Science.gov

Sample records for 10-cm diameter crystal

  1. Laparoscopic Retroperitoneal Nephron-Sparing Surgery Without Renal Artery Clamping with Preoperative Selective Arterial Embolization for Management of Right Renal Angiomyolipoma of Diameter 10 cm: A Case Report

    PubMed Central

    Hoshii, Tatsuhiko; Morita, Shinichi; Ikeda, Yohei; Hasegawa, Go

    2017-01-01

    Abstract A 38-year-old female without the tuberous sclerosis complex was diagnosed with right renal angiomyolipoma of 10 cm in diameter. She underwent laparoscopic retroperitoneal nephron-sparing surgery without renal artery clamping with preoperative selective arterial embolization to avoid a significant risk of hemorrhage and the damage of the renal function during nephron-sparing surgery. The tumor was resected completely. The time taken to complete the procedure was 4 hours 11 minutes and blood loss was 780 mL. She was transfused 400 mL of autologous blood. PMID:28265590

  2. Submicron diameter single crystal sapphire optical fiber

    DOE PAGES

    Hill, Cary; Homa, Daniel; Liu, Bo; ...

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers ismore » the first step in achieving optical and sensing performance on par with its fused silica counterpart.« less

  3. Submicron diameter single crystal sapphire optical fiber

    SciTech Connect

    Hill, Cary; Homa, Daniel; Liu, Bo; Yu, Zhihao; Wang, Anbo; Pickrell, Gary

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers is the first step in achieving optical and sensing performance on par with its fused silica counterpart.

  4. The historical trend in float zone crystal diameters and power requirements for float zoned silicon crystals

    NASA Technical Reports Server (NTRS)

    Kramer, H. G.

    1981-01-01

    The power needed to zone silicon crystals by radio frequency heating was analyzed. The heat loss mechanisms are examined. Curves are presented for power as a function of crystal diameter for commercial silicon zoning.

  5. Measurements of Output Factors For Small Photon Fields Up to 10 cm x 10 cm

    NASA Astrophysics Data System (ADS)

    Bacala, Angelina

    Field output factors (OF) for photon beams from a 6 MV medical accelerator were measured using five different detectors in a scanning water phantom. The measurements were taken for square field sizes of integral widths ranging from 1 cm to 10 cm for two reference source-to-surface distances (SSD) and depths in water. For the diode detectors, square field widths as small as 2.5 mm were also studied. The photon beams were collimated by using either the jaws or the multileaf collimators. Measured OFs are found to depend upon the field size, SSD, depth and also upon the type of beam collimation, size and type of detector used. For field sizes larger than 3 cm x 3 cm, the OF measurements agree to within 1% or less. The largest variation in OF occurs for jawsshaped field of size 1 cm x 1cm, where a difference of more than 18% is observed.

  6. Crystal-melt interface shape of Czochralski-grown large diameter germanium crystals

    NASA Technical Reports Server (NTRS)

    Roth, M.; Azoulay, M.; Gafni, G.; Mizrachi, M.

    1990-01-01

    Crystal-melt interface shapes of 100 to 200 mm diameter 111-line Ge grown by the Czochralski technique have been examined using the method of fast withdrawal from the melt. Initially, the interface shape is convex, then transforms gradually into a sigmoidal shape, becomes nearly planar at about one third of the final crystal length, and finally assumes a concave profile with progressively increasing curvature. The nearly planar interface has a double-facet structure, with an annular facet at the edge of the crystal in addition to the central (111) facet. Formation of the annular facet is accompanied by a giant oscillation of the pull rate when the maximum average pull rate is exceeded. Such oscillation is detrimental to crystal quality, since it introduces a region of high dislocation density. An average pull rate maximum of 2 cm/h has been found to allow for a smooth growth of 200 mm diameter crystals. The origin of the pull rate perturbation is discussed in terms of an instantaneous change in the equilibrium shape of the meniscus.

  7. Growth of 450 mm diameter semiconductor grade silicon crystals

    NASA Astrophysics Data System (ADS)

    Lu, Zheng; Kimbel, Steven

    2011-03-01

    Research and development of the next generation 450 mm semiconductor grade silicon crystal and related technology have been carried out in MEMC following the company's philosophy to stay one generation ahead on research and development. The first 450 mm dislocation free crystal was grown in early 2009 and the first 450 mm semiconductor wafer was produced shortly after. General challenges in crystal growth process, puller, and hot zone designs, as well as control, automation, and handling are discussed in this paper. General considerations on working with customers and equipment manufacturers on fundamental crystal and wafer quality characteristics are also discussed.

  8. The effect of growth rate, diameter and impurity concentration on structure in Czochralski silicon crystal growth

    NASA Technical Reports Server (NTRS)

    Digges, T. G., Jr.; Shima, R.

    1980-01-01

    It is demonstrated that maximum growth rates of up to 80% of the theoretical limit can be attained in Czochralski-grown silicon crystals while maintaining single crystal structure. Attaining the other 20% increase is dependent on design changes in the grower, to reduce the temperature gradient in the liquid while increasing the gradient in the solid. The conclusions of Hopkins et al. (1977) on the effect of diameter on the breakdown of structure at fast growth rates are substantiated. Copper was utilized as the test impurity. At large diameters (greater than 7.5 cm), concentrations of greater than 1 ppm copper were attained in the solid (45,000 ppm in the liquid) without breakdown at maximum growth speeds. For smaller diameter crystals, the sensitivity of impurities is much more apparent. For solar cell applications, impurities will limit cell performance before they cause crystal breakdown for fast growth rates of large diameter crystals.

  9. Preparation of Large-Diameter GaAs Crystals.

    DTIC Science & Technology

    1981-09-18

    implantation as a reliable, cost-effective fabrication technology for high-performance GaAs MESFET and integrated circuits . To address these problems, the...have been prepared by in-situ synthesis and pulled from pyrolytic boron nitride (PBN) crucibles, and improved FET channels by direct ion-implantation of...viii SUMMARY Significant progress has been made toward developing large- diai.3ter, semi-insulating GaAs crystals of improved quality by LEC growth for

  10. 10 cm x 10 cm Single Gas Electron Multiplier (GEM) X-ray Fluorescence Detector for Dilute Elements

    NASA Astrophysics Data System (ADS)

    Shaban, E. H.; Siddons, D. P.; Seifu, D.

    2014-03-01

    We have built and tested a 10 cm × 10 cm single Gas Electron Multiplier (GEM) X-ray detector to probe dilute amounts of Fe in a prepared sample. The detector uses Argon/Carbon Dioxide (75/25) gas mixture flowing at a slow rate through a leak proof Plexi-glass enclosure held together by O-rings and screws. The Fluorescence X-ray emitted by the element under test is directed through a Mylar window into the drift region of the detector where abundant gas is flowing. The ionized electrons are separated, drifted into the high electric field of the GEM, and multiplied by impact ionization. The amplified negatively charged electrons are collected and further amplified by a Keithley amplifier to probe the absorption edge of the element under test using X-ray absorption spectroscopy technique. The results show that the GEM detector provided good results with less noise as compared with a Silicon drift detector (SDD).

  11. Altimeter error sources at the 10-cm performance level

    NASA Technical Reports Server (NTRS)

    Martin, C. F.

    1977-01-01

    Error sources affecting the calibration and operational use of a 10 cm altimeter are examined to determine the magnitudes of current errors and the investigations necessary to reduce them to acceptable bounds. Errors considered include those affecting operational data pre-processing, and those affecting altitude bias determination, with error budgets developed for both. The most significant error sources affecting pre-processing are bias calibration, propagation corrections for the ionosphere, and measurement noise. No ionospheric models are currently validated at the required 10-25% accuracy level. The optimum smoothing to reduce the effects of measurement noise is investigated and found to be on the order of one second, based on the TASC model of geoid undulations. The 10 cm calibrations are found to be feasible only through the use of altimeter passes that are very high elevation for a tracking station which tracks very close to the time of altimeter track, such as a high elevation pass across the island of Bermuda. By far the largest error source, based on the current state-of-the-art, is the location of the island tracking station relative to mean sea level in the surrounding ocean areas.

  12. Control of Crystal Orientation and Diameter of Silicon Nanowire Using Anodic Aluminum Oxide Template

    NASA Astrophysics Data System (ADS)

    Shimizu, Tomohiro; Inoue, Fumihiro; Wang, Chonge; Otsuka, Shintaro; Tada, Yoshihiro; Koto, Makoto; Shingubara, Shoso

    2013-06-01

    The control of the crystal orientation and diameter of vertically grown epitaxial Si nanowires was demonstrated using a combination of a vapor-liquid-solid (VLS) growth technique and the use of an anodic aluminum oxide (AAO) template on a single-crystal Si substrate. The [100], [110], and [111] nanowires were selectively obtained by choosing the Si substrate with appropriate crystal orientation. The diameter of a Si nanowire in the AAO template could be controlled by the modification of the pore size of the AAO template with anodic voltage during anodization.

  13. Evaluation of inpatient clinical documentation readiness for ICD-10-CM.

    PubMed

    DeAlmeida, Dilhari R; Watzlaf, Valerie J; Anania-Firouzan, Patti; Salguero, Otto; Rubinstein, Elaine; Abdelhak, Mervat; Parmanto, Bambang

    2014-01-01

    This research study examined the gaps in documentation that occur when coding in ICD-10-CM. More than 4,000 diagnoses from all chapters were coded from 656 electronic documents obtained from a large integrated healthcare facility at the time the study was conducted (2012). After the documents were coded, areas for documentation improvement were identified for chapters that resulted in deficiencies in documentation, and a quick reference guide was developed. The overall absent documentation percentage was 15.4 percent. The 10 chapters with the highest percentage of absent documentation were chapter 7 (Diseases of Eye and Adnexa), with 67.65 percent (p < .001); chapter 8 (Diseases of Ear and Mastoid Process), with 63.64 percent (p < .001); chapter 13 (Diseases of the Musculoskeletal System and Connective Tissue), with 46.05 percent (p < .001); chapter 14 (Diseases of the Genitourinary System), with 40.29 percent (p < .001); chapter 10 (Diseases of Respiratory System), with 35.52 percent (p < .001); chapter 1 (Infectious and Parasitic Diseases), with 32.88 percent (p < .001); chapter 12 (Diseases of the Skin and Subcutaneous Tissue), with 32.35 percent (p < .001); chapter 2 (Neoplasms), with 25.45 percent (p < .001); chapter 4 (Endocrine, Nutritional and Metabolic Diseases), with 14.58 percent (p < .001); and chapter 17 (Congenital Malformations, Deformations, and Chromosomal Abnormalities), with 12.50 percent. We addressed the deficient areas in the quick reference guide developed for clinicians and technology vendors. Having complete and accurate documentation would benefit both the clinician and the patient in providing the highest quality of care.

  14. Evaluation of Argonne 9-cm and 10-cm Annular Centrifugal Contactors for SHINE Solution Processing

    SciTech Connect

    Wardle, Kent E.; Pereira, Candido; Vandegrift, George

    2015-02-01

    Work is in progress to evaluate the SHINE Medical Technologies process for producing Mo-99 for medical use from the fission of dissolved low-enriched uranium (LEU). This report addresses the use of Argonne annular centrifugal contactors for periodic treatment of the process solution. In a letter report from FY 2013, Pereira and Vandegrift compared the throughput and physical footprint for the two contactor options available from CINC Industries: the V-02 and V-05, which have rotor diameters of 5 cm and 12.7 cm, respectively. They suggested that an intermediately sized “Goldilocks” contactor might provide a better balance between throughput and footprint to meet the processing needs for the uranium extraction (UREX) processing of the SHINE solution to remove undesired fission products. Included with the submission of this letter report are the assembly drawings for two Argonne-design contactors that are in this intermediate range—9-cm and 10-cm rotors, respectively. The 9-cm contactor (drawing number CE-D6973A, stamped February 15, 1978) was designed as a single-stage unit and built and tested in the late 1970s along with other size units, both smaller and larger. In subsequent years, a significant effort to developed annular centrifugal contactors was undertaken to support work at Hanford implementing the transuranic extraction (TRUEX) process. These contactors had a 10-cm rotor diameter and were fully designed as multistage units with four stages per assembly (drawing number CMT-E1104, stamped March 14, 1990). From a technology readiness perspective, these 10-cm units are much farther ahead in the design progression and, therefore, would require significantly less re-working to make them ready for UREX deployment. Additionally, the overall maximum throughput of ~12 L/min is similar to that of the 9-cm unit (10 L/min), and the former could be efficiently operated over much of the same range of throughput. As a result, only the 10-cm units are considered here

  15. 77 FR 32975 - AHRQ Workgroups on ICD-10-CM/PCS Conversion of Quality Indicators (QIs)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... HUMAN SERVICES Agency for Healthcare Research and Quality AHRQ Workgroups on ICD-10-CM/PCS Conversion of... nominations for members of approximately 10 multidisciplinary workgroups, to be convened by AHRQ's contractor, on ICD-10-CM/PCS conversion of the AHRQ Quality Indicators (QIs). DATES: Please submit nominations...

  16. Effect of internal radiation on the diameter instability observed during the Czochralski growth of Cr4+, Nd3+: YAG crystal

    NASA Astrophysics Data System (ADS)

    Faiez, Reza; Rezaei, Yazdan

    2016-12-01

    In this paper, the growth process and the absorption spectra properties of the Cr4+, Nd3+:YAG crystal are reported. The crystal diameter instability, which occurred just beneath the shoulder, is associated with a nearly sharp change in the crystal color. The effect is described in terms of the internal radiative heat transport through the semitransparent garnet crystal which is highly sensitive to the optical properties of the dopant ions. The color gradient along the crystal is assigned to the charge compensation mechanism almost failed at around the shoulder stage of the process, and the instability is mainly attributed to a significant decrease in the radiative heat transfer within the crystal. The effect of radiative heat transfer, within the crystal and the melt, on the crystallization front shape is numerically investigated to simulate the observed instability. Due to the large segregation coefficient of chromium ions, increasing in the optical thickness of the crystal corresponds to a decrease in that of the melt. It is shown that, both of these variations of optical properties result in a significant decrease in the convexity of the crystal-melt interface. The effect of impurity deposition on the crystal surface was found to lower the critical Reynolds number at which the interface inversion occurs.

  17. Handling Age Specification in the SNOMED CT to ICD-10-CM Cross-map

    PubMed Central

    Xu, Junchuan; Fung, Kin Wah

    2012-01-01

    A SNOMED CT-encoded problem list will be required to satisfy the Certification Criteria for Stage 2 “Meaningful Use” of the EHR incentive program. ICD-10-CM will be replacing ICD-9-CM as the reimbursement code set in the near future. Having a cross-map from SNOMED CT to ICD-10-CM will promote the use of SNOMED CT as the primary problem list terminology, while easing the transition to ICD-10-CM. This rule-based map will support semi-automatic generation of ICD-10-CM codes from SNOMED CT-encoded data. Among the different types of rules, the age rule is used to handle age-specific code assignment in ICD-10-CM. To supplement the manual process of creation of age rules, a special QA process was implemented to flag maps that were potentially missing age rules. The QA flagged 342 concepts for review (out of 7,277), of which 172 concepts (50.3%) were true positives. Without the special QA, many of the age rules would have been missed. PMID:23304377

  18. Results from the Veterans Health Administration ICD-10-CM/PCS Coding Pilot Study.

    PubMed

    Weems, Shelley; Heller, Pamela; Fenton, Susan H

    2015-01-01

    The Veterans Health Administration (VHA) of the US Department of Veterans Affairs has been preparing for the October 1, 2015, conversion to the International Classification of Diseases, Tenth Revision, Clinical Modification and Procedural Coding System (ICD-10-CM/PCS) for more than four years. The VHA's Office of Informatics and Analytics ICD-10 Program Management Office established an ICD-10 Learning Lab to explore expected operational challenges. This study was conducted to determine the effects of the classification system conversion on coding productivity. ICD codes are integral to VHA business processes and are used for purposes such as clinical studies, performance measurement, workload capture, cost determination, Veterans Equitable Resource Allocation (VERA) determination, morbidity and mortality classification, indexing of hospital records by disease and operations, data storage and retrieval, research purposes, and reimbursement. The data collection for this study occurred in multiple VHA sites across several months using standardized methods. It is commonly accepted that coding productivity will decrease with the implementation of ICD-10-CM/PCS. The findings of this study suggest that the decrease will be more significant for inpatient coding productivity (64.5 percent productivity decrease) than for ambulatory care coding productivity (6.7 percent productivity decrease). This study reveals the following important points regarding ICD-10-CM/PCS coding productivity: 1. Ambulatory care ICD-10-CM coding productivity is not expected to decrease as significantly as inpatient ICD-10-CM/PCS coding productivity. 2. Coder training and type of record (inpatient versus outpatient) affect coding productivity. 3. Inpatient coding productivity is decreased when a procedure requiring ICD-10-PCS coding is present. It is highly recommended that organizations perform their own analyses to determine the effects of ICD-10-CM/PCS implementation on coding productivity.

  19. Conducting Retrospective Ontological Clinical Trials in ICD-9-CM in the Age of ICD-10-CM

    PubMed Central

    Venepalli, Neeta K; Shergill, Ardaman; Dorestani, Parvaneh; Boyd, Andrew D

    2014-01-01

    OBJECTIVE To quantify the impact of International Classification of Disease 10th Revision Clinical Modification (ICD-10-CM) transition in cancer clinical trials by comparing coding accuracy and data discontinuity in backward ICD-10-CM to ICD-9-CM mapping via two tools, and to develop a standard ICD-9-CM and ICD-10-CM bridging methodology for retrospective analyses. BACKGROUND While the transition to ICD-10-CM has been delayed until October 2015, its impact on cancer-related studies utilizing ICD-9-CM diagnoses has been inadequately explored. MATERIALS AND METHODS Three high impact journals with broad national and international readerships were reviewed for cancer-related studies utilizing ICD-9-CM diagnoses codes in study design, methods, or results. Forward ICD-9-CM to ICD-10-CM mapping was performing using a translational methodology with the Motif web portal ICD-9-CM conversion tool. Backward mapping from ICD-10-CM to ICD-9-CM was performed using both Centers for Medicare and Medicaid Services (CMS) general equivalence mappings (GEMs) files and the Motif web portal tool. Generated ICD-9-CM codes were compared with the original ICD-9-CM codes to assess data accuracy and discontinuity. RESULTS While both methods yielded additional ICD-9-CM codes, the CMS GEMs method provided incomplete coverage with 16 of the original ICD-9-CM codes missing, whereas the Motif web portal method provided complete coverage. Of these 16 codes, 12 ICD-9-CM codes were present in 2010 Illinois Medicaid data, and accounted for 0.52% of patient encounters and 0.35% of total Medicaid reimbursements. Extraneous ICD-9-CM codes from both methods (Centers for Medicare and Medicaid Services general equivalent mapping [CMS GEMs, n = 161; Motif web portal, n = 246]) in excess of original ICD-9-CM codes accounted for 2.1% and 2.3% of total patient encounters and 3.4% and 4.1% of total Medicaid reimbursements from the 2010 Illinois Medicare database. DISCUSSION Longitudinal data analyses post-ICD-10

  20. Proposed ICD-10-CM Surveillance Case Definitions for Injury Hospitalizations and Emergency Department Visits.

    PubMed

    Hedegaard, Holly B; Johnson, Renee L; Ballesteros, Michael F

    2017-01-01

    This report describes a collaboration between the National Center for Health Statistics and the National Center for Injury Prevention and Control to develop proposed surveillance case definitions for injury hospitalizations and emergency department (ED) visits for use with administrative data sets coded using the International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM). The proposed ICD-10-CM surveillance case definitions were developed by applying General Equivalence Mappings to the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) definitions. As with the ICD-9-CM definitions, there are slight differences between the proposed ICD-10-CM surveillance case definition for injury hospitalizations and the one for ED visits. The inclusion criteria for an injury hospitalization requires a case to have a principal diagnosis of one of the included nature-of-injury (injury diagnosis) codes. The inclusion criteria for an injury ED visit requires the case to have either a principal diagnosis of one of the included nature-of-injury codes or the presence of selected external-cause codes. The ICD-10-CM nature-of-injury and external-cause codes included in the proposed definitions are presented and caveats for use of the proposed definitions are described.

  1. Lessons Learned from an ICD-10-CM Clinical Documentation Pilot Study

    PubMed Central

    Moczygemba, Jackie; Fenton, Susan H

    2012-01-01

    On October 1, 2013, the International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) will be mandated for use in the United States in place of the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). This new classification system will used throughout the nation's healthcare system for recording diagnoses or the reasons for treatment or care. A pilot study was conducted to determine whether current levels of inpatient clinical documentation provide the detail necessary to fully utilize the ICD-10-CM classification system for heart disease, pneumonia, and diabetes cases. The design of this pilot study was cross-sectional. Four hundred ninety-one de-identified records from two sources were coded using ICD-10-CM guidelines and codebooks. The findings of this study indicate that healthcare organizations need to assess clinical documentation and identify gaps. In addition, coder proficiency should be assessed prior to ICD-10-CM implementation to determine the need for further education and training in the biomedical sciences, along with training in the new classification system. PMID:22548021

  2. Physicians’ Outlook on ICD-10-CM/PCS and Its Effect on Their Practice

    PubMed Central

    Watzlaf, Valerie; Alkarwi, Zahraa; Meyers, Sandy; Sheridan, Patty

    2015-01-01

    Background The United States is one of the last countries to change from ICD-9-CM to ICD-10-CM/PCS. The compliance date for implementation of ICD-10-CM/PCS is expected to fall on October 1, 2015. Objectives Evaluate physicians’ perceptions on the change from ICD-9-CM to ICD-10-CM/PCS and its effect on their practice, determine how HIM professionals can assist in this transition, and assess what resources are needed to aid in the transition. Results Twenty physicians were asked to participate in one of three focus groups. Twelve physicians (60 percent) agreed to participate. Top concerns included electronic health record software readiness, increase in documentation specificity and time, ability of healthcare professionals to learn a new language, and inadequacy of current training methods and content. Conclusion Physicians expressed that advantages of ICD-10-CM/PCS were effective data analytics and complexity of patient cases with more specific codes. Health information management professionals were touted as needed during the transition to create simple, clear specialty guides and crosswalks as well as education and training tools specific for physicians. PMID:26807074

  3. Crystallization and fusion behaviors, observed by adiabatic calorimetry, of benzene confined in silica mesopores with uniform diameters

    NASA Astrophysics Data System (ADS)

    Nagoe, Atsushi; Oguni, Masaharu; Fujimori, Hiroki

    2015-03-01

    Heat capacities and spontaneous enthalpy-relaxation effects of the benzene confined in silica MCM-41 and SBA-15 pores with uniform diameters were measured by high-precision adiabatic calorimetry. The fusion temperatures and fusion enthalpies determined were compared with the literature results of benzene confined within pores of CPG glasses. It was confirmed, from the observed spontaneous heat-release or -absorption effects, that there exists a non-crystallizing amorphous component of confined benzene, as reported previously. The pore-diameter dependence of fusion enthalpy observed was inconsistent with the previously proposed model which suggested that the non-crystallizing amorphous component is located on the pore wall in the form of a shell-like structure of a few nm in thickness. A very slow relaxation process corresponding to a translational-diffusion motion of molecule was observed, indicating that the benzene fills the pores incompletely along the pore channel. In addition, we found that the fusion enthalpy as a function of inverse pore-diameter dependence decreases steeply in the range of 60-10 nm in diameter while gradually in the range around 5 nm.

  4. ICD-10-CM/PCS: Transferring Knowledge from ICD-9-CM

    PubMed Central

    Sand, Jaime N.; Elison-Bowers, Patt

    2013-01-01

    The transition to ICD-10-CM/PCS has expanded educational opportunities for educators and trainers who are taking on the responsibility of training coders on the new system. Coding education currently faces multiple challenges in the areas of how to train the new workforce, what might be the most efficient method of providing that training, how much retraining of the current workforce with ICD-9-CM training will be required, and how to meet the national implementation deadline of 2014 in the most efficacious manner. This research sought to identify if there was a difference between a group of participants with no knowledge of ICD-9-CM and those with some knowledge of ICD-9-CM in scores on an ICD-10-CM/PCS quiz. Results indicate a difference, supporting the idea of knowledge transfer between the systems and providing additional insight into coding education. PMID:23861677

  5. 78 FR 70558 - Review of Proposed Changes with ICD-10-CM/PCS; Conversion of Quality IndicatorsTM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... Quality Review of Proposed Changes with ICD-10-CM/PCS; Conversion of Quality Indicators TM (QIs) AGENCY..., Clinical Modification/Procedure Coding System'' (ICD-10- CM and ICD-10-PCS) codes. These changes would be applicable to hospital discharges occurring on or after October 1, 2014. The proposed ICD-10- CM/PCS...

  6. Measurements of mode field diameter and effective area of photonic crystal fibers by far-field scanning technique

    NASA Astrophysics Data System (ADS)

    Miyagi, Kazuya; Namihira, Yoshinori; Razzak, S. M. Abdur; Kaijage, Shubi F.; Begum, Feroza

    2010-07-01

    We have demonstrated that the correction factor k n = A eff/( πw 2), where ω = MFD/2 (MFD: mode field diameter), is above 1.20 for photonic crystal fibers (PCFs) with structural parameters in the range of d/Λ ≅ 0.40 to 0.90 ( d/Λ ratio of hole diameter d and pitch Λ). By using the far-field scanning (FFS) technique and the finite difference method, the results of experimental measurements and numerical simulations differed by only 0.9 to 3.0% for two types of PCFs. The finding that k n ≠ 1.0 for PCFs indicates that their electrical field distribution is non-Gaussian and cannot be determined by assuming a conventional step-index distribution for PCFs. It was also found that the ITU-T Petermann II definition is the most suitable for MFD measurements of PCFs with non-Gaussian distribution.

  7. Growth and Characterization of Large Diameter CdNzTe Crystals

    DTIC Science & Technology

    2006-05-01

    not damaged during the annealing process. A future outlook based on the results of a longer-term effort in CZT growth and substrate fabrication in... end of the crystallization process. This signal is collected by using a high precision digital multimeter equipped with 8 channels analog scanner. The...the program or manually from the controller front panel keypad), all warning and error messages, etc. The computer program was written in

  8. The next big challenge for EPs: The transition to ICD-10-CM coding system.

    PubMed

    2015-08-01

    The long-delayed transition to the International Classification of Diseases, Clinical Modification administrative codes (lCD-10-CM) is set to take place in October, presenting a host of challenges for EPs. A new analysis suggests roughly a quarter of the clinical encounters that take place in the ED will involve complexity in the transition to the new system. Further, experts anticipate workflow challenges as well as new considerations when making planning decisions and reporting to public health departments. The number of codes available to providers will jump from 14,000 to 80,000 with the transition to the new coding system. Investigators found that that 23% of the visits, or 27% of the codes, emergency medicine physicians use are complex. The new coding system requires much more specificity, but there are also instances in which definitions have been altered or blended together, essentially changing the concepts described. While all EPs will face some challenges with the new coding system, analysts are particularly concerned about smaller EDs and physician groups because these practices typically don't have the ICD-10-CM implementation teams that larger systems have.

  9. Manufacturing Methods and Technology Engineering for ’Growth of Large Diameter Nd: YAG Laser Crystals

    DTIC Science & Technology

    1983-07-01

    dilk- I -t TT ,p a.pO) None 18 %UPPLEMENTARY NOTES None 19 KEY WORUD (C-n-inYe o -tfd*iiU* IN.C. , indYIa eY fl/Y f, I0oGk -b-t) Laser Crystals Nd : YAG ...blossoms, or other defects. The first delivery of 12 engineering laser rods was taken from one completed boule- The tested rods were found to meet...It appears that even larger boules are feasible with the )rcpei growth equipment, Submitted test reports were acceised. A final demonstration of the

  10. Organic blend semiconductors and transistors with hole mobility exceeding 10 cm2/Vs (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Paterson, Alexandra F.; Anthopoulos, Thomas D.

    2015-10-01

    Plastic electronics that can be manufactured using solution-based methods are the subject of great research interest due to their potential for low-cost, large-area electronic applications. The interest in this field has led to considerable research and subsequent advances in device performance. To this end solution-processed organic thin-film transistors (OTFTs) have shown impressive improvements in recent years through the increasing values of charge carrier mobility. Here we report the development of next generation organic blend materials for OTFTs with hole mobilities of 10 cm2/Vs. These high performance devices have been achieved using a novel semiconducting blend system comprising of an amorphous-like conjugated polymer and a high mobility small molecule. The combination of a highly crystalline small molecule with the polymer binder aids the formation of uniform films as well as enables an element of control over the nucleation and growth of the small molecule. The polymer binders investigated belongs to the family of indacenodithiophene-based copolymers which are renowned for their high carrier mobilities regardless of their apparent structural disorder. The addition of the polymer with carefully chosen small molecules is found to further increase the hole mobility of the resulting blend OTFT to over 10 cm2/Vs. These organic devices provide an interesting insight into this rather complex blend system, highlighting the correlation between the morphology developed following solution processing and device performance, as well as exploring the role of each of the two components in the blend in terms of their contribution to charge transport.

  11. Estimation of CO2 diffusion coefficient at 0-10 cm depth in undisturbed and tilled soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion coefficients (D) of CO2 at 0 – 10 cm layers in undisturbed and tilled soil conditions were estimated using Penman, Millington-Quirk, Ridgwell et al. (1999), Troeh et al., and Moldrup et al. models. Soil bulk density and volumetric soil water content ('v) at 0 – 10 cm were measured on April...

  12. 77 FR 40620 - AHRQ Workgroups on ICD-10-CM/PCS Conversion of Quality Indicators (QIs) - Extension Date for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... HUMAN SERVICES Agency for Healthcare Research and Quality AHRQ Workgroups on ICD-10-CM/PCS Conversion of... Quality (AHRQ) is seeking nominations for members of approximately 10 multidisciplinary workgroups, to be convened by AHRQ's contractor, on ICD-10-CM/PCS conversion of the AHRQ Quality Indicators (QIs)....

  13. Assessing the planning and implementation strategies for the ICD-10-CM/PCS coding transition in Alabama hospitals.

    PubMed

    Houser, Shannon H; Morgan, Darius; Clements, Kay; Hart-Hester, Susan

    2013-01-01

    Health information management (HIM) professionals play a significant role in transitioning from ICD-9-CM to ICD-10-CM/PCS. ICD-10-CM/PCS coding will impact many operational aspects of healthcare facilities, such as physicians' documentation in health records, coders' process for review of clinical information, the billing process, and the payers' reimbursement to the healthcare facilities. This article examines the level of readiness and planning for ICD-10-CM/PCS implementation among hospitals in Alabama, identifies training methods/approaches to be used by the hospitals, and discusses the challenges to the ICD-10-CM/PCS coding transition. A 16-question survey was distributed to 116 Alabama hospital HIM directors in December 2011 with follow-up through February 2012. Fifty-three percent of respondent hospitals began the planning process in 2011, and most facilities were halfway or less than halfway to completion of specific implementation tasks. Hospital coders will be or are being trained using in-house training, through seminars/webinars, or by consultants. The impact of ICD-10-CM/PCS implementation can be minimized by training coders in advance, hiring new coders, and adjusting coders' productivity measures. Three major challenges to the transition were identified: the need to interact with physicians and other providers more often to obtain information needed to code in ICD-10-CM/PCS systems, education and training of coders and other ICD-10-CM/PCS users, and dependence on vendors for major technology upgrades for ICD-10-CM/PCS systems. Survey results provide beneficial information for HIM professionals and other users of coded data to assist in establishing sound practice standards for ICD-10-CM/PCS coding implementation. Adequate planning and preparation will be essential to the successful implementation of ICD-10-CM/PCS.

  14. Dynamic control of mode field diameter and effective area by germanium doping of hexagonal photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Miyagi, Kazuya; Namihira, Yoshinori; Kasamatsu, Yuho; Hossain, Md. Anwar

    2013-07-01

    We demonstrate dynamic control of the effective area ( A eff) of photonic crystal fibers (PCFs) in the range of 18.1-8.22 μm2 and the mode field diameter in the range of 4.78-3.42 μm. This control was realized by altering their structural properties and varying the germanium (Ge) doping rate, which changed the refractive index difference (Δ n Ge) between 1.0 and 3.0% relative to the refractive index of the silica cladding. This was achieved by adjusting the Ge doping rate in the core and changing the radius ( d core) of the doped region, i.e., by changing the equivalent refractive index, using numerical calculations. Numerical results were verified by comparison with experimental results for a fabricated Gedoped PCF obtained by far-field scanning based on the ITU-T Petermann II definition. The proposed approach will simultaneously decrease Aeff and achieves high light confinement and high nonlinearity in PCFs. It enables architectonics/controllability of highly nonlinear PCFs with passive optical devices in photonic networks and life science applications.

  15. Navigating Regulatory Change: Preliminary Lessons Learned During the Healthcare Provider Transition to ICD-10-CM/PCS

    PubMed Central

    Jackson, Veronica E; Muckerman, Alexander

    2012-01-01

    This article presents the findings of a collaborative effort between the Georgetown University Student Consulting Team and Booz Allen Hamilton to interview healthcare providers undergoing the transition to the International Classification of Diseases, Tenth Revision, Clinical Modification/Procedure Coding System (ICD-10-CM/PCS). The goals of this study were to extract a common set of trends, challenges, and lessons learned surrounding the implementation of the ICD-10-CM/PCS code set and to produce actionable information that might serve as a resource for organizations navigating the transition to ICD-10-CM/PCS. The selected survey sample focused on a subset of large hospitals, integrated health systems, and other national industry leaders who are likely to have initiated the implementation process far in advance of the October 2013 deadline. Guided by a uniform survey tool, the team conducted a series of one-on-one provider interviews with department heads, senior staff members, and project managers leading ICD-10-CM/PCS conversion efforts from six diverse health systems. As expected, the integrated health systems surveyed seem to be on or ahead of schedule for the ICD-10-CM/PCS coding transition. However, results show that as of April 2010 most providers were still in the planning stages of implementation and were working to raise awareness within their organizations. Although individual levels of preparation varied widely among respondents, the study identified several trends, challenges, and lessons learned that will enable healthcare providers to assess their own status with respect to the industry and will provide useful insight into best practices for the ICD-10-CM/PCS transition. PMID:22548022

  16. Light propagation characteristics in photonic crystal fibers with α-power profiles of air hole diameter distributions and their application to fiber collimator

    NASA Astrophysics Data System (ADS)

    Yokota, Hirohisa; Higuchi, Keiichi; Imai, Yoh

    2016-08-01

    Light propagation characteristics in photonic crystal fibers (PCFs) with α-power profiles of air hole diameter distributions were theoretically investigated. It was clarified that the intensity peak of the beam propagating in the PCF with Gaussian beam excitation varied periodically with little power attenuation. It was found that the envelope of the periodic intensity variation depended on α. We theoretically demonstrated that the PCF with the α-power profile of the air hole diameter distribution could be applied to a collimator for a conventional PCF with uniform air holes in Gaussian beam excitation to reduce coupling loss, where a PCF of appropriate length with the α-power air hole diameter distribution was spliced to a conventional PCF. It was also found that the coupling efficiency was higher for a larger α.

  17. The Complexity and Challenges of the ICD-9-CM to ICD-10-CM Transition in Emergency Departments

    PubMed Central

    Krive, Jacob; Patel, Mahatkumar; Gehm, Lisa; Mackey, Mark; Kulstad, Erik; Li, Jianrong ‘John’; Lussier, Yves A.; Boyd, Andrew D.

    2015-01-01

    Beginning October 2015, the Center for Medicare and Medicaid Services (CMS) will require medical providers to utilize the vastly expanded ICD-10-CM system. Despite wide availability of information and mapping tools for the next generation of the ICD classification system, some of the challenges associated with transition from ICD-9-CM to ICD-10-CM are not well understood. To quantify the challenges faced by emergency physicians, we analyzed a subset of a 2010 Illinois Medicaid database of emergency department ICD-9-CM codes, seeking to determine the accuracy of existing mapping tools in order to better prepare emergency physicians for the change to the expanded ICD-10-CM system. We found that 27% of 1,830 codes represented convoluted multidirectional mappings. We then analyzed the convoluted transitions and found 8% of total visit encounters (23% of the convoluted transitions) were clinically incorrect. The ambiguity and inaccuracy of these mappings may impact the work flow associated with the translation process and affect the potential mapping between ICD codes and CPT (Current Procedural Codes) codes, which determine physician reimbursement. PMID:25863652

  18. Projected Impact of the ICD-10-CM/PCS Conversion on Longitudinal Data and the Joint Commission Core Measures

    PubMed Central

    Fenton, Susan H.; Benigni, Mary Sue

    2014-01-01

    The transition from ICD-9-CM to ICD-10-CM/PCS is expected to result in longitudinal data discontinuities, as occurred with cause-of-death in 1999. The General Equivalence Maps (GEMs), while useful for suggesting potential maps do not provide guidance regarding the frequency of any matches. Longitudinal data comparisons can only be reliable if they use comparability ratios or factors which have been calculated using records coded in both classification systems. This study utilized 3,969 de-identified dually coded records to examine raw comparability ratios, as well as the comparability ratios between the Joint Commission Core Measures. The raw comparability factor results range from 16.216 for Nicotine dependence, unspecified, uncomplicated to 118.009 for Chronic obstructive pulmonary disease, unspecified. The Joint Commission Core Measure comparability factor results range from 27.15 for Acute Respiratory Failure to 130.16 for Acute Myocardial Infarction. These results indicate significant differences in comparability between ICD-9-CM and ICD-10-CM code assignment, including when the codes are used for external reporting such as the Joint Commission Core Measures. To prevent errors in decision-making and reporting, all stakeholders relying on longitudinal data for measure reporting and other purposes should investigate the impact of the conversion on their data. PMID:25214824

  19. A case study demonstration of the soil temperature extrema recovery rates after precipitation cooling at 10-cm soil depth

    NASA Technical Reports Server (NTRS)

    Welker, Jean Edward

    1991-01-01

    Since the invention of maximum and minimum thermometers in the 18th century, diurnal temperature extrema have been taken for air worldwide. At some stations, these extrema temperatures were collected at various soil depths also, and the behavior of these temperatures at a 10-cm depth at the Tifton Experimental Station in Georgia is presented. After a precipitation cooling event, the diurnal temperature maxima drop to a minimum value and then start a recovery to higher values (similar to thermal inertia). This recovery represents a measure of response to heating as a function of soil moisture and soil property. Eight different curves were fitted to a wide variety of data sets for different stations and years, and both power and exponential curves were fitted to a wide variety of data sets for different stations and years. Both power and exponential curve fits were consistently found to be statistically accurate least-square fit representations of the raw data recovery values. The predictive procedures used here were multivariate regression analyses, which are applicable to soils at a variety of depths besides the 10-cm depth presented.

  20. Projected impact of the ICD-10-CM/PCS conversion on longitudinal data and the Joint Commission Core Measures.

    PubMed

    Fenton, Susan H; Benigni, Mary Sue

    2014-01-01

    The transition from ICD-9-CM to ICD-10-CM/PCS is expected to result in longitudinal data discontinuities, as occurred with cause-of-death in 1999. The General Equivalence Maps (GEMs), while useful for suggesting potential maps do not provide guidance regarding the frequency of any matches. Longitudinal data comparisons can only be reliable if they use comparability ratios or factors which have been calculated using records coded in both classification systems. This study utilized 3,969 de-identified dually coded records to examine raw comparability ratios, as well as the comparability ratios between the Joint Commission Core Measures. The raw comparability factor results range from 16.216 for Nicotine dependence, unspecified, uncomplicated to 118.009 for Chronic obstructive pulmonary disease, unspecified. The Joint Commission Core Measure comparability factor results range from 27.15 for Acute Respiratory Failure to 130.16 for Acute Myocardial Infarction. These results indicate significant differences in comparability between ICD-9-CM and ICD-10-CM code assignment, including when the codes are used for external reporting such as the Joint Commission Core Measures. To prevent errors in decision-making and reporting, all stakeholders relying on longitudinal data for measure reporting and other purposes should investigate the impact of the conversion on their data.

  1. Characterization of 100 mm Diameter 4H-Silicon Carbide CrystalsWith Extremely Low Basal Plane Dislocation Density

    SciTech Connect

    M Dudley; N Zhang; Y Zhang; B Raghothamachar; S Byrappa; G Choi; E Drachev; M Loboda

    2011-12-31

    Synchrotron White Beam X-ray Topography (SWBXT) studies are presented of basal plane dislocation (BPD) configurations and behavior in a new generation of 100mm diameter, 4H-SiC wafers with extremely low BPD densities (3-4 x 10{sup 2} cm{sup -2}). The conversion of non-screw oriented, glissile BPDs into sessile threading edge dislocations (TEDs) is observed to provide pinning points for the operation of single ended Frank-Read sources. In some regions, once converted TEDs are observed to re-convert back into BPDs in a repetitive process which provides multiple BPD pinning points.

  2. Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate

    PubMed Central

    Yi, Zao; Niu, Gao; Luo, Jiangshan; Kang, Xiaoli; Yao, Weitang; Zhang, Weibin; Yi, Yougen; Yi, Yong; Ye, Xin; Duan, Tao; Tang, Yongjian

    2016-01-01

    Ag semishells (AgSS) ordered arrays for surface-enhanced Raman scattering (SERS) spectroscopy have been prepared by depositing Ag film onto polystyrene colloidal particle (PSCP) monolayer templates array. The diversified activity for SERS activity with the ordered AgSS arrays mainly depends on the PSCP diameter and Ag film thickness. The high SERS sensitivity and reproducibility are proved by the detection of rhodamine 6G (R6G) and 4-aminothiophenol (4-ATP) molecules. The prominent enhancements of SERS are mainly from the “V”-shaped or “U”-shaped nanogaps on AgSS, which are experimentally and theoretically investigated. The higher SERS activity, stability and reproducibility make the ordered AgSS a promising choice for practical SERS low concentration detection applications. PMID:27586562

  3. Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate

    NASA Astrophysics Data System (ADS)

    Yi, Zao; Niu, Gao; Luo, Jiangshan; Kang, Xiaoli; Yao, Weitang; Zhang, Weibin; Yi, Yougen; Yi, Yong; Ye, Xin; Duan, Tao; Tang, Yongjian

    2016-09-01

    Ag semishells (AgSS) ordered arrays for surface-enhanced Raman scattering (SERS) spectroscopy have been prepared by depositing Ag film onto polystyrene colloidal particle (PSCP) monolayer templates array. The diversified activity for SERS activity with the ordered AgSS arrays mainly depends on the PSCP diameter and Ag film thickness. The high SERS sensitivity and reproducibility are proved by the detection of rhodamine 6G (R6G) and 4-aminothiophenol (4-ATP) molecules. The prominent enhancements of SERS are mainly from the “V”-shaped or “U”-shaped nanogaps on AgSS, which are experimentally and theoretically investigated. The higher SERS activity, stability and reproducibility make the ordered AgSS a promising choice for practical SERS low concentration detection applications.

  4. In-situ determination of astro-comb calibrator lines to better than 10 cm s(-1).

    PubMed

    Li, Chih-Hao; Glenday, Alexander G; Benedick, Andrew J; Chang, Guoqing; Chen, Li-Jin; Cramer, Claire; Fendel, Peter; Furesz, Gabor; Kärtner, Franz X; Korzennik, Sylvain; Phillips, David F; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald L

    2010-06-07

    Improved wavelength calibrators for high-resolution astrophysical spectrographs will be essential for precision radial velocity (RV) detection of Earth-like exoplanets and direct observation of cosmological deceleration. The astro-comb is a combination of an octave-spanning femtosecond laser frequency comb and a Fabry-Pérot cavity used to achieve calibrator line spacings that can be resolved by an astrophysical spectrograph. Systematic spectral shifts associated with the cavity can be 0.1-1 MHz, corresponding to RV errors of 10-100 cm/s, due to the dispersive properties of the cavity mirrors over broad spectral widths. Although these systematic shifts are very stable, their correction is crucial to high accuracy astrophysical spectroscopy. Here, we demonstrate an in-situ technique to determine the systematic shifts of astro-comb lines due to finite Fabry-Pérot cavity dispersion. The technique is practical for implementation at a telescope-based spectrograph to enable wavelength calibration accuracy better than 10 cm/s.

  5. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings.

    PubMed

    Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2016-09-15

    A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution.

  6. ICD-9-CM and ICD-10-CM mapping of the AAST Emergency General Surgery disease severity grading systems: Conceptual approach, limitations, and recommendations for the future.

    PubMed

    Utter, Garth H; Miller, Preston R; Mowery, Nathan T; Tominaga, Gail T; Gunter, Oliver; Osler, Turner M; Ciesla, David J; Agarwal, Suresh K; Inaba, Kenji; Aboutanos, Michel B; Brown, Carlos V R; Ross, Steven E; Crandall, Marie L; Shafi, Shahid

    2015-05-01

    The American Association for the Surgery of Trauma (AAST) recently established a grading system for uniform reporting of anatomic severity of several emergency general surgery (EGS) diseases. There are five grades of severity for each disease, ranging from I (lowest severity) to V (highest severity). However, the grading process requires manual chart review. We sought to evaluate whether International Classification of Diseases, 9th and 10th Revisions, Clinical Modification (ICD-9-CM, ICD-10-CM) codes might allow estimation of AAST grades for EGS diseases. The Patient Assessment and Outcomes Committee of the AAST reviewed all available ICD-9-CM and ICD-10-CM diagnosis codes relevant to 16 EGS diseases with available AAST grades. We then matched grades for each EGS disease with one or more ICD codes. We used the Official Coding Guidelines for ICD-9-CM and ICD-10-CM and the American Hospital Association's "Coding Clinic for ICD-9-CM" for coding guidance. The ICD codes did not allow for matching all five AAST grades of severity for each of the 16 diseases. With ICD-9-CM, six diseases mapped into four categories of severity (instead of five), another six diseases into three categories of severity, and four diseases into only two categories of severity. With ICD-10-CM, five diseases mapped into four categories of severity, seven diseases into three categories, and four diseases into two categories. Two diseases mapped into discontinuous categories of grades (two in ICD-9-CM and one in ICD-10-CM). Although resolution is limited, ICD-9-CM and ICD-10-CM diagnosis codes might have some utility in roughly approximating the severity of the AAST grades in the absence of more precise information. These ICD mappings should be validated and refined before widespread use to characterize EGS disease severity. In the long-term, it may be desirable to develop alternatives to ICD-9-CM and ICD-10-CM codes for routine collection of disease severity characteristics.

  7. HIPAA administrative simplification: modifications to medical data code set standards to adopt ID-10-CM and ICD-10-PCS. Final rule.

    PubMed

    2009-01-16

    This final rule adopts modifications to two of the code set standards adopted in the Transactions and Code Sets final rule published in the Federal Register pursuant to certain provisions of the Administrative Simplification subtitle of the Health Insurance Portability and Accountability Act of 1996 (HIPAA). Specifically, this final rule modifies the standard medical data code sets (hereinafter "code sets") for coding diagnoses and inpatient hospital procedures by concurrently adopting the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) for diagnosis coding, including the Official ICD-10-CM Guidelines for Coding and Reporting, as maintained and distributed by the U.S. Department of Health and Human Services (HHS), hereinafter referred to as ICD-10-CM, and the International Classification of Diseases, 10th Revision, Procedure Coding System (ICD-10-PCS) for inpatient hospital procedure coding, including the Official ICD-10-PCS Guidelines for Coding and Reporting, as maintained and distributed by the HHS, hereinafter referred to as ICD-10-PCS. These new codes replace the International Classification of Diseases, 9th Revision, Clinical Modification, Volumes 1 and 2, including the Official ICD-9-CM Guidelines for Coding and Reporting, hereinafter referred to as ICD-9-CM Volumes 1 and 2, and the International Classification of Diseases, 9th Revision, Clinical Modification, Volume 3, including the Official ICD-9-CM Guidelines for Coding and Reporting, hereinafter referred to as ICD-9-CM Volume 3, for diagnosis and procedure codes, respectively.

  8. Proposed Framework for Presenting Injury Data Using the International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) Diagnosis Codes.

    PubMed

    Hedegaard, Holly; Johnson, Renee L; Warner, Margaret; Chen, Li-Hui; Annest, J Lee

    2016-01-22

    Frameworks based on the International Classification of Diseases (ICD) provide injury researchers and epidemiologists with standard approaches for presenting and analyzing injury-related mortality and morbidity data. Injury diagnosis frameworks, such as the Barell Matrix for the ICD Ninth Revision, Clinical Modification (ICD-9-CM) and the Injury Mortality Diagnosis Matrix for the ICD Tenth Revision (ICD-10), categorize ICD codes into major body region (e.g., head, chest, abdomen, or extremity) by nature-of-injury (e.g., fracture, laceration, organ injury, or vascular injury) categories. In the United States, morbidity coding transitioned from ICD-9- CM to ICD-10-CM on October 1, 2015. In preparation for the use of ICD-10-CMcoded morbidity data for injury surveillance and data analysis, the National Center for Health Statistics and the National Center for Injury Prevention and Control propose an ICD-10-CM Injury Diagnosis Matrix to provide a standard approach for categorizing injuries by body region and nature of injury. This report provides a brief description of the differences between ICD-9-CM and ICD-10-CM injury diagnosis codes, introduces the proposed framework and the methods used to create it, and provides a list of additional considerations for review and comment by researchers and subjectmatter experts in injury data and surveillance.

  9. Dynamics of cell and tissue growth acquired by means of 25 mm2 to 10 cm2 lens-free imaging

    NASA Astrophysics Data System (ADS)

    Momey, F.; Coutard, J.-G.; Bordy, T.; Navarro, F.; Menneteau, M.; Dinten, J.-M.; Allier, C.

    2015-03-01

    In this paper, we discuss a new methodology based on lens-free imaging to perform wound healing assay with unprecedented statistics. Our video lens-free microscopy setup is a simple optical system featuring only a CMOS sensor and a semi coherent illumination system. Yet it is a powerful means for the real-time monitoring of cultivated cells. It presents several key advantages, e.g., integration into standard incubator, compatibility with standard cell culture protocol, simplicity and ease of use. It can perform the follow-up in a large field of view (25 mm2) of several crucial parameters during the culture of cells i.e. their motility, their proliferation rate or their death. Consequently the setup can gather large statistics both in space and time. But in the case of tissue growth experiments, the field of view of 25 mm2 remains not sufficient and results can be biased depending on the position of the device with respect to the recipient of the cell culture. Hence, to conduct exhaustive wound healing assay, here we propose to enlarge the field of view up to 10 cm2 through two different approaches. The first method consists in performing a scan of the cell culture by moving the source/sensor couple and then stitch the stack of images. The second is to make an acquisition by scanning with a line scan camera. The two approaches are compared in term of resolution, complexity and acquisition time. Next we have performed acquisitions of wound healing assay (keratinocytes HaCaT) both in real-time (25 mm2) and in final point (10 cm2) to assess the combination of these two complementary modalities. In the future, we aim at combining directly super wide field of view acquisitions (>10 cm2) with real time ability inside the incubator.

  10. Characterization of gallium telluride crystals grown from graphite crucible

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Hayes, Timothy; Muzykov, Peter G.; Krishna, Ramesh; Das, Sandip; Sudarshan, Tangali S.; Ma, Shuguo

    2010-08-01

    In this work we investigated a new method of growing detector grade large GaTe layered chalcogenide single crystals. GaTe ingots (2" in diameter and about 10 cm in length) were grown by a novel method using graphite crucible by slow crystallization from melt of high purity (7N) Ga and Te precursors in argon atmosphere. GaTe samples from the monocrystalline area of the ingot have been cleaved mechanically and characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis by x-rays (EDAX), atomic force microscopy (AFM), xray photoelectron spectroscopy (XPS), transmission line matrix method (TLM), resistivity measurements using van der Pauw technique, Hall Effect and Capacitance-Voltage measurements. Our investigations reveal high potential for developing superior quality GaTe crystals using this growth technique for growing large volume inexpensive GaTe single crystals for nuclear radiation detectors.

  11. Crystal growth, characterization, and testing of Cd0.9Zn0.1Te single crystals for radiation detectors

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Noblitt, Caleb; Choi, Michael; Rauh, R. D.; Roy, Utpal N.; Groza, Michael; Burger, Arnold; Holcomb, David E.; Jellison, Gerald E., Jr.

    2004-10-01

    This paper describes our recent research in growing large single crystals of Cd0.9Zn0.1Te (CZT) by the vertical Bridgman technique using in-house processed zone refined precursor materials (Cd, Zn, and Te). The grown semi-insulating CZT crystals have shown high promise for high-resolution room-temperature radiation detectors due to their high dark resistivity (~1010 Ωcm), reasonably good charge transport properties [(μτ)e = (2-5) x 10-3 cm2/V] and low cost. The grown CZT single crystals (~2.5 cm diameter and up to 10 cm long) have demonstrated a very low radial Zn concentration deviation, low dislocation densities and Te precipitate/inclusions, and high infrared transmission. Details of the CZT single crystal growth, their physical and chemical analysis, surface processing, nuclear radiation detector fabrication, and testing of these devices are also presented.

  12. Interpreting stem diameter changes

    NASA Astrophysics Data System (ADS)

    Hölttä, T.; Sevanto, S.; Nikinmaa, E.

    2009-12-01

    Detecting phloem transport in stem diameter changes Teemu Hölttä1, Sanna Sevanto2, Eero Nikinmaa1 1Department of Forest Ecology, P.O. Box 27, FIN-00014 University of Helsinki, Finland 2Department of Physics, P.O. Box 48, FIN-00014 University of Helsinki, Finland Introduction The volume of living cells and xylem conduits vary according to pressures they are subjected to. Our proposition is that the behavior of the inner bark diameter variation which cannot be explained by changes in xylem water status arise from changes in the osmotic concentration of the phloem and cambial growth. Materials and methods Simultaneous xylem and stem diameter measurements were conducted between June 28th to October 4th 2006 in Southern Finland on a 47-year old, 15 meter tall, Scots pine tree (DBH 15 cm) at heights of 1.5 and 10 meters. The difference between the measured inner bark diameter and the inner bark diameter predicted from xylem diameter change with a simple model (assuming there was no change in the osmotic concentration of the phloem) is hypothesized to give the changes in the osmotic concentration of the inner bark. The simple model calculates the radial water exchange between the xylem and phloem driven by the water potential changes in the xylem. Results and Discussion The major signal in the inner bark diameter was the transpiration rate as assumed, but also a signal arising from the change in the osmotic concentration (Fig 1a). The predicted osmotic concentration of the phloem typically increased during the afternoon due to the loading of photosynthesized sugars to the phloem. Inner bark osmotic concentration followed the photosynthesis rate with a 3 and 4 hour time-lag at the top and base, respectively (Fig 1b). The connection between photosynthesis and the predicted change in phloem osmotic concentration was stronger in the upper part of the tree compared to lower part. The changes in the predicted osmotic concentration were not similar every day, indicating that

  13. Solar Diameter Latitude Dependence

    NASA Astrophysics Data System (ADS)

    Emilio, M.; Leister, N. V.; Laclare, F.

    The observing programs of the Sun for determining the fundamental system of reference enable, as a by-product, to measure the apparent solar diameter (Poppe, P.C.R. et al. 1996; Leister et al. 1996; Laclare et al. 1991). The diameter obtained at the Calern Observatory (φ = 43-circ 44' 55''.9; λ = -0h 27m 42s.44) and at Abrahao de Moraes Observatory (OAM) (φ = -23-circ 00'6''.0; λ = 3h 07m 52s.22) was analyzed searching for periodicity evidences. For this we utilized the temporal methods CLEAN and CLEANEST. The analysis in function of heliographic latitude shows a dependence that may be correlated to mode of pulsation non-radial gravity. A discussion is made in terms of physical parameters like temperature luminosity and magnetic field involving the solar radius (Emilio M. 1997; Laclare et al. 1996).

  14. Administrative simplification: change to the compliance date for the International Classification of Diseases, 10th Revision (ICD-10-CM and ICD-10-PCS) medical data code sets. Final rule.

    PubMed

    2014-08-04

    This final rule implements section 212 of the Protecting Access to Medicare Act of 2014 by changing the compliance date for the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) for diagnosis coding, including the Official ICD-10-CM Guidelines for Coding and Reporting, and the International Classification of Diseases, 10th Revision, Procedure Coding System (ICD-10-PCS) for inpatient hospital procedure coding, including the Official ICD-10-PCS Guidelines for Coding and Reporting, from October 1, 2014 to October 1, 2015. It also requires the continued use of the International Classification of Diseases, 9th Revision, Clinical Modification, Volumes 1 and 2 (diagnoses), and 3 (procedures) (ICD-9-CM), including the Official ICD-9-CM Guidelines for Coding and Reporting, through September 30, 2015.

