Science.gov

Sample records for 10-degree half-angle wedge

  1. Parameterization of ion channeling half-angles and minimum yields

    NASA Astrophysics Data System (ADS)

    Doyle, Barney L.

    2016-03-01

    A MS Excel program has been written that calculates ion channeling half-angles and minimum yields in cubic bcc, fcc and diamond lattice crystals. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different power functions of the arguments. The program then offers an extremely convenient way to calculate axial and planar half-angles, minimum yields, effects on half-angles and minimum yields of amorphous overlayers. The program can calculate these half-angles and minimum yields for axes and [h k l] planes up to (5 5 5). The program is open source and available at

  2. Stability of Supersonic Boundary Layers Over Blunt Wedges

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam

    2006-01-01

    Receptivity and stability of supersonic boundary layers over blunt flat plates and wedges are numerically investigated at a free stream Mach number of 3.5 and at a high Reynolds number of 10(exp 6)/inch. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations using the 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. Computations are performed for a flat plate with leading edge thicknesses of 0.0001, 0.001, 0.005 and 0.01 inches that give Reynolds numbers based on the leading edge thickness ranging from 1000 to 10000. Calculations are also performed for a wedge of 10 degrees half angle with different leading edge radii 0.001 and 0.01 inches. The linear stability results showed that the bluntness has a strong stabilizing effect on the stability of two-dimensional boundary layers. The transition Reynolds number for a flat plate with a leading edge thickness of 0.01 inches is about 3.5 times larger than it is for the Blasius boundary layer. It was also revealed that boundary layers on blunt wedges are far more stable than on blunt flat plates.

  3. Effects of momentum ratio and Weber number on spray half angles of liquid controlled pintle injector

    NASA Astrophysics Data System (ADS)

    Son, Min; Yu, Kijeong; Koo, Jaye; Kwon, Oh Chae; Kim, Jeong Soo

    2015-02-01

    A pintle injector is advantageous for throttling a liquid rocket engine and reducing engine weight. This study explores the effects of momentum ratio and Weber number at various injection conditions on spray characteristics of the pintle injector for liquid-gas propellants. A liquid sheet is injected from a center pintle nozzle and it is broken by a gas jet from an annular gap. The pressure drops of propellants, and the pintle opening distance were considered as control variables; using 0.1 ˜1.0 as a bar for the pressure drop of the liquid injection, a 0.01˜0.2 bar for the pressure drop of gas jet and a 0.2˜ 1.0 mm for the pintle opening distance. The discharge coefficient was decreased linearly before the pintle opening distance of 0.75 mm and then, the coefficient was slightly increased. Spray images were captured by a CMOS camera with high resolution. Then, the shadow and reflected images were analyzed. Spray distributions were measured by a patternator with an axial distance of 50 mm from a pintle tip. Finally, the spray half angles had an exponentially decreasing correlation as a momentum ratio divided by the Weber number. Also, the spray half angles from the spray distribution were underestimated compared to those measured from the captured images.

  4. Rethinking wedges

    NASA Astrophysics Data System (ADS)

    Davis, Steven J.; Cao, Long; Caldeira, Ken; Hoffert, Martin I.

    2013-03-01

    Abstract Stabilizing CO2 emissions at current levels for fifty years is not consistent with either an atmospheric CO2 concentration below 500 ppm or global temperature increases below 2 °C. Accepting these targets, solving the climate problem requires that emissions peak and decline in the next few decades, and ultimately fall to near zero. Phasing out emissions over 50 years could be achieved by deploying on the order of 19 'wedges', each of which ramps up linearly over a period of 50 years to ultimately avoid 1 GtC y-1 of CO2 emissions. But this level of mitigation will require affordable carbon-free energy systems to be deployed at the scale of tens of terawatts. Any hope for such fundamental and disruptive transformation of the global energy system depends upon coordinated efforts to innovate, plan, and deploy new transportation and energy systems that can provide affordable energy at this scale without emitting CO2 to the atmosphere. 1. Introduction In 2004, Pacala and Socolow published a study in Science arguing that '[h]umanity can solve the carbon and climate problem in the first half of this century simply by scaling up what we already know how to do' [1]. Specifically, they presented 15 options for 'stabilization wedges' that would grow linearly from zero to 1 Gt of carbon emissions avoided per year (GtC y-1 1 Gt = 1012 kg) over 50 years. The solution to the carbon and climate problem, they asserted, was 'to deploy the technologies and/or lifestyle changes necessary to fill all seven wedges of the stabilization triangle'. They claimed this would offset the growth of emissions and put us on a trajectory to stabilize atmospheric CO2 concentration at 500 ppm if emissions decreased sharply in the second half of the 21st century. The wedge concept has proven popular as an analytical tool for considering the potential of different technologies to reduce CO2 emissions. In the years since the paper was published, it has been cited more than 400 times, and

  5. Radial wedge flange clamp

    DOEpatents

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  6. Line-shape flattening resulting from hypersonic nozzle wedge flow in low-pressure chemical lasers.

    PubMed

    Livingston, P M; Bullock, D L

    1980-07-01

    The new hypersonic wedge nozzle (HYWN) supersonic wedge nozzle design produces a significant component of directed gas flow along the optical axis of a laser cavity comparable to thermal speeds. The gain-line-shape function is broadened and the refractive-index line shape is also spread as a function of wedge-flow half-angle. An analytical treatment as well as a numerical study is presented that evaluates the Doppler-directed-flow impact on the number of longitudinal modes and their frequencies as well as on gain and refractive-index saturation of those that lase in a Fabry-Perot cavity.

  7. [Disinfection of caliciviruses at 20 and 10 degrees C].

    PubMed

    Yilmaz, A; Kaleta, E F

    2003-07-01

    Five disinfectants, Venno FF super, Venno Vet 1 super, Venno Oxygen, M&Enno-Veterinär B neu und Neopredisan 135-1, were tested to evaluate their efficacy against caliciviruses at 20 and 10 degrees C. As model test virus served feline calicivirus type F9 (FCV F9). All disinfectants were tested according to Guidelines of the German Veterinary Association (DVG). The investigations were performed in suspension tests and germ carrier tests. The suspension tests were carried out without and with protein load. As protein was used foetal calf serum at the concentration of 40%. Venno FF super showed less protein dependence, however a considerable temperature dependence. This matter can be corrected by increase of concentration on 2%. Venno Vet 1 super was without protein especially effective. The losses on the effectiveness through low temperature and protein load can be annulled also here by increase of concentration. Venno Oxygen was more effective in the comparison to that here named both preparations. The effects of temperature can be corrected by extension of reaction time. The most effective preparation was M&Enno Veterinär B neu. The disinfection occurred at 20 degrees C with 0.5% solution within 120 min and at 10 degrees C with 1.0% solution within 60 min. The fifth disinfectant Neopredisan was in suspension tests without protein load and carrier tests with gauze at 20 and 10 degrees C relative convincing but in germ carrier tests with poplar wood, no complete disinfection could be achieved within tested concentrations and reaction times.

  8. Thermally actuated wedge block

    DOEpatents

    Queen, Jr., Charles C.

    1980-01-01

    This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.

  9. Heating rate measurements over 30 deg and 40 deg (half angle) blunt cones in air and helium in the Langley expansion tube facility

    NASA Technical Reports Server (NTRS)

    Reddy, N. M.

    1980-01-01

    Convective heat transfer measurements, made on the conical portion of spherically blunted cones (30 deg and 40 deg half angle) in an expansion tube are discussed. The test gases used were helium and air; flow velocities were about 6.8 km/sec for helium and about 5.1 km/sec for air. The measured heating rates are compared with calculated results using a viscous shock layer computer code. For air, various techniques to determine flow velocity yielded identical results, but for helium, the flow velocity varied by as much as eight percent depending on which technique was used. The measured heating rates are in satisfactory agreement with calculation for helium, assuming the lower flow velocity, the measurements are significantly greater than theory and the discrepancy increased with increasing distance along the cone.

  10. Micromachine Wedge Stepping Motor

    SciTech Connect

    Allen, J.J.; Schriner, H.K.

    1998-11-04

    A wedge stepping motor, which will index a mechanism, has been designed and fabricated in the surface rnicromachine SUMMiT process. This device has demonstrated the ability to index one gear tooth at a time with speeds up to 205 teeth/see. The wedge stepper motor has the following features, whi:h will be useful in a number of applications. o The ability to precisely position mechanical components. . Simple pulse signals can be used for operation. o Only 2 drive signals are requixed for operation. o Torque and precision capabilities increase with device size . The device to be indexed is restrained at all times by the wedge shaped tooth that is used for actuation. This paper will discuss the theory of operation and desi=m of the wedge stepping motor. The fabrication and testing of I he device will also be presented.

  11. Wedges for ultrasonic inspection

    DOEpatents

    Gavin, Donald A.

    1982-01-01

    An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.

  12. The Cosmonaut Sea Wedge

    USGS Publications Warehouse

    Solli, K.; Kuvaas, B.; Kristoffersen, Y.; Leitchenkov, G.; Guseva, J.; Gandyukhin, V.

    2007-01-01

    A set of multi-channel seismic profiles (~15000 km) acquired by Russia, Norway and Australia has been used to investigate the depositional evolution of the Cosmonaut Sea margin of East Antarctica. We recognize a regional sediment wedge below the upper part of the continental rise. The wedge, herein termed the Cosmonaut Sea Wedge, is positioned stratigraphically underneath the inferred glaciomarine section and extends for at least 1200 km along the continental margin and from 80 to about 250 km seaward or to the north. Lateral variations in the growth pattern of the wedge indicate several overlapping depocentres, which at their distal northern end are flanked by elongated mounded drifts and contourite sheets. The internal stratification of the mounded drift deposits suggests that westward flowing bottom currents reworked the marginal deposits. The action of these currents together with sea-level changes is considered to have controlled the growth of the wedge. We interpret the Cosmonaut Sea Wedge as a composite feature comprising several bottom current reworked fan systems.

  13. Wedged multilayer Laue Lens.

    SciTech Connect

    Conley, R.; Liu, C.; Qian, J.; Kewish, C. M.; Macrander, A. T.; Yan, H.; Kang, H. C.; Maser, J.; Stephenson, G. B.

    2008-05-01

    A multilayer Laue lens (MLL) is an x-ray focusing optic fabricated from a multilayer structure consisting of thousands of layers of two different materials produced by thin-film deposition. The sequence of layer thicknesses is controlled to satisfy the Fresnel zone plate law and the multilayer is sectioned to form the optic. An improved MLL geometry can be created by growing each layer with an in-plane thickness gradient to form a wedge, so that every interface makes the correct angle with the incident beam for symmetric Bragg diffraction. The ultimate hard x-ray focusing performance of a wedged MLL has been predicted to be significantly better than that of a nonwedged MLL, giving subnanometer resolution with high efficiency. Here, we describe a method to deposit the multilayer structure needed for an ideal wedged MLL and report our initial deposition results to produce these structures.

  14. Exploratory Investigation of Forebody Strakes for Yaw Control of a Generic Fighter with a Symmetric 60 deg Half-Angle Chine Forebody

    NASA Technical Reports Server (NTRS)

    Ross, Holly M.; ORourke, Matthew J.

    1997-01-01

    Forebody strakes were tested in a low-speed wind tunnel to determine their effectiveness producing yaw control on a generic fighter model with a symmetric 60 deg half-angle chine forebody. Previous studies conducted using smooth, conventionally shaped forebodies show that forebody strakes provide increased levels of yaw control at angles of attack where conventional rudders are ineffective. The chine forebody shape was chosen for this study because chine forebodies can be designed with lower radar cross section (RCS) values than smooth forebody shapes. Because the chine edges of the forebody would fix the point of flow separation, it was unknown if any effectiveness achieved could be modulated as was successfully done on the smooth forebody shapes. The results show that use of forebody strakes on a chine forebody produce high levels of yaw control, and when combined with the rudder effectiveness, significant yaw control is available for a large range of angles of attack. The strake effectiveness was very dependent on radial location. Very small strakes placed at the tip of the forebody were nearly as effective as very long strakes. An axial translation scheme provided almost linear increments of control effectiveness.

  15. Substorm Current Wedge Revisited

    NASA Astrophysics Data System (ADS)

    Kepko, L.; McPherron, R. L.; Amm, O.; Apatenkov, S.; Baumjohann, W.; Birn, J.; Lester, M.; Nakamura, R.; Pulkkinen, T. I.; Sergeev, V.

    2015-07-01

    Almost 40 years ago the concept of the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion. In the ensuing decades new observations, including radar and low-altitude spacecraft, MHD simulations, and theoretical considerations have tremendously advanced our understanding of this system. The AMPTE/IRM, THEMIS and Cluster missions have added considerable observational knowledge, especially on the important role of fast flows in producing the stresses that generate the substorm current wedge. Recent detailed, multi-spacecraft, multi-instrument observations both in the magnetosphere and in the ionosphere have brought a wealth of new information about the details of the temporal evolution and structure of the current system. While the large-scale picture remains valid, the new details call for revision and an update of the original view. In this paper we briefly review the historical development of the substorm current wedge, review recent in situ and ground-based observations and theoretical work, and discuss the current active research areas. We conclude with a revised, time-dependent picture of the substorm current wedge that follows its evolution from the initial substorm flows through substorm expansion and recovery.

  16. Europa Wedge Region

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image shows an area of crustal separation on Jupiter's moon, Europa. Lower resolution pictures taken earlier in the tour of NASA's Galileo spacecraft revealed that dark wedge-shaped bands in this region are areas where the icy crust has completely pulled apart. Dark material has filled up from below and filled the void created by this separation.

    In the lower left corner of this image, taken by Galileo's onboard camera on December 16, 1997, a portion of one dark wedge area is visible, revealing a linear texture along the trend of the wedge. The lines of the texture change orientation slightly and reflect the fact that we are looking at a bend in the wedge. The older, bright background, visible on the right half of the image, is criss-crossed with ridges. A large, bright ridge runs east-west through the upper part of the image, cutting across both the older background plains and the wedge. This ridge is rough in texture, with numerous small terraces and troughs containing dark material.

    North is to the top of the picture and the sun illuminates the surface from the northwest. This image, centered at approximately 16.5 degrees south latitude and 196.5 degrees west longitude, covers an area approximately 10 kilometers square (about 6.5 miles square). The resolution of this image is about 26 meters per picture element. This image was taken by the solid state imaging system from a distance of 1250 kilometers (750 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  17. Crossflow Instability on a Wedge-Cone at Mach 3.5

    NASA Technical Reports Server (NTRS)

    Beeler, George B.; Wilkinson, Stephen P.; Balakumar, P.; McDaniel, Keith S.

