in (a) validating plasma diagnostic equipment, (b) xenon ion sputtering and etching studies of spacecraft materials, (c) plasma physics research, and (d) the study of ion thruster optics at varying conditions.

  2. Presolar grains in the CM2 chondrite Sutter's Mill

    NASA Astrophysics Data System (ADS)

    Zhao, Xuchao; Lin, Yangting; Yin, Qing-Zhu; Zhang, Jianchao; Hao, Jialong; Zolensky, Michael; Jenniskens, Peter

    2014-11-01

    The Sutter's Mill (SM) carbonaceous chondrite is a regolith breccia, composed predominantly of CM2 clasts with varying degrees of aqueous alteration and thermal metamorphism. An investigation of presolar grains in four Sutter's Mill sections, SM43, SM51, SM2-4, and SM18, was carried out using NanoSIMS ion mapping technique. A total of 37 C-anomalous grains and one O-anomalous grain have been identified, indicating an abundance of 63 ppm for presolar C-anomalous grains and 2 ppm for presolar oxides. Thirty-one silicon carbide (SiC), five carbonaceous grains, and one Al-oxide (Al2O3) were confirmed based on their elemental compositions determined by C-N-Si and O-Si-Mg-Al isotopic measurements. The overall abundance of SiC grains in Sutter's Mill (55 ppm) is consistent with those in other CM chondrites. The absence of presolar silicates in Sutter's Mill suggests that they were destroyed by aqueous alteration on the parent asteroid. Furthermore, SM2-4 shows heterogeneous distributions of presolar SiC grains (12-54 ppm) in different matrix areas, indicating that the fine-grained matrix clasts come from different sources, with various thermal histories, in the solar nebula.

  3. Altimeter error sources at the 10-cm performance level

    NASA Technical Reports Server (NTRS)

    Martin, C. F.

    1977-01-01

    Error sources affecting the calibration and operational use of a 10 cm altimeter are examined to determine the magnitudes of current errors and the investigations necessary to reduce them to acceptable bounds. Errors considered include those affecting operational data pre-processing, and those affecting altitude bias determination, with error budgets developed for both. The most significant error sources affecting pre-processing are bias calibration, propagation corrections for the ionosphere, and measurement noise. No ionospheric models are currently validated at the required 10-25% accuracy level. The optimum smoothing to reduce the effects of measurement noise is investigated and found to be on the order of one second, based on the TASC model of geoid undulations. The 10 cm calibrations are found to be feasible only through the use of altimeter passes that are very high elevation for a tracking station which tracks very close to the time of altimeter track, such as a high elevation pass across the island of Bermuda. By far the largest error source, based on the current state-of-the-art, is the location of the island tracking station relative to mean sea level in the surrounding ocean areas.

  4. Electric prototype power processor for a 30cm ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.; Schoenfeld, A. D.

    1977-01-01

    An electrical prototype power processor unit was designed, fabricated and tested with a 30 cm mercury ion engine for primary space propulsion. The power processor unit used the thyristor series resonant inverter as the basic power stage for the high power beam and discharge supplies. A transistorized series resonant inverter processed the remaining power for the low power outputs. The power processor included a digital interface unit to process all input commands and internal telemetry signals so that electric propulsion systems could be operated with a central computer system. The electrical prototype unit included design improvement in the power components such as thyristors, transistors, filters and resonant capacitors, and power transformers and inductors in order to reduce component weight, to minimize losses, and to control the component temperature rise. A design analysis for the electrical prototype is also presented on the component weight, losses, part count and reliability estimate. The electrical prototype was tested in a thermal vacuum environment. Integration tests were performed with a 30 cm ion engine and demonstrated operational compatibility. Electromagnetic interference data was also recorded on the design to provide information for spacecraft integration.

  5. P-O-rich sulfide phase in CM chondrites: Constraints on its origin on the CM parent body

    NASA Astrophysics Data System (ADS)

    Zhang, Ai-Cheng; Itoh, Shoichi; Yurimoto, Hisayoshi; Hsu, Wei-Biao; Wang, Ru-Cheng; Taylor, Lawrence A.

    2016-01-01

    CM chondrites are a group of primitive meteorites that have recorded the alteration history of the early solar system. We report the occurrence, chemistry, and oxygen isotopic compositions of P-O-rich sulfide phase in two CM chondrites (Grove Mountains [GRV] 021536 and Murchison). This P-O-rich sulfide is a polycrystalline aggregate of nanometer-size grains. It occurs as isolated particles or aggregates in both CM chondrites. These grains, in the matrix and in type-I chondrules from Murchison, were partially altered into tochilinite; however, grains enclosed by Ca-carbonate are much less altered. This P-O-rich sulfide in Murchison is closely associated with magnetite, FeNi phosphide, brezinaite (Cr3S4), and eskolaite (Cr2O3). In addition to sulfur as the major component, this sulfide contains ~6.3 wt% O, ~5.4 wt% P, and minor amounts of hydrogen. Analyses of oxygen isotopes by SIMS resulted in an average δ18O value of -22.5 ‰ and an average Δ17O value of 0.2 ± 9.2 ‰ (2σ). Limited variations in both chemical compositions and electron-diffraction patterns imply that the P-O-rich sulfide may be a single phase rather than a polyphase mixture. Several features indicate that this P-O-rich sulfide phase formed at low temperature on the parent body, most likely through the alteration of FeNi metal (a) close association with other low-temperature alteration products, (b) the presence of hydrogen, (c) high Δ17O values and the presence in altered mesostasis of type-I chondrules and absence in type-II chondrules. The textural relations of the P-O-rich sulfide and other low-temperature minerals reveal at least three episodic-alteration events on the parent body of CM chondrites (1) formation of P-O-rich sulfide during sulfur-rich aqueous alteration of P-rich FeNi metal, (2) formation of Ca-carbonate during local carbonation, and (3) alteration of P-O-rich sulfide and formation of tochilinite during a period of late-stage intensive aqueous alteration.

  6. Interstellar extinction at 10-20 microns

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.; Rubin, Robert H.

    1989-01-01

    The IRAS low-resolution spectra (LRS) spectra of 117 stars of excellent signal/noise with optically thin silicate dust shells were analyzed. The stellar continua (assumed to be a cool black body) were subtracted, and the resulting dust shell spectra were fit with simple models F(sub lambda) assuming uniform mass loss and dust temperature as a function of distance from the star, calculated using the optical constants for silcates of Draine (1985). From the comparison of the spectra and the models, functions for the emissivity, kappa(sub lambda), were derived.

  7. Biochemical activities in soil overlying Paraho processed oil shale

    SciTech Connect

    Sorensen, D.L.

    1982-01-01

    Microbial activity development in soil materials placed over processed oil shale is vital to the plant litter decomposition, cycling of nutrients, and soil organic matter accumulation and maintenance. Samples collected in the summers of 1979, 1980, and 1981 from revegetated soil 30-, 61-, and 91-cm deep overlying spent oil shale in the Piceance Basin of northwestern Colorado were assayed for dehydrogenease activity with glucose and without glucose, for phosphatase activity, and for acetylene reduction activity. Initial ammonium and nitrite nitrogen oxidation rates and potential denitrification rates were determined in 1981. Zymogenous dehydrogenase activity, phosphatase activity, nitrogenase activity, potential denitrification rates, and direct microscopic counts were lower in surface soil 30 cm deep, and were frequently lower in surface soil 61 cm deep over processed shale than in a surface-disturbed control area soil. Apparently, microbial activities are stressed in these more shallow replaced soils. Soil 61 cm deep over a coarse-rock capillary barrier separating the soil from the spent shale, frequently had improved biochemical activity. Initial ammonium and nitrite nitrogen oxidation rates were lower in all replaced soils than in the disturbed control soil. Soil core samples taken in 1981 were assayed for dehydrogenase and phosphatase activities, viable bacteria, and viable fungal propagules. In general, microbial activity decreased quickly below the surface. At depths greater than 45 cm, microbial activities were similar in buried spent shale and surface-disturbed control soil.

  8. 15 cm cusped magnetic field mercury ion thruster research

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Wilbur, P. J.

    1975-01-01

    The importance of achieving a uniform current density in the exhaust beam of an electrostatic ion thruster is discussed in terms of thrust level and accelerator grid lifetime. A neutral residence time approach is used to propose a magnetic field geometry which should produce a highly uniform beam current density. The discharge chamber length to diameter ratio is shown to be an important optimization parameter and experimental evaluation of the cusped field thruster over a wide range of this parameter is presented. Beam profile measurements 5 cm downstream of the accelerator grid indicate a beam profile flatness parameter which is 25% greater than the SERT II value. Flatness parameters extrapolated to the plane of the accelerator grid are demonstrated to be as high as 0.9.

  9. Gravitational-wave detection using redshifted 21-cm observations

    SciTech Connect

    Bharadwaj, Somnath; Guha Sarkar, Tapomoy

    2009-06-15

    A gravitational-wave traversing the line of sight to a distant source produces a frequency shift which contributes to redshift space distortion. As a consequence, gravitational waves are imprinted as density fluctuations in redshift space. The gravitational-wave contribution to the redshift space power spectrum has a different {mu} dependence as compared to the dominant contribution from peculiar velocities. This, in principle, allows the two signals to be separated. The prospect of a detection is most favorable at the highest observable redshift z. Observations of redshifted 21-cm radiation from neutral hydrogen hold the possibility of probing very high redshifts. We consider the possibility of detecting primordial gravitational waves using the redshift space neutral hydrogen power spectrum. However, we find that the gravitational-wave signal, though present, will not be detectable on superhorizon scales because of cosmic variance and on subhorizon scales where the signal is highly suppressed.

  10. Translation Optics for 30 cm Ion Engine Thrust Vector Control

    NASA Technical Reports Server (NTRS)

    Haag, Thomas

    2002-01-01

    Data were obtained from a 30 cm xenon ion thruster in which the accelerator grid was translated in the radial plane. The thruster was operated at three different throttle power levels, and the accelerator grid was incrementally translated in the X, Y, and azimuthal directions. Plume data was obtained downstream from the thruster using a Faraday probe mounted to a positioning system. Successive probe sweeps revealed variations in the plume direction. Thruster perveance, electron backstreaming limit, accelerator current, and plume deflection angle were taken at each power level, and for each accelerator grid position. Results showed that the thruster plume could easily be deflected up to six degrees without a prohibitive increase in accelerator impingement current. Results were similar in both X and Y direction.

  11. An H I 21-cm line survey of evolved stars

    NASA Astrophysics Data System (ADS)

    Gérard, E.; Le Bertre, T.; Libert, Y.

    2011-12-01

    The HI line at 21 cm is a tracer of circumstellar matter around AGB stars, and especially of the matter located at large distances (0.1-1 pc) from the central stars. It can give unique information on the kinematics and on the physical conditions in the outer parts of circumstellar shells and in the regions where stellar matter is injected into the interstellar medium. However this tracer has not been much used up to now, due to the difficulty of separating the genuine circumstellar emission from the interstellar one. With the Nançay Radiotelescope we are carrying out a survey of the HI emission in a large sample of evolved stars. We report on recent progresses of this long term programme, with emphasis on S-type stars.

  12. Autumn at Titan's South Pole: The 220 cm-1 Cloud

    NASA Astrophysics Data System (ADS)

    Jennings, D. E.; Cottini, V.; Achterberg, R. K.; Anderson, C. M.; Flasar, F. M.; de Kok, R. J.; Teanby, N. A.; Coustenis, A.; Vinatier, S.

    2015-10-01

    Beginning in 2012 an atmospheric cloud known by its far-infrared emission has formed rapidly at Tit an's South Pole [1, 2]. The build-up of this condensate is a result of deepening temperatures and a gathering of gases as Winter approaches. Emission from the cloud in the south has been doubling each year since 2012, in contrast to the north where it has halved every 3.8 years since 2004. The morphology of the cloud in the south is quite different from that in the north. In the north, the cloud has extended over the whole polar region beyond 55 N, whereas in the south the cloud has been confined to within about 10 degrees of the pole. The cloud in the north has had the form of a uniform hood, whereas the southern cloud has been much more complex. A map from December 2014,recorded by the Composite Infrared Spectrometer (CIRS) on Cassini, showed the 220 cm-1 emission coming from a distinct ring with a maximum at about 80 S. In contrast, emissions from the gases HC3N, C4H2 and C6H6 peaked near the pole and had a ring at 70 S. The 220 cm-1 ring at 80 S coincided with the minimum in the gas emission pattern. The80 S condensate ring encompassed the vortex cloud seen by the Cassini Imaging Science Subsystem (ISS) and Visible and Infrared Mapping Spectrometer (VIMS)[3, 4]. Both the 220 cm-1 ring and the gas "bull's-eye" pattern were centered on a point that was shifted from the geographic South Pole by 4 degrees in the direction of the Sun. This corresponds to the overall tilt of Titan's atmosphere discovered from temperature maps early in the Cassini mission by Achterberg et al. [5]. The tilt may be reinforced by the presumably twice-yearly (north and south) spin-up of the atmosphere at the autumnal pole. The bull's-eye pattern of the gas emissions can be explained by the retrieved abundance distributions, which are maximum near the pole and decrease sharply toward lower latitudes, together with temperatures that are minimum at the pole and increase toward lower latitudes

  13. Rb-Sr studies of CI and CM chondrites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Wetherill, G. W.

    1979-01-01

    Rb-Sr whole rock analyses have been performed on 2 CI and 3 CM chondrites. Four of these stones (Ivuna, Orgueil, Cold Bokkeveld and Erakot) were previously studied in this laboratory and were shown to be discordant from a 4.6 Gyr isochron. The fifth, Murchison, was not previously studied. The new data support the discordance of the first four stones, and indicate that Murchison is also discordant. Studies of Sr isotope ratios in unspiked Orgueil show that the discordance is not due to inhomogeneities in the Sr-84/Sr-86 ratio caused by incomplete mixing of nucleosynthesis products. In order to gauge the effects of weathering, two leaching experiments were performed on fresh, interior samples of Murchison; one for a period of 1.5 hr and the other for 117 hr. The results indicate that the relative solubility of nonradiogenic Sr is approximately twice that of Rb and radiogenic Sr is more soluble than the nonradiogenic Sr.

  14. The Murchison Widefield Array 21 cm Power Spectrum Analysis Methodology

    NASA Astrophysics Data System (ADS)

    Jacobs, Daniel C.; Hazelton, B. J.; Trott, C. M.; Dillon, Joshua S.; Pindor, B.; Sullivan, I. S.; Pober, J. C.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Neben, A. R.; Thyagarajan, N.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, S.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Udaya Shankar, N.; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-07-01

    We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple independent data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction, and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed, accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregrounds.