  15. Double diameter boring tool

    DOEpatents

    Ashbaugh, Fred N.; Murry, Kenneth R.

    1988-12-27

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting edges formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first cutting edge tip to the axis of rotation plus the distance from the second cutting edge tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second cutting edge tip to the axis of rotation minus one-half the distance from the first cutting edge tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  16. Double diameter boring tool

    DOEpatents

    Ashbaugh, F.A.; Murry, K.R.

    1986-02-10

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting flutes formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first flute tip to the axis of rotation plus the distance from the second flute tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second flute tip to the axis of rotation minus one-half the distance from the first flute tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  17. The DIAMET campaign

    NASA Astrophysics Data System (ADS)

    Vaughan, G.

    2012-04-01

    DIAMET (DIAbatic influences on Mesoscale structures in ExTratropical storms) is a joint project between the UK academic community and the Met Office. Its focus is on understanding and predicting mesoscale structures in synoptic-scale storms, and in particular on the role of diabatic processes in generating and maintaining them. Such structures include fronts, rain bands, secondary cyclones, sting jets etc, and are important because much of the extreme weather we experience (e.g. strong winds, heavy rain) comes from such regions. The project conducted two field campaigns in the autumn of 2011, from September 14 - 30 and November 24 - December 14, based around the FAAM BAe146 aircraft with support from ground-based radar and radiosonde measurements. Detailed modelling, mainly using the Met Office Unified model, supported the planning and interpretation of these campaigns. This presentation will give a brief overview of the campaigns. Both in September and November-December the weather regime was westerly, with a strong jet stream directed across the Atlantic. Three IOPs were conducted in September, to observe a convective band ahead of an upper-level trough, waves on a long trailing cold front, and a warm conveyor belt associated with a secondary cyclone. In November-December six IOPs were conducted, to observe frontal passages and high winds. This period was notable for a number of very strong windstorms passing across the north of the UK, and gave us an opportunity to examine bent-back warm fronts in the southern quadrant of these storms where the strongest winds are found. The case studies fell into two basic patterns. In the majority of cases, dropsonde legs at high level were used to obtain a cross-section of winds and thermodynamic structure (e.g. across a front), followed by in situ legs at lower levels (generally where the temperature was between 0 and -10°) to examine microphysical processes, especially ice multiplication and the extent of supercooled water

  18. New Large Diameter RF Complex Plasma Device

    NASA Astrophysics Data System (ADS)

    Meyer, John; Nosenko, Volodymyr; Thomas, Hubertus

    2016-10-01

    The Complex Plasma Research Group at the German Aerospace Center (DLR) in Oberpfaffenhofen has built a new large diameter rf plasma setup for dusty plasma experiments. The vacuum chamber is a stainless steel cylinder 0.90 m in diameter and 0.34 m in height with ports for viewing and measurement. A 0.85 m diameter plate in about the center serves as a powered electrode (13.56 MHz) with the chamber walls as the ground. It is pumped on by one of two Oerlikon turbo pumps with a pumping rate of 1100 l/s or 270 l/s. Argon gas is admitted into the chamber by an MKS mass flow meter and pumping is regulated by a butterfly valve to set pressure for experiments. A manual dropper is used to insert dust into the plasma. The dust is illuminated horizontally by a 660 nm 100 mW laser sheet and viewed from above by a Photron FASTCAM 1024 PCI camera. A vertical laser sheet of 635 nm will be used for side imaging. So far, single-layer plasma crystals of up to 15000 particles have been suspended. The particle velocity fluctuation spectra were measured and from these, the particle charge and screening length were calculated. Future experiments will explore the system-size dependence of the plasma crystal properties.

  19. Solar Diameter Monitor: an instrument to measure long-term changes.

    PubMed

    Brown, T M; Elmore, D F; Lacey, L; Hull, H

    1982-10-01

    Analyses of historical data suggest that the solar diameter may vary with time with an amplitude of a few tenths of a second of arc. The High Altitude Observatory has constructed a special purpose telescope, the Solar Diameter Monitor, designed to detect any such changes. The telescope is an f/50 transit instrument with an aperture of 10 cm and is almost completely automated to avoid observer bias. Each day at solar noon, it measures the sun's horizontal diameter by timing the solar disk transit time and the vertical diameter by comparing the image size to that of a stable length standard. Preliminary estimates suggest that these observations will allow a test of the solar diameter's constancy at the 1-sec of arc/century level in an observing time of 3-5 years.

  20. Wheel Diameter and Speedometer Reading

    ERIC Educational Resources Information Center

    Murray, Clifton

    2010-01-01

    Most introductory physics students have seen vehicles with nonstandard wheel diameters; some may themselves drive "low-rider" cars or "big-wheel" pickup trucks. But how does changing wheel diameter affect speedometer readout for a given speed? Deriving the answer can be followed readily by students who have been introduced to rotation, and it…

  1. Fiber diameter control in electrospinning

    NASA Astrophysics Data System (ADS)

    Stepanyan, R.; Subbotin, A.; Cuperus, L.; Boonen, P.; Dorschu, M.; Oosterlinck, F.; Bulters, M.

    2014-10-01

    A simple model is proposed to predict the fiber diameter in electrospinning. We show that the terminal diameter is determined by the kinetics of the jet elongation—under the influence of the electric and viscous forces—and the solvent evaporation. Numerical and simple scaling analyses are performed, predicting the fiber diameter to scale as a power 1/3 of viscosity and 2/3 of polymer solution throughput divided by electrical current. Model predictions show a good agreement to our own electrospinning experiments on polyamide-6 solutions as well as to the data available in the literature.

  2. Wheel Diameter and Speedometer Reading

    NASA Astrophysics Data System (ADS)

    Murray, Clifton

    2010-09-01

    Most introductory physics students have seen vehicles with nonstandard wheel diameters; some may themselves drive "low-rider" cars or "big-wheel" pickup trucks. But how does changing wheel diameter affect speedometer readout for a given speed? Deriving the answer can be followed readily by students who have been introduced to rotation, and it makes a good illustration of how reasoning in physics can lead to a result that is useful outside the classroom.

  3. Stellar diameters and temperatures. IV. Predicting stellar angular diameters

    SciTech Connect

    Boyajian, Tabetha S.; Van Belle, Gerard; Von Braun, Kaspar

    2014-03-01

    The number of stellar angular diameter measurements has greatly increased over the past few years due to innovations and developments in the field of long baseline optical interferometry. We use a collection of high-precision angular diameter measurements for nearby, main-sequence stars to develop empirical relations that allow the prediction of stellar angular sizes as a function of observed photometric color. These relations are presented for a combination of 48 broadband color indices. We empirically show for the first time a dependence on metallicity of these relations using Johnson (B – V) and Sloan (g – r) colors. Our relations are capable of predicting diameters with a random error of less than 5% and represent the most robust and empirical determinations of stellar angular sizes to date.

  4. High voltage variable diameter insulator

    DOEpatents

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  5. Large-diameter astromast development

    NASA Technical Reports Server (NTRS)

    Finley, L. A.

    1984-01-01

    The 15-m-long by 0.75-diameter deployable supermast was delivered. The performance characteristics, design parameters, and developmental work associated with this mast are described. The main differences, besides the length of these two mast sections, are a change in the longeron material (the principal structural member) to a circular cross section and the incorporation of a lanyard-bridle system which makes unaided deployment and retraction possible in zero gravity.

  6. High voltage variable diameter insulator

    DOEpatents

    Vanecek, David L.; Pike, Chester D.

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  7. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a...

  8. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a line running from the stem to the...

  9. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a line running from the stem to the...

  10. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a line running from the stem to the...

  11. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a...

  12. Multicore photonic crystal fiber force meters

    NASA Astrophysics Data System (ADS)

    Reimlinger, M.; Colalillo, A.; Coompson, J.; Wynne, R.

    2011-04-01

    A silica based three core photonic crystal fiber (PCF) force meter with fast response times (<30μs) for low wind speed detection is presented. Results are provided for PCF structures containing cores with varied lattice spacing. Force meters with high spatial resolution (sample regions <10cm) specially outfitted for extreme environmental conditions are of interest to both industry and basic research institutions. The featured PCF force meter exhibited sensitivities that agreed with theoretical predictions that are useful for the detection of minimum displacements for wind speeds <30m/s. The results of this investigation are relevant to civil engineering applications including urban sensing technologies that involve air quality monitoring. The deflection of the PCF detection interface was measured as a function of the fiber deflection or the applied force (e.g. wind speed). The three core PCF has a core diameter of 3.9μm, outer diameter of 132.5μm and 7.56μm core-core spacing. A 4cm length of the PCF is attached to the surface of a thin metal beam. One end of the PCF section is fusion spliced to a single mode fiber (SMF) at the fiber input. The remaining fiber end is coupled to a CCD camera with a lens at the PCF output. The applied force deflects the supported PCF such that the intensity distribution of the optical field for the multiple cores changes as a function of displacement. Experimental results from static deflection measurements are in agreement with coupled-mode theory and simple beam deflection theory models.

  13. A hollow cathode neutralizer for a 30-cm diameter bombardment thruster

    NASA Technical Reports Server (NTRS)

    Bechtel, R. T.

    1973-01-01

    Recent improvements in overall thrustor performance have imposed new constraints on neutralizer performance. The use of compensated grid extraction system requires a re-evaluation of neutralizer position. In addition a suitable control logic for the neutralizer has proven difficult. A series of tests were conducted to determine what effect neutralizer cathode geometry has on performance. The parameters investigated included orifice diameter and length, and cathode diameter. Similar tests investigated open and enclosed keeper geometries. Neutralizer position tests with compensated grids suggest positions approximately 10 cm from the accelerator and radially out of the beam envelope should result in satisfactory performance and long life. Finally operation at keeper currents of 1.5 amp has resulted in lower total neutralizer power, the elimination of tip heater power, and suitable closed loop control of the neutralizer vaporizer.

  14. 7 CFR 51.2656 - Diameter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades for Sweet Cherries 1 Definitions § 51.2656 Diameter. Diameter means the greatest dimension measured at right angles to a line from the stem to the blossom end of the cherry....

  15. 7 CFR 51.587 - Diameter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Diameter. 51.587 Section 51.587 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.587 Diameter. Diameter means... lowest outer branch to the base....

  16. 7 CFR 51.587 - Diameter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Diameter. 51.587 Section 51.587 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.587 Diameter. Diameter means... lowest outer branch to the base....

  17. 7 CFR 51.587 - Diameter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Diameter. 51.587 Section 51.587 Agriculture... Standards for Celery Definitions § 51.587 Diameter. Diameter means the greatest dimension of the stalk measured at a point 2 inches above the point of attachment of the lowest outer branch to the base....

  18. 7 CFR 51.587 - Diameter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Diameter. 51.587 Section 51.587 Agriculture... Standards for Celery Definitions § 51.587 Diameter. Diameter means the greatest dimension of the stalk measured at a point 2 inches above the point of attachment of the lowest outer branch to the base....

  19. Ecological importance of large-diameter trees in a temperate mixed-conifer forest.

    PubMed

    Lutz, James A; Larson, Andrew J; Swanson, Mark E; Freund, James A

    2012-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. Although both scaling theory and competition theory make predictions about the relative composition and spatial patterns of large-diameter trees compared to smaller diameter trees, these predictions are rarely tested. We established a 25.6 ha permanent plot within which we tagged and mapped all trees ≥1 cm dbh, all snags ≥10 cm dbh, and all shrub patches ≥2 m(2). We sampled downed woody debris, litter, and duff with line intercept transects. Aboveground live biomass of the 23 woody species was 507.9 Mg/ha, of which 503.8 Mg/ha was trees (SD = 114.3 Mg/ha) and 4.1 Mg/ha was shrubs. Aboveground live and dead biomass was 652.0 Mg/ha. Large-diameter trees comprised 1.4% of individuals but 49.4% of biomass, with biomass dominated by Abies concolor and Pinus lambertiana (93.0% of tree biomass). The large-diameter component dominated the biomass of snags (59.5%) and contributed significantly to that of woody debris (36.6%). Traditional scaling theory was not a good model for either the relationship between tree radii and tree abundance or tree biomass. Spatial patterning of large-diameter trees of the three most abundant species differed from that of small-diameter conspecifics. For A. concolor and P. lambertiana, as well as all trees pooled, large-diameter and small-diameter trees were spatially segregated through inter-tree distances <10 m. Competition alone was insufficient to explain the spatial patterns of large-diameter trees and spatial relationships between large-diameter and small-diameter trees. Long-term observations may reveal regulation of forest biomass and spatial structure by fire, wind, pathogens, and insects in Sierra Nevada mixed-conifer forests. Sustaining ecosystem functions such as carbon storage or provision of specialist species habitat will likely require different management strategies when the functions are performed primarily by

  20. Ecological Importance of Large-Diameter Trees in a Temperate Mixed-Conifer Forest

    PubMed Central

    Lutz, James A.; Larson, Andrew J.; Swanson, Mark E.; Freund, James A.

    2012-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. Although both scaling theory and competition theory make predictions about the relative composition and spatial patterns of large-diameter trees compared to smaller diameter trees, these predictions are rarely tested. We established a 25.6 ha permanent plot within which we tagged and mapped all trees ≥1 cm dbh, all snags ≥10 cm dbh, and all shrub patches ≥2 m2. We sampled downed woody debris, litter, and duff with line intercept transects. Aboveground live biomass of the 23 woody species was 507.9 Mg/ha, of which 503.8 Mg/ha was trees (SD = 114.3 Mg/ha) and 4.1 Mg/ha was shrubs. Aboveground live and dead biomass was 652.0 Mg/ha. Large-diameter trees comprised 1.4% of individuals but 49.4% of biomass, with biomass dominated by Abies concolor and Pinus lambertiana (93.0% of tree biomass). The large-diameter component dominated the biomass of snags (59.5%) and contributed significantly to that of woody debris (36.6%). Traditional scaling theory was not a good model for either the relationship between tree radii and tree abundance or tree biomass. Spatial patterning of large-diameter trees of the three most abundant species differed from that of small-diameter conspecifics. For A. concolor and P. lambertiana, as well as all trees pooled, large-diameter and small-diameter trees were spatially segregated through inter-tree distances <10 m. Competition alone was insufficient to explain the spatial patterns of large-diameter trees and spatial relationships between large-diameter and small-diameter trees. Long-term observations may reveal regulation of forest biomass and spatial structure by fire, wind, pathogens, and insects in Sierra Nevada mixed-conifer forests. Sustaining ecosystem functions such as carbon storage or provision of specialist species habitat will likely require different management strategies when the functions are performed primarily by a

  1. The importance of large-diameter trees to forest structural heterogeneity.

    PubMed

    Lutz, James A; Larson, Andrew J; Freund, James A; Swanson, Mark E; Bible, Kenneth J

    2013-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥ 1 cm dbh, all 1,966 snags ≥ 10 cm dbh, and all shrub patches ≥ 2 m(2). Basal area of the 26 woody species was 62.18 m(2)/ha, of which 61.60 m(2)/ha was trees and 0.58 m(2)/ha was tall shrubs. Large-diameter trees (≥ 100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P ≤ 0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses.

  2. The Importance of Large-Diameter Trees to Forest Structural Heterogeneity

    PubMed Central

    Lutz, James A.; Larson, Andrew J.; Freund, James A.; Swanson, Mark E.; Bible, Kenneth J.

    2013-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥1 cm dbh, all 1,966 snags ≥10 cm dbh, and all shrub patches ≥2 m2. Basal area of the 26 woody species was 62.18 m2/ha, of which 61.60 m2/ha was trees and 0.58 m2/ha was tall shrubs. Large-diameter trees (≥100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P≤0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses. PMID:24376579

  3. Latest developments of large-diameter c-axis sapphire grown by CHES method

    NASA Astrophysics Data System (ADS)

    Richard Schwerdtfeger, C.; Ullal, Saurabh; Shetty, Raj; Filgate, Joshua; Dhanaraj, Govindhan

    2014-05-01

    Large diameter c-axis crystal growth of sapphire boules up to 50 kg is in production at many sites world-wide. It has long been known that c-axis growth of sapphire could be the most cost-effective way to produce large diameter substrates for LED applications compared to a-axis growth with orthogonal coring due to the extremely large size boule required to core large diameter cores from the side of the boule. This paper will discuss the latest improvements, characterization, material utilizations, and crystal quality of boules designed specifically for 6-in., 8-in., and 10-in. wafer production. Improvements and continued R&D in slicing, polishing, and MOCVD of 6-in. and 8-in. sapphire has poised the industry for a rapid shift to larger diameter substrates, if the cores can be cost-effective. ARC Energy's CHES technology can produce 170 mm diameter boules optimized for 6-in. (150 mm) diameter wafer production. Additionally it can produce 8-in. or 10-in. diameter cores directly from 220 mm or 260 mm diameter boules, respectively. The latest developments, both equipment and process, will be discussed along with the resulting boule and core quality. Cost reductions for these large diameter cores will be shown to provide much more cost-effective 6-in. and 8-in. substrates. This low-cost enabling technology is poised to spur stable and long-term LED industry growth.

  4. Pupil Diameter Tracks Lapses of Attention

    PubMed Central

    Murphy, Peter R.; Nieuwenhuis, Sander

    2016-01-01

    Our ability to sustain attention for prolonged periods of time is limited. Studies on the relationship between lapses of attention and psychophysiological markers of attentional state, such as pupil diameter, have yielded contradicting results. Here, we investigated the relationship between tonic fluctuations in pupil diameter and performance on a demanding sustained attention task. We found robust linear relationships between baseline pupil diameter and several measures of task performance, suggesting that attentional lapses tended to occur when pupil diameter was small. However, these observations were primarily driven by the joint effects of time-on-task on baseline pupil diameter and task performance. The linear relationships disappeared when we statistically controlled for time-on-task effects and were replaced by consistent inverted U-shaped relationships between baseline pupil diameter and each of the task performance measures, such that most false alarms and the longest and most variable response times occurred when pupil diameter was both relatively small and large. Finally, we observed strong linear relationships between the temporal derivative of pupil diameter and task performance measures, which were largely independent of time-on-task. Our results help to reconcile contradicting findings in the literature on pupil-linked changes in attentional state, and are consistent with the adaptive gain theory of locus coeruleus-norepinephrine function. Moreover, they suggest that the derivative of baseline pupil diameter is a potentially useful psychophysiological marker that could be used in the on-line prediction and prevention of attentional lapses. PMID:27768778

  5. Diameter Effect In Initiating Explosives, Numerical Simulations

    SciTech Connect

    Lefrancois, A.; Benterou, J.; Roeske, F.; Roos, E.

    2006-02-10

    The ability to safely machine small pieces of HE with the femtosecond laser allows diameter effect experiments to be performed in initiating explosives in order to study the failure diameter, the reduction of the detonation velocity and curvature versus the diameter. The reduced diameter configuration needs to be optimized, so that the detonation products of the first cylinder will not affect the measurement of the detonation velocity of the second cylinder with a streak camera. Different 2D axi-symmetrical configurations have been calculated to identify the best solution using the Ignition and Growth reactive flow model for LX16 Pellet with Ls-Dyna.

  6. Diameter Tuning of β -Ga2O3 Nanowires Using Chemical Vapor Deposition Technique

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Kumar, Vikram; Singh, R.

    2017-03-01

    Diameter tuning of β -Ga2O3 nanowires using chemical vapor deposition technique have been investigated under various experimental conditions. Diameter of root grown β -Ga2O3 nanowires having monoclinic crystal structure is tuned by varying separation distance between metal source and substrate. Effect of gas flow rate and mixer ratio on the morphology and diameter of nanowires has been studied. Nanowire diameter depends on growth temperature, and it is independent of catalyst nanoparticle size at higher growth temperature (850-900 °C) as compared to lower growth temperature (800 °C). These nanowires show changes in structural strain value with change in diameter. Band-gap of nanowires increases with decrease in the diameter.

  7. Stellar angular diameters from occultation observations.

    NASA Astrophysics Data System (ADS)

    Qian, B.-C.

    This paper reviews the history of measuring stellar angular diameters from lunar occultation observations and the techniques of data analysis. Several effects which can affect the results of measurement are discussed. The author finds that there may be systematic errors in angular diameters measured by various observatories for Aldebaran.

  8. Ecological Importance of Small-Diameter Trees to the Structure, Diversity and Biomass of a Tropical Evergreen Forest at Rabi, Gabon

    PubMed Central

    Memiaghe, Hervé R.; Lutz, James A.; Korte, Lisa; Alonso, Alfonso; Kenfack, David

    2016-01-01

    Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh <10 cm) comprised 93.7% of the total tree population, 16.5% of basal area, and 4.8% of the above-ground biomass. They also had diversity 18% higher at family level, 34% higher at genus level, and 42% higher at species level than trees ≥10 cm dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate. PMID:27186658

  9. Ecological Importance of Small-Diameter Trees to the Structure, Diversity and Biomass of a Tropical Evergreen Forest at Rabi, Gabon.

    PubMed

    Memiaghe, Hervé R; Lutz, James A; Korte, Lisa; Alonso, Alfonso; Kenfack, David

    2016-01-01

    Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh <10 cm) comprised 93.7% of the total tree population, 16.5% of basal area, and 4.8% of the above-ground biomass. They also had diversity 18% higher at family level, 34% higher at genus level, and 42% higher at species level than trees ≥10 cm dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate.

  10. Measurement of wire diameter by optical diffraction

    NASA Astrophysics Data System (ADS)

    Khodier, Soraya A.

    2004-02-01

    A combined interference and diffraction pattern, in the form of equidistant interference fringes, resulting from illuminating a vertical metallic wire by a laser beam is analyzed to measure the diameter of four standard wires. The diameters range from 170 to 450 μm. It is found that the error in the diameter measurements increases for small metallic wires and for small distances between the wire and the screen due to scattering effects. The intensity of the incident laser beam was controlled by a pair of sheet polaroids to minimize the scattered radiation. The used technique is highly sensitive, but requires controlled environmental conditions and absence of vibration effects. The expanded uncertainty for k=2 is calculated and found to decrease from U(D)=±1.45 μm for the wire of nominal diameter 170 μm to ±0.57 μm for the diameter 450 μm.

  11. Ultrasonographic Measurement of Subglottic Diameter for Paediatric Cuffed Endotracheal Tube Size Selection: Feasibility Report

    PubMed Central

    Altun, Demet; Sungur, Mukadder Orhan; Ali, Achmet; Bingül, Emre Sertaç; Seyhan, Tülay Özkan; Çamcı, Emre

    2016-01-01

    Objective The aim of this feasibility study was to investigate the first attempt success of ultrasonography (USG) in paediatric patients in predicting an appropriate cuffed endotracheal tube (ETT) size. Methods Fifty children who were 1–10 years of age and who received general anaesthesia with endotracheal intubation for adenoidectomy or adenotonsillectomy were enrolled in the study. In all participants, the transverse diameter of the subglottic airway was measured with USG at the cricoid level without ventilation. The outer diameter (OD) of the maximum allowable ETT was chosen according to the measured subglottic airway diameter. In the presence of resistance to passage of the tube into the trachea or in the absence of an audible leak at airway pressure of >25 cm H2O, the ETT was replaced with a tube whose internal diameter (ID) was 0.5 mm smaller. If a leak was audible at airway pressures of <10 cm H2O, if a seal could not be achieved with a cuff pressure of >25 cm H2O or if a peak airway pressure of >25 cm H2O was observed during ventilation, the tube was changed to a tube one size larger. The OD of the best-fit ETT was converted to the ID. The best-fit ID, the requirement for ETT replacement, the duration of airway diameter measurement by USG and the peak airway pressure were recorded. Results The success rate of the first attempt with USG was 86%; the ETT was replaced in five patients with a tube one size larger and in two patients with a tube one size smaller. Conclusion Our findings show the subglottic diameter measured by USG to be a reliable predictor in estimating the appropriate paediatric ETT size. PMID:28058141

  12. Crystal Size Distribution of Quartz Grains: A Means for Interpreting Igneous Textures in Dikes and Other Intrusive Rocks

    NASA Astrophysics Data System (ADS)

    Baker, L. J.; Candela, P. A.; Piccoli, P. M.

    2001-05-01

    , we have estimated average growth rates within the dike to be 2.4 X 10-7 and 2.1 X 10-7 cm/s respectively for two samples at different locations. Swanson (1977, Am. Min. p. 966) has experimentally determined average crystal growth rates for a synthetic hydrous granite melt composition of 3 X 10-6 cm/s and 1 X 10-10 cm/s. CSD plots for the intrusive samples consistently exhibit negative slopes at high crystal sizes but exhibit maxima towards lower crystal sizes. This may be due to annealing. Thus, we tentatively conclude that although there is evidence of textural modification, especially at smaller crystal sizes, model average growth and nucleation rates may still be obtainable by using CSD analysis as long as reasonable estimates of cooling time can be made.

  13. Impact Structures: What Does Crater Diameter Mean?

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Pierazzo, E.; Collins, G. S.; Osinski, G. R.; Melosh, H. J.; Morgan, J. V.; Reimold, W. U.; Spray, J. G.

    2004-03-01

    Crater diameter is an important parameter in energy scaling and impact simulations. However, disparate types of data make the use of consistent metrics difficult. We suggest a consistent terminology and discuss it in the context of several examples.

  14. Growth of nanostructures with controlled diameter

    DOEpatents

    Pfefferle, Lisa; Haller, Gary; Ciuparu, Dragos

    2009-02-03

    Transition metal-substituted MCM-41 framework structures with a high degree of structural order and a narrow pore diameter distribution were reproducibly synthesized by a hydrothermal method using a surfactant and an anti-foaming agent. The pore size and the mesoporous volume depend linearly on the surfactant chain length. The transition metals, such as cobalt, are incorporated substitutionally and highly dispersed in the silica framework. Single wall carbon nanotubes with a narrow diameter distribution that correlates with the pore diameter of the catalytic framework structure were prepared by a Boudouard reaction. Nanostructures with a specified diameter or cross-sectional area can therefore be predictably prepared by selecting a suitable pore size of the framework structure.

  15. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

    1992-08-11

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

  16. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.

    1992-01-01

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

  17. Controlling the Fiber Diameter during Electrospinning

    NASA Astrophysics Data System (ADS)

    Fridrikh, Sergey V.; Yu, Jian H.; Brenner, Michael P.; Rutledge, Gregory C.

    2003-04-01

    We present a simple analytical model for the forces that determine jet diameter during electrospinning as a function of surface tension, flow rate, and electric current in the jet. The model predicts the existence of a terminal jet diameter, beyond which further thinning of the jet due to growth of the whipping instability does not occur. Experimental data for various electrospun fibers attest to the accuracy of the model.

  18. Making Jointless Dual-Diameter Tubes

    NASA Technical Reports Server (NTRS)

    Kirkham, Kathleen E.

    1989-01-01

    Welds between sections having different diameters eliminated. Single tube made with integral tapered transition section between straight sections of different diameters and wall thicknesses. Made from single piece; contains no joints, welded or otherwise. Not prone to such weld defects as voids and need not be inspected for them. Tube fabricated by either of two methods: drawing or reduction. Both methods used to fabricate tubes of 316L corrosion-resistant stainless steel for use as heat-exchanger coil.

  19. Large diameter carbon-boron fiber

    NASA Technical Reports Server (NTRS)

    Veltri, R. D.; Jacob, B. A.; Galasso, F. S.

    1975-01-01

    Investigations concerned with a development of large-diameter carbon fibers are considered, taking into account the employment of vapor deposition techniques. In the experiments a carbon monofilament substrate is used together with reacting gases which consist of combinations of hydrogen, methane, and boron trichloride. It is found that the described approach can be used to obtain a large-diameter carbon filament containing boron. The filament has reasonable strength and modulus properties.

  20. Ultra-efficient Engine Diameter Study

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Brown, Stephen T.; Kawai, Ron T.

    2003-01-01

    Engine fan diameter and Bypass Ratio (BPR) optimization studies have been conducted since the beginning of the turbofan age with the recognition that reducing the engine core jet velocity and increasing fan mass flow rate generally increases propulsive efficiency. However, performance tradeoffs limit the amount of fan flow achievable without reducing airplane efficiency. This study identifies the optimum engine fan diameter and BPR, given the advanced Ultra-Efficient Engine Technology (UEET) powerplant efficiencies, for use on an advanced subsonic airframe. Engine diameter studies have historically focused on specific engine size options, and were limited by existing technology and transportation infrastructure (e.g., ability to fit bare engines through aircraft doors and into cargo holds). This study is unique in defining the optimum fan diameter and drivers for future 2015 (UEET) powerplants while not limiting engine fan diameter by external constraints. This report follows on to a study identifying the system integration issues of UEET engines. This Engine Diameter study was managed by Boeing Phantom Works, Seattle, Washington through the NASA Glenn Revolutionary Aero Space Engine Research (RASER) contract under task order 10. Boeing Phantom Works, Huntington Beach, completed the engine/airplane sizing optimization, while the Boeing Commercial Airplane group (BCA) provided design oversight. A separate subcontract to support the overall project was issued to Tuskegee University.

  1. Measures of Solar Diameter with Eclipses: Data Analysis, Problems and Perspectives

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    2008-10-01

    The theme of solar diameter variability is presented with the data of solar astrolabes, the four data points of the Solar Disk Sextant and the central eclipses observed near the shadow's limbs. All data are from the last 3 decades. The results obtained with solar astrolabes are different from Northern (Calern) and Southern hemisphere (Rio de Janeiro, Santiago), this is possibly due to atmospheric effect. Eclipses measurements are not affected by atmospheric turbulence because the event's geometry is determined outside the atmosphere, they give systematically larger diameter values than astrolabes. Videos of eclipses are discussed in term of projection on a screen versus direct imaging at the focal plane with filtered telescope. Relations between filters densities, telescope diameters, frame rate of video cameras, and portion of the outer solar limb lost during eclipse imaging are presented. Loss of 0.02'' are typical for 10 cm ND5 filtered telescope. A commercial 60 fps camcorder for Baily beads timing is discussed in terms of signal-to-noise ratio.

  2. Administrative simplification: adoption of a standard for a unique health plan identifier; addition to the National Provider Identifier requirements; and a change to the compliance date for the International Classification of Diseases, 10th Edition (ICD-10-CM and ICD-10-PCS) medical data code sets. Final rule.

    PubMed

    2012-09-05

    This final rule adopts the standard for a national unique health plan identifier (HPID) and establishes requirements for the implementation of the HPID. In addition, it adopts a data element that will serve as an other entity identifier (OEID), or an identifier for entities that are not health plans, health care providers, or individuals, but that need to be identified in standard transactions. This final rule also specifies the circumstances under which an organization covered health care provider must require certain noncovered individual health care providers who are prescribers to obtain and disclose a National Provider Identifier (NPI). Lastly, this final rule changes the compliance date for the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) for diagnosis coding, including the Official ICD-10-CM Guidelines for Coding and Reporting, and the International Classification of Diseases, 10th Revision, Procedure Coding System (ICD-10-PCS) for inpatient hospital procedure coding, including the Official ICD-10-PCS Guidelines for Coding and Reporting, from October 1, 2013 to October 1, 2014.

  3. On the Importance of Small Ice Crystals in Tropical Anvil Cirrus

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Lawson, P.; Baker, B.; Pilson, B.; Mo, Q.; Heymsfield, A. J.; Bansemer, A.; Bui, T. P.; McGill, M.; Hlavka, D.; Heymsfield, G.; Platnick, S.; Arnold, G. T.; Tanelli, S.

    2009-01-01

    likely caused by shattering of large crystals on the CAS inlet. We argue that past measurements with CAS in cirrus with large crystals present may contain errors due to crystal shattering, and past conclusions derived from these measurements may need to be revisited. Further, we present correlations between CAS spurious concentration and 2D ]S large ]crystal mass from spatially uniform anvil cirrus sampling periods as an approximate guide for estimating quantitative impact of large ]crystal shattering on CAS concentrations in previous datasets. We use radiative transfer calculations to demonstrate that in the maritime anvil cirrus sampled during TC4, small crystals indicated by 2D ]S contribute relatively little cloud extinction, radiative forcing, or radiative heating in the anvils, regardless of anvil age or vertical location in the clouds. While 2D ]S ice concentrations in fresh anvil cirrus may often exceed 1 cm.3, and are observed to exceed 10 cm.3 in turrets, they are typically 0.1 cm.3 and rarely exceed 1 cm.3 (<1.4% of the time) in aged anvil cirrus. We hypothesize that isolated occurrences of higher ice concentrations in aged anvil cirrus may be caused by ice nucleation driven by either small ]scale convection or gravity waves. It appears that the numerous small crystals detrained from convective updrafts do not persist in the anvil cirrus sampled during TC ]4.

  4. DiameterJ: A validated open source nanofiber diameter measurement tool.

    PubMed

    Hotaling, Nathan A; Bharti, Kapil; Kriel, Haydn; Simon, Carl G

    2015-08-01

    Despite the growing use of nanofiber scaffolds for tissue engineering applications, there is not a validated, readily available, free solution for rapid, automated analysis of nanofiber diameter from scanning electron microscope (SEM) micrographs. Thus, the goal of this study was to create a user friendly ImageJ/FIJI plugin that would analyze SEM micrographs of nanofibers to determine nanofiber diameter on a desktop computer within 60 s. Additional design goals included 1) compatibility with a variety of existing segmentation algorithms, and 2) an open source code to enable further improvement of the plugin. Using existing algorithms for centerline determination, Euclidean distance transforms and a novel pixel transformation technique, a plugin called "DiameterJ" was created for ImageJ/FIJI. The plugin was validated using 1) digital synthetic images of white lines on a black background and 2) SEM images of nominally monodispersed steel wires of known diameters. DiameterJ analyzed SEM micrographs in 20 s, produced diameters not statistically different from known values, was over 10-times closer to known diameter values than other open source software, provided hundreds of times the sampling of manual measurement, and was hundreds of times faster than manual assessment of nanofiber diameter. DiameterJ enables users to rapidly and thoroughly determine the structural features of nanofiber scaffolds and could potentially allow new insights to be formed into fiber diameter distribution and cell response.

  5. Large diameter astromast development, phase 1

    NASA Technical Reports Server (NTRS)

    Preiswerk, P. R.; Finley, L. A.; Knapp, K.

    1983-01-01

    Coilable-longeron lattice columns called Astromasts (trademark) were manufactured for a variety of spacecraft missions. These flight structures varied in diameter from 0.2 to 0.5 meter (9 to 19 in.), and the longest Astromast of this type deploys to a length of 30 meters (100 feet). A double-laced diagonal Astromast design referred to as the Supermast (trademark) which, because it has shorter baylengths than an Astromast, is approximately four times as strong. The longeron cross section and composite material selection for these structures are limited by the maximum strain associated with stowage and deployment. As a result, future requirements for deployable columns with high stiffness and strength require the development of both structures in larger diameters. The design, development, and manufacture of a 6.1-m-long (20-ft), 0.75-m-diameter (30-in.), double-laced diagonal version of the Astromast is described.

  6. Nanoscale size effects in crystallization of metallic glass nanorods.

    PubMed

    Sohn, Sungwoo; Jung, Yeonwoong; Xie, Yujun; Osuji, Chinedum; Schroers, Jan; Cha, Judy J

    2015-09-01

    Atomistic understanding of crystallization in solids is incomplete due to the lack of appropriate materials and direct experimental tools. Metallic glasses possess simple metallic bonds and slow crystallization kinetics, making them suitable to study crystallization. Here, we investigate crystallization of metallic glass-forming liquids by in-situ heating metallic glass nanorods inside a transmission electron microscope. We unveil that the crystallization kinetics is affected by the nanorod diameter. With decreasing diameters, crystallization temperature decreases initially, exhibiting a minimum at a certain diameter, and then rapidly increases below that. This unusual crystallization kinetics is a consequence of multiple competing factors: increase in apparent viscosity, reduced nucleation probability and enhanced heterogeneous nucleation. The first two are verified by slowed grain growth and scatter in crystallization temperature with decreasing diameters. Our findings provide insight into relevant length scales in crystallization of supercooled metallic glasses, thus offering accurate processing conditions for predictable metallic glass nanomolding.

  7. Systematic biases in radiometric diameter determinations

    NASA Technical Reports Server (NTRS)

    Spencer, John R.; Lebofsky, Larry A.; Sykes, Mark V.

    1989-01-01

    Radiometric diameter determinations are presently shown to often be significantly affected by the effect of rotation. This thermal effect of rotation depends not only on the object's thermal inertia, rotation rate, and pole orientation, but also on its temperature, since colder objects having constant rotation rate and thermal inertia will radiate less of their heat on the diurnal than on the nocturnal hemisphere. A disk-integrated beaming parameter of 0.72 is determined for the moon, and used to correct empirically for the roughness effects in thermophysical models; the standard thermal model is found to systematically underestimate cold object diameters, while overstating their albedos.

  8. Shaft Diameter Measurement Using Structured Light Vision.

    PubMed

    Liu, Siyuan; Tan, Qingchang; Zhang, Yachao

    2015-08-12

    A method for measuring shaft diameters is presented using structured light vision measurement. After calibrating a model of the structured light measurement, a virtual plane is established perpendicular to the measured shaft axis and the image of the light stripe on the shaft is projected to the virtual plane. On the virtual plane, the center of the measured shaft is determined by fitting the projected image under the geometrical constraints of the light stripe, and the shaft diameter is measured by the determined center and the projected image. Experiments evaluated the measuring accuracy of the method and the effects of some factors on the measurement are analyzed.

  9. THERMAL EVALUATION OF DIFFERENT DRIFT DIAMETER SIZES

    SciTech Connect

    H.M. Wade

    1999-01-04

    The purpose of this calculation is to estimate the thermal response of a repository-emplaced waste package and its corresponding drift wall surface temperature with different drift diameters. The case examined is that of a 21 pressurized water reactor (PWR) uncanistered fuel (UCF) waste package loaded with design basis spent nuclear fuel assemblies. This calculation evaluates a 3.5 meter to 6.5 meter drift diameter range in increments of 1.0 meters. The time-dependent temperatures of interest, as determined by this calculation, are the spent nuclear fuel cladding temperature, the waste package surface temperature, and the drift wall surface temperature.

  10. Fabrication of 10nm diameter carbon nanopores

    SciTech Connect

    Radenovic, Aleksandra; Trepagnier, Eliane; Csencsits, Roseann; Downing, Kenneth H; Liphardt, Jan

    2008-09-25

    The addition of carbon to samples, during imaging, presents a barrier to accurate TEM analysis, the controlled deposition of hydrocarbons by a focused electron beam can be a useful technique for local nanometer-scale sculpting of material. Here we use hydrocarbon deposition to form nanopores from larger focused ion beam (FIB) holes in silicon nitride membranes. Using this method, we close 100-200nm diameter holes to diameters of 10nm and below, with deposition rates of 0.6nm per minute. I-V characteristics of electrolytic flow through these nanopores agree quantitatively with a one dimensional model at all examined salt concentrations.

  11. The truth about small-diameter implants.

    PubMed

    Christensen, Gordon J; Child, Paul L

    2010-05-01

    SDIs that are treatment planned correctly, placed and loaded properly, and are within a well-adjusted occlusion, are working in an excellent manner for the patients described in this article. It is time for those practitioners unfamiliar with SDIs and their uses to discontinue their discouragement of this technique. SDIs are easily placed, minimally invasive, and a true service to those patients described. They do not replace conventional diameter implants; however, they are a significant and important augmentation to the original root-form implant concept. There is obvious evidence of the growing acceptance of small-diameter implants by both general practitioners and specialists.

  12. 7 CFR 51.320 - Diameter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Apples Definitions § 51.320 Diameter. When measuring for minimum size, “diameter” means the greatest dimension of the apple measured at right angles to a line from stem to blossom end. When measuring for maximum size, “diameter” means the smallest dimension of the apple determined...

  13. 7 CFR 51.320 - Diameter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Definitions § 51.320 Diameter. When measuring for minimum size, “diameter” means the greatest dimension of the apple measured at right angles to... dimension of the apple determined by passing the apple through a round opening in any position....

  14. 7 CFR 51.320 - Diameter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Apples Definitions § 51.320 Diameter. When measuring for minimum size, “diameter” means the greatest dimension of the apple measured at right angles to a line from stem to blossom end. When measuring for maximum size, “diameter” means the smallest dimension of the apple determined...

  15. 7 CFR 51.320 - Diameter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Apples Definitions § 51.320 Diameter. When measuring for minimum size, “diameter” means the greatest dimension of the apple measured at right angles to a line from stem to blossom end. When measuring for maximum size, “diameter” means the smallest dimension of the apple determined...

  16. 7 CFR 51.320 - Diameter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Definitions § 51.320 Diameter. When measuring for minimum size, “diameter” means the greatest dimension of the apple measured at right angles to... dimension of the apple determined by passing the apple through a round opening in any position....

  17. Reducing the diameters of computer networks

    NASA Technical Reports Server (NTRS)

    Bokhari, S. H.; Raza, A. D.

    1986-01-01

    Three methods of reducing the diameters of computer networks by adding additional processor to processor links under the constraint that no more than one I/O port be added to each processor are discussed. This is equivalent to adding edges to a given graph under the constraint that the degree of any node be increased, at most, by one.

  18. Small diameter symmetric networks from linear groups

    NASA Technical Reports Server (NTRS)

    Campbell, Lowell; Carlsson, Gunnar E.; Dinneen, Michael J.; Faber, Vance; Fellows, Michael R.; Langston, Michael A.; Moore, James W.; Multihaupt, Andrew P.; Sexton, Harlan B.

    1992-01-01

    In this note is reported a collection of constructions of symmetric networks that provide the largest known values for the number of nodes that can be placed in a network of a given degree and diameter. Some of the constructions are in the range of current potential engineering significance. The constructions are Cayley graphs of linear groups obtained by experimental computation.

  19. Reduced artery diameters in Klinefelter syndrome.

    PubMed

    Foresta, C; Caretta, N; Palego, P; Ferlin, A; Zuccarello, D; Lenzi, A; Selice, R

    2012-10-01

    Various epidemiological studies in relatively large cohorts of patients with Klinefelter syndrome (KS) described the increased morbidity and mortality in these subjects. Our aim was to study the structure and function of arteries in different districts to investigate in these subjects possible alterations. A total of 92 patients having non-mosaic KS, diagnosed in Centre for Human Reproduction Pathology at the University of Padova, and 50 age-matched healthy male controls were studied. Klinefelter syndrome subjects and controls evaluation included complete medical history, physical examination, measurement of concentrations of the reproductive hormones, lipidic and glycidic metabolism, AR function and sensitivity, ultrasound examinations (diameters, carotid intima-media thickness and brachial flow-mediated dilation) of brachial, common carotid and common femoral artery and abdominal aorta. Klinefelter syndrome patients showed significantly reduced artery diameters in all districts evaluated. On the contrary no statistically significant difference was found in cIMT and brachial FMD values between KS patients and controls. Furthermore, we found no statistically significant correlation of artery diameters with reproductive hormones, metabolic parameters, anthropometric measures and weighted CAG repeats. To our knowledge, this is the first study finding a reduced artery diameter in several districts in KS patients compared with that of normal male subjects and overlapping to that of female subjects. We have not an explanation for this phenomenon, even if a possible involvement of genes controlling the development of vascular system might be hypothesized, and further research is required to verify this hypothesis.

  20. Precision distances with spiral galaxy apparent diameters

    NASA Astrophysics Data System (ADS)

    Steer, Ian

    2016-01-01

    Spiral galaxy diameters offer the oldest extragalactic distance indicator known. Although outdated and hitherto imprecise, two spiral diameter-based distance indicators applied in the 1980s can be tested, calibrated, and re-established for precision era use, based on abundant redshift-independent distances data available in NED-D. Indicator one employs the largest Giant Spiral Galaxies, which have an absolute isophotal major diameter of ~70 +/- 10 kpc, offering standard ruler-based distances with <10% precision. Indicator two employs the diameter-magnitude relation for spirals in general, as a secondary indicator, offering ~20% precision. The ruler-based indicator is the only indicator with <10% precision able to independently calibrate type Ia supernovae-based distances at cosmological distances. The secondary-based indicator is the only indicator with 20% precision applicable to more galaxies than in current Tully-Fisher surveys. The primary indicator gives researchers a new tool to confirm or refute if, as currently believed, universal expansion is accelerating. The secondary indicator gives researchers a new path toward acquiring a more complete 3D picture of the local universe and potentially, because the majority of galaxies in the universe are spirals, the distant universe.

  1. Solar diameter with 2012 Venus Transit

    NASA Astrophysics Data System (ADS)

    Sigismondi, C.

    2012-06-01

    The role of Venus and Mercury transits is crucial to know the past history of the solar diameter. Through the W parameter, the logarithmic derivative of the radius with respect to the luminosity, the past values of the solar luminosity can be recovered. The black drop phenomenon affects the evaluation of the instants of internal and external contacts between the planetary disk and the solar limb. With these observed instants compared with the ephemerides the value of the solar diameter is recovered. The black drop and seeing effects are overcome with two fitting circles, to Venus and to the Sun, drawn in the undistorted part of the image. The corrections of ephemerides due to the atmospheric refraction will also be taken into account. The forthcoming transit of Venus will allow an accuracy on the diameter of the Sun better than 0.01 arcsec, with good images of the ingress and of the egress taken each second. Chinese solar observatories are in the optimal conditions to obtain valuable data for the measurement of the solar diameter with the Venus transit of 5/6 June 2012 with an unprecedented accuracy, and with absolute calibration given by the ephemerides.

  2. Measuring Solar Diameter with 2012 Venus Transits

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    The role of Venus and Mercury transits is crucial to know the past history of the solar diameter. Through the W parameter, the logarithmic derivative of the radius with respect to the luminosity, the past values of the solar luminosity can be recovered. The black drop phenomenon affects the evaluation of the instants of internal and external contacts between the planetary disk and the solar limb. With these observed instants compared with the ephemerides the value of the solar diameter is recovered. The black drop and seeing effects are overcome with two fitting circles, to Venus and to the Sun, drawn in the undistorted part of the image. The corrections of ephemerides due to the atmospheric refraction will also be taken into account. The forthcoming transit of Venus will allow an accuracy on the diameter of the Sun better than 0.01 arcsec, with good images of the ingress and of the egress taken each second. Chinese solar observatories are in the optimal conditions to obtain valuable data for the measurement of the solar diameter with the Venus transit of 5/6 June 2012 with an unprecedented accuracy, and with absolute calibration given by the ephemerides.

  3. Photonic crystal fiber based dual-wavelength Q-switched fiber laser using graphene oxide as a saturable absorber.

    PubMed

    Ahmad, H; Soltanian, M R K; Pua, C H; Alimadad, M; Harun, S W

    2014-06-01

    A Q-switched dual-wavelength fiber laser with narrow channel spacing is proposed and demonstrated. The fiber laser is built around a 3 m long erbium doped fiber as the gain medium and a 10 cm long photonic crystal fiber (PCF) as the element used to generate the dual-wavelength output. The PCF has a solid core approximately 4.37 μm in diameter and is surrounded by microscopic air-holes with a diameter of about 5.06 μm each as well as a zero-dispersion wavelength of about 980 nm. A graphene oxide based saturable absorber is used to generate the desired pulsed output. At the maximum pump power of 72 mW the laser is capable of generating pulses with a repetition rate and pulse-width of 31.0 kHz and 7.0 μs, respectively, as well as an average output power and pulse energy of 0.086 mW and 2.8 nJ, respectively. The proposed fiber laser has substantial potential for use in applications that require longer duration pulsed outputs such as in range finding and terahertz radiation generation.

  4. Liquid crystals for organic transistors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hanna, Jun-ichi; Iino, Hiroaki

    2016-09-01

    Liquid crystals are a new type of organic semiconductors exhibiting molecular orientation in self-organizing manner, and have high potential for device applications. In fact, various device applications have been proposed so far, including photosensors, solar cells, light emitting diodes, field effect transistors, and so on.. However, device performance in those fabricated with liquid crystals is less than those of devices fabricated with conventional materials in spite of unique features of liquid crystals. Here we discuss how we can utilize the liquid crystallinity in organic transistors and how we can overcome conventional non-liquid crystalline organic transistor materials. Then, we demonstrate high performance organic transistors fabricated with a smectic E liquid crystal of Ph-BTBT-10, which show high mobility of over 10cm2/Vs and high thermal durability of over 200oC in OFETs fabricated with its spin-coated polycrystalline thin films.

  5. Aharonov—Bohm Oscillations in Small Diameter Bi Nanowires

    NASA Astrophysics Data System (ADS)

    Konopko, L.

    The Aharonov-Bohm effect (AB) exists in cylindrical wires as the magnetoresistance (MR) oscillations with a period ΔB that is proportional to Φ0 / S, where Φ0 = h / e is the flux quantum and S is the wire cross section. The AB-type longitudinal MR oscillations with period ΔB = Φ0 / S caused by electrons undergoing continuous grazing incidence at the wire wall have been observed previously at 4.2 K in single bismuth nanowires with a diameter 0. 2 < d < 0. 8 μm grown by the Ulitovsky technique. We present here our results of the observation of AB oscillations with period ΔB = h / e and ΔB = h / 2e on single Bi nanowires with a diameter d = 45-73 nm. The single nanowire samples were prepared by improved Ulitovsky technique and represented cylindrical single crystals with (1011) orientation along the wire axis. Due to very low effective masses of electrons and holes, electronic quantum confinement effects induce a semimetal-to-semiconductor transformation (SMSC) for wires with diameters below 50 nm. Our estimation of thermal energy gap from R(T) dependence for 50 nm Bi wire gives the value of 14 meV. The surface of Bi nanowire supports surface states, with carrier densities of around 5 ×1012 cm- 2 with strong spin-orbit interactions. From B ˜ 8 T down to B = 0, the extremums of h/2e oscillations are shifted up to 3π at B = 0, which is the manifestation of Berry phase shift. We connect the existence of h / 2e oscillations with weak localizations on surface states of Bi nanowires according to the Altshuller-Aronov-Spivak theory.

  6. Fabrication of large diameter alumino-silicate K{sup +} sources

    SciTech Connect

    Baca, D.; Chacon-Golcher, E.; Kwan, J.W.; Wu, J.K.

    2003-02-20

    Alumino-silicate K{sup +} sources have been used in HIF experiments for many years. For example the Neutralized Transport Expt. (NTX) and the High Current Transport Expt. (HCX) are now using this type of ion source with diameters of 2.54 cm and 10 cm respectively. These sources have demonstrated ion currents of 80 mA and 700 mA, for typical HIF pulse lengths of 5-10 {micro}s. The corresponding current density is {approx} 10-15 mA/cm{sup 2}, but much higher current density has been observed using smaller size sources. Recently we have improved our fabrication techniques and, therefore, are able to reliably produce large diameter ion sources with high quality emitter surface without defects. This note provides a detailed description of the procedures employed in the fabrication process. The variables in the processing steps affecting surface quality, such as substrate porosity, powder size distribution, coating technique on large area concave surfaces, drying, and heat firing temperature have been investigated.

  7. Multi-diameter silicon nanowires: Fabrication, characterization, and modeling

    NASA Astrophysics Data System (ADS)

    Alagoz, Arif Sinan

    Nanotechnology is a rapidly expanding interdisciplinary field offering novel devices for broad range of applications. Quantum effects and surface to volume ratio of nanostructures are strongly size dependent, and redefine material properties at nanoscale. Silicon is one of the most promising materials for next generation nanostructured transistors, photonics devices, Li-ion batteries, photovoltaic solar cells, and thermoelectric energy generators. Since electrical, optical, and mechanical properties of nanostructures strongly depend on their shape, size, periodicity, and crystal structure; it is crucial to control these parameters in order to optimize device performance for targeted applications. This dissertation is intended to develop a low-cost, low-temperature, high-throughput, and large-area nanowire fabrication method that can produce well-ordered arrays of hierarchical single-crystal silicon nanowires at large scale by using nanosphere lithography and metal-assisted chemical etching. Nanowire morphology was characterized by using scanning electron microscope and optical properties of nanowire arrays were modeled with the help of finite-difference-time domain method. These novel multi-diameter silicon nanowire arrays have the potential applications in many fields including but not limited to next generation nanowire solar cells to field ionization gas sensors.

  8. Diameters and albedos of satellites of Uranus

    NASA Technical Reports Server (NTRS)

    Brown, R. H.; Cruikshank, D. P.; Morrison, D.

    1982-01-01

    Products of the masses of the five known satellites of Uranus, and estimates of their bulk densities and surface albedos, are used to infer their probable dimensions. Spectrophotometry has established the presence of water ice on the surfaces of all save Rhea, and the brightnesses of the satellites have been measured photoelectrically. The diameter measurements presented were made using a photometric/radiometric technique, whose recent recalibration, using independent solar system object measurements, has yielded absolute accuracies better than 5 per cent. The new albedo measurements show that Umbriel, Titania and Oberon are similar to the Jupiter moon Callisto, while Ariel resembles the Saturn moon Hyperion. The diameters of all four are similar to those of the large, icy Saturn satellites Rhea and Iapetus.

  9. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, David E.; Petrini, Richard R.; Carter, Gary W.

    1981-01-01

    An improved rod optic system for inspecting small diameter, deep bores. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90.degree. to minimize optical distortion in examining the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable of examining 1/16 inch diameter and up to 4 inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and right angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  10. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, D.E.; Petrini, R.R.; Carter, G.W.

    An improved rod optic system for inspecting small diameter, deep bores is described. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90/sup 0/ to minimize optical distortion in examing the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable if examing 1/16 inch diameter and up to 4-inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and righ angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  11. European Projects of Solar Diameter Monitoring

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino; Bianda, Michele; Arnaud, Jean

    2008-10-01

    Three projects dealing with solar diameter evolution are presently in development. Historical and contemporary eclipses and planetary transits data collection and analysis, to cover potentially the last 5 centuries with an accuracy of few hundreds of arcsecond on diameter's measurements. The French space mission PICARD with a few milliarcseconds accuray. With PICARD-SOL instruments located at the plateau of Calern the role of the atmosphere in ground-based measurements will be clarified. CLAVIUS is a Swiss-Italian project based on drift-scan method, free from optical distortions, where hourly circles transits will be monitored with fast CMOS sensors in different wavebands. The will run at IRSOL Gregory-Coudé telescope.

  12. On finding minimum-diameter clique trees

    SciTech Connect

    Blair, J.R.S. . Dept. of Computer Science); Peyton, B.W. )

    1991-08-01

    It is well-known that any chordal graph can be represented as a clique tree (acyclic hypergraph, join tree). Since some chordal graphs have many distinct clique tree representations, it is interesting to consider which one is most desirable under various circumstances. A clique tree of minimum diameter (or height) is sometimes a natural candidate when choosing clique trees to be processed in a parallel computing environment. This paper introduces a linear time algorithm for computing a minimum-diameter clique tree. The new algorithm is an analogue of the natural greedy algorithm for rooting an ordinary tree in order to minimize its height. It has potential application in the development of parallel algorithms for both knowledge-based systems and the solution of sparse linear systems of equations. 31 refs., 7 figs.

  13. Diameter-dependent hydrophobicity in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kyakuno, Haruka; Fukasawa, Mamoru; Ichimura, Ryota; Matsuda, Kazuyuki; Nakai, Yusuke; Miyata, Yasumitsu; Saito, Takeshi; Maniwa, Yutaka

    2016-08-01

    Single-wall carbon nanotubes (SWCNTs) are a good model system that provides atomically smooth nanocavities. It has been reported that water-SWCNTs exhibit hydrophobicity depending on the temperature T and the SWCNT diameter D. SWCNTs adsorb water molecules spontaneously in their cylindrical pores around room temperature, whereas they exhibit a hydrophilic-hydrophobic transition or wet-dry transition (WDT) at a critical temperature Twd ≈ 220-230 K and above a critical diameter Dc ≈ 1.4-1.6 nm. However, details of the WDT phenomenon and its mechanism remain unknown. Here, we report a systematic experimental study involving X-ray diffraction, optical microscopy, and differential scanning calorimetry. It is found that water molecules inside thick SWCNTs (D > Dc) evaporate and condense into ice Ih outside the SWCNTs at Twd upon cooling, and the ice Ih evaporates and condenses inside the SWCNTs upon heating. On the other hand, residual water trapped inside the SWCNTs below Twd freezes. Molecular dynamics simulations indicate that upon lowering T, the hydrophobicity of thick SWCNTs increases without any structural transition, while the water inside thin SWCNTs (D < Dc) exhibits a structural transition, forming an ordered ice. This ice has a well-developed hydrogen bonding network adapting to the cylindrical pores of the SWCNTs. Thus, the unusual diameter dependence of the WDT is attributed to the adaptability of the structure of water to the pore dimension and shape.