    2012-01-01

    As a follow-on activity to the HyBoLT flight experiment, a six degree half angle wedge-cone model at zero angle of attack has been employed to experimentally and computationally study the boundary layer crossflow instability at Mach 3.5 under low disturbance freestream conditions. Computed meanflow and linear stability analysis results are presented along with corresponding experimental Pitot probe data. Using a model-mounted probe survey apparatus, data acquired to date show a well defined stationary crossflow vortex pattern on the flat wedge surface. This effort paves the way for additional detailed, calibrated flow field measurements of the crossflow instability, both stationary and traveling modes, and transition-to-turbulence under quiet flow conditions as a means of validating existing stability theory and providing a foundation for dynamic flight instrumentation development.

  18. Shock detachment from curved wedges

    NASA Astrophysics Data System (ADS)

    Mölder, S.

    2017-03-01

    Curved shock theory is used to show that the flow behind attached shocks on doubly curved wedges can have either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach from the wedge. This local choking can preempt both the maximum deflection and the sonic criteria for shock detachment. Analytical predictions for detachment by local choking are supported by CFD results.

  19. Penetrable Wedge Analysis

    DTIC Science & Technology

    1993-08-03

    F -A276 232 GE F Formpproved P-W-=nQb,3;t- OBM No. 0704 -0188 foI rll it 1 Ilthisl buridllenli 1i to :iudrrg th ftirnu reviwing Wwtru"t.Of S.aching...geometries. (2) Numerical " solutions" are still proliferating, but are too messy and remoxed from the physics to offer any important insight into the wave...mathematical solution of the impedance boundary wedge. III. PHYSICAL IMPEDANCE BOUNDARY CONDITION The coupled difference equations (14), (17), and (18) on page

  20. Capillary Rise in a Wedge

    ERIC Educational Resources Information Center

    Piva, M.

    2009-01-01

    In introductory-level physics courses, the concept of surface tension is often illustrated using the example of capillary rise in thin tubes. In this paper the author describes experiments conducted using a planar geometry created with two small plates forming a thin wedge. The distribution of the fluid entering the wedge can be studied as a…

  1. [Disinfectant tests at 20 and 10 degrees C to determine the virucidal activity against circoviruses].

    PubMed

    Yilmaz, A; Kaleta, E F

    2004-06-01

    To evaluate virucidal activity against porcine circovirus type 2 (PCV2), four disinfectants were tested under laboratory conditions. As basis to perform the testing the "Guidelines for testing chemical disinfectants" of the German Veterinary Association (DVG-guidelines) were applied. For simulation of field conditions, the tests were carried out in virus carrier tests, at 20 and 10 degrees C, and under protein load (40% foetal calf serum (FCS) in virus suspension). For disinfection of PCV2 at 20 degrees C an exposure time of 120 min in 2% Disinfectant 1 (20% glutaraldehyde, 12% 2-propenal, polymer with formaldehyde) or Disinfectant 2 (55% formic acid, 7% glyoxylic acid) was necessary. 1% of Disinfectant 3 (Component 1: Potassium peroxomonosulphate. Component 2: Active detergents) disinfected PCV2 on carriers within 180 min. After a reaction time of 120 min with 1% and 60 min with 2% Disinfectant 4 (21% glutaraldehyde, 17% formaldehyde) there could not be detected any virus. Reduction on effectivity through temperature reduction to 10 degrees C were more significant for aldehyde containing preparations Disinfectant 1 and Disinfectant 4 than for Disinfectant 2 and Disinfectant 3. These losses on effectivity could be corrected through extension of exposure time or increase of concentration.

  2. Optimized dynamic rotation with wedges.

    PubMed

    Rosen, I I; Morrill, S M; Lane, R G

    1992-01-01

    Dynamic rotation is a computer-controlled therapy technique utilizing an automated multileaf collimator in which the radiation beam shape changes dynamically as the treatment machine rotates about the patient so that at each instant the beam shape matches the projected shape of the target volume. In simple dynamic rotation, the dose rate remains constant during rotation. For optimized dynamic rotation, the dose rate is varied as a function of gantry angle. Optimum dose rate at each gantry angle is computed by linear programming. Wedges can be included in the optimized dynamic rotation therapy by using additional rotations. Simple and optimized dynamic rotation treatment plans, with and without wedges, for a pancreatic tumor have been compared using optimization cost function values, normal tissue complication probabilities, and positive difference statistic values. For planning purposes, a continuous rotation is approximated by static beams at a number of gantry angles equally spaced about the patient. In theory, the quality of optimized treatment planning solutions should improve as the number of static beams increases. The addition of wedges should further improve dose distributions. For the case studied, no significant improvements were seen for more than 36 beam angles. Open and wedged optimized dynamic rotations were better than simple dynamic rotation, but wedged optimized dynamic rotation showed no definitive improvement over open beam optimized dynamic rotation.

  3. Ultrasonic fluid densitometer having liquid/wedge and gas/wedge interfaces

    DOEpatents

    Greenwood, Margaret S.

    2000-01-01

    The present invention is an ultrasonic liquid densitometer that uses a material wedge having two sections, one with a liquid/wedge interface and another with a gas/wedge interface. It is preferred that the wedge have an acoustic impedance that is near the acoustic impedance of the liquid, specifically less than a factor of 11 greater than the acoustic impedance of the liquid. Ultrasonic signals are internally reflected within the material wedge. Density of a liquid is determined by immersing the wedge into the liquid and measuring reflections of ultrasound at the liquid/wedge interface and at the gas/wedge interface.

  4. Wavelength meter having elliptical wedge

    DOEpatents

    Hackel, R.P.; Feldman, M.

    1992-12-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.

  5. Wavelength meter having elliptical wedge

    DOEpatents

    Hackel, Richard P.; Feldman, Mark

    1992-01-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10.sup.8. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing.

  6. Wedge immersed thermistor bolometer measures infrared radiation

    NASA Technical Reports Server (NTRS)

    Dreyfus, M. G.

    1965-01-01

    Wedge immersed-thermistor bolometer measures infrared radiation in the atmosphere. The thermistor flakes are immersed by optical contact on a wedge-shaped germanium lens whose narrow dimension is clamped between two complementary wedge-shaped germanium blocks bonded with a suitable adhesive.

  7. Effects of metabolic rate on thermal responses at different air velocities in -10 degrees C.

    PubMed

    Mäkinen, T T; Gavhed, D; Holmér, I; Rintamäki, H

    2001-04-01

    The effects of exercise intensity on thermoregulatory responses in cold (-10 degrees C) in a 0.2 (still air, NoWi), 1.0 (Wi1), and 5.0 (Wi5) m x s(-1) wind were studied. Eight young and healthy men, preconditioned in thermoneutral (+20 degrees C) environment for 60 min, walked for 60 min on the treadmill at 2.8 km/h with different combinations of wind and exercise intensity. Exercise level was adjusted by changing the inclination of the treadmill between 0 degrees (lower exercise intensity, metabolic rate 124 W x m(-2), LE) and 6 degrees (higher exercise intensity, metabolic rate 195 W x m(-2), HE). Due to exercise increased heat production and circulatory adjustments, the rectal temperature (T(re)), mean skin temperature (Tsk) and mean body temperature (Tb) were significantly higher at the end of HE in comparison to LE in NoWi and Wi1, and T(re) and Tb also in Wi5. Tsk and Tb were significantly decreased by 5.0 m x s(-1) wind in comparison to NoWi and Wi1. The higher exercise intensity was intense enough to diminish peripheral vasoconstriction and consequently the finger skin temperature was significantly higher at the end of HE in comparison to LE in NoWi and Wi1. Mean heat flux from the skin was unaffected by the exercise intensity. At LE oxygen consumption (VO2) was significantly higher in Wi5 than NoWi and Wi1. Heart rate was unaffected by the wind speed. The results suggest that, with studied exercise intensities, produced without changes in walking speed, the metabolic rate is not so important that it should be taken into consideration in the calculation of wind chill index.

  8. The Substorm Current Wedge Revisited

    NASA Astrophysics Data System (ADS)

    Kepko, Larry; McPherron, Robert; Apatenkov, Sergey; Baumjohann, Wolfgang; Birn, Joachim; Lester, Mark; Nakamura, Rumi; Pulkkinen, Tuija; Sergeev, Victor

    2015-04-01

    Almost 40 years ago the concept of the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion. In the ensuing decades new observations, including radar and low-altitude spacecraft, MHD simulations, and theoretical considerations have tremendously advanced our understanding of this system. The AMPTE/IRM, THEMIS and Cluster missions have added considerable observational knowledge, especially on the important role of fast flows in producing the stresses that generate the substorm current wedge. Recent detailed, multi-spacecraft, multi-instrument observations both in the magnetosphere and in the ionosphere have brought a wealth of new information about the details of the temporal evolution and structure of the current system. In this paper, we briefly review recent in situ and ground-based observations and theoretical work that have demonstrated a need for an update of the original picture. We present a revised, time-dependent picture of the substorm current wedge that follows its evolution from the initial substorm flows through substorm expansion and recovery, and conclude by identifying open questions.

  9. Wedge locality and asymptotic commutativity

    NASA Astrophysics Data System (ADS)

    Soloviev, M. A.

    2014-05-01

    In this paper, we study twist deformed quantum field theories obtained by combining the Wightman axiomatic approach with the idea of spacetime noncommutativity. We prove that the deformed fields with deformation parameters of opposite sign satisfy the condition of mutual asymptotic commutativity, which was used earlier in nonlocal quantum field theory as a substitute for relative locality. We also present an improved proof of the wedge localization property discovered for the deformed fields by Grosse and Lechner, and we show that the deformation leaves the asymptotic behavior of the vacuum expectation values in spacelike directions substantially unchanged.

  10. Geometry and kinematics of extensional structural wedges

    NASA Astrophysics Data System (ADS)

    Gui, Baoling; He, Dengfa; Zhang, Yongsheng; Sun, Yanpeng; Huang, Jingyi; Zhang, Wenjun

    2017-03-01

    Structural wedges in the compressive environment have been recognized and studied in different locations. However, extension structural wedges are less well-understood. Based on the normal fault-bend folding theory and inclined shear model, this paper quantitatively analyses deformations related to extensional structural wedges and builds a series of geometric models for them. An extensional structural wedge is a fault-block held by two or more normal faults, the action of which would fold its overlying strata. Extensional structural wedges of different shapes will lead to different deformation results for the overlying strata, and this paper illustrates both the triangular and quadrangular wedges and their related deformations. This paper also discusses differences between the extensional structural wedges and the normal fault-bend-folding. By analysing two seismic sections from Langfang-Gu'an Sag, East China, this paper provides two natural examples of the triangular and quadrangular extensional structural wedges, where the models can reasonably explain the overlying distinct highs and lows without obvious faults. The establishment of a geometric model of extensional structural wedges can provide reference and theoretical bases for future quantitative analysis of deformations in the extensional environment.

  11. SU-E-T-362: Enhanced Dynamic Wedge Output Factors for Varian 2300CD and the Case for a Reference Database

    SciTech Connect

    Njeh, C

    2015-06-15

    Purpose: Dose inhomogeneity in treatment planning can be compensated using physical wedges. Enhanced dynamic wedges (EDW) were introduced by Varian to overcome some of the short comings of physical wedges. The objectives of this study were to measure EDW output factors for 6 MV and 20 MV photon energies for a Varian 2300CD. Secondly to review the literature in terms of published enhanced dynamic wedge output factors (EDWOF) for different Varian models and thereby adding credence to the case of the validity of reference databases. Methods: The enhanced dynamic wedge output factors were measured for the Varian 2300CD for both 6 MV and 20 MV photon energies. Twelve papers with published EDWOF for different Varian Linac models were found in the literature. Results: The EDWOF for 6 MV varied from 0.980 for a 5×5 cm 10 degree wedge to 0.424 for 20×20 cm 60 degree wedge. Similarly for 20 MV, the EDWOF varied from 0.986 for 5×5 cm 10 degree wedge to 0.529 for 20×20 cm 60 degree wedge. EDWOF are highly dependent on field size. Comparing our results with the published mean, we found an excellent agreement for 6 MV EDWOF with the percentage differences ranging from 0.01% to 0.57% with a mean of 0.03%. The coefficient of variation of published EDWOF ranged from 0.17% to 0.85% and 0.1% to 0.9% for the for 6 MV and 18MV photon energies respectively. This paper provides the first published EDWOF for 20 MV photon energy. In addition, we have provided the first compendium of EDWOFs for different Varian linac models. Conclusion: The consistency of EDWOF across models and institution provide further support that, a standard data set of basic photon and electron dosimetry could be established, as a guide for future commissioning, beam modeling and quality assurance purposes.

  12. Ice Particle Impacts on a Moving Wedge

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Struk, Peter M.; Kreeger, Richard E.; Palacios, Jose; Iyer, Kaushik A.; Gold, Robert E.

    2014-01-01

    This work presents the results of an experimental study of ice particle impacts on a moving wedge. The experiment was conducted in the Adverse Environment Rotor Test Stand (AERTS) facility located at Penn State University. The wedge was placed at the tip of a rotating blade. Ice particles shot from a pressure gun intercepted the moving wedge and impacted it at a location along its circular path. The upward velocity of the ice particles varied from 7 to 12 meters per second. Wedge velocities were varied from 0 to 120 meters per second. Wedge angles tested were 0 deg, 30 deg, 45 deg, and 60 deg. High speed imaging combined with backlighting captured the impact allowing observation of the effect of velocity and wedge angle on the impact and the post-impact fragment behavior. It was found that the pressure gun and the rotating wedge could be synchronized to consistently obtain ice particle impacts on the target wedge. It was observed that the number of fragments increase with the normal component of the impact velocity. Particle fragments ejected immediately after impact showed velocities higher than the impact velocity. The results followed the major qualitative features observed by other researchers for hailstone impacts, even though the reduced scale size of the particles used in the present experiment as compared to hailstones was 4:1.

  13. Ice Particle Impacts on a Moving Wedge

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Struk, Peter M.; Kreeger, Richard E.; Palacios, Jose; Lyer, Kaushik A.; Gold, Robert E.

    2014-01-01

    This work presents the results of an experimental study of ice particle impacts on a moving wedge. The experiment was conducted in the Adverse Environment Rotor Test Stand (AERTS) facility located at Penn State University. The wedge was placed at the tip of a rotating blade. Ice particles shot from a pressure gun intercepted the moving wedge and impacted it at a location along its circular path. The upward velocity of the ice particles varied from 7 to 12 meters per second. Wedge velocities were varied from 0 to 120 meters per second. Wedge angles tested were 0, 30, 45, and 60. High speed imaging combined with backlighting captured the impact allowing observation of the effect of velocity and wedge angle on the impact and the post-impact fragment behavior. It was found that the pressure gun and the rotating wedge could be synchronized to consistently obtain ice particle impacts on the target wedge. It was observed that the number of fragments increase with the normal component of the impact velocity. Particle fragments ejected immediately after impact showed velocities higher than the impact velocity. The results followed the major qualitative features observed by other researchers for hailstone impacts, even though the reduced scale size of the particles used in the present experiment as compared to hailstones was 4:1.