  15. Viscoelastic hydrodynamic interactions and anomalous CM diffusion in polymer melts

    NASA Astrophysics Data System (ADS)

    Meyer, Hendrik

    We have recently discovered that anomalous center-of-mass (CM) diffusion occurring on intermediate time scales in polymer melts can be explained by the interplay of viscoelastic and hydrodynamic interactions (VHI). The theory has been solved for unentangled melts in 3D and 2D and excellent agreement between theory and simulation is found, also for alkanes with a force field optimized from neutron scattering. The physical mechanism considers that hydrodynamic interactions are not screened: they are time dependent because of increasing viscosity before the terminal relaxation time. The VHI are generally active in melts of any topology. They are most important at early times well before the terminal relaxation time and thus affect the nanosecond time range typically observable in dynamic neutron scattering experiments. We illustrate the effects with recent molecular dynamics simulations of linear, ring and star polymers. Work performed with A.N. Semenov and J. Farago.

  16. A young region on Enceladus revealed by 2 cm radiometry?

    NASA Astrophysics Data System (ADS)

    Ries, P.; Janssen, M.

    2014-04-01

    On 5 November 2011, the Cassini spacecraft had a flyby of Enceladus dedicated to its synthetic aperture radar (SAR) instrument. In the course of that flyby, approximately 80% of Enceladus' surface was also observed serendipitously with the microwave radiometer operating concurrently at 2.2 cm. The radiometry data is analyzed and shown to drop sharply in the leading hemisphere's smooth terrain. This drop is also demonstrated in a series of unresolved distant radiometry measurements spread out over the ten years of the Cassini mission. However, the anomaly is absent from distant unresolved RADAR measurements and not visible in SAR imaging. The anomaly is most likely caused by a young surface (<100MYr in age) which has not yet been processed by micrometeoroid impacts below the electromagnetic skin depth (3 m).

  17. Direct thrust measurement of a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Banks, B.; Rawlin, V.; Weigand, A.; Walker, J.

    1975-01-01

    A direct thrust measurement of a 30-cm diameter ion thruster was accomplished by means of a laser interferometer thrust stand. The thruster was supported in a pendulum manner by three 3.65-m long wires. Electrical power was provided by means of 18 mercury filled pots. A movable 23-button planar probe rake was used to determine thrust loss due to ion beam divergence. Values of thrust, thrust loss due to ion beam divergence, and thrust loss due to multiple ionization were measured for ion beam currents ranging from 0.5 to 2.5 A. Measured thrust values indicate an accuracy of approximately 1% and are in good agreement with thrust values calculated by indirect measurements.

  18. Hollow cathode restartable 15 cm diameter ion thruster

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    The effects of substituting high perveance dished grids for low perveance flat ones on performance variables and plasma properties within a 15 cm modified SERT II thruster are discussed. Results suggest good performance may be achieved as an ion thruster is throttled if the screen grid transparency is decreased with propellant flow rate. Thruster startup tests, which employ a pulsed high voltage tickler electrode between the keeper and the cathode to initiate the discharge, are described. High startup reliability at cathode tip temperatures of about 500 C without excessive component wear over 2000 startup cycles is demonstrated. Testing of a single cusp magnetic field concept of discharge plasma containment is discussed. A theory which explains the observed behavior of the device is presented and proposed thruster modifications and future testing plans are discussed.

  19. HIBAYES: Global 21-cm Bayesian Monte-Carlo Model Fitting

    NASA Astrophysics Data System (ADS)

    Zwart, Jonathan T. L.; Price, Daniel; Bernardi, Gianni

    2016-06-01

    HIBAYES implements fully-Bayesian extraction of the sky-averaged (global) 21-cm signal from the Cosmic Dawn and Epoch of Reionization in the presence of foreground emission. User-defined likelihood and prior functions are called by the sampler PyMultiNest (ascl:1606.005) in order to jointly explore the full (signal plus foreground) posterior probability distribution and evaluate the Bayesian evidence for a given model. Implemented models, for simulation and fitting, include gaussians (HI signal) and polynomials (foregrounds). Some simple plotting and analysis tools are supplied. The code can be extended to other models (physical or empirical), to incorporate data from other experiments, or to use alternative Monte-Carlo sampling engines as required.

  20. Astronaut Risk Levels During Crew Module (CM) Land Landing

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly S.; Littell, Justin

    2007-01-01

    The NASA Engineering Safety Center (NESC) is investigating the merits of water and land landings for the crew exploration vehicle (CEV). The merits of these two options are being studied in terms of cost and risk to the astronauts, vehicle, support personnel, and general public. The objective of the present work is to determine the astronaut dynamic response index (DRI), which measures injury risks. Risks are determined for a range of vertical and horizontal landing velocities. A structural model of the crew module (CM) is developed and computational simulations are performed using a transient dynamic simulation analysis code (LS-DYNA) to determine acceleration profiles. Landing acceleration profiles are input in a human factors model that determines astronaut risk levels. Details of the modeling approach, the resulting accelerations, and astronaut risk levels are provided.

  1. Very Large Array observations of Uranus at 2. 0 cm

    SciTech Connect

    Berge, G.L.; Muhleman, D.O.; Linfield, R.P.

    1988-07-01

    Radio observations of Uranus obtained at 2.0 cm with the B configuration of the VLA during April 1985 are reported. The calibration and data-reduction procedures are described in detail, and the results are presented in tables, maps, and graphs and compared with IRIS 44-micron observations (Hanel et al., 1986). Features discussed include highest brightness centered on the pole rather than on the subearth point, a decrease in brightness temperature (by up to 9 K) at latitudes between -20 and -50 deg (well correlated with the IRIS data), and disk-center position (corrected for the observed radio asymmetry) in good agreement with that found on the basis of the outer contours of the image. 15 references.

  2. Cosmic (Super)String Constraints from 21 cm Radiation

    SciTech Connect

    Khatri, Rishi; Wandelt, Benjamin D.

    2008-03-07

    We calculate the contribution of cosmic strings arising from a phase transition in the early Universe, or cosmic superstrings arising from brane inflation, to the cosmic 21 cm power spectrum at redshifts z{>=}30. Future experiments can exploit this effect to constrain the cosmic string tension G{mu} and probe virtually the entire brane inflation model space allowed by current observations. Although current experiments with a collecting area of {approx}1 km{sup 2} will not provide any useful constraints, future experiments with a collecting area of 10{sup 4}-10{sup 6} km{sup 2} covering the cleanest 10% of the sky can, in principle, constrain cosmic strings with tension G{mu} > or approx. 10{sup -10}-10{sup -12} (superstring/phase transition mass scale >10{sup 13} GeV)

  3. Cosmic (Super)String Constraints from 21 cm Radiation.

    PubMed

    Khatri, Rishi; Wandelt, Benjamin D

    2008-03-01

    We calculate the contribution of cosmic strings arising from a phase transition in the early Universe, or cosmic superstrings arising from brane inflation, to the cosmic 21 cm power spectrum at redshifts z > or =30. Future experiments can exploit this effect to constrain the cosmic string tension G mu and probe virtually the entire brane inflation model space allowed by current observations. Although current experiments with a collecting area of approximately 1 km2 will not provide any useful constraints, future experiments with a collecting area of 10(4)-10(6) km2 covering the cleanest 10% of the sky can, in principle, constrain cosmic strings with tension G mu > or = 10(-10)-10(-12) (superstring/phase transition mass scale >10(13) GeV). PMID:18352691

  4. Direct thrust measurement of a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Banks, B.; Rawlin, V.; Weigand, A. J.; Walker, J.

    1975-01-01

    A direct thrust measurement of a 30-cm diameter ion thruster was accomplished by means of a laser interferometer thrust stand. The thruster was supported in a pendulum manner by three 3.65-m long wires. Electrical power was provided by means of 18 mercury filled pots. A movable 23-button planar probe rake was used to determine thrust loss due to ion beam divergence. Values of thrust, thrust loss due to ion beam divergence, and thrust loss due to multiple ionization were measured for ion beam currents ranging from 0.5 A to 2.5 A. Measured thrust values indicate an accuracy of approximately 1% and are in good agreement with thrust values calculated by indirect measurements.

  5. A dual frequency 10 cm Doppler weather radar

    NASA Astrophysics Data System (ADS)

    Glover, K. M.; Armstrong, G. M.; Bishop, A. W.; Banis, K. J.

    A summary is given of the design concepts underlying a new 10-cm band dual frequency Doppler weather radar under development at the Air Force Geophysics Laboratory. Primary emphasis in the design is placed on the system performance in a clutter environment, and the technique used to extend the radar's unambiguous range and velocity span is an important, but secondary, consideration. The design includes the use of fault tolerance and/or fault location methods at critical locations in the system and automated calibration techniques for quasi-continuous monitoring of system performance. The approach followed for minimizing range and velocity ambiguities used in this radar is a uniform pulse train version of the Doviak et al. (1978) dual sampling (batch) technique.

  6. Forest management, litter dynamics and the altered energetic properties of soil organic matter (SOM) - Quantifying anthropogenic change with thermal analysis

    NASA Astrophysics Data System (ADS)

    Liles, G. C.; Horwath, W. R.

    2012-12-01

    Soils are an open thermodynamic system, far from equilibrium, sustained by primary productivity and the interaction between mineralogy and soil organic matter (SOM). Quantifying the effect of anthropogenic alteration of inputs (litter/roots and fertilizer) on SOM energetic properties is a valuable missing piece of C and energy cycles in all terrestrial ecosystems. Thermal analysis (TA) applied to the study of SOM has received limited attention but provides a thermodynamic framework to quantify mass and energy dynamics in soils and unify the assessment of resource flux, attenuation and use in natural and managed systems across temporal scales. Managed forests are a critical and extensive land-use across the globe and in many cases provide model conditions to develop quantitative linkage between direct anthropogenic 'disturbance' - i.e. treatment - and soil change. Our research investigated the effects of litter and fertilizer inputs on SOM energetic properties in two experimental forest plantations in Northern California. Thermogravimetry-Differential Scanning Calorimetry (TG-DSC) was used to quantify soils across the upper profiles of these two forested Ultisols (0-30 cm) and assess energy density in three primary thermal 'fractions', corresponding to the oxidation of carbohydrates and lipids (150-350 C - Exo-1), aromatic and condensed polymers (400-460 C - Exo-2) and refractory/mineral associated C (500-550 C - Exo-3). We developed model distributions of SOM thermal stability, with replicate soil samples (n=6), representing three depths (0-10, 10-20, & 20-30 cm) that received simple (pine - S) and diverse (pine+shrub - D) litter inputs with and without fertilization (F) to assess if contrasting inputs qualities and mineral properties alter SOM energetics. In surface soils (0-10 cm), SOM energetic properties are consistent across sites and treatments displaying relative thermal symmetry with proportional energy densities (percent of total energy) of Exo-1 ~ 26

  7. Estimating toxic damage to soil ecosystems from soil organic matter profiles

    USGS Publications Warehouse

    Beyer, W.N.

    2001-01-01

    Concentrations of particulate and total organic matter were measured in upper soil profiles at 26 sites as a potential means to identify toxic damage to soil ecosystems. Because soil organic matter plays a role in cycling nutrients, aerating soil, retaining water, and maintaining tilth, a significant reduction in organic matter content in a soil profile is not just evidence of a change in ecosystem function, but of damage to that soil ecosystem. Reference sites were selected for comparison to contaminated sites, and additional sites were selected to illustrate how variables other than environmental contaminants might affect the Soil organic matter profile. The survey was undertaken on the supposition that environmental contaminants and other stressors reduce the activity of earthworms and other macrofauna, inhibiting the incorporation of organic matter into the soil profile. The profiles of the unstressed soils showed a continuous decrease in organic matter content from the uppermost mineral soil layer (0-2.5 cm) down to 15 cm. Stressed soils showed an abrupt decrease in soil organic matter content below a depth of 2.5 cm. The 2.5-5.0 cm layer of stressed soils--such as found in a pine barren, an orchard, sites contaminated with zinc, and a site with compacted soil--had less than 4% total organic matter and less than 1% particulate organic matter. However, damaged soil ecosystems were best identified by comparison of their profiles to the profiles of closely matched reference soils, rather than by comparison to these absolute values. The presence or absence of earthworms offered a partial explanation of observed differences in soil organic matter profiles.

  8. Performance tests for the NASA Ames Research Center 20 cm x 40 cm oscillating flow wind tunnel

    NASA Technical Reports Server (NTRS)

    Cook, W. J.; Giddings, T. A.

    1984-01-01

    An evaluation is presented of initial tests conducted to assess the performance of the NASA Ames 20 cm x 40 cm oscillating flow wind tunnel. The features of the tunnel are described and two aspects of tunnel operation are discussed. The first is an assessment of the steady mainstream and boundary layer flows and the second deals with oscillating mainstream and boundary layer flows. Experimental results indicate that in steady flow the test section mainstream velocity is uniform in the flow direction and in cross section. The freestream turbulence intensity is about 0.2 percent. With minor exceptions the steady turbulent boundary layer generated on the top wall of the test section exhibits the characteristics of a zero pressure gradient turbulent boundary layer generated on a flat plate. The tunnel was designed to generate sinusoidal oscillating mainstream flows. Experiments confirm that the tunnel produces sinusoidal mainstream velocity variations for the range of frequencies (up to 15 Hz). The results of this study demonstrate that the tunnel essentially produces the flows that it was designed to produce.

  9. [Responses of soil microbial carbolic metabolism characteristics to home-field advantage of leaf litter decomposition in Liaoheyuan Nature Reserve of northern Hebei Province, China].