  14. 29 mm Diameter Test Target Design Report

    SciTech Connect

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard; Naranjo, Angela Carol; Romero, Frank Patrick

    2016-08-15

    The Northstar target for Mo99 production is made up of Mo100 disks in a stack separated by coolant gaps for helium flow. A number of targets have been tested at ANL for both production of Mo99 and for thermal-hydraulic performance. These have all been with a 12 mm diameter target, even while the production goals have increased the diameter to now 29 mm. A 29 mm diameter target has been designed that is consistent with the ANL beam capabilities and the capabilities of the helium circulation system currently in use at ANL. This target is designed for 500 μA at 35 MeV electrons. While the plant design calls for 42 MeV, the chosen design point is more favorable and higher power given the limits of the ANL accelerator. The intended beam spot size is 12 mm FWHM, but the thermal analysis presented herein conservatively assumed a 10 mm FWHM beam, which results in a 44% higher beam current density at beam center.

  15. Diamond drumhead crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kolodziej, Tomasz; Vodnala, Preeti; Terentyev, Sergey A.; Blank, Vladimir D.; Shvyd'ko, Yuri V.

    2016-09-01

    Ultra-thin (< 100 um) diamond single crystals are essential for the realization of numerous next generation x-ray optical devices. Fabrication and handling of such ultra-thin crystal components without introducing damage and strain is a challenge. Drumhead crystals, monolithic crystal structures comprised of a thin membrane furnished with a surrounding solid collar would be a solution for the proper handling ensuring mechanically stable and strain-free mount of the membranes with efficient thermal transport. However, diamond being one of the hardest and chemically inert materials poses insurmountable difficulties in the fabrication. Here we report on a successful manufacturing of the diamond drumhead crystals using picosecond laser milling. Subsequent temperature treatment appears to be crucial for the membranes to become defect-free and unstrained, as revealed by x-ray double-crystal topography on an example of drumhead crystals with 1-mm in diameter and 28 um to 47 um-thick membranes in the (100) orientation.

  16. Simulation, modeling, and crystal growth of Cd0.9Zn0.1Te for nuclear spectrometers

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Kang, Sung Hoon; Choi, Michael; Bello, Job; Zheng, Lili; Zhang, Hui; Groza, Michael; Roy, Utpal N.; Burger, Arnold; Jellison, Gerald E.; Holcomb, David E.; Wright, Gomez W.; Williams, Joseph A.

    2006-06-01

    High-quality, large (10 cm long and 2.5 cm diameter), nuclear spectrometer grade Cd0.9Zn0.1Te (CZT) single crystals have been grown by a controlled vertical Bridgman technique using in-house zone refined precursor materials (Cd, Zn, and Te). A state-of-the-art computer model, multizone adaptive scheme for transport and phase-change processes (MASTRAP), is used to model heat and mass transfer in the Bridgman growth system and to predict the stress distribution in the as-grown CZT crystal and optimize the thermal profile. The model accounts for heat transfer in the multiphase system, convection in the melt, and interface dynamics. The grown semi-insulating (SI) CZT crystals have demonstrated promising results for high-resolution room-temperature radiation detectors due to their high dark resistivity (ρ≈2.8 × 1011 Θ cm), good charge-transport properties [electron and hole mobility-life-time product, μτe≈(2 5)×10-3 and μτh≈(3 5)×10-5 respectively, and low cost of production. Spectroscopic ellipsometry and optical transmission measurements were carried out on the grown CZT crystals using two-modulator generalized ellipsometry (2-MGE). The refractive index n and extinction coefficient k were determined by mathematically eliminating the ˜3-nm surface roughness layer. Nuclear detection measurements on the single-element CZT detectors with 241Am and 137Cs clearly detected 59.6 and 662 keV energies with energy resolution (FWHM) of 2.4 keV (4.0%) and 9.2 keV (1.4%), respectively.

  17. Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions.

    PubMed

    Barton, Craig V M; Montagu, Kelvin D

    2004-12-01

    A tree's root system accounts for between 10 and 65% of its total biomass, yet our understanding of the factors that cause this proportion to vary is limited because of the difficulty encountered when studying tree root systems. There is a need to develop new sampling and measuring techniques for tree root systems. Ground penetrating radar (GPR) offers the potential for direct nondestructive measurements of tree root biomass and root distributions to be made. We tested the ability of GPR, with 500 MHz, 800 MHz and 1 GHz antennas, to detect tree roots and determine root size by burying roots in a 32 m3 pit containing damp sand. Within this test bed, tree roots were buried in two configurations: (1) roots of various diameters (1-10 cm) were buried at a single depth (50 cm); and (2) roots of similar diameter (about 5 cm) were buried at various depths (15-155 cm). Radar antennas were drawn along transects perpendicular to the buried roots. Radar profile normalization, filtration and migration were undertaken based on standard algorithms. All antennas produced characteristic reflection hyperbolas on the radar profiles allowing visual identification of most root locations. The 800 MHz antenna resulted in the clearest radar profiles. An unsupervised, maximum-convexity migration algorithm was used to focus information contained in the hyperbolas back to a point. This resulted in a significant gain in clarity with roots appearing as discrete shapes, thereby reducing confusion due to overlapping of hyperbolas when many roots are detected. More importantly, parameters extracted from the resultant waveform through the center of a root correlated well with root diameter for the 500 MHz antenna, but not for the other two antennas. A multiple regression model based on the extracted parameters was calibrated on half of the data (R2 = 0.89) and produced good predictions when tested on the remaining data. Root diameters were predicted with a root mean squared error of 0.6 cm

  18. Variable diameter wind turbine rotor blades

    DOEpatents

    Jamieson, Peter McKeich; Hornzee-Jones, Chris; Moroz, Emilian M.; Blakemore, Ralph W.

    2005-12-06

    A system and method for changing wind turbine rotor diameters to meet changing wind speeds and control system loads is disclosed. The rotor blades on the wind turbine are able to adjust length by extensions nested within or containing the base blade. The blades can have more than one extension in a variety of configurations. A cable winching system, a hydraulic system, a pneumatic system, inflatable or elastic extensions, and a spring-loaded jack knife deployment are some of the methods of adjustment. The extension is also protected from lightning by a grounding system.

  19. The diameter and albedo of 1943 Anteros

    NASA Technical Reports Server (NTRS)

    Veeder, G. J.; Tedesco, E. F.; Tholen, D. J.; Tokunaga, A.; Matthews, K.; Neugebauer, G.; Soifer, B. T.; Kowal, C.

    1981-01-01

    The results of broadband visual and infrared photometry of the Apollo-Amor asteroid 1943 Anteros during its 1980 apparition are reported. By means of a radiometric model, a diameter of 2.3 + or - 0.2 km and a visual geometric albedo of 0.13 + or - 0.03 is calculated. The albedo and reflectance spectrum of Anteros imply that it is a type S asteroid. Thus, Anteros may have a silicate surface similar to other Apollo-Amor asteroids as well as some stony-iron meteorites.

  20. A Variable Diameter Short Haul Civil Tiltrotor

    NASA Technical Reports Server (NTRS)

    Wang, James M.; Jones, Christopher T.; Nixon, Mark W.

    1999-01-01

    The Short-Haul-Civil-tiltrotor (SHCT) component of the NASA Aviation System Capacity Program is an effort to develop the technologies needed for a potential 40-passenger civil tiltrotor. The variable diameter tiltrotor (VDTR) is a Sikorsky concept aimed at improving tiltrotor hover and cruise performance currently limited by disk loading that is much higher in hover than conventional helicopter, and much lower in cruise than turbo-prop systems. This paper describes the technical merits of using a VDTR on a SHCT aircraft. The focus will be the rotor design.

  1. A 30-cm diameter argon ion source

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1976-01-01

    A 30 cm diameter argon ion source was evaluated. Ion source beam currents up to 4a were extracted with ion energies ranging from 0.2 to 1.5 KeV. An ion optics scaling relation was developed for predicting ion beam extraction capability as a function of total extraction voltage, gas type, and screen grid open area. Ignition and emission characteristics of several hollow cathode geometries were assessed for purposes of defining discharge chamber and neutralizer cathodes. Also presented are ion beam profile characteristics which exhibit broad beam capability well suited for ion beam sputtering applications.

  2. Thread gauge for measuring thread pitch diameters

    DOEpatents

    Brewster, A.L.

    1985-11-19

    A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts is disclosed. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade. 2 figs.

  3. Thread gauge for measuring thread pitch diameters

    DOEpatents

    Brewster, Albert L.

    1985-01-01

    A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade.

  4. Diameter Tuning of [Formula: see text]-Ga2O3 Nanowires Using Chemical Vapor Deposition Technique.

    PubMed

    Kumar, Mukesh; Kumar, Vikram; Singh, R

    2017-12-01

    Diameter tuning of [Formula: see text]-Ga2O3 nanowires using chemical vapor deposition technique have been investigated under various experimental conditions. Diameter of root grown [Formula: see text]-Ga2O3 nanowires having monoclinic crystal structure is tuned by varying separation distance between metal source and substrate. Effect of gas flow rate and mixer ratio on the morphology and diameter of nanowires has been studied. Nanowire diameter depends on growth temperature, and it is independent of catalyst nanoparticle size at higher growth temperature (850-900 °C) as compared to lower growth temperature (800 °C). These nanowires show changes in structural strain value with change in diameter. Band-gap of nanowires increases with decrease in the diameter.

  5. A small diameter, flexible, all attitude, self-contained germanium spectrometer. Operator`s manual

    SciTech Connect

    Bordzindki, R.L.; Lepel, E.A.; Reeves, J.H.; Kohli, R.

    1997-05-01

    The end of the Cold War has brought about tremendous changes in the nuclear complex of the Department of Energy. One of the many changes has been the shutdown or decommissioning of many facilities that performed nuclear work. One of the steps in the process of decommissioning a facility involves the decontamination or removal of drain lines or pipes that may have carried radioactive materials at one time. The removal of all these pipes and drain lines to a nuclear disposal facility could be quite costly. It was suggested by Pacific Northwest National Laboratory (PNNL) that a germanium spectrometer could be built that could fit through straight pipes with a diameter as small as 5.08 cm (2 inches) and pass through curved pipes with a diameter as small as 7.6 cm (3 inches) such as that of a 3-inch p-trap in a drain line. The germanium spectrometer could then be used to simultaneously determine all gamma-ray emitting radionuclides in or surrounding the pipe. By showing the absence of any gamma-ray emitting radionuclides, the pipes could then be reused in place or disposed of as non-radioactive material, thus saving significantly in disposal costs. A germanium spectrometer system has been designed by PNNL and fabricated by Princeton Gamma Tech (PGT) that consists of three segments, each 4.84 cm in diameter and about 10 cm in length. Flexible stainless steel bellows were used to connect the segments. Segment 1 is a small liquid nitrogen reservoir. The reservoir is filled with a sponge-like material which enables the detector to be used in any orientation. A Stirling cycle refrigerator is under development which can replace the liquid nitrogen reservoir to provide continuous cooling and operation.

  6. Measurement of Diameter Changes during Irradiation Testing

    SciTech Connect

    Davis, K. L.; Knudson, D. L.; Crepeau, J. C.; Solstad, S.

    2015-03-01

    New materials are being considered for fuel, cladding, and structures in advanced and existing nuclear reactors. Such materials can experience significant dimensional and physical changes during irradiation. Currently in the US, such changes are measured by repeatedly irradiating a specimen for a specified period of time and then removing it from the reactor for evaluation. The time and labor to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data and handling may disturb the phenomena of interest. In-pile detection of changes in geometry is sorely needed to understand real-time behavior during irradiation testing of fuels and materials in high flux US Material and Test Reactors (MTRs). This paper presents development results of an advanced Linear Variable Differential Transformer-based test rig capable of detecting real-time changes in diameter of fuel rods or material samples during irradiation in US MTRs. This test rig is being developed at the Idaho National Laboratory and will provide experimenters with a unique capability to measure diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  7. Large-diameter glory-hole drilling: Evolution from 12- to 20-ft diameter

    SciTech Connect

    Shields, R.

    1994-06-01

    To drill for oil and gas in shallow, ice-infested waters, a hole needs to be excavated in the seafloor to protect subsea blowout preventers (BOP's) from ice-scour damage. Canadian Marine Drilling pioneered the use of large-diameter glory-hole drilling systems by designing, building, and patenting a 12-ft (3.7-m)-diameter prototype bit system, a 17-ft (5.2-m)-diameter upgrade, a 20-ft (6.1-m)-diameter standard system, and a 20-ft (6.1-m)-diameter enhanced system. The enhanced bit design incorporates high-pressure jetting, boulder storage, pilot-hole centering, and other features that allow a 36-in (0.91-m) hole to be drilled through the body of the bit. An optional feature is the ability to drill and case the glory hole simultaneously. To date, penetration rates up to 4.5 ft/hr (1.37 m/h) in soils with a shear strength 5,000 lbf/ft[sup 2] (239 kPa) have been obtained. Glory-hole drilling times have been reduced from more than 20 days in 1978 to approximately 1[1/2] days since 1986.

  8. Advances in large-diameter liquid encapsulated Czochralski GaAs

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1982-01-01

    The purity, crystalline perfection, and electrical properties of n- and p-type GaAs crystals grown by the liquid encapsulated Czochralski (LEC) technique are evaluated. The determination of the dislocation density, incidence of twinning, microstructure, background purity, mobility, and minority carrier diffusion length is included. The properties of the LEC GaAs crystals are generally comparable to, if not superior to those of small-diameter GaAs material grown by conventional bulk growth techniques. As a result, LEC GaAs is suitable for application to minority carrier devices requiring high-quality and large-area substrates.

  9. Crystal Meth

    MedlinePlus

    ... from Other Parents Stories of Hope Crystal meth Crystal meth Story of Hope by giovanni January 3, ... about my drug addiction having to deal with Crystal meth. I am now in recovery and fighting ...

  10. Crystal Meth

    MedlinePlus

    ... Navigation Home / Stories of Hope / Crystal meth Crystal meth Story Of Hope By giovanni January 3rd, 2013 ... my drug addiction having to deal with Crystal meth. I am now in recovery and fighting my ...

  11. Crystal Creations.

    ERIC Educational Resources Information Center

    Whipple, Nona; Whitmore, Sherry

    1989-01-01

    Presents a many-faceted learning approach to the study of crystals. Provides instructions for performing activities including crystal growth and patterns, creating miniature simulations of crystal-containing rock formations, charcoal and sponge gardens, and snowflakes. (RT)

  12. Development of fine diameter mullite fiber

    NASA Technical Reports Server (NTRS)

    Long, W. G.

    1974-01-01

    Results are presented of a program to develop and evaluate mullite fiber with a mean diameter under two microns. The two micron fiber is produced by a blowing process at room temperature from a low viscosity (10-25 poise) solution. The blown fiber was evaluated for dimensional stability in thermal cycling to 1371 C, and was equivalent to the 5 micron spun B and W mullite fiber. An additive study was conducted to evaluate substitutes for the boron. Three levels of chromium, lithium fluoride, and magnesium were added to the standard composition in place of boron and the fiber produced was evaluated for chemical and dimensional stability in thermal cycling to 1371 C. The magnesium was the most chemically stable, but the chrome additive imparted the best dimensional stability.

  13. Five meter diameter conical furlable antenna

    NASA Technical Reports Server (NTRS)

    Fortenberry, J. W.; Freeland, R. E.; Moore, D. M.

    1976-01-01

    An investigation was made to demonstrate that a 5-meter-diameter, furlable, conical reflector antenna utilizing a line source feed can be fabricated utilizing composite materials and to prove that the antenna can function mechanically and electrically as prototype flight hardware. The design, analysis, and testing of the antenna are described. An RF efficiency of 55% at 8.5 GHz and a surface error of 0.64 mm rms were chosen as basic design requirements. Actual test measurements yielded an efficiency of 53% (49.77 dB gain) and a surface error of 0.61 mm rms. Atmospherically induced corrosion of the reflector mesh resulted in the RF performance degradation. An assessment of the antenna as compared to the current state of the art technology was made. This assessment included cost, surface accuracy and RF performance, structural and mechanical characteristics, and possible applications.

  14. Thirty-centimeter-diameter ion milling source

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1978-01-01

    A 30-cm beam diameter ion source has been designed and fabricated for micromachining and sputtering applications. An argon ion current density of 1 mA/cu cm at 500 eV ion energy was selected as a design operating condition. The completed ion source met the design criteria at this operating condition with a uniform and well-collimated beam having an average variation in current density of + or - 5% over the center of 20 cm of the beam. This ion source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. Langmuir probe surveys of the source plasma support the design concepts of a multipole field and a circumferential cathode to enhance plasma uniformity.

  15. Stemming selection for large-diameter blastholes

    SciTech Connect

    Eloranta, J.

    1994-12-31

    Proper selection of stemming has a profound effect on blast performance. This paper describes several methods of evaluating stemming performance in 16-inch blastholes. Tests are done on stemming ranging in size from nominal 1/4 inch crushed rock up to railroad ballast size rock (2 1/2 inch > diameter < 3/4 inch). Concrete plugs (both pre-cast and poured) are evaluated as well as air decking. A Red lake Lo-cam and a velocity of detonation recorder (VODR) are used to estimate stemming retention time and stemming ejection velocities. Downstream productivity rates including: shovel digging rates, crusher speed and crusher hangup counts are used to estimate fragmentation results. Digital image analysis is used to estimate size distributions.

  16. Fire protection covering for small diameter missiles

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Sawko, P. M. (Inventor)

    1979-01-01

    Flexible intumescent protection sheeting of unusually uniform thickness were prepared from epoxy-polysulfide compositions, containing microfibers and the ammonium salt of 1,4-nitroaniline-2-sulfonic acid, as disclosed in U.S. Pat. No. 3,663,464, except that an ammonium salt particle size in the order of 5 to 8 microns and a fiber size of about 1/128th inch in length and 3 to 5 microns in diameter were found critical to obtain the required density of 1.46 to 1.50 g/cc. The insulation sheeting was prepared by a continuous process involving vacuum mixing, calendering, and curing under very strict conditions which depend to some extent upon the thickness of the sheet produced.

  17. Lasing from fluorescent protein crystals.

    PubMed

    Oh, Heon Jeong; Gather, Malte C; Song, Ji-Joon; Yun, Seok Hyun

    2014-12-15

    We investigated fluorescent protein crystals for potential photonic applications, for the first time to our knowledge. Rod-shaped crystals of enhanced green fluorescent protein (EGFP) were synthesized, with diameters of 0.5-2 μm and lengths of 100-200 μm. The crystals exhibit minimal light scattering due to their ordered structure and generate substantially higher fluorescence intensity than EGFP or dye molecules in solutions. The magnitude of concentration quenching in EGFP crystals was measured to be about 7-10 dB. Upon optical pumping at 485 nm, individual EGFP crystals located between dichroic mirrors generated laser emission with a single-mode spectral line at 513 nm. Our results demonstrate the potential of protein crystals as novel optical elements for self-assembled, micro- or nano-lasers and amplifiers in aqueous environment.

  18. Optical fiber waveguide sagnac interferometer. Phase 1: Multiturn one meter diameter, single mode. [optical gyroscopes

    NASA Technical Reports Server (NTRS)

    Vali, V.

    1977-01-01

    A rotating ring interferometer was constructed using a 100 meters of single mode optical fiber wound on a crystal cylinder. A 20 inch diameter fiber interferometer gyroscope was built and its sensitivity was evaluated. Major noise sources were identified and improvements for the next phase of development were determined. The accuracy of .01 of a fringe can be improved to .0001 by the removal of the noise source.

  19. Simulation of jet cooling effects on Czochralski crystal growth

    NASA Technical Reports Server (NTRS)

    Srivastava, R. K.; Ramachandran, P. A.; Dudukovic, M. P.

    1986-01-01

    The effects of cooling the crystal side surface by blowing a jet of an inert gas are examined in detail for Czochralski crystal growth. A combined model of the crystal + melt, which incorporates the detailed radiation calculations, the shape of the melt-gas meniscus, predicts the growth rate and the crystal-melt interface shape, is used for this study. The convective heat transfer coefficient for the jet is estimated from the correlation available in the literature. The effect of the jet cooling on the interface shape and the pulling rate is significant. The crystal diameter as well as the interface shape tend to be more stable in the environment of the rapid cooling of the crystal by the jet. The crystal diameter or the interface shape can be easily controlled by adjusting the gas flow rate through the jet. This gives the Czochralski pulling an additional degree of freedom facilitating the control of crystal diameter and interface shape.

  20. Crystallization of a Cyanurate Trimer in Nanopores

    NASA Astrophysics Data System (ADS)

    Koh, Yung P.; Simon, Sindee L.

    2011-03-01

    Nanoconfinement is known to depress the melting temperature through the well-known Gibbs-Thompson equation. Less well studied is the influence of nanoconfinement on crystallization kinetics. In this work we investigate crystallization of a cyanurate trimer using differential scanning calorimetry. The material shows cold crystallization and melting in the bulk state. Under the nanoconfinement of controlled pore glasses (CPG), cold crystallization and melting shift to lower temperatures, following the shift in the glass transition temperature. More importantly, however, the crystallization kinetics slow down and no crystallization occurs in 13 nm-diameter pores. Isothermal crystallization studies indicate that the Avrami exponent is approximately 2.0 for both bulk and nanoconfined samples. The time scale for crystallization is over one order of magnitude longer for samples confined in 50-nm pores in spite of the fact that samples were crystallized the same distance from Tg .

  1. Development of large diameter carbon monofilament

    NASA Technical Reports Server (NTRS)

    Jacob, B.; Neltri, R. D.

    1973-01-01

    A process for preparing large diameter carbon-boron monofilament was developed. The process involves chemical vapor depositing a carbon-boron alloy monofilament from a BCl3, CH4, and H2 gas mixture onto a carbon substrate. Amorphous alloys were formed when gaseous mixtures containing greater than 20 percent methane (80 percent BCl3) were used. The longest uninterrupted lengths of carbon-boron monofilament were produced using a CH4/BCl3 gas ratio of 2.34. It was found that the properties of the carbon-boron alloy monofilament improved when the carbon substrate was precleaned in chlorine. The highest strength monofilament was attained when a CH4/BCl3 gas volume ratio of 0.44 was 28 million N/sq cm (40 million psi). While the highest strengths were attained in this run, the 0.44 gas ratio and other CH4/BCl3 ratios less than 2.34 would not yield long runs. Runs using these ratios were usually terminated because of a break in the monofilament within the reactor. It is felt better process control could probably be achieved by varying the amount of hydrogen; the BCl3/H2 ratio was kept constant in these studies.

  2. The 15 cm diameter ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1974-01-01

    The startup reliability of a 15 cm diameter mercury bombardment ion thruster which employs a pulsed high voltage tickler electrode on the main and neutralizer cathodes is examined. Startup of the thruster is achieved 100% of the time on the main cathode and 98.7% of the time on the neutralizer cathode over a 3640 cycle test. The thruster was started from a 20 C initial condition and operated for an hour at a 600 mA beam current. An energy efficiency of 75% and a propellant utilization efficiency of 77% was achieved over the complete cycle. The effect of a single cusp magnetic field thruster length on its performance is discussed. Guidelines are formulated for the shaping of magnetic field lines in thrusters. A model describing double ion production in mercury discharges is presented. The production route is shown to occur through the single ionic ground state. Photographs of the interior of an operating-hollow cathode are presented. A cathode spot is shown to be present if the cathode is free of low work-function surfaces. The spot is observed if a low work-function oxide coating is applied to the cathode insert. Results show that low work-function oxide coatings tend to migrate during thruster operation.

  3. Study on the role of active radicals on plasma sterilization inside small diameter flexible polymeric tubes

    NASA Astrophysics Data System (ADS)

    Mstsuura, Hiroto; Fujiyama, Takatomo; Okuno, Yasuki; Furuta, Masakazu; Okuda, Shuichi; Takemura, Yuichiro

    2015-09-01

    Recently, atmospheric pressure discharge plasma has gathered attention in various fields. Among them, plasma sterilization with many types of plasma source has studied for decades and its mechanism is still an open question. If active radicals produced in plasma has main contribution of killing bacterias, direct contact of the so-called plasma flame might not be necessary. To confirm this, sterilization inside small diameter flexible polymeric tubes is studied in present work. DBD type plasma jet is produce by flowing helium gas in a glass tube. A long polymeric tube is connected and plasma jet is introduced into it. Plasma flame length depends on helium gas flow rate, but limited to about 10 cm in our experimental condition. E.colis set at the exit plasma source is easily killed during 10 min irradiation. At the tube end (about 20 cm away from plasma source exit), sterilization is possible with 30 min operation. This result shows that active radical is produced with helium plasma and mist contained in sample, and it can be transferred more than 20 cm during it life time. More plasma diagnostic data will also be shown at the conference. This work was partially supported by the ''ZE Research Program, IAE(ZE27B-4).

  4. Profile Control by Biased Electrodes in Large Diameter RF Produced Pl asma

    NASA Astrophysics Data System (ADS)

    Shinohara, Shunjiro; Matsuoka, Norikazu; Yoshinaka, Toshiro

    1998-10-01

    Control of the plasma profile has been carried out, using the voltage biasing method in the large diameter (45 cm) RF (radio frequency) produced plasma in the presence of the uniform magnetic field (less than 1200 G). Under the low filling pressure condition of 0.16 mTorr, changing the biasing voltages to the three individual end plates with concentric circular ring shapes, the radial electron density (about 10^10 cm-3) profile could be changed from the hollow to the peaked one. On the contrary, the nearly flat electron temperature (several eV) profile did not change appreciably. The azimuthal rotation velocity measured by the Mach probe, i.e. directional probe, showed the different radial profiles (but nearly uniform along the axis) depending on the biasing voltage. This velocity became slower with the low magnetic field (less than 200 G) or in the higher pressure regime up to 20 mTorr with the higher electron density. The experimental results by other biasing methods will also be presented.

  5. Behavior of large diameter wire ropes

    SciTech Connect

    Raoof, M.; Kraincanic, I.

    1995-12-31

    The paper reviews the recent theoretical work of the present authors as regards the prediction of the 2 {times} 2 stiffness matrix describing axial/torsional coupling of large diameter wire ropes. The theoretical analysis is based on results from a previously reported orthotropic sheet model which enables one to obtain estimates of the coefficients in the 2 {times} 2 stiffness matrix describing the axial/torsional coupling of the constituent spiral strands. The proposed model can (unlike previously available theories for wire ropes) cater for the presence of interwire friction and the various wire rope stiffness coefficients corresponding to both no-slip and full-slip regimes can be calculated. The no-slip regime corresponds to cases when an axially preloaded wire rope experiences cyclic variations of external load which are small enough not to induce initiation of gross interwire slippage within the constituent spiral strands. For sufficiently large values of range/mean axial load ratios, on the other hand, gross interwire slippage takes place and the effects of interwire friction on wire rope stiffness coefficients will be negligibly small compared with the effects due to the force changes in the wires themselves. Theoretical models have been developed for two types of wire ropes, i.e., those with an independent wire rope core (IWRC) or the types with a fiber core: the salient features for both approaches are reviewed with an emphasis on the characteristics of various wire rope constructions. In addition, experimental results from other sources are found to provide encouraging support for the theoretical predictions in a number of areas.

  6. Mockup Small-Diameter Air Distribution System

    SciTech Connect

    A. Poerschke and A. Rudd

    2016-05-01

    This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to be brought easily within conditioned space via interior partition walls. Centrally locating the air hander unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives an equal amount of airflow, regardless of the duct position on the box. Furthermore, within a reasonable set of length restrictions, each duct continues to receive similar airflow. The design method uses an additive approach to reach the total needed zonal airflow. Once the cubic feet per minute needed to satisfy the thermal load of a zone has been determined, the total number of duct runs to a zone can be calculated by dividing the required airflow by the standard airflow from each duct. The additive approach greatly simplifies the design effort and reduces the potential for duct design mistakes to be made. Measured results indicate that this plenum design can satisfy the heating load. However, the total airflow falls short of satisfying the cooling load in a hypothetical building. Static pressure inside the plenum box of 51.5 Pa limited the total airflow of the attached mini-split heat pump blower, thus limiting the total thermal capacity. Fan energy consumption is kept to 0.16 to 0.22 watt/CFM by using short duct runs and smooth duct material.

  7. Cylinder-shaped ultrasonic motors 4.8 mm in diameter using electroactive piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Luo, Laihui; Zhu, Hua; Zhao, Chunsheng; Wang, Haixia; Luo, Haosu

    2007-01-01

    Two cylinder-shaped ultrasonic motors 4.8mm in diameter were developed. This kind of motor was driven by four pieces of piezoelectric materials, which were used to excite the two first-bending vibrations. Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMNT) crystal and Pb(Zr ,Ti)O3 (PZT) ceramic piezoelectric materials were used as drive elements. The motor based on PMNT crystals could operate at a voltage of 25Vp-p (peak to peak). When driven by a 100Vp-p voltage, the motor could run at frequency ranging from 26to68kHz and the revolution speed reached 450rpm. Its maximum output torque was 0.6mNm. The motor based on the PZT ceramic did not exhibit high performance as the PMNT crystal motor. The piezoelectric materials affect the performance of the motors greatly.

  8. Instability of Reference Diameter in the Evaluation of Stenosis After Coronary Angioplasty: Percent Diameter Stenosis Overestimates Dilative Effects Due to Reference Diameter Reduction

    SciTech Connect

    Hirami, Ryouichi; Iwasaki, Kohichiro; Kusachi, Shozo; Murakami, Takashi; Hina, Kazuyoshi; Matano, Shigeru; Murakami, Masaaki; Kita, Toshimasa; Sakakibara, Noburu; Tsuji, Takao

    2000-03-15

    Purpose: To examine changes in the reference segment luminal diameter after coronary angioplasty.Methods: Sixty-one patients with stable angina pectoris or old myocardial infarction were examined. Coronary angiograms were recorded before coronary angioplasty (pre-angioplasty) and immediately after (post-angioplasty), as well as 3 months after. Artery diameters were measured on cine-film using quantitative coronary angiographic analysis.Results: The diameters of the proximal segment not involved in the balloon inflation and segments in the other artery did not change significantly after angioplasty, but the reference segment diameter significantly decreased (4.7%). More than 10% luminal reduction was observed in seven patients (11%) and more than 5% reduction was observed in 25 patients (41%). More than 5% underestimation of the stenosis was observed in 22 patients (36%) when the post-angioplasty reference diameter was used as the reference diameter, compared with when the pre-angioplasty measurement was used and more than 10% underestimation was observed in five patients (8%).Conclusion: This study indicated that evaluation by percent diameter stenosis, with the reference diameter from immediately after angioplasty, overestimates the dilative effects of coronary angioplasty, and that it is thus better to evaluate the efficacy of angioplasty using the absolute diameter in addition to percent luminal stenosis.

  9. Biofilm formation on a TiO2 nanotube with controlled pore diameter and surface wettability

    NASA Astrophysics Data System (ADS)

    Anitha, V. C.; Lee, Jin-Hyung; Lee, Jintae; Narayan Banerjee, Arghya; Joo, Sang Woo; Min, Bong Ki

    2015-02-01

    Titania (TiO2) nanotube arrays (TNAs) with different pore diameters (140 - 20 nm) are fabricated via anodization using hydrofluoric acid (HF) containing ethylene glycol (EG) by changing the HF-to-EG volume ratio and the anodization voltage. To evaluate the effects of different pore diameters of TiO2 nanotubes on bacterial biofilm formation, Shewanella oneidensis (S. oneidensis) MR-1 cells and a crystal-violet biofilm assay are used. The surface roughness and wettability of the TNA surfaces as a function of pore diameter, measured via the contact angle and AFM techniques, are correlated with the controlled biofilm formation. Biofilm formation increases with the decreasing nanotube pore diameter, and a 20 nm TiO2 nanotube shows the maximum biofilm formation. The measurements revealed that 20 nm surfaces have the least hydrophilicity with the highest surface roughness of ˜17 nm and that they show almost a 90% increase in the effective surface area relative to the 140 nm TNAs, which stimulate the cells more effectively to produce the pili to attach to the surface for more biofilm formation. The results demonstrate that bacterial cell adhesion (and hence, biofilm formation) can effectively be controlled by tuning the roughness and wettability of TNAs via controlling the pore diameters of TNA surfaces. This biofilm formation as a function of the surface properties of TNAs can be a potential candidate for both medical applications and as electrodes in microbial fuel cells.

  10. Extrusion of small-diameter, thin-wall tungsten tubing

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Gyorgak, C. A.

    1967-01-01

    Small-diameter, thin-wall seamless tubing of tungsten has been fabricated in lengths of up to 10 feet by hot extrusion over a floating mandrel. Extrusion of 0.50-inch-diameter tubing over 0.4-inch-diameter mandrels was accomplished at temperatures ranging from 3000 degrees to 4000 degrees F.

  11. High-purity germanium crystal growing

    SciTech Connect

    Hansen, W.L.; Haller, E.E.

    1982-10-01

    The germanium crystals used for the fabrication of nuclear radiation detectors are required to have a purity and crystalline perfection which is unsurpassed by any other solid material. These crystals should not have a net electrically active impurity concentration greater than 10/sup 10/cm/sup -3/ and be essentially free of charge trapping defects. Such perfect crystals of germanium can be grown only because of the highly favorable chemical and physical properties of this element. However, ten years of laboratory scale and commercial experience has still not made the production of such crystals routine. The origin and control of many impurities and electrically active defect complexes is now fairly well understood but regular production is often interrupted for long periods due to the difficulty of achieving the required high purity or to charge trapping in detectors made from crystals seemingly grown under the required conditions. The compromises involved in the selection of zone refining and crystal grower parts and ambients is discussed and the difficulty in controlling the purity of key elements in the process is emphasized. The consequences of growing in a hydrogen ambient are discussed in detail and it is shown how complexes of neutral defects produce electrically active centers.

  12. CT dose equilibration and energy absorption in polyethylene cylinders with diameters from 6 to 55 cm

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob

    2015-06-15

    Purpose: ICRU Report No. 87 Committee and AAPM Task Group 200 designed a three-sectional polyethylene phantom of 30 cm in diameter and 60 cm in length for evaluating the midpoint dose D{sub L}(0) and its rise-to-the-equilibrium curve H(L) = D{sub L}(0)/D{sub eq} from computed tomography (CT) scanning, where D{sub eq} is the equilibrium dose. To aid the use of the phantom in radiation dose assessment and to gain an understanding of dose equilibration and energy absorption in polyethylene, the authors evaluated the short (20 cm) to long (60 cm) phantom dose ratio with a polyethylene diameter of 30 cm, assessed H(L) in polyethylene cylinders of 6–55 cm in diameters, and examined energy absorption in these cylinders. Methods: A GEANT4-based Monte Carlo program was used to simulate the single axial scans of polyethylene cylinders (diameters 6–55 cm and length 90 cm, as well as diameter 30 cm and lengths 20 and 60 cm) on a clinical CT scanner (Somatom Definition dual source CT, Siemens Healthcare). Axial dose distributions were computed on the phantom central and peripheral axes. An average dose over the central 23 or 100 mm region was evaluated for modeling dose measurement using a 0.6 cm{sup 3} thimble chamber or a 10 cm long pencil ion chamber, respectively. The short (20 cm) to long (90 cm) phantom dose ratios were calculated for the 30 cm diameter polyethylene phantoms scanned at four tube voltages (80–140 kV) and a range of beam apertures (1–25 cm). H(L) was evaluated using the dose integrals computed with the 90 cm long phantoms. The resultant H(L) data were subsequently used to compute the fraction of the total energy absorbed inside or outside the scan range (E{sub in}/E or E{sub out}/E) on the phantom central and peripheral axes, where E = LD{sub eq} was the total energy absorbed along the z axis. Results: The midpoint dose in the 60 cm long polyethylene phantom was equal to that in the 90 cm long polyethylene phantom. The short-to-long phantom dose

  13. Virtual Crystallizer

    SciTech Connect

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  14. Crystal growing

    NASA Technical Reports Server (NTRS)

    Neville, J. P.

    1990-01-01

    One objective is to demonstrate the way crystals grow and how they affect the behavior of material. Another objective is to compare the growth of crystals in metals and nonmetals. The procedures, which involve a supersaturated solution of a salt that will separate into crystals on cooling and the pouring off of an eutectic solution to expose the crystals formed by a solid solution when an alloy of two metals forms a solid and eutectic solution on cooling, are described.

  15. Estimation of genetic parameters for wool fiber diameter measures.

    PubMed

    Iman, N Y; Johnson, C L; Russell, W C; Stobart, R H

    1992-04-01

    Genetic and phenotypic correlations and heritability estimates of side, britch, and core diameters; side and britch CV; side and britch diameter difference; and clean fleece weight were investigated using 385 western white-faced ewes produced by 50 sires and maintained at two locations on a selection study. Data were analyzed using analysis of variance procedures, and effects in the final model included breed of sire-selection line combination, sire within breed-selection line, and location. Heritabilities were estimated by paternal half-sib analysis. Sires within breed-selection line represented a significant source of variation for all traits studied. Location had a significant effect on side diameter, side and britch diameter difference, and clean fleece weight. Age of ewe only affected clean fleece weight. Phenotypic and genetic correlations among side, britch, and core diameter measures were high and positive. Phenotypic correlations ranged from .68 to .75 and genetic correlations ranged from .74 to .89. The genetic correlations between side and britch diameter difference and side diameter or core diameter were small (-.16 and .28, respectively). However, there was a stronger genetic correlation between side and britch diameter difference and britch diameter (.55). Heritability of the difference between side and britch diameter was high (.46 +/- .16) and similar to heritability estimates reported for other wool traits. Results of this study indicate that relatively rapid genetic progress through selection for fiber diameter should be possible. In addition, increased uniformity in fiber diameter should be possible through selection for either side and britch diameter difference or side or britch CV.

  16. Crown diameters of the deciduous teeth of Taiwanese.

    PubMed

    Liu, H H; Dung, S Z; Yang, Y H

    2000-06-01

    The purposes of this study were (1) to characterize the crown diameters of the deciduous teeth of Taiwanese; (2) to compare the differences in the deciduous crown diameters between different populations. The results might provide odontometric information in making preformed stainless steel crowns of the Chinese population. Study casts of 90 children (51 boys and 39 girls) of aged 3 to 6 years were used in this study. The maximum mesiodistal crown diameter (the greatest distance between the contact points of the approximal surfaces) and the buccolingual crown diameter (the greatest distance at a right angle to the mesiodistal measurement) were obtained by using an electronic digital caliper. Significant differences between antimeres were found in the mesiodistal diameters of maxillary canine and maxillary molars (p < 0.001) as well as in the buccolingual diameters of mandibular molars (p < 0.05). Excellent correlations between the antimeres of the corresponding teeth were found (r = 0.70 to 0.96). Boys generally had larger crown diameters than girls with the exception of mesiodistal diameters of maxillary and mandibular canines, and mandibular lateral incisor, whereas the statistically significant gender difference was only found in the buccolingual diameter of mandibular second molar (p < 0.05). The higher the percentage of sexual dimorphism, the larger the gender differences. The percentage of sexual dimorphism ranged from 0.09 to 1.94 for mesiodistal diameters and 0.04 to 2.86 for buccolingual diameters. The mandibular second molar was the most dimorphic tooth. Variations in the crown diameters of the deciduous teeth existed among and within different populations. Deciduous mesiodistal crown diameters of Taiwanese were, in general, smaller than those of Australian aborigines, Taiwan Chinese aborigines, and Hong Kong Chinese, but larger than those of American whites. When considering the buccolingual crown diameters, our data were significantly smaller than those

  17. Selective Dispersion of Highly Pure Large-Diameter Semiconducting Carbon Nanotubes by a Flavin for Thin-Film Transistors.

    PubMed

    Park, Minsuk; Kim, Somin; Kwon, Hyeokjae; Hong, Sukhyun; Im, Seongil; Ju, Sang-Yong

    2016-09-07

    Scalable and simple methods for selective extraction of pure, semiconducting (s) single-walled carbon nanotubes (SWNTs) is of profound importance for electronic and photovoltaic applications. We report a new, one-step procedure to obtain respective large-diameter s- and metallic (m)-SWNT enrichment purity in excess of 99% and 78%, respectively, via interaction between the aromatic dispersing agent and SWNTs. The approach utilizes N-dodecyl isoalloxazine (FC12) as a surfactant in conjunction with sonication and benchtop centrifugation methods. After centrifugation, the supernatant is enriched in s-SWNTs with less carbonaceous impurities, whereas precipitate is enhanced in m-SWNTs. In addition, the use of an increased centrifugal force enhances both the purity and population of larger diameter s-SWNTs. Photoinduced energy transfer from FC12 to SWNTs is facilitated by respective electronic level alignment. Owing to its peculiar photoreduction capability, FC12 can be employed to precipitate SWNTs upon UV irradiation and observe absorption of higher optical transitions of SWNTs. A thin-film transistor prepared from a dispersion of enriched s-SWNTs was fabricated to verify electrical performance of the sorted sample and was observed to display p-type conductance with an average on/off ratio over 10(6) and an average mobility over 10 cm(2)/V·s.

  18. Angiographic Evaluation of Carotid Artery Grafting with Prefabricated Small-Diameter, Small-Intestinal Submucosa Grafts in Sheep

    SciTech Connect

    Pavcnik, Dusan; Obermiller, Josef; Uchida, Barry T.; Van Alstine, William; Edwards, James M.; Landry, Gregory J.; Kaufman, John A.; Keller, Frederick S.; Roesch, Josef

    2009-01-15

    The purpose of this study was to report the longitudinal angiographic evaluation of prefabricated lyophilized small-intestinal submucosa (SIS) grafts placed in ovine carotid arteries and to demonstrate a variety of complications that developed. A total of 24 grafts, 10 cm long and 6 mm in diameter, were placed surgically as interposition grafts. Graft patency at 1 week was evaluated by Doppler ultrasound, and angiography was used for follow-up at 1 month and at 3 to 4 months. A 90% patency rate was found at 1 week, 65% at 1 month, and 30% at 3 to 4 months. On the patent grafts, angiography demonstrated a variety of changes, such as anastomotic stenoses, graft diffuse dilations and dissections, and aneurysm formation. These findings have not been previously demonstrated angiographically by other investigators reporting results with small-diameter vessel grafts made from fresh small-intestinal submucosa (SIS). The complications found were partially related to the graft construction from four SIS layers. Detailed longitudinal angiographic study should become an essential part of any future evaluation of small-vessel SIS grafting.

  19. Fiber diameter distributions in the chinchilla's ampullary nerves

    NASA Technical Reports Server (NTRS)

    Hoffman, Larry F.; Honrubia, Vicente

    2002-01-01

    A morphometric study of the chinchilla's ampullary nerves was conducted to produce an unbiased accounting of the diameter distribution of their constituent fibers. Diameter analyses were determined from 1 microm plastic-embedded nerve sections taken at a plane immediately proximal to the sensory epithelium. We found these nerves to be composed of 2094+/-573 fibers, having diameters that ranged from 0.5 to 8 microm. The distributions of diameters were positively skewed, where approximately 75% of the fibers were found to have diameters less than 3.5 microm. An analysis of the spatial distribution of diameters within the nerve section revealed that the lateralmost areas of the nerve contained larger fractions of fibers within the smallest diameter quintiles, and the central area harbored greater proportions of the larger diameter quintiles. However, significant fractions of all quintiles were found in all areas. These data were integrated with available data of Fernandez et al. (1998) to produce diameter estimates of calyx, dimorphic, and bouton morphology subpopulations. In view of a general relationship between diameter, innervation locus, and an afferent's physiologic characteristics, these data provide the basis for developing a perspective for the in situ distribution of afferent response dynamics.

  20. Holographic Storage in Electrooptic Crystals.: II. Beam COUPLING—LIGHT Amplification

    NASA Astrophysics Data System (ADS)

    Kukhtarev, N. V.; Markov, V. B.; Odulov, S. G.; Soskin, M. S.; Vinetskii, V. L.

    The theory of energy transfer between two coupled beams writing holograms in electrooptic crystals is developed. The gain is calculated for different processes causing holographic recording in the crystal. The amplifications of the light beam in the course of recording holograms in nominally pure reduced LiNbO3 crystals is investigated. The amplification of about 10 cm-1 is obtained for small signals. The gain is found to be independent of the total light intensity and intensity ratio of the writing beams and decreases linearly with the grating spacing.

  1. The dependence of the measurement of crystal growth on the state of crystal aggregation: implications for urolithiasis research

    NASA Astrophysics Data System (ADS)

    Ryall, Rosemary L.; Ryall, Richard G.; Doyle, Ian R.; Marshall, Villis R.

    1993-10-01

    Two different methods for the analysis of data produced by a Coulter counter were used to obtain rates of calcium oxalate crystal growth and aggregation occuring in a seeded crystallization system: (1) crystal growth was expressed as the increase in crystal volume, and aggregation as the decrease in crystal numbers observed by the Coulter counter; (2) crystal growth was expressed as the linear increase in crystal diameter, calculated using a computer model which, when calculating extents of aggregation, takes account of any crystals moving into and out of the field of view of the instrument. Data from experiments using different concentrations of seed crystal were analysed by these two methods. Expressing crystal growth as the increase in volume showed growth rates to be directly proportional to the total surface of seed crystals present, while expressing the same growth as the linear increase in crystal diameter showed growth rates to be independent of this variable. This difference in expression of experimental data became important when urine was included in the experimental system, and varying degrees of crystal aggregation affected the amount of surface area available for crystal growth. Expressing growth as the increase in crystal volume, and aggregation as the uncorrected decrease in crystal number, resulted in overestimation of inhibitory activities of urine towards crystal growth and aggregation by 60% and 40%, respectively. Calculation of crystal growth rates from the linear increase in crystal diameter, and aggregation rates from data corrected for the crystals moving through the field of view of the particle counter, are essential for the valid interpretation of such data.

  2. Apoferritin crystals

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Dr. Alexander Chernov, of the Universities Space Research Association (USRA) and based at Marshall Space Flight Center, is investigating why protein crystals grown in space are, in about 20 percent of cases, better-ordered than those grown on the ground. They are testing the idea that the amount of impurities trapped by space-grown crystals may be different than the amount trapped by crystals grown on Earth because convection is negligible in microgravity. The concentrations or impurities in many space-grown crystals turned out to be several times lower than that in the terrestrial ones, sometimes below the detection limit. The ground-based experiment also showed that the amount of impurities per unit volume of the crystals was usually higher than the amount per unit volume of the solution. This means that a growing crystal actually purifies the solution in its immediate vicinity. Here, an impurity depletion zone is created around apoferritin crystals grown in gel, imitating microgravity conditions.

  3. Photonic crystal microspheres

    NASA Astrophysics Data System (ADS)

    Zhokhov, A. A.; Masalov, V. M.; Sukhinina, N. S.; Matveev, D. V.; Dolganov, P. V.; Dolganov, V. K.; Emelchenko, G. A.

    2015-11-01

    Spherical samples of photonic crystals formed by colloidal SiO2 nanoparticles were synthesized. Synthesis of microspheres from 160 nm, 200 nm and 430 nm diameter colloidal nanoparticles was performed over a wide size range, from 5 μm to 50 μm. The mechanism of formation of void microparticles exceeding 50 μm is discussed. The spectral measurements verified the association of the spectra with the peaks of selective reflection from the cubic lattice planes. The microparticle morphology is characterized by scanning electron microscopy (SEM).

  4. Ignition and growth modeling of detonation reaction zone experiments on single crystals of PETN and HMX

    NASA Astrophysics Data System (ADS)

    White, Bradley W.; Tarver, Craig M.

    2017-01-01

    It has long been known that detonating single crystals of solid explosives have much larger failure diameters than those of heterogeneous charges of the same explosive pressed or cast to 98 - 99% theoretical maximum density (TMD). In 1957, Holland et al. demonstrated that PETN single crystals have failure diameters of about 8 mm, whereas heterogeneous PETN charges have failure diameters of less than 0.5 mm. Recently, Fedorov et al. quantitatively determined nanosecond time resolved detonation reaction zone profiles of single crystals of PETN and HMX by measuring the interface particle velocity histories of the detonating crystals and LiF windows using a PDV system. The measured reaction zone time durations for PETN and HMX single crystal detonations were approximately 100 and 260 nanoseconds, respectively. These experiments provided the necessary data to develop Ignition and Growth (I&G) reactive flow model parameters for the single crystal detonation reaction zones. Using these parameters, the calculated unconfined failure diameter of a PETN single crystal was 7.5 +/- 0.5 mm, close to the 8 mm experimental value. The calculated failure diameter of an unconfined HMX single crystal was 15 +/- 1 mm. The unconfined failure diameter of an HMX single crystal has not yet been determined precisely, but Fedorov et al. detonated 14 mm diameter crystals confined by detonating a HMX-based plastic bonded explosive (PBX) without initially overdriving the HMX crystals.

  5. Arterial diameter measurement using high resolution ultrasonography: in vitro validation.

    PubMed

    Brum, Javier; Bia, Daniel; Benech, Nicolas; Balay, Guillermo; Armentano, Ricardo L; Negreira, Carlos

    2011-01-01

    Simultaneous measurement of pressure and diameter in blood vessels or vascular prosthesis is of great importance in cardiovascular research. Knowledge of diameter changes as response to intravascular pressure is the basis to estimate the biomechanical properties of blood vessel. In this work a new method to quantify arterial diameter based in high resolution ultrasonography is proposed. Measurements on an arterial phantom placed on a cardiovascular simulator were performed. The results were compared to sonomicrometry measurements considered as gold standard technique. The obtained results indicate that the new method ensure an optimal diameter quantification. This method presents two main advantages respect to sonomicrometry: is noninvasive and the vessel wall strain can be measured directly.

  6. Diameter Controlled of Carbon Nanotubes Synthesized on Nanoporous Silicon Support

    NASA Astrophysics Data System (ADS)

    Asli, N. A.; Shamsudin, M. S.; Maryam, M.; Yusop, S. F. M.; Suriani, A. B.; Rusop, M.; Abdullah, S.

    2013-06-01

    Carbon nanotubes (CNTs) have been successfully synthesized on nanoporous silicon template (NPSiT) using botanical source, camphor oil. Diameter of CNTs synthesized was controlled by pore size of NPSiT prepared by photo-electrochemical anodization method. The diameter of CNTs grown on different NPSiT corresponded to the pore diameter of NPSiT. FESEM images showed self-organized bundles of fiber-like structures of CNTs with diameter of around 20nm which were successfully grown directly on nanoporous silicon while raman spectra obtained ratio of ID/IG at 0.67.

  7. Research on fiber diameter automatic measurement based on image detection

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Jiang, Yu; Shen, Wen; Han, Guangjie

    2010-10-01

    In this paper, we present a method of Fiber Diameter Automatic Measurement(FDAM). This design is based on image detection technology in order to provide a rapid and accurate measurement of average fiber diameter. Firstly, a preprocessing mechanism is proposed to the sample fiber image by using improved median filtering algorithm, then we introduce edge detection with Sobel operator to detect target fiber, finally diameter of random point and average diameter of the fiber can be measured precisely with searching shortest path algorithm. Experiments are conducted to prove the accuracy of the measurement, and simulations show that measurement errors caused by human factors could be eliminated to a desirable level.

  8. Crystal Shape Evolution in Detached Bridgman Growth

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2013-01-01

    Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. Existence of the gap provides several advantages, including no sticking of the crystal to the crucible wall, reduced thermal and mechanical stresses, reduced dislocations, and no heterogeneous nucleation by the crucible. Numerical calculations are used to determine the conditions in which a gap can exist. According to crystal shape stability theory, only some of these gap widths will be dynamically stable. Beginning with a crystal diameter that differs from stable conditions, the transient crystal growth process is analyzed. In microgravity, dynamic stability depends only on capillary effects and is decoupled from heat transfer. Depending on the initial conditions and growth parameters, the crystal shape will evolve towards the crucible wall, towards a stable gap width, or towards the center of the crucible, collapsing the meniscus. The effect of a tapered crucible on dynamic stability is also described

  9. Crystal Shape Evolution in Detached Bridgman Growth

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2013-01-01

    Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. Existence of the gap provides several advantages, including no sticking of the crystal to the crucible wall, reduced thermal and mechanical stresses, reduced dislocations, and no heterogeneous nucleation by the crucible. Numerical calculations are used to determine the conditions in which a gap can exist. According to crystal shape stability theory, only some of these gap widths will be dynamically stable. Beginning with a crystal diameter that differs from stable conditions, the transient crystal growth process is analyzed. In microgravity, dynamic stability depends only on capillary effects and is decoupled from heat transfer. Depending on the initial conditions and growth parameters, the crystal shape will evolve towards the crucible wall, towards a stable gap width, or towards the center of the crucible, collapsing the meniscus. The effect of a tapered crucible on dynamic stability is also described.

  10. Lysozyme Crystal

    NASA Technical Reports Server (NTRS)

    2004-01-01

    To the crystallographer, this may not be a diamond but it is just as priceless. A Lysozyme crystal grown in orbit looks great under a microscope, but the real test is X-ray crystallography. The colors are caused by polarizing filters. Proteins can form crystals generated by rows and columns of molecules that form up like soldiers on a parade ground. Shining X-rays through a crystal will produce a pattern of dots that can be decoded to reveal the arrangement of the atoms in the molecules making up the crystal. Like the troops in formation, uniformity and order are everything in X-ray crystallography. X-rays have much shorter wavelengths than visible light, so the best looking crystals under the microscope won't necessarily pass muster under the X-rays. In order to have crystals to use for X-ray diffraction studies, crystals need to be fairly large and well ordered. Scientists also need lots of crystals since exposure to air, the process of X-raying them, and other factors destroy them. Growing protein crystals in space has yielded striking results. Lysozyme's structure is well known and it has become a standard in many crystallization studies on Earth and in space.

  11. PREPARATION OF REFRACTORY OXIDE CRYSTALS

    DOEpatents

    Grimes, W.R.; Shaffer, J.H.; Watson, G.M.

    1962-11-13

    A method is given for preparing uranium dioxide, thorium oxide, and beryllium oxide in the form of enlarged individual crystals. The surface of a fused alkali metal halide melt containing dissolved uranium, thorium, or beryllium values is contacted with a water-vapor-bearing inert gas stream at a rate of 5 to 10 cubic centimeters per minute per square centimeter of melt surface area. Growth of individual crystals is obtained by prolonged contact. Beryllium oxide-coated uranium dioxide crystals are prepared by disposing uranium dioxide crystals 5 to 20 microns in diameter in a beryllium-containing melt and contacting the melt with a water-vapor-bearing inert gas stream in the same manner. (AEC)

  12. Measurement of sputtered efflux from 5-, 8-, and 30-cm diameter mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Mirtich, M. J.

    1975-01-01

    A study was undertaken to investigate the sputtered efflux from 5-, 8-, and 30-cm diameter mercury ion thrusters. Quartz crystal microbalances and fused silica samples were used to analyze the sputtered flux. Spectral transmittance measurements and spectrographic analysis of the samples were made after they were exposed to different thruster effluence by operating the thrusters at various conditions and durations of time. These measurements were used to locate the source of the efflux and determine its accumulated effect at various locations near the thruster. Comparisons of in situ and ex situ transmittance measurements of samples exposed to thruster efflux are also presented.

  13. Promotion of protein crystal growth by actively switching crystal growth mode via femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Tominaga, Yusuke; Maruyama, Mihoko; Yoshimura, Masashi; Koizumi, Haruhiko; Tachibana, Masaru; Sugiyama, Shigeru; Adachi, Hiroaki; Tsukamoto, Katsuo; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Yoshikawa, Hiroshi Y.; Mori, Yusuke

    2016-11-01

    Large single crystals with desirable shapes are essential for various scientific and industrial fields, such as X-ray/neutron crystallography and crystalline devices. However, in the case of proteins the production of such crystals is particularly challenging, despite the efforts devoted to optimization of the environmental, chemical and physical parameters. Here we report an innovative approach for promoting the growth of protein crystals by directly modifying the local crystal structure via femtosecond laser ablation. We demonstrate that protein crystals with surfaces that are locally etched (several micrometers in diameter) by femtosecond laser ablation show enhanced growth rates without losing crystal quality. Optical phase-sensitive microscopy and X-ray topography imaging techniques reveal that the local etching induces spiral growth, which is energetically advantageous compared with the spontaneous two-dimensional nucleation growth mode. These findings prove that femtosecond laser ablation can actively switch the crystal growth mode, offering flexible control over the size and shape of protein crystals.