  14. Tumor Targeting, Trifunctional Dendritic Wedge

    PubMed Central

    2015-01-01

    We report in vitro and in vivo evaluation of a newly designed trifunctional theranostic agent for targeting solid tumors. This agent combines a dendritic wedge with high boron content for boron neutron capture therapy or boron MRI, a monomethine cyanine dye for visible-light fluorescent imaging, and an integrin ligand for efficient tumor targeting. We report photophysical properties of the new agent, its cellular uptake and in vitro targeting properties. Using live animal imaging and intravital microscopy (IVM) techniques, we observed a rapid accumulation of the agent and its retention for a prolonged period of time (up to 7 days) in fully established animal models of human melanoma and murine mammary adenocarcinoma. This macromolecular theranostic agent can be used for targeted delivery of high boron load into solid tumors for future applications in boron neutron capture therapy. PMID:25350602

  15. Two critical tapers in a single wedge

    NASA Astrophysics Data System (ADS)

    Smit, J.; Burg, J.-P.; Brun, J.-P.

    2009-04-01

    Thrust involving a ductile décollement (e.g. salt, over-pressured shales) like Zagros, Jura, Pakistan Salt Ranges, Cascades and Makran have in common a small cross-sectional taper, attributed to large thrust spacing and fast frontward propagation above the ductile décollement. Such a low cross-sectional taper has been analytically explained by approximating the ductile layer as a horizon with negligible shear strength. We tested the development of thrust wedges involving a ductile basal décollement of uniform shear strength by means of laboratory experiments. The model consists of a sand layer with initial wedge geometry and a basal ductile décollement of constant thickness and shear strength made of silicone putty. 30% of bulk shortening is applied to the wedge at constant velocity. Thrusting starts in the middle of the wedge, followed by in-sequence frontward propagation. The back part of the wedge, between backstop and the closest thrust, remains undeformed; it passively advances over the base without internal deformation. It appears that both domains have different critical tapers. The inner domain is in a critical state from the onset of shortening (i.e. the initial wedge is already critical), while the frontal domain steadily acquires a state of critical taper by thrusting. This result is at variance with the classical assumption that shortening of a wedge made of homogeneous layers creates a single critical taper. The experimental thrust wedges do show other features characteristic for weak décollement wedges like narrow cross-sectional taper, large thrust spacing and variety in thrust geometries. Application of the results to natural thrust wedges like the Jura Mountains could shed new light on their development and geometry at depth.

  16. Face temperature and cardiorespiratory responses to wind in thermoneutral and cool subjects exposed to -10 degrees C.

    PubMed

    Gavhed, D; Mäkinen, T; Holmér, I; Rintamäki, H

    2000-11-01

    The effects of the thermal state of the body (slightly cool and neutral) and moderate wind speeds on face temperature, blood pressure, respiratory function and pain sensation during cold exposure were studied on eight healthy male subjects. They were dressed in cold-protective clothing and preconditioned at + 20 degrees C (TN) and -5 degrees C (CO) for 60 min, then exposed to -10 degrees C and 0 m x s(-1) (NoW), 1 (W1) and 5 (W5) m x s(-1) wind for 30 min. Thus, each individual was exposed six times. The exposure to wind entailed a combination of strong cooling of the bare face and mild body cooling. The forehead, cheek and nose temperatures decreased during cold exposure, and the decrease was greater at higher air velocities (P < 0.0001). All subjects reported pain sensations at 5 m x s(-1). At the end of exposure only the nose temperature was significantly lower in CO than in TN subjects; it was about 2 degrees C and reached 0 degrees C in two experiments. The systolic and diastolic blood pressure (SBP and DBP, respectively) increased significantly by 7.7 and 5.9 mmHg, respectively, during preconditioning at -5 degrees C, but did not change at + 20 degrees C. SBP and DBP increased during exposure to -10 degrees C in TN by approximately 9 mmHg. However, the total average increase of blood pressure (1-90 min) was similar in TN and CO (SBP 15 mmHg and DBP 13 mmHg). SBP and DBP increased more during exposure to 5 m x s(-1) at -10 degrees C than NoW. Blood pressure responses as observed in this study (SBP and DBP up to 51 and 45 mmHg, respectively) are potential health risks for hypertensive individuals and angina patients. Respiratory functions (FVC, FEV1) were reduced by about 3% by the cold (-5 and -10 degrees C) compared to pre-experiment values. Furthermore, the Wind Chill Index seems to underestimate the cooling power of 5 m x s(-1) at -10 degrees C of bare skin (e.g. face). Therefore it needs to be revised and we suggest that it is expanded to include risk

  17. Capillarity driven motion of solid film wedges

    SciTech Connect

    Wong, H.; Miksis, M.J.; Voorhees, P.W.; Davis, S.H.

    1997-06-01

    A solid film freshly deposited on a substrate may form a non-equilibrium contact angle with the substrate, and will evolve. This morphological evolution near the contact line is investigated by studying the motion of a solid wedge on a substrate. The contact angle of the wedge changes at time t = 0 from the wedge angle {alpha} to the equilibrium contact angle {beta}, and its effects spread into the wedge via capillarity-driven surface diffusion. The film profiles at different times are found to be self-similar, with the length scale increasing as t{sup 1 4}. The self-similar film profile is determined numerically by a shooting method for {alpha} and {beta} between 0 and 180. In general, the authors find that the film remains a wedge when {alpha} = {beta}. For {alpha} < {beta}, the film retracts, whereas for {alpha} > {beta}, the film extends. For {alpha} = 90{degree}, the results describe the growth of grain-boundary grooves for arbitrary dihedral angles. For {beta} = 90{degree}, the solution also applies to a free-standing wedge, and the thin-wedge profiles agree qualitatively with those observed in transmission electron microscope specimens.

  18. Penetrating eye injury from a metal wedge.

    PubMed

    Kozielec, G F; To, K

    1999-01-01

    The authors describe a patient with a penetrating ocular injury from a metal wedge, a common hand tool used by road service technicians for the purpose of opening a locked car door. The patient had a penetrating eye injury from a metal wedge when its sharp end released from a car door lock and retracted upward, striking the right eye. No report exists of ocular injury using a metal wedge for its intended purpose of opening a car door lock. The use of polycarbonate lenses might afford some protection.

  19. Ultrasonic transducer with laminated coupling wedge

    DOEpatents

    Karplus, Henry H. B.

    1976-08-03

    An ultrasonic transducer capable of use in a high-temperature environment incorporates a laminated metal coupling wedge including a reflecting edge shaped as a double sloping roof and a transducer crystal backed by a laminated metal sound absorber disposed so as to direct sound waves through the coupling wedge and into a work piece, reflections from the interface between the coupling wedge and the work piece passing to the reflecting edge. Preferably the angle of inclination of the two halves of the reflecting edge are different.

  20. Seismic rupture propagation beneath potential landslide wedge

    NASA Astrophysics Data System (ADS)

    Sakaguchi, A.; Kawamura, K.

    2011-12-01

    During 2011 Tohoku earthquake (Mw 9.0), much larger slip and tsunami occurred than expectation at outer-wedge (toe of the trench landward slope) of Japan trench (eg. Ide et al., 2011). Similarly, outer-wedge deformation was pointed out in northern segment of 1986 Meiji-Sanriku earthquake (Ms 7.2), and it was discussed that earthquake-related landslide induced large tsunami (eg. Kanamori, 1972; Tanioka and Satake, 1996). Many landslides and normal faults, potential tsunami genesis, are developed at outer-wedge of Japan trench (Henry et al., 1989). Some steep normal-faults turn to horizon at deep portion, and land sliding may be prevented by basal friction. If seismic rupture propagates to basal fault of the outer-wedge, triggered gravity collapse will enlarge deformation of the outer-wedge to cause large tsunamis. It was considered that seismogenic fault locks at deep portion under inner-wedge of the plate subduction zone, and outer-wedge was classified into aseismic zone classically. Seismic rupture propagation to outer-wedge is still uncertain. Seismic slip at the outer-wedge was found from the drilled core during IODP Nankai trough seismogenic zone drilling project (NanTroSEIZE) in Nankai trough, southwest Japan. Samples were obtained from the frontal thrust (438 mbsf), which connects the deep plate boundary to the seafloor at the toe of the accretionary wedge, and from a megasplay fault (271 mbsf) that branches from the plate boundary décollement. Higher vitrinite reflectance of 0.57 % and 0.37 % than the host rock of 0.24 % were found at splay and plate boundary faults zones respectively. These correspond with 300-400 °C and > 20°C of host rock. Local high temperature zone less than several cm thick may be caused by frictional shear heat at fault zone (Sakaguchi, et al., 2011). Shear velocity and durations can be estimated from thermal property of the sediment and distribution of the vitrinite anomaly (Hamada et al., 2011). This result shows that seismic

  1. Pressure Distributions About Finite Wedges in Bounded and Unbounded Subsonic Streams

    NASA Technical Reports Server (NTRS)

    Donoughe, Patrick L; Prasse, Ernst I

    1953-01-01

    An analytical investigation of incompressible flow about wedges was made to determine effects of tunnel-wedge ratio and wedge angle on the wedge pressure distributions. The region of applicability of infinite wedge-type velocity distribution was examined for finite wedges. Theoretical and experimental pressure coefficients for various tunnel-wedge ratios, wedge angles, and subsonic Mach numbers were compared.

  2. Numerical simulation of vortex-wedge interaction

    NASA Astrophysics Data System (ADS)

    Park, Jin-Ho; Lee, Duck-Joo

    1994-06-01

    Interactions between vortical flows and a solid surface cause one of the primary sources of noise and unsteady loading. The mechanism of the interaction is studied numerically for a single Rankine vortex impinging upon a wedge. An Euler-Lagrangian method is employed to calculate the unsteady, viscous, incompressible flows in two dimensions. A random vortex method is used to describe the vorticity dominant field. A fast vortex method is used to reduce the computational time in the calculation of the convection velocity of each vortex particle. A Schwarz-Christoffel transformation is used to map the numerical domain onto the physical domain. Vortex partical plots, velocity vectors, and streamlines are presented at selected times for both inviscid and viscous interactions. It is observed that the incident rankine vortex distorts and is split by the wedge as it nears and passes the wedge, and the vortices generated from the leading edge toward the underside of the wedge form into a single vortex. The vorticity orientation of the shed vortex is opposite to that of the incident vortex. It is found that the convection velocity of the shed vortex is changed wheen it comes off the leading edge of the wedge, and the strength of the shed vortex varies with the time during the vortex-wedge interaction. This strength variation is presumed to influence the shed vortex convection velocity. The overall features for the interaction agree well with the experimental results of Ziada and Rockwell.

  3. Evaluating the dose to the contralateral breast when using a dynamic wedge versus a regular wedge.

    PubMed

    Weides, C D; Mok, E C; Chang, W C; Findley, D O; Shostak, C A

    1995-01-01

    The incidence of secondary cancers in the contralateral breast after primary breast irradiation is several times higher than the incidence of first time breast cancer. Studies have shown that the scatter radiation to the contralateral breast may play a large part in the induction of secondary breast cancers. Factors that may contribute to the contralateral breast dose may include the use of blocks, the orientation of the field, and wedges. Reports have shown that the use of regular wedges, particularly for the medial tangential field, gives a significantly higher dose to the contralateral breast compared to an open field. This paper compares the peripheral dose outside the field using a regular wedge, a dynamic wedge, and an open field technique. The data collected consisted of measurements taken with patients, solid water and a Rando phantom using a Varian 2300CD linear accelerator. Ion chambers, thermoluminescent dosimeters (TLD), diodes, and films were the primary means for collecting the data. The measurements show that the peripheral dose outside the field using a dynamic wedge is close to that of open fields, and significantly lower than that of regular wedges. This information indicates that when using a medial wedge, a dynamic wedge should be used.

  4. Mechanics of injection wedges in collision orogens

    NASA Astrophysics Data System (ADS)

    Thompson, A. B.; Schulmann, K.

    2003-04-01

    Instantaneously juxtaposed lithospheric sections, marked by different geothermal gradient and lithological make-up, are examined to identify zones of highly contrasting strength in adjacent transposed crust and lithospheric mantle. Three types of geotherms and four reference lithospheric segments: thin crust/hot geotherm (rift), thin crust/mean geotherm (relaxed rift), standard crust/hot geotherm (arc), standard crust/mean geotherm (normal crust), are compared with variable permutations of cratonic, standard and rifted lithosphere thicknesses. This permits identification of strong brittle-elastic or plastic mantle, lower and upper crust juxtaposed against plastic rocks of a weak adjacent lithosphere. Vertical positions of shallow dipping detachment zones thus delineate possible areas of hot or cold injection wedges which include: (i) Single shallow wedge (or Flake), (ii) Double shallow and deep wedge, (iii) Deep lithospheric crocodile, (iv) Crustal thickening due to shallow strength differences, (v) Mantle Lithosphere thickening, or wedging, due to deep mantle strength differences and (vii) Exchange tectonics as an extreme wedging process, in which horizontal mass exchange is approximately equal. Rheological calculations are compared to a database of seismic profiles in which the geometry of detachment zones and proposed thermal conditions and lithological make-ups have been presented.

  5. The formation of grounding zone wedges

    NASA Astrophysics Data System (ADS)

    Kowal, Katarzyna; Worster, Grae

    2016-11-01

    Ice sheets are generally lubricated by a layer of sub-glacial sediment, or till, which plays a central role in determining their large-scale dynamics. Sub-glacial till has been found to accumulate into distinctive sedimentary wedges at ice-sheet grounding zones, separating floating ice shelves from grounded ice sheets. These grounding-zone wedges have important implications for stabilizing ice sheets against grounding-zone retreat in response to rising sea levels. We develop a theoretical model of wedge formation in which we treat both ice and till as viscous fluids spreading under gravity into an inviscid ocean and present a fluid-mechanical explanation of the formation of these wedges in terms of the jump in hydrostatic loading and unloading of till across the grounding zone. We also conduct a series of fluid-mechanical experiments in a confined setting in which we find that the underlying layer of less viscous fluid accumulates spontaneously in a similar wedge-shaped region at the experimental grounding line. We also extend our theory to more natural, unconfined settings in two dynamical regimes in which the overlying ice is resisted dominantly either by vertical shear or by extensional stresses and compare our findings with available geophysical data. Currently at Northwestern University.

  6. A review of dynamics modelling of friction wedge suspensions

    NASA Astrophysics Data System (ADS)

    Wu, Qing; Cole, Colin; Spiryagin, Maksym; Sun, Yan Quan

    2014-11-01

    Three-piece bogies with friction wedge suspensions are the most widely used bogies in heavy haul trains. Fiction wedge suspensions play a key role in these wagon systems. This article reviews current techniques in dynamic modelling of friction wedge suspension with various motivations: to improve dynamic models of friction wedge suspensions so as to improve general wagon dynamics simulations; to seek better friction wedge suspension models for wagon stability assessments in complex train systems; to improve the modelling of other friction devices, such as friction draft gear. Relevant theories and friction wedge suspension models developed by using commercial simulation packages and in-house simulation packages are reviewed.