    PubMed

    Li, Tian-yu; Kang, Feng-feng; Han, Hai-rong; Gao, Jing; Song, Xiao-shuai; Yu, Shu

    2015-07-01

    Using litter bag method, we studied the responses of soil microbial biomass carbon (MBC), microbial respiration (MR) and microbial metabolic quotient (qCO2) in 0-5 cm, 5-10 cm and 10-20 cm soil layers to home-field advantage of Betula platyphlla and Quercus mongolica leaf litter decomposition in Liaoheyuan Nature Reserve, northern Hebei Province. The results showed that the contents of MBC in Betula platyphila and Quercus mongolica leaf litter treatments in home environment (Bh and Qh treatments) were significant higher than that in B. platyphlla and Q. mongolica leaf litter treatments in non-home environment (Ba and Qa treatments). There was no significant difference in MR between home and non-home environments. Response degree of MBC and MR to home-field advantage of different litter decomposition was inconsistent. The MBC of the different soil layers in Qa treatment fell by 39.6%, 34.9% and 33.5% compared to Qh treatment, respectively, and that in B. platyphlla treatment was decreased by 31.6%, 27.1% and 17.0%, respectively. MR of the different soil layers in Qa treatment accounted for 96.3%, 92.4% and 83.7% of Qh treatment, respectively, while MR in B. platyphila treatment was 99. 4%, 97. 3% and 101.3%, respectively. In contrast to MBC, qCO2 in soil showed a reverse pattern. Our study suggested that rich nutrients in soil enhanced microbial activity and weakened the conflict of nutrient uptake between plants and microorganisms, which led to the result that MBC and qCO2 had an obvious response to home-field advantage of litter decomposition, when litter decomposed in its home environment. There was a weak response between MR and home-field advantage of litter decomposition, because of influence of soil temperature, water content and their interaction. Furthermore, MBC, MR and qCO2 had a higher response degree to home-field advantage of Q. mongolica litter than B. platyphila litter, since lower quality litter exhibited higher home-field advantage of litter

  10. Long-term effects of deep soil loosening on root distribution and soil physical parameters in compacted lignite mine soils

    NASA Astrophysics Data System (ADS)

    Badorreck, Annika; Krümmelbein, Julia; Raab, Thomas

    2015-04-01

    Soil compaction is a major problem of soils on dumped mining substrates in Lusatia, Germany. Deep ripping and cultivation of deep rooting plant species are considered to be effective ways of agricultural recultivation. Six years after experiment start, we studied the effect of initial deep soil loosening (i.e. down to 65 cm) on root systems of rye (Secale cereale) and alfalfa (Medicago sativa) and on soil physical parameters. We conducted a soil monolith sampling for each treatment (deep loosened and unloosened) and for each plant species (in three replicates, respectively) to determine root diameter, length density and dry mass as well as soil bulk density. Further soil physical analysis comprised water retention, hydraulic conductivity and texture in three depths. The results showed different reactions of the root systems of rye and alfalfa six years after deep ripping. In the loosened soil the root biomass of the rye was lower in depths of 20-40 cm and the root biomass of alfalfa was also decreased in depths of 20-50 cm together with a lower root diameter for both plant species. Moreover, total and fine root length density was higher for alfalfa and vice versa for rye. The soil physical parameters such as bulk density showed fewer differences, despite a higher bulk density in 30-40cm for the deep loosened rye plot which indicates a more pronounced plough pan.

  11. Soil adherence to human skin

    SciTech Connect

    Driver, J.H.; Konz, J.J.; Whitmyre, G.K. )

    1989-12-01

    Dermal exposure to soils contaminated with toxic chemicals represents a potential public health hazard. These soils, contaminated with chemicals such as PCBs and dioxins, may be found at various locations throughout the US. Furthermore, dermal contact with pesticide-containing particles and contaminated soil particles is of importance for exposures to agricultural workers who reenter fields after pesticide application. With respect to dermal exposure to pesticide-contaminated particulate matter, several occurrences of human toxicity to ethyl parathion in citrus groves have been reported. These exposures resulted from dermal contact with high concentrations of the toxic transformation product paraoxon in soil dust contaminated as a result of application of pesticide to the overhead foliage of trees. To assess dermal exposure to chemically-contaminated soil at sites of concern, dermal adherence of soil must be determined prior to the assessment of dermal absorption. The purpose of the experiment reported herein was to determine the amount of soil (mg/cm{sup 2}) that adheres to adult hands under various soil conditions. These conditions include the type of soil, the organic content of the soil, and the particle size of the soil.

  12. Soil 13C Dynamics in Aggregates Across a Soil Profile Under an Established Miscanthus System

    NASA Astrophysics Data System (ADS)

    Dondini, M.; Groenigen, K. J.; Jones, M.

    2008-12-01

    Soils are the largest pool of terrestrial organic carbon (C), containing nearly three times the amount of C as the atmosphere. Environmental changes that affect soil C dynamics could slow down the rise in atmospheric CO2 and associated warming by promoting soil C storage. Our capacity to predict the consequences for global change therefore depends on a better understanding of the distribution and controls of soil organic C and how vegetation change may affect SOC distributions. One land cover change of particular interest involves the establishment of bio energy crop stands. The full mitigation potential of bio energy crops cannot be considered without taking into account their effect on soil C dynamics. Miscanthus, a perennial C4 grass from Eastern Asia, has recently received considerable interest as a bio-energy crop. For that reason, we analyzed the C content and the 13C signatures across the soil profile in a 14 year old Miscanthus system, established on former arable land. We combined SOM fractionation techniques by size and density, allowing us to investigate small shifts in soil C stores that would be significant in the long term, but that might not be detected by conventional methodologies. The 13C signal of the various SOM fractions allowed us to distinguish between Miscanthus-derived vs. native soil organic C. Soils under Miscanthus contained 796 g C/m2 in the 0-15 cm layer, and 1233g C/m2 in the 15- 30 cm layer. These values are significantly higher than soil C contents in the arable land. Macroaggregates under Miscanthus contain more than twice as much C compared to arable land, showing a decrease in soil C content with decreasing aggregate size. These differences are largely caused by soil C storage in the microaggregate within macroaggregates fraction. Under Miscanthus, this fraction contains 440 g C/m2 and 488 g C/m2 at 0-15 cm and 15-30 cm respectively, while under the arable land it has mean values of 174 g C/m2 and 353 g C/m2. Our data suggest a

  13. Herbicide sorption coefficients in relation to soil properties and terrain attributes on a cultivated prairie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sorption of the herbicides 2,4-D and glyphosate in soil was quantified for 286 surface soil samples (0-15 cm) collected in a 10 m X 10 m grid across a heavily-eroded undulating calcareous prairie landscape. At each sampling point soil organic carbon content, soil carbonate content, soil pH, till...

  14. A 1.3 cm line survey toward IRC +10216

    NASA Astrophysics Data System (ADS)

    Gong, Y.; Henkel, C.; Spezzano, S.; Thorwirth, S.; Menten, K. M.; Wyrowski, F.; Mao, R. Q.; Klein, B.

    2015-02-01

    Context. IRC +10216 is the prototypical carbon star exhibiting an extended molecular circumstellar envelope. Its spectral properties are therefore the template for an entire class of objects. Aims: The main goal is to systematically study the λ ~ 1.3 cm spectral line characteristics of IRC +10216. Methods: We carried out a spectral line survey with the Effelsberg-100 m telescope toward IRC +10216. It covers the frequency range between 17.8 GHz and 26.3 GHz (K-band). Results: In the circumstellar shell of IRC +10216, we find 78 spectral lines, among which 12 remain unidentified. The identified lines are assigned to 18 different molecules and radicals. A total of 23 lines from species known to exist in this envelope are detected for the first time outside the solar system and there are additional 20 lines first detected in IRC +10216. The potential orgin of "U" lines is also discussed. Assuming local thermodynamic equilibrium (LTE), we then determine rotational temperatures and column densities of 17 detected molecules. Molecular abundances relative to H2 are also estimated. A non-LTE analysis of NH3 shows that the bulk of its emission arises from the inner envelope with a kinetic temperature of 70 ± 20 K. Evidence for NH3 emitting gas with higher kinetic temperature is also obtained, and potential abundance differences between various 13C-bearing isotopologues of HC5N are evaluated. Overall, the isotopic 12C/13C ratio is estimated to be 49 ± 9. Finally, a comparison of detected molecules in the λ ~ 1.3 cm range with the dark cloud TMC-1 indicates that silicate-bearing molecules are more predominant in IRC +10216. Appendices are available in electronic form at http://www.aanda.orgSpectra as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/574/A56

  15. Soil organic carbon accumulation in afforested/abandoned arable fields in Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Han; Cheng, Chih-Hsin; Huang, Yu-Hsuan

    2016-04-01

    Afforestation or abandonment of arable fields has been proposed as a way to increase terrestrial carbon storage and mitigate anthropogenic carbon emissions. When the arable fields are afforested or abandoned, the accumulation in soil organic carbon (SOC) is a key pool to sequestrate carbon. However, high uncertainties still exist in the tropics and subtropics because of fast SOC turnover rates and variable land use managements in these areas. In this study, a total of eleven sites with afforested/abandoned age over 15 years and elevation ranging from 16 to 2,056 m were investigated. We examined the increments of SOC by comparing with the adjacent tilled (e.g. croplands) and non-tilled (e.g. tea plantation or orchards) fields in two sampling layers, 0 - 10 and 10 - 20 cm in depth. In addition, density fractionation of SOC was also conducted in order to differentiate SOC into light fraction, intra-aggregate fraction, and heavy fraction to gain more information about the mechanism of SOC sequestration. Our results indicated that the increments of SOC concentration and stock varied with elevation, land use management, and soil depth. For the sites with elevation below 500 m, the SOC concentration and stock in the abandoned fields were 14.3 ± 0.9 mg C g-1 and 14.6 ± 4.6 Mg C ha-1 higher than the adjacent tilled fields, and 10.2 ± 6.3 mg C g-1and 6.4 ± 6.2 Mg C ha-1 higher than the adjacent non-tilled fields for surface 0-10 cm. For the sites with elevation above 500 m, the SOC concentration in the abandoned arable fields were 22.8 ± 12.8 mg C g-1 higher than the adjacent tilled fields, but the SOC stock might not be different due to high stone content in abandoned field. Moreover, the SOC concentration and stock in abandoned field were not different or even less than non-tilled fields where organic amendments were frequently applied. The increments of SOC for 10-20 cm soils were less evident than those for surface 0-10 cm soils, and the differences were only

  16. Soil organic carbon accumulation in afforested/abandoned arable fields in Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Han; Cheng, Chih-Hsin; Huang, Yu-Hsuan

    2016-04-01

    Afforestation or abandonment of arable fields has been proposed as a way to increase terrestrial carbon storage and mitigate anthropogenic carbon emissions. When the arable fields are afforested or abandoned, the accumulation in soil organic carbon (SOC) is a key pool to sequestrate carbon. However, high uncertainties still exist in the tropics and subtropics because of fast SOC turnover rates and variable land use managements in these areas. In this study, a total of eleven sites with afforested/abandoned age over 15 years and elevation ranging from 16 to 2,056 m were investigated. We examined the increments of SOC by comparing with the adjacent tilled (e.g. croplands) and non-tilled (e.g. tea plantation or orchards) fields in two sampling layers, 0 - 10 and 10 - 20 cm in depth. In addition, density fractionation of SOC was also conducted in order to differentiate SOC into light fraction, intra-aggregate fraction, and heavy fraction to gain more information about the mechanism of SOC sequestration. Our results indicated that the increments of SOC concentration and stock varied with elevation, land use management, and soil depth. For the sites with elevation below 500 m, the SOC concentration and stock in the abandoned fields were 14.3 ± 0.9 mg C g‑1 and 14.6 ± 4.6 Mg C ha‑1 higher than the adjacent tilled fields, and 10.2 ± 6.3 mg C g‑1and 6.4 ± 6.2 Mg C ha‑1 higher than the adjacent non-tilled fields for surface 0-10 cm. For the sites with elevation above 500 m, the SOC concentration in the abandoned arable fields were 22.8 ± 12.8 mg C g‑1 higher than the adjacent tilled fields, but the SOC stock might not be different due to high stone content in abandoned field. Moreover, the SOC concentration and stock in abandoned field were not different or even less than non-tilled fields where organic amendments were frequently applied. The increments of SOC for 10-20 cm soils were less evident than those for surface 0-10 cm soils, and the differences were

  17. Modeling Soil Pore Oxygen in Restored Wetlands

    NASA Astrophysics Data System (ADS)

    Rubol, S.; Loecke, T.; Burgin, A. J.; Franz, T.

    2015-12-01

    Soil pore oxygen (O2) is usually modeled indirectly as a function of soil moisture. However, using soil moisture to describe the oxic /anoxic status of a soil may not be sufficient accurate, especially when soil pore O2 rapidly changes, as following hydrological forcing. As first step, we use the dataset collected in the constructed wetland near Dayton, OH, by Loecke and Burgin, to reconstruct the environmental functions and re-aeration status of the soil. The dataset consist of 24 Apogee sensors and 24 soil moisture and temperature sensors located at 10 cm depth in upland, transitional and submerged zone (see Figure 1). Data were recorded over two years at temporal interval of 30 minutes. Then, we explore the capability of existing biogeochemical models to predict metabolic activity and the soil pore O2. Figure1: Restored wetland field site with soil O2 sensors (yellow stars) in upland (red), transitional (green) and submerged (blue) zones.

  18. Conjugate 18 cm OH satellite lines at a cosmological distance.

    PubMed

    Kanekar, Nissim; Chengalur, Jayaram N; Ghosh, Tapasi

    2004-07-30

    We have detected the two 18 cm OH satellite lines from the z approximately 0.247 source PKS1413+135, the 1720 MHz line in emission and the 1612 MHz line in absorption. The 1720 MHz luminosity is L(OH) approximately 354L (center dot in circle), more than an order of magnitude larger than that of any other known 1720 MHz maser. The profiles of the two satellite lines are conjugate, implying that they arise in the same gas. This allows us to test for any changes in the values of fundamental constants without being affected by systematic uncertainties arising from relative motions between the gas clouds in which the different lines arise. Our data constrain changes in G identical with g(p)[alpha(2)/y](1.849), where y identical with m(e)/m(p); we find DeltaG/G=2.2+/-3.8 x 10(-5), consistent with no changes in alpha, g(p), and y.

  19. Piezo-Operated Shutter Mechanism Moves 1.5 cm

    NASA Technical Reports Server (NTRS)

    Glaser, Robert; Bamford, Robert

    2005-01-01

    The figure shows parts of a shutter mechanism designed to satisfy a number of requirements specific to its original intended application as a component of an atomic clock to be flown in outer space. The mechanism may also be suitable for use in laboratory and industrial vacuum systems on Earth for which there are similar requirements. The requirements include the following: a) To alternately close, then open, a 1.5-cm-diameter optical aperture twice per second, with a stroke time of no more than 15 ms, during a total operational lifetime of at least a year; b) To attenuate light by a factor of at least 1012 when in the closed position; c) To generate little or no magnetic field; d) To be capable of withstanding bakeout at a temperature of 200 C to minimize outgassing during subsequent operation in an ultrahigh vacuum; and e) To fit within a diameter of 12 in. (=305 mm) a size limit dictated by the size of an associated magnetic shield. The light-attenuation requirement is satisfied by use of overlapping shutter blades. The closure of the aperture involves, among other things, insertion of a single shutter blade between a pair of shutter blades. The requirement to minimize the magnetic field is satisfied by use of piezoelectric actuators. Because piezoelectric actuators cannot withstand bakeout, they must be mounted outside the vacuum chamber, and, hence, motion must be transmitted from the actuators to the shutter levers via a vacuum-chamber-wall diaphragm.

  20. Microbiological study of the Murchison CM2 meteorite

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Hoover, Richard B.