  14. Optics of globular photonic crystals

    SciTech Connect

    Gorelik, V S

    2007-05-31

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter {approx}200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported. (review)

  15. Mean particle diameters. From statistical definition to physical understanding.

    PubMed

    Alderliesten, Maarten

    2005-01-01

    Mean particle diameters may be used to describe and to model physical, chemical, or physiological properties of products or materials containing dispersed phases. There are different notation systems for these mean diameters, which may cause much confusion. This equally applies to their nomenclature. This article introduces the Moment-Ratio definition system and evaluates briefly the ISO definition system. The ISO system appears to have serious drawbacks. Mean particle diameters can be estimated from histograms of size distributions by Summation (M-R system) and by Integration (ISO system) over the histogram intervals. Summation tends to be more accurate than Integration and is less sensitive to low values of the lower limit of size distributions. The Summation method equations are straightforward and generally applicable. The mathematical formulas of the Integration method are difficult to apply in daily practice, and their complexity may easily hide the physical background of a mean particle diameter. A coherent nomenclature system for denoting mean particle diameters is recommended. This nomenclature system does not contain any ambiguities and clearly conveys the physical meanings of mean particle diameters. This article deals also with an empirical method to select the proper type of mean diameter to describe a physical, chemical, or physiological property of a product or material containing dispersed phases. After calculation of the mean diameters from experimental data, the relationships between the product property and these mean diameters are investigated statistically. The selection method has been illustrated by two examples. The dataset of each example consists of a set of particle size distributions and the corresponding physical product properties that are influenced by the particle sizes. Hypotheses are formulated to explain the types of selected mean diameters. Sharing results from all over the world of applications of the developed selection method

  16. RNA Crystallization

    NASA Technical Reports Server (NTRS)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  17. Dataset for the validation and use of DiameterJ an open source nanofiber diameter measurement tool

    PubMed Central

    Hotaling, Nathan A.; Bharti, Kapil; Kriel, Haydn; Simon, Carl G.

    2015-01-01

    DiameterJ is an open source image analysis plugin for ImageJ. DiameterJ produces ten files for every image that it analyzes. These files include the images that were analyzed, the data to create histograms of fiber radius, pore size, fiber orientation, and summary statistics, as well as images to check the output of DiameterJ. DiameterJ was validated with 130 in silico-derived, digital, synthetic images and 24 scanning electron microscope (SEM) images of steel wire samples with a known diameter distribution. Once validated, DiameterJ was used to analyze SEM images of electrospun polymeric nanofibers, including a comparison of different segmentation algorithms. In this article, all digital synthetic images, SEM images, and their segmentations are included. Additionally, DiameterJ’s raw output files, and processed data is included for the reader. The data provided herein was used to generate the figures in DiameterJ: A Validated Open Source Nanofiber Diameter Measurement Tool[1], where more discussion can be found. PMID:26380840

  18. Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  19. Computational crystallization.

    PubMed

    Altan, Irem; Charbonneau, Patrick; Snell, Edward H

    2016-07-15

    Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed.

  20. The Measurements of the Solar Diameter at the Kepler's Times

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino; Fraschetti, Federico

    2002-12-01

    We examine five measurements of the solar disk diameter made with a pinhole instrument by Tycho in 1591 and Kepler in 1600-1602 [1]. Those are the first accurate measurements of the solar disk diameter available in literature, even if Ptolemy and Copernicus already did such measurements [2].

  1. Method accurately measures mean particle diameters of monodisperse polystyrene latexes

    NASA Technical Reports Server (NTRS)

    Kubitschek, H. E.

    1967-01-01

    Photomicrographic method determines mean particle diameters of monodisperse polystyrene latexes. Many diameters are measured simultaneously by measuring row lengths of particles in a triangular array at a glass-oil interface. The method provides size standards for electronic particle counters and prevents distortions, softening, and flattening.

  2. Refractive index sensor based on photonic crystal fiber: effect of analyte channel diameter

    NASA Astrophysics Data System (ADS)

    Lopez-Bautista, Maria C.; Martynyuk, Alexander E.; Khotiaintsev, Sergei

    2017-01-01

    We analyzed the resonant coupling in the low-refractive-index sensor based on a directional coupler implemented in a microstructured optical fiber with a composite core and the parallel analyte channel in the form of a hollow-core waveguide. We showed the possibility of an 8-fold increase in the analyte channel radius that is equivalent to a 64-fold increase in its cross section, in comparison to the existing design. With an increase in the analyte channel radius, the resonance frequencies of the composite core mode and the satellite waveguide modes shift to longer wavelengths, while the dispersion curves of the high-order modes of the satellite waveguide tend to merge and their resonances become less pronounced than the resonances of the low-order modes. With an increase in the analyte channel radius from 2 to 16 μm, the sensor sensitivity increases by 40% and the detection limit becomes lower by a factor of 2. Such an increase in the analyte channel radius also eliminates the need in a high-pressure pump for filling the channel with analyte and thus makes this sensor much more practical than was previously thought.

  3. Reliable Diameter Control of Carbon Nanotube Nanobundles Using Withdrawal Velocity.

    PubMed

    Shin, Jung Hwal; Kim, Kanghyun; An, Taechang; Choi, WooSeok; Lim, Geunbae

    2016-12-01

    Carbon nanotube (CNT) nanobundles are widely used in nanoscale imaging, fabrication, and electrochemical and biological sensing. The diameter of CNT nanobundles should be controlled precisely, because it is an important factor in determining electrode performance. Here, we fabricated CNT nanobundles on tungsten tips using dielectrophoresis (DEP) force and controlled their diameters by varying the withdrawal velocity of the tungsten tips. Withdrawal velocity pulling away from the liquid-air interface could be an important, reliable parameter to control the diameter of CNT nanobundles. The withdrawal velocity was controlled automatically and precisely with a one-dimensional motorized stage. The effect of the withdrawal velocity on the diameter of CNT nanobundles was analyzed theoretically and compared with the experimental results. Based on the attachment efficiency, the withdrawal velocity is inversely proportional to the diameter of the CNT nanobundles; this has been demonstrated experimentally. Control of the withdrawal velocity will play an important role in fabricating CNT nanobundles using DEP phenomena.

  4. Superresolution measurement of nanofiber diameter by modes beating

    NASA Astrophysics Data System (ADS)

    Fenton, E. F.; Solano, P.; Hoffman, J. E.; Orozco, L. A.; Rolston, S. L.; Fatemi, F. K.

    2016-05-01

    Nanofibers are becoming an important tool in quantum information technologies for coupling photonics systems to atomic systems. Nondestructive techniques for characterizing these nanofibers prior to integration into an apparatus are desirable. In this work, we probe the light propagating in a fused silica optical nanofiber (750-nm-diameter) by coupling it evanescently to a 6- μm-diameter microfiber that is scanned along the nanofiber length. This technique is capable of observing all possible beat lengths among different propagating modes. The beat lengths are strongly dependent on the nanofiber diameter and refractive index of the fiber. The steep dependence has enabled measurements of the fiber diameter with sub-Angstrom sensitivity. The diameter extracted from the beat length measurements agrees with a measurement made using scanning electron microscopy. Work supported by NSF.

  5. Crystal Data

    National Institute of Standards and Technology Data Gateway

    SRD 3 NIST Crystal Data (PC database for purchase)   NIST Crystal Data contains chemical, physical, and crystallographic information useful to characterize more than 237,671 inorganic and organic crystalline materials. The data include the standard cell parameters, cell volume, space group number and symbol, calculated density, chemical formula, chemical name, and classification by chemical type.

  6. Preparation of spherical and uniform-sized ferrite nanoparticles with diameters between 50 and 150 nm for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tanaka, Toshiyuki; Shimazu, Ryuichi; Nagai, Hironori; Tada, Masaru; Nakagawa, Takashi; Sandhu, Adarsh; Handa, Hiroshi; Abe, Masanori

    2009-05-01

    Spherical uniform-sized iron ferrite nanoparticles were synthesized by adding a disaccharide and seed ferrite crystals into an aqueous reaction solution. The average size range 50-150 nm was controlled by choosing one out of five disaccharides and by changing the amount of the seed crystals. The particles had a saturation magnetization and a crystalline structure which are similar to those of intermediate Fe 3O 4-γ-Fe 2O 3. When coated with citrate, the particles with nearly 100 nm diameter were stably suspended in water for 2 days. These novel particles will be utilized as magnetic carriers in biomedical applications.

  7. Diameter dependent electron transfer kinetics in semiconductor-enzyme complexes.

    PubMed

    Brown, Katherine A; Song, Qing; Mulder, David W; King, Paul W

    2014-10-28

    Excited state electron transfer (ET) is a fundamental step for the catalytic conversion of solar energy into chemical energy. To understand the properties controlling ET between photoexcited nanoparticles and catalysts, the ET kinetics were measured for solution-phase complexes of CdTe quantum dots and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) using time-resolved photoluminescence spectroscopy. Over a 2.0-3.5 nm diameter range of CdTe nanoparticles, the observed ET rate (kET) was sensitive to CaI concentration. To account for diameter effects on CaI binding, a Langmuir isotherm and two geometric binding models were created to estimate maximal CaI affinities and coverages at saturating concentrations. Normalizing the ET kinetics to CaI surface coverage for each CdTe diameter led to k(ET) values that were insensitive to diameter, despite a decrease in the free energy for photoexcited ET (ΔGET) with increasing diameter. The turnover frequency (TOF) of CaI in CdTe-CaI complexes was measured at several molar ratios. Normalization for diameter-dependent changes in CaI coverage showed an increase in TOF with diameter. These results suggest that k(ET) and H2 production for CdTe-CaI complexes are not strictly controlled by ΔG(ET) and that other factors must be considered.

  8. Regulation of electrospun scaffold stiffness via coaxial core diameter.

    PubMed

    Drexler, J W; Powell, H M

    2011-03-01

    Scaffold mechanics influence cellular behavior, including migration, phenotype and viability. Scaffold stiffness is commonly modulated through cross-linking, polymer density, or bioactive coatings on stiff substrates. These approaches provide useful information about cellular response to substrate stiffness; however, they are not ideal as the processing can change substrate morphology, density or chemistry. Coaxial electrospinning was investigated as a fabrication method to produce scaffolds with tunable stiffness and strength without changing architecture or surface chemistry. Core solution concentration, solvent and feed rate were utilized to control core diameter with higher solution concentration and feed rate positively correlating with increased fiber diameter and stiffness. Coaxial scaffolds electrospun with an 8 wt./vol.% polycaprolactone (PCL)-HFP solution at 1 ml h(-1) formed scaffolds with an average core diameter of 1.1±0.2 μm and stiffness of 0.027±3.3×10(-3) N mm(-1). In contrast, fibers which were 2.6±0.1 μm in core diameter yielded scaffolds with a stiffness of 0.065±4.7×10(-3) N mm(-1). Strength and stiffness positively correlated with core diameter with no significant difference in total fiber diameter and interfiber distance observed in as-spun scaffolds. These data indicate that coaxial core diameter can be utilized to tailor mechanical properties of three-dimensional scaffolds and would provide an ideal scaffold for assessing the effect of scaffold mechanics on cell behavior.

  9. Laser direct writing using submicron-diameter fibers.

    PubMed

    Tian, Feng; Yang, Guoguang; Bai, Jian; Xu, Jianfeng; Hou, Changlun; Liang, Yiyong; Wang, Kaiwei

    2009-10-26

    In this paper, a novel direct writing technique using submicron-diameter fibers is presented. The submicron-diameter fiber probe serves as a tightly confined point source and it adopts micro touch mode in the process of writing. The energy distribution of direct writing model is analyzed by Three-Dimension Finite-Difference Time-Domain method. Experiments demonstrate that submicron-diameter fiber direct writing has some advantages: simple process, 350-nm-resolution (lower than 442-nm-wavelength), large writing area, and controllable width of lines. In addition, by altering writing direction of lines, complex submicron patterns can be fabricated.

  10. Measurement of fetal biparietal diameter in owl monkeys (Aotus nancymaae).

    PubMed

    Schuler, A Michele; Brady, Alan G; Tustin, George W; Parks, Virginia L; Morris, Chris G; Abee, Christian R

    2010-09-01

    Owl monkeys are New World primates frequently used in biomedical research. Despite the historical difficulty of breeding owl monkeys in captivity, several productive owl monkey breeding colonies exist currently. The animals in the colony we describe here are not timed-pregnant, and determination of gestational age is an important factor in prenatal care. Gestational age of human fetuses is often determined by using transabdominal measurements of fetal biparietal diameter. The purpose of this study was to correlate biparietal diameter measurements with gestational age in owl monkeys. We found that biparietal diameter can be used to accurately predict gestational age in owl monkeys.

  11. In-crystal and surface charge transport of electric-field-induced carriers in organic single-crystal semiconductors.

    PubMed

    Takeya, J; Kato, J; Hara, K; Yamagishi, M; Hirahara, R; Yamada, K; Nakazawa, Y; Ikehata, S; Tsukagoshi, K; Aoyagi, Y; Takenobu, T; Iwasa, Y

    2007-05-11

    Gate-voltage dependence of carrier mobility is measured in high-performance field-effect transistors of rubrene single crystals by simultaneous detection of the longitudinal conductivity sigma(square) and Hall coefficient R(H). The Hall mobility mu(H) (identical with sigma(square)R(H)) reaches nearly 10 cm(2)/V s when relatively low-density carriers (<10(11) cm(-2)) distribute into the crystal. mu(H) rapidly decreases with higher-density carriers as they are essentially confined to the surface and are subjected to randomness of the amorphous gate insulators. The mechanism to realize high carrier mobility in the organic transistor devices involves intrinsic-semiconductor character of the high-purity organic crystals and diffusive bandlike carrier transport in the bulk.

  12. Future application of Czochralski crystal pulling for silicon

    NASA Technical Reports Server (NTRS)

    Matlcok, J. H.

    1985-01-01

    Czochralski (Cz) crystal pulling has been the predominant method used for preparing silicon single crystal for the past twenty years. The fundamental technology used has changed little. However, great strides have been made in learning how to make the crystals bigger and of better quality at ever increasing productivity rates. Currently charge sizes of 50 kg of polycrystal silicon are being used for production and crystals up to ten inches in diameter have been grown without major difficulty. The largest material actually being processed in silicon wafer form is 150 mm (6 inches) in diameter. Growing of crystals in a magnetic field has proved to be particularly useful for microscopic impurity control. Major developments in past years on equipment for Cz crystal pulling have included the automatic growth control of the diameter as well as the starting core of the crystal, the use of magnetic fields and around the crystal puller to supress convection, various recharging schemes for dopant control and the use of continuous liquid feed in the crystal puller. The latter, while far from being a reliable production process, is ideal in concept for major improvement in Cz crystal pulling. The Czochralski process will maintain its dominance of silicon crystal production for many years.

  13. Interferometric determination of the silicon sphere diameter using a laser frequency tuning system calibrated by a Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Wu, Xuejian; Zhang, Jitao; Wei, Haoyun; Li, Yan

    2012-11-01

    In order to obtain an accurate Avogadro constant with a relative uncertainty of 1×10-8 to redefine the kilogram, the diameter of a perfect single crystal silicon sphere is required with the measurement uncertainty of 0.3 nm using the X-ray crystal density method. To achieve this, phase-shifting interferometers have been developed. A laser frequency tuning system calibrated by a Fabry-Perot cavity is proposed to improve the laser wavelength and the phase-shift accuracy. The laser frequency standard deviation of the beat frequency is 85 kHz with a gate time of 0.1 s. The gap distances in the diameter determination interferometer are measured based on the laser tuning system, which are 275.3 nm and 110.5 nm, respectively.

  14. Dispersion properties of transverse anisotropic liquid crystal core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Karasawa, Naoki

    2016-04-01

    The dispersion properties of liquid crystal core photonic crystal fibers for different core diameters have been calculated by a full vectorial finite difference method. In calculations, air holes are assumed to be arranged in a regular hexagonal array in fused silica and a central hole is filled with liquid crystal to create a core. In this study, three types of transverse anisotropic configurations, where liquid crystal molecules are oriented in a transverse plane, and a planar configuration, where liquid crystal molecules are oriented in a propagation direction, are considered. The large changes of the dispersion properties are found when the orientation of the liquid crystal molecules is changed from a planar configuration to a uniform configuration, where all molecules are oriented in the same direction in a transverse plane. Since the orientation of liquid crystal molecules may be controlled by applying an electric field, it could be utilized for various applications including the spectral control of supercontinuum generation.

  15. Wavelength dependence of the apparent diameter of retinal blood vessels

    NASA Astrophysics Data System (ADS)

    Park, Robert; Twietmeyer, Karen; Chipman, Russell; Beaudry, Neil; Salyer, David

    2005-04-01

    Imaging of retinal blood vessels may assist in the diagnosis and monitoring of diseases such as glaucoma, diabetic retinopathy, and hypertension. However, close examination reveals that the contrast and apparent diameter of vessels are dependent on the wavelength of the illuminating light. In this study multispectral images of large arteries and veins within enucleated swine eyes are obtained with a modified fundus camera by use of intravitreal illumination. The diameters of selected vessels are measured as a function of wavelength by cross-sectional analysis. A fixed scale with spectrally independent dimension is placed above the retina to isolate the chromatic effects of the imaging system and eye. Significant apparent differences between arterial and venous diameters are found, with larger diameters observed at shorter wavelengths. These differences are due primarily to spectral absorption in the cylindrical blood column.

  16. The philosophies of dowel diameter preparation: a literature review.

    PubMed

    Lloyd, P M; Palik, J F

    1993-01-01

    This article reviewed the literature regarding the diameter of dowels and identified three distinct philosophies of dowel space preparation. One group advocated the narrowest diameter for fabrication of a dowel to a desired length. Another recommended a dowel space with an apical diameter equal to one third of the narrowest dimension of the root at the terminus of the dowel. A third group advised that at least 1 mm of sound dentin should surround the entire surface of the dowel. A combination of the one third and 1 mm minimal philosophies yielded a practical guideline for dowel space preparation, particularly in aged teeth. Requiring a definite amount of tooth structure surrounding the dowel, while adhering to the one third proportion, indicated upper limits on both the diameter and length of the dowel. These calculated limits served as convenient starting points in selecting a specific style of dowel and assisted in determining whether additional measures are warranted to enhance dowel retention.

  17. SMALL DIAMETER PRECEMENT LINING FROM CATWALK ABOVE. United States ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SMALL DIAMETER PRE-CEMENT LINING FROM CATWALK ABOVE. - United States Pipe & Foundry Company Plant, Coating, Painting, Lining & Packaging Building, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  18. SMALL DIAMETER CEMENT LINING FROM STAIRWAY. United States Pipe ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SMALL DIAMETER CEMENT LINING FROM STAIRWAY. - United States Pipe & Foundry Company Plant, Coating, Painting, Lining & Packaging Building, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  19. Reconstruction of small diameter arteries using decellularized vascular scaffolds.

    PubMed

    Nagaoka, Yuki; Yamada, Hiroshi; Kimura, Tsuyoshi; Kishida, Akio; Fujisato, Toshia; Takakuda, Kazuo

    2014-03-19

    Although artificial vessels are available for large diameter arteries, there are no artificial vessels for small diameter arteries of < 4 mm. We created a decellularized vascular scaffold (length, 10 mm; outer diameter, 1.5 mm; inner diameter, 1.3 mm) from rat abdominal arteries. We measured the biomechanical characteristics of the scaffolds, implanted them to defects made in rat carotid arteries, and evaluated their patency and the endothelial cell linings. Silastic grafts were implanted as controls. The decellularized scaffolds demonstrated similar mechanical characteristics to normal arteries. All of the control grafts were occluded. Fibroblast-like cells were discovered in the thrombus, and fibrous organization was apparent. In contrast, patency of the grafts in 10 of 12 animals was observed 4 weeks after implantation. The internal cavity of the patent scaffold was completely lined by endotheliallike cells. Thus, the possibility of small artery reconstruction using decellularized scaffolds was demonstrated.

  20. SMALL DIAMETER STENCILING, ROLLING OVER STAMP. United States Pipe ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SMALL DIAMETER STENCILING, ROLLING OVER STAMP. - United States Pipe & Foundry Company Plant, Coating, Painting, Lining & Packaging Building, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  1. LARGE DIAMETER WATER TEST MACHINE, TEST FINISHED, PIPE ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LARGE DIAMETER - WATER TEST MACHINE, TEST FINISHED, PIPE ON CAR. - United States Pipe & Foundry Company Plant, Pipe Casting & Testing Area, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  2. Synthesis of very small diameter silica nanofibers using sound waves.

    PubMed

    Datskos, Panos; Chen, Jihua; Sharma, Jaswinder

    2014-07-14

    Silica nanofibers of an average diameter ≈30 nm and length ≈100 μm have been synthesized using an unprecedented strategy: sound waves. A new phenomenon, spinning off the nanofibers at silica rod tips, is also observed.

  3. Diameter estimation of cylinders by the rigorous diffraction model.

    PubMed

    Sanchez-Brea, Luis Miguel

    2005-07-01

    The Fraunhofer diffraction formula is commonly used for estimating the diameter of thin cylinders by far field diffractometry. However, an experimental systematic overestimation of the value of the cylinder diameter by this diffraction model and other three-dimensional models has been reported when this estimation is compared with those obtained from interferometric techniques. In this work, a rigorous electromagnetic diffraction model is analyzed to determine the cylinder diameter by using the envelope minima of the far field diffraction pattern. The results of this rigorous model are compared with those from the Fraunhofer diffraction formula. The overestimation by the Fraunhofer model is predicted theoretically, presenting a dependence on the wavelength, the polarization state of the incident wave, and the cylinder diameter. The discrepancies are shown to be due to the three-dimensional geometry.

  4. Northern view of inside diameter welding station of the saw ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Northern view of inside diameter welding station of the saw line in bay9 of the main pipe mill building. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  5. Eddy sensors for small diameter stainless steel tubes.

    SciTech Connect

    Skinner, Jack L.; Morales, Alfredo Martin; Grant, J. Brian; Korellis, Henry James; LaFord, Marianne Elizabeth; Van Blarigan, Benjamin; Andersen, Lisa E.

    2011-08-01

    The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor.

  6. Development of welded metal bellows having minimum effective diameter change

    NASA Technical Reports Server (NTRS)

    Henschel, J. K.; Stevens, J. B.; Harvey, A. C.; Howland, J. S.; Rhee, S. S.

    1972-01-01

    A program of analysis, design, and fabrication was conducted to develop welded metal bellows having a minimum change in effective diameter for cryogenic turbomachinery face seal applications. Linear analysis of the principle types of bellows provided identification of concepts capable of meeting basic operation requirements. For the 6-inch (.152 m) mean diameter, 1.5-inch free length bellows studied, nonlinear analysis showed that opposed and nested toroidal bellows plates stiffened by means of alternating stiffener rings were capable of maintaining constant effective diameter within 0.3% and 0.1% respectively under the operating conditions of interest. Changes in effective diameter were due principally to bellows axial deflection with pressure differential having a lesser influence. Fabrication problems associated with joining the thin bellows plates to the relatively heavy stiffener rings were encountered and precluded assembly and testing of a bellows core. Fabrication problems are summarized and recommended fabrication methods for future effort are presented.

  7. Effect of catalyst diameter on vapour-liquid-solid growth of GaAs nanowires

    SciTech Connect

    O'Dowd, B. J. Shvets, I. V.; Wojtowicz, T.; Kolkovsky, V.; Wojciechowski, T.; Zgirski, M.; Rouvimov, S.; Liu, X.; Pimpinella, R.; Dobrowolska, M.; Furdyna, J.

    2014-08-14

    GaAs nanowires were grown on (111)B GaAs substrates using the vapour-liquid-solid mechanism. The Au/Pt nanodots used to catalyse wire growth were defined lithographically and had varying diameter and separation. An in-depth statistical analysis of the resulting nanowires, which had a cone-like shape, was carried out. This revealed that there were two categories of nanowire present, with differing height and tapering angle. The bimodal nature of wire shape was found to depend critically on the diameter of the Au-Ga droplet atop the nanowire. Transmission electron microscopy analysis also revealed that the density of stacking faults in the wires varied considerably between the two categories of wire. It is believed that the cause of the distinction in terms of shape and crystal structure is related to the contact angle between the droplet and the solid-liquid interface. The dependency of droplet diameter on contact angle is likely related to line-tension, which is a correction to Young's equation for the contact angle of a droplet upon a surface. The fact that contact angle may influence resulting wire structure and shape has important implications for the planning of growth conditions and the preparation of wires for use in proposed devices.

  8. Acoustic fill factors for a 120 inch diameter fairing

    NASA Technical Reports Server (NTRS)

    Lee, Y. Albert

    1992-01-01

    Data from the acoustic test of a 120-inch diameter payload fairing were collected and an analysis of acoustic fill factors were performed. Correction factors for obtaining a weighted spatial average of the interior sound pressure level (SPL) were derived based on this database and a normalized 200-inch diameter fairing database. The weighted fill factors were determined and compared with statistical energy analysis (VAPEPS code) derived fill factors. The comparison is found to be reasonable.

  9. Thermal resistance of ultra-small-diameter disk microlasers

    SciTech Connect

    Zhukov, A. E. Kryzhanovskaya, N. V.; Maximov, M. V.; Lipovskii, A. A.; Savelyev, A. V.; Shostak, I. I.; Moiseev, E. I.; Kudashova, Yu. V.; Kulagina, M. M.; Troshkov, S. I.

    2015-05-15

    The thermal resistance of AlGaAs/GaAs microlasers of the suspended-disk type with a diameter of 1.7–4 μm and InAs/InGaAs quantum dots in the active region is inversely proportional to the squared diameter of the microdisk. The proportionality factor is 3.2 × 10{sup −3} (K cm{sup 2})/W, and the thermal resistance is 120–20°C/mW.

  10. Gold nanoparticle capture within protein crystal scaffolds

    NASA Astrophysics Data System (ADS)

    Kowalski, Ann E.; Huber, Thaddaus R.; Ni, Thomas W.; Hartje, Luke F.; Appel, Karina L.; Yost, Jarad W.; Ackerson, Christopher J.; Snow, Christopher D.

    2016-06-01

    DNA assemblies have been used to organize inorganic nanoparticles into 3D arrays, with emergent properties arising as a result of nanoparticle spacing and geometry. We report here the use of engineered protein crystals as an alternative approach to biologically mediated assembly of inorganic nanoparticles. The protein crystal's 13 nm diameter pores result in an 80% solvent content and display hexahistidine sequences on their interior. The hexahistidine sequence captures Au25(glutathione)~17 (nitrilotriacetic acid)~1 nanoclusters throughout a chemically crosslinked crystal via the coordination of Ni(ii) to both the cluster and the protein. Nanoparticle loading was validated by confocal microscopy and elemental analysis. The nanoparticles may be released from the crystal by exposure to EDTA, which chelates the Ni(ii) and breaks the specific protein/nanoparticle interaction. The integrity of the protein crystals after crosslinking and nanoparticle capture was confirmed by single crystal X-ray crystallography.DNA assemblies have been used to organize inorganic nanoparticles into 3D arrays, with emergent properties arising as a result of nanoparticle spacing and geometry. We report here the use of engineered protein crystals as an alternative approach to biologically mediated assembly of inorganic nanoparticles. The protein crystal's 13 nm diameter pores result in an 80% solvent content and display hexahistidine sequences on their interior. The hexahistidine sequence captures Au25(glutathione)~17 (nitrilotriacetic acid)~1 nanoclusters throughout a chemically crosslinked crystal via the coordination of Ni(ii) to both the cluster and the protein. Nanoparticle loading was validated by confocal microscopy and elemental analysis. The nanoparticles may be released from the crystal by exposure to EDTA, which chelates the Ni(ii) and breaks the specific protein/nanoparticle interaction. The integrity of the protein crystals after crosslinking and nanoparticle capture was

  11. Aldebaran's angular diameter: How well do we know it?

    NASA Astrophysics Data System (ADS)

    Richichi, A.; Roccatagliata, V.

    2005-04-01

    The bright, well-known K5 giant Aldebaran, α Tau, is probably the star with the largest number of direct angular diameter determinations, achieved over a long time by several authors using various techniques. In spite of this wealth of data, or perhaps as a direct result of it, there is not a very good agreement on a single angular diameter value. This is particularly unsettling if one considers that Aldebaran is also used as a primary calibrator for some angular resolution methods, notably for optical and infrared long baseline interferometry. Directly connected to Aldebaran's angular diameter and its uncertainties is its effective temperature, which also has been used for several empirical calibrations. Among the proposed explanations for the elusiveness of an accurate determination of the angular diameter of Aldebaran are the possibility of temporal variations as well as a possible dependence of the angular diameter on the wavelength. We present here a few, very accurate new determinations obtained by means of lunar occultations and long baseline interferometry. We derive an average value of 19.96±0.03 milliarcsec for the uniform disk diameter. The corresponding limb-darkened value is 20.58±0.03 milliarcsec, or 44.2±0.9 R⊙. We discuss this result, in connection with previous determinations and with possible problems that may affect such measurements. Based on observations collected at TIRGO (Gornergrat, Switzerland). TIRGO is operated by CNR - CAISMI Arcetri, Italy.

  12. Understanding the effect of carbon status on stem diameter variations

    PubMed Central

    De Swaef, Tom; Driever, Steven M.; Van Meulebroek, Lieven; Vanhaecke, Lynn; Marcelis, Leo F. M.; Steppe, Kathy

    2013-01-01

    Background Carbon assimilation and leaf-to-fruit sugar transport are, along with plant water status, the driving mechanisms for fruit growth. An integrated comprehension of the plant water and carbon relationships is therefore essential to better understand water and dry matter accumulation. Variations in stem diameter result from an integrated response to plant water and carbon status and are as such a valuable source of information. Methods A mechanistic water flow and storage model was used to relate variations in stem diameter to phloem sugar loading and sugar concentration dynamics in tomato. The simulation results were compared with an independent model, simulating phloem sucrose loading at the leaf level based on photosynthesis and sugar metabolism kinetics and enabled a mechanistic interpretation of the ‘one common assimilate pool’ concept for tomato. Key Results Combining stem diameter variation measurements and mechanistic modelling allowed us to distinguish instantaneous dynamics in the plant water relations and gradual variations in plant carbon status. Additionally, the model combined with stem diameter measurements enabled prediction of dynamic variables which are difficult to measure in a continuous and non-destructive way, such as xylem water potential and phloem hydrostatic potential. Finally, dynamics in phloem sugar loading and sugar concentration were distilled from stem diameter variations. Conclusions Stem diameter variations, when used in mechanistic models, have great potential to continuously monitor and interpret plant water and carbon relations under natural growing conditions. PMID:23186836

  13. Streamer velocity and diameter observed in sprites and laboratory discharges

    NASA Astrophysics Data System (ADS)

    Stenbaek-Nielsen, H.; Kammae, T.; McHarg, M. G.; Haaland, R. K.

    2012-12-01

    Analysis of the relation between the reduced diameter (scaled with atmospheric density) and velocity of sprite streamers has found a roughly linear dependence (Kanmae et al., J. Phys. D, 45, 275203, 2012). This linear dependence agrees with modeling by Naidis (Phys. Rev. E, 79,057401, 2009). Comparing observations of diameters in sprites with those of laboratory streamers (Briels et al., J. Phys. D, 39, 5201, 2006) show that the laboratory streamers, while following the linear diameter-velocity relation, have smaller diameters (and velocities) than what we observe in sprite streamers. We suggest that this may be an artifact of the smaller reduced scale sizes of the laboratory experimental setup where the streamers are observed much earlier relative to streamer onset. Another systematic difference between laboratory and sprite streamers is that while sprite streamers often split into many sub-streamers, laboratory streamers only rarely split into more than two. There have been several studies of streamer stability against splitting. Lui & Pasko (J. Geophys. Res. 109, A04301, 2004) found that the streamer radius limit of 97 m at 70 km altitude for stability. Sprite streamers are often significantly larger, suggesting that the relatively larger streamer diameter in sprites compared to laboratory streamers is responsible for the larger number of sub streamers. However, we note that the distance sprite streamers travel between splitting is highly varying between events and seemingly not related to the sprite diameter.

  14. Potential productivity benefits of float-zone versus Czochralski crystal growth

    NASA Technical Reports Server (NTRS)

    Abe, T.

    1985-01-01

    Efficient mass production of single-crystal silicon is necessary for the efficient silicon solar arrays needed in the coming decade. However, it is anticipated that there will be difficulty growing such volumes of crystals using conventional Czochralski (Cz) methods. While the productivity of single crystals might increase with a crystal diameter increase, there are two obstacles to the mass production of large diameter Czochralski crystals, the long production cycle due to slow growth rate and the high heat requirements of the furnaces. Also counterproductive would be the large resistivity gradient along the growth direction of the crystals due to impurity concentration. Comparison between Float zone (FZ) and Cz crystal growth on the basis of a crystal 150 mm in diameter is on an order of two to four times in favor of the FZ method. This advantage results from high growth rates and steady-state growth while maintaining a dislocation-free condition and impurity segregation.

  15. Second-harmonic generation of single BaTiO3 nanoparticles down to 22 nm diameter.

    PubMed

    Kim, Eugene; Steinbrück, Andrea; Buscaglia, Maria Teresa; Buscaglia, Vincenzo; Pertsch, Thomas; Grange, Rachel

    2013-06-25

    We investigate the second-harmonic generation (SHG) signal from single BaTiO3 nanoparticles of diameters varying from 70 nm down to 22 nm with a far-field optical microscope coupled to an infrared femtosecond laser. An atomic force microscope is first used to localize the individual particles and to accurately determine their sizes. Power and polarization-dependent measurements on the individual nanoparticles reveal a diameter range between 30 and 20 nm, where deviations from bulk nonlinear optical properties occur. For 22 nm diameter particles, the tetragonal crystal structure is not applicable anymore and competing effects due to the surface to volume ratio or crystallographic modifications are taking place. The demonstration of SHG from such small nanoparticles opens up the possibilities of using them as bright coherent biomarkers. Moreover, our work shows that measuring the SHG of individual nanoparticles reveals critical material properties, opening up new possibilities to investigate ferroelectricity at the nanoscale.

  16. Crystal clear

    NASA Astrophysics Data System (ADS)

    2012-02-01

    A semiconductor is usually opaque to any light whose photon energy is larger than the semiconductor bandgap. Nature Photonics spoke to Stephen Durbin about how to render GaAs semiconductor crystals transparent using intense X-ray pulses.

  17. Large Diameter, Radiative Extinction Experiments with Decane Droplets in Microgravity

    NASA Technical Reports Server (NTRS)

    Easton, John; Tien, James; Dietrich, Daniel

    1999-01-01

    The extinction of a diffusion flame is of fundamental interest in combustion science. Linan, Law, and Chung and Law analytically and experimentally determined an extinction boundary in terms of droplet diameter and pressure for a single droplet due to Damkohler, or blowoff, extinction. More recently, other researchers demonstrated extinction due to finite rate kinetics in reduced gravity for free droplets of heptane. Chao modeled the effect of radiative heat loss on a quasi-steady spherically symmetric single droplet burning in the absence of buoyancy. They determined that for increasing droplet diameter, a second limit can be reached such that combustion is no longer possible. This second, larger droplet diameter limit arises due to radiative heat loss, which increases with increasing droplet and flame diameter. This increase in radiative heat loss arises due to an increase in the surface area of the flame. Recently, Marchese modeled fuel droplets with detailed chemistry and radiative effects, and compared the results to other work. The modeling also showed the importance of radiative loss and radiative extinction Experiments examined the behavior of a large droplet of decane burning in reduced gravity onboard the NASA Lewis DC-9 aircraft, but did not show a radiative extinction boundary due to g-jitter (Variations in gravitational level and direction) effects. Dietrich conducted experiments in the reduced gravity environment of the Space Shuttle. This work showed that the extinction diameter of methanol droplets increased when the initial diameter of the droplets was large (in this case, approximately 5 mm). Theoretical results agreed with these experimental results only when the theory included radiative effects . Radiative extinction was experimentally verified by Nayagam in a later Shuttle mission. The following work focuses on the combustion and extinction of a single fuel droplet. The goal is to experimentally determine a large droplet diameter limit that

  18. Compositional Variation in Large-Diameter Low-Albedo asteroids

    NASA Astrophysics Data System (ADS)

    Vilas, F.; Jarvis, K. S.; Thibault, C. A.; Sawyer, S. R.

    2000-12-01

    Age dating of meteorites indicates that the Solar System was subjected to a major heating event 4.5 Gyr ago. Models of the effects of heating by electromagnetic induction or decay of short-lived radionuclides combined with models of the early collisional history of the Solar System after Jupiter's formation indicate that asteroids observed today can be divided into two groups by diameter. Those asteroids having diameters greater than 100 km were mixed by multiple collisions but remain as gravitationally bound rubble piles. Asteroids with diameters less than 100 km should show more compositional diversity. Vilas and Sykes (1996, Icarus, 124) have shown using ECAS photometry that this compositional difference exists. The larger diameter group should be individually homogenous, with spectral differences showing the combined effects of a primordial compositional gradient in the asteroid belt with thermal metamorphism. We address the significance of 36 rotationally-resolved spectra of larger-diameter low-albedo asteroids of the C class (and subclasses B, F, G) and P class in the visible and Near-IR spectral regions. This work was supported by the NASA Planetary Astronomy program.

  19. Memory, emotion, and pupil diameter: Repetition of natural scenes.

    PubMed

    Bradley, Margaret M; Lang, Peter J

    2015-09-01

    Recent studies have suggested that pupil diameter, like the "old-new" ERP, may be a measure of memory. Because the amplitude of the old-new ERP is enhanced for items encoded in the context of repetitions that are distributed (spaced), compared to massed (contiguous), we investigated whether pupil diameter is similarly sensitive to repetition. Emotional and neutral pictures of natural scenes were viewed once or repeated with massed (contiguous) or distributed (spaced) repetition during incidental free viewing and then tested on an explicit recognition test. Although an old-new difference in pupil diameter was found during successful recognition, pupil diameter was not enhanced for distributed, compared to massed, repetitions during either recognition or initial free viewing. Moreover, whereas a significant old-new difference was found for erotic scenes that had been seen only once during encoding, this difference was absent when erotic scenes were repeated. Taken together, the data suggest that pupil diameter is not a straightforward index of prior occurrence for natural scenes.

  20. Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum.

    PubMed

    Sepehrband, Farshid; Alexander, Daniel C; Clark, Kristi A; Kurniawan, Nyoman D; Yang, Zhengyi; Reutens, David C

    2016-01-01

    Axon diameter is an important neuroanatomical characteristic of the nervous system that alters in the course of neurological disorders such as multiple sclerosis. Axon diameters vary, even within a fiber bundle, and are not normally distributed. An accurate distribution function is therefore beneficial, either to describe axon diameters that are obtained from a direct measurement technique (e.g., microscopy), or to infer them indirectly (e.g., using diffusion-weighted MRI). The gamma distribution is a common choice for this purpose (particularly for the inferential approach) because it resembles the distribution profile of measured axon diameters which has been consistently shown to be non-negative and right-skewed. In this study we compared a wide range of parametric probability distribution functions against empirical data obtained from electron microscopy images. We observed that the gamma distribution fails to accurately describe the main characteristics of the axon diameter distribution, such as location and scale of the mode and the profile of distribution tails. We also found that the generalized extreme value distribution consistently fitted the measured distribution better than other distribution functions. This suggests that there may be distinct subpopulations of axons in the corpus callosum, each with their own distribution profiles. In addition, we observed that several other distributions outperformed the gamma distribution, yet had the same number of unknown parameters; these were the inverse Gaussian, log normal, log logistic and Birnbaum-Saunders distributions.

  1. Two-dimensional wakes of a variable diameter cylinder

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Stremler, Mark

    2016-11-01

    It is well known that periodic variations in the position of a circular cylinder can produce a variety of complex vortex wake patterns. We will discuss what we believe is the first investigation of the wake patterns produced by a stationary circular cylinder undergoing periodic variations in the cylinder diameter. In our experiments, cylinder variations are produced by oscillating a cone perpendicularly through a flowing soap film. The wake flow generates thickness variations in the thin soap film, allowing direct observation of wake patterns through visualization of interference fringes. We consider diameter variations ranging from 0.1 to 0.5 times the mean diameter, with the Reynolds number varying from 50 to 150. The frequency of the diameter's variation influences the wake patterns. When the variation frequency is negligible compared to the vortex shedding frequency, the wake is a quasi-steady representation of fixed cylinder shedding. We will discuss wake pattern bifurcations that occur as the variation frequency becomes comparable to the vortex shedding frequency. Comparisons will be made with the wake patterns generated by a constant-diameter circular cylinder forced to oscillate transverse to the free stream.

  2. Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum

    PubMed Central

    Sepehrband, Farshid; Alexander, Daniel C.; Clark, Kristi A.; Kurniawan, Nyoman D.; Yang, Zhengyi; Reutens, David C.

    2016-01-01

    Axon diameter is an important neuroanatomical characteristic of the nervous system that alters in the course of neurological disorders such as multiple sclerosis. Axon diameters vary, even within a fiber bundle, and are not normally distributed. An accurate distribution function is therefore beneficial, either to describe axon diameters that are obtained from a direct measurement technique (e.g., microscopy), or to infer them indirectly (e.g., using diffusion-weighted MRI). The gamma distribution is a common choice for this purpose (particularly for the inferential approach) because it resembles the distribution profile of measured axon diameters which has been consistently shown to be non-negative and right-skewed. In this study we compared a wide range of parametric probability distribution functions against empirical data obtained from electron microscopy images. We observed that the gamma distribution fails to accurately describe the main characteristics of the axon diameter distribution, such as location and scale of the mode and the profile of distribution tails. We also found that the generalized extreme value distribution consistently fitted the measured distribution better than other distribution functions. This suggests that there may be distinct subpopulations of axons in the corpus callosum, each with their own distribution profiles. In addition, we observed that several other distributions outperformed the gamma distribution, yet had the same number of unknown parameters; these were the inverse Gaussian, log normal, log logistic and Birnbaum-Saunders distributions. PMID:27303273

  3. Characterization of sodium chloride crystals grown in microgravity

    NASA Astrophysics Data System (ADS)

    Fontana, Pietro; Schefer, Jürg; Pettit, Donald

    2011-06-01

    NaCl crystals grown by the evaporation of an aqueous salt solution in microgravity on the International Space Station (ISS) were characterized and compared to salt crystals grown on earth. NaCl crystallized as thin wafers in a supersaturated film of 200-700 μm thickness and 50 mm diameter, or as hopper cubes in 10 mm diameter supersaturated spheres. Neutron diffraction shows no change in crystal structure and in cell parameters compared to earth-grown crystals. However, the morphology can be different, frequently showing circular, disk-like shapes of single crystals with <1 1 1> perpendicular to the disks, an unusual morphology for salt crystals. In contrast to the growth on earth the lateral faces of the microgravity tabular hopper crystals are symmetrical because they are free floating during the crystallization process. Hopper cubes were produced without the need to suspend the growing crystals by an ongoing stirring. "Fleur de Sel" is shown as an example of two-dimensional growth of salt on earth and compared to the space grown crystals. It is shown that in microgravity conditions brine fluid inclusions form within the salt crystals.

  4. Directional Solidification and Convection in Small Diameter Crucibles

    NASA Technical Reports Server (NTRS)

    Chen, J.; Sung, P. K.; Tewari, S. N.; Poirier, D. R.; DeGroh, H. C., III

    2003-01-01

    Pb-2.2 wt% Sb alloy was directionally solidified in 1, 2, 3 and 7 mm diameter crucibles. Pb-Sb alloy presents a solutally unstable case. Under plane-front conditions, the resulting macrosegregation along the solidified length indicates that convection persists even in the 1 mm diameter crucible. Al-2 wt% Cu alloy was directionally solidified because this alloy was expected to be stable with respect to convection. Nevertheless, the resulting macrosegregation pattern and the microstructure in solidified examples indicated the presence of convection. Simulations performed for both alloys show that convection persists for crucibles as small as 0.6 mm of diameter. For the solutally stable alloy, Al-2 wt% Cu, the simulations indicate that the convection arises from a lateral temperature gradient.

  5. NEOWISE Reactivation Mission Year One: Preliminary Asteroid Diameters and Albedos

    NASA Astrophysics Data System (ADS)

    Nugent, Carolyn; Mainzer, A.; Masiero, J. R.; Bauer, J.; Cutri, R. M.; Grav, T.; Kramer, E.; Sonnett, S.; Stevenson, R.; Wright, E.

    2015-11-01

    The infrared NEOWISE project (Mainzer et al. 2011a) has measured diameters and albedos for ˜20% of the known asteroid population, the majority of these measurements to date (Mainzer et al. 2011b, 2012, 2015; Masiero et al. 2011, 2012; Grav et al. 2011, 2012a; Bauer et al. 2013). Here, we expand the number of asteroids characterized by NEOWISE, deriving diameters and albedos for 7,959 asteroids detected between December 13, 2013, and December 13, 2014 during the first year of the Reactivation mission. 7,758 are Main Belt or Mars-crossing asteroids. 17% of these objects have not been previously characterized using WISE or NEOWISE thermal measurements. Diameters are determined to an accuracy of ~20% or better. If good-quality H magnitudes are available, albedos can be determined to within ~40% or better.

  6. Diameter of basalt columns derived from fracture mechanics bifurcation analysis.

    PubMed

    Bahr, H-A; Hofmann, M; Weiss, H-J; Bahr, U; Fischer, G; Balke, H

    2009-05-01

    The diameter of columnar joints forming in cooling basalt and drying starch increases with decreasing growth rate. This observation can be reproduced with a linear-elastic three-dimensional fracture mechanics bifurcation analysis, which has been done for a periodic array of hexagonal columnar joints by considering a bifurcation mode compatible with observations on drying starch. In order to be applicable to basalt columns, the analysis has been carried out with simplified stationary temperature fields. The critical diameter differs from the one derived with a two-dimensional model by a mere factor of 1/2. By taking into account the latent heat released at the solidification front, the results agree fairly well with observed column diameters.

  7. Interferometric Measurement of the Diameters of Fused Quartz Spheres

    NASA Astrophysics Data System (ADS)

    Seino, Shoichi

    1981-12-01

    This paper describes a method for the interferometric measurement of the diameter of a fused quartz sphere with Fabry-Perot etalon. Interference fringes are produced by laser radiation reflected from each surface of the etalon and the adjacent surface of the sphere and then their gaps are measured. The diameter of the sphere is derived by subtracting the two gaps from the plate separation of the etalon. Several lines from a free-running He-Se laser are used as the light sources for the exact fraction method together with the 633 nm line of a Lamb-dip stabilized He-Ne laser. The effects of fringe distortion, caused by laser radiation reflected from the other surface of the transparent sphere, are eliminated by placing a small circular stop at the image point of the light source. Experiments have shown that the precision of measurement of the diameter is about ± 0.16 ppm at 95% confidence interval.

  8. Ultrasonographic measurement of thoracic diameters of the early gestating fetus.

    PubMed

    Hata, T; Hata, K; Yamane, Y; Osamu, T; Kitao, M

    1989-08-01

    Eighty-two ultrasonographic examinations were performed on 60 of our pregnant patients with regular menstrual cycles and no complications. The pregnancies ranged from 7 to 13 weeks of gestation. Thoracic anteroposterior diameter (ETAPD), transverse diameter (ETTD), cross-sectional area (ETA) and crown-rump length (CRL) were measured on each ultrasonogram. A high correlation between CRL and gestational age was firstly confirmed in this study. ETAPD, ETTD and ETA correlated well with the gestational age and CRL, respectively. Correlations between ETAPD/CRL and ETTD/CRL ratios with the gestational age were negative. A positive correlation of ETA/CRL ratio with the gestational age was evident. Ultrasonographic measurement of the thoracic diameters of the fetus in utero should be a useful parameter to evaluate the gestational age and for early detection of growth retardation in utero.

  9. Liquid Crystals

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  10. Nanofiber alignment of a small diameter elastic electrospun scaffold

    NASA Astrophysics Data System (ADS)

    Patel, Jignesh

    Cardiovascular disease is the leading cause of death in western countries with coronary heart disease making up 50% of these deaths. As a treatment option, tissue engineered grafts have great potential. Elastic scaffolds that mimic arterial extracellular matrix (ECM) may hold the key to creating viable vascular grafts. Electrospinning is a widely used scaffold fabrication technique to engineer tubular scaffolds. In this study, we investigated how the collector rotation speed altered the nanofiber alignment which may improve mechanical characteristics making the scaffold more suitable for arterial grafts. The scaffold was fabricated from a blend of PCL/Elastin. 2D Fast Fourier Transform (FFT) image processing tool and MatLab were used to quantitatively analyze nanofiber orientation at different collector speeds (13500 to 15500 rpm). Both Image J and MatLab showed graphical peaks indicating predominant fiber orientation angles. A collector speed of 15000 rpm was found to produce the best nanofiber alignment with narrow peaks at 90 and 270 degrees, and a relative amplitude of 200. This indicates a narrow distribution of circumferentially aligned nanofibers. Collector speeds below and above 15000 rpm caused a decrease in fiber alignment with a broader orientation distribution. Uniformity of fiber diameter was also measured. Of 600 measures from the 15000 rpm scaffolds, the fiber diameter range from 500 nm to 899 nm was most prevalent. This diameter range was slightly larger than native ECM which ranges from 50 nm to 500 nm. The second most prevalent diameter range had an average of 404 nm which is within the diameter range of collagen. This study concluded that with proper electrospinning technique and collector speed, it is possible to fabricate highly aligned small diameter elastic scaffolds. Image J 2D FFT results confirmed MatLab findings for the analyses of circumferentially aligned nanofibers. In addition, MatLab analyses simplified the FFT orientation data

  11. Solar diameter measurements from eclipses as a solar variability proxy

    NASA Astrophysics Data System (ADS)

    Dunham, David W.; Sofia, Sabatino; Guhl, Konrad; Herald, David

    The widths of total solar eclipse paths depends on the diameter of the Sun, so if observations are obtained near both the northern and southern limits of the eclipse path, in principle, the angular diameter of the Sun can be measured. Concerted efforts have been made to obtain contact timings from locations near total solar eclipse path edges since the mid 19th century, and Edmund Halley organized a rather successful first effort in 1715. Members of IOTA have been making increasingly sophisticated observations of the Baily's bead phenomena near central solar eclipse path edges since 1970.

  12. NEOWISE REACTIVATION MISSION YEAR ONE: PRELIMINARY ASTEROID DIAMETERS AND ALBEDOS

    SciTech Connect

    Nugent, C. R.; Cutri, R. M.; Mainzer, A.; Masiero, J.; Bauer, J.; Kramer, E.; Sonnett, S.; Stevenson, R.; Grav, T.; Wright, E. L.

    2015-12-01

    We present preliminary diameters and albedos for 7956 asteroids detected in the first year of the NEOWISE Reactivation mission. Of those, 201 are near-Earth asteroids and 7755 are Main Belt or Mars-crossing asteroids. 17% of these objects have not been previously characterized using the Near-Earth Object Wide-field Infrared Survey Explorer, or “NEOWISE” thermal measurements. Diameters are determined to an accuracy of ∼20% or better. If good-quality H magnitudes are available, albedos can be determined to within ∼40% or better.

  13. Hardfacing takes the inside track in coating small diameter pipe

    SciTech Connect

    Not Available

    1985-03-01

    A Canadian company has adapted a standard hardfacing method to solve the problem of coating smaller pipe sizes. Small diameter piping and valves are hardfaced using a custom-designed plasma transferred arc (PTA) system. With an arrangement of automatically controlled mechanical arms, the firm is able to operate a PTA torch inside piping 6 to 12 inches in diameter and as long as 13 feet. Recently, the company improved the system so it can automatically hardface elbows up to 24 in. as well as straight runs of pipe.

  14. Nanopore Diameters Tune Strain in Extruded Fibronectin Fibers.

    PubMed

    Raoufi, Mohammad; Das, Tamal; Schoen, Ingmar; Vogel, Viola; Brüggemann, Dorothea; Spatz, Joachim P

    2015-10-14

    Fibronectin is present in the extracellular matrix and can be assembled into nanofibers in vivo by undergoing conformational changes. Here, we present a novel approach to prepare fibronectin nanofibers under physiological conditions using an extrusion approach through nanoporous aluminum oxide membranes. This one-step process can prepare nanofiber bundles up to a millimeter in length and with uniform fiber diameters in the nanometer range. Most importantly, by using different pore diameters and protein concentrations in the extrusion process, we could induce varying lasting structural changes in the fibers, which were monitored by Förster resonance energy transfer and should impose different physiological functions.

  15. Adaptive liquid crystal iris

    NASA Astrophysics Data System (ADS)

    Zhou, Zuowei; Ren, Hongwen; Nah, Changwoon

    2014-09-01

    We report an adaptive iris using a twisted nematic liquid crystal (TNLC) and a hole-patterned electrode. When an external voltage is applied to the TNLC, the directors of the LC near the edge of the hole are unwound first. Increasing the voltage can continuously unwind the LC toward the center. When the TNLC is sandwiched between two polarizers, it exhibits an iris-like character. Either a normal mode or a reverse mode can be obtained depending on the orientations of the transmission axes of the two polarizers. In contrast to liquid irises, the aperture of the LC iris can be closed completely. Moreover, it has the advantages of large variability of the aperture diameter, good stability, and low power consumption. Applications of the device for controlling the laser energy and correcting optical aberration are foreseeable.

  16. A new view on crystal harvesting

    PubMed Central

    Luft, Joseph R.; Grant, Thomas D.; Wolfley, Jennifer R.; Snell, Edward H.

    2014-01-01

    X-ray crystallography typically requires the mounting of crystals, which can make the sample difficult to manipulate when it is small and the microscope objective is close to the crystallization plate. By simply moving the objective to the bottom of a clear crystallization plate (inverting the normal view), crystals were able to be manipulated and harvested from wells having a 0.9 mm diameter and 5.0 mm depth. The mounting system enabled the structural solution of the 187 amino acid N-terminal domain of Saccharomyces cerevisiae glutaminyl-tRNA synthetase from crystals that appeared during high-throughput screening but proved recalcitrant to scale-up and optimization. While not a general mounting solution, the simple expedient of removing the objective lens from the area where manipulation and harvesting occur greatly facilitates the manual, or even automated, process. PMID:24904250

  17. SYMMETRICAL LASER CRYSTALS.

    DTIC Science & Technology

    CRYSTAL GROWTH , SYMMETRY(CRYSTALLOGRAPHY), LASERS, SYNTHESIS, FERROELECTRIC CRYSTALS , FLUORESCENCE, IMPURITIES, BARIUM COMPOUNDS, ZIRCONATES...STRONTIUM COMPOUNDS, TITANATES, STANNATES, SAMARIUM, MANGANESE, REFRACTORY MATERIALS, OXIDES, SINGLE CRYSTALS .

  18. Shape Evolution of Detached Bridgman Crystals Grown in Microgravity

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2015-01-01

    Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. In microgravity, the parameters that influence the existence of a stable gap are the growth angle of the solidifying crystal, the contact angle between the melt and the crucible wall, and the pressure difference across the meniscus. During actual crystal growth, the initial crystal radius will not have the precise value required for stable detached growth. Beginning with a crystal diameter that differs from stable conditions, numerical calculations are used to analyze the transient crystal growth process. Depending on the initial conditions and growth parameters, the crystal shape will either evolve towards attachment at the crucible wall, towards a stable gap width, or inwards towards eventual collapse of the meniscus. Dynamic growth stability is observed only when the sum of the growth and contact angles exceeds 180 degrees.

  19. Downhole pumps for water sampling in small diameter wells

    USGS Publications Warehouse

    Koopman, F. C.