  7. Two-dimensional meniscus in a wedge

    SciTech Connect

    Kagan, M.; Pinczewski, W.V.; Oren, P.E.

    1995-03-15

    This paper presents a closed-form analytical solution of the augmented Young-Laplace equation for the meniscus profile in a two-dimensional wedge-shaped capillary. The solution is valid for monotonic forms of disjoining pressure which are repulsive in nature. In the limit of negligible disjoining pressure, it is shown to reduce to the classical solution of constant curvature. The character of the solution is examined and examples of practical interest which demonstrate the application of the solution to the computation of the meniscus profile in a wedge-shaped capillary are discussed.

  8. Remagnetization of the Coast Range ophiolite at Stanley Mountain, California, during accretion near 10 degree N paleolatitude

    SciTech Connect

    Hagstrum, J.T. )

    1992-06-01

    Paleomagnetic data are presented for a 50-m-thick sequence of Oxfordian to Tithonian sedimentary rocks conformably overlying Upper Jurassic pillow basalt within the Coast Range ophiolite at Stanley Mountain, California. These new data are similar in direction and polarity to previously published paleomagnetic data for the pillow basalt. The Jurassic sedimentary rocks were deposited during a mixed-polarity interval of the geomagnetic field, and uniformity of the remanent magnetization within the entire section of pillow basalt and sedimentary rocks indicates later remagnetization. Remagnetization of the Coast Range ophiolite is interpreted to have occurred during accretion to the continental margin, possibly by burial and low-temperature alteration related to this event. Similar paleolatitudes calculated for the ophiolite (11{degree} {plus minus} 3{degree}) and for mid-Cretaceous sedimentary rocks of the Stanley Mountain terrane at Figueroa Mountain (6{degree} {plus minus} 5{degree}) are consistent with remagnetization of the ophiolite in southern California and elsewhere along the Pacific coast imply that these rocks were also overprinted, and their magnetic inclinations suggest remagnetization at low paleolatitudes as well. The Coast Range ophiolite at Stanley Mountain is thus inferred to have been remagnetized along the North American margin near 10{degree}N paleolatitude between earliest and mid-Cretaceous time and subsequently transported northward by strike-slip faulting related to relative motions between the Farallon, Kula, Pacific, and North American plates.

  9. Wedge Waveguides and Resonators for Quantum Plasmonics.

    PubMed

    Kress, Stephan J P; Antolinez, Felipe V; Richner, Patrizia; Jayanti, Sriharsha V; Kim, David K; Prins, Ferry; Riedinger, Andreas; Fischer, Maximilian P C; Meyer, Stefan; McPeak, Kevin M; Poulikakos, Dimos; Norris, David J

    2015-09-09

    Plasmonic structures can provide deep-subwavelength electromagnetic fields that are useful for enhancing light-matter interactions. However, because these localized modes are also dissipative, structures that offer the best compromise between field confinement and loss have been sought. Metallic wedge waveguides were initially identified as an ideal candidate but have been largely abandoned because to date their experimental performance has been limited. We combine state-of-the-art metallic wedges with integrated reflectors and precisely placed colloidal quantum dots (down to the single-emitter level) and demonstrate quantum-plasmonic waveguides and resonators with performance approaching theoretical limits. By exploiting a nearly 10-fold improvement in wedge-plasmon propagation (19 μm at a vacuum wavelength, λvac, of 630 nm), efficient reflectors (93%), and effective coupling (estimated to be >70%) to highly emissive (~90%) quantum dots, we obtain Ag plasmonic resonators at visible wavelengths with quality factors approaching 200 (3.3 nm line widths). As our structures offer modal volumes down to ~0.004λvac(3) in an exposed single-mode waveguide-resonator geometry, they provide advantages over both traditional photonic microcavities and localized-plasmonic resonators for enhancing light-matter interactions. Our results confirm the promise of wedges for creating plasmonic devices and for studying coherent quantum-plasmonic effects such as long-distance plasmon-mediated entanglement and strong plasmon-matter coupling.

  10. Sharp Thermal Transition in the Forearc Mantle Wedge as a Consequence of Nonlinear Mantle Wedge Flow

    NASA Astrophysics Data System (ADS)

    Wada, I.; Wang, K.; Jiangheng, H.

    2009-12-01

    A sharp landward increase in seismic attenuation over a few tens of kilometres distance in the forearc mantle wedge has been reported for a number of subduction zones, including Alaska, Costa Rica, central Andes, Hikurangi, and NE Japan. The low attenuation in the wedge nose is commonly interpreted as to indicate a cold state, and the high attenuation further landward to indicate high temperature and/or partial melting. Beneath the arc, the high temperature at shallow depths may be caused by transient melt migration, but at larger depths the mantle wedge must be hot enough to generate melt. Thus, the landward change in the thermal state of the forearc mantle wedge is large and sharp. We use a two-dimensional steady-state thermal model and the subduction-interface weakening approach of Wada et al. (2008) to investigate how slab-driven mantle wedge flow controls the thermal transition. We observe that the sharpness of the transition increases with the increasing nonlinearity of the flow system. In an isoviscous mantle wedge with a uniform interface strength, there is no spontaneous transition in the flow and thermal fields. In a diffusion-creep mantle wedge, even with a uniform interface strength, the strong temperature dependence of the mantle rheology always results in full slab-mantle decoupling along the weakened part of the interface and hence complete stagnation of the overlying mantle, giving rise to a cold wedge nose that does not participate in the wedge flow. On the other hand, the interface immediately downdip of the zone of decoupling is fully coupled, and the overlying mantle is driven to flow at a rate compatible with the subduction rate. The flow system thus shows a bimodal behaviour. In a dislocation-creep mantle wedge, its stress-dependence results in an additional feedback effect, making the bimodal behaviour more pronounced than in the diffusion-creep mantle wedge, with an abrupt change from decoupling to coupling along the subduction interface

  11. Benchmarking numerical models of brittle thrust wedges

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne J. H.; Schreurs, Guido; Albertz, Markus; Gerya, Taras V.; Kaus, Boris; Landry, Walter; le Pourhiet, Laetitia; Mishin, Yury; Egholm, David L.; Cooke, Michele; Maillot, Bertrand; Thieulot, Cedric; Crook, Tony; May, Dave; Souloumiac, Pauline; Beaumont, Christopher

    2016-11-01

    We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the stable wedge test, showing negligible internal deformation and maintaining the initial surface slope upon horizontal translation over a frictional interface. Eight codes participated in the unstable wedge test that examines the evolution of a wedge by thrust formation from a subcritical state to the critical taper geometry. The critical taper is recovered, but the models show two deformation modes characterised by either mainly forward dipping thrusts or a series of thrust pop-ups. We speculate that the two modes are caused by differences in effective basal boundary friction related to different algorithms for modelling boundary friction. The third experiment examines stacking of forward thrusts that are translated upward along a backward thrust. The results of the seven codes that run this experiment show variability in deformation style, number of thrusts, thrust dip angles and surface slope. Overall, our experiments show that numerical models run with different numerical techniques can successfully simulate laboratory brittle thrust wedge models at the cm-scale. In more detail, however, we find that it is challenging to reproduce sandbox-type setups numerically, because of frictional boundary conditions and velocity discontinuities. We recommend that future numerical-analogue comparisons use simple boundary conditions and that the numerical Earth Science community defines a plasticity test to resolve the variability in model shear zones.

  12. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Defective plain bearing wedge. 215.113 Section 215... Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...

  13. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective plain bearing wedge. 215.113 Section 215... Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...

  14. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Defective plain bearing wedge. 215.113 Section 215... Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...

  15. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Defective plain bearing wedge. 215.113 Section 215... Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...

  16. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Defective plain bearing wedge. 215.113 Section 215... Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...

  17. 21 CFR 884.5200 - Hemorrhoid prevention pressure wedge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hemorrhoid prevention pressure wedge. 884.5200... Devices § 884.5200 Hemorrhoid prevention pressure wedge. (a) Identification. A hemorrhoid prevention pressure wedge provides mechanical support to the perianal region during the labor and delivery...

  18. 21 CFR 884.5200 - Hemorrhoid prevention pressure wedge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hemorrhoid prevention pressure wedge. 884.5200... Devices § 884.5200 Hemorrhoid prevention pressure wedge. (a) Identification. A hemorrhoid prevention pressure wedge provides mechanical support to the perianal region during the labor and delivery...

  19. Life at the wedge: the activity and diversity of arctic ice wedge microbial communities.

    PubMed

    Wilhelm, Roland C; Radtke, Kristin J; Mykytczuk, Nadia C S; Greer, Charles W; Whyte, Lyle G

    2012-04-01

    The discovery of polygonal terrain on Mars underlain by ice heightens interest in the possibility that this water-bearing habitat may be, or may have been, a suitable habitat for extant life. The possibility is supported by the recurring detection of terrestrial microorganisms in subsurface ice environments, such as ice wedges found beneath tundra polygon features. A characterization of the microbial community of ice wedges from the high Arctic was performed to determine whether this ice environment can sustain actively respiring microorganisms and to assess the ecology of this extreme niche. We found that ice wedge samples contained a relatively abundant number of culturable cells compared to other ice habitats (∼10(5) CFU·mL(-1)). Respiration assays in which radio-labeled acetate and in situ measurement of CO(2) flux were used suggested low levels of microbial activity, though more sensitive techniques are required to confirm these findings. Based on 16S rRNA gene pyrosequencing, bacterial and archaeal ice wedge communities appeared to reflect surrounding soil communities. Two Pseudomonas sp. were the most abundant taxa in the ice wedge bacterial library (∼50%), while taxa related to ammonia-oxidizing Thaumarchaeota occupied 90% of the archaeal library. The tolerance of a variety of isolates to salinity and temperature revealed characteristics of a psychrotolerant, halotolerant community. Our findings support the hypothesis that ice wedges are capable of sustaining a diverse, plausibly active microbial community. As such, ice wedges, compared to other forms of less habitable ground ice, could serve as a reservoir for life on permanently cold, water-scarce, ice-rich extraterrestrial bodies and are therefore of interest to astrobiologists and ecologists alike. .

  20. Electromagnetic scattering by pyramidal and wedge absorber

    NASA Technical Reports Server (NTRS)

    Dewitt, Brian T.; Burnside, Walter D.

    1988-01-01

    Electromagnetic scattering from pyramidal and wedge absorbers used to line the walls of modern anechoic chambers is measured and compared with theoretically predicted values. The theoretical performance for various angles of incidence is studied. It is shown that a pyramidal absorber scatters electromagnetic energy more as a random rough surface does. The apparent reflection coefficient from an absorber wall illuminated by a plane wave can be much less than the normal absorber specifications quoted by the manufacturer. For angles near grazing incidence, pyramidal absorbers give a large backscattered field from the pyramid side-faces or edges. The wedge absorber was found to give small backscattered fields for near-grazing incidence. Based on this study, some new guidelines for the design of anechoic chambers are advocated because the specular scattering models used at present do not appear valid for pyramids that are large compared to the wavelength.

  1. Wedge assembly for electrical transformer component spacing

    DOEpatents

    Baggett, Franklin E.; Cage, W. Franklin

    1991-01-01

    A wedge assembly that is easily inserted between two surfaces to be supported thereby, and thereafter expanded to produce a selected spacing between those surfaces. This wedge assembly has two outer members that are substantially identical except that they are mirror images of each other. Oppositely directed faces of these of these outer members are substantially parallel for the purpose of contacting the surfaces to be separated. The outer faces of these outer members that are directed toward each other are tapered so as to contact a center member having complementary tapers on both faces. A washer member is provided to contact a common end of the outer members, and a bolt member penetrates this washer and is threadably received in a receptor of the center member. As the bolt member is threaded into the center member, the center member is drawn further into the gap between the outer members and thereby separates these outer members to contact the surfaces to be separated. In the preferred embodiment, the contacting surfaces of the outer member and the center member are provided with guide elements. The wedge assembly is described for use in separating the secondary windings from the laminations of an electrical power transformer.

  2. Interior impedance wedge diffraction with surface waves

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Griesser, Timothy

    1988-01-01

    The exact impedance wedge solution is evaluated asymptotically using the method of steepest descents for plane wave illumination at normal incidence. Uniform but different impedances on each face are considered for both soft and hard polarizations. The asymptotic solution isolates the incident, singly reflected, multiply reflected, diffracted, and surface wave fields. Multiply reflected fields of any order are permitted. The multiply reflected fields from the exact solution are written as ratios of auxiliary Maliuzhinets functions, whereas a geometrical analysis gives the reflected fields as products of reflection coefficients. These two representations are shown to be identical in magnitude, phase and the angular range over which they exist. The diffracted field includes four Fresnel transition functions as in the perfect conductor case, and the expressions for the appropriate discontinuities at the shadow boundaries are presented. The surface wave exists over a finite angular range and only for certain surface impedances. A surface wave transition field is included to retain continuity. Computations are presented for interior wedge diffractions although the formulation is valid for both exterior and interior wedges.

  3. Bouncing and bursting in a wedge

    NASA Astrophysics Data System (ADS)

    Reyssat, Etienne; Cohen, Caroline; Quere, David

    2015-11-01

    Placed into an inhomogeneous confined medium, non-wetting drops tend to be expelled from the tightest regions, where their contact with the walls would be maximized. They preferentially explore more open areas which are favorable from the point of view of capillary energy. Following this principle, one may thus use the geometry of confined environments to control fluid droplets in various ways : displacing, filtering, fragmenting... In this communication, we present experimental results on the dynamics of Leidenfrost drops launched into a wedge formed by two quasi-horizontal glass plates. Influenced by the gradient of confinement, these non-wetting liquid pucks approach the apex of the wedge to a minimal distance where they bounce back. At higher impact velocity, we observe that drops tend to penetrate deeper into the wedge but often burst into a large number of small fragments. We also discuss ways to control the deviation of droplets from their initial trajectory. We propose scaling law analyses to explain the characteristics of the observed bouncing and bursting phenomena.