    2012-10-01

    In 1864, Louis Pasteur attempted to cultivate living microorganisms from pristine samples of the Orgueil CI1 carbonaceous meteorite. His results were negative and never published, but recorded it in his laboratory notebooks. At that time, only aerobic liquid or agar-based organic reach media were used, as his research on anaerobes had just started. In our laboratory the Murchison CM2 carbonaceous meteorite was selected to expand on these studies for microbiological study by cultivation on anaerobic mineral media. Since the surface could have been more easily contaminated, interior fragments of a sample of the Murchison meteorite were extracted and crushed under sterile conditions. The resulting powder was then mixed in anoxic medium and injected into Hungate tubes containing anaerobic media with various growth substrates at different pH and salinity and incubated at different temperatures. The goal of the experiments was to determine if living cells would grow from the material of freshly fractured interior fragments of the stone. If any growth occurred, work could then be carried out to assess the nature of the environmental contamination by observations of the culture growth (rates of speed and biodiversity); live/dead fluorescent staining to determine contamination level and DNA analysis to establish the microbial species present. In this paper we report the results of that study.

  1. Sensing and characterization of explosive vapors near 700 cm -1

    NASA Astrophysics Data System (ADS)

    Ford, Alan R.; Reeve, Scott W.

    2007-04-01

    One of the technological challenges associated with trace vapor detection of explosive materials are the relatively low vapor pressures exhibited by most energetic materials under ambient conditions. For example, the vapor pressure for TNT is ~10 ppbv at room temperature, a concentration near the Limit of Detection for many of the technologies currently being deployed. In the case of improvised explosive devices, the clandestine nature of the device further serves to exacerbate the vapor pressure issue. Interestingly, the gold standard in explosives detection remains the trained canine nose. While there is still some debate as to what the dog actually smells, recent studies have indicated the alert response is triggered, not by the vapor presence of a specific explosive compound but, by a characteristic bouquet of odors from chemical impurities used to manufacture and process the explosives. Here we present high resolution infrared data for several of these volatile organic compounds in the 700 cm -1 region required for real time optical sensing of energetic materials.

  2. CM and DM in an ISO R and D Environment

    NASA Technical Reports Server (NTRS)

    Crowley, Sandra L.

    2000-01-01

    ISO 9000 - a common buzz word in industry is making inroads to government agencies. The National Aeronautics and Space Agency (NASA) achieved ISO 9001 certification at each of its nine (9) Centers and Headquarters in 1998-1999. NASA Glenn Research Center (GRC) was recommended for certification in September 1999. Since then, each of the Centers has been going through the semi-annual surveillance audits. Growing out of the manufacturing industry, successful application of the international quality standard to a research and development (R&D) environment has had its challenges. This paper will address how GRC applied Configuration Management (CM) and Data (or Document) Management (DM) to meet challenges to achieve ISO certification. One of the first challenges was to fit the ISO 9001-1994 elements to the GRC environment. Some of the elements fit well-Management Responsibility (4.1), Internal Audits (4.17), Document and Data Control (4.5). Other elements were not suited or applied easily to the R&D environment-Servicing (4.19), Statistical Techniques (4.20). Since GRC "builds" only one or two items at a time, these elements were considered not applicable to the environment.

  3. Ion thruster system (8-cm) cyclic endurance test

    NASA Technical Reports Server (NTRS)

    Dulgeroff, C. R.; Beattie, J. R.; Poeschel, R. L.; Hyman, J., Jr.

    1984-01-01

    This report describes the qualification test of an Engineering-Model 5-mN-thrust 8-cm-diameter mercury ion thruster which is representative of the Ion Auxiliary Propulsion System (IAPS) thrusters. Two of these thrusters are scheduled for future flight test. The cyclic endurance test described herein was a ground-based test performed in a vacuum facility with a liquid-nitrogen-cooled cryo-surface and a frozen mercury target. The Power Electronics Unit, Beam Shield, Gimal, and Propellant Tank that were used with the thruster in the endurance test are also similar to those of the IAPS. The IAPS thruster that will undergo the longest beam-on-time during the actual space test will be subjected to 7,055 hours of beam-on-time and 2,557 cycles during the flight test. The endurance test was successfully concluded when the mercury in the IAPS Propellant Tank was consumed. At that time, 8,471 hours of beam-on-time and 599 cycles had been accumulated. Subsequent post-test-evaluation operations were performed (without breaking vacuum) which extended the test values to 652 cycles and 9,489 hours of beam-on-time. The Power Electronic Unit (PEU) and thruster were in the same vacuum chamber throughout the test. The PEU accumulated 10,268 hr of test time with high voltage applied to the operating thruster or dummy load.

  4. The 15 cm mercury ion thruster research 1975

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1975-01-01

    Doubly charged ion current measurements in the beam of a SERT II thruster are shown to introduce corrections which bring its calculated thrust into close agreement with that measured during flight testing. A theoretical model of doubly charged ion production and loss in mercury electron bombardment thrusters is discussed and is shown to yield doubly-to-singly charged ion density ratios that agree with experimental measurements obtained on a 15 cm diameter thruster over a range of operating conditions. Single cusp magnetic field thruster operation is discussed and measured ion beam profiles, performance data, doubly charged ion densities, and discharge plasma characteristics are presented for a range of operating conditions and thruster geometries. Variations in the characteristics of this thruster are compared to those observed in the divergent field thruster and the cusped field thruster is shown to yield flatter ion beam profiles at about the same discharge power and propellant utilization operating point. An ion optics test program is described and the measured effects of grid system dimensions on ion beamlet half angle and diameter are examined. The effectiveness of hollow cathode startup using a thermionically emitting filament within the cathode is examined over a range of mercury flow rates and compared to results obtained with a high voltage tickler startup technique. Results of cathode plasma property measurement tests conducted within the cathode are presented.

  5. Use of computed tomography imaging for quantifying coarse roots, rhizomes, peat, and particle densities in marsh soils.

    PubMed

    Davey, Earl; Wigand, Cathleen; Johnson, Roxanne; Sundberg, Karen; Morris, James; Roman, Charles T

    2011-09-01

    Computed tomography (CT) imaging has been used to describe and quantify subtidal, benthic animals such as polychaetes, amphipods, and shrimp. Here, for the first time, CT imaging is used to quantify wet mass of coarse roots, rhizomes, and peat in cores collected from organic-rich (Jamaica Bay, New York) and mineral (North Inlet, South Carolina) Spartina alterniflora soils. Image analysis software was coupled with the CT images to measure abundance and diameter of the coarse roots and rhizomes in marsh soils. Previously, examination of marsh roots and rhizomes was limited to various hand-sieving methods that were often time-consuming, tedious, and error prone. CT imaging can discern the coarse roots, rhizomes, and peat based on their varying particle densities. Calibration rods composed of materials with standard densities (i.e., air, water, colloidal silica, and glass) were used to operationally define the specific x-ray attenuations of the coarse roots, rhizomes, and peat in the marsh cores. Significant regression relationships were found between the CT-determined wet mass of the coarse roots and rhizomes and the hand-sieved dry mass of the coarse roots and rhizomes in both the organic-rich and mineral marsh soils. There was also a significant relationship between the soil percentage organic matter and the CT-determined peat particle density among organic-rich and mineral soils. In only the mineral soils, there was a significant relationship between the soil percentage organic matter and the CT-determined peat wet mass. Using CT imaging, significant positive nitrogen fertilization effects on the wet masses of the coarse roots, rhizomes, and peat, and the abundance and diameter of rhizomes were measured in the mineral soils. In contrast, a deteriorating salt marsh island in Jamaica Bay had significantly less mass of coarse roots and rhizomes at depth (10-20 cm), and a significantly lower abundance of roots and rhizomes compared with a stable marsh. However, the

  6. Use of computed tomography imaging for quantifying coarse roots, rhizomes, peat, and particle densities in marsh soils.

    PubMed

    Davey, Earl; Wigand, Cathleen; Johnson, Roxanne; Sundberg, Karen; Morris, James; Roman, Charles T

    2011-09-01

    Computed tomography (CT) imaging has been used to describe and quantify subtidal, benthic animals such as polychaetes, amphipods, and shrimp. Here, for the first time, CT imaging is used to quantify wet mass of coarse roots, rhizomes, and peat in cores collected from organic-rich (Jamaica Bay, New York) and mineral (North Inlet, South Carolina) Spartina alterniflora soils. Image analysis software was coupled with the CT images to measure abundance and diameter of the coarse roots and rhizomes in marsh soils. Previously, examination of marsh roots and rhizomes was limited to various hand-sieving methods that were often time-consuming, tedious, and error prone. CT imaging can discern the coarse roots, rhizomes, and peat based on their varying particle densities. Calibration rods composed of materials with standard densities (i.e., air, water, colloidal silica, and glass) were used to operationally define the specific x-ray attenuations of the coarse roots, rhizomes, and peat in the marsh cores. Significant regression relationships were found between the CT-determined wet mass of the coarse roots and rhizomes and the hand-sieved dry mass of the coarse roots and rhizomes in both the organic-rich and mineral marsh soils. There was also a significant relationship between the soil percentage organic matter and the CT-determined peat particle density among organic-rich and mineral soils. In only the mineral soils, there was a significant relationship between the soil percentage organic matter and the CT-determined peat wet mass. Using CT imaging, significant positive nitrogen fertilization effects on the wet masses of the coarse roots, rhizomes, and peat, and the abundance and diameter of rhizomes were measured in the mineral soils. In contrast, a deteriorating salt marsh island in Jamaica Bay had significantly less mass of coarse roots and rhizomes at depth (10-20 cm), and a significantly lower abundance of roots and rhizomes compared with a stable marsh. However, the

  7. Changes in the properties of soils in a solonetz soil complex thirty years after reclamation

    NASA Astrophysics Data System (ADS)

    Kalinichenko, V. P.; Sharshak, V. K.; Mironchenko, S. F.; Chernenko, V. V.; Ladan, E. P.; Genev, E. D.; Illarionov, V. V.; Udalov, A. V.; Udalov, V. V.; Kippel, E. V.

    2014-04-01

    The long-term (30 year) dynamics of a solonetz soil complex composed of solonetzic light chestnut soils and chestnut solonetzes under standard conditions and with the application of agromeliorative measures are considered. When the standard zonal agricultural practice is used, the soils of the solonetzic complex have unfavorable agrophysical, chemical, and physicochemical properties and low productivity. After 30 years of the standard three-level tillage of the soils to a depth of 40-45 cm, the productivity of the biogeocenosis decreased. Thirty years after a single rotary-milling subsoil treatment of the 20- to 45-cm soil layer using a milling tool FS-1.3, there were no morphological features pointing to the restoration of the solonetzic process. The humus content in the 0-to 20-cm and 20-to 40-cm soil layers was 2.3 and 1.7%, respectively; the content of adsorbed Na+ in the 20-to 30-cm layer was 11.6% of the total exchange capacity, or 38% lower than its content in the reference soil. The additional yield reached 30-70% and more of that obtained with the standard agricultural technology used during the whole period under investigation. The method of systems biogeotechnology (systems bio-geo engineering) is proposed as a method for the preventive control of soil evolution and the maintenance of the stability and high productivity of the soil cover.

  8. Bearing strength of lunar soil.

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1971-01-01

    Bearing load vs penetration curves have been measured on a 1.3 g sample of lunar soil from the scoop of the Surveyor 3 soil mechanics surface sampler, using a circular indentor 2 mm in diameter. Measurements were made in an Earth laboratory, in air. This sample provided a unique opportunity to evaluate earlier, remotely controlled, in-situ measurements of lunar surface bearing properties. Bearing capacity, measured at a penetration equal to the indentor diameter, varied from 0.02-0.04 N/sq cm at bulk densities of 1.15 g/cu cm to 30-100 N/sq cm at 1.9 g/cu cm. Deformation was by compression directly below the indentor at bulk densities below 1.61 g/cu cm, by outward displacement at bulk densities over 1.62 g/cu cm. Preliminary comparison of in-situ remote measurements with those on returned material indicates good agreement if the lunar regolith at Surveyor 3 has a bulk density of 1.6 g/cu cm at 2.5 cm depth.

  9. Divergent Sensitivity of Soil Water Stress To Changing Snowmelt Regimes in the Western U.S.

    NASA Astrophysics Data System (ADS)

    Harpold, A. A.

    2015-12-01

    Altered snowmelt regimes from regional warming threaten mountain ecosystems with greater water stress and increased the likelihood of disturbance. The sensitivity of vegetation to changing snowpack regimes is strongly mediated by soil water storage, yet a comprehensive framework to identify areas sensitive to changing snowpack regimes is lacking. In this study we ask two questions: 1) What climatic predictors explain inter-annual variability in the duration of soil water stress (DWS) and length of non-water stress season (NWSS)? and 2) What site characteristics increase the sensitivity of DWS and NWSS to changes in snowmelt dynamics? We compiled soil moisture at 10, 20 and 50 cm depths from 62 SNOTEL stations with >5 years of records. Soil water stress occurred when soil moisture was below the measured wilting point and NWSS was the number of days without water stress after snowmelt began. The day of snow disappearance (DSD) consistently explained the greatest variability in DWS across all site-years and at individual sites. On average, a one day earlier snow disappearance lead to 0.7 days greater DWS, but individual sites ranged from 0.2 to 1.8 days (36 of 62 sites had significant relationships between DSD and DWS). Despite earlier DSD leading to greater DWS at all sites, earlier DSD led to both significant increases (5 of 62) and decreases (7 of 62) in the length of the NWSS. Satellite-derived vegetation greenness confirmed that earlier DSD caused both lower and higher peak annual greenness depending on the site. A simple soil moisture model indicated that areas with finer soil texture, greater potential evapotranspiration, and longer NWSS were most sensitive to reduced NWSS from changing snowpack dynamics. These findings suggest a divergent response across snow-covered forests to earlier snowmelt timing independent of changing precipitation patterns: 1) historically water-stressed sites are most at risk for reduced vegetation productivity and 2) sites with low

  10. Remediating munitions contaminated soils

    SciTech Connect

    Shea, P.J.; Comfort, S.D.

    1995-10-01

    The former Nebraska Ordnance Plant (NOP) at Mead, NE was a military loading, assembling, and packing facility that produced bombs, boosters and shells during World War II and the Korean War (1942-1945, 1950-1956). Ordnances were loaded with 2,4,6-trinitrotoluene (TNT), amatol (TNT and NH{sub 4}NO{sub 3}), tritonal (TNT and Al) and Composition B (hexahydro-1,3,5-trinitro-1,3,5-triazine [RDX] and TNT). Process waste waters were discharged into wash pits and drainage ditches. Soils within and surrounding these areas are contaminated with TNT, RDX and related compounds. A continuous core to 300 cm depth obtained from an NOP drainage ditch revealed high concentrations of TNT in the soil profile and substantial amounts of monoamino reduction products, 4-amino-2,6-dinitrotoluene (4ADNT) and 2-amino-4,6-dinitrotoluene (2ADNT). Surface soil contained TNT in excess of 5000 mg kg{sup -1} and is believed to contain solid phase TNT. This is supported by measuring soil solution concentrations at various soil to solution ratios (1:2 to 1:9) and obtaining similar TNT concentrations (43 and 80 mg L{sup -1}). Remediating munitions-contaminated soil at the NOP and elsewhere is of vital interest since many of the contaminants are carcinogenic, mutagenic or otherwise toxic to humans and the environment. Incineration, the most demonstrated remediation technology for munitions-containing soils, is costly and often unacceptable to the public. Chemical and biological remediation offer potentially cost-effective and more environmentally acceptable alternatives. Our research objectives are to: (a) characterize the processes affecting the transport and fate of munitions in highly contaminated soil; (b) identify effective chemical and biological treatments to degrade and detoxify residues; and (c) integrate these approaches for effective and practical remediation of soil contaminated with TNT, RDX, and other munitions residues.