    1979-01-01

    The relatively high cost and difficulty in locating a source of pumps for use in obtaining ground-water samples from small-diameter wells has demonstrated a need for this report. Criteria for selection of a pump and pumping equipment to meet specific requirements has been tabulated to assist field personnel in making a selection from commercial sources. (Kosco-USGS)

  20. Calibration of Laser Beam Direction for Inner Diameter Measuring Device

    PubMed Central

    Yang, Tongyu; Wang, Zhong; Wu, Zhengang; Li, Xingqiang; Wang, Lei; Liu, Changjie

    2017-01-01

    The laser triangulation method is one of the most advanced methods for large inner diameter measurement. Our research group proposed a kind of inner diameter measuring device that is principally composed of three laser displacement sensors known to be fixed in the same plane measurement position. It is necessary to calibrate the direction of the laser beams that are emitted by laser displacement sensors because they do not meet the theoretical model accurately. For the purpose of calibrating the direction of laser beams, a calibration method and mathematical model were proposed. The inner diameter measuring device is equipped with the spindle of the machine tool. The laser beams rotate and translate in the plane and constitute the rotary rays which are driven to scan the inner surface of the ring gauge. The direction calibration of the laser beams can be completed by the sensors’ distance information and corresponding data processing method. The corresponding error sources are analyzed and the validity of the method is verified. After the calibration, the measurement error of the inner diameter measuring device reduced from ±25 μm to ±15 μm and the relative error was not more than 0.011%. PMID:28165432

  1. Experimental study on strain sensing by small-diameter FBG

    NASA Astrophysics Data System (ADS)

    Liu, Rong-mei; Li, Qiufeng; Zhu, Lujia; Liang, Dakai

    2016-11-01

    Fiber Bragg grating (FBG) sensors were attractive in various fields for structural health monitoring. Because of their accurate performance and real time response, embedded FBG sensors are promising for strain monitoring in composite materials. As an optical fiber sensor was embedded inside a composite, interface would form around the embedded optical fiber and the host polymer composite. In order to study the influence of the embedded optical fiber to the mechanical character, finite elemental analysis was applied to study the stress distribution inside the composite. Keeping the resin rich area the same size, laminates with optical fibers in different diameters, which were 250 and 125 micrometers, were analyzed. The simulation results represent that stress singularity would occur around the embedded optical fiber. The singularity value for the laminate with optical fiber at 250 micrometer was higher than that with optical fiber at 125 micrometer. Micro- cracks would arise at the stress singularity point. Therefore, the optical fiber in smaller diameter was preferred since the mechanical strength could be higher. Four points bending test was carried out on a steel beam with a small-diameter FBG on the bottom surface. Besides, a strain gauge was stuck on bottom to validate the monitoring results by FBG sensor. The tested results indicated that the strain monitoring results by the small-diameter FBG sensor almost identical with the theoretical ones and what recorded by strain gauge. The maximum testing error for the designed FBG is less than 2% compared with the theoretical one.

  2. Measuring the Diameter of a Hair with a Steel Rule.

    ERIC Educational Resources Information Center

    Macdonald, John; O'Leary, Sean V.

    1994-01-01

    Describes a technique that uses a helium neon laser, a steel rule, a wooden rule, and a piece of paper to measure the diameter of a hair using the diffraction of light. Details on technique, mathematics, and sources of error are provided. (DDR)

  3. Compositional Variegation of Large-Diameter Low-Albedo Asteroids

    NASA Astrophysics Data System (ADS)

    Vilas, F.; Jarvis, K. S.; Anz-Meador, T. D.; Thibault, C. A.; Sawyer, S. R.; Fitzsimmons, A.

    1997-07-01

    Asteroids showing signs of aqueous alteration and thermal metamorphism in visible/near IR spectroscopy and photometry (C, G, F, B, and P classes) ranging from 0.37 - 0.90mu m dominate the asteroid population at heliocentric distances of 2.6 - 3.5 AU. Age dating of meteorites indicates that the Solar System was subjected to a major heating event 4.5 Gyr ago. Recent meteoritic research has produced evidence of a carbonaceous chondrite subjected to two separate aqueous alteration events with a metamorphic heating inbetween (Krot et al., 1997, submitted). Models of the effects of heating by electromagnetic induction or decay of short-lived radionuclides combined with models of the early collisional history of the Solar System after Jupiter's formation indicate that asteroids observed today can be divided into two groups by diameter. Those asteroids having diameters greater than 100 km were mixed by multiple collisions but remain as gravitationally bound rubble piles. Asteroids with diameters less than 100 km should show more compositional diversity. Vilas and Sykes (1996, Icarus, v. 124, 483) have shown using ECAS photometry that this compositional difference exists. Those asteroids having diameters greater than 100 km should be individually homogeneous, with spectral differences showing the combined effects of a primordial compositional gradient in the asteroid belt with thermal metamorphism. We address the significance of spatially-resolved spectra of 42 asteroids to the collective origin of these asteroids.

  4. 5. 30 DIAMETER ACCESS MANHOLE IN THE CENTER OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. 30 DIAMETER ACCESS MANHOLE IN THE CENTER OF THE GATE HOUSE, LOOKING SOUTH. - Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates & Gate-Lifting Mechanisms, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  5. Pupil diameter covaries with BOLD activity in human locus coeruleus.

    PubMed

    Murphy, Peter R; O'Connell, Redmond G; O'Sullivan, Michael; Robertson, Ian H; Balsters, Joshua H

    2014-08-01

    The locus coeruleus-noradrenergic (LC-NA) neuromodulatory system has been implicated in a broad array of cognitive processes, yet scope for investigating this system's function in humans is currently limited by an absence of reliable non-invasive measures of LC activity. Although pupil diameter has been employed as a proxy measure of LC activity in numerous studies, empirical evidence for a relationship between the two is lacking. In the present study, we sought to rigorously probe the relationship between pupil diameter and BOLD activity localized to the human LC. Simultaneous pupillometry and fMRI revealed a relationship between continuous pupil diameter and BOLD activity in a dorsal pontine cluster overlapping with the LC, as localized via neuromelanin-sensitive structural imaging and an LC atlas. This relationship was present both at rest and during performance of a two-stimulus oddball task, with and without spatial smoothing of the fMRI data, and survived retrospective image correction for physiological noise. Furthermore, the spatial extent of this pupil/LC relationship guided a volume-of-interest analysis in which we provide the first demonstration in humans of a fundamental characteristic of animal LC activity: phasic modulation by oddball stimulus relevance. Taken together, these findings highlight the potential for utilizing pupil diameter to achieve a more comprehensive understanding of the role of the LC-NA system in human cognition.

  6. Asteroid magnitudes, UBV colors, and IRAS albedos and diameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1989-01-01

    This paper lists absolute magnitudes and slope parameters for known asteroids numbered through 3318. The values presented are those used in reducing asteroid IR flux data obtained with the IRAS. U-B colors are given for 938 asteroids, and B-V colors are given for 945 asteroids. The IRAS albedos and diameters are tabulated for 1790 asteroids.

  7. Definition of Beam Diameter for Electron Beam Welding

    SciTech Connect

    Burgardt, Paul; Pierce, Stanley W.; Dvornak, Matthew John

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  8. Solar diameter measurements for study of Sun climate coupling

    NASA Technical Reports Server (NTRS)

    Hill, H. A.

    1983-01-01

    Changes in solar shape and diameter were detected as a possible probe of variability in solar luminosity, an important climatic driving function. A technique was designed which will allow the calibration of the telescope field, providing a scale for long-term comparison of these and future measurements.

  9. Non-Contact EDDY Current Hole Eccentricity and Diameter Measurement

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    1998-01-01

    Precision holes are among the most critical features of a mechanical component. Deviations from permissible tolerances can impede operation and result in unexpected failure. We have developed an automated non-contact eddy current hole diameter and eccentricity measuring system. The operating principle is based on the eddy current lift-off effect, which is the coil impedance as a function of the distance between the coil and the test object. An absolute eddy current probe rotates in the hole. The impedance of each angular position is acquired and input to the computer for integration and analysis. The eccentricity of the hole is the profile of the impedance as a function of angular position as compared to a straight line, an ideal hole. The diameter of the hole is the sum of the diameter of the probe and twice the distance-calibrated impedance. An eddy current image is generated by integrating angular scans for a plurality of depths between the top and bottom to display the eccentricity profile. This system can also detect and image defects in the hole. The method for non-contact eddy current hole diameter and eccentricity measurement has been granted a patent by the U.S. Patent and Trademark Office.

  10. Calibration of Laser Beam Direction for Inner Diameter Measuring Device.

    PubMed

    Yang, Tongyu; Wang, Zhong; Wu, Zhengang; Li, Xingqiang; Wang, Lei; Liu, Changjie

    2017-02-05

    The laser triangulation method is one of the most advanced methods for large inner diameter measurement. Our research group proposed a kind of inner diameter measuring device that is principally composed of three laser displacement sensors known to be fixed in the same plane measurement position. It is necessary to calibrate the direction of the laser beams that are emitted by laser displacement sensors because they do not meet the theoretical model accurately. For the purpose of calibrating the direction of laser beams, a calibration method and mathematical model were proposed. The inner diameter measuring device is equipped with the spindle of the machine tool. The laser beams rotate and translate in the plane and constitute the rotary rays which are driven to scan the inner surface of the ring gauge. The direction calibration of the laser beams can be completed by the sensors' distance information and corresponding data processing method. The corresponding error sources are analyzed and the validity of the method is verified. After the calibration, the measurement error of the inner diameter measuring device reduced from ± 25 μ m to ± 15 μ m and the relative error was not more than 0.011%.

  11. Sex discrimination potential of permanent maxillary molar cusp diameters.

    PubMed

    Macaluso, P J

    2010-12-01

    The purpose of the present investigation was to assess the potential usefulness of permanent maxillary molar cusp diameters for sex discrimination of poorly preserved skeletal remains. Cusp diameters were measured from standardized occlusal view photographs in a sample of black South Africans consisting of 130 males and 105 females. Results demonstrated that all cusp dimensions for both first and second maxillary molars exhibited significant sexual dimorphism (p < 0.001). Univariate and multivariate discriminant function equations permitted low to moderate classification accuracy in discriminating sex (58.3%-73.6%). The allocation accuracies for cusp diameter measurements were as high as, and even surpassed, those observed for conventional crown length and breadth dimensions of the same teeth. The most accurate result (73.6%, with a sex bias of only 0.5%) was obtained when all cusp diameters from both maxillary molars were used concurrently. However, only slightly less accurate results (~70.0%) were achieved when selected dimensions from only one of the molars, or even a single cusp, were utilized. Although not as reliable at predicting sex as other skeletal elements in black South Africans, the derived odontometric standards can be used with highly fragmentary skeletal material, as well as immature remains in which crown formation of the maxillary molars is complete.

  12. General view of outside diameter welding stations of the saw ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of outside diameter welding stations of the saw line in bay 8 of the main pipe mill building looking northwest. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  13. No. 2 outside diameter submerged arc welder of the saw ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    No. 2 outside diameter submerged arc welder of the saw line in bay 8 of the main pipe mill building looking south. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  14. Southeast view of the no. 1 outside diameter submerged arch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Southeast view of the no. 1 outside diameter submerged arch welder of the saw line in bay 8 of the main pipe mill building. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  15. Pupil Diameter May Reflect Motor Control and Learning.

    PubMed

    White, Olivier; French, Robert M

    2017-01-01

    Non-luminance-mediated changes in pupil diameter have been used since the first studies by Darwin in 1872 as indicators of clinical, cognitive, and arousal states. However, the relation between processes involved in motor control and changes in pupil diameter remains largely unknown. Twenty participants attempted to compensate random walks of a cursor with a computer mouse to restrain its trajectory within a target circle while the authors recorded their pupil diameters. Two conditions allowed the authors to experimentally manipulate the motor and cognitive components of the task. First, the step size of the cursor's random walk was either large or small leading to 2 task difficulties (difficult or easy). Second, they instructed participants to imagine controlling the cursor by moving the mouse, but without actually moving it (task modality: imagined movement or real movement condition). Task difficulty and modality allowed the authors to show that pupil diameters reflect processes involved in motor control and in the processing of feedback, respectively. Furthermore, the authors also demonstrate that motor learning can be quantified by pupil size. This noninvasive approach provides a promising method for investigating not only motor control, but also motor imagery, a research field of growing importance in sports and rehabilitation.

  16. Combined position and diameter measures for lunar craters

    USGS Publications Warehouse

    Arthur, D.W.G.

    1977-01-01

    The note addresses the problem of simultaneously measuring positions and diameters of circular impact craters on wide-angle photographs of approximately spherical planets such as the Moon and Mercury. The method allows for situations in which the camera is not aligned on the planet's center. ?? 1977.

  17. Assessment of vessel diameters for MR brain angiography processed images

    NASA Astrophysics Data System (ADS)

    Moraru, Luminita; Obreja, Cristian-Dragos; Moldovanu, Simona

    2015-12-01

    The motivation was to develop an assessment method to measure (in)visible differences between the original and the processed images in MR brain angiography as a method of evaluation of the status of the vessel segments (i.e. the existence of the occlusion or intracerebral vessels damaged as aneurysms). Generally, the image quality is limited, so we improve the performance of the evaluation through digital image processing. The goal is to determine the best processing method that allows an accurate assessment of patients with cerebrovascular diseases. A total of 10 MR brain angiography images were processed by the following techniques: histogram equalization, Wiener filter, linear contrast adjustment, contrastlimited adaptive histogram equalization, bias correction and Marr-Hildreth filter. Each original image and their processed images were analyzed into the stacking procedure so that the same vessel and its corresponding diameter have been measured. Original and processed images were evaluated by measuring the vessel diameter (in pixels) on an established direction and for the precise anatomic location. The vessel diameter is calculated using the plugin ImageJ. Mean diameter measurements differ significantly across the same segment and for different processing techniques. The best results are provided by the Wiener filter and linear contrast adjustment methods and the worst by Marr-Hildreth filter.

  18. Rowlinson’s concept of an effective hard sphere diameter

    PubMed Central

    Henderson, Douglas

    2010-01-01

    Attention is drawn to John Rowlinson’s idea that the repulsive portion of the intermolecular interaction may be replaced by a temperature-dependent hard sphere diameter. It is this approximation that made the development of perturbation theory possible for realistic fluids whose intermolecular interactions have a steep, but finite, repulsion at short separations. PMID:20953320

  19. View of wood stave penstocks (four feet in diameter) with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of wood stave penstocks (four feet in diameter) with steel bands, wood and steel frames; standing on top of penstocks is Doug Hamilton (right), Nooksack Falls hydro-plant operator for puget power, and Ken Rose (left) HAER Historian. - Nooksack Falls Hydroelectric Plant, Route 542, Glacier, Whatcom County, WA

  20. Growth of Cadmium-Zinc Telluride Crystals by Controlled Seeding Contactless Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Grasza, K.; Gillies, D.; Jerman, G.

    1996-01-01

    Bulk crystals of cadmium-zinc telluride, 23 mm in diameter and up to 45 grams in weight were grown. Controlled seed formation procedure was used to limit the number of grains in the crystal. Most uniform distribution of ZnTe in the crystals was obtained using excess (Cd + Zn) pressure in the ampoule.

  1. Development of Methods of Producing Large Areas of Silicon Sheet by the Slicing of Silicon Ingots Using Inside Diameter (I.D.) Saws

    NASA Technical Reports Server (NTRS)

    Aharonyan, P.

    1979-01-01

    Methods of producing large areas of silicon sheets were developed by using inside diameter (I.D.) saws to slice silicon ingots. A 16 inch automated I.D. slicing machine was modified to accept programmable electric feed system, a crystal rotating system and a dyna-track blade monitoring and control system. The saw and accessories were used to slice 75 mm diameter single crystal silicon ingots while rotating them. The automated saw automatically recovered the wafers and loaded them into a cassette. The amount of material lost during slicing was reduced by using smaller blades than ones normally used to slice the wafers. Slicing runs on 100 mm diameter silicon is the next goal.

  2. Mechanically tunable photonic crystal lens

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Tamma, V. A.; Lee, J.-B.; Park, W.

    2010-08-01

    We designed, fabricated and characterized MEMS-enabled mechanically-tunable photonic crystal lens comprised of 2D photonic crystal and symmetrical electro-thermal actuators. The 2D photonic crystal was made of a honeycomb-lattice of 340 nm thick, 260 nm diameter high-index silicon rods embedded in low-index 10 μm thick SU-8 cladding. Silicon input waveguide and deflection block were also fabricated for light in-coupling and monitoring of focused spot size, respectively. When actuated, the electro-thermal actuators induced mechanical strain which changed the lattice constant of the photonic crystal and consequently modified the photonic band structure. This in turn modified the focal-length of the photonic crystal lens. The fabricated device was characterized using a tunable laser (1400~1602 nm) and an infrared camera during actuation. At the wavelength of 1450 nm, the lateral light spot size observed at the deflection block gradually decreased 40%, as applied current increased from 0 to 0.7 A, indicating changes in focal length in response to the mechanical stretching.

  3. Nuclear criticality safety calculational analysis for small-diameter containers

    SciTech Connect

    LeTellier, M.S.; Smallwood, D.J.; Henkel, J.A.

    1995-11-01

    This report documents calculations performed to establish a technical basis for the nuclear criticality safety of favorable geometry containers, sometimes referred to as 5-inch containers, in use at the Portsmouth Gaseous Diffusion Plant. A list of containers currently used in the plant is shown in Table 1.0-1. These containers are currently used throughout the plant with no mass limits. The use of containers with geometries or material types other than those addressed in this evaluation must be bounded by this analysis or have an additional analysis performed. The following five basic container geometries were modeled and bound all container geometries in Table 1.0-1: (1) 4.32-inch-diameter by 50-inch-high polyethylene bottle; (2) 5.0-inch-diameter by 24-inch-high polyethylene bottle; (3) 5.25-inch-diameter by 24-inch-high steel can ({open_quotes}F-can{close_quotes}); (4) 5.25-inch-diameter by 15-inch-high steel can ({open_quotes}Z-can{close_quotes}); and (5) 5.0-inch-diameter by 9-inch-high polybottle ({open_quotes}CO-4{close_quotes}). Each container type is evaluated using five basic reflection and interaction models that include single containers and multiple containers in normal and in credible abnormal conditions. The uranium materials evaluated are UO{sub 2}F{sub 2}+H{sub 2}O and UF{sub 4}+oil materials at 100% and 10% enrichments and U{sub 3}O{sub 8}, and H{sub 2}O at 100% enrichment. The design basis safe criticality limit for the Portsmouth facility is k{sub eff} + 2{sigma} < 0.95. The KENO study results may be used as the basis for evaluating general use of these containers in the plant.

  4. Changes in retinal microvascular diameter in patients with diabetes

    PubMed Central

    da Silva, Andréa Vasconcellos Batista; Gouvea, Sonia Alves; da Silva, Aurélio Paulo Batista; Bortolon, Saulo; Rodrigues, Anabel Nunes; Abreu, Glaucia Rodrigues; Herkenhoff, Fernando Luiz

    2015-01-01

    Background and objectives Diabetic retinopathy is the main microvascular complication in diabetes mellitus and needs to be diagnosed early to prevent severe sight-threatening retinopathy. The purpose of this study was to quantify the retinal microvasculature pattern and analyze the influence of blood glucose level and the duration of diabetes mellitus on the retinal microvasculature. Methods Two groups were analyzed: patients with diabetes (N=26) and patients without diabetes, ie, controls (N=26). A quantitative semiautomated method analyzed retinal microvasculature. The diameters of arterioles and venules were measured. The total numbers of arterioles and venules were counted. The ratio of arteriole diameter to venule diameter was calculated. The retinal microvasculature pattern was related to clinical and biochemical parameters. Results Patients with diabetes exhibited larger venule diameters in the upper temporal quadrant of the retina compared to the lower temporal quadrant (124.85±38.03 µm vs 102.92±15.69 µm; P<0.01). Patients with diabetes for 5 or more years had larger venule diameters in the upper temporal quadrant than patients without diabetes (141.62±44.44 vs 112.58±32.11 µm; P<0.05). The degree of venodilation in the upper temporal quadrant was positively correlated with blood glucose level and the estimated duration of diabetes mellitus. Interpretation and conclusion The employed quantitative method demonstrated that patients with diabetes exhibited venule dilation in the upper temporal quadrant, and the duration of diabetes mellitus was positively correlated with blood glucose level. Therefore, the early assessment of retinal microvascular changes is possible prior to the onset of diabetic retinopathy. PMID:26345217

  5. Prediction of moderate or severe pulmonary hypertension by main pulmonary artery diameter and main pulmonary artery diameter/ascending aorta diameter in pulmonary embolism.

    PubMed

    Sanal, Shirin; Aronow, Wilbert S; Ravipati, Gautham; Maguire, George P; Belkin, Robert N; Lehrman, Stuart G

    2006-01-01

    We investigated the accuracy of computed tomographic measurements of main pulmonary artery diameter (MPAD) and of MPAD/ascending aorta diameter (AAD) in predicting moderate or severe pulmonary hypertension in 190 patients with acute pulmonary embolism. A pulmonary artery systolic pressure of > or = 50 mm Hg measured by Doppler echocardiography was considered moderate or severe pulmonary hypertension. A MPAD of > 28.6 mm and a MPAD/AAD ratio of > or = 1.00 measured by computed tomography were considered abnormal. A MPAD of > 28.6 mm had a 75% sensitivity and specificity, a 52% positive predictive value, a 89% negative predictive value, a 3.0 likelihood ratio for a positive test, and a 0.33 likelihood ratio for a negative test in predicting moderate or severe pulmonary hypertension. A MPAD/AAD ratio of > or = 1.00 had a 59% sensitivity, a 82% specificity, a 55% positive predictive value, a 84% negative predictive value, a 3.3 likelihood ratio for a positive test, and a 0.50 likelihood ratio for a negative test.

  6. Development of X-ray Imaging Crystal Spectrometer for KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Bak, J. G.; Bitter, M.; Hill, K.; Nam, U. W.; Kim, Y. J.; Moon, M. K.

    2003-10-01

    The engineering design for two high-resolution X-ray imaging crystal spectrometers, which will be part of the basic diagnostics for the KSTAR tokamak, has been finalized. Each of the spectrometers will consists of a spherically bent crystal and a 10 cm x 30 cm large 2D position-sensitive multi-wire proportional counter. The instruments will provide spatially and temporally resolved spectra of the resonance line of helium-like argon (or krypton) and the associated satellites from multiple lines of sight parallel and perpendicular to the horizontal mid-plane for measurements of the profiles of the ion and electron temperatures, plasma rotation velocity, and ionization equilibrium. A 2D detector with delay-line readout and supporting electronics has been fabricated and calibrated with an X-ray source. The engineering design of the spectrometers and the calibration results of the 2D detector will be presented.

  7. Bayesian Planet Searches for the 10 cm/s Radial Velocity Era

    NASA Astrophysics Data System (ADS)

    Gregory, Philip C.

    2016-10-01

    A new apodized Keplerian model is proposed for the analysis of precision radial velocity (RV) data to model both planetary and stellar activity (SA) induced RV signals. A symmetrical Gaussian apodization function with unknown width and center can distinguish planetary signals from SA signals on the basis of the width of the apodization function. The general model for m apodized Keplerian signals also includes a linear regression term between RV and the stellar activity diagnostic In (R'hk), as well as an extra Gaussian noise term with unknown standard deviation. The model parameters are explored using a Bayesian fusion MCMC code. A differential version of the Generalized Lomb-Scargle periodogram provides an additional way of distinguishing SA signals and helps guide the choice of new periods. Sample results are reported for a recent international RV blind challenge which included multiple state of the art simulated data sets supported by a variety of stellar activity diagnostics.

  8. A 10 cm dual frequency Doppler weather radar. Part 1: The radar system

    NASA Astrophysics Data System (ADS)

    Bishop, A. W.; Armstrong, G. M.

    1982-10-01

    Design concepts and test results are summarized for a Doppler weather radar system suitable for precipitation measurements over a wide span of radial velocities and slant ranges, even in the presence of ground clutter. The radar transmits two uniform pulse trains at 2.710 and 2.760 GHz. Uniformly spaced pulses permit ground clutter cancellation of up to 50 dB to be achieved with a three-pole elliptic filter. Pulse spacing at one frequency is consistent with long-range coverage in reflectivity, while spacing of the second is consistent with a wide unambiguous velocity measurement span.

  9. Therapeutic Crystals

    ERIC Educational Resources Information Center

    Bond, Charles S.

    2014-01-01

    Some readers might not fully know what the difference is between crystallography, and the "new age" practice of dangling crystals around the body to capitalise on their healing energy. The latter is often considered to be superstition, while ironically, the former has actually resulted in real rationally-based healing of human diseases…

  10. Comparing Crystals

    ERIC Educational Resources Information Center

    Sharp, Janet; Hoiberg, Karen; Chumbley, Scott

    2003-01-01

    This standard lesson on identifying salt and sugar crystals expands into an opportunity for students to develop their observation, questioning, and modeling skills. Although sugar and salt may look similar, students discovered that they looked very different under a magnifying glass and behaved differently when dissolved in water. In addition,…

  11. Optical Crystals

    ERIC Educational Resources Information Center

    Bergsten, Ronald

    1974-01-01

    Discusses the production and structure of a sequence of optical crystals which can serve as one-, two-, and three-dimensional diffraction plates to illustrate diffraction patterns by using light rather than x-rays or particles. Applications to qualitative presentations of Laue theory at the secondary and college levels are recommended. (CC)

  12. Large Diameter Shuttle Launched-AEM (LDSL-AEM) study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A technical description of a Large Diameter Shuttle Launched-AEM (LDSL-AEM), an AEM base module adapted to carry 5 ft diameter payloads in the shuttle with propulsion for carrying payloads to higher altitude orbits from a 150 NM shuttle orbit, is described. The AEM is designed for launch on the scout launch vehicle. Onboard equipment provides capability to despin, acquire the earth, and control the vehicle in an earth pointing mode using reaction wheels for torque with magnets for all attitude acquisition, wheel desaturation, and nutation damping. Earth sensors in the wheels provide pitch and roll attitude. This system provides autonomous control capability to 1 degree in pitch and roll and 2 degrees in yaw. The attitude can be determined to .5 degrees in pitch and roll and 2 degrees in yaw.

  13. Constraints on the diameter and albedo of 2060 Chiron

    NASA Technical Reports Server (NTRS)

    Sykes, Mark V.; Walker, Russell G.

    1991-01-01

    Asteroid 2060 Chiron is the largest known object exhibiting cometary activity. Radiometric observations made in 1983 from a ground-based telescope and the IRAS are used to examine the limits on Chiron's diameter and albedo. It is argued that Chiron's surface temperature distribution at that time is best described by an 'isothermal latitude' or 'rapid-rotator' model. Consequently, Chiron has a maximum diameter of 372 kilometers and a minimum geometric albedo of 2.7 percent. This is much bigger and darker than previous estimates, and suggests that gravity may play a significant role in the evolution of gas and dust emissions. It is also found that for large obliquities, surface temperatures can vary dramatically on time scales of a decade, and that such geometry may play a critical role in explaining Chiron's observed photometric behavior since its discovery in 1977.

  14. Magnetic interactions in ferromagnetic manganite nanotubes of different diameters

    NASA Astrophysics Data System (ADS)

    Curiale, J.; Sánchez, R. D.; Troiani, H. E.; Leyva, A. G.; Levy, P.

    2007-10-01

    In this work we present a magnetic study of La 0.67Sr 0.33MnO 3 (LSMO) and La 0.67Ca 0.33MnO 3 (LCMO) nanotubes with nominal external diameters ( ϕ) of 100, 200, 600 and 800 nm. The 800 nm diameter nanotubes have walls of around 50 nm thickness in all the cases. The walls are constituted by an assembly of nanoparticles with a non-Gaussian size distribution presenting a maximum at 24 ± 6 nm (LSMO) and 25 ± 8 nm (LCMO). We carried out isothermal remanent magnetization (IRM) and dc demagnetization (DCD) experiments. We determined that the crystallites are single magnetic domains with a magnetic dead layer on the surface which avoids exchange interactions among grains. We conclude that the dominating interactions are of dipolar type of the same magnitude for all the samples.

  15. Twist Neutrality and the Diameter of the Nucleosome Core Particle

    NASA Astrophysics Data System (ADS)

    Bohr, Jakob; Olsen, Kasper

    2012-03-01

    The diameter of the nucleosome core particle is the same for all the eukaryotes. Here we discuss the possibility that this selectiveness is consistent with a propensity for twist neutrality, in particular, for the double helical DNA to stay rotationally neutral when strained. Reorganization of DNA cannot be done without some level of temporal tensile stress, and as a consequence chiral molecules, such as helices, will twist under strain. The requirement that the nucleosome, constituting the nucleosome core particle and linker DNA, has a vanishing strain-twist coupling leads to a requirement for the amount of bending. For the diameter of the coiled DNA we obtain the relatively accurate numerical estimate of 2R=82Å.

  16. Angular diameter distances reconsidered in the Newman and Penrose formalism

    NASA Astrophysics Data System (ADS)

    Kling, Thomas P.; Aly, Aly

    2016-02-01

    Using the Newman and Penrose spin coefficient (NP) formalism, we provide a derivation of the Dyer-Roeder equation for the angular diameter distance in cosmological space-times. We show that the geodesic deviation equation written in NP formalism is precisely the Dyer-Roeder equation for a general Friedman-Robertson-Walker (FRW) space-time, and then we examine the angular diameter distance to redshift relation in the case that a flat FRW metric is perturbed by a gravitational potential. We examine the perturbation in the case that the gravitational potential exhibits the properties of a thin gravitational lens, demonstrating how the weak lensing shear and convergence act as source terms for the perturbed Dyer-Roeder equation.

  17. Thin boron nitride nanotubes with unusual large inner diameters

    NASA Astrophysics Data System (ADS)

    Ma, Renzhi; Bando, Yoshio; Sato, Tadao; Kurashima, Keiji

    2001-12-01

    BN nanotubes, displaying the characteristics of few concentric layers (2-6 layers) but unusual large inner diameters (ranging from 8 to more than 10 nm), are synthesized by a chemical vapor deposition (CVD) method on α-Al 2O 3 micrometer-range particles. The inner diameters are at least 5 nm larger than the previously reported BN nanotubes of similar layers. Some BN nanotubes are observed to be filled with B-N-O-based amorphous materials. Crystalline core fillings (in the form of boron carbide nanorods) were also discovered. The discussions suggested that the CVD growth behavior of BN nanotubes may be closely dependent on the underlying substrates, which may be helpful to the possible rational synthesis of BN nanotubes.

  18. Behavior of large-diameter pipelines at fault crossings

    SciTech Connect

    Desmond, T.P.; Power, M.S.; Taylor, C.L.; Lau, R.W.

    1995-12-31

    An evaluation of large diameter pipes which cross earthquake faults in the San Francisco Bay Area is summarized. Pipe response due to fault movement is evaluated by estimating the likely fault offset and then determining pipe strain induced by soil-pipe interaction. Probabilistic models are used to predict fault offsets associated with a Maximum Credible Earthquake. These ground movements are related to pipe strains; then, pipe damage is characterized in probabilistic terms. These analyses form the basis for recommending pipeline modifications.

  19. Developing high coercivity in large diameter cobalt nanowire arrays

    NASA Astrophysics Data System (ADS)

    Montazer, A. H.; Ramazani, A.; Almasi Kashi, M.; Zavašnik, J.

    2016-11-01

    Regardless of the synthetic method, developing high magnetic coercivity in ferromagnetic nanowires (NWs) with large diameters has been a challenge over the past two decades. Here, we report on the synthesis of highly coercive cobalt NW arrays with diameters of 65 and 80 nm, which are embedded in porous anodic alumina templates with high-aspect-ratio pores. Using a modified electrochemical deposition method enabled us to reach room temperature coercivity and remanent ratio up to 3000 Oe and 0.70, respectively, for highly crystalline as-synthesized hcp cobalt NW arrays with a length of 8 μm. The first-order reversal curve (FORC) analysis showed the presence of both soft and hard magnetic phases along the length of the resulting NWs. To develop higher coercive fields, the length of the NWs was then gradually reduced in order from bottom to top, thereby reaching NW sections governed by the hard phase. Consequently, this resulted in record high coercivities of 4200 and 3850 Oe at NW diameters of 65 and 80 nm, respectively. In this case, the FORC diagrams confirmed a significant reduction in interactions between the magnetic phases of the remaining sections of NWs. At this stage, x-ray diffraction (XRD) and dark-field transmission electron microscopy analyses indicated the formation of highly crystalline bamboo-like sections along the [0 0 2] direction during a progressive pulse-controlled electrochemical growth of NW arrays under optimized parameters. Our results both provide new insights into the growth process, crystalline characteristics and magnetic phases along the length of large diameter NW arrays and, furthermore, develop the performance of pure 3d transition magnetic NWs.

  20. Optical Fiber Geometry: Accurate Measurement of Cladding Diameter

    PubMed Central

    Young, Matt; Hale, Paul D.; Mechels, Steven E.

    1993-01-01

    We have developed three instruments for accurate measurement of optieal fiber cladding diameter: a contact micrometer, a scanning confocal microscope, and a white-light interference microscope. Each instrument has an estimated uncertainty (3 standard deviations) of 50 nm or less, but the confocal microscope may display a 20 nm systematic error as well. The micrometer is used to generate Standard Reference Materials that are commercially available. PMID:28053467

  1. Measuring angular diameter distances of strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Jee, I.; Komatsu, E.; Suyu, S. H.

    2015-11-01

    The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/r) and a mass (GM) of the lens, respectively, dividing them gives a physical size (r) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (zL=0.6304) and RXJ1131-1231 (zL=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ2, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in DA per object. This improves to 13% when we measure σ2 at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ2 with 5% precision.

  2. NEOWISE Diameters and Albedos V1.0

    NASA Astrophysics Data System (ADS)

    Mainzer, A. K.; Bauer, J. M.; Cutri, R. M.; Grav, T.; Kramer, E. A.; Masiero, J. R.; Nugent, C. R.; Sonnett, S. M.; Stevenson, R. A.; Wright, E. L.

    2016-06-01

    This PDS data set represents a compilation of published diameters, optical albedos, near-infrared albedos, and beaming parameters for minor planets detected by NEOWISE during the fully cryogenic, 3-band cryo, post-cryo and NEOWISE-Reactivation Year 1 operations. It contains data covering near-Earth asteroids, Main Belt asteroids, active Main Belt objects, Hildas, Jupiter Trojans, Centaurs, and Jovian and Saturnian irregular satellites. Methodology for physical property determination is described in the referenced articles.

  3. No link between the solar activity cycle and the diameter

    NASA Astrophysics Data System (ADS)

    Dame, L.; Cugnet, D.

    We do not understand the physical mechanisms responsible for the solar irradiance cycle. Measurements of small variations in the solar diameter could have been a critical probe of the Sun 's interior stratification, telling us how and where the solar luminosity is gated or stored. We have reanalyzed the 7 years of filtregrams data (150 000 photograms and magnetograms) of the SOHO/MDI experiment. We used the maximum possible sampling compatible with full frame recording, carefully avoiding any suspicious filtregram. Going further than the previous analysis of 2 years of data by Emilio et al. (Ap. J. 543,1007, 2000), we better corrected for changes in optical aberrations and, along Turmon et al. (Ap. J., 568, 396, 2002), we reduced radius measurement errors by identifying active regions and avoiding radius measurements herein. We found that, within the limit of our noise level uncertainties (2 mas), the solar diameter could be constant over the half cycle investigated. Our results confirm the recent reanalysis of the 7 years of MDI data made by Antia (Ap. J. 590, 567, 2003), with a completely different method since using the ultra-precise frequency variation of the f-modes (fundamental modes linked to the diameter). He found (carefully removing the yearly Earth induced variations and avoiding the SOHO data gap of 1999) that the diameter is constant over the half solar cycle (radius variation are less than 0.6 km, 0.8 mas - nothing over noise level). Along Antia, we can conclude that: "If a careful analysis is performed, then it turns out that there is no evidence for any variation in the solar radius." There were no theoretical reasons for large solar radius variations and there is no observational evidence for them with consistent space observations. If changes exit, they are to be very small.

  4. Measuring angular diameter distances of strong gravitational lenses

    SciTech Connect

    Jee, I.; Komatsu, E.; Suyu, S.H. E-mail: komatsu@mpa-garching.mpg.de

    2015-11-01

    The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/r) and a mass (GM) of the lens, respectively, dividing them gives a physical size (r) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (z{sub L}=0.6304) and RXJ1131−1231 (z{sub L}=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ{sup 2}, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in D{sub A} per object. This improves to 13% when we measure σ{sup 2} at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ{sup 2} with 5% precision.

  5. The method for detecting diffusion ring diameter in Hemagglutinin measuring

    NASA Astrophysics Data System (ADS)

    Jing, Wenbo; Liu, Xue; Duan, Jin; Wang, Xiao-man

    2014-11-01

    The diffuser ring diameter measurement is the most critical in hemagglutinin Measuring. The traditional methods, such as a vernier caliper or high-definition scanned images are subjective and low for the measurement data reliability. Propose high-resolution diffusion ring image for drop-resolution processing, adaptive Canny operator and local detection method to extract complete and clear diffusion ring boundaries, and finally make use of polynomial interpolation algorithm to make diffusion ring outer boundary pixel coordinates achieve sub-pixel accuracy and the least-squares fitting circle algorithm to calculate the precise center of the circle and the diameter of the diffuser ring. Experimental results show that the method detection time is only 63.61ms, which is a faster speed; diffuser ring diameter estimation error can achieve 0.55 pixel, high stability in experimental data. This method is adapted to the various types of influenza vaccine hemagglutinin content measurements, and has important value in the influenza vaccine quality detection.

  6. Diameter dependent thermoelectric properties of individual SnTe nanowires

    DOE PAGES

    Xu, E. Z.; Li, Z.; Martinez, J. A.; ...

    2015-01-15

    The lead-free compound tin telluride (SnTe) has recently been suggested to be a promising thermoelectric material. In this work, we report on the first thermoelectric study of individual single-crystalline SnTe nanowires with different diameters ranging from ~ 218 to ~ 913 nm. Measurements of thermopower S, electrical conductivity σ and thermal conductivity κ were carried out on the same nanowires over a temperature range of 25 - 300 K. While the electrical conductivity does not show a strong diameter dependence, the thermopower increases by a factor of two when the nanowire diameter is decreased from ~ 913 nm to ~more » 218 nm. The thermal conductivity of the measured NWs is lower than that of the bulk SnTe, which may arise from the enhanced phonon - surface boundary scattering and phonon-defect scattering. Lastly, temperature dependent figure of merit ZT was determined for individual nanowires and the achieved maximum value at room temperature is about three times higher than that in bulk samples of comparable carrier density.« less

  7. Stellar Diameters in the Beta Pic Moving Group

    NASA Astrophysics Data System (ADS)

    Simon, M.; Schaefer, G. H.

    2014-09-01

    Members of the Beta Pic Moving Group (BPMG) are young enough (10-20 MY) and near enough (< 50 pc) that some are resolvable with the CHARA Interferometric Array in the H and K bands. The capability to measure the radius of a star as it contracts is important because it provides a new way to measure the stars age by reference to models of its evolution. We measured the angular diameters of the BPMG members HIP 560 (F3V) and HIP 21547 (F0V) using the interferometer with the CLASSIC beam combiner. Our observing assignment was in the time the CHARA administration made publicly available through the NOAO application process. The limb-darkened angular diameters of HIP 560 and 21547 are 0.492±0.032 and 0.518±0.009 mas, respectively. The corresponding stellar radii are 2.1 (HIP 560) and 1.6 Rsun (HIP 21547). These values indicate that HIP 560 and 21547 are truly young. Comparison to theoretical evolutionary models indicates their age is 13±2 MY. We describe our observations and results briefly here and discuss the studies that will become possible in the near future. A more detailed account is given in our paper “Measured Diameters of 2 F-stars in the Beta Pic Moving Group,” submitted to the Astrophysical Journal.

  8. Tree height–diameter allometry across the United States

    PubMed Central

    Hulshof, Catherine M; Swenson, Nathan G; Weiser, Michael D

    2015-01-01

    The relationship between tree height and diameter is fundamental in determining community and ecosystem structure as well as estimates of biomass and carbon storage. Yet our understanding of how tree allometry relates to climate and whole organismal function is limited. We used the Forest Inventory and Analysis National Program database to determine height–diameter allometries of 2,976,937 individuals of 293 tree species across the United States. The shape of the allometric relationship was determined by comparing linear and nonlinear functional forms. Mixed-effects models were used to test for allometric differences due to climate and floristic (between angiosperms and gymnosperms) and functional groups (leaf habit and shade tolerance). Tree allometry significantly differed across the United States largely because of climate. Temperature, and to some extent precipitation, in part explained tree allometric variation. The magnitude of allometric variation due to climate, however, had a phylogenetic signal. Specifically, angiosperm allometry was more sensitive to differences in temperature compared to gymnosperms. Most notably, angiosperm height was more negatively influenced by increasing temperature variability, whereas gymnosperm height was negatively influenced by decreasing precipitation and increasing altitude. There was little evidence to suggest that shade tolerance influenced tree allometry except for very shade-intolerant trees which were taller for any given diameter. Tree allometry is plastic rather than fixed and scaling parameters vary around predicted central tendencies. This allometric variation provides insight into life-history strategies, phylogenetic history, and environmental limitations at biogeographical scales. PMID:25859325

  9. J-integral of circumferential crack in large diameter pipes

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Chao, Yuh J.; Sutton, M. A.; Lam, P. S.; Mertz, G. E.

    Large diameter thin-walled pipes are encountered in a low pressure nuclear power piping system. Fracture parameters such as K and J, associated with postulated cracks, are needed to assess the safety of the structure, for example, prediction of the onset of tile crack growth and the stability of the crack. The Electric Power Research Institute (EPRI) has completed a comprehensive study of cracks in pipes and handbook-type data is available. However, for some large diameter, thin-walled pipes the needed information is not included in the handbook. This paper reports our study of circumferential cracks in large diameter, thin-walled pipes (R/t=30 to 40) under remote bending or tension loads. Elastic-Plastic analyses using the finite element method were performed to determine the elastic and fully plastic J values for various pipe/crack geometries. A non-linear Ramberg-Osgood material model is used with strain hardening exponents (n) that range from 3 to 10. A number of circumferential, through thickness cracks were studied with half crack angles ranging from 0.063(pi) to 0.5(pi). Results are tabulated for use with the EPRI estimation scheme.

  10. Diameter dependent thermoelectric properties of individual SnTe nanowires

    SciTech Connect

    Xu, E. Z.; Li, Z.; Martinez, J. A.; Sinitsyn, N.; Htoon, H.; Li, Nan; Swartzentruber, B.; Hollingsworth, J. A.; Wang, Jian; Zhang, S. X.

    2015-01-15

    The lead-free compound tin telluride (SnTe) has recently been suggested to be a promising thermoelectric material. In this work, we report on the first thermoelectric study of individual single-crystalline SnTe nanowires with different diameters ranging from ~ 218 to ~ 913 nm. Measurements of thermopower S, electrical conductivity σ and thermal conductivity κ were carried out on the same nanowires over a temperature range of 25 - 300 K. While the electrical conductivity does not show a strong diameter dependence, the thermopower increases by a factor of two when the nanowire diameter is decreased from ~ 913 nm to ~ 218 nm. The thermal conductivity of the measured NWs is lower than that of the bulk SnTe, which may arise from the enhanced phonon - surface boundary scattering and phonon-defect scattering. Lastly, temperature dependent figure of merit ZT was determined for individual nanowires and the achieved maximum value at room temperature is about three times higher than that in bulk samples of comparable carrier density.

  11. Diameter dependent thermoelectric properties of individual SnTe nanowires

    DOE PAGES

    Xu, E. Z.; Li, Z.; Martinez, J. A.; ...

    2015-01-15

    The lead-free compound tin telluride (SnTe) has recently been suggested to be a potentially promising thermoelectric material because of its similar electronic band structure as the well-known lead telluride. Here we report on the first thermoelectric study of individual single crystalline SnTe nanowires (NWs) with different diameters ranging from ~200 to ~1000 nm. Measurements of thermopower S, electrical conductivity σ, and thermal conductivity κ were carried out on the same nanowires over a temperature range of 25 - 300 K. While σ does not show a strong diameter dependence, the thermopower increases by a factor of 2 when the nanowiremore » diameter is decreased from 1000 nm to 200 nm. The thermal conductivities of the measured NWs are only about half of that of the bulk SnTe, which may arise from the enhanced phonon-grain boundary and phonon-defect scatterings. Temperature dependent figure-of-merit ZT was determined and the maximum value at room temperature is ~3 times higher than what was obtained in bulk samples of comparable carrier density.« less

  12. Effect of Periradial Administration of Papaverine on Radial Artery Diameter

    PubMed Central

    Nagaraja, P. S.; Singh, Naveen G.; Manjunatha, N.; Desai, Rushikesh Chintamanrao

    2017-01-01

    Background: Radial artery cannulation is a skillful procedure. An experienced anesthesiologist might also face difficulty in cannulating a feeble radial pulse. Aim: The purpose of the study was to determine whether periradial subcutaneous administration of papaverine results in effective vasodilation and improvement in the palpability score of radial artery. Settings and Design: Prospective, double-blinded trial. Methodology: Thirty patients undergoing elective cardiac surgery were enrolled in the study. 30 mg of papaverine with 1 ml of 2% lignocaine and 3 ml of normal saline were injected subcutaneously 1–2 cm proximal to styloid process of the radius. Radial artery diameter before and after 20 min of injection papaverine was measured using ultrasonography. The palpability of the radial pulse was also determined before the injection of papaverine and 20 min later. Patients were monitored for hemodynamics and any complications were noted. Statistical Analysis Used: Student's t-test for paired data. Results: Radial artery diameter increased significantly (P < 0.0001), and the pulse palpability score also showed statistically significant improvement (P < 0.0001) after periradial subcutaneous administration of papaverine. There was no statistically significant difference in heart rate, mean arterial blood pressure before and after papaverine injection. No complications were noted in 24 h of follow-up. Conclusion: Periradial subcutaneous administration of papaverine significantly increased the radial artery diameter and pulse palpability score, which had an impact on ease of radial artery cannulation essential for hemodynamic monitoring in cardiac surgical patients. PMID:28298790

  13. Real-time diameter measurement using diffuse light

    NASA Astrophysics Data System (ADS)

    Luo, Xiaohe; Hui, Mei; Zhu, Qiudong; Wang, Shanshan

    2016-09-01

    A method for on-line rapid determination of the diameter of metallic cylinder is introduced in this paper. Under the radiation of diffuse light, there is a bright area close to the margin of metallic cylinder, and the method of this paper is based on the intensity distribution of the bright area. In this paper, with the radiation by a diffuse plane light with special shape, we present the relation expression of the distance between the peak point and the real edge of the cylinder and the distance between the diffuse light and the pinhole aperture of the camera. With the expression, the diameter of the cylinder to be measured can be calculated. In the experiments, monochromatic LED uniting with ground glass forms the diffuse light source, then the light irradiates the tested cylinder. After the cylinder, we use a lens with a front pinhole stop to choose the light into CMOS, then a computer is used to analyze images and export the measurement results. The measuring system using this method is very easily implemented, so it can realize the on-line rapid measurement. Experimental results are presented for six metallic cylinders with the diameter in 5 18mm range and roughness in Ra- 0.02um, and the precision reaches 3um.

  14. Electrospun polystyrene fiber diameter influencing bacterial attachment, proliferation, and growth.

    PubMed

    Abrigo, Martina; Kingshott, Peter; McArthur, Sally L

    2015-04-15

    Electrospun materials have been widely investigated in the past few decades as candidates for tissue engineering applications. However, there is little available data on the mechanisms of interaction of bacteria with electrospun wound dressings of different morphology and surface chemistry. This knowledge could allow the development of effective devices against bacterial infections in chronic wounds. In this paper, the interactions of three bacterial species (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) with electrospun polystyrene meshes were investigated. Bacterial response to meshes with different fiber diameters was assessed through a combination of scanning electron microscopy (SEM) and confocal microscopy. Experiments included attachment studies in liquid medium but also directly onto agar plates; the latter was aimed at mimicking a chronic wound environment. Fiber diameter was shown to affect the ability of bacteria to proliferate within the fibrous networks, depending on cell size and shape. The highest proliferation rates occurred when fiber diameter was close to the bacterial size. Nanofibers were found to induce conformational changes of rod shaped bacteria, limiting the colonization process and inducing cell death. The data suggest that simply tuning the morphological properties of electrospun fibers may be one strategy used to control biofilm formation within wound dressings.

  15. Diameter Dependent Thermoelectric Properties of Individual SnTe Nanowires

    NASA Astrophysics Data System (ADS)

    Xu, E. Z.; Li, Z.; Martinez, J.; Sinitsyn, N.; Htoon, H.; Li, N.; Swartzentruber, B.; Hollingsworth, J.; Wang, J.; Zhang, S. X.

    2015-03-01

    Tin telluride (SnTe), a newly discovered topological crystalline insulator, has recently been suggested to be a promising thermoelectric material. In this work, we report on a systematic study of the thermoelectric properties of individual single-crystalline SnTe nanowires with different diameters. Measurements of thermopower, electrical conductivity and thermal conductivity were carried out on the same nanowires over a temperature range of 25 - 300 K. While the electrical conductivity does not show a strong diameter dependence, we found that the thermopower increases by a factor of two when the nanowire diameter is decreased from 913 nm to 218 nm. The thermal conductivity of the measured NWs is lower than that of the bulk SnTe, which may be attributed to the enhanced phonon - surface boundary scattering and phonon-defect scattering. We further calculated the temperature dependent figure of merit ZT for each individual nanowire. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). We acknowledge support by the Los Alamos LDRD program.

  16. Large diameter propellers of reduced weight. Final report

    SciTech Connect

    Hadler, J.B.; Neilson, R.; Rowen, A.; Sedat, R.; Zubaly, R.

    1982-04-01

    A study of the design and economic analysis of large diameter, slow-turning marine propellers to improve the fuel economy of merchant ships. Detailed designs of several lightweight propellers were made. It was determined that the best combination for weight reduction is a cast hollow blade with 1 1/4 inch wall thickness and a hollow hub. Other investigations made were: fabrication techniques, resonant frequency effects, hydrodynamic characteristics, cascading effects and tip emersion effects. Costs and benefits as applied to a 120,000 DWT Tanker are discussed allowing for both strict adherence to IMCO Rules of tip submersion and with a relaxing of IMCO Rules. Strict adherence shows a maximum propeller diameter of about 30.2 feet with a resulting annual fuel savings of 1/4 million dollars over the 27.5' propeller. Relaxing these rules allows for a 42.5 diameter propeller turning at 30.8 RPM which would result in an annual fuel savings of one million dollars per year over the 27.5 propeller.

  17. Float zone processing in a weightless environment. [Si crystals

    NASA Technical Reports Server (NTRS)

    Fowle, A. A.; Haggerty, J. S.; Strong, P. F.; Rudenberg, G.; Kronauer, R.

    1974-01-01

    Results are given for investigations into: (1) the physical limits which set the maximum practical diameters of Si crystals that can be processed by the float-zone method in a near weightless environment, and (2) the economic impact of large, space-produced Si crystals on the electronics industry. The stability of the melt is evaluated. Heat transfer and fluid flow within the melt as dependent on the crystal size and the degree and type of rotation imparted to the melt are studied. Methods of utilizing the weightless environment for the production of large, stress-free Si crystals of uniform composition are proposed. The economic effect of large size Si crystals, their potential applications, likely utilization and cost advantages in LSI, integrated circuits, and power devices are also evaluated. Foreseeable advantages of larger diameter wafers of good characteristics and the possibilities seen for greater perfection resulting from stress-free growth are discussed.

  18. Ultrasound guided percutaneous EVAR success is predicted by vessel diameter

    PubMed Central

    Bensley, Rodney P.; Hurks, Rob; Huang, Zhen; Pomposelli, Frank; Hamdan, Allen; Wyers, Mark; Chaikof, Elliot; Schermerhorn, Marc L.

    2012-01-01

    Introduction Ultrasound guided access allows for direct visualization of the access artery during percutaneous endovascular aortic aneurysm repair. We hypothesize that the use of ultrasound guidance allowed us to safely increase the utilization of percutaneous endovascular aortic aneurysm repair to almost all patients and decrease access complications. Methods A retrospective chart review of all elective endovascular aortic aneurysm repairs, both abdominal and descending thoracic, from 2005-2010 was performed. Patients were identified using ICD9 codes and stratified based on access type: percutaneous vs. cutdown. We examined the success rate of percutaneous access and the cause of failure. Sheath size was large (18-24 Fr) or small (12-16 Fr). Minimum access vessel diameter was also measured. Outcomes were wound complications (infections or clinically significant hematomas that delayed discharge or required transfusion), operative and incision time, length of stay, and discharge disposition. Predictors of percutaneous failure were identified. Results 168 patients (296 arteries) had percutaneous access (P-EVAR) while 131 patients (226 arteries) had femoral cutdown access (C-EVAR). Ultrasound guided access was introduced in 2007. P-EVAR increased from zero cases in 2005 to 92.3% of all elective cases in 2010. The success rate with percutaneous access was 96%. Failures requiring open surgical repair of the artery included 7 for hemorrhage and 6 for flow limiting stenosis or occlusion of the femoral artery. P-EVAR had fewer wound complications (0.7% vs. 7.4%, P = .001) shorter operative time (153.3 vs. 201.5 minutes, P < .001) and larger minimal access vessel diameter (6.7 mm vs. 6.1 mm, P < .01). Patients with failed percutaneous access had smaller minimal access vessel diameters when compared to successful P-EVAR (4.9 mm vs. 6.8 mm, P < .001). More failures occurred in small sheaths than large ones (7.4% vs. 1.9%, P = .02). Access vessel diameter < 5 mm is predictive

  19. Experimental fragmentation of crystal- and vesicle-bearing silicic melts

    NASA Astrophysics Data System (ADS)

    Martel, Caroline; Dingwell, Donald; Spieler, Oliver; Pichavant, Michel; Wilke, Max

    2001-07-01

    We experimentally investigate the effect of crystals on the fragmentation behavior of a three-phase (melt+gas+crystals) system under rapid decompression. Starting materials are cylinders of hydrated haplogranite melts containing alumina crystals that are placed at 6-30 MPa and 600-800°C in a fragmentation bomb for foaming. Subsequently, these bubble- and crystal-bearing melts are rapidly decompressed (within <1 s) to room pressure and temperature and the fragmented particles are recovered for analysis. We investigated the influence of the crystal size ( 70-350 µm in diameter), the crystal content (20-95 vol.%), and the magnitude of the decompression (6-30 MPa) on the fragment sizes. Crystals down to 70 µm in diameter have a strong influence on the fragment size distribution by defining fragments made of single crystals. Increasing the crystal content in the starting material leads to an increase of the average size of the fragments. Increasing the magnitude of the decompression generates finer fragments. Fragmentation threshold or dynamic tensile strength ranges from 10 MPa for crystal-poor samples up to >30 MPa for phenocryst- and microlite-bearing samples.

  20. Generation of Unprecedented high Electric Fields with Pyroelectric Crystals

    NASA Astrophysics Data System (ADS)

    Crimi, Sarah; Tornow, Werner; Corse, Zach

    2009-10-01

    Since a few years pyroelectric crystals in a deuterium gas environment have been used to produce neutrons via the ^2H(d,n)^3He reaction. The figure-of-merit for neutron production in the energy region of interest is about IE^3/2, where I is the deuterium ion current and E is the associated ion energy. Therefore, it is important to maximize E. Using single and double crystal arrangements with electric field enhancing nano-tips, the highest positive potentials reported in the literature were 115 keV [1] and 250 keV [2], respectively. Using longer LiTaO3 crystals than commonly employed (2.5 cm versus 1.0 cm) and without attaching a nano-tip, we have produced positive deuterium ion beams of energies up to 325 keV with a single crystal during the cooling phase from 130 ^oC to 0 ^oC. In a double crystal arrangement we have obtained positive ion energies of up to 390 keV. Details of our experimental approach will be presented.[4pt] [1] B. Naranjo et al., Nature 434, 1115 (2005).[0pt] [2] D. Gillich et al., Nucl. Instr. Meth. in Phys. Res. A 602, 306 (2009).

  1. Dependence of alpha particle track diameter on the free volume holes size using positron annihilation lifetime technique

    NASA Astrophysics Data System (ADS)

    El-Gamal, S.; Abdalla, Ayman M.; Abdel-Hady, E. E.

    2015-09-01

    The alpha particle track diameter dependence of the free volume holes size (Vf) in DAM-ADC and CR-39 nuclear track detectors was investigated using positron annihilation lifetime technique. The effect of temperature on the alpha particle track diameter and free volume were also investigated in the T-range (RT-130 °C). The obtained results revealed that the values of ortho-positronium lifetime τ3 and Vf increases while I3 slightly increases as T increases for the two detectors. The values of τ3, Vf and I3 are higher in CR-39 than DAM-ADC. The interpretation of obtained results is based on the fact that increasing T leads to significant enhancement of thermal expansion of the polymer matrix and consequently Vf increases. The track diameter increases as T increases. This can be explained by the fact that the increase in T increases the crystal size and Vf in the polymer. A relationship between Vf and the alpha particle track diameter was obtained. Moreover results of detector irradiation, along with free volume evaluation are addressed and thoroughly discussed.