  4. Optimal clinical implementation of the Siemens virtual wedge.

    PubMed

    Walker, C P; Richmond, N D; Lambert, G D

    2003-01-01

    Installation of a modern high-energy Siemens Primus linear accelerator at the Northern Centre for Cancer Treatment (NCCT) provided the opportunity to investigate the optimal clinical implementation of the Siemens virtual wedge filter. Previously published work has concentrated on the production of virtual wedge angles at 15 degrees, 30 degrees, 45 degrees, and 60 degrees as replacements for the Siemens hard wedges of the same nominal angles. However, treatment plan optimization of the dose distribution can be achieved with the Primus, as its control software permits the selection of any virtual wedge angle from 15 degrees to 60 degrees in increments of 1 degrees. The same result can also be produced from a combination of open and 60 degrees wedged fields. Helax-TMS models both of these modes of virtual wedge delivery by the wedge angle and the wedge fraction methods respectively. This paper describes results of timing studies in the planning of optimized patient dose distributions by both methods and in the subsequent treatment delivery procedures. Employment of the wedge fraction method results in the delivery of small numbers of monitor units to the beam's central axis; therefore, wedge profile stability and delivered dose with low numbers of monitor units were also investigated. The wedge fraction was proven to be the most efficient method when the time taken for both planning and treatment delivery were taken into consideration, and is now used exclusively for virtual wedge treatment delivery in Newcastle. It has also been shown that there are no unfavorable dosimetric consequences from its practical implementation.

  5. Plastic deformation of a wedge by a sliding punch

    NASA Astrophysics Data System (ADS)

    Nepershin, R. I.

    2016-11-01

    We present a self-similar solution of the problem of deformation of an ideally plastic wedge by a sliding punch with regard to contact friction; such a solution generalizes the well-known solutions of the problem of wedge penetration into a plastic half-space and of compression of an ideally plastic wedge by a plane punch. The problem is of interest for modeling the processes of plastic deformation of rough surfaces of metal pieces by a rigid tool.

  6. Impingement of water droplets on wedges and double-wedge airfoils at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Serafini, John S

    1954-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees r, free stream Mach numbers from 1.1 to 2.0, semiapex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  7. Principle and analysis of the moving-optical-wedge interferometer.

    PubMed

    Yang, Qinghua; Zhou, Renkui; Zhao, Baochang

    2008-05-01

    A new type of interferometer, the moving-optical-wedge interferometer, is presented, and its principle and properties are studied. The novel interferometer consists of one beam splitter, two flat fixed mirrors, two fixed compensating plates, one fixed optical wedge, and one moving optical wedge. The optical path difference (OPD) as a function of the displacement of the moving optical wedge from the zero path difference position is accomplished by the straight reciprocating motion of the moving optical wedge. A large physical shift of the moving optical wedge corresponds to a very short OPD value of the new interferometer if the values of the wedge angle and the refractive index of the two optical wedges are given properly. The new interferometer is not so sensitive to the velocity variation of the moving optical wedge and the mechanical disturbances compared with the Michelson interferometer, and it is very applicable to low-spectral-resolution application for any wavenumber region from the far infrared down to the ultraviolet.

  8. Spot size effects in miniaturized moving-optical-wedge interferometer.

    PubMed

    Al-Saeed, Tarek A; Khalil, Diaa A

    2011-06-10

    In this paper we study the effect of diffraction on the performance of a miniaturized moving-optical-wedge interferometer. By using the Gaussian model, we calculate the degradation of the interferometer visibility due to diffraction effects. We use this model to optimize the detector size required to obtain maximum visibility and study its effect on resolution of Fourier transform spectrometers based on a moving-optical-wedge interferometer. A comparison between these effects in Michelson and wedge interferometers is also presented showing the advantage of the moving-optical-wedge interferometer in suppressing the diffraction effects with respect to the Michelson interferometer.

  9. Effect of Wedge Insertion Angle on Posterior Tibial Slope in Medial Opening Wedge High Tibial Osteotomy

    PubMed Central

    Ogawa, Hiroyasu; Matsumoto, Kazu; Ogawa, Takahiro; Takeuchi, Kentaro; Akiyama, Haruhiko

    2016-01-01

    Background: Medial opening wedge high tibial osteotomy (HTO) is a well-established surgery for medial compartment knee osteoarthritis (OA) wherein the lower extremity is realigned to shift the load distribution from the medial compartment of the knee to the lateral compartment. However, this surgery is known to affect the posterior tibial slope angle (PTSA), which could lead to abnormal knee kinematics and instability, and eventually to knee OA. Although PTSA control is as important as coronal realignment, few appropriate measurements for this parameter have been reported. The placement of a wedge spacer might have an effect on PTSA. Purpose: To elucidate the relationship between the PTSA and the direction of insertion of a wedge spacer. Study Design: Case series; Level of evidence, 4. Methods: This study assessed 43 knees from 34 patients who underwent medial opening wedge HTO for knee OA. Pre- and postoperative lateral radiographs of the knee as well as postoperative computed tomography scans were performed to evaluate the relationship among PTSA, wedge insertion angle (WIA), and opening gap ratio (distance of the anterior opening gap/distance of the posterior opening gap at the osteotomy site). Results: The PTSA significantly increased from 9.0° ± 2.8° preoperatively to 13.2° ± 4.1° postoperatively (P < .001), resulting in a mean ΔPTSA of 4.7° ± 4.5°. The mean opening gap ratio was 0.86 ± 0.11, and the mean WIA was 25.9° ± 8.4°. The WIA and opening gap ratio were both highly correlated with ΔPTSA (r = 0.71 and 0.72, respectively), implying that a smaller WIA or smaller gap ratio leads to less increase in posterior slope. Conclusion: The direction of wedge insertion is highly correlated with PTSA increase, which suggests that the PTSA can be controlled for by adjusting the direction of wedge insertion during surgery. Clinical Relevance: Study results suggest that it is possible to adjust the PTSA by controlling the WIA during surgery. Proper

  10. Experimental and numerical investigations on melamine wedges.

    PubMed

    Schneider, S

    2008-09-01

    Melamine wedges are often used as acoustic lining material for anechoic chambers. It was proposed here to study the effects of the mounting conditions on the acoustic properties of the melamine wedges used in the large anechoic chamber at the LMA. The results of the impedance tube measurements carried out show that the mounting conditions must be taken into account when assessing the quality of an acoustic lining. As it can be difficult to simulate these mounting conditions in impedance tube experiments, a numerical method was developed, which can be used to complete the experiments or for parametric studies. By combining the finite and the boundary element method, it is possible to investigate acoustic linings with almost no restrictions as to the geometry, material behavior, or mounting conditions. The numerical method presented here was used to study the acoustic properties of the acoustic lining installed in the anechoic chamber at the LMA. Further experiments showed that the behavior of the melamine foam is anisotropic. Numerical simulations showed that this anisotropy can be used to advantage when designing an acoustic lining.

  11. 49 CFR 230.104 - Driving box shoes and wedges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Driving box shoes and wedges. 230.104 Section 230.104 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Locomotives and Tenders Running Gear § 230.104 Driving box shoes and wedges. Driving box shoes and...

  12. 28. REPRESENTATIVE CENTER WEDGE. BALANCE WHEELS ON TRACK, WITH RACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. REPRESENTATIVE CENTER WEDGE. BALANCE WHEELS ON TRACK, WITH RACK TO OUTSIDE, SHOWN TO RIGHT OF THE WEDGE. PHOTO TAKEN AT SOUTH SWING SPAN. - George P. Coleman Memorial Bridge, Spanning York River at U.S. Route 17, Yorktown, York County, VA

  13. 49 CFR 230.104 - Driving box shoes and wedges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Driving box shoes and wedges. 230.104 Section 230.104 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Locomotives and Tenders Running Gear § 230.104 Driving box shoes and wedges. Driving box shoes and...

  14. 49 CFR 230.104 - Driving box shoes and wedges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Driving box shoes and wedges. 230.104 Section 230.104 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Locomotives and Tenders Running Gear § 230.104 Driving box shoes and wedges. Driving box shoes and...

  15. 49 CFR 230.104 - Driving box shoes and wedges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Driving box shoes and wedges. 230.104 Section 230.104 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Locomotives and Tenders Running Gear § 230.104 Driving box shoes and wedges. Driving box shoes and...

  16. 49 CFR 230.104 - Driving box shoes and wedges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Driving box shoes and wedges. 230.104 Section 230.104 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Locomotives and Tenders Running Gear § 230.104 Driving box shoes and wedges. Driving box shoes and...

  17. Substorm Current Wedge at Earth and Mercury

    NASA Astrophysics Data System (ADS)

    Kepko, L.; Glassmeier, K.-H.; Slavin, J. A.; Sundberg, T.

    2015-01-01

    This chapter reviews magnetospheric substorms and dipolarizations observed at both Earth and Mercury. It briefly discusses new insights into the physics of the substorm current wedge (SCW) that have been revealed the past few years. The formation and evolution of the SCW are closely tied to the braking of flows convecting flux away from the reconnection site and the resultant near-planet flux pileup that creates the dipolarization. At Earth, the SCW plays a critical role in substorms, coupling magnetospheric to ionospheric motions, deflecting incoming plasma flows, and regulating the dissipation of pressure built up in the near-Earth magnetosphere during dipolarization. The lack of a conducting boundary at Mercury provides a natural experiment to examine the role of an ionosphere on regulating magnetospheric convection. Energetic particles may play a much greater role within substorms at Mercury than at Earth, providing another opportunity for comparative studies.

  18. Characterization of CNRS Fizeau wedge laser tuner

    NASA Astrophysics Data System (ADS)

    A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom fabricated circuit board which contains a high speed fringe detection and locating circuit. This board includes a dc level discriminator type fringe detector, a counter circuit to determine fringe center, a pulsed laser triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data collection process and interprets the results.

  19. Characterization of CNRS Fizeau wedge laser tuner

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom fabricated circuit board which contains a high speed fringe detection and locating circuit. This board includes a dc level discriminator type fringe detector, a counter circuit to determine fringe center, a pulsed laser triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data collection process and interprets the results.

  20. Configuration and Generation of Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Chu, Xiangning

    The substorm current wedge (SCW), a core element of substorm dynamics coupling the magnetotail to the ionosphere, is crucial in understanding substorms. It has been suggested that the field-aligned currents (FACs) in the SCW are caused by either pressure gradients or flow vortices, or both. Our understanding of FAC generations is based predominately on numerical simulations, because it has not been possible to organize spacecraft observations in a coordinate system determined by the SCW. This dissertation develops an empirical inversion model of the current wedge and inverts midlatitude magnetometer data to obtain the parameters of the current wedge for three solar cycles. This database enables statistical data analysis of spacecraft plasma and magnetic field observations relative to the SCW coordinate. In chapter 2, a new midlatitude positive bay (MPB) index is developed and calculated for three solar cycles of data. The MPB index is processed to determine the substorm onset time, which is shown to correspond to the auroral breakup onset with at most 1-2 minutes difference. Substorm occurrence rate is found to depend on solar wind speed while substorm duration is rather constant, suggesting that substorm process has an intrinsic pattern independent of external driving. In chapter 3, an SCW inversion technique is developed to determine the strength and locations of the FACs in an SCW. The inversion parameters for FAC strength and location, and ring current strength are validated by comparison with other measurements. In chapter 4, the connection between earthward flows and auroral poleward expansion is examined using improved mapping, obtained from a newly-developed dynamic magnetospheric model by superimposing a standard magnetospheric field model with substorm current wedge obtained from the inversion technique. It is shown that the ionospheric projection of flows observed at a fixed point in the equatorial plane map to the bright aurora as it expands poleward

  1. Fabrication of wedged multilayer Laue lenses

    SciTech Connect

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack. This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.

  2. Fabrication of wedged multilayer Laue lenses

    DOE PAGES

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; ...

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more » This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less

  3. Wedge Dynamics, Forearc Basins, and Seismogenic Zone of Cascadia Megathrust

    NASA Astrophysics Data System (ADS)

    Wang, K.; Hu, Y.

    2005-12-01

    A dynamic critical wedge theory has been developed to describe stress changes in submarine wedges in great earthquake cycles. For most subduction zones, the theory postulates that the actively deforming outer wedge overlies the updip velocity-strengthening part of the subduction fault, and the less deformed inner wedge overlies the megathrust seismogenic zone. Coseismic shear-stress increase in the velocity-strengthening zone drives the outer wedge into the critical state, causing episodic fold-and-thrust deformation, but the inner wedge stays in the stable regime throughout earthquake cycles, maintaining a stable environment for the development of forearc sedimentary basins. This is consistent with the globally observed correlation of the location of forearc basins with rupture zones of subduction earthquakes [Wells et al., JGR, 2003]. However, northern/central Cascadia is complicated by recent, exceedingly rapid growth of the accretionary prism. Until mid-Pleistocene, the megathrust seismogenic zone was probably mostly beneath the forearc basins, in agreement with the modern global observations. Rapid wedge growth and consequent megathrust warming over the past Ma have caused the seismogenic zone to move seaward by tens of km, to a position consistent with inferences based on contemporary geodetic observations. With much of the seismogenic zone located seaward of the forearc basins and beneath the upper continental slope, the dynamic taper theory predicts that coseismic deformation should cause extensional structures on the upper slope but accretion and thrusting on the lower slope, consistent with structural observations [McNeill et al., JGR, 1998].

  4. Stable and Critical Noncohesive Coulomb Wedges: Exact Elastic Solutions

    NASA Astrophysics Data System (ADS)

    Wang, K.; Hu, Y.

    2004-12-01

    The theory of critically tapered Coulomb wedge has been successfully applied to model active fold-and-thrust belts or submarine accretionary prisms. Brittle mountain building is episodic in nature, controlled by changes in basal friction, erosion and sedimentation, and hydrogeology. Sediment accretion may be modulated by great subduction earthquakes. Between deformation episodes and/or during transition between compressional and extensional tectonics, the Coulomb wedges are stable (i.e., supercritical), to which the critical taper theory does not apply. In this work, we provide an exact elastic solution for stable wedges based on Airy stress functions. The stress equilibrium equation and definition of basal friction and basal and internal pore fluid pressure ratios are exactly the same as those used for Dahlen's [1984] exact solution for critical noncohesive Coulomb wedges, but internal friction μ becomes irrelevant. Given elastic - perfectly Coulomb-plastic rheology, for stresses in a wedge on the verge of Coulomb failure there must co-exist a critical taper solution involving μ and a unique equivalent elastic solution not involving μ . Our elastic solution precisely reduces to Dahlen's critical taper solution for critical conditions. For stable conditions, normal stress perpendicular to the surface slope σ z and shear stress τ xz are identical with those in a critical taper, but the slope-parallel normal stress is different. The elastic solution is also generally applicable to purely elastic wedges and useful for modeling geodetic observations. A stable noncohesive Coulomb wedge differs from a general elastic wedge in that its upper and lower surfaces stay at zero curvature during loading. Dahlen, F.A. (1984), Noncohesive critical Coulomb wedges: An exact solution, JGR, 89, 10,125-10,133.

  5. Recirculating wedges for metal-vapor plasma tubes

    DOEpatents

    Hall, J.P.; Sawvel, R.M.; Draggoo, V.G.

    1994-06-28

    A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior. 8 figures.

  6. Recirculating wedges for metal-vapor plasma tubes

    DOEpatents

    Hall, Jerome P.; Sawvel, Robert M.; Draggoo, Vaughn G.