  11. Effects of composite soil with feldspathic sandstone and sand on soil aggregates and organic carbon

    NASA Astrophysics Data System (ADS)

    Li, J.; Han, J. C.; Zhang, Y.; Lei, G. Y.; Wang, H. Y.; Zhu, D. W.

    2016-08-01

    The case was to study the effects of soils with different proportions of feldspathic sandstone and sand on soil stability and organic carbon at 0-30 cm soil depth with four different ratios(C1, C2, C3 and C4), They were used to prepare the composite soil in Fu Ping, Shaanxi Province of China, then the soil aggregates distribution, WASR, MWD, GMD, D valueand and organic carbon content were measured and analysed.The results showed : the soil stability of C1, C2 and C3 was better than C4, i.e., the composition could improve the soil stability. With the increasing of the planting years, the contents of soil aggregates with the size >0.25 mm and MWD, GMD and SOC increased for each treatment at 0- 30 cm soil depth, which was contrary to D values. WASR of C2 was significantly higher than others (p<0.05) after 3-year planting. The significant logarithmic relationships were found between the D values and the ratios in C1, C2 and C3. Besides C1 and C2 could increase the stability and content of large soil aggregates to improve soil structure; C2 could significantly increase the SOC than others at 0- 30 cm soil depth.

  12. Analysis of water retention curve as a potential tool in comparing the effect of different soil management in two olive orchard in southern Spain

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Gómez, J. A.; Giráldez, J. V.

    2010-05-01

    Water soil erosion is one of the major concerns in agricultural areas in Southern Spain, and the use of cover crops has been recommended as an alternative to tillage to prevent, or mitigate, soil erosion. This change of soil management implies a progressive modification of soil chemical, biological and physical properties which to date, have been documented by a limited number of studies. In this communication we describe a methodology based on the modification of the water retention curves of intact cores, present the results obtained in two olive orchards in Southern Spain, and compare them with several chemical and physical properties measured simultaneously in the orchards. The experimental areas were located in Benacazón and Pedrera, Seville province in Southern Spain, and at each location two experimental plots were established. One of the plots was under traditional tillage management and the other under cover crop soil management. The slope at the plots was 12 and 4% respectively. Soil samples were taken at both plots differentiating between the inter tree areas and the under the olive canopy areas, between two different depths: 0-10 cm and 10-20 cm. These resulted in eight different sampling areas (2x2x2). Samples were taken three year after establishing the experiments. Water retention curves of soils were obtained as the average of replications per and using the Eijkelkamp Sand and Sand/Kaolin suction tables (0-500 hPa) and a Decagon's WP4-T dewpoint potentiometer (0-300•106 hPa). The latest was used to determine the residual water content. Experimental water retention curves were to two different models: van Genuchten (1980) and Kosugi (1994). Once modeling was done, the slope value of the curves at the inflexion point, proposed by Dexter (2004a, b, c) to estimate physical quality of soils, was calculated. This study presents and discusses the advantages and problems of the different approaches for determining the water retention curves, the

  13. Formation of asteroids from mm-cm sized grains

    NASA Astrophysics Data System (ADS)

    Carrera, D.; Johansen, A.; Davies, M. B.

    2014-03-01

    Context. Asteroids and comets are intricately connected to life in the universe. Asteroids are the building blocks of terrestrial planets; water-rich asteroids and comets are likely to be the primary source of water for Earth's oceans and other volatiles (Morbidelli et al. 2000; Hartogh et al. 2011); and they may play role in mass extinctions. Yet, the formation of these objects is poorly understood. There is mounting evidence that the traditional picture of the formation of asteroids must be revised. The size distribution of asteroids is hard to reconcile with a traditional bottomup formation scenario. Instead, asteroids may form top-down, with large 100 - 1000 km sized objects forming first by the gravitational collapse of dense clumps of small particles. Experiments and simulations suggest that dust grains cannot grow to sizes larger than mm-cm in protoplanetary disks (Zsom et al. 2010). Also, primitive meteorites from the asteroid belt contain a large mass fraction in chondrules of sizes from 0.1 mm to a few mm. Hence, it is desirable to find a model for asteroid formation from mm-sized particles. Aims. In this work, we model the dynamics of mm-cm sized grains in dust-enriched inner regions of protoplanetary disks. We model the dust-gas interaction to determine whether dust grains of this size can form dense, self-gravitating clouds that can collapse to form asteroids. Methods. We perform shearing box simulations of the inner disk using the Pencil Code (Brandenburg & Dobler 2002). The simulations start with a Solar-type solids-to-gas ratio of 0.01 and we gradually increase the particle concentration. In a real protoplanetary disk, solid particles are expected to migrate from the outer regions and concentrate in the inner disk. Results. Our simulations show that mm-sized particles can form very dense clumps, driven by a run-away convergence in the radial-drift flow of these particles - this dynamic is known as the streaming instability (Youdin & Goodman 2005

  14. A 1.3 cm line survey toward Orion KL

    NASA Astrophysics Data System (ADS)

    Gong, Y.; Henkel, C.; Thorwirth, S.; Spezzano, S.; Menten, K. M.; Walmsley, C. M.; Wyrowski, F.; Mao, R. Q.; Klein, B.

    2015-09-01

    Context. The nearby Orion Kleinmann-Low nebula is one of the most prolific sources of molecular line emission. It has served as a benchmark for spectral line searches throughout the (sub)millimeter regime. Aims: The main goal is to systematically study the spectral characteristics of Orion KL in the λ ~ 1.3 cm band. Methods: We carried out a spectral line survey with the Effelsberg-100 m telescope toward Orion KL. It covers the frequency range between 17.9 GHz and 26.2 GHz, i.e., the radio "K band". We also examined ALMA maps to address the spatial origin of molecules detected by our 1.3 cm line survey. Results: In Orion KL, we find 261 spectral lines, yielding an average line density of about 32 spectral features per GHz above 3σ (a typical value of 3σ is 15 mJy). The identified lines include 164 radio recombination lines (RRLs) and 97 molecular lines. The RRLs, from hydrogen, helium, and carbon, stem from the ionized material of the Orion Nebula, part of which is covered by our beam. The molecular lines are assigned to 13 different molecular species including rare isotopologues. A total of 23 molecular transitions from species known to exist in Orion KL are detected for the first time in the interstellar medium. Non-metastable (J>K) 15NH3 transitions are detected in Orion KL for the first time. Based on the velocity information of detected lines and the ALMA images, the spatial origins of molecular emission are constrained and discussed. A narrow feature is found in SO2 (81,7 - 72,6), but not in other SO2 transitions, possibly suggesting the presence of a maser line. Column densities and fractional abundances relative to H2 are estimated for 12 molecules with local thermodynamic equilibrium (LTE) methods. Rotational diagrams of non-metastable 14NH3 transitions with J = K + 1 to J = K + 4 yield different results; metastable (J = K) 15NH3 is found to have a higher excitation temperature than non-metastable 15NH3, also indicating that they may trace different

  15. Seasonal Evolution of Titan's South Pole 220 cm-1 Cloud

    NASA Astrophysics Data System (ADS)

    Jennings, Donald

    2016-06-01

    A cloud of ices that had been seen only in Titan's north during winter began to emerge at the south pole in 2012. Discovered by Voyager IRIS as an emission feature at 220 cm-1, the cloud has been studied extensively in both the north and south by Cassini CIRS. The spectral feature acts as a tracer of the seasonal changes at Titan's poles, relating to evolving composition, temperature structure and dynamics. Although candidates have been proposed, the chemical makeup of the cloud has never been identified. The cloud is composed of condensates derived from gases created at high altitude and transported to the cold, shadowed pole. In the north the cloud has diminished gradually over the Cassini mission as Titan has transitioned from winter to spring. The southern cloud, on the other hand, grew rapidly after 2012. By late 2014 it had developed a complex ring structure that was confined to latitudes poleward of 70°S within the deep temperature well that had formed at the south pole [1]. The location of the cloud coincides in latitude with the HCN cloud reported by ISS and VIMS [2,3]. CIRS also saw enhanced gas emissions at those latitudes [4]. When it first formed, the cloud was abundant at altitudes as high as 250 km, while later it was found mostly at 100-150 km, suggesting that the material that had been deposited from above had gathered at the lower altitudes. Radiance from the southern cloud increased until mid-2015 and since then has decreased. The cloud may be transitioning to the more uniform hood morphology familiar in the north. Taking the north and south together, by the end of the Cassini mission in 2017 we will have observed almost an entire seasonal cycle of the ice cloud.

  16. Soil Property Influences on Xiphinema americanum Populations as Related to Maturity of Loess-Derived Soils.

    PubMed

    Schmitt, D P

    1973-10-01

    Field populations of Xiphinerna americanum around roots of Syringa vulgaris 'President Lincoln' were larger in Marshall silty clay loam, a medially developed loess soil, than in Monona silt loam, a minimally developed loess soil. Most X. amerieanum occurred in the top 15 cm of soil, with few below 30 cm. Maximum numbers occurred in August of both years in the Marshall soil, and in August 1969 and June 1970 in the Monona soil. Population fluctuations during the growing season were coincident with changes in soil moisture content. Although the population fluctuation pattern was the same at each depth tested, the adult-to-juvenile ratio increased in one soil while it decreased in the other. Numbers of X. americanum decreased as root weights decreased within a soil profile, but they were not correlated with root weights over all soils and depths. More X. americanum were recovered from the Marshall than from the Monona soil, but fibrous root weights were greater in the Monona soil. Survival of X. americanum in soil columns in growth chamber experiments was better in the Marshall than in the Monona soil. Movement and survival were different in identically textured Monona A and B horizon soils. Factors related to the ion exchange sites may affect X. americanum.

  17. Soil organic carbon mining versus priming - controls of soil organic carbon stocks along a management gradient

    NASA Astrophysics Data System (ADS)

    Blanes, M. Carmen; Reinsch, Sabine; Glanville, Helen C.; Jones, Davey L.; Carreira, José A.; Pastrana, David N.; Emmett, Bridget A.

    2015-04-01

    Soil carbon (C), nitrogen (N) and phosphorous (P) are assumed to be connected stoichiometrically and C:N(:P) ratios are frequently used to interpret the soils nutrient status. However, plants are capable of initiating the supply of nutrients by releasing rhizodeposits into the soil, thereby stimulating soil organic matter decomposition mediated by the rhizosphere microbial community. To test the relative importance of the two mechanisms across a fertility gradient in the UK we carried out a laboratory experiment. Intact soil cores from two depths (0-15 cm and 85-100 cm) were incubated and C, N and P were added in all possible combinations resulting in a total of 216 soil cores. Soil respiration was measured (1 h incubation, 10 oC) nine times over a 2 week period. Preliminary results indicate that all soils were C limited at the surface as measured as increased soil CO2 efflux. N additions increased soil respiration only marginally, whereas C+N stimulated microbial activity on the surface, and was even more pronounced in the deeper soil layer. Belowground responses to C+P were small and even smaller for N+P but similar for both soil depths. Our results indicate nutrient controls on soil organic matter turnover differ not only across a management/fertility gradient but also vertically down the soil profile.

  18. Variable Contribution of Soil and Plant Derived Carbon to Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Steinbeiss, S.; Gleixner, G.

    2005-12-01

    The seasonal variation in the amount and sources of dissolved organic matter (DOM) in soil profiles was investigated. In general DOM in soil solution can evolve from the decomposition and mobilization of soil organic matter (SOM), dissolution of dead microbial cells or from the input of plant material such as root exudates or decomposing litter. Here we used vegetation change from C3 to C4 plants to quantify the plant derived carbon in DOM. In 2002 an agricultural field was converted to an experimental grass land. The average carbon isotope value of SOM was -26.5 per mill (sd = 0.2) for the plough horizon. On two independent plots, each 10 x 20 m, we used Amaranthus retroflexus as C4 plant with a carbon isotope label of 13.0 per mill to distinguish unlabeled SOM and plant derived carbon sources. To quantify the contribution of litter input on DOM formation we applied a split plot design. One half had no litter and the other half double amount of above ground litter. Soil water was collected in 10, 20 and 30 cm depth biweekly and DOM concentrations in solution and carbon isotope ratios of the freeze dried and decarbonized material were investigated. During winter uniform concentrations of DOM of about 7 mg/l were measured throughout all depth and treatments. In spring when soil temperatures increase and water availability decreases DOM concentrations increased with similar rates in all depth. Even in the second year of Amaranth growth the carbon isotope ratios of DOM in winter and spring had no C4 signal. The carbon isotope ratios of -26 to -27 per mill suggest SOM as carbon source and contradict a contribution of root exudates to the DOM pool. During summer almost no soil solution was collected. After rewetting in fall DOM concentrations up to 50 mg/l in 10 cm depth and up to 35 mg/l in deeper layers were found. These high concentrations held carbon isotope signals from -25 to -26.5 per mill contradicting carbon input from plant material. With ongoing wetting of

  19. Wireless sensor network deployment for monitoring soil moisture dynamics at the field scale

    NASA Astrophysics Data System (ADS)

    Majone, B.; Bellin, A.; Filippi, E.; Ioriatti, L.; Martinelli, M.; Massa, A.; Toller, G.

    2009-12-01

    We describe a recent deployment of soil moisture and temperature sensors in an apple tree orchard aimed at exploring the interaction between soil moisture dynamics and plant physiology. The field is divided into three parcels with different constant irrigation rates. The deployment includes dendrometers which monitor the variations of the trunk diameter. The idea is to monitor continuously and at small time steps soil moisture dynamics, soil temperature and a parameter reflecting plant stress at the parcel scale, in order to better investigate the interaction between plant physiology and soil moisture dynamics. Other sensors monitoring plant physiology can be easily accommodated within the Wireless Sensor Network (WSN). The experimental site is an apple orchard of 5000 m2 located at Cles, province of Trento, Italy, at the elevation of 640 m.a.s.l. In this site about 1200 apple trees are cultivated (cultivar Golden Delicious). The trees have been planted in 2004 in north-south rows 3.5 m apart. The deployment consists of 27 locations connected by a multi hop WSN, each one equipped with 5 soil moisture sensors (capacitance sensors EC-5, decagon Service) at the depths of 10, 20, 30, 50 and 80 cm, and a temperature sensor at the depth of 20 cm, for a total of 135 soil moisture and 27 temperature sensors. The proposed monitoring system is based on totally autonomous sensor nodes which allow both real time and historic data management. The data gathered are then organized in a database on a public web site. The node sensors are connected through an input/output interface to a WSN platform. The power supply consists of a solar panel able to provide 250 mA at 7 V and a 3V DC/DC converter based on a dual frequency high efficient switching regulator. The typical meteorological data are monitored with a weather station located at a distance of approximately 100 m from the experimental site. Great care has been posed to calibration of the capacitance sensors both in the

  20. Conserving Soil.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Designed as enrichment materials for grades six through nine, this program is an interdisciplinary study of soils. As part of the program students: (1) examine soil organisms; (2) research history of local Native Americans to see how they and others have used the land and its soils; (3) investigate how soils are degraded and how they are conserved…

  1. [Effects of soil surface mulching on solar greenhouse grafted and own-rooted cucumber growth and soil environment].