  2. Weak crystallization theory of metallic alloys

    NASA Astrophysics Data System (ADS)

    Martin, Ivar; Gopalakrishnan, Sarang; Demler, Eugene A.

    2016-06-01

    Crystallization is one of the most familiar, but hardest to analyze, phase transitions. The principal reason is that crystallization typically occurs via a strongly first-order phase transition, and thus rigorous treatment would require comparing energies of an infinite number of possible crystalline states with the energy of liquid. A great simplification occurs when crystallization transition happens to be weakly first order. In this case, weak crystallization theory, based on unbiased Ginzburg-Landau expansion, can be applied. Even beyond its strict range of validity, it has been a useful qualitative tool for understanding crystallization. In its standard form, however, weak crystallization theory cannot explain the existence of a majority of observed crystalline and quasicrystalline states. Here we extend the weak crystallization theory to the case of metallic alloys. We identify a singular effect of itinerant electrons on the form of weak crystallization free energy. It is geometric in nature, generating strong dependence of free energy on the angles between ordering wave vectors of ionic density. That leads to stabilization of fcc, rhombohedral, and icosahedral quasicrystalline (iQC) phases, which are absent in the generic theory with only local interactions. As an application, we find the condition for stability of iQC that is consistent with the Hume-Rothery rules known empirically for the majority of stable iQC; namely, the length of the primary Bragg-peak wave vector is approximately equal to the diameter of the Fermi sphere.

  3. Geometric interpretation of the ratio of overall diameter to rim crest diameter for lunar and terrestrial craters.

    NASA Technical Reports Server (NTRS)

    Siegal, B. S.; Wickman, F. E.

    1973-01-01

    An empirical linear relationship has been established by Pike (1967) between the overall diameter and the rim crest diameter for rimmed, flat-floored as well as bowl-shaped, lunar and terrestrial craters formed by impact and explosion. A similar relationship for experimentally formed fluidization craters has been established by Siegal (1971). This relationship is examined in terms of the geometry of the crater and the slope angles of loose materials. The parameter varies from 1.40 to 1.65 and is found to be dependent on mean interior flat floor radius, exterior and interior rim slope angles, angle of aperture of the crater cone, and the volume fraction of crater void accounted for in the rim. The range of the observed parameter can be understood in terms of simple crater geometry by realistic values of the five parameters.

  4. Upgraded high time-resolved x-ray imaging crystal spectroscopy system for J-TEXT ohmic plasmas.

    PubMed

    Jin, W; Chen, Z Y; Huang, D W; Li, Q L; Yan, W; Luo, Y H; Lee, S G; Shi, Y J; Huang, Y H; Tong, R H; Yang, Z J; Rao, B; Ding, Y H; Zhuang, G

    2014-02-01

    This paper presents the upgraded x-ray imaging crystal spectrometer (XICS) system on Joint Texas Experimental Tokamak (J-TEXT) tokamak and the latest experimental results obtained in last campaign. With 500 Hz frame rate of the new Pilatus detector and 5 cm × 10 cm spherically bent crystal, the XICS system can provide core electron temperature (Te), core ion temperature (Ti), and plasma toroidal rotation (VΦ) with a maximum temporal resolution of 2 ms for J-TEXT pure ohmic plasmas. These parameters with high temporal resolution are very useful in tokamak plasma research, especially for rapidly changed physical processes. The experimental results from the upgraded XICS system are presented.

  5. Upgraded high time-resolved x-ray imaging crystal spectroscopy system for J-TEXT ohmic plasmas

    NASA Astrophysics Data System (ADS)

    Jin, W.; Chen, Z. Y.; Huang, D. W.; Li, Q. L.; Yan, W.; Luo, Y. H.; Lee, S. G.; Shi, Y. J.; Huang, Y. H.; Tong, R. H.; Yang, Z. J.; Rao, B.; Ding, Y. H.; Zhuang, G.

    2014-02-01

    This paper presents the upgraded x-ray imaging crystal spectrometer (XICS) system on Joint Texas Experimental Tokamak (J-TEXT) tokamak and the latest experimental results obtained in last campaign. With 500 Hz frame rate of the new Pilatus detector and 5 cm × 10 cm spherically bent crystal, the XICS system can provide core electron temperature (Te), core ion temperature (Ti), and plasma toroidal rotation (VΦ) with a maximum temporal resolution of 2 ms for J-TEXT pure ohmic plasmas. These parameters with high temporal resolution are very useful in tokamak plasma research, especially for rapidly changed physical processes. The experimental results from the upgraded XICS system are presented.

  6. Non-variation of the solar diameter with the cycle: the end of a possible link between activity and diameter

    NASA Astrophysics Data System (ADS)

    Dame, L.; Cugnet, D.

    We have reanalyzed the 7 years of filtregrams data (150 000 photograms and magnetograms) of the SOHO/MDI experiment. We used the maximum possible sampling compatible with full frame recording, carefully avoiding any suspicious filtregram. Going further than the previous analysis of 2 years of data by Emilio et al. (Ap. J. 543,1007, 2000), we better corrected for changes in optical aberrations and, along Turmon et al. (Ap. J., 568, 396, 2002), we reduced radius measurement errors by identifying active regions and avoiding radius measurements herein. We found that, within the limit of our noise level uncertainties (2 mas), the solar diameter could be constant over the half cycle investigated. Our results confirm the recent reanalysis of the 7 years of MDI data made by Antia (Ap. J. 590, 567, 2003), with a completely different method since using the ultra-precise frequency variation of the f-modes (fundamental modes linked to the diameter). He found (carefully removing the yearly Earth induced variations and avoiding the SOHO data gap of 1999) that the diameter is constant over the half solar cycle (radius variation are less than 0.6 km, 0.8 mas - nothing over noise level). Along Antia, we can conclude that: "If a careful analysis is performed, then it turns out that there is no evidence for any variation in the solar radius." There were no theoretical reasons for large solar radius variations and there is no observational evidence for them with consistent space observations.

  7. Preparation of iridescent colloidal crystal coatings with variable structural colors.

    PubMed

    Cong, Hailin; Yu, Bing; Wang, Shaopeng; Qi, Limin; Wang, Jilei; Ma, Yurong

    2013-07-29

    Iridescent colloidal crystal coatings with variable structural colors were fabricated by incorporating carbon black nanoparticles (CB-NPs) into the voids of polystyrene (PS) colloidal crystals. The structural color of the colloid crystal coatings was not only greatly enhanced after the composition but also varied with observation angles. By changing the diameter of monodisperse PS colloids in the composites, colloidal crystal coatings with three primary colors for additive or subtractive combination were obtained. After incorporation of the PS/CB-NPs hybrid coatings into polydimethylsiloxane (PDMS) matrix, manmade opal jewelry with variable iridescent colors was made facilely.

  8. Mechanical testing of large thallium doped sodium iodide single crystals

    NASA Technical Reports Server (NTRS)

    Lee, H. M.

    1985-01-01

    The findings of mechanical tests performed on five thallium-doped sodium iodide NaI(Tl) crystals are presented. These crystals are all in the shape of circular flat plates, 20.0 in. in diameter an d0.5 in. thick. The test setup, testing procedure, and the test data are presented. Large crystals exhibit a high degree of material plasticity, as well as a much higher strength than previously anticipated, on the order of 500 psi. Also revealed from the testing is the fact that crystal with a large number of grain boundaries developed less plasticity, and therefore less permanent deformation, than those with fewer grain boundaries.

  9. Fabricated nano-fiber diameter as liquid concentration sensors

    NASA Astrophysics Data System (ADS)

    Chyad, Radhi M.; Mat Jafri, Mohd Zubir; Ibrahim, Kamarulazizi

    Nanofiber is characterized by thin, long, and very soft silica. Taper fibers are made using an easy and low cost chemical method. Etching is conducted with a HF solution to remove cladding and then a low molarity HF solution to reduce the fiber core diameter. One approach to on-line monitoring of the etching process uses spectrophotometer with a white light source. In the aforementioned technique, this method aims to determine the diameter of the reduced core and show the evolution of the two different processes from the nanofiber regime to the fixed regime in which the mode was remote from the surrounding evanescent field, intensity can propagate outside the segment fiber when the core diameter is less than 500 nm. Manufacturing technologies of nano-fiber sensors offer a number of approved properties of optical fiber sensors utilized in various sensory applications. The nano-fiber sensor is utilized to sense the difference in the concentration of D-glucose in double-distilled deionized water and to measure the refractive index (RI) of a sugar solution. Our proposed method exhibited satisfactory capability based on bimolecular interactions in the biological system. The response of the nano-fiber sensors indicates a different kind of interaction among various groups of AAs. These results can be interpreted in terms of solute-solute and solute-solvent interactions and the structure making or breaking ability of solutes in the given solution. This study utilized spectra photonics to measure the transmission of light through different concentrations of sugar solution, employing cell cumber and nano-optical fibers as sensors.

  10. Ultra-small diameter coils for treatment of intracranial aneurysms

    PubMed Central

    Miller, Timothy; Beaty, Narlin; Puri, Ajit; Gandhi, Dheeraj

    2015-01-01

    This study reports our initial clinical experience treating very small intracranial aneurysms using only Target® Nano™ coils. Retrospective angiographic and clinical analysis was performed on a non-randomized single arm registry of all intracranial aneurysms treated with only Target® Nano™ coils (1 mm and 1.5 mm diameter only) during a 12 month period at two academic hospitals. Fourteen patients with 14 intracranial aneurysms were treated. The maximum diameter of saccular aneurysms treated ranged from 1.5 to 3.5 mm; minimum aneurysm diameter was 1.1 to 2 mm. The immediate complete aneurysm occlusion rate was 86% (12/14), and a small residual within the aneurysm was seen in 14% (2/14) of cases. Packing density from coils ranged between 24% and 83% (mean 51%). The immediate complication rate was 0% (0/14). The angiographic/MR angiography follow-up period was 22 to 70 weeks (mean 37 weeks) with an overall complete occlusion rate of 9/11 (81%), recurrence in 18% (2/11), and lack of follow-up in three cases, two due to death during hospitalization and one procedure not yet due for imaging follow-up. Both patients who died presented with brain aneurysm ruptures prior to treatment. Both recurrences were retreated with repeat coiling procedures. Our initial results using only Target® Nano™ coils for the endovascular treatment of very small intracranial aneurysms have demonstrated initial good safety and efficacy profiles. PMID:25934775

  11. Optical diagnostics of solution crystal growth

    NASA Technical Reports Server (NTRS)

    Kim, Yongkee; Reddy, B. R.; George, Tharayil G.; Lal, Ravindra B.

    1995-01-01

    Solution crystal growth monitoring of LAP/TGS crystals by various optical diagnostics systems, such as conventional and Mach-Zehnder (M-Z) interferometers, optical heterodyne technique, and ellipsometry, is under development. The study of the dynamics of the crystal growth process requires a detailed knowledge of crystal growth rate and the concentration gradient near growing crystals in aqueous solution. Crystal growth rate can be measured using conventional interferometry. Laser beam reflections from the crystal front as well as the back surface interfere with each other, and the fringe shift due to the growing crystal yields information about the growth rate. Our preliminary results indicate a growth rate of 6 A/sec for LAP crystals grown from solution. Single wavelength M-Z interferometry is in use to calculate the concentration gradient near the crystal. Preliminary investigation is in progress using an M-Z interferometer with 2 cm beam diameter to cover the front region of the growing crystal. In the optical heterodyne technique, phase difference between two rf signals (250 KHZ) is measured of which one is a reference signal, and the other growth signal, whose phase changes due to a change in path length as the material grows. From the phase difference the growth rate can also be calculated. Our preliminary results indicate a growth rate of 1.5 A/sec. the seed and solution temperatures were 26.46 C and 27.92 C respectively, and the solution was saturated at 29.0 C. an ellipsometer to measure the growth rate and interface layer is on order from JOBIN YVON, France. All these systems are arranged in such a manner that measurements can be made either sequentially or simultaneously. These techniques will be adapted for flight experiment.

  12. Trace of totally positive algebraic integers and integer transfinite diameter

    NASA Astrophysics Data System (ADS)

    Flammang, V.

    2009-06-01

    Explicit auxiliary functions can be used in the ``Schur-Siegel- Smyth trace problem''. In the previous works, these functions were constructed only with polynomials having all their roots positive. Here, we use several polynomials with complex roots, which are found with Wu's algorithm, and we improve the known lower bounds for the absolute trace of totally positive algebraic integers. This improvement has a consequence for the search of Salem numbers that have a negative trace. The same method also gives a small improvement of the upper bound for the integer transfinite diameter of [0,1].

  13. Structure Optimization and Evaluation of Small Adjustable Diameter Grinding Wheel

    NASA Astrophysics Data System (ADS)

    Yao, Yiyong; Li, Yuanyuan; Zhao, Liping; Zhao, Hu

    Focus on the uneven deformation of conventional adjustable diameter grinding wheel (ADGW), a structure optimization and evaluation method of ADGW was proposed in this paper. Firstly, the evaluation index system and structure optimization framework of ADGW was established to obtain the optimization objective of ADGW. Then a simulated experiment was provided. The flexible units of ADGW with different structures and geometries were selected to analyze the unevenness of deformation. The comparison results showed that the proposed method can improve the ADGW structures effectively and provide a technical approach for evaluating the structure design of ADGW.

  14. Note: Computer controlled rotation mount for large diameter optics

    NASA Astrophysics Data System (ADS)

    Rakonjac, Ana; Roberts, Kris O.; Deb, Amita B.; Kjærgaard, Niels

    2013-02-01

    We describe the construction of a motorized optical rotation mount with a 40 mm clear aperture. The device is used to remotely control the power of large diameter laser beams for a magneto-optical trap. A piezo-electric ultrasonic motor on a printed circuit board provides rotation with a precision better than 0.03° and allows for a very compact design. The rotation unit is controlled from a computer via serial communication, making integration into most software control platforms straightforward.

  15. Base metal thermocouples drift rate dependence from thermoelement diameter

    NASA Astrophysics Data System (ADS)

    Pavlasek, P.; Duris, S.; Palencar, R.

    2015-02-01

    Temperature measurements are one of the key factors in many industrial applications that directly affect the quality, effectiveness and safety of manufacturing processes. In many industrial applications these temperature measurements are realized by thermocouples. Accuracy of thermocouples directly affects the quality of the final product of manufacturing and their durability determines the safety margins required. One of the significant effects that affect the precision of the thermocouples is short and long term stability of their voltage output. This stability issue occurs in every type of thermocouples and is caused by multiple factors. In general these factors affect the Seebeck coefficient which is a material constant, which determines the level of generated voltage when exposed to a temperature gradient. Changes of this constant result in the change of the thermocouples voltage output thus indicated temperature which can result in production quality issues, safety and health hazards. These alternations can be caused by physical and chemical changes within the thermocouple lead material. Modification of this material constant can be of temporary nature or permanent. This paper concentrates on the permanent, or irreversible changes of the Seebeck coefficient that occur in commonly used swaged MIMS Type N thermocouples. These permanent changes can be seen as systematic change of the EMF of the thermocouple when it is exposed to a high temperature over a period of time. This change of EMF by time is commonly known as the drift of the thermocouple. This work deals with the time instability of thermocouples EMF at temperatures above 1200 °C. Instability of the output voltage was taken into relation with the lead diameter of the tested thermocouples. This paper concentrates in detail on the change of voltage output of thermocouples of different diameters which were tested at high temperatures for the overall period of more than 210 hours. The gather data from this

  16. SERS Raman Sensor Based on Diameter-Modulated Sapphire Fiber

    SciTech Connect

    Shimoji, Yutaka

    2010-08-09

    Surface enhanced Raman scattering (SERS) has been observed using a sapphire fiber coated with gold nano-islands for the first time. The effect was found to be much weaker than what was observed with a similar fiber coated with silver nanoparticles. Diameter-modulated sapphire fibers have been successfully fabricated on a laser heated pedestal growth system. Such fibers have been found to give a modest increase in the collection efficiency of induced emission. However, the slow response of the SERS effect makes it unsuitable for process control applications.

  17. Detachable shoe plates for large diameter drill bits

    SciTech Connect

    Bardwell, A.E.

    1984-08-21

    Shoe members and drill shank members for large diameter cable drilling bits are provided with a tongue on one of the members that projects axially relative to the drill shank member and with an arcuate lip and projecting stop on the other of the members to trap the tongue and prevent radial movement of the shoe member in response to radially directed forces caused by the spinning of the bit in drilling operations. Such forces would impose shear stresses on the fastening members that extend through the shoe member and axially into the drill shank. Four embodiments are disclosed: a spudding bit, two star bits and a scow bit.

  18. Analytics of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Chang, C. E.; Lefever, R. A.; Wilcox, W. R.

    1975-01-01

    The variation of radial impurity distribution induced by surface tension driven flow increases as the zone length decreases in silicon crystals grown by floating zone melting. In combined buoyancy driven and surface tension driven convection at the gravity of earth, the buoyancy contribution becomes relatively smaller as the zone diameter decreases and eventually convection is dominated by the surface tension driven flow (in the case of silicon, for zones of less than about 0.8 cm in diameter). Preliminary calculations for sapphire suggest the presence of an oscillatory surface tension driven convection as a result of an unstable melt surface temperature that results when the zone is heated by a radiation heater.

  19. Crystallization Physics in Biomacromolecular Systems

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2003-01-01

    The crystals are built of molecules of protein, nucleic acid and their complexes, like viruses, approx. 5x10(exp 3)+ 3x10(exp 6) Da in weight and 2 + 20 nm in effective diameter. This size strongly exceeds action range of molecular forces and makes a big difference with inorganic crystals. Intermolecular contacts form patches on the biomacromolecular surface. Each patch may occupy only a small percent of the whole surface and vary from polymorph to polymorph of the same protein. Thus, under different conditions (pH, solution chemistry, temperature, any area on the macromolecular surface may form a contact. The crystal Young moduli, E approx. equals 0.1 + 0.5 GPa are more than 10 times lower than that of inorganics and the biomolecules themselves. Water within biocrystals (30-70%) is unable to flow unless typical deformation time is longer than approx. 10(exp -5)s. This explains the discrepancy between light scattering and static measurements of E. Nucleation and Growth requires typically concentrations exceeding the equilibrium ones up to 100 times - because of the new size scale results in 10 - 10(exp 3) times lower kinetic coefficients than that needed for inorganic solution growth. All phenomena observed in the latter occur with protein crystallization and are even better studied by AFM. Crystals are typically facetted. Among unexpected findings of general significance are - net molecular exchange flux at kinks is much lower than that expected from supersaturation, steps with low (< approx. 10(exp -2)) kink density at steps follow Gibbs-Thomson law only at very low supersaturations, step segment growth rate may be independent of step energy. Crystal perfection is a must of biocrystallization to achieve the major goal to find 3-D atomic structure of biomacromolecules by x-ray diffraction. Poor diffraction resolution (> 3Angstrom) makes crystallization a bottleneck for structural biology. All defects typical of small molecule crystals are found in biocrystals, but

  20. Development of methods of producing large areas of silicon sheet by the slicing of silicon ingots using Inside Diameter (I.D.) saws

    NASA Technical Reports Server (NTRS)

    Aharonyan, P.

    1980-01-01

    Modifications to a 16 inch STC automated saw included: a programmable feed system; a crystal rotating system; and a STC dynatrack blade boring and control system. By controlling the plating operation and by grinding the cutting edge, 16 inch I.D. blades were produced with a cutting edge thickness of .22 mm. Crystal rotation mechanism was used to slice 100 mm diameter crystals with a 16 inch blade down to a thickness of .20 mm. Cutting rates with crystal rotation were generally slower than with standard plunge I.D. slicing techniques. Using programmed feeds and programmed rotation, maximum cutting rates were from 0.3 to 1.0 inches per minute.

  1. Development of methods of producing large areas of silicon sheet by the slicing of silicon ingots using Inside-Diameter (I.D.) saws

    NASA Technical Reports Server (NTRS)

    Aharonyan, P.

    1980-01-01

    Inside diametar wafering equipment, blades and processes were used to develop methods to produce large areas of silicon sheet. Modifications to a 16 inch STC automated saw included: programmable feed system, crystal rotating system, and STC dynatrack blade monitoring and control system. By controlling the plating operation and by grinding of the cutting edge, 16 inch ID blades with a cutting edge thickness of .22 mm can be produced. Crystal rotation mechanism was used to slice 100 mm diameter crystals with a 16 inch blade down to a thickness of .20 mm. Cutting rates with crystal rotation were generally slower than with standard plunge ID slicing techniques. Using programmed feeds and programmed rotation, maximum cutting rates were from 0.3 to 1.0 inches per minute.

  2. Large diameter femoral heads: is bigger always better?

    PubMed

    Cooper, H J; Della Valle, C J

    2014-11-01

    Dislocation remains among the most common complications of, and reasons for, revision of both primary and revision total hip replacements (THR). Hence, there is great interest in maximising stability to prevent this complication. Head size has been recognised to have a strong influence on the risk of dislocation post-operatively. As femoral head size increases, stability is augmented, secondary to an increase in impingement-free range of movement. Larger head sizes also greatly increase the 'jump distance' required for the head to dislocate in an appropriately positioned cup. Level-one studies support the use of larger diameter heads as they decrease the risk of dislocation following primary and revision THR. Highly cross-linked polyethylene has allowed us to increase femoral head size, without a marked increase in wear. However, the thin polyethylene liners necessary to accommodate larger heads may increase the risk of liner fracture and larger heads have also been implicated in causing soft-tissue impingement resulting in groin pain. Larger diameter heads also impart larger forces on the femoral trunnion, which may contribute to corrosion, metal release, and adverse local tissue reactions. Alternative large bearings including large ceramic heads and dual mobility bearings may mitigate some of these risks, and several of these devices have been used with clinical success.

  3. Diameter Dependence of Planar Defects in InP Nanowires

    PubMed Central

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y. B.; Ho, Johnny C.

    2016-01-01

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of “bottom-up” InP NWs with minimized defect concentration which are suitable for various device applications. PMID:27616584

  4. Diameter of titanium nanotubes influences anti-bacterial efficacy

    NASA Astrophysics Data System (ADS)

    Ercan, Batur; Taylor, Erik; Alpaslan, Ece; Webster, Thomas J.

    2011-07-01

    Bacterial infection of in-dwelling medical devices is a growing problem that cannot be treated by traditional antibiotics due to the increasing prevalence of antimicrobial resistance and biofilm formation. Here, due to changes in surface parameters, it is proposed that bacterial adhesion can be prevented through nanosurface modifications of the medical device alone. Toward this goal, titanium was created to possess nanotubular surface topographies of highly controlled diameters of 20, 40, 60, or 80 nm, sometimes followed by heat treatment to control chemistry and crystallinity, through a novel anodization process. For the first time it was found that through the control of Ti surface parameters including chemistry, crystallinity, nanotube size, and hydrophilicity, significantly changed responses of both Staphylococcus epidermidis and Staphylococcus aureus (pathogens relevant for orthopaedic and other medical device related infections) were measured. Specifically, heat treatment of 80 nm diameter titanium tubes produced the most robust antimicrobial effect of all surface treatment parameters tested. This study provides the first step toward understanding the surface properties of nano-structured titanium that improve tissue growth (as has been previously observed with nanotubular titanium), while simultaneously reducing infection without the use of pharmaceutical drugs.

  5. Diameter Dependence of Planar Defects in InP Nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, Senpo; Shen, Lifan; Han, Ning; Pun, Edwin Y. B.; Ho, Johnny C.

    2016-09-01

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of “bottom-up” InP NWs with minimized defect concentration which are suitable for various device applications.

  6. Ultrasonic wave based pressure measurement in small diameter pipeline.

    PubMed

    Wang, Dan; Song, Zhengxiang; Wu, Yuan; Jiang, Yuan

    2015-12-01

    An effective non-intrusive method of ultrasound-based technique that allows monitoring liquid pressure in small diameter pipeline (less than 10mm) is presented in this paper. Ultrasonic wave could penetrate medium, through the acquisition of representative information from the echoes, properties of medium can be reflected. This pressure measurement is difficult due to that echoes' information is not easy to obtain in small diameter pipeline. The proposed method is a study on pipeline with Kneser liquid and is based on the principle that the transmission speed of ultrasonic wave in pipeline liquid correlates with liquid pressure and transmission speed of ultrasonic wave in pipeline liquid is reflected through ultrasonic propagation time providing that acoustic distance is fixed. Therefore, variation of ultrasonic propagation time can reflect variation of pressure in pipeline. Ultrasonic propagation time is obtained by electric processing approach and is accurately measured to nanosecond through high resolution time measurement module. We used ultrasonic propagation time difference to reflect actual pressure in this paper to reduce the environmental influences. The corresponding pressure values are finally obtained by acquiring the relationship between variation of ultrasonic propagation time difference and pressure with the use of neural network analysis method, the results show that this method is accurate and can be used in practice.

  7. [Small-diameter portosystemic shunts: indications and limitations].

    PubMed

    Angel Mercado, M; Granados-García, J; Barradas, F; Chan, C; Contreras, J L; Orozco, H; Angel-Mercado, M

    1998-01-01

    Low diameter porto-systemic shunts for the treatment of portal hypertension bleeding have emerged as a consequence of the technical development of vascular grafts (PTFE) that allow the use of a narrow lumen. The experience with this kind of operation at the Instituto Nacional de la Nutrición Salvador Zubirán, Mexico City during a 6-year period is reported. There were twenty-seven patients with good liver function (Child-Pugh A-B) were operated or electively, average Age 47.5 years (range 17-71), twenty three patients with liver cirrhosis, one with portal fibrosis and three with idiopathic portal hypertension. Operative mortality: 4%. Rebleeding: 14%. Postoperative encephalopathy was observed in 14 of 27, three of them being grade III-IV (11%). In the remaining 11 cases, it was mild and easily controlled. Postoperative angiography showed shunt patency in 81% of the cases; in 33% of the cases, portal vein diameter reduction was shown, as well as two cases with portal vein thrombosis. In 77% of the cases, adequate postoperative quality of life was observed. Survival (Kaplan-Meier): 86% at 12 months and 56% at 60 months. These kinds of shunts are a good alternate choice for patients considered for surgery, in which other portal blood flow preserving procedures (selective shunts, devascularization with transection) are not feasible.

  8. Laser microwelding of small diameter wire to a contact

    SciTech Connect

    Wojcicki, M.A.; Pryputniewicz, R.J.

    1996-12-31

    This work is an attempt to evaluate feasibility of the laser welding process of small diameter wire to a contact. In particular, the paper addresses characterization of laser spot welded 32 AWG solid copper/silver plated wires to contacts on 0.050 in. centers. The copper alloy contacts were provided on strips in two lots, one unplated, and the other with 75 {mu}in. of plated Nickel. An industrial type IR, Nd:YAG, pulsed laser was used to produce welds, in order to simulate manufacturing environment. Metallurgical analysis, SEM, and nanoindentation characterization have been used in setting up the welding process and in final evaluation. Quality of welds was also evaluated by a tensile test and the results are presented in a statistical format. The test results indicate that the tensile strength of the laser welded wire, relative to the bare (unwelded) wire, yielded 95.47% for joints on unplated contacts, and 98.25% for Nickel plated contacts. Microscope examination of samples, after pull test, shows that all wires broke behind the weld area. These results significantly exceed the required minimum tensile of a welded joint, which is 60% of the tensile strength of a bare wire. They also indicate that laser welding of small diameter wires to high density contacts can be considered as a valuable process alternative.

  9. Research on high accuracy diameter measurement system with CCD

    NASA Astrophysics Data System (ADS)

    Su, Bo; Duan, Guoteng

    2011-08-01

    Non-touch measurement is an important technology in many domains such as the monitoring of tool breakage and tool wear, et al. Based on the method of curve fitting and demanding inflection point, we present a high accuracy non-touch diameter measurement system. The measurement system comprise linear array CCD, CCD driving circuit, power supply, workseat, light source, data acquisition card and so on. The picture element of the linear array CCD is 2048, and the size of every pixel and the spacing of adjacent pixels have the same size of 14μmx14μm. The stabilized voltage supply has a constant voltage output of 3V. The light is generated by a halogen tungsten lamp, which does not represent any risk to the health of the whole system. The data acquisition card converts the analog signal to digital signal with the accuracy of 12 bit. The error of non-uniform of the CCD pixels in sensitivity and the electrical noise error are indicated in detail. The measurement system has a simple structure, high measuring precision, and can be carried out automatically. Experiment proves that the diameter measurement of the system is within the range of Φ0.5~Φ10mm, and the total measuring unstability of the system is within the range of +/- 1.4μm.

  10. Allowable pillar to diameter ratio for strategic petroleum reserve caverns.

    SciTech Connect

    Ehgartner, Brian L.; Park, Byoung Yoon

    2011-05-01

    This report compiles 3-D finite element analyses performed to evaluate the stability of Strategic Petroleum Reserve (SPR) caverns over multiple leach cycles. When oil is withdrawn from a cavern in salt using freshwater, the cavern enlarges. As a result, the pillar separating caverns in the SPR fields is reduced over time due to usage of the reserve. The enlarged cavern diameters and smaller pillars reduce underground stability. Advances in geomechanics modeling enable the allowable pillar to diameter ratio (P/D) to be defined. Prior to such modeling capabilities, the allowable P/D was established as 1.78 based on some very limited experience in other cavern fields. While appropriate for 1980, the ratio conservatively limits the allowable number of oil drawdowns and hence limits the overall utility and life of the SPR cavern field. Analyses from all four cavern fields are evaluated along with operating experience gained over the past 30 years to define a new P/D for the reserve. A new ratio of 1.0 is recommended. This ratio is applicable only to existing SPR caverns.

  11. The Use of Narrow Diameter Implants in the Molar Area

    PubMed Central

    Saad, M.; Assaf, A.; Gerges, E.

    2016-01-01

    Implant rehabilitations in the posterior jaw are influenced by many factors such as the condition of the remaining teeth, the force factors related to the patient, the quality of the bone, the maintenance of the hygiene, the limited bone height, the type and extent of edentulism, and the nature of the opposing arch. The gold standard is to place a regular diameter implant (>3.7 mm) or a wide one to replace every missing molar. Unfortunately, due to horizontal bone resorption, this option is not possible without lateral bone augmentation. In this situation, narrow diameter implant (NDI < 3.5 mm) could be the alternative to lateral bone augmentation procedures. This paper presents a clinical study where NDIs were used for the replacement of missing molars. They were followed up to 11 years. Special considerations were observed and many parameters were evaluated. NDI could be used to replace missing molar in case of moderate horizontal bone resorption if strict guidelines are respected. Yet, future controlled prospective clinical trials are required to admit their use as scientific evidence. PMID:27293436

  12. Tunable Engineered Skin Mechanics via Coaxial Electrospun Fiber Core Diameter

    PubMed Central

    Blackstone, Britani Nicole; Drexler, Jason William

    2014-01-01

    Autologous engineered skin (ES) offers promise as a treatment for massive full thickness burns. Unfortunately, ES is orders of magnitude weaker than normal human skin causing it to be difficult to apply surgically and subject to damage by mechanical shear in the early phases of engraftment. In addition, no manufacturing strategy has been developed to tune ES biomechanics to approximate the native biomechanics at different anatomic locations. To enhance and tune ES biomechanics, a coaxial (CoA) electrospun scaffold platform was developed from polycaprolactone (PCL, core) and gelatin (shell). The ability of the coaxial fiber core diameter to control both scaffold and tissue mechanics was investigated along with the ability of the gelatin shell to facilitate cell adhesion and skin development compared to pure gelatin, pure PCL, and a gelatin-PCL blended fiber scaffold. CoA ES exhibited increased cellular adhesion and metabolism versus PCL alone or gelatin-PCL blend and promoted the development of well stratified skin with a dense dermal layer and a differentiated epidermal layer. Biomechanics of the scaffold and ES scaled linearly with core diameter suggesting that this scaffold platform could be utilized to tailor ES mechanics for their intended grafting site and reduce graft damage in vitro and in vivo. PMID:24712409

  13. Dynamic broadening of the crystal-fluid interface of colloidal hard spheres.

    PubMed

    Dullens, Roel P A; Aarts, Dirk G A L; Kegel, Willem K

    2006-12-01

    We investigate the structure and dynamics of the crystal-fluid interface of colloidal hard spheres in real space by confocal microscopy. Tuning the buoyancy of the particles allows us to study the interface close to and away from equilibrium. We find that the interface broadens from 8-9 particle diameters close to equilibrium to 15 particle diameters away from equilibrium. Furthermore, the interfacial velocity, i.e., the velocity by which the interface moves upwards, increases significantly. The increasing gravitational drive leads to supersaturation of the fluid above the crystal surface. This dramatically affects crystal nucleation and growth, resulting in the observed dynamic broadening of the crystal-fluid interface.

  14. Biological Macromolecule Crystallization Database

    National Institute of Standards and Technology Data Gateway

    SRD 21 Biological Macromolecule Crystallization Database (Web, free access)   The Biological Macromolecule Crystallization Database and NASA Archive for Protein Crystal Growth Data (BMCD) contains the conditions reported for the crystallization of proteins and nucleic acids used in X-ray structure determinations and archives the results of microgravity macromolecule crystallization studies.

  15. Growth of <001> TGCC crystals by Sankaranarayanan–Ramasamy (SR) method and its characterization

    SciTech Connect

    Boopathi, K.; Ramasamy, P.

    2015-06-24

    Single crystals of tris (glycine) Calcium (II) dichloride (TGCC) were successfully grown by Sankaranarayanan-Ramasamy (SR) method and conventional slow evaporation solution technique which have the sizes of 40 mm in length, 20 mm in diameter and 10×10×3 mm{sup 3} respectively. The grown TGCC crystals have been subjected to single crystal X-ray diffraction, UV-Vis NIR studies, Vickers micro hardness analysis, laser damage and SHG analysis. The transmittance of the grown crystal was analyzed by recording UV-Vis-NIR analysis. Mechanical strength of the SR method grown crystals was higher than the conventional method grown crystal.

  16. Growth of <001> TGCC crystals by Sankaranarayanan-Ramasamy (SR) method and its characterization

    NASA Astrophysics Data System (ADS)

    Boopathi, K.; Ramasamy, P.

    2015-06-01

    Single crystals of tris (glycine) Calcium (II) dichloride (TGCC) were successfully grown by Sankaranarayanan-Ramasamy (SR) method and conventional slow evaporation solution technique which have the sizes of 40 mm in length, 20 mm in diameter and 10×10×3 mm3 respectively. The grown TGCC crystals have been subjected to single crystal X-ray diffraction, UV-Vis NIR studies, Vickers micro hardness analysis, laser damage and SHG analysis. The transmittance of the grown crystal was analyzed by recording UV-Vis-NIR analysis. Mechanical strength of the SR method grown crystals was higher than the conventional method grown crystal.

  17. Rapid Crystallization of the Bishop Magma

    NASA Astrophysics Data System (ADS)

    Gualda, G. A.; Anderson, A. T.; Sutton, S. R.

    2007-12-01

    Substantial effort has been made to understand the longevity of rhyolitic magmas, and particular attention has been paid to the systems in the Long Valley area (California). Recent geochronological data suggest discrete magma bodies that existed for hundreds of thousands of years. Zircon crystallization ages for the Bishop Tuff span 100-200 ka, and were interpreted to reflect slow crystallization of a liquid-rich magma. Here we use the diffusional relaxation of Ti zoning in quartz to investigate the longevity of the Bishop magma. We have used such an approach to show the short timescales of crystallization of Ti-rich rims on quartz from early- erupted Bishop Tuff. We have now recognized Ti-rich cores in quartz that can be used to derive the timescales of their crystallization. We studied four samples of the early-erupted Bishop. Hand-picked crystals were mounted on glass slides and polished. Cathodoluminescence (CL) images were obtained using the electron microprobe at the University of Chicago. Ti zoning was documented using the GeoSoilEnviroCARS x-ray microprobe at the Advanced Photon Source (Argonne National Lab). Quartz crystals in all 4 samples include up to 3 Ti-bearing zones: a central core (50-100 μm in diameter, ca. 50 ppm Ti), a volumetrically predominant interior (~40 ppm Ti), and in some crystals a 50-100 μm thick rim (50 ppm Ti). Maximum estimates of core residence times were calculated using a 1D diffusion model, as the time needed to smooth an infinitely steep profile to fit the observed profile. Surprisingly, even for the largest crystals studied - ca. 2 mm in diameter - core residence times are less than 1 ka. Calculated growth rates imply that even cm-sized crystals crystallized in less than 10 ka. Crystal size distribution data show that crystals larger than 3 mm are exceedingly rare, such that the important inference is that the bulk of the crystallization of the early-erupted Bishop magma occurred in only a few thousand years. This timescale

  18. ZnTeO{sub 3} crystal growth by a modified Bridgman technique

    SciTech Connect

    Nawash, Jalal M. Lynn, Kelvin G.

    2014-12-15

    Highlights: • ZnTeO{sub 3} single crystals were grown for the first time by a modified Bridgman method. • The growth is still possible in a system that lacks congruent melting. • A growth is best when melt is exposed to a steeper axial thermal gradient. • Optical and electrical properties were investigated for the grown crystals. - Abstract: Zinc Tellurite (ZnTeO{sub 3}) crystals were grown for the first time using a modified Bridgman method with a 2.5 kHz radio frequency (RF) furnace. Single crystal growth of ZnTeO{sub 3} was hindered by many complicating factors, such as the evaporation of TeO{sub 2} above 700 °C and the formation of more than one phase during crystal growth. While there were several successful runs that produced ZnTeO{sub 3} single crystals, it was found that large (≥10 cm{sup 3}) single ZnTeO{sub 3} crystals resulted when the crucible was exposed to a steeper vertical thermal gradient and when the temperature of the melt was raised to at least 860 °C. The results of powder X-ray diffraction (XRD) patterns were in accordance with the X-ray powder diffraction file (PDF) for ZnTeO{sub 3}. Some optical, electrical and structural properties of ZnTeO{sub 3} single crystals were reported in this paper.

  19. Crystallization process

    DOEpatents

    Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey

    1986-01-01

    An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.

  20. Numerical investigations of small diameter two-phase closed thermosyphon

    NASA Astrophysics Data System (ADS)

    Naresh, Y.; Balaji, C.

    2016-09-01

    In this work, a CFD model is developed to simulate the working of a 6mm diameter two-phase closed thermosyphon using water as the working fluid. At each section (evaporator, condenser, adiabatic) of the thermosyphon, lumped equations have been developed to calculate the temperatures at corresponding sections. In order to process two phase flow inside the system, a user-defined function (UDF) has been developed and integrated with the CFD model. The volume of fluid (VOF) method is used to carry out the simulations in Ansys FLUENT 15 and the lumped equations are solved in MATLAB 2013a. Volume fractions and temperature profiles obtained from CFD simulations and the lumped parametric estimations are found to be in good agreement with the experimental results available in literature.

  1. Molecular transport through large-diameter DNA nanopores

    PubMed Central

    Krishnan, Swati; Ziegler, Daniela; Arnaut, Vera; Martin, Thomas G.; Kapsner, Korbinian; Henneberg, Katharina; Bausch, Andreas R.; Dietz, Hendrik; Simmel, Friedrich C.

    2016-01-01

    DNA-based nanopores are synthetic biomolecular membrane pores, whose geometry and chemical functionality can be tuned using the tools of DNA nanotechnology, making them promising molecular devices for applications in single-molecule biosensing and synthetic biology. Here we introduce a large DNA membrane channel with an ≈4 nm diameter pore, which has stable electrical properties and spontaneously inserts into flat lipid bilayer membranes. Membrane incorporation is facilitated by a large number of hydrophobic functionalizations or, alternatively, streptavidin linkages between biotinylated channels and lipids. The channel displays an Ohmic conductance of ≈3 nS, consistent with its size, and allows electrically driven translocation of single-stranded and double-stranded DNA analytes. Using confocal microscopy and a dye influx assay, we demonstrate the spontaneous formation of membrane pores in giant unilamellar vesicles. Pores can be created both in an outside-in and an inside-out configuration. PMID:27658960

  2. Density profile control in a large diameter, helicon plasma

    SciTech Connect

    Cluggish, B.P.; Anderegg, F.A.; Freeman, R.L.; Gilleland, J.; Hilsabeck, T.J.; Isler, R.C.; Lee, W.D.; Litvak, A.A.; Miller, R.L.; Ohkawa, T.; Putvinski, S.; Umstadter, K.R.; Winslow, D.L.

    2005-05-15

    Plasmas with peaked radial density profiles have been generated in the world's largest helicon device, with plasma diameters of over 70 cm. The density profiles can be manipulated by controlling the phase of the current in each strap of two multistrap antenna arrays. Phase settings that excite long axial wavelengths create hollow density profiles, whereas settings that excite short axial wavelengths create peaked density profiles. This change in density profile is consistent with the cold-plasma dispersion relation for helicon modes, which predicts a strong increase in the effective skin depth of the rf fields as the wavelength decreases. Scaling of the density with magnetic field, gas pressure, and rf power is also presented.

  3. Experiments with large diameter gravity driven impacting liquid jets

    NASA Astrophysics Data System (ADS)

    Storr, G. J.; Behnia, M.

    The phenomenon of a liquid jet released under gravity and falling through or impacting onto another liquid before colliding with an obstructing solid surface has been studied experimentally under isothermal conditions. Usually the jet diameter was sufficiently large to ensure jet coherency until collision. Direct flow visualization was used to study jets released into water pools with no air head space and jets impacting onto water pools after falling through an air head space. It is shown that distances predicting the onset of buoyancy and the entrainment of air using derivations from continuous plunging jets, are not applicable for impacting jets. The morphology of jet debris after collision with the solid surfaces correlates with the wetting properties of the jet liquid on the surface.

  4. Molecular transport through large-diameter DNA nanopores.

    PubMed

    Krishnan, Swati; Ziegler, Daniela; Arnaut, Vera; Martin, Thomas G; Kapsner, Korbinian; Henneberg, Katharina; Bausch, Andreas R; Dietz, Hendrik; Simmel, Friedrich C

    2016-09-23

    DNA-based nanopores are synthetic biomolecular membrane pores, whose geometry and chemical functionality can be tuned using the tools of DNA nanotechnology, making them promising molecular devices for applications in single-molecule biosensing and synthetic biology. Here we introduce a large DNA membrane channel with an ≈4 nm diameter pore, which has stable electrical properties and spontaneously inserts into flat lipid bilayer membranes. Membrane incorporation is facilitated by a large number of hydrophobic functionalizations or, alternatively, streptavidin linkages between biotinylated channels and lipids. The channel displays an Ohmic conductance of ≈3 nS, consistent with its size, and allows electrically driven translocation of single-stranded and double-stranded DNA analytes. Using confocal microscopy and a dye influx assay, we demonstrate the spontaneous formation of membrane pores in giant unilamellar vesicles. Pores can be created both in an outside-in and an inside-out configuration.

  5. NEOWISE diameters and albedos: now available on PDS!

    NASA Astrophysics Data System (ADS)

    Masiero, Joseph R.; Mainzer, Amy K.; Bauer, James M.; Cutri, Roc M.; Grav, Tommy; Kramer, Emily A.; Nugent, Carolyn; Sonnett, Sarah M.; Stevenson, Rachel; Wright, Edward L.

    2016-10-01

    We present the recent PDS release of minor planet physical property data from the WISE/NEOWISE fully cryogenic, 3-band cryo, and post-cryo surveys as well as the first year of the NEOWISE-Reactivation survey. This release includes 165,865 diameters, visible albedos, near-infrared albedos, and/or beaming parameters for 140,493 unique minor planets. The published data include near-Earth asteroids, Main Belt asteroids, Hildas, Jupiter Trojans, Centaurs, active Main Belt objects and irregular satellites of Jupiter and Saturn. We provide an overview of the available data and discuss the key features of the PDS data set. The data are available online at: http://sbn.psi.edu/pds/resource/neowisediam.html.

  6. Molecular transport through large-diameter DNA nanopores

    NASA Astrophysics Data System (ADS)

    Krishnan, Swati; Ziegler, Daniela; Arnaut, Vera; Martin, Thomas G.; Kapsner, Korbinian; Henneberg, Katharina; Bausch, Andreas R.; Dietz, Hendrik; Simmel, Friedrich C.

    2016-09-01

    DNA-based nanopores are synthetic biomolecular membrane pores, whose geometry and chemical functionality can be tuned using the tools of DNA nanotechnology, making them promising molecular devices for applications in single-molecule biosensing and synthetic biology. Here we introduce a large DNA membrane channel with an ~4 nm diameter pore, which has stable electrical properties and spontaneously inserts into flat lipid bilayer membranes. Membrane incorporation is facilitated by a large number of hydrophobic functionalizations or, alternatively, streptavidin linkages between biotinylated channels and lipids. The channel displays an Ohmic conductance of ~3 nS, consistent with its size, and allows electrically driven translocation of single-stranded and double-stranded DNA analytes. Using confocal microscopy and a dye influx assay, we demonstrate the spontaneous formation of membrane pores in giant unilamellar vesicles. Pores can be created both in an outside-in and an inside-out configuration.

  7. The rotation, color, phase coefficient, and diameter of 1915 Quetzalcoatl

    NASA Astrophysics Data System (ADS)

    Binzel, R. P.; Tholen, D. J.

    1983-09-01

    Photoelectric observations of 1915 Quetzalcoatl on March 2, 1981 show that this asteroid has a rotational period of 4.9 + or - 0.3 hr and a lightcurve amplitude of 0.26 magnitudes. B-V and U-B colors are found to be 0.83 + or - 0.04 and 0.43 + or - 0.03, respectively, consistent with Quetzalcoatl being an S-type asteroid. Additional observations from March 31, 1981, give a linear phase coefficient of 0.033 mag/deg and a mean B(1,0) magnitude of 20.10. The resulting estimated mean diameter for Quetzalcoatl is only 0.37 km, making it one of the smallest asteroids for which physical observations have yet been made.

  8. The rotation, color, phase coefficient, and diameter of 1915 Quetzalcoatl

    NASA Technical Reports Server (NTRS)

    Binzel, R. P.; Tholen, D. J.

    1983-01-01

    Photoelectric observations of 1915 Quetzalcoatl on March 2, 1981 show that this asteroid has a rotational period of 4.9 + or - 0.3 hr and a lightcurve amplitude of 0.26 magnitudes. B-V and U-B colors are found to be 0.83 + or - 0.04 and 0.43 + or - 0.03, respectively, consistent with Quetzalcoatl being an S-type asteroid. Additional observations from March 31, 1981, give a linear phase coefficient of 0.033 mag/deg and a mean B(1,0) magnitude of 20.10. The resulting estimated mean diameter for Quetzalcoatl is only 0.37 km, making it one of the smallest asteroids for which physical observations have yet been made.

  9. Novel Genetic Loci Associated with Retinal Microvascular Diameter

    PubMed Central

    Jensen, Richard A.; Sim, Xueling; Smith, Albert Vernon; Li, Xiaohui; Jakobsdóttir, Jóhanna; Cheng, Ching-Yu; Brody, Jennifer A.; Cotch, Mary Frances; Mcknight, Barbara; Klein, Ronald; Wang, Jie Jin; Kifley, Annette; Harris, Tamara B.; Launer, Lenore J.; Taylor, Kent D.; Klein, Barbara E.K.; Raffel, Leslie J.; Li, Xiang; Ikram, M. Arfan; Klaver, Caroline C.; van der Lee, Sven J.; Mutlu, Unal; Hofman, Albert; Uitterlinden, Andre G.; Liu, Chunyu; Kraja, Aldi T.; Mitchell, Paul; Gudnason, Vilmundur; Rotter, Jerome I.; Boerwinkle, Eric; van Duijn, Cornelia M.; Psaty, Bruce M.; Wong, Tien Y.

    2015-01-01

    Background There is increasing evidence that retinal microvascular diameters are associated with cardio- and cerebrovascular conditions. The shared genetic effects of these associations are currently unknown. The aim of this study was to increase our understanding of the genetic factors that mediate retinal vessel size. Methods and Results This study extends previous genome-wide association study results using 24,000+ multi-ethnic participants from 7 discovery and 5,000+ subjects of European ancestry from 2 replication cohorts. Using the Illumina HumanExome BeadChip, we investigate the association of single nucleotide polymorphisms (SNPs) and variants collectively across genes with summary measures of retinal vessel diameters, referred to as the central retinal venule equivalent (CRVE) and the central retinal arteriole equivalent (CRAE). We report 4 new loci associated with CRVE, one of which is also associated with CRAE. The 4 SNPs are rs7926971 in TEAD1 (p=3.1×10−11, minor allele frequency (MAF)=0.43), rs201259422 in TSPAN10 (p=4.4×10−9, MAF=0.27), rs5442 in GNB3 (p=7.0×10−10, MAF=0.05) and rs1800407 in OCA2 (p=3.4×10−8, MAF=0.05). The latter SNP, rs1800407, was also associated with CRAE (p=6.5×10−12). Results from the gene-based burden tests were null. In phenotype look-ups, SNP rs201255422 was associated with both systolic (p=0.001) and diastolic blood pressure (p=8.3×10−04). Conclusions Our study expands the understanding of genetic factors influencing the size of the retinal microvasculature. These findings may also provide insight into the relationship between retinal and systemic microvascular disease. PMID:26567291

  10. Evaluation of small diameter coreholes for reservoir information

    SciTech Connect

    Petty, Susan; Adair, Richard G.; Livesay, Bill

    1992-01-01

    Geothermal exploration has been highly successful to date in locating targets for drilling. However, the requirements for an economically successful geothermal well are both high flow rate and high temperature. Most geophysical and geochemical exploration methods have not been highly accurate in predicting the depth and actual temperature of a reservoir, nor have they been able to locate high permeability zones. The result is that most geothermal exploration is conducted by drilling core holes to better understand the heat flow in an area followed by drilling of production diameter exploration wells which can be flow tested to ascertain the permeability. The goal of any exploration program is to determine reservoir economics. The cost of wells makes up between one quarter and one half the total cost of producing geothermal power. The number, design, depth of wells and placement of injectors are important to the optimal exploitation of the reservoir. Although early efforts at development have focused on rapid plant construction to begin cash flow, the history of producing fields emphasizes that understanding reservoirs can reduce the risk of rapid temperature or pressure declines and increase the success of step out drilling following initial exploitation. The high cost of large diameter production wells makes the collecting of exploration data on the reservoir through some less expensive method desirable. Geothermal developers are still drilling resources with surface expression, hot springs and surface mappable fractures and faults. As these obvious resources are developed and as the obvious targets in productive fields are exhausted, new exploration tools are needed. One possibility is the use of deep core holes drilled for temperature gradient data to provide more reservoir information. Two methods not previously applied to geothermal reservoir assessment are suggested to augment other data obtained from coreholes.

  11. Validation of EUCAST zone diameter breakpoints against reference broth microdilution.

    PubMed

    Bengtsson, S; Bjelkenbrant, C; Kahlmeter, G

    2014-06-01

    The European Committee on Antimicrobial Susceptibility Testing (EUCAST) began harmonizing clinical breakpoints in Europe 2002. In 2009, work to develop a disc diffusion method began and the first disc diffusion breakpoints calibrated to EUCAST clinical MIC breakpoints were published in December 2009. In this study we validated EUCAST clinical zone diameter breakpoints against the International Standard Organization (ISO) reference broth microdilution. A collection of 544 isolates (238 Gram-negative and 306 Gram-positive) were tested against a panel of antimicrobial agents. Antimicrobial susceptibility testing was performed with broth microdilution as described by ISO and disc diffusion in accordance with EUCAST methodology. Inhibition zone diameters and MIC values were interpreted and categorized (S, I and R) according to EUCAST clinical breakpoint table version 2.0. Categorical agreement (CA) as well as minor (mD), major (MD) and very major (VMD) discrepancies were determined. There was in general good correlation between susceptibility test results obtained with disc diffusion and broth microdilution. Overall CA was 97.3% for all combinations of organisms and antimicrobial agents (n = 5231) and the overall discrepancy rates were 110 (2.1%) mD, 24 (0.5%) MD and 7 (0.1%) VMD. The overall CA for Gram-positive and Gram-negative organisms were 98.7% (2346 tests) and 96.2% (2942 tests), respectively. Seven VMD were observed, five for Gram-positive organisms (coagulase negative staphylococci (n = 2) and Staphylococcus aureus (n = 3)) and two for Gram-negative organisms (Pseudomonas aeruginosa). Minor discrepancies were mainly observed in Gram-negatives and were related to different antimicrobial agents and species.

  12. Automatic detection and estimation of biparietal diameter from fetal ultrasonography

    NASA Astrophysics Data System (ADS)

    Annangi, Pavan; Banerjee Krishnan, Kajoli; Banerjee, Jyotirmoy; Gupta, Madhumita; Patil, Uday

    2011-03-01

    Fetal bi-parietal diameter (BPD) is known to provide a reliable estimate of gestational age (GA) of a fetus in the first half of pregnancy. In this paper, we present an automated method to identify and measure BPD from B-mode ultrasound images of fetal head. The method (a) automatically detects and places a region-of-interest on the head based on a prior work in our group (b) utilizes the concept of phase congruency for edge detection and (c) employs a cost function to identify the third ventricle inside the head (d) measures the BPD along the perpendicular bisector of occipital frontal diameter (OFD) from the outer rim of the cranium closer to the transducer to the inner rim of the cranium away from the transducer. The cost function is premised on the distribution of anatomical shape, size and presentation of the third ventricle in images that adhere to clinical guidelines describing the scan plane for BPD measurement. The OFD is assumed to lie along the third ventricle. The algorithm has been tested on 137 images acquired from four different scanners. Based on GA estimates and their bounds specified in Standard Obstetric Tables, the GA predictions from automated measurements are found to be within +/-2SD of GA estimates from manual measurements by the operator and a second expert radiologist in 98% of the cases. The method described in this paper can also be adapted to assess the accuracy of the scan plane based on the presence/absence of the third ventricle.

  13. Liquid Crystal Devices.

    ERIC Educational Resources Information Center

    Bradshaw, Madeline J.

    1983-01-01

    The nature of liquid crystals and several important liquid crystal devices are described. Ideas for practical experiments to illustrate the properties of liquid crystals and their operation in devices are also described. (Author/JN)

  14. Liquid Crystal Inquiries.

    ERIC Educational Resources Information Center

    Marroum, Renata-Maria

    1996-01-01

    Discusses the properties and classification of liquid crystals. Presents a simple experiment that illustrates the structure of liquid crystals and the differences between the various phases liquid crystals can assume. (JRH)

  15. Tangential x-ray imaging crystal spectrometer on J-TEXT tokamak.

    PubMed

    Jin, W; Chen, Z Y; Cen, Y S; Lee, S G; Shi, Y J; Ding, Y H; Yang, Z J; Wang, Z J; Zhuang, G

    2012-10-01

    A tangential x-ray imaging crystal spectrometer (XICS) has been developed for the J-TEXT tokamak to measure the ion temperature and the plasma toroidal rotation velocity. The resonance spectral line and its satellites of Ar XVII in the ranges of 3.94 Å-4.0 Å are detected. A spherically bent quartz crystal with 2d = 4.913 Å is used in this system. The crystal has a dimension of 9 cm high and 3 cm wide and the radius of curvature 3823 mm. The XICS is designed to receive emission of Ar XVII from -10 cm to +10 cm region with a spatial resolution of 3.1 cm in the vertical direction considering the parameters of the J-TEXT plasma. The XICS has a tangential angle of 27° with respect to toroidal direction in the magnetic axis. A two-dimensional 100 mm by 300 mm multi-wire proportional counter is applied to detect the spectra.

  16. Tangential x-ray imaging crystal spectrometer on J-TEXT tokamaka)

    NASA Astrophysics Data System (ADS)

    Jin, W.; Chen, Z. Y.; Cen, Y. S.; Lee, S. G.; Shi, Y. J.; Ding, Y. H.; Yang, Z. J.; Wang, Z. J.; Zhuang, G.

    2012-10-01

    A tangential x-ray imaging crystal spectrometer (XICS) has been developed for the J-TEXT tokamak to measure the ion temperature and the plasma toroidal rotation velocity. The resonance spectral line and its satellites of Ar XVII in the ranges of 3.94 Å-4.0 Å are detected. A spherically bent quartz crystal with 2d = 4.913 Å is used in this system. The crystal has a dimension of 9 cm high and 3 cm wide and the radius of curvature 3823 mm. The XICS is designed to receive emission of Ar XVII from -10 cm to +10 cm region with a spatial resolution of 3.1 cm in the vertical direction considering the parameters of the J-TEXT plasma. The XICS has a tangential angle of 27° with respect to toroidal direction in the magnetic axis. A two-dimensional 100 mm by 300 mm multi-wire proportional counter is applied to detect the spectra.