    1994-01-01

    A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior.

  7. Refined numerical solution of the transonic flow past a wedge

    NASA Technical Reports Server (NTRS)

    Liang, S.-M.; Fung, K.-Y.

    1985-01-01

    A numerical procedure combining the ideas of solving a modified difference equation and of adaptive mesh refinement is introduced. The numerical solution on a fixed grid is improved by using better approximations of the truncation error computed from local subdomain grid refinements. This technique is used to obtain refined solutions of steady, inviscid, transonic flow past a wedge. The effects of truncation error on the pressure distribution, wave drag, sonic line, and shock position are investigated. By comparing the pressure drag on the wedge and wave drag due to the shocks, a supersonic-to-supersonic shock originating from the wedge shoulder is confirmed.

  8. Octave spanning wedge dispersive mirrors with low dispersion oscillations.

    PubMed

    Habel, Florian; Shirvanyan, Vage; Trubetskov, Michael; Burger, Christian; Sommer, Annkatrin; Kling, Matthias F; Schultze, Martin; Pervak, Vladimir

    2016-05-02

    A novel concept for octave spanning dispersive mirrors with low spectral dispersion oscillations is presented. The key element of the so-called wedge dispersive mirror is a slightly wedged layer which is coated on a specially optimized dispersive multilayer stack by a common sputter coating process. The group delay dispersion (GDD) of a pulse reflected on a wedge dispersive mirror is nearly free of oscillations. Fabricated mirrors with negative GDD demonstrate the compression of a pulse down to 3.8 fs as good as double angled mirrors optimized for the same bandwidth.

  9. Fracture and contact problems for an elastic wedge

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Arin, K.

    1976-01-01

    The paper deals with the plane elastostatic contact problem for an infinite elastic wedge of arbitrary angle. The medium is loaded through a frictionless rigid wedge of a given symmetric profile. Using the Mellin transform formulation the mixed boundary value problem is reduced to a singular integral equation with the contact stress as the unknown function. With the application of the results to the fracture of the medium in mind, the main emphasis in the study has been on the investigation of the singular nature of the stress state around the apex of the wedge and on the determination of the contact pressure.

  10. Fracture and contact problems for an elastic wedge

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Arin, K.

    1974-01-01

    The plane elastostatic contact problem for an infinite elastic wedge of arbitrary angle is discussed. The medium is loaded through a frictionless rigid wedge of a given symmetric profile. Using the Mellin transform formulation the mixed boundary value problem is reduced to a singular integral equation with the contact stress as the unknown function. With the application of the results to the fracture of the medium in mind, the main emphasis in the study has been on the investigation of the singular nature of the stress state around the apex of the wedge and on the determination of the contact pressure.

  11. Rough-water Impact-load Investigation of a Chine-immersed V-bottom Model Having a Dead-rise Angle of 10 Degrees

    NASA Technical Reports Server (NTRS)

    Markey, Melvin F; Carpini, Thomas D

    1957-01-01

    A hydrodynamic rough-water impact-loads investigation of a fixed-trim V-bottom float with a beam-loading coefficient of 5.78 and dead-rise angle of 10 degrees was made at the Langley impact basin. The size of the waves varied from approximately 10 to 60 feet in length and 1 to 2 feet in height. Time histories were obtained showing the position of the model relative to the wave throughout the impact and typical examples are presented. The load coefficient was found to vary primarily with the slope of the impacting wave.

  12. Wedge Heat-Flux Indicators for Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2003-01-01

    Wedge indicators have been proposed for measuring thermal radiation that impinges on specimens illuminated by flash lamps for thermographic inspection. Heat fluxes measured by use of these indicators would be used, along with known thermal, radiative, and geometric properties of the specimens, to estimate peak flash temperatures on the specimen surfaces. These indicators would be inexpensive alternatives to high-speed infrared pyrometers, which would otherwise be needed for measuring peak flash surface temperatures. The wedge is made from any suitable homogenous material such as plastic. The choice of material is governed by the equation given. One side of the wedge is covered by a temperature sensitive compound that decomposes irreversibly when its temperature exceeds a rated temperature (T-rated). The uncoated side would be positioned alongside or in place of the specimen and exposed to the flash, then the wedge thickness at the boundary between the white and blackened portions measured.

  13. DETAIL VIEW OF THREEPART METAL WEDGE EMBEDDED IN EDGE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THREE-PART METAL WEDGE EMBEDDED IN EDGE OF QUARRY WALL, FACING EAST - Granite Hill Plantation, Quarry No. 3, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  14. DETAIL VIEW OF THREEPART METAL WEDGE EMBEDDED IN EDGE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THREE-PART METAL WEDGE EMBEDDED IN EDGE OF QUARRY WALL, FACING NORTHWEST - Granite Hill Plantation, Quarry No. 3, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  15. VIEW OF LINE OF DRILL HOLES WITH METAL WEDGES, IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF LINE OF DRILL HOLES WITH METAL WEDGES, IN NORTHERN QUARRY AREA, FACING SOUTHEAST - Granite Hill Plantation, Quarry No. 2, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  16. VIEW OF LINE OF DRILL HOLES WITH METAL WEDGES, IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF LINE OF DRILL HOLES WITH METAL WEDGES, IN NORTHERN QUARRY AREA, FACING NORTH - Granite Hill Plantation, Quarry No. 2, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  17. Geophysical Surveys for Detecting Distribution and Shape of Ice Wedges

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Matsuoka, N.; Ikeda, A.

    2006-12-01

    Recent development of applied geophysical methods has shown detailed structure in various periglacial features. However, these methods have been rarely applied to studies in ice wedges. Thus, we attempted to display distribution and shape of ice wedges using a ground penetrating radar (GPR) and a direct current (DC) resistivity meter. The surveys were performed at a comprehensive monitoring site of ice-wedging in Adventdalen, Svalbard, where troughs and small cracks form polygonal patterns on the ground. Unknown structure below such new cracks is also focused in this study. We obtained 37 GPR profiles using 250 MHz signal. 2-D resistivity surveys were also performed along 14 GPR profiles. The electrodes were placed at 1 m intervals and their combination followed the Wenner array. In addition, shallow boreholes were dug across 5 troughs/cracks to estimate the width of ice wedge. The analyzed results show parabolic patterns formed by the multiple radar waveforms and largely increasing gradients of DC resistivity below the troughs and small cracks. The strong reflections of the radar signals and the starting zones of the increasing resistivity lay about 1 m deep, which corresponded to the top of ice wedges (0.7-0.9 m deep) revealed by the drilling. In the GPR profiles, a relatively flat pattern of the reflection was sandwiched by a pair of parabolic patterns below each well-developed trough, whereas a sharp parabolic pattern was detected below each small crack. These results mean that the presence of narrow ice wedges is detectable by the GPR method and the top of a parabolic pattern roughly corresponds to one edge of an ice wedge table. In the DC resistivity profiles, a high resistivity core exists below each trough and crack. The high resistivity probably resulted from ice having lower unfrozen water content than the surrounding silt materials. The heights of the cores indicate that the ice wedges were formed at least between 1 m and 3 m deep. The cores are, however

  18. Seismicity of the forearc marginal wedge (accrertionary prism)

    SciTech Connect

    Chen, A.T.; Frohlich, C.; Latham, G.V.

    1982-05-10

    Three different types of seismic data have been examined for seismic events occurring within the zone called the accreted wedge or forearc marginal wedge that underlies the inner trench wall of some arcs. These types of data are (1) teleseismically recorded earthquakes that have been reported in the literature as occurring in major arc-trench regions; these events fail to demonstrate that earthquakes occur within the accreted wedge because the uncertainty of focal depth usually exceeds the depth dimension of the accreted wedge; these data include many tsunamigenic earthquakes, (2) local earthquakes located by combined ocean bottom seismograph and land networks in the arc-trench region in the New Hebrides and the central and eastern Aleutian Trench; none of the more reliable of these hypocenters lies within the accreted wedge; (3) S-P intervals measured at stations on islands located on the outer ridge or at ocean bottom seismograph stations on the forearc marginal wedge; these data do not show the existence of events occurring within the accreted wedge; e.g., from 18 ocean bottom seismograph stations with a cumulative operation time of about 1 year, the smallest S-P time is about 2.5 s for events in the New Hebrides and about 4 s for events in the Adak and Kodiak regions. We found no S-P time smaller than 2 s from 6 years of seismograms recorded at Middleton Island, Alaska, and no S-P time smaller than 4 s from 25 years of seismograms recorded on Barbados. All of the events could have occured outside the forearc marginal wedge.

  19. Stereoscopic Display on Computer Monitor Using a Single Wedge Prism

    NASA Astrophysics Data System (ADS)

    Park, Tae-Soo; Park, Chan-Young; Lee, Han-Bae; Park, Seung-Han

    2002-02-01

    We propose a novel stereoscopic display technique which uses only a single wedge prism. It can provide good depth perception from a stereoscopic pair image displayed on a computer monitor. One element of the stereoscopic pair image is inversely distorted to correct the deformation induced by the wedge prism. The computer simulation and experimental demonstration show that this technique can be successfully applied to the Internet environment.

  20. Orientation of optic axis in wedged photorefractive crystals

    NASA Astrophysics Data System (ADS)

    Kos, Konstantine; Siahmakoun, Azad Z.

    1996-02-01

    A holographic method for finding the orientation of the optic axis of uniaxial photorefractive crystals is proposed. A theoretical procedure for determining the wedge angle of such crystals has also been developed. Two BaTiO 3 crystals grown by the same vender are examined and the resulting measurements lead to the values of wedge angle with an accuracy of about ±0.1°.

  1. Modeling Structural and Mechanical Responses to Localized Erosional Processes on a Bivergent Orogenic Wedge

    NASA Astrophysics Data System (ADS)

    Marzen, R.; Morgan, J. K.

    2014-12-01

    Critical Coulomb wedge theory established that orogenic and accretionary wedges should develop self-similarly and maintain a critical taper that reflects the balance of strength of the wedge material and a basal décollement. However, a variety of geological processes can perturb that balance, forcing readjustment of the wedge. For example, glacial erosion and landsliding can concentrate erosion on a localized portion of the wedge slope, leaving that portion of the wedge with an out-of-equilibrium slope that would need to re-develop for the wedge to resume self-similar growth. We use the discrete element method to analyze how growing bivergent wedges with different cohesive strengths respond structurally and mechanically to erosional events localized along upper, middle, and lower segments of the pro-wedge. Mechanically, pro-wedge erosion results in a sudden decrease followed by a quick recovery of the mean stress and maximum shear stress throughout the pro-wedge. However, when erosion is localized in the mid- to lower portions of the pro-wedge, a zone of increased mean stress develops where the wedge is concentrating deformation to recover its taper. In contrast, when erosion is localized in the upper axial zone, there is almost no recovery of the wedge taper, reflecting the fact that the material at the top of the wedge is being carried passively in a transition zone between the pro-wedge and retro-wedge. Structurally, wedges composed of lower cohesion material recover their critical taper almost immediately through distributed deformation, while wedges of higher-cohesion material recover more slowly, and incompletely, by concentrating deformation along existing fault surfaces. As a result, localized erosional episodes can have a lasting effect on the wedge morphology when the wedge is composed of higher cohesion material.

  2. {sup 226}Ra and {sup 231}Pa systematics of axial MORB, crustal residence ages, and magma chamber characteristics at 9--10{degree}N East Pacific Rise

    SciTech Connect

    Goldstein, S.J.; Murrell, M.T.; Perfit, M.R.; Batiza, R.; Fornari, D.J.

    1994-06-01

    Mass spectrometric measurements of {sup 30}Th-22{sup 226}Ra and {sup 235}-U{sup 231}Pa disequilibria for axial basalts are used to determine crustal residence ages for MORB magma and investigate the temporal and spatial characteristics of axial magma chambers (AMC) at 9--10{degrees}N East Pacific Rise (EPR). Relative crustal residence ages can be calculated from variations in {sup 226}Ra/{sup 230}Th and {sup 231}Pa/{sup 235}U activity ratios for axial lavas, if (1) mantle sources and melting are uniform, and mantle transfer times are constant or rapid for axial N-MORB, and (2) {sup 231}Pa/{sup 235}U and {sup 226}Ra/{sup 230}Th in the melt are unaffected by shallow level fractional crystallization. Uniform Th, Sr, and Nd isotopic systematics and incompatible element ratios for N-MORB along the 9--10{degrees}N segment indicate that mantle sources and transfer times are similar. In addition, estimated bulk solid/melt partition coefficients for U, Th, and Pa are small, hence effects of fractional crystallization on {sup 231}Pa/{sup 235}U ratios for the melt are expected to be negligible. However, fractional crystallization of plagioclase in the AMC would lower {sup 226}Ra/{sup 230}Th ratios in the melt and produce a positive bias in {sup 226}Ra crustal residence ages for fractionated lavas.

  3. Finding the best combination of numerical schemes for 2-D SPH simulation of wedge water entry for a wide range of deadrise angles

    NASA Astrophysics Data System (ADS)

    Farsi, Mohammad; Ghadimi, Parviz

    2014-09-01

    Main aim of this paper is to find the best combination of numerical schemes for 2-D SPH simulation of wedge water entry. Diffusion term is considered as laminar, turbulent, and artificial viscosity. Density filter that seriously affects the pressure distribution is investigated by adopting no filter, first order filter, and second order filter. Validation of the results indicates that turbulent model and first order density filter can lead to more reasonable solutions. This simulation was then conducted for wedge water entry with wide range of deadrise angles including 10 degrees, 20 degrees, 30 degrees, 45 degrees, 60 degrees and 81 degrees, with extreme deadrise angles of 10 degrees, 60 degrees and 81 degrees being considered. Comparison of SPH results with BEM solutions has displayed favorable agreement. In two particular cases where experimental data are available, the SPH results are shown to be closer to the experiments than BEM solution. While, accuracy of the obtained results for moderate deadrise angles is desirable, numerical findings for very small or very large deadrise angles are also very reasonable

  4. Optical refractometry based on Fresnel diffraction from a phase wedge.

    PubMed

    Tavassoly, M Taghi; Saber, Ahad

    2010-11-01

    A method that utilizes the Fresnel diffraction of light from the phase step formed by a transparent wedge is introduced for measuring the refractive indices of transparent solids, liquids, and solutions. It is shown that, as a transparent wedge of small apex angle is illuminated perpendicular to its surface by a monochromatic parallel beam of light, the Fresnel fringes, caused by abrupt change in refractive index at the wedge lateral boundary, are formed on a screen held perpendicular to the beam propagation direction. The visibility of the fringes varies periodically between zero and 1 in the direction normal to the wedge apex. For a known or measured apex angle, the wedge refractive index is obtained by measuring the period length by a CCD. To measure the refractive index of a transparent liquid or solution, the wedge is installed in a transparent rectangle cell containing the sample. Then, the cell is illuminated perpendicularly and the visibility period is measured. By using modest optics, one can measure the refractive index at a relative uncertainty level of 10(-5). There is no limitation on the refractive index range. The method can be applied easily with no mechanical manipulation. The measuring apparatus can be very compact with low mechanical and optical noises.