    PubMed

    Zhai, Sheng; Liang, Yinli; Wang, Juyuan

    2005-12-01

    The study on the effects of different soil surface mulching models, including wheat straw mulching (WS), plastic film mulching (PF), and wheat straw plus plastic film mulching (WP), on the growth of solar greenhouse grafted and own-rooted cucumber and on soil environment showed that soil surface mulching not only increased the individuals of pistillate flower, improved its differentiation and development, shortened fruit-developing period, increased fruit weight, reduced fruit malformation percentage, but also raised total yield. Among the test mulching models, WP was better than WS and PF, and the effects were superior on grafted than on own-rooted cucumber. Soil surface mulching also had considerable effects on soil environment, but the effects varied with different modules. For example, under field condition, the diurnal change of soil temperature was a single-peak curve, with its peak higher and appeared at 14:30 in 5 cm and 10 cm soil depth, but lower and appeared later in deeper soil layers. In this study, WS lowered the maximum soil temperature and raised the minimum soil temperature, making soil temperature quite stable, while PF raised the maximum soil temperature much higher and enhanced the minimum soil temperature less than WS and WP, making the largest variation range of soil temperature. WP played a role of raising soil temperature and kept it stable. Similar to the diurnal change of soil temperature at 5 cm and 10 cm depth, that of soil respiration rate was also a single-peak curve. The soil respiration rate in all treatmentg was significantly higher than that of CK, and WP had a higher soil respiration rate than PF and WS. There was a significant positive correlation between soil respiration rate and soil temperature at 5 cm and 10 cm depth. By the end of the experiment, soil bulk density at the depth of 0-20 cm was measured, which was significantly lower in WS and WP than in CK and PF. The difference in soil bulk density was gradually inconspicuous

  2. Real-time Sub-cm Differential Orbit Determination of two Low-Earth Orbiters with GPS Bias Fixing

    NASA Technical Reports Server (NTRS)

    Wu, Sien-Chong; Bar-Sever, Yoaz E.

    2006-01-01

    An effective technique for real-time differential orbit determination with GPS bias fixing is formulated. With this technique, only real-time GPS orbits and clocks are needed (available from the NASA Global Differential GPS System with 10-20 cm accuracy). The onboard, realtime orbital states of user satellites (few meters in accuracy) are used for orbit initialization and integration. An extended Kalman filter is constructed for the estimation of the differential orbit between the two satellites as well as a reference orbit, together with their associating dynamics parameters. Due to close proximity of the two satellites and of similar body shapes, the differential dynamics are highly common and can be tightly constrained which, in turn, strengthens the orbit estimation. Without explicit differencing of GPS data, double-differenced phase biases are formed by a transformation matrix. Integer-valued fixing of these biases are then performed which greatly strengthens the orbit estimation. A 9-day demonstration between GRACE orbits with baselines of approx.200 km indicates that approx.80% of the double-differenced phase biases can successfully be fixed and the differential orbit can be determined to approx.7 mm as compared to the results of onboard K-band ranging.

  3. Electrical methods of determining soil moisture content

    NASA Technical Reports Server (NTRS)

    Silva, L. F.; Schultz, F. V.; Zalusky, J. T.

    1975-01-01

    The electrical permittivity of soils is a useful indicator of soil moisture content. Two methods of determining the permittivity profile in soils are examined. A method due to Becher is found to be inapplicable to this situation. A method of Slichter, however, appears to be feasible. The results of Slichter's method are extended to the proposal of an instrument design that could measure available soil moisture profile (percent available soil moisture as a function of depth) from a surface measurement to an expected resolution of 10 to 20 cm.

  4. Evaluation of Long-term Agroecosystem Management on Changes in Subsurface vs. Surface Soil Carbon Fractions and Dynamics

    NASA Astrophysics Data System (ADS)

    Wolfe, D.; Beem-Miller, J.; Kong, A.; Comstock, J.; Sherpa, S.; Wine, E.; Mallorino, A.

    2013-12-01

    Most studies of terrestrial soil organic carbon (SOC) have focused on the upper soil profile (e.g., 0-30 cm), so our knowledge of C dynamics in deeper layers is incomplete. Here, we examine the depth-dependent mechanisms and constraints by which management of the upper soil profile for optimum crop yield in agroecosystems can influence SOC fractions and change in both the surface and subsurface. Our study includes continuous corn systems under long-term conventional tillage (CT) vs no-tillage (NT) at Willsboro, New York (NY) (Kingsbury silty loam soil; 19 y) and Chazy, NY (Raynham silt loam; 38 y), and long-term crop rotation experiments under CT at Algona, Iowa (IA) (Clarion loam; 11 y) and Kanawha, IA (Canisteo clay loam; 57 y). Rotations in IA compared continuous corn to corn rotations with soybean, alfalfa, and/or oats. Cores were collected in 2011 and 2012 at 0-10, 10-20, 20-30, 30-50 and 50-75 cm, and analyzed for bulk density, soil texture, percent organic matter, total C and nitrogen (N), soil inorganic C, and active C (permanganate oxidizable C, POXC). Recent studies have documented that POXC is closely correlated with heavy, small-sized particulate organic C, reflecting a relatively processed and stable pool of labile C that is well-suited to assess land management effects on C dynamics. Overall, cumulative SOC stocks (0-75 cm) in the IA and NY soils ranged from 109.9-168.8 MgC ha-1, and 37.8-104.1 MgC ha-1, respectively. The proportion of total SOC stocks that occurred in the subsurface (30-75 cm) ranged from 39-44% in the IA soils, compared to 16-26% in NY. Across all sites and management we found no examples of statistically significant SOC change below 30 cm, although this may be in part an artifact of greater variability and smaller absolute values of C concentration at depth. SOC data were correlated with POXC measurements, although depth- and site-specific discrepancies in these two measures were observed. For example, POXC was relatively

  5. Measuring Soil Hydraulic Conductivity With Microwaves

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.; Oneill, P. E.

    1985-01-01

    Soil mapping for large or small areas done rapidly. Technique requires simple radiometric measurements of L-band (15 to 30 cm) and thermal infrared emissions from ground within 2 days after saturation of surface. Technique based on observation that correlation exists between L-band emissivity and hydraulic conductivity of soil.

  6. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Oneill, P. E.; Wang, J. R.

    1986-01-01

    During the four years of the AgRISTARS Program, significant progress was made in quantifying the capabilities of microwave sensors for the remote sensing of soil moisture. In this paper, a discussion is provided of the results of numerous field and aircraft experiments, analysis of spacecraft data, and modeling activities which examined the various noise factors such as roughness and vegetation that affect the interpretability of microwave emission measurements. While determining that a 21-cm wavelength radiometer was the best single sensor for soil moisture research, these studies demonstrated that a multisensor approach will provide more accurate soil moisture information for a wider range of naturally occurring conditions.

  7. Phosphorus Release to Floodwater from Calcareous Surface Soils and Their Corresponding Subsurface Soils under Anaerobic Conditions.

    PubMed

    Jayarathne, P D K D; Kumaragamage, D; Indraratne, S; Flaten, D; Goltz, D

    2016-07-01

    Enhanced phosphorus (P) release from soils to overlying water under flooded, anaerobic conditions has been well documented for noncalcareous and surface soils, but little information is available for calcareous and subsurface soils. We compared the magnitude of P released from 12 calcareous surface soils and corresponding subsurface soils to overlying water under flooded, anaerobic conditions and examined the reasons for the differences. Surface (0-15 cm) and subsurface (15-30 cm) soils were packed into vessels and flooded for 8 wk. Soil redox potential and concentrations of dissolved reactive phosphorus (DRP) and total dissolved Ca, Mg, Fe, and Mn in floodwater and pore water were measured weekly. Soil test P was significantly smaller in subsurface soils than in corresponding surface soils; thus, the P release to floodwater from subsurface soils was significantly less than from corresponding surface soils. Under anaerobic conditions, floodwater DRP concentration significantly increased in >80% of calcareous surface soils and in about 40% of subsurface soils. The increase in floodwater DRP concentration was 2- to 17-fold in surface soils but only 4- to 7-fold in subsurface soils. With time of flooding, molar ratios of Ca/P and Mg/P in floodwater increased, whereas Fe/P and Mn/P decreased, suggesting that resorption and/or reprecipitation of P took place involving Fe and Mn. Results indicate that P release to floodwater under anaerobic conditions was enhanced in most calcareous soils. Surface and subsurface calcareous soils in general behaved similarly in releasing P under flooded, anaerobic conditions, with concentrations released mainly governed by initial soil P concentrations. PMID:27380087

  8. Experimental shock metamorphism of the Murchison CM carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Tomeoka, Kazushige; Yamahana, Yasuhiro; Sekine, Toshimori

    1999-11-01

    A series of shock-recovery experiments were carried out on the Murchison CM carbonaceous chondrite by using a single-stage propellant gun. The Murchison samples were shocked in nine experiments at peak pressures from 4 to 49 GPa. The recovered samples were studied in detail by using an optical microscope, a scanning electron microscope and an electron-probe microanalyzer. Chondrules are flattened in the plane of the shock front at 4 to 30 GPa. The mean aspect ratio of chondrules increases from 1.17 to 1.57 roughly in proportion to the intensity of shock pressure up to ˜25 GPa. At 25 to 30 GPa, the mean aspect ratio does not increase further, and chondrules show increasingly more random orientations and degrade their preferred orientations, and at ˜35 GPa, they are extensively disrupted. Most coarse grains of olivine and pyroxene are irregularly fractured, fracture density increases with increasing shock pressure and at ˜30 GPa almost all are thoroughly fractured with subgrains of <1 to 5 μm in size. At ˜20 GPa, subparallel fractures begin to form in the matrix in directions roughly perpendicular to the compression axis and their densities increase with pressure, especially dramatically at 25 to 30 GPa; thus, the sample is increasingly comminuted and becomes fragile. Local shock melting occurs as melt veins and pockets at 20 to 30 GPa. Fracture-filling veins of fine grains of matrix are also produced at 25 to 30 GPa. The melts and the fine grains seem to result mainly from frictional heating due to displacement along fractures. At ˜35 GPa, melting occurs pervasively throughout the matrix. The melts are mainly produced from the matrix; however, they are consistently more enriched in Fe, S, and Ca, which indicates that these elements are selectively incorporated into the melts. The melts contain tiny spherules of Fe-Ni metal, Fe sulfide, and numerous vesicles. At 49 GPa, the matrix is totally melted and coarse grains of olivine are partially melted. The melts

  9. Efficacy of 1,3-Dichloropropene in Soil Amended with Compost and Unamended Soil

    PubMed Central

    Riegel, C.; Nelson, S. D.; Dickson, D. W.; Allen, L. H.; Peterson, L. G.

    2001-01-01

    1,3-Dichloropropene (1,3-D) is a likely alternative soil fumigant for methyl bromide. The objective was to determine root-knot nematode, Meloidogyne incognita, survival in microplots after exposure to 1,3-D for various periods of time in soil that have previously been amended with compost. The treatments were 1,3-D applied broadcast at 112 liters/ha and untreated controls in both compost-amended and unamended soil. Soil samples were collected from each microplot at 6, 24, 48, 72, and 96 hours after fumigation at three depths (0-15, 15-30, and 30-45 cm). One week after fumigation, six tomato seedlings were transplanted into each microplot and root galling was recorded 6 weeks later. Plants grown in fumigated compost-amended soil had more galls than plants from fumigated unamended soil at P ≤ 0.1. Gall indices from roots in fumigated soil amended with compost were not different from nonfumigated controls. Based on soil bioassays, the number of galls decreased with increasing time after fumigation in both compost-amended and unamended soil at 0-to-15 and 15-to-30 cm depths, but not at 30 to 45 cm deep. Higher soil water content due to the elevated levels of organic matter in the soil at these depths may have interfered with 1,3-D movement, thus reducing its efficacy. PMID:19265889

  10. The effect of soil on cork quality.

    PubMed

    Pestana, Miguel N; Gomes, Alberto A

    2014-01-01

    The present work aimed to contribute for a better knowledge regarding soil features as cork quality indicators for stoppers. Cork sampling was made in eight Cork oak stands (montados de sobreiro) located in the Plio-Plistocene sedimentary formations of Península de Setúbal in southern Tagus River region. The samples used to classify the cork as stopper for wine bottles were obtained in eight cork oak stands, covering soils of different types of sandstones of the Plio-plistocene. In each stand, we randomly chose five circular plots with 30 m radius and five trees per plot with same stripping conditions determined by: dendrometric features (HD- height stipping, PBH- perimeter at breaster height), trees vegetative condition (defoliation degree); stand features (density, percentage canopy cover); site conditions (soil type and orientation). In the center of each plot a pit was open to characterize the soil profile and to classify the soil. Cork quality for stoppers was evaluated according to porosity, pores/per cm(2) and cork boards thickness. The soil was characterized according to morphological soil profile features (lithology, soil profound, and soil horizons) and chemical soil surface horizon features (organic matter, pH, macro, and micronutrients availability). Based on the variables studied and using the numerical taxonomy, we settled relationships between the cork quality and some soil features. The results indicate: (1) high correlation between the cork caliber and boron, cation exchange capacity, total nitrogen, exchange acidity, and exchangeable magnesium, potassium, calcium, and sodium in soils of theirs cork oaks; (2) the cork porosity is correlated with the number of pores/cm(2) and magnesium soil content; (3) the other soil features have a lower correlation with the caliber, porosity, and the number of pores per cm(2). PMID:25353015

  11. The effect of soil on cork quality

    PubMed Central

    Pestana, Miguel N.; Gomes, Alberto A.