  17. Crystallization of the Zagami Shergottite: An Experimental Study

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary E.; McCoy, Timothy J.

    2000-01-01

    Spherulites are usually rounded or spherical objects found in rhyolitic obsidian. They usually comprise acicular crystals of alkali feldspar that radiate from a single point. The radiating array of crystalline fibers typically have a similar crystallographic orientation such that a branch fiber departs slightly but appreciably from that of its parent fiber. Individual fibers range from 1 to several micrometers in diameter. The spherulites most likely form by heterogeneous nucleation on microscopic seed crystals, bubbles, or some other surface at high degrees of supercooling. They grow very rapidly stabilizing their fibrous habit and typically range in size from microscopic to a few cm in diameter.

  18. PARAMAGNETIC RELAXATION IN CRYSTALS.

    DTIC Science & Technology

    CRYSTALS, PARAMAGNETIC RESONANCE, RELAXATION TIME , CRYSTAL DEFECTS, QUARTZ, GLASS, STRAIN(MECHANICS), TEMPERATURE, NUCLEAR SPINS, HYDROGEN, CALCIUM COMPOUNDS, FLUORIDES, COLOR CENTERS, PHONONS, OXYGEN.

  19. Gelled colloidal crystals as tunable optical filters for spectrophotometers

    NASA Astrophysics Data System (ADS)

    Sugao, Yukihiro; Onda, Sachiko; Toyotama, Akiko; Takiguchi, Yoshihiro; Sawada, Tsutomu; Hara, Shigeo; Nishikawa, Suguru; Yamanaka, Junpei

    2016-08-01

    We examined the performance of charged colloidal crystals immobilized in a polymer gel as tunable optical filters. The colloidal crystals of charged silica particles (particle diameter = 121 nm; particle concentration = 3.5 vol %; and Bragg wavelength λB = 630-720 nm) were produced by unidirectional crystallization under a temperature gradient. Photocurable gelation reagents were dissolved in the sample beforehand; this enabled gel immobilization of the crystals under ultraviolet illumination. The crystals had dimensions of more than 25 mm2 in area and 1 mm in thickness, and spatial λB variations of less than 1%. Upon mechanical compression, λB values shifted linearly and reversibly over almost the entire visible spectrum. Using the gelled crystals as tunable optical filters, we measured the transmittance spectra of various samples and found them to be in close agreement with those determined using a spectrophotometer equipped with optical gratings.

  20. Development of novel growth methods for halide single crystals

    NASA Astrophysics Data System (ADS)

    Yokota, Yuui; Kurosawa, Shunsuke; Shoji, Yasuhiro; Ohashi, Yuji; Kamada, Kei; Yoshikawa, Akira

    2017-03-01

    We developed novel growth methods for halide scintillator single crystals with hygroscopic nature, Halide micro-pulling-down [H-μ-PD] method and Halide Vertical Bridgman [H-VB] method. The H-μ-PD method with a removable chamber system can grow a single crystal of halide scintillator material with hygroscopicity at faster growth rate than the conventional methods. On the other hand, the H-VB method can grow a large bulk single crystal of halide scintillator without a quartz ampule. CeCl3, LaBr3, Ce:LaBr3 and Eu:SrI2 fiber single crystals could be grown by the H-μ-PD method and Eu:SrI2 bulk single crystals of 1 and 1.5 inch in diameter could be grown by the H-VB method. The grown fiber and bulk single crystals showed comparable scintillation properties to the previous reports using the conventional methods.

  1. Using Inorganic Crystals To Grow Protein Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.; Mcpherson, Alexander A.

    1989-01-01

    Solid materials serve as nucleating agents. Protein crystals induced by heterogeneous nucleation and in some cases by epitaxy to grow at lower supersaturations than needed for spontaneous nucleation. Heterogeneous nucleation makes possible to grow large, defect-free single crystals of protein more readily. Such protein crystals benefits research in biochemistry and pharmacology.

  2. Laser-induced crystallization and crystal growth.

    PubMed

    Sugiyama, Teruki; Masuhara, Hiroshi

    2011-11-04

    Recent streams of laser studies on crystallization and crystal growth are summarized and reviewed. Femtosecond multiphoton excitation of solutions leads to their ablation at the focal point, inducing local bubble formation, shockwave propagation, and convection flow. This phenomenon, called "laser micro tsunami" makes it possible to trigger crystallization of molecules and proteins from their supersaturated solutions. Femtosecond laser ablation of a urea crystal in solution triggers the additional growth of a single daughter crystal. Intense continuous wave (CW) near infrared laser irradiation at the air/solution interface of heavy-water amino acid solutions results in trapping of the clusters and evolves to crystallization. A single crystal is always prepared in a spatially and temporally controlled manner, and the crystal polymorph of glycine depends on laser power, polarization, and solution concentration. Upon irradiation at the glass/solution interface, a millimeter-sized droplet is formed, and a single crystal is formed by shifting the irradiation position to the surface. Directional and selective crystal growth is also possible with laser trapping. Finally, characteristics of laser-induced crystallization and crystal growth are summarized.

  3. Four-plate piezoelectric actuator driving a large-diameter special optical fiber for nonlinear optical microendoscopy.

    PubMed

    Wang, Ying; Li, Zhi; Liang, Xiaobao; Fu, Ling

    2016-08-22

    In nonlinear optical microendoscope (NOME), a fiber with excellent optical characteristics and a miniature scanning mechanism at the distal end are two key components. Double-clad fibers (DCFs) and double-clad photonic crystal fibers (DCPCFs) have shown great optical characteristics but limited vibration amplitude due to large diameter. Besides reducing the damping of fiber cantilever, optimizing the structural of the actuator for lower energy dissipation also contributes to better driving capability. This paper presented an optimized actuator for driving a particular fiber cantilever in the view point of energy. Firstly, deformation energy of a bending fiber cantilever operating in resonant mode is investigated. Secondly, strain and stress analyses revealed that the four-plate actuator achieved lower energy dissipation. Then, finite-element simulations showed that the large-diameter fiber yielded an adequate vibration amplitude driven by a four-plate actuator, which was confirmed by experiments of our home-made four-plate actuator prototypes. Additionally, a NOME based on a DCPCF with a diameter of 350 μm driven by four-plate piezoelectric actuator has been developed. The NOME can excite and collect intrinsic second-harmonic and two-photon fluorescence signals with the excitation power of 10-30 mW and an adequate field of view of 200 μm, which suggest great potential applications in neuroscience and clinical diagnoses.

  4. Microbes make average 2 nanometer diameter crystalline UO2 particles.

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Kelly, S. D.; Kemner, K. M.; Banfield, J. F.

    2001-12-01

    It is well known that phylogenetically diverse groups of microorganisms are capable of catalyzing the reduction of highly soluble U(VI) to highly insoluble U(IV), which rapidly precipitates as uraninite (UO2). Because biological uraninite is highly insoluble, microbial uranyl reduction is being intensively studied as the basis for a cost-effective in-situ bioremediation strategy. Previous studies have described UO2 biomineralization products as amorphous or poorly crystalline. The objective of this study is to characterize the nanocrystalline uraninite in detail in order to determine the particle size, crystallinity, and size-related structural characteristics, and to examine the implications of these for reoxidation and transport. In this study, we obtained U-contaminated sediment and water from an inactive U mine and incubated them anaerobically with nutrients to stimulate reductive precipitation of UO2 by indigenous anaerobic bacteria, mainly Gram-positive spore-forming Desulfosporosinus and Clostridium spp. as revealed by RNA-based phylogenetic analysis. Desulfosporosinus sp. was isolated from the sediment and UO2 was precipitated by this isolate from a simple solution that contains only U and electron donors. We characterized UO2 formed in both of the experiments by high resolution-TEM (HRTEM) and X-ray absorption fine structure analysis (XAFS). The results from HRTEM showed that both the pure and the mixed cultures of microorganisms precipitated around 1.5 - 3 nm crystalline UO2 particles. Some particles as small as around 1 nm could be imaged. Rare particles around 10 nm in diameter were also present. Particles adhere to cells and form colloidal aggregates with low fractal dimension. In some cases, coarsening by oriented attachment on \\{111\\} is evident. Our preliminary results from XAFS for the incubated U-contaminated sample also indicated an average diameter of UO2 of 2 nm. In nanoparticles, the U-U distance obtained by XAFS was 0.373 nm, 0.012 nm

  5. Attached cavitation at a small diameter ultrasonic horn tip

    NASA Astrophysics Data System (ADS)

    Žnidarčič, Anton; Mettin, Robert; Cairós, Carlos; Dular, Matevž

    2014-02-01

    Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids, for instance, for cell disruption or sonochemical reactions. They are operated typically in the frequency range up to about 50 kHz and have tip diameters from some mm to several cm. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e., below the acoustic driving frequency. Here, we present a systematic study of the cavitation dynamics in water at a 20 kHz horn tip of 3 mm diameter. The system was investigated by high-speed imaging with simultaneous recording of the acoustic emissions. Measurements were performed under variation of acoustic power, air saturation, viscosity, surface tension, and temperature of the liquid. Our findings show that the liquid properties play no significant role in the dynamics of the attached cavitation at the small ultrasonic horn. Also the variation of the experimental geometry, within a certain range, did not change the dynamics. We believe that the main two reasons for the peculiar dynamics of cavitation on a small ultrasonic horn are the higher energy density on a small tip and the inability of the big tip to "wash" away the gaseous bubbles. Calculation of the somewhat adapted Strouhal number revealed that, similar to the hydrodynamic cavitation, values which are relatively low characterize slow cavitation structure dynamics. In cases where the cavitation follows the driving frequency this value lies much higher - probably at Str > 20. In the spirit to distinguish the observed phenomenon with other cavitation dynamics at ultrasonic transducer surfaces, we suggest to term the observed phenomenon of attached cavities partly covering the full horn

  6. Modular Small Diameter Vascular Grafts with Bioactive Functionalities

    PubMed Central

    Neufurth, Meik; Wang, Xiaohong; Tolba, Emad; Dorweiler, Bernhard; Schröder, Heinz C.; Link, Thorben; Diehl-Seifert, Bärbel; Müller, Werner E. G.

    2015-01-01

    We report the fabrication of a novel type of artificial small diameter blood vessels, termed biomimetic tissue-engineered blood vessels (bTEBV), with a modular composition. They are composed of a hydrogel scaffold consisting of two negatively charged natural polymers, alginate and a modified chitosan, N,O-carboxymethyl chitosan (N,O-CMC). Into this biologically inert scaffold two biofunctionally active biopolymers are embedded, inorganic polyphosphate (polyP) and silica, as well as gelatin which exposes the cell recognition signal, Arg-Gly-Asp (RGD). These materials can be hardened by exposure to Ca2+ through formation of Ca2+ bridges between the polyanions, alginate, N,O-CMC, and polyP (alginate-Ca2+-N,O-CMC-polyP). The bTEBV are formed by pressing the hydrogel through an extruder into a hardening solution, containing Ca2+. In this universal scaffold of the bTEBV biomaterial, polycations such as poly(l-Lys), poly(d-Lys) or a His/Gly-tagged RGD peptide (three RGD units) were incorporated, which promote the adhesion of endothelial cells to the vessel surface. The mechanical properties of the biopolymer material (alginate-Ca2+-N,O-CMC-polyP-silica) revealed a hardness (elastic modulus) of 475 kPa even after a short incubation period in CaCl2 solution. The material of the artificial vascular grafts (bTEBVs with an outer size 6 mm and 1.8 mm, and an inner diameter 4 mm and 0.8 mm, respectively) turned out to be durable in 4-week pulsatile flow experiments at an alternating pressure between 25 and 100 mbar (18.7 and 75.0 mm Hg). The burst pressure of the larger (smaller) vessels was 850 mbar (145 mbar). Incorporation of polycationic poly(l-Lys), poly(d-Lys), and especially the His/Gly-tagged RGD peptide, markedly increased the adhesion of human, umbilical vein/vascular endothelial cells, EA.HY926 cells, to the surface of the hydrogel. No significant effect of the polyP samples on the clotting of human plasma is measured. We propose that the metabolically degradable

  7. Evaluation of screen barriers on redbay trees to protect them from Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae) and distribution of initial attacks in relation to stem moisture content, diameter, and height.

    PubMed

    Maner, M Lake; Hanula, James L; Braman, S Kristine

    2013-08-01

    Fine mesh screen was used to create a physical barrier to prevent redbay ambrosia beetles, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), from accessing various parts of the boles of redbay trees, Persea borbonia (L.) Sprengel, and infecting them with the laurel wilt fungus, Raffaelea lauricola (T.C. Harrington, Fraedrich, & Aghayeva). Screen barriers prevented beetles from attacking boles of mature redbay trees from the ground to 1 or to 3 m and from 1 to 3 m above ground. Untreated control trees were sampled more extensively to determine how location of initial attacks varied with height, diameter, and moisture content of the wood. Screening did not affect tree survival, and all of the trees died within 243 d from the beginning of observation. Initial points of attack by X. glabratus varied from ground level to heights of at least 6.6 m. Trees showed characteristic laurel wilt symptoms with as few as two X. glabratus entry points. The number of attacks exhibited nonlinear relationships with diameter (P = 0.0004; r2 = 0.82) and height (P = 0.0013; r2 = 0.69) but were not correlated with moisture content. Attacks increased gradually with increasing stem diameter up to approximately 10 cm after which the attacks became more numerous. X. glabratus attacks were most numerous on the tree bole near the ground. Attacks then declined as tree height reached 2-3 m. From 3 to 8 m, attacks were relatively consistent.

  8. The crystal nucleation theory revisited: The case of 2D colloidal crystals

    NASA Astrophysics Data System (ADS)

    González, A. E.; Ixtlilco-Cortés, L.

    2011-03-01

    Most of the theories and studies of crystallization and crystal nucleation consider the boundaries between the crystallites and the fluid as smooth. The crystallites are the small clusters of atoms, molecules and/or particles with the symmetry of the crystal lattice that, with a slight chance of success, would grow to form the crystal grains. In fact, in the classical nucleation theory, the crystallites are assumed to have a spherical shape (circular in 2D). As far are we are aware, there is only one experimental work [1] on colloidal crystals that founds rough surfaces for the crystallites and for the crystal grains. Motivated by this work, we performed large Kinetic Monte Carlo simulations in 2D, that would follow the eventual growing of a few crystallites to form the crystal grains. The used potential has, besides the impenetrable hard core, a soft core followed by a potential well. We found that indeed the crystallites have a fractal boundary, whose value we were able to obtain. See the figure below of a typical isolated crystallite. We were also able to obtain the critical crystallite size, measured by its number of particles, Nc, and not by any critical radius. The boundaries of the crystals above Nc also have a fractal structure but of a lower value, closer to one. Finally, we also obtained the line tension between the crystallites and the surrounding fluid, as function of temperature and particle diameter, as well as the chemical potential difference between these two phases. In the URL: www.fis.unam.mx˜˜agus˜ there are posted two movies that can be downloaded: (1) 2D_crystal_nucleation.mp4, and (2) 2D_crystal_growth.mp4, that illustrate the crystal nucleation and its further growth.

  9. Few layer graphene-polypropylene nanocomposites: the role of flake diameter.

    PubMed

    Vallés, Cristina; Abdelkader, Amr M; Young, Robert J; Kinloch, Ian A

    2014-01-01

    Graphene shows excellent potential as a structural reinforcement in polymer nanocomposites due to its exceptional mechanical properties. We have shown previously that graphene composites can be analysed using conventional composite theory with the graphene flakes acting as short fillers which have a critical length of ∼3 μm which is required for good reinforcement. Herein, polypropylene (PP) nanocomposites were prepared using electrochemically-exfoliated few layer graphene (FLG) with two different flake diameters (5 μm and 20 μm). The crystallization temperature and degree of crystallinity of the PP were found to increase with the loading of FLG, which suggests that the flakes acted as crystallisation nucleation sites. Mechanical testing showed that the 5 μm flakes behaved as short fillers and reinforced the PP matrix poorly. The modulus of the 20 μm flake composites, however, increased linearly with loading up to 20 wt%, without any of the detrimental aggregation effects seen in other graphene systems. The mechanical data were compared with our previous work on other graphene composite systems and the apparent need to balance the degree of functionalization to improve matrix compatibility whilst not encouraging aggregation is discussed.

  10. Characterization of an 8-cm Diameter Ion Source System

    NASA Technical Reports Server (NTRS)

    Li, Zhongmin; Hawk, C. W.; Hawk, Clark W.; Buttweiler, Mark S.; Williams, John D.; Buchholtz, Brett

    2005-01-01

    Results of tests characterizing an 8-cm diameter ion source are presented. The tests were conducted in three separate vacuum test facilities at the University of Alabama-Huntsville, Colorado State University, and L3 Communications' ETI division. Standard ion optics tests describing electron backstreaming and total-voltage-limited impingement current behavior as a function of beam current were used as guidelines for selecting operating conditions where more detailed ion beam measurements were performed. The ion beam was profiled using an in-vacuum actuating probe system to determine the total ion current density and the ion charge state distribution variation across the face of the ion source. Both current density and ExB probes were utilized. The ion current density data were used to obtain integrated beam current, beam flatness parameters, and general beam profile shapes. The ExB probe data were used to determine the ratio of doubly to singly charged ion current. The ion beam profile tests were performed at over six different operating points that spanned the expected operating range of the DAWN thrusters being developed at L3. The characterization tests described herein reveal that the 8-cm ion source is suitable for use in (a) validating plasma diagnostic equipment, (b) xenon ion sputtering and etching studies of spacecraft materials, (c) plasma physics research, and (d) the study of ion thruster optics at varying conditions.

  11. Sustainable yields from large diameter wells in shallow weathered aquifers

    NASA Astrophysics Data System (ADS)

    Rushton, K. R.; de Silva, C. S.

    2016-08-01

    Large diameter wells in shallow weathered aquifers provide a valuable source of water for domestic and agricultural purposes in many locations including the Indian subcontinent. However, when used for irrigation, these wells often fail towards the end of the dry season. By considering two case studies in the dry and intermediate rainfall zones of Sri Lanka, reasons for the limited yield of these wells are identified. The first case study is concerned with a sloping catchment; a significant proportion of the precipitation during the rainy season either becomes runoff or passes down-gradient through the aquifer and is discharged at the ground surface. Furthermore, during the dry season, groundwater discharge continues. In the second case study the topography is generally flat but, even though the aquifer fills most years during the rainy season, there is often only sufficient water to irrigate about half of each farmer's holding. These investigations are based on field information and the development of conceptual and computational models. Of critical importance in assessing the long term yield of a well is the formation of a seepage face on the side of the well, with the water table a significant distance above the pumping water level. Consequently the water table may only be lowered to about half the depth of the well. The paper concludes with recommendations for the exploitation of groundwater from shallow weathered aquifers to minimise the risk of failure during the dry season.

  12. High reliability bond program using small diameter aluminum wire

    NASA Technical Reports Server (NTRS)

    Macha, M.; Thiel, R. A.

    1975-01-01

    The program was undertaken to characterize the performance of small diameter aluminum wire ultrasonically bonded to conductors commonly encountered in hybrid assemblies, and to recommend guidelines for improving this performance. Wire, 25.4, 38.1 and 50.8 um (1, 1.5 and 2 mil), was used with bonding metallization consisting of thick film gold, thin film gold and aluminum as well as conventional aluminum pads on semiconductor chips. The chief tool for evaluating the performance was the double bond pull test in conjunction with a 72 hour - 150 C heat soak and -65 C to +150 C thermal cycling. In practice the thermal cycling was found to have relatively little effect compared to the heat soak. Pull strength will decrease after heat soak as a result of annealing of the aluminum wire; when bonded to thick film gold, the pull strength decreased by about 50% (weakening of the bond interface was the major cause of the reduction). Bonds to thin film gold lost about 30 - 40% of their initial pull strenth; weakening of the wire itself at the bond heel was the predominant cause. Bonds to aluminum substrate metallization lost only about 22%. Bonds between thick and thin film gold substrate metallization and semiconductor chips substantiated the previous conclusions but also showed that in about 20 to 25% of the cases, bond interface failure occurred at the semiconductor chip.

  13. Aggregate Morphology Evolution by Sintering: Number & Diameter of Primary Particles

    PubMed Central

    Eggersdorfer, Max L.; Kadau, Dirk; Herrmann, Hans J.; Pratsinis, Sotiris E.

    2013-01-01

    The structure of fractal-like agglomerates (physically-bonded) and aggregates (chemically- or sinter-bonded) is important in aerosol synthesis of nanoparticles, and in monitoring combustion emissions and atmospheric particles. It influences also particle mobility, scattering, and eventually performance of nanocomposites, suspensions and devices made with such particles. Here, aggregate sintering by viscous flow of amorphous materials (silica, polymers) and grain boundary diffusion of crystalline ceramics (titania, alumina) or metals (Ni, Fe, Ag etc.) is investigated. A scaling law is found between average aggregate projected area and equivalent number of constituent primary particles during sintering: from fractal-like agglomerates to aggregates and eventually compact particles (e.g. spheres). This is essentially a relation independent of time, material properties and sintering mechanisms. It is used to estimate the equivalent primary particle diameter and number in aggregates. The evolution of aggregate morphology or structure is quantified by the effective fractal dimension (Df) and mass-mobility exponent (Dfm) and the corresponding prefactors. The Dfm increases monotonically during sintering converging to 3 for a compact particle. Therefore Dfm and its prefactor could be used to gauge the degree or extent of sintering of agglomerates made by a known collision mechanism. This analysis is exemplified by comparison to experiments of silver nanoparticle aggregates sintered at different temperatures in an electric tube furnace. PMID:23658467

  14. The holin of bacteriophage lambda forms rings with large diameter.

    PubMed

    Savva, Christos G; Dewey, Jill S; Deaton, John; White, Rebecca L; Struck, Douglas K; Holzenburg, Andreas; Young, Rye

    2008-08-01

    Holins control the length of the infection cycle of tailed phages (the Caudovirales) by oligomerizing to form lethal holes in the cytoplasmic membrane at a time dictated by their primary structure. Nothing is currently known about the physical basis of their oligomerization or the structure of the oligomers formed by any known holin. Here we use electron microscopy and single-particle analysis to characterize structures formed by the bacteriophage lambda holin (S105) in vitro. In non-ionic or mild zwitterionic detergents, purified S105, but not the lysis-defective variant S105A52V, forms rings of at least two size classes, the most common having inner and outer diameters of 8.5 and 23 nm respectively, and containing approximately 72 S105 monomers. The height of these rings, 4 nm, closely matches the thickness of the lipid bilayer. The central channel is of unprecedented size for channels formed by integral membrane proteins, consistent with the non-specific nature of holin-mediated membrane permeabilization. S105 present in detergent-solubilized rings and in inverted membrane vesicles showed similar sensitivities to proteolysis and cysteine-specific modification, suggesting that the rings are representative of the lethal holes formed by S105 to terminate the infection cycle and initiate lysis.

  15. Cylindrical surface profile and diameter measuring tool and method

    NASA Technical Reports Server (NTRS)

    Currie, James R. (Inventor); Kissel, Ralph R. (Inventor); Oliver, Charles E. (Inventor); Smith, Earnest C. (Inventor); Redmon, John W. (Inventor); Wallace, Charles C. (Inventor); Swanson, Charles P. (Inventor)

    1989-01-01

    A tool is shown having a cross beam assembly (15) made of beams (18, 19, 20, 21) joined by a center box structure (23). The assembly (15) is adapted to be mounted by brackets (16) to the outer end of a cylindrical case (11). The center box structure (23) has a vertical shaft (25) rotatably mounted therein and extending beneath the assembly (15). Secured to the vertical shaft (25) is a radius arm (28) which is adapted to rotate with shaft (25). On the longer end of the radius arm (28) is a measuring tip (30) which contacts the cylindrical surface to be measured and which provides an electric signal representing the radius of the cylindrical surface from the center of rotation of the radius arm (28). An electric servomotor (49) rotates the vertical shaft (25) and an electronic resolver (61) provides an electric signal representing the angle of rotation of the shaft (25). The electric signals are provided to a computer station (73) which has software for its computer to calculate and print out the continuous circumference profile of the cylindrical surface, and give its true diameter and the deviations from the ideal circle.

  16. Aggregate Morphology Evolution by Sintering: Number & Diameter of Primary Particles.

    PubMed

    Eggersdorfer, Max L; Kadau, Dirk; Herrmann, Hans J; Pratsinis, Sotiris E

    2012-04-01

    The structure of fractal-like agglomerates (physically-bonded) and aggregates (chemically- or sinter-bonded) is important in aerosol synthesis of nanoparticles, and in monitoring combustion emissions and atmospheric particles. It influences also particle mobility, scattering, and eventually performance of nanocomposites, suspensions and devices made with such particles. Here, aggregate sintering by viscous flow of amorphous materials (silica, polymers) and grain boundary diffusion of crystalline ceramics (titania, alumina) or metals (Ni, Fe, Ag etc.) is investigated. A scaling law is found between average aggregate projected area and equivalent number of constituent primary particles during sintering: from fractal-like agglomerates to aggregates and eventually compact particles (e.g. spheres). This is essentially a relation independent of time, material properties and sintering mechanisms. It is used to estimate the equivalent primary particle diameter and number in aggregates. The evolution of aggregate morphology or structure is quantified by the effective fractal dimension (Df ) and mass-mobility exponent (Dfm ) and the corresponding prefactors. The Dfm increases monotonically during sintering converging to 3 for a compact particle. Therefore Dfm and its prefactor could be used to gauge the degree or extent of sintering of agglomerates made by a known collision mechanism. This analysis is exemplified by comparison to experiments of silver nanoparticle aggregates sintered at different temperatures in an electric tube furnace.

  17. Development of the 15 meter diameter hoop column antenna

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The building of a deployable 15-meter engineering model of the 100 meter antenna based on the point-design of an earlier task of this contract, complete with an RF-capable surface is described. The 15 meter diameter was selected so that the model could be tested in existing manufacturing, near-field RF, thermal vacuum, and structural dynamics facilities. The antenna was designed with four offset paraboloidal reflector surfaces with a focal length of 366.85 in and a primary surface accuracy goal of .069 in rms. Surface adjustment capability was provided by manually resetting the length of 96 surface control cords which emanated from the lower column extremity. A detailed description of the 15-meter Hoop/Column Antenna, major subassemblies, and a history of its fabrication, assembly, deployment testing, and verification measurements are given. The deviation for one aperture surface (except the outboard extremity) was measured after adjustments in follow-on tests at the Martin Marietta Near-field Facility to be .061 in; thus the primary surface goal was achieved.

  18. A 24mm diameter fibre positioner for spectroscopic surveys

    NASA Astrophysics Data System (ADS)

    Hörler, Philipp; Kronig, Luzius; Kneib, Jean-Paul; Bleuler, Hannes; Bouri, Mohamed

    2016-07-01

    One of the big research topics in modern cosmology is the mystery of dark Energy. To unveil the secret, cosmologists want to measure precisely the evolution of large scale structures in the universe. One way of doing so is to measure the 3D location of a high number of galaxies. By measuring the redshift of a galaxy, it is possible to find its distance. In order to measure a high number of galaxies in a practical amount of time, we need to observe multiple objects in parallel. Instead of a spectrograph, thousands of optical fibres are placed in the focal plane of a telescope. They will transmit the light of many objects to a spectrograph. Each fibre has to be positioned to several μm precision in the focal plane of a telescope for each exposure. Each fibre is positioned by a 2-axis fibre positioner. In this paper such a fibre positioner with 24-mm diameter is presented. It is driven by two brushless DC motors in combination with a backlash free gearbox. The positioner has an optimal central fibre path and improved angular alignment. The fibre runs through the centre of the positioner and is only bent at the top to reach its target position. In this way, the flexion and torsion of the fibre are minimal. In addition to the high positioning accuracy, the design is optimized to allow a minimal tilt error of the fibre. This is demonstrated using a novel optical tilt measurement system.

  19. Cylindrical surface profile and diameter measuring tool and method

    NASA Technical Reports Server (NTRS)

    Currie, James R. (Inventor); Kissel, Ralph R. (Inventor); Smith, Earnest C. (Inventor); Oliver, Charles E. (Inventor); Redmon, John W., Sr. (Inventor); Wallace, Charles C. (Inventor); Swanson, Charles P. (Inventor)

    1987-01-01

    A tool is shown having a cross beam assembly made of beams joined by a center box structure. The assembly is adapted to be mounted by brackets to the outer end of a cylindrical case. The center box structure has a vertical shaft rotatably mounted therein and extending beneath the assembly. Secured to the vertical shaft is a radius arm which is adapted to rotate with the shaft. On the longer end of the radius arm is a measuring tip which contacts the cylindrical surface to be measured and which provides an electric signal representing the radius of the cylindrical surface from the center of rotation of the radius arm. An electric servomotor rotates the vertical shaft and an electronic resolver provides an electric signal representing the angle of rotation of the shaft. The electric signals are provided to a computer station which has software for its computer to calculate and print out the continuous circumference profile of the cylindrical surface, and give its true diameter and the deviations from the ideal circle.

  20. Packed tower program eases calculations for diameter, hydraulics of towers

    SciTech Connect

    Petrarca, C.A.

    1986-04-14

    A packed tower program will calculate the diameter and hydraulics of a packed tower, or check the hydraulics of an existing tower for other process conditions. It is written in simple BASIC for an IBM PC and could easily be converted to other PC's. There are approximately 100 statement lines, with memory requirement of approximately 4,100 bytes. The program is presented as an aid, or tool, to reduce tedious calculations in design or revision work. Much has already been written on the specifics of design methods and calculation procedures for packed towers. This article will cover only the program's procedure and calculation method, input requirements, output data, and features. The program first transforms the raw data into consistent units. Gas flow rate in pounds per hour is calculated from the input of standard cubic feet per minute and specific gravity, or moles per hour and molecular weight. Liquid flow rate in pounds per hour is calculated from the gallons per minute and specific gravity input. Using the temperature, pressure, compressibility, and molecular weight inputs, the gas density in pounds per cubic foot is calculated from the ideal gas law equation. Liquid density is calculated directly from the specific gravity. With this data, the program then calculates the ''x'' ordinate of the generalized flooding correlation for packed towers. Using regressed design curves of X vs. Y, which somewhat parallel the flooding curve, the program calculates the Y abscissa function which relates liquid and gas densities, gas mass velocity, packing factor, gravitational constant, and liquid viscosity.

  1. Economic strategies of plant absorptive roots vary with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D. L.; Wang, J. J.; Kardol, P.; Wu, H. F.; Zeng, H.; Deng, X. B.; Deng, Y.

    2016-01-01

    Plant roots typically vary along a dominant ecological axis, the root economics spectrum, depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root economic strategies differ with increasing root diameter. To test this hypothesis, we used seven plant species (a fern, a conifer, and five angiosperms from south China) for which we separated absorptive roots into two categories: thin roots (thickness of root cortex plus epidermis < 247 µm) and thick roots. For each category, we analyzed a range of root traits related to resource acquisition and conservation, including root tissue density, different carbon (C), and nitrogen (N) fractions (i.e., extractive, acid-soluble, and acid-insoluble fractions) as well as root anatomical traits. The results showed significant relationships among root traits indicating an acquisition-conservation tradeoff for thin absorptive roots while no such trait relationships were found for thick absorptive roots. Similar results were found when reanalyzing data of a previous study including 96 plant species. The contrasting economic strategies between thin and thick absorptive roots, as revealed here, may provide a new perspective on our understanding of the root economics spectrum.

  2. Collagen fibril diameter and alignment promote the quiescent keratocyte phenotype

    PubMed Central

    Muthusubramaniam, Lalitha; Peng, Lily; Zaitseva, Tatiana; Paukshto, Michael; Martin, George R.; Desai, Tejal

    2011-01-01

    In this study, we investigated how matrix nanotopography affects corneal fibroblast phenotype and matrix synthesis. To this end, corneal fibroblasts isolated from bovine corneas were grown on collagen nanofiber scaffolds of different diameters and alignment – 30 nm aligned fibrils (30A), 300 nm or larger aligned fibrils (300A), and 30 nm nonaligned fibrils (30NA) in comparison to collagen coated flat glass substrates (FC). Cell morphology was visualized using confocal microscopy. Quantitative PCR was used to measure expression levels of six target genes: the corneal crystallin - transketolase (TKT), the myofibroblast marker - α-smooth muscle actin (SMA), and four matrix proteins - collagen 1 (COL1), collagen 3 (COL3), fibronectin (FN) and biglycan. It was found that SMA expression was down-regulated and TKT expression was increased on all three collagen nanofiber substrates, compared to the FC control substrates. However, COL3 and biglycan expression was also significantly increased on 300A, compared to the FC substrates. Thus matrix nanotopography down-regulates the fibrotic phenotype, promotes formation of the quiescent keratocyte phenotype and influences matrix synthesis. These results have significant implications for the engineering of corneal replacements and for promoting regenerative healing of the cornea after disease and/or injury. PMID:22213336

  3. Molecular tectonics: from crystals to crystals of crystals.

    PubMed

    Marinescu, Gabriela; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2013-12-11

    The in situ combination of M(II) cations (Co, Ni, Cu or Zn) with 2,4,6-pyridinetricarboxylic acid as a ligand, a bisamidinium dication as a H-bond donor tecton and NaOH leads to the formation of anionic metal complexes ML2(2-) and their interconnection into isomorphous 3D H-bonded networks displaying different colours which were used as preformed seed crystals for the formation of crystals of crystals by 3D epitaxial growth.

  4. Nanoscale pillar hypersonic surface phononic crystals

    NASA Astrophysics Data System (ADS)

    Yudistira, D.; Boes, A.; Graczykowski, B.; Alzina, F.; Yeo, L. Y.; Sotomayor Torres, C. M.; Mitchell, A.

    2016-09-01

    We report on nanoscale pillar-based hypersonic phononic crystals in single crystal Z-cut lithium niobate. The phononic crystal is formed by a two-dimensional periodic array of nearly cylindrical nanopillars 240 nm in diameter and 225 nm in height, arranged in a triangular lattice with a 300-nm lattice constant. The nanopillars are fabricated by the recently introduced nanodomain engineering via laser irradiation of patterned chrome followed by wet etching. Numerical simulations and direct measurements using Brillouin light scattering confirm the simultaneous existence of nonradiative complete surface phononic band gaps. The band gaps are found below the sound line at hypersonic frequencies in the range 2-7 GHz, formed from local resonances and Bragg scattering. These hypersonic structures are realized directly in the piezoelectric material lithium niobate enabling phonon manipulation at significantly higher frequencies than previously possible with this platform, opening new opportunities for many applications in plasmonic, optomechanic, microfluidic, and thermal engineering.

  5. Drilling technique for crystals

    NASA Technical Reports Server (NTRS)

    Hunter, T.; Miyagawa, I.

    1977-01-01

    Hole-drilling technique uses special crystal driller in which drill bit rotates at fixed position at speed of 30 rpm while crystal slowly advances toward drill. Technique has been successfully applied to crystal of Rochell salt, Triglycine sulfate, and N-acetyglycine. Technique limits heat buildup and reduces strain on crystal.

  6. Diameter Control and Photoluminescence of ZnO Nanorods from Trialkylamines

    DOE PAGES

    Andelman, Tamar; Gong, Yinyan; Neumark, Gertrude; ...

    2007-01-01

    A novel solution method to control the diameter of ZnO nanorods is reported. Small diameter (2-3 nm) nanorods were synthesized from trihexylamine, and large diameter (50–80 nm) nanorods were synthesized by increasing the alkyl chain length to tridodecylamine. The defect (green) emission of the photoluminescence (PL) spectra of the nanorods varies with diameter, and can thus be controlled by the diameter control. The small ZnO nanorods have strong green emission, while the large diameter nanorods exhibit a remarkably suppressed green band. We show that this observation supports surface oxygen vacancies as the defect that gives rise to the green emission.

  7. Variation of the pressure limits of flame propagation with tube diameter for propane-air mixtures

    NASA Technical Reports Server (NTRS)

    Belles, Frank E; Simon, Dorothy M

    1951-01-01

    An investigation was made of the variation of the pressure limits of flame propagation with tube diameter for quiescent propane with tube diameter for quiescent propane-air mixtures. Pressure limits were measured in glass tubes of six different inside diameters, with a precise apparatus. Critical diameters for flame propagation were calculated and the effect of pressure was determined. The critical diameters depended on the pressure to the -0.97 power for stoichiometric mixtures. The pressure dependence decreased with decreasing propane concentration. Critical diameters were related to quenching distance, flame speeds, and minimum ignition energy.

  8. Mixed crystal organic scintillators

    DOEpatents

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  9. Solar Diameter Measurements from Eclipses as a Solar Variability Proxy

    NASA Astrophysics Data System (ADS)

    Waring Dunham, David; Sofia, Sabatino; Guhl, Konrad; Herald, David Russell

    2015-08-01

    Since thermal relaxation times for the Sun are thousands of years, small variations of the Solar intensity are proportional to small variations of the Solar diameter on decadal time scales. In a combination between observations and theory, reliable values of the relation constant W are known, that allow transformation of historical variations of radius into variations of the solar luminosity. During the past 45 years, members of the International Occultation Timing Association (IOTA) have observed 20 annular and total solar eclipses from locations near the path edges. Baily’s beads, whose occurrence and duration are considerably prolonged as seen from path edge locations, were first timed visually, mostly using projection techniques, but since about 1980, they have been timed mainly from analysis of video recordings. The edge locations have the advantage that most of the beads are defined by the same features in the lunar polar regions that cause the phenomena at each eclipse. Some of the best-observed modern eclipses can be used to assess the accuracy of the results, which are limited mainly by the intensity drop at the Sun’s edge, and the consequent uncertainty in defining the edge. In addition, direct visual contact timings made near the path edges during earlier eclipses, back to 1715, have been found in the literature, and analyzed. Although the observations seem to show small variations, they are only a little larger than the assessed accuracies. The results can be improved with a consistent re-analysis of the observations using the much more accurate lunar profile data that is now available from the Japanese Kaguya and NASA’s LRO lunar orbiter observations. Also, IOTA has plans to observe future eclipses with a variety of techniques that were used in the past, to better assess the accuracies of the different observational methods that have been used, and determine any systematic differences between them.

  10. AUTOMATED WATER LEVEL MEASUREMENTS IN SMALL-DIAMETER AQUIFER TUBES

    SciTech Connect

    PETERSEN SW; EDRINGTON RS; MAHOOD RO; VANMIDDLESWORTH PE

    2011-01-14

    Groundwater contaminated with hexavalent chromium, strontium-90, and uranium discharges into the Columbia River along approximately 16 km (10 mi) of the shoreline. Various treatment systems have and will continue to be implemented to eliminate the impact of Hanford Site contamination to the river. To optimize the various remediation strategies, it is important to understand interactions between groundwater and the surface water of the Columbia River. An automated system to record water levels in aquifer sampling tubes installed in the hyporheic zone was designed and tested to (1) gain a more complete understanding of groundwater/river water interactions based on gaining and losing conditions ofthe Columbia River, (2) record and interpret data for consistent and defensible groundwater/surface water conceptual models that may be used to better predict subsurface contaminant fate and transport, and (3) evaluate the hydrodynamic influence of extraction wells in an expanded pump-and-treat system to optimize the treatment system. A system to measure water levels in small-diameter aquifer tubes was designed and tested in the laboratory and field. The system was configured to allow manual measurements to periodically calibrate the instrument and to permit aquifer tube sampling without removing the transducer tube. Manual measurements were collected with an e-tape designed and fabricated especially for this test. Results indicate that the transducer system accurately records groundwater levels in aquifer tubes. These data are being used to refine the conceptual and numeric models to better understand interactions in the hyporheic zone of the Columbia River and the adjacent river water and groundwater, and changes in hydrochemistry relative to groundwater flux as river water recharges the aquifer and then drains back out in response to changes in the river level.

  11. Saqqar: A 34 km diameter impact structure in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Afifi, Abdulkader M.; Stewart, Simon A.; Poelchau, Michael H.; Cook, Douglas J.; Neville, Allen S.

    2015-11-01

    Here we present the first proof of an impact origin for the Saqqar circular structure in northwestern Saudi Arabia (Neville et al. ), with an apparent diameter of 34 km, centered at 29°35'N, 38°42'E. The structure is formed in Cambrian-Devonian siliciclastics and is unconformably overlain by undeformed Cretaceous and Paleogene sediments. The age of impact is not well constrained and lies somewhere between 410 and 70 Ma. The subsurface structure is constrained by 2-D reflection seismic profiles and six drilled wells. First-order structural features are a central uplift that rises approximately 2 km above regional datums, surrounded by a ring syncline. The crater rim is defined by circumferential normal faults. The central uplift and ring syncline correspond to a Bouguer gravity high and an annular ring-like low, respectively. The wells were drilled within the central uplift, the deepest among them exceed 2 km depth. Sandstone core samples from these wells show abundant indicators of a shock metamorphic overprint. Planar deformation features (PDFs) were measured with orientations along (0001), {101¯3}, and less frequently along {101¯1} and {101¯4}. Planar fractures (PFs) predominantly occur along (0001) and {101¯1}, and are locally associated with feather features (FFs). In addition, some shocked feldspar grains and strongly deformed mica flakes were found. The recorded shock pressure ranges between 5 and 15 GPa. The preserved level of shock and the absence of an allochthonous crater fill suggest that Saqqar was eroded by 1-2 km between the Devonian and Maastrichtian. The documentation of unequivocal shock features proves the formation of the Saqqar structure by a hypervelocity impact event.

  12. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  13. Ice crystal concentration in cumulus clouds: influence of the drop spectrum.

    PubMed

    Mossop, S C; Hallett, J

    1974-11-15

    Secondary ice crystals are thrown off when supercooled cloud drops are captured and freeze on a moving target in a cloud at -5 degrees C. The rate of production of these ice crystals is proportional to the rate of accretion of drops of the diameter >/=24 micrometers.

  14. OBSERVATIONS ON THE GROWTH OF ALPHA-IRON SINGLE CRYSTALS BY HALOGEN REDUCTION

    DTIC Science & Technology

    By increasing the scale of the conventional technique for growing Fe whiskers, single crystals were produced of alpha - iron 1 to 2 mm in diameter and...reproducible source of high purity, single crystals of alpha - iron of reasonable experimental size, conveniently preoriented by growth.

  15. Vertical growth of cadmium sulfide crystals on a silicon substrate

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.

    2017-02-01

    The results of the technological and microscopy studies of the mechanisms of the vertical growth of cadmium sulfide crystals during vacuum synthesis from the vapor phase were reported. Whisker crystals with a diameter from 10 nm to a few micrometers and with a length of dozens of millimeters can be grown by the vacuum vapor phase synthesis in a quasi-closed volume. The results of studies are satisfactorily explained in terms of the classical vapor-liquid-crystal model. The SEM micrographs are presented.

  16. Manipulating light propagation and emission using photonic crystals

    SciTech Connect

    Nair, Rajesh V.; Jagatap, B. N.

    2014-03-31

    We discuss the synthesis and characterization of self-assembled photonic crystals using polymer colloids having sub-micron diameters. The angle resolved optical reflectivity measurements indicate the hybridization between stop gaps in the multiple Bragg diffraction regimes. Each diffraction resonances in the multiple Bragg diffraction regimes are assigned to respective crystal planes. We also discuss laser-induced studies of spontaneous emission in self-assembled photonic crystals having Rhodamine-B dye doped colloids. Our experimental results reveal more than 51% inhibition in emission intensity within the stop gap as compared to a proper reference sample.

  17. Theory of High Frequency Rectification by Silicon Crystals

    DOE R&D Accomplishments Database

    Bethe, H. A.

    1942-10-29

    The excellent performance of British "red dot" crystals is explained as due to the knife edge contact against a polished surface. High frequency rectification depends critically on the capacity of the rectifying boundary layer of the crystal, C. For high conversion efficiency, the product of this capacity and of the "forward" (bulk) resistance R {sub b} of the crystal must be small. For a knife edge, this product depends primarily on the breadth of the knife edge and very little upon its length. The contact can therefore have a rather large area which prevents burn-out. For a wavelength of 10 cm. the computations show that the breadth of the knife edge should be less than about 10 {sup -3} cm. For a point contact the radius must be less than 1.5 x 10 {sup -3} cm. and the resulting small area is conducive to burn-out. The effect of "tapping" is probably to reduce the area of contact. (auth)

  18. Height-diameter allometry of tropical forest trees

    NASA Astrophysics Data System (ADS)

    Feldpausch, T. R.; Banin, L.; Phillips, O. L.; Baker, T. R.; Lewis, S. L.; Quesada, C. A.; Affum-Baffoe, K.; Arets, E. J. M. M.; Berry, N. J.; Bird, M.; Brondizio, E. S.; de Camargo, P.; Chave, J.; Djagbletey, G.; Domingues, T. F.; Drescher, M.; Fearnside, P. M.; França, M. B.; Fyllas, N. M.; Lopez-Gonzalez, G.; Hladik, A.; Higuchi, N.; Hunter, M. O.; Iida, Y.; Salim, K. A.; Kassim, A. R.; Keller, M.; Kemp, J.; King, D. A.; Lovett, J. C.; Marimon, B. S.; Marimon-Junior, B. H.; Lenza, E.; Marshall, A. R.; Metcalfe, D. J.; Mitchard, E. T. A.; Moran, E. F.; Nelson, B. W.; Nilus, R.; Nogueira, E. M.; Palace, M.; Patiño, S.; Peh, K. S.-H.; Raventos, M. T.; Reitsma, J. M.; Saiz, G.; Schrodt, F.; Sonké, B.; Taedoumg, H. E.; Tan, S.; White, L.; Wöll, H.; Lloyd, J.

    2011-05-01

    Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were: 1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap). 2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A). 3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass. Annual precipitation coefficient of variation (PV), dry season length (SD), and mean annual air temperature (TA) emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within amedian -2.7 to 0.9% of the true value. Some of the plot-to-plot variability in H:D relationships not accounted for by this model could be attributed to variations in soil physical conditions. Other things being equal, trees tend to be more slender in the absence of soil physical

  19. Height-diameter allometry of tropical forest trees

    NASA Astrophysics Data System (ADS)

    Feldpausch, T. R.; Banin, L.; Phillips, O. L.; Baker, T. R.; Lewis, S. L.; Quesada, C. A.; Affum-Baffoe, K.; Arets, E. J. M. M.; Berry, N. J.; Bird, M.; Brondizio, E. S.; de Camargo, P.; Chave, J.; Djagbletey, G.; Domingues, T. F.; Drescher, M.; Fearnside, P. M.; França, M. B.; Fyllas, N. M.; Lopez-Gonzalez, G.; Hladik, A.; Higuchi, N.; Hunter, M. O.; Iida, Y.; Abu Silam, K.; Kassim, A. R.; Keller, M.; Kemp, J.; King, D. A.; Lovett, J. C.; Marimon, B. S.; Marimon-Junior, B. H.; Lenza, E.; Marshall, A. R.; Metcalfe, D. J.; Mitchard, E. T. A.; Moran, E. F.; Nelson, B. W.; Nilus, R.; Nogueira, E. M.; Palace, M.; Patiño, S.; Peh, K. S.-H.; Raventos, M. T.; Reitsma, J. M.; Saiz, G.; Schrodt, F.; Sonké, B.; Taedoumg, H. E.; Tan, S.; White, L.; Wöll, H.; Lloyd, J.

    2010-10-01

    Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were: 1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap). 2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A). 3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass. Annual precipitation coefficient of variation (PV), dry season length (SD), and mean annual air temperature (TA) emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within a median -2.7 to 0.9% of the true value. Some of the plot-to-plot variability in H:D relationships not accounted for by this model could be attributed to variations in soil physical conditions. Other things being equal, trees tend to be more slender in the absence of soil physical

  20. Manufacturing Methods and Technology Engineering for ’Growth of Large Diameter Nd:YAG Laser Crystals

    DTIC Science & Technology

    1982-03-01

    Parallelism 10 sec Fizeau Interferometer Perpendicularity 5 min Autocollimator Strain ɘ.5 Fringe/43nm Twyman Green - Double Pass End Coating End 1: 60...total strain as exhibited by the Twyman -Green fringe pattern. Thus there should be little or no effect on the active operation. It appears that all of

  1. 75 FR 38989 - Welded Large Diameter Line Pipe From Japan: Notice of Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... International Trade Administration Welded Large Diameter Line Pipe From Japan: Notice of Rescission of... diameter line pipe from Japan. The review covers 4 producers/exporters of welded large diameter line pipe from Japan, which are, JFE Steel Corporation, Nippon Steel Corporation, Sumitomo Corporation,...

  2. 78 FR 60897 - Certain Welded Large Diameter Line Pipe From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... COMMISSION Certain Welded Large Diameter Line Pipe From Japan Determination On the basis of the record \\1... the antidumping duty order on certain welded large diameter line pipe from Japan would likely to lead... Certain Welded Large Diameter Line Pipe from Japan: Investigation No. 731-TA-919 (Second Review). By...

  3. 77 FR 30260 - Welded Large Diameter Line Pipe From Japan: Notice of Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ...; ] DEPARTMENT OF COMMERCE International Trade Administration Welded Large Diameter Line Pipe From Japan: Notice... antidumping duty order on welded large diameter line pipe from Japan. The review covers five producers/exporters of welded large diameter line pipe from Japan, which are, JFE Steel Corporation, Nippon...

  4. 15 CFR 241.4 - Application of tolerance for “diameter of head.”

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of head.â 241.4 Section 241.4 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign... tolerance for “diameter of head.” (a) The tolerance established in this part for the dimension specified as “diameter of head” shall be applied to the diameter of the head over all, including the part which fits...

  5. 15 CFR 241.4 - Application of tolerance for “diameter of head.”

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of head.â 241.4 Section 241.4 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign... tolerance for “diameter of head.” (a) The tolerance established in this part for the dimension specified as “diameter of head” shall be applied to the diameter of the head over all, including the part which fits...

  6. 15 CFR 241.4 - Application of tolerance for “diameter of head.”

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of head.â 241.4 Section 241.4 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign... tolerance for “diameter of head.” (a) The tolerance established in this part for the dimension specified as “diameter of head” shall be applied to the diameter of the head over all, including the part which fits...

  7. 15 CFR 241.4 - Application of tolerance for “diameter of head.”

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of head.â 241.4 Section 241.4 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign... tolerance for “diameter of head.” (a) The tolerance established in this part for the dimension specified as “diameter of head” shall be applied to the diameter of the head over all, including the part which fits...

  8. Crystal growth of organics for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Mazelsky, R.

    1993-01-01

    The crystal growth and characterization of organic and inorganic nonlinear optical materials were extensively studied. For example, inorganic crystals such as thallium arsenic selenide were studied in our laboratory for several years and crystals in sizes over 2.5 cm in diameter are available. Organic crystals are suitable for the ultraviolet and near infrared region, but are relatively less developed than their inorganic counterparts. Very high values of the second harmonic conversion efficiency and the electro-optic coefficient were reported for organic compounds. Single crystals of a binary organic alloy based on m.NA and CNA were grown and higher second harmonic conversion efficiency than the values reported for m.NA were observed.

  9. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    SciTech Connect

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  10. Synthesis of some calcium phosphate crystals using the useful biomass for immobilization of microorganisms

    NASA Astrophysics Data System (ADS)

    Kohiruimaki, T.

    2011-10-01

    Three sources of biomass generated by primary industry were used as the raw material for the synthesis of calcium phosphate crystals. Phosphoric acid was extracted from burned rice chaff using a 30% nitric acid solution, while scallop shells and gypsum of plasterboard were used as calcium sources. The calcium phosphate crystals were synthesized by a method involving homogeneous precipitation, and the relationship between the composition and shape of the crystals and the pH at the time of the precipitation was investigated. Monetite crystals in a petal form with a diameter ranging from 0.1 to 2 μm were precipitated at pH 2.0, while granular apatite crystals with a mean diameter of 1 μm were precipitated at pH 6.0. We also investigated the ability of the synthesized calcium phosphate crystals to immobilize lactic acid bacteria for practical use in industrial bioreactor. It was determined that monetite crystals with a diameter of 2 μm had the highest ability to fix lactic acid bacteria. The population of lactic acid bacteria was estimated to exceed 1,300 bacteria per crystal surface of 50 μm2 suggesting that these crystals may be of practical use in industrial fermenters.

  11. Influence of the distribution of measuring points on the mean diameter determination of the Avogadro project's silicon spheres

    NASA Astrophysics Data System (ADS)

    Bartl, Guido; Nicolaus, Arnold

    2009-06-01

    The members of the International Avogadro Project are aiming at the redetermination of Avogadro's constant with a relative uncertainty of less than 2×10-8 in order to be qualified for the redefinition of the kilogram. Therefore, among other quantities, the volume of a sphere made of a silicon single crystal has to be determined very precisely with a diameter uncertainty of 0.3 nm. A special Fizeau interferometer with spherical reference faces has been developed at PTB providing the required precision in absolute interferometry and a generous coverage of the surface of the sphere at the same time. Due to the intrinsic imbalanced distribution of measurement positions given by the setup, an equalization has to be performed without introducing a numerical error. In this paper an appropriate procedure using point distributions on a sphere is described and characterized with regard to the number of points involved.

  12. Use of anomolous thermal imaging effects for multi-mode systems control during crystal growth

    NASA Technical Reports Server (NTRS)

    Wargo, Michael J.

    1989-01-01

    Real time image processing techniques, combined with multitasking computational capabilities are used to establish thermal imaging as a multimode sensor for systems control during crystal growth. Whereas certain regions of the high temperature scene are presently unusable for quantitative determination of temperature, the anomalous information thus obtained is found to serve as a potentially low noise source of other important systems control output. Using this approach, the light emission/reflection characteristics of the crystal, meniscus and melt system are used to infer the crystal diameter and a linear regression algorithm is employed to determine the local diameter trend. This data is utilized as input for closed loop control of crystal shape. No performance penalty in thermal imaging speed is paid for this added functionality. Approach to secondary (diameter) sensor design and systems control structure is discussed. Preliminary experimental results are presented.

  13. Crystallization and saturation front propagation in silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Lake, Ethan T.

    2013-12-01

    The cooling and crystallization style of silicic magma bodies in the upper crust falls on a continuum between whole-chamber processes of convection, crystal settling, and cumulate formation and interface-driven processes of conduction and crystallization front migration. In the end-member case of vigorous convection and crystal settling, volatile saturation advances downward from the roof and upward from the floor throughout the chamber. In the end-member case of stagnant magma bodies, volatile saturation occurs along an inward propagating front from all sides of the chamber. Ambient thermal gradient primarily controls the propagation rate; warm (⩾40 °C/km) geothermal gradients lead to thick (1200+ m) crystal mush zones and slow crystallization front propagation. Cold (<40 °C/km) geothermal gradients lead to rapid crystallization front propagation and thin (<1000 m) mush zones. Magma chamber geometry also exerts a first-order control on propagation rates; bodies with high surface to magma volume ratio and large Earth-surface-parallel faces exhibit more rapid propagation and thinner mush zones. Crystallization front propagation occurs at speeds of greater than 10 cm/yr (rhyolitic magma; 1 km thick sill geometry in a 20 °C/km geotherm), far faster than diffusion of volatiles in magma and faster than bubbles can nucleate, grow, and ascend through the chamber. Numerical simulations indicate saturation front propagation is determined primarily by pressure and magma crystallization rate; above certain initial water contents (4.4 wt.% in a dacite) the mobile magma is volatile-rich enough above 10 km depth to always contains a saturation front. Saturation fronts propagate down from the magma chamber roof at lower water contents (3.3 wt.% in a dacite at 5 km depth), creating an upper saturated interface for most common (4-6 wt.%) magma water contents. This upper interface promotes the production of a fluid pocket underneath the apex of the magma chamber. If the fluid

  14. Direct Probes of 4 nm Diameter Gold Nanoparticles Interacting with Supported Lipid Bylayers

    SciTech Connect

    Troiano, Julianne; Olenick, Laura L.; Kuech, Thomas R.; Melby, Eric S.; Hu, Dehong; Lohse, Samuel E.; Mensch, Arielle C.; Dogangun, Merve; Vartanian, Arlane M.; Torelli, Marco; Ehimiaghe, Eseohi; Walter, Stephanie R.; Fu, Li; Anderton, Christopher R.; Zhu, Zihua; Wang, Hongfei; Orr, Galya; Murphy, Catherine; Hamers, Robert J.; Pedersen, Joel A.; Geiger, Franz M.