  5. Benchmarking analogue models of brittle thrust wedges

    NASA Astrophysics Data System (ADS)

    Schreurs, Guido; Buiter, Susanne J. H.; Boutelier, Jennifer; Burberry, Caroline; Callot, Jean-Paul; Cavozzi, Cristian; Cerca, Mariano; Chen, Jian-Hong; Cristallini, Ernesto; Cruden, Alexander R.; Cruz, Leonardo; Daniel, Jean-Marc; Da Poian, Gabriela; Garcia, Victor H.; Gomes, Caroline J. S.; Grall, Céline; Guillot, Yannick; Guzmán, Cecilia; Hidayah, Triyani Nur; Hilley, George; Klinkmüller, Matthias; Koyi, Hemin A.; Lu, Chia-Yu; Maillot, Bertrand; Meriaux, Catherine; Nilfouroushan, Faramarz; Pan, Chang-Chih; Pillot, Daniel; Portillo, Rodrigo; Rosenau, Matthias; Schellart, Wouter P.; Schlische, Roy W.; Take, Andy; Vendeville, Bruno; Vergnaud, Marine; Vettori, Matteo; Wang, Shih-Hsien; Withjack, Martha O.; Yagupsky, Daniel; Yamada, Yasuhiro

    2016-11-01

    We performed a quantitative comparison of brittle thrust wedge experiments to evaluate the variability among analogue models and to appraise the reproducibility and limits of model interpretation. Fifteen analogue modeling laboratories participated in this benchmark initiative. Each laboratory received a shipment of the same type of quartz and corundum sand and all laboratories adhered to a stringent model building protocol and used the same type of foil to cover base and sidewalls of the sandbox. Sieve structure, sifting height, filling rate, and details on off-scraping of excess sand followed prescribed procedures. Our analogue benchmark shows that even for simple plane-strain experiments with prescribed stringent model construction techniques, quantitative model results show variability, most notably for surface slope, thrust spacing and number of forward and backthrusts. One of the sources of the variability in model results is related to slight variations in how sand is deposited in the sandbox. Small changes in sifting height, sifting rate, and scraping will result in slightly heterogeneous material bulk densities, which will affect the mechanical properties of the sand, and will result in lateral and vertical differences in peak and boundary friction angles, as well as cohesion values once the model is constructed. Initial variations in basal friction are inferred to play the most important role in causing model variability. Our comparison shows that the human factor plays a decisive role, and even when one modeler repeats the same experiment, quantitative model results still show variability. Our observations highlight the limits of up-scaling quantitative analogue model results to nature or for making comparisons with numerical models. The frictional behavior of sand is highly sensitive to small variations in material state or experimental set-up, and hence, it will remain difficult to scale quantitative results such as number of thrusts, thrust spacing

  6. Ice wedges as climate archives - opportunities and limitations

    NASA Astrophysics Data System (ADS)

    Opel, Thomas; Meyer, Hanno; Dereviagin, Alexander; Wetterich, Sebastian; Schirrmeister, Lutz

    2014-05-01

    Permafrost regions are assumed to play a major role for Global Climate Change as they are susceptible to recent warming in particular with regard to the potential release of stored fossil carbon. Permafrost serves as archive of past environmental and climate conditions (such as sedimentation processes, temperature and precipitation regimes as well as landscape and ecosystem development) over tens of thousands of years that can be traced by the study of the frozen deposits, paleontological content and ground ice. Ground ice comprises all types of ice contained in frozen ground, including pore ice, segregation ice and ice wedges. Here, we focus on ice wedges as the most promising climate archive that can be studied by stable water isotope methods analogously to glacier ice. They may be identified by their vertically oriented foliations. Ice wedges form by the repeated filling of wintertime thermal contraction cracks by snow melt water in spring. As the melt water quickly refreezes at negative ground temperature no isotopic fractionation takes place. Hence, the isotopic composition (δ18O, δD, d excess) of wedge ice is assumed to be representative of annual cold period climate conditions, i.e. winter and spring. Ice wedges are widely distributed in non-glaciated high northern latitudes, are diagnostic of permafrost and, in general, indicative of cold and stable climate conditions. They are found in continuous and discontinuous permafrost zones and may also have formed during and survived interglacials. They may provide unique paleo information that is not captured by other climate archives. Usually, ice wedges are dated by radiocarbon dating of organic material incorporated in the ice, but also 36Cl/Cl ratios have been successfully used to date ice wedges. Nevertheless reliable age determination is challenging when studying ice wedges. Here we tackle the potential of ice wedges from the Siberian and American Arctic to trace past climate changes from stable isotope

  7. Aligning Optical Fibers by Means of Actuated MEMS Wedges

    NASA Technical Reports Server (NTRS)

    Morgan, Brian; Ghodssi, Reza

    2007-01-01

    Microelectromechanical systems (MEMS) of a proposed type would be designed and fabricated to effect lateral and vertical alignment of optical fibers with respect to optical, electro-optical, optoelectronic, and/or photonic devices on integrated circuit chips and similar monolithic device structures. A MEMS device of this type would consist of a pair of oppositely sloped alignment wedges attached to linear actuators that would translate the wedges in the plane of a substrate, causing an optical fiber in contact with the sloping wedge surfaces to undergo various displacements parallel and perpendicular to the plane. In making it possible to accurately align optical fibers individually during the packaging stages of fabrication of the affected devices, this MEMS device would also make it possible to relax tolerances in other stages of fabrication, thereby potentially reducing costs and increasing yields. In a typical system according to the proposal (see Figure 1), one or more pair(s) of alignment wedges would be positioned to create a V groove in which an optical fiber would rest. The fiber would be clamped at a suitable distance from the wedges to create a cantilever with a slight bend to push the free end of the fiber gently to the bottom of the V groove. The wedges would be translated in the substrate plane by amounts Dx1 and Dx2, respectively, which would be chosen to move the fiber parallel to the plane by a desired amount Dx and perpendicular to the plane by a desired amount Dy. The actuators used to translate the wedges could be variants of electrostatic or thermal actuators that are common in MEMS.

  8. Seismic reflection images of the accretionary wedge of Costa Rica

    SciTech Connect

    Shipley, T.H.; Stoffa, P.L. ); McIntosh, K.; Silver, E.A. )

    1990-05-01

    The large-scale structure of modern accretionary wedges is known almost entirely from seismic reflection investigations using single or grids of two-dimensional profiles. The authors will report on the first three-dimensional seismic reflection data volume collected of a wedge. This data set covers a 9-km-wide {times} 22-km-long {times} 6-km-thick volume of the accretionary wedge just arcward of the Middle America Trench off Costa Rica. The three-dimensional processing has improved the imaging ability of the multichannel data, and the data volume allows mapping of structures from a few hundred meters to kilometers in size. These data illustrate the relationships between the basement, the wedge shape, and overlying slope sedimentary deposits. Reflections from within the wedge define the gross structural features and tectonic processes active along this particular convergent margin. So far, the analysis shows that the subdued basement relief (horst and graben structures seldom have relief of more than a few hundred meters off Costa Rica) does affect the larger scale through going structural features within the wedge. The distribution of mud volcanoes and amplitude anomalies associated with the large-scale wedge structures suggests that efficient fluid migration paths may extend from the top of the downgoing slab at the shelf edge out into the lower and middle slope region at a distance of 50-100 km. Offscraping of the uppermost (about 45 m) sediment occurs within 4 km of the trench, creating a small pile of sediments near the trench lower slope. Underplating of parts of the 400-m-thick subducted sedimentary section begins at a very shallow structural level, 4-10 km arcward of the trench. Volumetrically, the most important accretionary process is underplating.

  9. Empirical evidence for two nightside current wedges during substorms

    NASA Astrophysics Data System (ADS)

    Hoffman, R. A.; Gjerloev, J. W.

    2013-12-01

    We present results from a comprehensive statistical study of the ionospheric current system and its coupling to the magnetosphere during classical bulge type substorms. We identified 116 substorms and determined the global ionospheric current system before and during the substorm using the SuperMAG initiative and global auroral images obtained by the Polar VIS Earth camera. The westward electrojet (WEJ) display a distinct latitudinal shift between the pre- and post-midnight region and we find evidence that the two WEJ regions are disconnected. This, and other observational facts, led us to propose a new 3D current system configuration that consists of 2 wedge type systems: a current wedge in the pre-midnight region (substorm current wedge), and another current wedge system in the post-midnight region (oval current wedge). There is some local time overlap between the two systems. The former maps to the region inside the near Earth neutral line and is associated with structured BPS type electron precipitation. The latter maps to the inner magnetosphere and is associated with diffuse electron precipitation. We present results of the statistical study, show typical events, results from Biot-Savart simulations, and discuss the implications for our understanding of the 3D current system associated with substorms.

  10. Diffusion induced flow on a wedge-shaped obstacle

    NASA Astrophysics Data System (ADS)

    Zagumennyi, Ia V.; Dimitrieva, N. F.

    2016-08-01

    In this paper the problem of evolution of diffusion induced flow on a wedge-shaped obstacle is analyzed numerically. The governing set of fundamental equations is solved using original solvers from the open source OpenFOAM package on supercomputer facilities. Due to breaking of naturally existing diffusion flux of a stratifying agent by the impermeable surface of the wedge a complex multi-level vortex system of compensatory fluid motions is formed around the obstacle. Sharp edges of the obstacle generate extended high-gradient horizontal interfaces which are clearly observed in laboratory experiments by high-resolution Schlieren visualization. Formation of an intensive pressure depression zone in front of the leading vertex of the wedge is responsible for generation of propulsive force resulting in a self-displacement of the obstacle along the neutral buoyancy horizon in a stably stratified environment. The size of the pressure deficiency area near the sharp vertex of a concave wedge is about twice that for a convex one. This demonstrates a more intensive propulsion mechanism in case of the concave wedge and, accordingly, a higher velocity of its self-movement in a continuously stratified medium.

  11. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  12. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  13. Capillary surfaces in a wedge: Differing contact angles

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert

    1994-01-01

    The possible zero-gravity equilibrium configurations of capillary surfaces u(x, y) in cylindrical containers whose sections are (wedge) domains with corners are investigated mathematically, for the case in which the contact angles on the two sides of the wedge may differ. In such a situation the behavior can depart in significant qualitative ways from that for which the contact angles on the two sides are the same. Conditions are described under which such qualitative changes must occur. Numerically computed surfaces are depicted to indicate the behavior.

  14. Effect of a trade between boattail angle and wedge size on the performance of a nonaxisymmetric wedge nozzle

    NASA Technical Reports Server (NTRS)

    Carson, George T., Jr.; Bare, E. Ann; Burley, James R., II

    1987-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effect of a boattail angle and wedge-size trade on the performance of nonaxisymmetric wedge nozzles installed on a generic twin-engine fighter aircraft model. Test data were obtained at static conditions and at Mach numbers from 0.60 to 1.25. Angle of attack was held constant at 0 deg. High-pressure air was used to simulate jet exhaust, and the nozzle pressure ratio was varied from 1.0 (jet off) to slightly over 15.0. For the configurations studied, the results indicate that wedge size can be reduced without affecting aeropropulsive performance.

  15. Magnetic and structural instabilities of ultrathin Fe(100) wedges

    SciTech Connect

    Bader, S.D.; Li, Dongqi; Qiu, Z.Q.

    1994-05-01

    An overview is provided of recent efforts to explore magnetic and related structural issues for ultrathin Fe films grown epitaxially as wedge structures onto Ag(100) and Cu(100). Experiments were carried out utilizing the surface magneto-optic Kerr effect (SMOKE). Ordinary bcc Fe is lattice-matched to the primitive unit cell of the Ag(100) surface. Fe wedges on Ag(100) can be fabricated whose thick end has in-plane magnetic easy axes due to the shape anisotropy, and whose thin end has perpendicular easy axes due to the surface magnetic anisotrophy. A spin-reorientation transition can thus be studied in the center of the wedge where the competing anisotropies cancel. The goal is to test the Mermin-Wagner theorem which states that long-range order is lost at finite temperatures in an isotropic two-dimensional Heisenberg system. Fe wedges on Cu(100) can be studied in like manner, but the lattice matching permits fcc and tetragonally-distorted fcc phases to provide structural complexity in addition to the interplay of competing magnetic anisotropies. The results of these studies are new phase identifications that help both to put previous work into perspective and to define issues to pursue in the future.

  16. Experimental investigation of hypersonic flow induced separation over double wedges

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tokitada

    2009-09-01

    Flow separation occurs over the compression corners generated by deflected control surfaces on hypersonic re-entry vehicles and in the inlet of scram jet engines. Configurations like a double wedge and double cone model are useful for studying the separated flow features. Flow fields around concave corners are relatively complicated and produce several classical viscous flow features depending on the combination of the first and second wedge or cone half apex angles. Particularly characteristic phenomena are mainly shock/boundary layer, shock/shock interaction, unsteady shear layers and non-linear shock oscillations. Although most of these basic gas dynamics characteristics are well known, it is not clear what happens at high enthalpy conditions. This paper reports a result of flow fields over a double wedge at a stagnation enthalpy of 4.8 MJ/kg. The experiment was carried out in a free piston shock tunnel at a nominal Mach number of 6.99. Schlieren and double exposure holographic interferometry were applied to visualize the flow field over the double wedge.

  17. Acoustic or Electromagnetic Scattering from the Penetrable Wedge

    DTIC Science & Technology

    1993-02-28

    difference equation to be solved in the transform variable. A special inhomogeneous surface impedance yields purely algebraic equations for the... lineal density is located at the source coordinates (r’, 0’) of Fig. 1. The permittivity of the wedge of angle 2a is f 2 , which is surrounded by a

  18. Wedges, cones, cosmic strings and their vacuum energy

    NASA Astrophysics Data System (ADS)

    Fulling, S. A.; Trendafilova, C. S.; Truong, P. N.; Wagner, J.

    2012-09-01

    One of J Stuart Dowker’s most significant achievements has been to observe that the theory of diffraction by wedges developed a century ago by Sommerfeld and others provided the key to solving two problems of great interest in general-relativistic quantum field theory during the last quarter of the 20th century: the vacuum energy associated with an infinitely thin, straight cosmic string, and (after an interchange of time with a space coordinate) the apparent vacuum energy of empty space as viewed by an accelerating observer. In a sense the string problem is more elementary than the wedge, since Sommerfeld’s technique was to relate the wedge problem to that of a conical manifold by the method of images. Indeed, Minkowski space, as well as all cone and wedge problems, are related by images to an infinitely sheeted master manifold, which we call Dowker space. We review the research in this area and exhibit in detail the vacuum expectation values of the energy density and pressure of a scalar field in Dowker space and the cone and wedge spaces that result from it. We point out that the (vanishing) vacuum energy of Minkowski space results, from the point of view of Dowker space, from the quantization of angular modes, in precisely the way that the Casimir energy of a toroidal closed universe results from the quantization of Fourier modes; we hope that this understanding dispels any lingering doubts about the reality of cosmological vacuum energy. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.