    2014-01-01

    The present work aimed to contribute for a better knowledge regarding soil features as cork quality indicators for stoppers. Cork sampling was made in eight Cork oak stands (montados de sobreiro) located in the Plio-Plistocene sedimentary formations of Península de Setúbal in southern Tagus River region. The samples used to classify the cork as stopper for wine bottles were obtained in eight cork oak stands, covering soils of different types of sandstones of the Plio-plistocene. In each stand, we randomly chose five circular plots with 30 m radius and five trees per plot with same stripping conditions determined by: dendrometric features (HD- height stipping, PBH- perimeter at breaster height), trees vegetative condition (defoliation degree); stand features (density, percentage canopy cover); site conditions (soil type and orientation). In the center of each plot a pit was open to characterize the soil profile and to classify the soil. Cork quality for stoppers was evaluated according to porosity, pores/per cm2 and cork boards thickness. The soil was characterized according to morphological soil profile features (lithology, soil profound, and soil horizons) and chemical soil surface horizon features (organic matter, pH, macro, and micronutrients availability). Based on the variables studied and using the numerical taxonomy, we settled relationships between the cork quality and some soil features. The results indicate: (1) high correlation between the cork caliber and boron, cation exchange capacity, total nitrogen, exchange acidity, and exchangeable magnesium, potassium, calcium, and sodium in soils of theirs cork oaks; (2) the cork porosity is correlated with the number of pores/cm2 and magnesium soil content; (3) the other soil features have a lower correlation with the caliber, porosity, and the number of pores per cm2. PMID:25353015

  12. The effect of soil on cork quality.

    PubMed

    Pestana, Miguel N; Gomes, Alberto A

    2014-01-01

    The present work aimed to contribute for a better knowledge regarding soil features as cork quality indicators for stoppers. Cork sampling was made in eight Cork oak stands (montados de sobreiro) located in the Plio-Plistocene sedimentary formations of Península de Setúbal in southern Tagus River region. The samples used to classify the cork as stopper for wine bottles were obtained in eight cork oak stands, covering soils of different types of sandstones of the Plio-plistocene. In each stand, we randomly chose five circular plots with 30 m radius and five trees per plot with same stripping conditions determined by: dendrometric features (HD- height stipping, PBH- perimeter at breaster height), trees vegetative condition (defoliation degree); stand features (density, percentage canopy cover); site conditions (soil type and orientation). In the center of each plot a pit was open to characterize the soil profile and to classify the soil. Cork quality for stoppers was evaluated according to porosity, pores/per cm(2) and cork boards thickness. The soil was characterized according to morphological soil profile features (lithology, soil profound, and soil horizons) and chemical soil surface horizon features (organic matter, pH, macro, and micronutrients availability). Based on the variables studied and using the numerical taxonomy, we settled relationships between the cork quality and some soil features. The results indicate: (1) high correlation between the cork caliber and boron, cation exchange capacity, total nitrogen, exchange acidity, and exchangeable magnesium, potassium, calcium, and sodium in soils of theirs cork oaks; (2) the cork porosity is correlated with the number of pores/cm(2) and magnesium soil content; (3) the other soil features have a lower correlation with the caliber, porosity, and the number of pores per cm(2).

  13. Bioavailability of caesium-137 from chernozem soils with high and low levels of radioactive contamination

    NASA Astrophysics Data System (ADS)

    Paramonova, Tatiana; Shamshurina, Eugenia; Machaeva, Ekaterina; Belyaev, Vladimir

    2014-05-01

    Bioavailability of Cs-137 in "soil-plant" system of radioactively contaminated terrestrial ecosystems is the most important factor in the understanding of ecological situation. There are many factors affecting the features of Cs-137 biogeochemical cycle: period since an accident, type and intensity of radioactive fallout, general properties of landscape and the specifics of soil and plant covers, etc. In order to evaluate the importance of soil contamination level for the process of Cs-137 translocation from soil to plant the research in forest-steppe areas of Russia with similar natural properties, but contrasting high (Tula region) and low (Kursk region) levels of radioactive Chernobyl fallout (about 25 years after accident) was conducted. Soil cover of both sites is presented by chernozems with bulk density 1.1-1.2 g/cm3, 6-7% humus and neutral pH 6.5-7.2; plant cover under investigation consist of dry and wet meadows with bioproductivity 1.6-2.5 kg/m2 and 85-90% of biomass concentrated underground, that is typical for Russian forest-steppe landscapes. At the same time levels of soil regional contamination with Cs-137 differ by an order - 620-710 Bq/kg (210-250 kBq/m2) in Tula region and 30-55 Bq/kg (10-20 kBq/m2) in Kursk region. At a higher level of soil radioactive contamination specific activity of Cs-137 in vegetation of meadows is noticeably increased (103-160 Bq/kg in Tula region versus 12-14 Bq/kg in Kursk region) with correlation coefficient r 0.87. Increasing of Cs-137 in the underground parts of plants plays a decisive role in this process, while the specific radionuclide's activity in the aboveground parts of different sites is almost invariant (and ubiquitously roots contain 2-5 times more Cs-137 than shoots). The values of transfer factors for Cs-137 (the ratio of the specific Cs-137 activities in the plant tissue and in the soil) at various levels of soil radioactive contamination vary within a relatively narrow range 0.1-0.4, that confirms the

  14. A simple model of carbon in the soil profile for agricultural soils in Northwestern Europe

    NASA Astrophysics Data System (ADS)

    Taghizadeh-Toosi, Arezoo; Hutchings, Nicholas J.; Vejlin, Jonas; Christensen, Bent T.; Olesen, Jørgen E.

    2014-05-01

    World soil carbon (C) stocks are second to those in the ocean, and represent three times as much C as currently present in the atmosphere. The amount of C in soil may play a significant role in carbon exchanges between the atmosphere and the terrestrial environment. The C-TOOL model is a three-pool linked soil organic carbon (SOC) model in well-drained mineral soils under agricultural land management to allow generalized parameterization for estimating effects of management measures at medium to long time scales for the entire soil profile (0-100 cm). C-TOOL has been developed to enable simulations of SOC turnover in soil using temperature dependent first order kinetics for describing decomposition. Compared with many other SOC models, C-TOOL applies a less complicated structure, which facilitates easier calibration, and it requires only few inputs (i.e., average monthly air temperature, soil clay content,soil carbon-to-nitrogen ratio, and C inputs to the soil from plants and other sources). C-TOOL was parameterized using SOC and radiocarbon data from selected long-term field treatments in United Kingdom, Sweden and Denmark. However, less data were available for evaluation of subsoil C (25-100 cm) from the long-term experiments applied. In Denmark a national 7×7 km grid net was established in 1986 for soil C monitoring down to 100 cm depth. The results of SOC showed a significant decline from 1997 to 2009 in the 0-50 cm soil layer. This was mainly attributed to changes in the 25-50 cm layer, where a decline in SOC was found for all soil texture types. Across the period 1986 to 2009 there was clear tendency for increasing SOC on the sandy soils and reductions on the loamy soils. This effect is linked to land use, since grasslands and dairy farms are more abundant in the western parts of Denmark, where most of the sandy soils are located. The results and the data from soil monitoring have been used to validate the C-TOOL modelling approach used for accounting of

  15. Soil experiment

    NASA Technical Reports Server (NTRS)

    Hutcheson, Linton; Butler, Todd; Smith, Mike; Cline, Charles; Scruggs, Steve; Zakhia, Nadim

    1987-01-01

    An experimental procedure was devised to investigate the effects of the lunar environment on the physical properties of simulated lunar soil. The test equipment and materials used consisted of a vacuum chamber, direct shear tester, static penetrometer, and fine grained basalt as the simulant. The vacuum chamber provides a medium for applying the environmental conditions to the soil experiment with the exception of gravity. The shear strength parameters are determined by the direct shear test. Strength parameters and the resistance of soil penetration by static loading will be investigated by the use of a static cone penetrometer. In order to conduct a soil experiment without going to the moon, a suitable lunar simulant must be selected. This simulant must resemble lunar soil in both composition and particle size. The soil that most resembles actual lunar soil is basalt. The soil parameters, as determined by the testing apparatus, will be used as design criteria for lunar soil engagement equipment.

  16. Effect of Thickness of a Water Repellent Soil Layer on Soil Evaporation Rate

    NASA Astrophysics Data System (ADS)

    Ahn, S.; Im, S.; Doerr, S.

    2012-04-01

    A water repellent soil layer overlying wettable soil is known to affect soil evaporation. This effect can be beneficial for water conservation in areas where water is scarce. Little is known, however, about the effect of the thickness of the water repellent layer. The thickness of this layer can vary widely, and particularly after wildfire, with the soil temperature reached and the duration of the fire. This study was conducted to investigate the effect of thickness of a top layer of water repellent soil on soil evaporation rate. In order to isolate the thickness from other possible factors, fully wettable standard sand (300~600 microns) was used. Extreme water repellency (WDPT > 24 hours) was generated by 'baking' the sand mixed with oven-dried pine needles (fresh needles of Pinus densiflora) at the mass ratio of 1:13 (needle:soil) at 185°C for 18 hours. The thicknesses of water repellent layers were 1, 2, 3 and 7 cm on top of wettable soil. Fully wettable soil columns were prepared as a control. Soil columns (8 cm diameter, 10 cm height) were covered with nylon mesh. Tap water (50 ml, saturating 3 cm of a soil column) was injected with hypoderm syringes from three different directions at the bottom level. The injection holes were sealed with hot-melt adhesive immediately after injection. The rate of soil evaporation through the soil surface was measured by weight change under isothermal condition of 40°C. Five replications were made for each. A trend of negative correlation between the thickness of water repellent top layer and soil evaporation rate is discussed in this contribution.

  17. Imidacloprid movement in soils and impacts on soil microarthropods in southern Appalachian eastern hemlock stands.

    PubMed

    Knoepp, Jennifer D; Vose, James M; Michael, Jerry L; Reynolds, Barbara C

    2012-01-01

    Imidacloprid is a systemic insecticide effective in controlling the exotic pest (hemlock woolly adelgid) in eastern hemlock () trees. Concerns over imidacloprid impacts on nontarget species have limited its application in southern Appalachian ecosystems. We quantified the movement and adsorption of imidacloprid in forest soils after soil injection in two sites at Coweeta Hydrologic Laboratory in western North Carolina. Soils differed in profile depth, total carbon and nitrogen content, and effective cation exchange capacity. We injected imidacloprid 5 cm into mineral soil, 1.5 m from infested trees, using a Kioritz soil injector. We tracked the horizontal and vertical movement of imidacloprid by collecting soil solution and soil samples at 1 m, 2 m, and at the drip line from each tree periodically for 1 yr. Soil solution was collected 20 cm below the surface and just above the saprolite, and acetonitrile-extractable imidacloprid was determined through the profile. Soil solution and extractable imidacloprid concentrations were determined by high-performance liquid chromatography. Soil solution and extractable imidacloprid concentrations were greater in the site with greater soil organic matter. Imidacloprid moved vertically and horizontally in both sites; concentrations generally declined downward in the soil profile, but preferential flow paths allowed rapid vertical movement. Horizontal movement was limited, and imidacloprid did not move to the tree drip line. We found a negative relationship between adsorbed imidacloprid concentrations and soil microarthropod populations largely in the low-organic-matter site; however, population counts were similar to other studies at Coweeta. PMID:22370410

  18. Vegetation-induced soil water repellency as a strategy in arid ecosystems. A geochemical approach in Banksia woodlands (SW Australia)

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Jiménez-Morillo, Nicasio T.; González-Pérez, Jose Antonio; Zavala, Lorena M.; Stevens, Jason; Jordan, Antonio

    2016-04-01

    research aims to study SWR and its impact on water economy in relation with soil functioning and plant strategies for water uptake in pristine BW. Results are expected to shed light on the origin and implications of SWR in the area and provide useful information for improving ongoing restoration plans. Materials and methods The study was conducted in natural BW of WA. Soil samples were collected at different soil depths (0-1, 1-10, 20-30 and 40-50 cm). Rationale for sampling depths was based on the different severities of SWR at each layer under field conditions. Soil water repellency was assessed under laboratory conditions in oven-dry samples (48 h, 105 °C) and the chemical organic assemblage of bulked soil subsamples from each layer was analysed by direct analytical pyrolysis (Py-GC/MS). Results and discussion Soil water repellency distributed discontinuously through the soil profile. The first thin layer (0-1 cm) composed of coarse sand and litter, located immediately above Banksia root clusters, showed wettable conditions. In contrast, the relatively well aggregated soil layer where the Banksia cluster root system is located (1-10 cm) was severely water-repellent. The 20-30 and 40-50 cm deep layers rendered wettable or subcritically water-repellent. After Py-GC/MS analysis, major compounds were identified and grouped according to their probable biogenic origin (lignin, polysaccharides, peptides, etc.). Among other soil organic compounds, well resolved bimodal alkane/akene (C8-C31, maxima at C13 and C26) and fatty acids series (short-chained, C5-C9, and long-chained even-numbered C12-C18) were associated to the root cluster soil layer (1-10 cm). Also, a relatively high contribution of fire-derived polycyclic aromatic hydrocarbons (PAHs) was observed (7%), which is consistent with frequent fires occurring in BW. These results point to possible indirect links between organic substances released by roots and soil wettability involving soil microorganisms. Further

  19. Antimony release from contaminated mine soils and its migration in four typical soils using lysimeter experiments.

    PubMed

    Shangguan, Yu-Xian; Zhao, Long; Qin, Yusheng; Hou, Hong; Zhang, Naiming

    2016-11-01

    Antimony (Sb) can pose great risks to the environment in mining and smelting areas. The migration of Sb in contaminated mine soil was studied using lysimeter experiments. The exchangeable concentration of soil Sb decreased with artificial leaching. The concentrations of Sb retained in the subsoil layers (5-25cm deep) were the highest for Isohumosol and Ferrosol and the lowest for Sandy soil. The Sb concentrations in soil solutions decreased with soil depth, and were adequately simulated using a logarithmic function. The Sb migration pattern in Sandy soil was markedly different from the patterns in the other soils which suggested that Sb may be transported in soil colloids. Environmental factors such as water content, soil temperature, and oxidation-reduction potential of the soil had different effects on Sb migration in Sandy soil and Primosol. The high Fe and Mn contents in Ferrosol and Isohumosol significantly decreased the mobility of Sb in these soils. The Na and Sb concentrations in soils used in the experiments positively correlated with each other (P<0.01). The Sb concentrations in soil solutions, the Sb chemical fraction patterns, and the Sb/Na ratios decreased in the order Sandy soil>Primosol>Isohumosol>Ferrosol, and we concluded that the Sb mobility in the soils also decreased in that order. PMID:27395817

  20. Antimony release from contaminated mine soils and its migration in four typical soils using lysimeter experiments.

    PubMed

    Shangguan, Yu-Xian; Zhao, Long; Qin, Yusheng; Hou, Hong; Zhang, Naiming

    2016-11-01

    Antimony (Sb) can pose great risks to the environment in mining and smelting areas. The migration of Sb in contaminated mine soil was studied using lysimeter experiments. The exchangeable concentration of soil Sb decreased with artificial leaching. The concentrations of Sb retained in the subsoil layers (5-25cm deep) were the highest for Isohumosol and Ferrosol and the lowest for Sandy soil. The Sb concentrations in soil solutions decreased with soil depth, and were adequately simulated using a logarithmic function. The Sb migration pattern in Sandy soil was markedly different from the patterns in the other soils which suggested that Sb may be transported in soil colloids. Environmental factors such as water content, soil temperature, and oxidation-reduction potential of the soil had different effects on Sb migration in Sandy soil and Primosol. The high Fe and Mn contents in Ferrosol and Isohumosol significantly decreased the mobility of Sb in these soils. The Na and Sb concentrations in soils used in the experiments positively correlated with each other (P<0.01). The Sb concentrations in soil solutions, the Sb chemical fraction patterns, and the Sb/Na ratios decreased in the order Sandy soil>Primosol>Isohumosol>Ferrosol, and we concluded that the Sb mobility in the soils also decreased in that order.