    2015-01-08

    Interfacial charge densities and potentials are determined for silica-supported phospholipid bilayers formed from lipids having zwitterionic, negatively charged, and positively charged headgroups. Quartz crystal microbalance with dissipation (QCM-D), fluorescence recovery after photobleaching (FRAP), and atomic force microscopy demonstrate the presence of well-formed supported lipid bilayers, which, as probed by vibrational sum frequency generation (SFG), undergo negligible structural changes along their alkyl chains when NaCl concentration is raised from 0.001 to 0.1 M. From second harmonic generation (SHG) measurements we estimate that each zwitterionic headgroup of the bilayer formed from pure DOPC is associated with an apparent charge of -0.028(+0.008/-0.007)×10-¹⁹C, corresponding to 1.8 ± 0.5 % of an elementary negative charge. Moreover, we show that a supported lipid bilayer carrying an apparent negative interfacial potential may interact with not just positively charged 4-nm diameter gold nanoparticles but also negatively charged gold nanoparticles. In this latter case, charge-charge repulsion does not appear to inhibit particle-bilayer interactions and is likely overcome by multivalent interactions that are estimated to involve 3-5 hydrogen-bond equivalents. FRAP, QCM-D, and SFG measurements indicate that the bilayers remain intact under the conditions of the experiments. SHG charge screening experiments are consistent with an apparent zero net charge density associated with the positively charged gold nanoparticles when they are attached to a supported lipid bilayer carrying an apparent negative potential. The results presented here serve to benchmark experimental and computational studies of the nano-bio interface.

  15. Selective control of small versus large diameter axons using infrared laser light (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lothet, Emilie H.; Shaw, Kendrick M.; Horn, Charles C.; Lu, Hui; Wang, Yves T.; Jansen, E. Duco; Chiel, Hillel J.; Jenkins, Michael W.

    2016-03-01

    Sensory information is conveyed to the central nervous system via small diameter unmyelinated fibers. In general, smaller diameter axons have slower conduction velocities. Selective control of such fibers could create new clinical treatments for chronic pain, nausea in response to chemo-therapeutic agents, or hypertension. Electrical stimulation can control axonal activity, but induced axonal current is proportional to cross-sectional area, so that large diameter fibers are affected first. Physiologically, however, synaptic inputs generally affect small diameter fibers before large diameter fibers (the size principle). A more physiological modality that first affected small diameter fibers could have fewer side effects (e.g., not recruiting motor axons). A novel mathematical analysis of the cable equation demonstrates that the minimum length along the axon for inducing block scales with the square root of axon diameter. This implies that the minimum length along an axon for inhibition will scale as the square root of axon diameter, so that lower radiant exposures of infrared light will selectively affect small diameter, slower conducting fibers before those of large diameter. This prediction was tested in identified neurons from the marine mollusk Aplysia californica. Radiant exposure to block a neuron with a slower conduction velocity (B43) was consistently lower than that needed to block a faster conduction velocity neuron (B3). Furthermore, in the vagus nerve of the musk shrew, lower radiant exposure blocked slow conducting fibers before blocking faster conducting fibers. Infrared light can selectively control smaller diameter fibers, suggesting many novel clinical treatments.

  16. Pseudomagnitudes and differential surface brightness: Application to the apparent diameter of stars

    NASA Astrophysics Data System (ADS)

    Chelli, Alain; Duvert, Gilles; Bourgès, Laurent; Mella, Guillaume; Lafrasse, Sylvain; Bonneau, Daniel; Chesneau, Olivier

    2016-05-01

    The diameter of a star is a major observable that serves to test the validity of stellar structure theories. It is also a difficult observable that is mostly obtained with indirect methods since the stars are so remote. Today only ~600 apparent star diameters have been measured by direct methods: optical interferometry and lunar occultations. Accurate star diameters are now required in the new field of exoplanet studies, since they condition the planets' sizes in transit observations, and recent publications illustrate a visible renewal of interest in this topic. Our analysis is based on the modeling of the relationship between measured angular diameters and photometries. It makes use of two new reddening-free concepts: a distance indicator called pseudomagnitude, and a quasi-experimental observable that is independent of distance and specific to each star, called the differential surface brightness (DSB). The use of all the published measurements of apparent diameters that have been collected so far, and a careful modeling of the DSB allow us to estimate star diameters with a median statistical error of 1.1%, knowing their spectral type and, in the present case, the VJHKs photometries. We introduce two catalogs, the JMMC Measured Diameters Catalog (JMDC), containing measured star diameters, and the second version of the JMMC Stellar Diameter Catalog (JSDC), augmented to about 453 000 star diameters. Finally, we provide simple formulas and a table of coefficients to quickly estimate stellar angular diameters and associated errors from (V, Ks) magnitudes and spectral types.

  17. Apparatus for growing crystals

    NASA Technical Reports Server (NTRS)

    Jasinski, Thomas J. (Inventor); Witt, August F. (Inventor)

    1986-01-01

    An improved apparatus and method for growing crystals from a melt employing a heat pipe, consisting of one or more sections, each section serving to control temperature and thermal gradients in the crystal as it forms inside the pipe.

  18. Crystal structure and prediction.

    PubMed

    Thakur, Tejender S; Dubey, Ritesh; Desiraju, Gautam R

    2015-04-01

    The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape.

  19. Growth of dopamine crystals

    NASA Astrophysics Data System (ADS)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  20. Crystal Structure and Prediction

    NASA Astrophysics Data System (ADS)

    Thakur, Tejender S.; Dubey, Ritesh; Desiraju, Gautam R.

    2015-04-01

    The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape.

  1. Crystallization Pathways in Biomineralization

    NASA Astrophysics Data System (ADS)

    Weiner, Steve; Addadi, Lia

    2011-08-01

    A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.

  2. Electrospinning of nanofibers: Analysis of diameter distribution and process dynamics for control

    NASA Astrophysics Data System (ADS)

    Yan, Xuri

    Electrospinning employs electrostatic force to stretch a charged polymer solution jet and is capable of producing submicron diameter fibers. There has been considerable interest in electrospun fibers due to the ease with which nanometer-scale fibers can be produced from a wide range of polymers. In many applications, the average electrospun fiber diameter and its uniformity have important implications for the product's performance and process economics. Thus, it is desirable to develop electrospinning capability to achieve consistent and controllable fiber diameters. However, the current state-of-the-art electrospinning process results in varying diameter both during a run and runto-run. In addition, the relations of the process and material parameters to the resulting fiber diameter characteristics are not completely understood. This research focuses on understanding what determines the fiber diameter distribution and developing the knowledge base for design of a fiber diameter control system in order to achieve a consistent and repeatable process. The effects of operating parameters on process variability and resulting fiber diameter distribution are investigated. Different operating regimes are determined based on the Taylor cone behaviors and fluctuations. A minimal jet fluctuation regime is identified which helps select appropriate operating conditions. The role of solvent evaporation in fiber spinning process is analyzed. Fiber diameter becomes smaller when solvent evaporation happens more slowly. The effect of ambient humidity on fiber formation by using aqueous PEO solutions is studied. For aqueous PEO solutions, the relative humidity is found to significantly affect fiber diameters and formation. The correlations between several measurable variables such as straight jet diameter and bending angle to the resulting fiber diameter are established and able to predict the resulting fiber diameter. The fundamental process dynamics are identified by step

  3. Electrochemical liquid-liquid-solid (ec-LLS) crystal growth: a low-temperature strategy for covalent semiconductor crystal growth.

    PubMed

    Fahrenkrug, Eli; Maldonado, Stephen

    2015-07-21

    details chosen for ec-LLS. Third, the rate of introduction of zero-valent materials into the liquid metal is precisely gated with a high degree of resolution by the applied potential/current. The intent of this Account is to summarize the key elements of ec-LLS identified to date, first contextualizing this method with respect to other semiconductor crystal growth methods and then highlighting some unique capabilities of ec-LLS. Specifically, we detail ec-LLS as a platform to prepare Ge and Si crystals from bulk- (∼1 cm(3)), micro- (∼10(-10) cm(3)), and nano-sized (∼10(-16) cm(3)) liquid metal electrodes in common solvents at low temperature. In addition, we describe our successes in the preparation of more compositionally complex binary covalent III-V semiconductors.

  4. A strain sensor based on in-line fiber Mach-Zehnder interferometer in twin-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Karim Qureshi, Khurram; Liu, Zhengyong; Tam, Hwa-Yaw; Fahad Zia, M.

    2013-11-01

    We experimentally demonstrate a strain sensor realized using a twin-core photonic crystal fiber (PCF). The strain sensor element consists of a 10 cm long in-fiber Mach-Zehnder interferometer consisting of twin-core PCF. The output spectra of the sensing element is measured and analyzed under various strain levels. The sensitivity of the strain measurement of -0.31 pm/μɛ is achieved within a range from 0 to 4000 μɛ. The effect of temperature is also analyzed.

  5. Apparatus for mounting crystal

    DOEpatents

    Longeway, Paul A.

    1985-01-01

    A thickness monitor useful in deposition or etching reactor systems comprising a crystal-controlled oscillator in which the crystal is deposited or etched to change the frequency of the oscillator. The crystal rests within a thermally conductive metallic housing and arranged to be temperature controlled. Electrode contacts are made to the surface primarily by gravity force such that the crystal is substantially free of stress otherwise induced by high temperature.

  6. Photonic Crystal Fibers

    DTIC Science & Technology

    2005-12-01

    passive and active versions of each fiber designed under this task. Crystal Fibre shall provide characteristics of the fiber fabricated to include core...passive version of multicore fiber iteration 2. 15. SUBJECT TERMS EOARD, Laser physics, Fibre Lasers, Photonic Crystal, Multicore, Fiber Laser 16...9 00* 0 " CRYSTAL FIBRE INT ODUCTION This report describes the photonic crystal fibers developed under agreement No FA8655-o5-a- 3046. All

  7. CRYSTAL FILTER TEST SET

    DTIC Science & Technology

    CRYSTAL FILTERS, *HIGH FREQUENCY, *RADIOFREQUENCY FILTERS, AMPLIFIERS, ELECTRIC POTENTIAL, FREQUENCY, IMPEDANCE MATCHING , INSTRUMENTATION, RADIOFREQUENCY, RADIOFREQUENCY AMPLIFIERS, TEST EQUIPMENT, TEST METHODS

  8. Crystallization from Gels

    NASA Astrophysics Data System (ADS)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  9. Diameter dependent polarization in ZnO/MgO disk-in-wire emitters: Multiscale modeling of optical quantum efficiency

    NASA Astrophysics Data System (ADS)

    Al-Qahtani, Saad Mubarak; Abdullah, Abdulmuin Mostafa A.; Nishat, Md. Rezaul Karim; Ahmed, Shaikh S.

    2017-03-01

    A multiscale computational study is performed to investigate how electronic structure, optical transitions, and terminal characteristics of nanostructured ZnO/MgO disk-in-wire emitters are governed by an intricate coupling of size-quantization, atomicity, and built-in structural and polarization fields. As for the models, an 8-band sp3 (with spin) atomistic tight-binding basis set was used to construct the Hamiltonian of the device in wurtzite crystal symmetry. Strain and the associated distortions of bond directions and bond lengths were modeled via the valence force-field (VFF) molecular mechanics framework. Specifically, in this work, a recently proposed ab initio based diameter-dependent model for the piezoelectric fields was implemented, which, as compared to the conventional diameter-independent model, was found to curb the influence of spontaneous (pyroelectric) polarization significantly. This particular finding is further illustrated through the calculation of electronic bandgap and localization of wavefunctions, optical emission characteristics, and the internal quantum efficiency of the device.

  10. Growth and Physical Property Study of Single Nanowire (Diameter ~45 nm) of Half Doped Manganite

    DOE PAGES

    Datta, Subarna; Chandra, Sayan; Samanta, Sudeshna; ...

    2013-01-01

    We repormore » t here the growth and characterization of functional oxide nanowire of hole doped manganite of La 0.5 Sr 0.5 MnO 3 (LSMO). We also report four-probe electrical resistance measurement of a single nanowire of LSMO (diameter ~45 nm) using focused ion beam (FIB) fabricated electrodes. The wires are fabricated by hydrothermal method using autoclave at a temperature of 270 °C. The elemental analysis and physical property like electrical resistivity are studied at an individual nanowire level. The quantitative determination of Mn valency and elemental mapping of constituent elements are done by using Electron Energy Loss Spectroscopy (EELS) in the Transmission Electron Microscopy (TEM) mode. We address the important issue of whether as a result of size reduction the nanowires can retain the desired composition, structure, and physical properties. The nanowires used are found to have a ferromagnetic transition ( T C ) at around 325 K which is very close to the bulk value of around 330 K found in single crystal of the same composition. It is confirmed that the functional behavior is likely to be retained even after size reduction of the nanowires to a diameter of 45 nm. The electrical resistivity shows insulating behavior within the measured temperature range which is similar to the bulk system.« less

  11. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1994-01-01

    The long-term stability of the interferometric setup for the monitoring of protein morphologies has been improved. Growth or dissolution of a crystal on a 100 A scale can now be clearly distinguished from dimensional changes occurring within the optical path of the interferometer. This capability of simultaneously monitoring the local interfacial displacement at several widely-spaced positions on the crystal surface with high local depth resolution, has already yielded novel results. We found with lysozyme that (1) the normal growth rate is oscillatory, and (2) the mean growth step density is greater at the periphery of a facet than in its center. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied for a wide range of crystallization conditions. A nucleation-growth-repartitioning model was developed to interpret the large body of data in a unified way. The results strongly suggests that (1) the ion to lysozyme ratio in the crystal depends mostly on kinetic rather than crystallographic parameters, and (2) lysozyme crystals possess a salt-rich core with a diameter on the order of 10 microns. The computational model for diffusive-convective transport in protein crystallization (see the First Report) has been applied to a realistic growth cell geometry, taking into account the findings of the above repartitioning studies. These results show that some elements of a moving boundary problem must be incorporated into the model in order to obtain a more realistic description. Our experimental setup for light scattering investigations of aggregation and nucleation in protein solutions has been extensively tested. Scattering intensity measurements with a true Rayleigh scatterer produced systematically increased forward scattering, indicating problems with glare. These have been resolved. Preliminary measurements with supersaturated lysozyme solutions revealed that the scatterers grow with time. Work has begun on a computer program

  12. Food Crystalization and Eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food Crystalization and Eggs Deana R. Jones, Ph.D. USDA Agricultural Research Service Egg Safety and Quality Research Unit Athens, Georgia, USA Deana.Jones@ars.usda.gov Sugar, salt, lactose, tartaric acid and ice are examples of constituents than can crystallize in foods. Crystallization in a foo...

  13. Artistic Crystal Creations

    ERIC Educational Resources Information Center

    Lange, Catherine

    2008-01-01

    In this inquiry-based, integrative art and science activity, Grade 5-8 students use multicolored Epsom salt (magnesium sulfate) crystallizing solutions to reveal beautiful, cylindrical, 3-dimensional, needle-shaped structures. Through observations of the crystal art, students analyze factors that contribute to crystal size and formation, compare…

  14. Annealing macromolecular crystals.

    PubMed

    Hanson, B Leif; Bunick, Gerard J

    2007-01-01

    The process of crystal annealing has been used to improve the quality of diffraction from crystals that would otherwise be discarded for displaying unsatisfactory diffraction after flash cooling. Although techniques and protocols vary, macromolecular crystals are annealed by warming the flash-cooled crystal, then flash cooling it again. To apply macromolecular crystal annealing, a flash-cooled crystal displaying unacceptably high mosaicity or diffraction from ice is removed from the goniometer and immediately placed in cryoprotectant buffer. The crystal is incubated in the buffer at either room temperature or the temperature at which the crystal was grown. After about 3 min, the crystal is remounted in the loop and flash cooled. In situ annealing techniques, where the cold stream is diverted and the crystal allowed to warm on the loop prior to flash cooling, are variations of annealing that appears to work best when large solvent channels are not present in the crystal lattice or the solvent content of the crystal is relatively low.

  15. Protein Crystal Based Nanomaterials

    NASA Technical Reports Server (NTRS)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  16. Crystallization Processes and Magma Chamber Dynamics at the Mount Erebus Volcano Lava Lake: The Mineralogic Message

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Kyle, P. R.; Dunbar, N. W.

    2006-12-01

    Mount Erebus volcano, Antarctica, hosts a persistently convecting and degassing lake of crystal-rich (30-40 vol.% phenocrysts) phonolite magma, providing a direct view into an active, stable, upper-level magma chamber. Mineral phases in lava bombs ejected by small strombolian eruptions from the lava lake between 1972 and 2004 were examined. Detailed compositional profiles of Ti-magnetite and large (up to 10 cm) anorthoclase feldspar phenocrysts were obtained by electron microprobe (EMP). The EMP data provide insight into the controls on crystallization in the lava lake/shallow magmatic system as well as the processes occurring in the magma chamber. Ti-magnetite are uniform and unzoned. The anorthoclase are complexly compositionally zoned over a restricted range (An10.3-22.9Ab62.8-68.1Or11.4-27.2) and contain abundant melt inclusions (up to ~30 vol. %). Coupled, inverse variations of An and Or account for ~96% of major element compositional variability and independent Ab variations account for ~4%. The anorthoclase compositions and textures suggest crystallization proceeds at low degrees of effective undercooling and is controlled by decompression-induced degassing of water. Unlike microlites that form during a single episode of ascent and eruption, the anorthoclase phenocrysts record multiple episodes of decompression and rim growth due to shallow convection in the lava lake under variable PH2O conditions. Crystals contained within a single lava bomb do not have shared crystallization histories, suggesting that differential movement of crystals and melt occurs within the magma chamber and that lava bombs are a mechanical assembly of crystals brought together a short time before or during an eruption. Large temperature variations at the surface of the lava lake (~400°C) are not reflected in the crystal compositions. Apparently, the kinetics of mineral growth are too sluggish to record the transient cooling (estimated to be ~20 mins.) experienced by crystals at the

  17. Substrate diameter and compliance affect the gripping strategies and locomotor mode of climbing boa constrictors.

    PubMed

    Byrnes, Greg; Jayne, Bruce C

    2010-12-15

    Arboreal habitats pose unique challenges for locomotion as a result of their narrow cylindrical surfaces and discontinuities between branches. Decreased diameter of branches increases compliance, which can pose additional challenges, including effects on stability and energy damping. However, the combined effects of substrate diameter and compliance are poorly understood for any animal. We quantified performance, kinematics and substrate deformation while boa constrictors (Boa constrictor) climbed vertical ropes with three diameters (3, 6 and 9 mm) and four tensions (0.5, 1.0, 1.5 and 2.0 body weights). Mean forward velocity decreased significantly with both decreased diameter and increased compliance. Both diameter and compliance had numerous effects on locomotor kinematics, but diameter had larger and more pervasive effects than compliance. Locomotion on the largest diameter had a larger forward excursion per cycle, and the locomotor mode and gripping strategy differed from that on the smaller diameters. On larger diameters, snakes primarily applied opposing forces at the same location on the rope to grip. By contrast, on smaller diameters forces were applied in opposite directions at different locations along the rope, resulting in increased rope deformation. Although energy is likely to be lost during deformation, snakes might use increased surface deformation as a strategy to enhance their ability to grip.

  18. Protein crystallization with paper

    NASA Astrophysics Data System (ADS)

    Matsuoka, Miki; Kakinouchi, Keisuke; Adachi, Hiroaki; Maruyama, Mihoko; Sugiyama, Shigeru; Sano, Satoshi; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Yoshimura, Masashi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Takano, Kazufumi

    2016-05-01

    We developed a new protein crystallization method that incorporates paper. A small piece of paper, such as facial tissue or KimWipes, was added to a drop of protein solution in the traditional sitting drop vapor diffusion technique, and protein crystals grew by incorporating paper. By this method, we achieved the growth of protein crystals with reducing osmotic shock. Because the technique is very simple and the materials are easy to obtain, this method will come into wide use for protein crystallization. In the future, it could be applied to nanoliter-scale crystallization screening on a paper sheet such as in inkjet printing.

  19. Improving marginal crystals.

    PubMed

    Carter, Charles W; Riès-Kautt, Madeleine

    2007-01-01

    The physical chemistry of crystal growth can help to identify directions in which to look for improved crystal properties. In this chapter, we summarize how crystal growth depends on parameters that can be controlled experimentally, and relate them to the tools available for optimizing a particular crystal form for crystal shape, volume, and diffraction quality. Our purpose is to sketch the conceptual basis of optimization and to provide sample protocols derived from those foundations. We hope to assist even those who chose not to use systematic methods by enabling them to carry out rudimentary optimization searches armed with a better understanding of how the underlying physical chemistry operates.

  20. Photonic crystal light source

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  1. Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  2. Diameter-driven crossover in resistive behaviour of heavily doped self-seeded germanium nanowires

    PubMed Central

    Connaughton, Stephen; Koleśnik-Gray, Maria; Hobbs, Richard; Lotty, Olan; Holmes, Justin D

    2016-01-01

    Summary The dependence of the resistivity with changing diameter of heavily-doped self-seeded germanium nanowires was studied for the diameter range 40 to 11 nm. The experimental data reveal an initial strong reduction of the resistivity with diameter decrease. At about 20 nm a region of slowly varying resistivity emerges with a peak feature around 14 nm. For diameters above 20 nm, nanowires were found to be describable by classical means. For smaller diameters a quantum-based approach was required where we employed the 1D Kubo–Greenwood framework and also revealed the dominant charge carriers to be heavy holes. For both regimes the theoretical results and experimental data agree qualitatively well assuming a spatial spreading of the free holes towards the nanowire centre upon diameter reduction. PMID:27826502

  3. Hydrodynamic Model with Binary Particle Diameters to Predict Axial Voidage Profile in a CFB Combustor

    NASA Astrophysics Data System (ADS)

    Li, J. J.; Zhang, H.; Yang, H. R.; Wu, Y. X.; Lu, J. F.; Yue, G. X.

    A hydrodynamic model with binary particle diameters was developed to better predict axial voidage profile in a CFB combustor. In the model, the CFB is regarded as a superposition of two sub-beds, a fast fluidized bed in the upper riser with a characteristic particle diameter of O.2mm and a bubbling fluidized bed or turbulent bed in the bottom riser with a characteristic particle diameter of 2mm. Furthermore, a variable critical particle diameter whose terminal velocity equals to the superficial gas velocity was employed to determine which flow regime the particle belongs to. The results show that binary particle diameter model has the advantages in describing wide particle diameter distribution while reducing the complexity of computation. The model was verified by the field data of voidage profile in a 300MW CFB boiler.

  4. Capillary stability of vapor-liquid-solid crystallization processes and their comparison to Czochralski and Stepanov growth methods

    NASA Astrophysics Data System (ADS)

    Nebol'sin, Valery A.; Suyatin, Dmitry B.; Dunaev, Alexander I.; Tatarenkov, Alexander F.

    2017-04-01

    Epitaxial semiconductor nanowires grown with vapor-liquid-solid crystallization processes are very attractive nanoscale objects for many different applications. Despite extensive studies of the growth mechanism, there is still a lack of understanding of the growth process; in particular, the stability of the vapor-liquid-solid crystallization process has not previously been studied. Here we examine the capillary stability of the vapor-liquid-solid growth of nanowires and filamentary crystals with different diameters and demonstrate that the growth is stable for small Bond numbers when the meniscus height is linearly dependent on catalyst diameter. The capillary stability of vapor-liquid-solid growth is also compared with capillary stability in the Stepanov and Czochralski crystal growth methods; it is shown that capillary stability is not possible in the Czochralski method, although it is possible in the Stepanov growth method when the ratio of crystal diameter to shaper diameter is >1/2. These findings are important for better understanding and improved control of the growth of nanowires and filamentary crystals and indicate, for example, that large diameter filamentary crystals can be grown via a vapor-liquid-solid mechanism if the influence of gravity forces on the liquid catalytic particle shape can be reduced.

  5. Macromolecular Crystallization in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Helliwell, John R.

    2004-01-01

    The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural

  6. Certification of NIST SRM 1961: 30 μm Diameter Polystyrene Spheres.

    PubMed

    Hartman, Arie W; Doiron, Theodore D; Hembree, Gary G

    1991-01-01

    This report describes the certification of SRM 1961, an NIST Standard Reference Material for particle diameter. It consists of an aqueous suspension of monosize 30 μm diameter polystyrene spheres. The primary technique used optical microscopy; it gave a mean diameter value [Formula: see text] and a standard deviation of the size distribution σD = 0.21 μm. Over 2000 spheres were measured. The supporting technique used electron microscopy, which yielded [Formula: see text]. Ninety spheres were measured.

  7. Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin.

    PubMed

    Sisson, Kristin; Zhang, Chu; Farach-Carson, Mary C; Chase, D Bruce; Rabolt, John F

    2010-09-15

    Defined electrospinning conditions were used to create scaffolds with different fiber diameters to investigate their interactions with osteoblastic MG63 cells. Nonwoven gelatin scaffolds were electrospun with varied fiber diameters to investigate the effect of fiber size and resultant porosity on cell proliferation, viability, migration, and differentiation. The low toxicity solvent acetic acid:ethyl acetate:water ratio and gelatin concentrations were optimized to create small and large diameter fibers. The fiber diameters obtained by this procedure were 110 +/- 40 nm for the small and 600 +/- 110 nm for the large fibers. Cell viability assays showed that MG63 cells grew similarly on both fibers at the early time point (day 3) but preferred the scaffold with large diameter fibers by the later time points (day 5 and day 7). Confocal microscopic imaging showed that MG63 cells migrated poorly (maximum depth of 18 microm) into the scaffold of small diameter fibers, but readily penetrated (maximum depth of 50 microm) into the scaffold of large diameter fibers. Alkaline phosphatase (ALP) assays showed that MG63 cells differentiated on scaffolds made from both diameter fibers. In longer term experiments, MG63 cells differentiated to a greater extent on scaffolds made from small diameter fibers compared to large diameter fibers at days 3 and 7, but the ALP levels were the same for both diameter fibers by day 14. These results indicate that cells can perceive differences in the diameter and resultant pore size of electrospun gelatin fibers and that they process this information to alter their behavior.

  8. Growth and characterization of unidirectional (100) KDP single crystal by Sankaranarayanan-Ramasamy (SR) method.

    PubMed

    Balamurugan, S; Ramasamy, P

    2009-01-01

    Unidirectional (100) potassium dihydrogen orthophosphate (KDP) single crystals were grown by Sankaranarayanan-Ramasamy (SR) method. The (100) oriented seed crystals were mounted at the bottom of the glass ampoules and the crystals of 20mm diameter, 30 mm height and 15 mm diameter, 65 mm height were grown by SR method. The grown crystals were characterized by high-resolution X-ray diffractometry anlaysis, UV-vis spectroscopy, dielectric and microhardness studies. The high-resolution X-ray diffractometry anlaysis indicates that the crystalline perfection is excellent without having any very low angle internal structural grain boundaries. The SR method-grown unidirectional KDP has 15% higher transmittance compared to conventional method-grown crystals. The dielectric constant was higher and the dielectric loss was less in SR method-grown crystal. The crystals grown by SR method have much higher hardness value than conventional method-grown crystals. The quality of the crystal grown by SR method is better than conventional method-grown crystal.

  9. Crystal Polymorphism and Multiple Crystal Forms

    NASA Astrophysics Data System (ADS)

    Braga, Dario; Grepioni, Fabrizia; Maini, Lucia; Polito, Marco

    This chapter discusses the phenomenon of polymorphism in organic and organometallic compounds. Polymorphism is first introduced and then, to give the work some context, background information is given concerning properties and techniques for characterizing the solid phases. In particular, desolvation and interconverstion are examined, and the gas-solid reactions are presented as a successful route to obtaining new crystalline phases. Co-crystal definition is then described and the problem in distinguishing co-crystals and salts is evaluated.

  10. Measurement of Vein Diameter for Peripherally Inserted Central Catheter (PICC) Insertion: An Observational Study.

    PubMed

    Sharp, Rebecca; Cummings, Melita; Childs, Jessie; Fielder, Andrea; Mikocka-Walus, Antonina; Grech, Carol; Esterman, Adrian

    2015-01-01

    Choosing an appropriately sized vein reduces the risk of venous thromboembolism associated with peripherally inserted central catheters. This observational study described the diameters of the brachial, basilic, and cephalic veins and determined the effect of patient factors on vein size. Ultrasound was used to measure the veins of 176 participants. Vein diameter was similar in both arms regardless of hand dominance and side. Patient factors-including greater age, height, and weight, as well as male gender-were associated with increased vein diameter. The basilic vein tended to have the largest diameter statistically. However, this was the case in only 55% of patients.

  11. Method and apparatus for determining diameter and wall thickness of minute hollow spherical shells

    DOEpatents

    Steinman, D.A.

    1980-05-30

    Method and apparatus for determining diameter and wall thickness of hollow microspheres or shells wherein terminal velocities of shells traveling in fluid-filled conduits of differing diameters are measured. A wall-effect factor is determined as a ratio of the terminal velocities, and shell outside diameter may then be ascertained as a predetermined empirical function of wall-effect factor. For shells of known outside diameter, wall thickness may then be ascertained as a predetermined empirical function of terminal velocity in either conduit.

  12. Method and apparatus for determining diameter and wall thickness of minute hollow spherical shells

    DOEpatents

    Steinman, David A.

    1982-01-01

    Method and apparatus for determining diameter and wall thickness of hollow microspheres or shells wherein terminal velocities of shells traveling in fluid-filled conduits of differing diameters are measured. A wall-effect factor is determined as a ratio of the terminal velocities, and shell outside diameter may then be ascertained as a predetermined empirical function of wall-effect factor. For shells of known outside diameter, wall thickness may then be ascertained as a predetermined empirical function of terminal velocity in either conduit.

  13. Relating airway diameter distributions to regular branching asymmetry in the lung.

    PubMed

    Majumdar, Arnab; Alencar, Adriano M; Buldyrev, Sergey V; Hantos, Zoltán; Lutchen, Kenneth R; Stanley, H Eugene; Suki, Béla

    2005-10-14

    We study the distribution Pi(n)(D) of airway diameters D as a function of generation N in asymmetric airway trees of mammalian lungs. We find that the airway bifurcations are self-similar in four species studied. Specifically, the ratios of diameters of the major and minor daughters to their parent are constants independent of N until a cutoff diameter is reached. We derive closed form expressions for Pi(N)(D) and examine the flow resistance of the tree based on an asymmetric flow division model. Our findings suggest that the observed diameter heterogeneity is consistent with an underlying regular branching asymmetry.

  14. Studies on conventional and Sankaranarayanan-Ramasamy (SR) method grown ferroelectric glycine phosphite (GPI) single crystals

    NASA Astrophysics Data System (ADS)

    Senthil Pandian, M.; Pattanaboonmee, N.; Ramasamy, P.; Manyum, P.

    2011-01-01

    Transparent single crystals of glycine phosphite were grown by Sankaranarayanan-Ramasamy (SR) method and conventional slow evaporation solution technique (SEST) which had the sizes of 100 mm in length, 30 mm diameter and 10×11×8 mm 3. The conventional slow evaporation and Sankaranarayanan-Ramasamy method grown glycine phosphite single crystals were characterized using laser damage threshold, chemical etching, Vickers microhardness, UV-vis-NIR and dielectric analysis. The laser damage threshold value was higher in SR method grown GPI crystal as against conventional method grown crystal. The SR method grown GPI has higher hardness and also higher transmittance compared to conventional method grown crystal. The chemical etching and dielectric loss measurements indicate that the crystal grown by SR method has low density of defects and low value of dielectric loss compared to conventional method grown GPI crystal.

  15. Improvement of X-ray Imaging Crystal Spectrometers for KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, Sang Gon; Bitter, M.; Nam, U. W.; Moon, M. K.

    2005-10-01

    The X-ray imaging crystal spectrometers for the KSTAR tokamak will provide spatially and temporally resolved spectra of the resonance line of helium-like argon (or krypton) and the associated satellites from multiple lines of sight parallel and perpendicular to the horizontal mid-plane for measurements of the profiles of the ion and electron temperatures, plasma rotation velocity, and ionization equilibrium. The spectrometers are consisted of a spherically bent quartz crystal and a 10 cm x 30 cm large 2D position-sensitive multi-wire proportional counter. A 2D detector with delay-line readout and supporting electronics has been fabricated and tested on the NSTX tokamak at PPPL. Position resolution and count rate capability of the 2D detector are still need to be improved to meet the requirements. Hence, a segmented version of the 2D detector is under development to satisfy the requirements. The experimental results from the improved 2D detector will be presented.

  16. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Atomic force microscopy uses laser technology to reveal a defect, a double-screw dislocation, on the surface of this crystal of canavalin, a major source of dietary protein for humans and domestic animals. When a crystal grows, attachment kinetics and transport kinetics are competing for control of the molecules. As a molecule gets close to the crystal surface, it has to attach properly for the crystal to be usable. NASA has funded investigators to look at those attachment kinetics from a theoretical standpoint and an experimental standpoint. Dr. Alex McPherson of the University of California, Irvine, is one of those investigators. He uses X-ray diffraction and atomic force microscopy in his laboratory to answer some of the many questions about how protein crystals grow. Atomic force microscopy provides a means of looking at how individual molecules are added to the surface of growing protein crystals. This helps McPherson understand the kinetics of protein crystal growth. McPherson asks, How fast do crystals grow? What are the forces involved? Investigators funded by NASA have clearly shown that such factors as the level of supersaturation and the rate of growth all affect the habit [characteristic arrangement of facets] of the crystal and the defects that occur in the crystal.

  17. Bulk crystals of L-Histidinium dihydrogen phosphate orthophosphoric acid grown by Sankaranarayanan-Ramasamy method

    NASA Astrophysics Data System (ADS)

    Ittyachan, Reena; Arunkumar, A.

    2017-01-01

    L-Histidinium dihydrogen phosphate orthophosphoric acid (LHDP) crystal of length 80 mm long and 20 mm diameter has been grown from aqueous solution along c-axis using Sankaranarayanan-Ramasamy method. The unit cell parameters were confirmed by single crystal X-ray diffraction analysis and it belongs to orthorhombic system. The UV-vis-NIR spectrum showed that the grown crystal is transparent in the entire visible region. The lower optical cut-off wavelength for this crystal was observed at 240 nm. Fluorescence studies were carried out in range of 200-700 nm. SHG efficiency was analyzed using Kurtz-Perry powder technique.

  18. Fabrication of three-dimensional terahertz photonic crystals with diamond structure by particle manipulation assembly

    NASA Astrophysics Data System (ADS)

    Takagi, Kenta; Kawasaki, Akira

    2009-01-01

    We reported the fabrication of terahertz photonic crystals by three-dimensional (3D) particle manipulation assembly. Our method, which is based on pick-and-place manipulation and interparticle laser welding, enabled accurate assembling of an arbitrary 3D structure, regardless of particle polydispersity. By using this method, we fabricated a diamond crystal from ZrO2/polyethylene composite particles (diameter of 400 μm). The obtained crystal exhibited a photonic stop gap in the ⟨111⟩ direction; this result was in good agreement with the theoretical result, suggesting that the crystal has a full photonic bandgap at around 0.2 THz.

  19. Growing ZnO crystals on magnetite nanoparticles.

    PubMed

    Turgeman, Rachel; Tirosh, Shay; Gedanken, Aharon

    2004-04-02

    We report herein on the oriented growth of ZnO crystals on magnetite nanoparticles. The ZnO crystals were grown by hydrolyzing a supersaturated aqueous solution of zinc nitrate. The seeds for the growth were magnetite nanoparticles with a diameter of 5.7 nm and a narrow size distribution. Hollowed ZnO hexagons of 0.15 microm width and 0.5 microm length filled with Fe(3)O(4) particles were obtained. HR-TEM (high-resolution transmission electron microscopy) and selected-area EDS (energy-dispersive spectroscopy) show that the nanoparticles are homogenously spread in the ZnO tubes. Zeta potential measurements were employed to understand the relationship between the nanoparticles and the oriented growth of the ZnO crystals. The results show that the surfactants induced the directional growth of the ZnO crystals.

  20. The role of nanopore shape in surface-induced crystallization

    NASA Astrophysics Data System (ADS)

    Diao, Ying; Harada, Takuya; Myerson, Allan S.; Alan Hatton, T.; Trout, Bernhardt L.

    2011-11-01

    Crystallization of a molecular liquid from solution often initiates at solid-liquid interfaces, and nucleation rates are generally believed to be enhanced by surface roughness. Here we show that, on a rough surface, the shape of surface nanopores can also alter nucleation kinetics. Using lithographic methods, we patterned polymer films with nanopores of various shapes and found that spherical nanopores 15-120 nm in diameter hindered nucleation of aspirin crystals, whereas angular nanopores of the same size promoted it. We also show that favourable surface-solute interactions are required for angular nanopores to promote nucleation, and propose that pore shape affects nucleation kinetics through the alteration of the orientational order of the crystallizing molecule near the angles of the pores. Our findings have clear technological implications, for instance in the control of pharmaceutical polymorphism and in the design of ‘seed’ particles for the regulation of crystallization of fine chemicals.

  1. Single-crystal gallium nitride nanotubes.

    PubMed

    Goldberger, Joshua; He, Rongrui; Zhang, Yanfeng; Lee, Sangkwon; Yan, Haoquan; Choi, Heon-Jin; Yang, Peidong

    2003-04-10

    Since the discovery of carbon nanotubes in 1991 (ref. 1), there have been significant research efforts to synthesize nanometre-scale tubular forms of various solids. The formation of tubular nanostructure generally requires a layered or anisotropic crystal structure. There are reports of nanotubes made from silica, alumina, silicon and metals that do not have a layered crystal structure; they are synthesized by using carbon nanotubes and porous membranes as templates, or by thin-film rolling. These nanotubes, however, are either amorphous, polycrystalline or exist only in ultrahigh vacuum. The growth of single-crystal semiconductor hollow nanotubes would be advantageous in potential nanoscale electronics, optoelectronics and biochemical-sensing applications. Here we report an 'epitaxial casting' approach for the synthesis of single-crystal GaN nanotubes with inner diameters of 30-200 nm and wall thicknesses of 5-50 nm. Hexagonal ZnO nanowires were used as templates for the epitaxial overgrowth of thin GaN layers in a chemical vapour deposition system. The ZnO nanowire templates were subsequently removed by thermal reduction and evaporation, resulting in ordered arrays of GaN nanotubes on the substrates. This templating process should be applicable to many other semiconductor systems.

  2. Periodic Modification of Nanofibers by Polymer Crystallization

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Li, Christopher

    2008-03-01

    Electrospinning polymer nanofibers are one of the most useful 1D nanometer-scaled materials that have numerous potential applications in the fields of filter applications, and templates for tissue engineering. Herein we show that polymer nanofibers can also be used as 1D nucleation agents to induce polymer crystallization. Poly(ethylene oxide) was electrospun into nanofibers which was used to induce PEO crystallization in solution. Shish kebab morphology was observed with the nanofiber as the shish and the PEO lamellar crystals as the kebabs. This unique morphology was named as nano fiber shish kebabs (NFSKs). We demonstrated that the structural parameters of the NSFK such as the fiber diameter, periods, the kebab size etc. could be readily controlled by the electrospinning and crystallization conditions. This NSFK also renders 3D features to the otherwise 1D nanofibers. It also serves as a vehicle for incorporating a variety of functional groups to the nanofiber systems, which, in turn, leads to numerous biomedical as well as electronic applications.

  3. Quantification of pulmonary vessel diameter in low-dose CT images

    NASA Astrophysics Data System (ADS)

    Rudyanto, Rina D.; Ortiz de Solórzano, Carlos; Muñoz-Barrutia, Arrate

    2015-03-01

    Accurate quantification of vessel diameter in low-dose Computer Tomography (CT) images is important to study pulmonary diseases, in particular for the diagnosis of vascular diseases and the characterization of morphological vascular remodeling in Chronic Obstructive Pulmonary Disease (COPD). In this study, we objectively compare several vessel diameter estimation methods using a physical phantom. Five solid tubes of differing diameters (from 0.898 to 3.980 mm) were embedded in foam, simulating vessels in the lungs. To measure the diameters, we first extracted the vessels using either of two approaches: vessel enhancement using multi-scale Hessian matrix computation, or explicitly segmenting them using intensity threshold. We implemented six methods to quantify the diameter: three estimating diameter as a function of scale used to calculate the Hessian matrix; two calculating equivalent diameter from the crosssection area obtained by thresholding the intensity and vesselness response, respectively; and finally, estimating the diameter of the object using the Full Width Half Maximum (FWHM). We find that the accuracy of frequently used methods estimating vessel diameter from the multi-scale vesselness filter depends on the range and the number of scales used. Moreover, these methods still yield a significant error margin on the challenging estimation of the smallest diameter (on the order or below the size of the CT point spread function). Obviously, the performance of the thresholding-based methods depends on the value of the threshold. Finally, we observe that a simple adaptive thresholding approach can achieve a robust and accurate estimation of the smallest vessels diameter.

  4. Effects of pellet diameter during and after lactation on feed intake of piglets pre- and postweaning.

    PubMed

    van den Brand, H; Wamsteeker, D; Oostindjer, M; van Enckevort, L C M; van der Poel, A F B; Kemp, B; Bolhuis, J E

    2014-09-01

    Effects of 2 pellet diameters for piglets pre- and postweaning on feed intake, BW, and feed-related behavior were studied in 3 experiments. In Exp. 1, 19 litters were provided with pellets of 2 and 12 mm in diameter in a choice-feeding setup from d 4 of lactation onward. From d 4 to 18, piglets preferred the 12-mm diameter pellet over the 2-mm diameter pellet (519 vs. 168 g/pen; P < 0.001). In Exp. 2, 39 litters were provided with creep feed of either 2- or 10-mm diameter pellets. Feed intake from d 3 to 17 was higher in litters provided the 10-mm diameter pellet than the 2-mm diameter pellet (1,752 vs. 1,101 g/pen; P < 0.001). Piglet BW at weaning did not differ between treatments. Treatment × day of lactation interactions were found for time spent eating, interest in eating, and time spent suckling. Time spent eating and interest in eating increased with time. This increase was lower in the litters provided with the 10-mm diameter pellet. Time spent suckling remained the same in litters provided with 2-mm diameter pellets but decreased in time in litters provided the 10-mm diameter pellets. Experiment 3 was set up as a 2 × 2 factorial design with pellet diameter both pre- and postweaning as factors. During lactation, 18 litters were provided creep feed of either 2 or 12 mm in pellet diameter. At weaning, each litter was split into 2 comparable half litters and each half litter was provided with feed of 2 or 12 mm in diameter. Feed intake was higher in the 12-mm diameter pellet litters than in the 2-mm ones from d 4 to 11 of lactation (P < 0.01). Pellet diameter provided after weaning did not affect BW gain or feed intake. Piglets provided the 12-mm diameter pellet before weaning, however, had a higher BW gain (2,060 vs. 2,606 g/pig; P = 0.003) and feed intake (2,772 vs. 3,173 g/pig; P = 0.04) and a lower feed conversion ratio (P = 0.03) between d 0 and 10 after weaning than piglets provided the 2-mm diameter pellet before weaning. Postweaning pellet diameter

  5. Automated macromolecular crystallization screening

    DOEpatents

    Segelke, Brent W.; Rupp, Bernhard; Krupka, Heike I.

    2005-03-01

    An automated macromolecular crystallization screening system wherein a multiplicity of reagent mixes are produced. A multiplicity of analysis plates is produced utilizing the reagent mixes combined with a sample. The analysis plates are incubated to promote growth of crystals. Images of the crystals are made. The images are analyzed with regard to suitability of the crystals for analysis by x-ray crystallography. A design of reagent mixes is produced based upon the expected suitability of the crystals for analysis by x-ray crystallography. A second multiplicity of mixes of the reagent components is produced utilizing the design and a second multiplicity of reagent mixes is used for a second round of automated macromolecular crystallization screening. In one embodiment the multiplicity of reagent mixes are produced by a random selection of reagent components.

  6. Antarctic stratospheric ice crystals

    NASA Technical Reports Server (NTRS)

    Goodman, J.; Toon, O. B.; Pueschel, R. F.; Snetsinger, K. G.; Verma, S.

    1989-01-01

    Ice crystals were replicated over the Palmer Peninsula at approximately 72 deg S on six occasions during the 1987 Airboirne Antarctic Ozone Experiment. The sampling altitude was between 12.5 and 18.5 km (45-65 thousand ft pressure altitude) with the temperature between 190 and 201 K. The atmosphere was subsaturated with respect to ice in all cases. The collected crystals were predominantly solid and hollow columns. The largest crystals were sampled at lower altitudes where the potential temperature was below 400 K. While the crystals were larger than anticipated, their low concentration results in a total surface area that is less than one tenth of the total aerosol surface area. The large ice crystals may play an important role in the observed stratospheric dehydration processes through sedimentation. Evidence of scavenging of submicron particles further suggests that the ice crystals may be effective in the removal of stratospheric chemicals.

  7. Protein crystallization in microgravity.

    PubMed

    Aibara, S; Shibata, K; Morita, Y

    1997-12-01

    A space experiment involving protein crystallization was conducted in a microgravity environment using the space shuttle "Endeavour" of STS-47, on a 9-day mission from September 12th to 20th in 1992. The crystallization was carried out according to a batch method, and 5 proteins were selected as flight samples for crystallization. Two of these proteins: hen egg-white lysozyme and co-amino acid: pyruvate aminotransferase from Pseudomonas sp. F-126, were obtained as single crystals of good diffraction quality. Since 1992 we have carried out several space experiments for protein crystallization aboard space shuttles and the space station MIR. Our experimental results obtained mainly from hen egg-white lysozyme are described below, focusing on the effects of microgravity on protein crystal growth.

  8. Crystallization of Macromolecules

    PubMed Central

    Friedmann, David; Messick, Troy; Marmorstein, Ronen

    2014-01-01

    X-ray crystallography has evolved into a very powerful tool to determine the three-dimensional structure of macromolecules and macromolecular complexes. The major bottleneck in structure determination by X-ray crystallography is the preparation of suitable crystalline samples. This unit outlines steps for the crystallization of a macromolecule, starting with a purified, homogeneous sample. The first protocols describe preparation of the macromolecular sample (i.e., proteins, nucleic acids, and macromolecular complexes). The preparation and assessment of crystallization trials is then described, along with a protocol for confirming whether the crystals obtained are composed of macromolecule as opposed to a crystallization reagent. Next, the optimization of crystallization conditions is presented. Finally, protocols that facilitate the growth of larger crystals through seeding are described. PMID:18429252

  9. Crystallization of Macromolecules

    PubMed Central

    Friedmann, David; Messick, Troy; Marmorstein, Ronen

    2014-01-01

    X-ray crystallography has evolved into a very powerful tool to determine the three-dimensional structure of macromolecules and macromolecular complexes. The major bottleneck in structure determination by X-ray crystallography is the preparation of suitable crystalline samples. This unit outlines steps for the crystallization of a macromolecule, starting with a purified, homogeneous sample. The first protocols describe preparation of the macromolecular sample (i.e., proteins, nucleic acids, and macromolecular complexes). The preparation and assessment of crystallization trials is then described, along with a protocol for confirming whether the crystals obtained are composed of macromolecule as opposed to a crystallization reagent . Next, the optimization of crystallization conditions is presented. Finally, protocols that facilitate the growth of larger crystals through seeding are described. PMID:22045560

  10. Development of methods of producing large areas of silicon sheet by the slicing of silicon ingots using inside-diameter (I. D. ) saws. Final report, May 1979-April 1980

    SciTech Connect

    Aharonyan, P.

    1980-01-01

    I.D. wafering equipment, blades and processes were used to develop methods for producing large areas of silicon sheet. Modifications to a 16 inch STC automated saw included programmable feed system; crystal rotating system; and STC dyna-track blade monitoring and control system. By controlling the plating operation and by grinding of the cutting edge, we were able to produce 16 inch I.D. blades with a cutting edge thickness of .22 mm. Crystal rotation mechanism was used to slice 100 mm diameter crystals with a 16 inch blade down to a thickness of .20 mm. Cutting rates with crystal rotation were generally slower than with standard plunge I.D. slicing techniques. Using programmed feeds and programmed rotation, maximum cutting rates were from 0.3 to 1.0 inches per minute.

  11. Measurement of Critical Diameter, Shock and Impact Sensitivity of a Special Propellant

    DTIC Science & Technology

    1981-03-01

    of detonation ) and the charge density. At smaller charge diameters the detonation velocity is less than the ideal value and decreases with a...velocity is in- dependent of diameter and is the ideal velocity, T)±, whose value depends only on the specific energy released by the detonation ( heat

  12. 78 FR 64477 - Welded Large Diameter Line Pipe From Japan: Continuation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... International Trade Administration Welded Large Diameter Line Pipe From Japan: Continuation of Antidumping Duty... duty order on welded large diameter line pipe (LDLP) from Japan would likely lead to continuation or...: Background On December 6, 2001, the Department published the antidumping duty order on LDLP from Japan.\\1\\...

  13. Effect of diameter of glass fibers on flexural properties of fiber-reinforced composites.

    PubMed

    Obukuro, Motofumi; Takahashi, Yutaka; Shimizu, Hiroshi

    2008-07-01

    This study investigated the effect of the diameter of glass fibers on the flexural properties of fiber-reinforced composites. Bar-shaped test specimens of highly filled fiber-reinforced composites (FRCs) and FRC of 30 vol% fiber content were made from a light-cured dimethacrylate monomer liquid (mixture of urethane dimethacrylate and triethylene glycol dimethacrylate) with silanized E-glass fibers (7, 10, 13, 16, 20, 25, 30, and 45 microm in diameter). Flexural strength and elastic modulus were measured. The flexural strength of the highly filled FRCs increased with increasing fiber diameter. In particular, the strengths of highly filled FRCs with 20-, 25-, 30-, and 45-microm-diameter fibers was significantly higher than the others (p<0.05). The flexural strength of FRC of 30 vol% fiber content increased with increasing fiber diameter, except for the FRC with 45-microm-diameter fibers; FRCs with 20-, 25-, and 30-microm-diameter fibers were significantly stronger than the others (p<0.05). Therefore, it was revealed that the diameter of glass fibers significantly affected the flexural properties of fiber-reinforced composites.

  14. 78 FR 22843 - Small Diameter Graphite Electrodes From the People's Republic of China: Affirmative Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ... International Trade Administration Small Diameter Graphite Electrodes From the People's Republic of China... determines that imports from the People's Republic of China (``PRC'') of ] certain graphite electrodes... Diameter Graphite Electrodes from the People's Republic of China, 74 FR 8775 (February 26, 2009)...

  15. TRANSFINITE DIAMETER AND ANALYTIC CONTINUATION OF FUNCTIONS OF TWO COMPLEX VARIABLES

    DTIC Science & Technology

    of domains in the complex z-plane whose boundary has a given transfinite diameter. Some asymptotic results whichALLOW THE C LCULATION OF THE TR NSFI I...DI R OF A PLAN R DOMAIN BY MEANS OF THE KERNEL FUNCTION OF THIS DOMAIN IS OBTAINED. The definitions of a transfinite diameter of produc s s

  16. Vertically aligned crystalline silicon nanowires with controlled diameters for energy conversion applications: Experimental and theoretical insights

    SciTech Connect

    Razek, Sara Abdel; Swillam, Mohamed A.; Allam, Nageh K.

    2014-05-21

    Vertically orientated single crystalline silicon nanowire (SiNW) arrays with controlled diameters are fabricated via a metal-assisted chemical etching method. The diameter of the fabricated nanowires is controlled by simply varying the etching time in HF/H{sub 2}O{sub 2} electrolytes. The fabricated SiNWs have diameters ranging from 117 to 650 nm and lengths from 8 to 18 μm. The optical measurements showed a significant difference in the reflectance/absorption of the SiNWs with different diameters, where the reflectance increases with increasing the diameter of the SiNWs. The SiNWs showed significant photoluminescence (PL) emission spectra with peaks lying between 380 and 670 nm. The PL intensity increases as the diameter increases and shows red shift for peaks at ∼670 nm. The increase or decrease of reflectivity is coincident with PL intensity at wavelength ∼660 nm. The x-ray diffraction patterns confirm the high crystallinity of the fabricated SiNWs. In addition, the Raman spectra showed a shift in the first order transverse band toward lower frequencies compared to that usually seen for c-Si. Finite difference time domain simulations have been performed to confirm the effect of change of diameter on the optical properties of the nanowires. The simulation results showed good agreement with the experimental results for the SiNWs of different diameters.

  17. A Method to Improve the Accuracy of Particle Diameter Measurements from Shadowgraph Images

    NASA Astrophysics Data System (ADS)

    Erinin, Martin A.; Wang, Dan; Liu, Xinan; Duncan, James H.

    2015-11-01

    A method to improve the accuracy of the measurement of the diameter of particles using shadowgraph images is discussed. To obtain data for analysis, a transparent glass calibration reticle, marked with black circular dots of known diameters, is imaged with a high-resolution digital camera using backlighting separately from both a collimated laser beam and diffuse white light. The diameter and intensity of each dot is measured by fitting an inverse hyperbolic tangent function to the particle image intensity map. Using these calibration measurements, a relationship between the apparent diameter and intensity of the dot and its actual diameter and position relative to the focal plane of the lens is determined. It is found that the intensity decreases and apparent diameter increases/decreases (for collimated/diffuse light) with increasing distance from the focal plane. Using the relationships between the measured properties of each dot and its actual size and position, an experimental calibration method has been developed to increase the particle-diameter-dependent range of distances from the focal plane for which accurate particle diameter measurements can be made. The support of the National Science Foundation under grant OCE0751853 from the Division of Ocean Sciences is gratefully acknowledged.

  18. Biosensing using plasmonic nanohole arrays with small, homogenous and tunable aperture diameters.

    PubMed

    Xiong, Kunli; Emilsson, Gustav; Dahlin, Andreas B

    2016-06-21

    Plasmonic nanohole arrays are widely used for optical label-free molecular detection. An important factor for many applications is the diameter of the apertures. So far nanohole arrays with controllable diameters below 100 nm have not been demonstrated and it has not been systematically investigated how the diameter influences the optical properties. In this work we fine-tune the diameter in short range ordered nanohole arrays down to 50 nm. The experimental far field spectra show how the wavelength of maximum extinction remains unaffected while the transmission maximum blue shifts with smaller diameters. The near field is visualized by numerical simulations, showing a homogenous enhancement throughout the cylindrical void at the transmission maximum for diameters between 50 and 100 nm. For diameters below 50 nm plasmon excitation is no longer possible experimentally or by simulations. Further, we investigate the refractive index sensing capabilities of the smaller holes. As the diameter was reduced, the sensitivity in terms of resonance shift with bulk liquid refractive index was found to be unaltered. However, for the transmission maximum the sensitivity becomes more strongly localized to the hole interior. By directing molecular binding to the bottom of the holes we demonstrate how smaller holes enhance the sensitivity in terms of signal per molecule. A real-time detection limit well below one protein per nanohole is demonstrated. The smaller plasmonic nanoholes should be suitable for studies of molecules confined in small volumes and as mimics of biological nanopores.

  19. Patterns of variability in the diameter of lateral roots in the banana root system.

    PubMed

    Lecompte, François; Pagès, Loïc; Ozier-Lafontaine, Harry

    2005-09-01

    The relative importance of root system structure, plant carbon status and soil environment in the determination of lateral root diameter remains unclear, and was investigated in this study. Banana (Musa acuminata) plants were grown at various moderate levels of soil compaction in two distinct experiments, in a field experiment (FE) and in a glasshouse experiment (GE). Radiant flux density was 5 times lower in GE. The distribution of root diameter was measured for several root branching orders. Root diameters ranged between 0.09 and 0.52 mm for secondary roots and between 0.06 and 0.27 mm for tertiary roots. A relationship was found between the diameter of the parent bearing root and the median diameter of its laterals, which appears to be valid for a wide range of species. Mean lateral root diameter increased with distance to the base of the root and decreased with branching density [number of lateral roots per unit length of bearing root (cm(-1))]. Typical symptoms of low light availability were observed in GE. In this case, lateral root diameter variability was reduced. Although primary root growth was affected by soil compaction, no effects on lateral root diameter were observed.

  20. The diameter of 88 Thisbe from its occultation of SAO 187124

    NASA Technical Reports Server (NTRS)

    Millis, R. L.; Wasserman, L. H.; Franz, O. G.; White, N. M.; Bowell, E.; Klemola, A.; Elliott, R. C.; Smethells, W. G.; Price, P. M.; Mckay, C. P.

    1982-01-01

    The 7 October, 1981 occultation of SAO 187124 by 88 Thisbe was observed at twelve sites. The occultation observations, together with information about the asteroid's light curve, gives a mean diameter for Thisbe of 232 + or - 10 km. This value is 10 percent larger than the previously published radiometric diameter of Thisbe.