  1. CONSTRUCTION, MONITORING, AND PERFORMANCE OF TWO SOIL LINERS

    EPA Science Inventory

    A prototype soil liner and a field-scale soil liner were constructed to test whether compacted soil barrier systems could be built to meet the standard set by the U.S. Environmental Protection Agency (EPA) for saturated hydraulic conductivity (< 1 x 10'7 cm/s). In situ ponded inf...

  2. Changes in quantity and spectroscopic properties of water-extractable organic matter during soil aquifer treatment.

    PubMed

    Xue, S; Zhao, Q L; Wei, L L; Ma, X P; Tie, M

    2013-01-01

    The aim of this study was to identify qualitative and quantitative changes in the character of water-extractable organic matter (WEOM) in soils as a consequence of soil aquifer treatment (SAT). Soil samples were obtained from a soil-column system with a 2-year operation, and divided into seven layers from top to bottom: CS1 (0-12.5 cm), CS2 (12.5-25 cm), CS3 (25-50 cm), CS4 (50-75 cm), CS5 (75-100 cm), CS6 (100-125 cm) and CS7 (125-150 cm). A sample of the original soil used to pack the columns was also analysed to determine the effects of SAT. Following 2 years of SAT operation, both soil organic carbon and water-extractable organic carbon were shown to accumulate in the top soil layer (0-12.5 cm), and to decrease in soil layers deeper than 12.5 cm. The WEOM in the top soil layer was characterized by low aromaticity index (AI), low emission humification index (HIX) and low fluorescence efficiency index (F(eff)). On the other hand, the WEOM in soil layers deeper than 12.5 cm had increased values of HIX and F(eff), as well as decreased AI values relative to the original soil before SAT. In all soil layers, the percentage of hydrophobic and transphilic fractions decreased, while that of the hydrophilic fraction increased, as a result of SAT. The production of the amide-2 functional groups was observed in the top soil layer. SAT operation also led to the enrichment of hydrocarbon and amide-1 functional groups, as well as the depletion of oxygen-containing functional groups in soil layers deeper than 12.5 cm.

  3. Airflow dispersion in unsaturated soil.

    PubMed

    Gidda, T; Cann, D; Stiver, W H; Zytner, R G

    2006-01-01

    Dispersion data is abundant for water flow in the saturated zone but is lacking for airflow in unsaturated soil. However, for remediation processes such as soil vapour extraction, characterization of airflow dispersion is necessary for improved modelling and prediction capabilities. Accordingly, gas-phase tracer experiments were conducted in five soils ranging from uniform sand to clay at air-dried and wetted conditions. The disturbed soils were placed in one-dimensional stainless steel columns, with sulfur hexafluoride used as the inert tracer. The tested interstitial velocities were typical of those present in the vicinity of a soil vapour extraction well, while wetting varied according to the water-holding capacity of the soils. Results gave dispersivities that varied between 0.42 and 2.6 cm, which are typical of values in the literature. In air-dried soils, dispersion was found to increase with the pore size variability of the soil. For wetted soils, particle shape was an important factor at low water contents, while at high water contents, the proportion of macroporous space filled with water was important. The relative importance of diffusion decreased with increasing interstitial velocity and water content and was, in general, found to be minor compared to mechanical mixing across all conditions studied. PMID:16246460

  4. Sensitivity of soil organic matter in anthropogenically disturbed organic soils

    NASA Astrophysics Data System (ADS)

    Säurich, Annelie; Tiemeyer, Bärbel; Bechtold, Michel; Don, Axel; Freibauer, Annette

    2016-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. However, the variability of CO2 emissions increases with disturbance, and little is known on the soil properties causing differences between seemingly similar sites. Furthermore the driving factors for carbon cycling are well studied for both genuine peat and mineral soil, but there is a lack of information concerning soils at the boundary between organic and mineral soils. Examples for such soils are both soils naturally relatively high in soil organic matter (SOM) such as Humic Gleysols and former peat soils with a relative low SOM content due to intensive mineralization or mixing with underlying or applied mineral soil. The study aims to identify drivers for the sensitivity of soil organic matter and therefore for respiration rates of anthropogenically disturbed organic soils, especially those near the boundary to mineral soils. Furthermore, we would like to answer the question whether there are any critical thresholds of soil organic carbon (SOC) concentrations beyond which the carbon-specific respiration rates change. The German agricultural soil inventory samples all agricultural soils in Germany in an 8x8 km² grid following standardized protocols. From this data and sample base, we selected 120 different soil samples from more than 80 sites. As reference sites, three anthropogenically undisturbed peatlands were sampled as well. We chose samples from the soil inventory a) 72 g kg-1 SOC and b) representing the whole range of basic soil properties: SOC (72 to 568 g kg-1), total nitrogen (2 to 29 g kg-1), C-N-ratio (10 to 80) bulk density (0.06 to 1.41 g/cm³), pH (2.5 to 7.4), sand (0 to 95 %) and clay (2 to 70 %) content (only determined for samples with less than 190 g kg-1 SOC) as well as the botanical origin of the peat (if determinable). Additionally, iron oxides were determined for all samples. All samples were sieved (2 mm) and incubated at standardized water content and

  5. Soil Ecology

    NASA Astrophysics Data System (ADS)

    Killham, Ken

    1994-04-01

    Soil Ecology is designed to meet the increasing challenge faced by today's environmental scientists, ecologists, agriculturalists, and biotechnologists for an integrated approach to soil ecology. It emphasizes the interrelations among plants, animals, and microbes, by first establishing the fundamental physical and chemical properties of the soil habitat and then functionally characterizing the major components of the soil biota and some of their most important interactions. The fundamental principles underpinning soil ecology are established and this then enables an integrated approach to explore and understand the processes of soil nutrient (carbon, nitrogen, and phosphorus) cycling and the ecology of extreme soil conditions such as soil-water stress. Two of the most topical aspects of applied soil ecology are then selected. First, the ecology of soil pollution is examined, focusing on acid deposition and radionuclide pollution. Second, manipulation of soil ecology through biotechnology is discussed, illustrating the use of pesticides and microbial inocula in soils and pointing toward the future by considering the impact of genetically modified inocula on soil ecology.

  6. Clumped isotopes in soil carbonate

    NASA Astrophysics Data System (ADS)

    Quade, J.; Eiler, J. M.; Daeron, M.

    2011-12-01

    We are monitoring soil temperature and measuring clumped isotopes from modern soil carbonate in North and South America, Hawaii, and Tibet. Clumped isotopes from 50-200 cm soil depth show a strong and systematic bias toward formation in the warmest summer months. For example, soil carbonate as these depths exceed local mean annual temperature by 10-15°C in soils from India and Tibet. Clumped isotope temperatures from modern carbonate increase very regularly (r2 = 0.90) with elevation gain from lowland India to Tibet. Here carbonate forms largely in May-June, just prior to the arrival of the soil-cooling monsoon rains. In this regard, clumped isotopes hold great promise as a paleoaltimeter on the plateau. The question is whether these patterns from a monsoonal climate can be generalized (and they probably can't be) to other climate regimes when soil carbonate forms at a different time of year than the pre-monsoon. For example, in winter-dominated rainfall regimes soil carbonate may form as soils dewater in the spring and soil temperature is closer to mean annual temperature. These are open questions. Diurnal temperature information is also archived in the upper 30 cm of soils. Modern carbonate in Tibet appears to form in very late morning through afternoon, when the surface soil is warmest. Shade and aspect also strongly influence measured soil and clumped isotope temperatures. Both variables will have to be controlled for to correctly interpret clumped isotopes from the paleosol record. Clumped isotope values correlate with δ13C values in soil carbonate from shallowly buried (<1 km) paleosols from Nepal and Pakistan. This makes sense since δ13C values in the sub-tropics are determined the fraction of tree (C3) to grass (C4) cover, and soils under tree-covered areas are cooler. Finally, clumped isotopes from carbonates are reset to higher temperatures at burial depths roughly >2-3 km or >50-75°C. This was reproduced from paleosol and lake carbonates from three

  7. Zinc movement in sewage-sludge-treated soils as influenced by soil properties, irrigation water quality, and soil moisture level

    USGS Publications Warehouse

    Welch, J.E.; Lund, L.J.

    1989-01-01

    A soil column study was conducted to assess the movement of Zn in sewage-sludge-amended soils. Varables investigated were soil properties, irrigation water quality, and soil moisture level. Bulk samples of the surface layer of six soil series were packed into columns, 10.2 cm in diameter and 110 cm in length. An anaerobically digested municipal sewage sludge was incorporated into the top 20 cm of each column at a rate of 300 mg ha-1. The columns were maintained at moisture levels of saturation and unsaturation and were leached with two waters of different quality. At the termination of leaching, the columns were cut open and the soil was sectioned and analyzed. Zinc movement was evaluated by mass balance accounting and correlation and regression analysis. Zinc movement in the unsaturated columns ranged from 3 to 30 cm, with a mean of 10 cm. The difference in irrigation water quality did not have an effect on Zn movement. Most of the Zn applied to the unsaturated columns remained in the sludge-amended soil layer (96.1 to 99.6%, with a mean of 98.1%). The major portion of Zn leached from the sludge-amended soil layer accumulated in the 0- to 3-cm depth (35.7 to 100%, with a mean of 73.6%). The mean final soil pH values decreased in the order: saturated columns = sludge-amended soil layer > untreated soils > unsaturated columns. Total Zn leached from the sludge-amended soil layer was correlated negatively at P = 0.001 with final pH (r = -0.85). Depth of Zn movement was correlated negatively at P = 0.001 with final pH (r = -0.91). Multiple linear regression analysis showed that the final pH accounted for 72% of the variation in the total amounts of Zn leached from the sludge-amended soil layer of the unsaturated columns and accounted for 82% of the variation in the depth of Zn movement among the unsaturated columns. A significant correlation was not found between Zn and organic carbon in soil solutions, but a negative correlation significant at P = 0.001 was found

  8. Carbohydrates and thermal analysis reflects changes in soil organic matter stability after forest expansion on abandoned grassland

    NASA Astrophysics Data System (ADS)

    Guidi, Claudia; Vesterdal, Lars; Cannella, David; Leifeld, Jens; Gianelle, Damiano; Rodeghiero, Mirco

    2014-05-01

    Grassland abandonment, followed by progressive forest expansion, is the dominant land-use change in the Southern Alps, Europe. Land-use change can affect not only the amount of organic matter (OM) in soil but also its composition and stability. Our objective was to investigate changes in organic matter properties after forest expansion on abandoned grasslands, combining analysis of carbohydrates, indicative of labile OM compounds with prevalent plant or microbial origin, with thermal analysis. Thermal analysis was used as a rapid assessment method for the characterization of SOM stability. A land-use gradient was investigated in four land-use types in the subalpine area of Trentino region, Italy: i) managed grassland, mown and fertilized for the past 100 years; ii) grassland abandoned since 10 years, with sparse shrubs and Picea abies saplings; iii) early-stage forest, dominated by P. abies and established on a grassland abandoned around 1970; iv) old forest, dominated by Fagus sylvatica and P. abies. Mineral soil was sampled at three subplots in each land use type with eight soil cores, which were subsequently pooled by depth (0-5 cm, 5-10 cm, 10-20 cm). Sugars were extracted from bulk soil samples through acid hydrolysis with H2SO4 (0.5 M). The analytical composition of sugar monomers was performed with HPAEC technology (Dionex ICS5000), equipped with PAD-detection. Thermal stability was assessed with a differential scanning calorimeter DSC100, heating soil samples up to 600°C at a heating rate of 10°C min-1 in synthetic air. Peak height (W g OC-1) of 1st DSC exotherm, dominated by burning of labile OM compounds, was used as thermal stability index. In the abandoned grassland, carbohydrates compounds accounted for a greater proportion of soil OC than in other land use types. Microbially derived sugars, as rhamnose and galactose, were more abundant in managed and abandoned grasslands compared with early-stage and old forest. The amount of thermally labile sugars

  9. Cloning of chrysanthemum high-affinity nitrate transporter family (CmNRT2) and characterization of CmNRT2.1.

    PubMed

    Gu, Chunsun; Song, Aiping; Zhang, Xiaoxue; Wang, Haibin; Li, Ting; Chen, Yu; Jiang, Jiafu; Chen, Fadi; Chen, Sumei

    2016-01-01

    The family of NITRATE TRANSPORTER 2 (NRT2) proteins belongs to the high affinity transport system (HATS) proteins which acts at low nitrate concentrations. The relevant gene content of the chrysanthemum genome was explored here by isolating the full length sequences of six distinct CmNRT2 genes. One of these (CmNRT2.1) was investigated at the functional level. Its transcription level was inducible by low concentrations of both nitrate and ammonium. A yeast two hybrid assay showed that CmNRT2.1 interacts with CmNAR2, while a BiFC assay demonstrated that the interaction occurs at the plasma membrane. Arabidopsis thaliana plants heterologously expressing CmNRT2.1 displayed an enhanced rate of labeled nitrogen uptake, suggesting that CmNRT2.1 represents a high affinity root nitrate transporter. PMID:27004464

  10. The effect of soil on cork quality

    NASA Astrophysics Data System (ADS)

    Pestana, Miguel; Gomes, Alberto

    2014-10-01

    The present work aimed to contribute for a better knowledge regarding soil features as cork quality indicators for stoppers. Cork sampling was made in eight Cork oak stands (montados de sobreiro) located in different Plio-Plistocene sedimentary formations of Península de Setúbal and Carbonic shistes from paleozoic periods in Saw Grândola, both in southern Tagus River region The samples used to classify the cork as stopper for wine bottles were obtained in eight cork oak stands located in “Península de Setúbal”, south of the River Tagus, covering soils of different types of sandstones of the Plio-plistocene In each stand, we randomly chose five circular plots with 30 m radius. Five trees with same stripping conditions determined by the dendrometric features: HD (height stipping, PBH (perimeter at breaster height), and percentage canopy cover, trees vegetative condition (defoliation degree) stand features (density), and site conditions (soil type and orientation). In the center of each plo