  19. Biomechanical Analysis of a Novel Wedge Locking Plate in a Porcine Tibial Model

    PubMed Central

    Ha, Jeong-Ku; Yeom, Chul Hyun; Jang, Ho Su; Song, Han Eui; Lee, Sung Jae; Kim, Kang Hee; Chung, Kyu Sung; Bhat, Mahendar Gururaj

    2016-01-01

    Background The purpose of this study was to analyze biomechanical properties of a novel wedge locking plate in medial open wedge high tibial osteotomy (OWHTO) in a porcine tibial model. Methods A uniform 8-mm OWHTO was performed in 12 porcine tibiae. Six of them were subsequently fixed with the plate without a wedge, whereas the other 6 were additionally reinforced with a metal wedge of 8 mm. Biomechanical properties (stiffness, displacement of the osteotomy gap, and failure load) were evaluated under axial load. The different modes of failure were also investigated. Results The plate showed an axial stiffness of 2,457 ± 450 N/mm with a wedge and 1,969 ± 874 N/mm without a wedge. The maximum failure load was 5,380 ± 952 N with a wedge and 4,354 ± 607 N without a wedge. The plate with a wedge had a significantly greater failure load and significantly less displacement of medial gap at failure than that without a wedge (p = 0.041 and p = 0.002, respectively). The axial stiffness was not different between the two types of fixation. Most failures were caused by lateral cortex breakage and there was no implant failure. Conclusions The novel wedge locking plate showed excellent biomechanical properties and an additional wedge provided significant improvement. This plate can be a good fixation method for OWHTO. PMID:27904718

  20. Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years.

    PubMed

    Katayama, Taiki; Tanaka, Michiko; Moriizumi, Jun; Nakamura, Toshio; Brouchkov, Anatoli; Douglas, Thomas A; Fukuda, Masami; Tomita, Fusao; Asano, Kozo

    2007-04-01

    Phylogenetic analysis of bacteria preserved within an ice wedge from the Fox permafrost tunnel was undertaken by cultivation and molecular techniques. The radiocarbon age of the ice wedge was determined. Our results suggest that the bacteria in the ice wedge adapted to the frozen conditions have survived for 25,000 years.

  1. P-Wave to Rayleigh-wave conversion coefficients for wedge corners; model experiments

    USGS Publications Warehouse

    Gangi, A.F.; Wesson, R.L.

    1978-01-01

    An analytic solution is not available for the diffraction of elastic waves by wedges; however, numerical solutions of finite-difference type are available for selected wedge angles. The P- to Rayleigh-wave conversion coefficients at wedge tips have been measured on two-dimensional seismic models for stress-free wedges with wedge angles, ??0, of 10, 30, 60, 90 and 120??. The conversion coefficients show two broad peaks and a minimum as a function of the angle between the wedge face and the direction of the incident P-wave. The minimum occurs for the P wave incident parallel to the wedge face and one maximum is near an incidence angle of 90?? to the wedge face. The amplitude of this maximum, relative to the other, decreases as the wedge angle increases. The asymmetry of the conversion coefficients, CPR(??; ??0), relative to parallel incidence (?? = 0) increases as the wedge angle increases. The locations of the maxima and the minimum as well as the asymmetry can be explained qualitatively. The conversion coefficients are measured with an accuracy of ??5% in those regions where there are no interfering waves. A comparison of the data for the 10?? wedge with the theoretical results for a half plane (0?? wedge) shows good correlation. ?? 1978.

  2. Comparison of clinical and radiological outcomes between opening-wedge and closing-wedge high tibial osteotomy: A comprehensive meta-analysis

    PubMed Central

    Wu, Lingfeng; Lin, Jun; Jin, Zhicheng; Cai, Xiaobin; Gao, Weiyang

    2017-01-01

    High tibial osteotomy (HTO) has been widely used for clinical treatment of osteoarthritis of the medial compartment of the knee, and both opening-wedge and closing-wedge HTO are the most commonly used methods. However, it remains unclear which technique has better clinical and radiological outcomes in practice. To systematically evaluate this issue, we conducted a comprehensive meta-analysis by pooling all available data for the opening-wedge HTO and closing-wedge HTO techniques from the electronic databases including PubMed, Embase, Wed of Science and Cochrane Library. A total of 22 studies encompassing 2582 cases were finally enrolled in the meta-analysis. There was no significant difference regarding surgery time, duration of hospitalization, knee pain VAS, Lysholm score and HSS knee score (clinical outcomes) between the opening-wedge and closing-wedge HTO groups (P > 0.05). However, the opening-wedge HTO group showed wider range of motion than the closing-wedge HTO group (P = 0.003). Moreover, as for Hip-Knee-Ankle angle and mean angle of correction, no significant difference was observed between the opening-wedge and closing-wedge HTO groups (P > 0.05), while the opening-wedge HTO group showed greater posterior tibial slope angle (P < 0.001) and lesser patellar height than the closing-wedge HTO group (P < 0.001). On light of the above analysis, we believe that individualized surgical approach should be introduced based on the clinical characteristics of each patient. PMID:28182736

  3. New machining and testing method of large angle infrared wedge mirror parts

    NASA Astrophysics Data System (ADS)

    Su, Ying; Guo, Rui; Zhang, Fumei; Zhang, Zheng; Liu, Xuanmin; Zengqi, Xu; Li, Wenting; Zhang, Feng

    2016-10-01

    Large angle wedge parts were widely used in the optical system that was used for achieving a wide range of scanning. Due to the parts having the characteristic of large difference in the thickness of both ends and high density, the accuracy of the wedge angle was hard to ensure to reach second level in optical processing. Generally, wedge mirror angle was measured by contact comparison method which was easy to damage the surface. In view of the existence of two practical problems, in this paper, based on theoretical analysis, by taking three key measures that were the accurate positioning for the central position of the large angle wedge part, the accuracy control of angle precision machined of wedge mirror and fast and non destructive laser assisted absolute measurement of large angle wedge, the qualified rate of parts were increased to 100%, a feasible, controllable and efficient process route for large angle infrared wedge parts was found out.

  4. Shock wave reflection over convex and concave wedge

    NASA Astrophysics Data System (ADS)

    Kitade, M.; Kosugi, T.; Yada, K.; Takayama, Kazuyoshi

    2001-04-01

    It is well known that the transition criterion nearly agrees with the detachment criterion in the case of strong shocks, two-dimensional, and pseudosteady flow. However, when the shock wave diffracts over a wedge whose angle is below the detachment criterion, that is, in the domain of Mach reflection, precursory regular reflection (PRR) appears near the leading edge and as the shock wave propagates, the PRR is swept away by the overtaking corner signal (cs) that forces the transition to Mach reflection. It is clear that viscosity and thermal conductivity influences transition and the triple point trajectory. On the other hand, the reflection over concave and convex wedges is truly unsteady flow, and the effect of viscosity and thermal conductivity on transition and triple point trajectory has not been reported. This paper describes that influence of viscosity over convex and concave corners investigated both experiments and numerical simulations.

  5. MHD Casson nanofluid flow past a wedge with Newtonian heating

    NASA Astrophysics Data System (ADS)

    Ahmad, Kartini; Hanouf, Zahir; Ishak, Anuar

    2017-02-01

    The problem of steady Casson nanofluid flow past a wedge is studied in this paper. The presence of magnetic field along with Newtonian heating at the surface is considered. The governing partial differential equations are first transformed into a set of nonlinear ordinary differential equations by similarity transformations, before being solved numerically using the Keller-box method. The effects of the wedge angle Ω from 0° (horizontal plate) to 180° (vertical plate) as well as of as the magnetic parameter M on the non-Newtonian fluid flow and heat transfer characteristics are investigated. It is found that the surface temperature is slightly higher for the flow over a horizontal plate compared to that over a vertical plate. It is also found that the magnetic field decreases the surface temperature but increases the skin friction. The flow of a Newtonian fluid is found to give higher skin friction as compared to that of Casson fluid.

  6. Large scale test of wedge shaped micro strip gas counters

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Atz, S.; Aulchenko, V.; Bachmann, S.; Baiboussinov, B.; Barthe, S.; Beaumont, W.; Beckers, T.; Beißel, F.; Benhammou, Y.; Bergdolt, A. M.; Bernier, K.; Blüm, P.; Bondar, A.; Bouhali, O.; Boulogne, I.; Bozzo, M.; Brom, J. M.; Camps, C.; Chorowicz, V.; Coffin, J.; Commichau, V.; Contardo, D.; Croix, J.; De Troy, J.; Drouhin, F.; Eberlé, H.; Flügge, G.; Fontaine, J.-C.; Geist, W.; Goerlach, U.; Gundlfinger, K.; Hangarter, K.; Haroutunian, R.; Helleboid, J. M.; Henkes, Th.; Hoffer, M.; Hoffman, C.; Huss, D.; Ischebeck, R.; Jeanneau, F.; Juillot, P.; Junghans, S.; Kapp, M. R.; Kärcher, K.; Knoblauch, D.; Kräber, M.; Krauth, M.; Kremp, J.; Lounis, A.; Lübelsmeyer, K.; Maazouzi, C.; Macke, D.; Metri, R.; Mirabito, L.; Müller, Th.; Nagaslaev, V.; Neuberger, D.; Nowack, A.; Pallares, A.; Pandoulas, D.; Petertill, M.; Pooth, O.; Racca, C.; Ripp, I.; Ruoff, E.; Sauer, A.; Schmitz, P.; Schulte, R.; von Dratzig, A. Schultz; Schunk, J. P.; Schuster, G.; Schwaller, B.; Shektman, L.; Siedling, R.; Sigward, M. H.; Simonis, H. J.; Smadja, G.; Stefanescu, J.; Szczesny, H.; Tatarinov, A.; Thümmel, W. H.; Tissot, S.; Titov, V.; Todorov, T.; Tonutti, M.; Udo, F.; Vander Velde, C.; Van Doninck, W.; Van Dyck, Ch.; Vanlaer, P.; Van Lancker, L.; Verdini, P. G.; Weseler, S.; Wittmer, B.; Wortmann, R.; Zghiche, A.; Zhukov, V.

    1999-11-01

    In order to check the system aspects of the forward-backward MSGC tracker designed for the future CMS experiment at LHC, 38 trapezoidal MSGC counters assembled in six multi-substrates detector modules were built and exposed to a muon beam at the CERN SPS. Results on the gain uniformity along the wedge-shaped strip pattern and across the detector modules are shown together with measurements of the detection efficiency and the spatial resolution.

  7. Quantitative comparisons of numerical models of brittle wedge dynamics

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne

    2010-05-01

    Numerical and laboratory models are often used to investigate the evolution of deformation processes at various scales in crust and lithosphere. In both approaches, the freedom in choice of simulation method, materials and their properties, and deformation laws could affect model outcomes. To assess the role of modelling method and to quantify the variability among models, we have performed a comparison of laboratory and numerical experiments. Here, we present results of 11 numerical codes, which use finite element, finite difference and distinct element techniques. We present three experiments that describe shortening of a sand-like, brittle wedge. The material properties of the numerical ‘sand', the model set-up and the boundary conditions are strictly prescribed and follow the analogue setup as closely as possible. Our first experiment translates a non-accreting wedge with a stable surface slope of 20 degrees. In agreement with critical wedge theory, all models maintain the same surface slope and do not deform. This experiment serves as a reference that allows for testing against analytical solutions for taper angle, root-mean-square velocity and gravitational rate of work. The next two experiments investigate an unstable wedge in a sandbox-like setup, which deforms by inward translation of a mobile wall. The models accommodate shortening by formation of forward and backward shear zones. We compare surface slope, rate of dissipation of energy, root-mean-square velocity, and the location, dip angle and spacing of shear zones. We show that we successfully simulate sandbox-style brittle behaviour using different numerical modelling techniques and that we obtain the same styles of deformation behaviour in numerical and laboratory experiments at similar levels of variability. The GeoMod2008 Numerical Team: Markus Albertz, Michelle Cooke, Tony Crook, David Egholm, Susan Ellis, Taras Gerya, Luke Hodkinson, Boris Kaus, Walter Landry, Bertrand Maillot, Yury Mishin

  8. Wedge-local quantum fields on a nonconstant noncommutative spacetime

    SciTech Connect

    Much, A.

    2012-08-15

    Within the framework of warped convolutions we deform the massless free scalar field. The deformation is performed by using the generators of the special conformal transformations. The investigation shows that the deformed field turns out to be wedge-local. Furthermore, it is shown that the spacetime induced by the deformation with the special conformal operators is nonconstant noncommutative. The noncommutativity is obtained by calculating the deformed commutator of the coordinates.

  9. Wedge Prism for Direction Resolved Speckle Correlation Interferometry

    SciTech Connect

    Pechersky, M.J.

    1999-01-20

    The role of a wedge prism for strain sign determination and enhancing the sensitivity for sub-fringe changes is emphasized. The design and incorporation aspects for in-plane sensitive interferometers have been described in detail. Some experimental results dealing with stress determination by laser annealing and speckle corelation interferometry are presented. The prism can also be applied to produce standardized carrier fringes in spatial phase shifting interferometry.

  10. Silurian Extrusion Wedge Tectonics in the Central Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Grimmer, J. C.; Glodny, J.; Drüppel, K.; Greiling, R. O.

    2015-12-01

    The Scandian fold-thrust belt of the central Scandinavian Caledonides host the high-grade metamorphic Seve Nappe Complex bounded on top by a normal sense shear zone and at the base by a reverse sense shear zone. Rb-Sr multimineral geochronology in synkinematic assemblages indicates simultaneous movements at the normal-sense roof shear zone and at the reverse-sense floor shear zone between 434 Ma and 429 Ma. Pressure temperature pseudosection calculations provide evidence for eclogite facies metamorphic conditions and nearly isothermal decompression at ~670 ± 50 °C from 17.5 to 14.5 kbar in garnet-kyanite mica schists during reverse-sense shearing, and from 15 to 11 kbar in garnet mica schists during normal-sense shearing. These and other published data and the presence of decompression-related pegmatites dated at 434 Ma and 429 Ma indicate that the Seve nappes form a 1-2 km thin extrusion wedge that extends along strike for at least 150 km. Devonian ductile extensional to transtensional deformation of the more internal parts of the orogen did not affect the early to mid-Silurian extrusion wedge that was preserved in the more external parts of the orogen due to foreland-directed nappe displacements in the order of >400 km. This wedge marks an early stage of exhumation of (ultra-)high-pressure metamorphic rocks and orogenic wedge formation in this part of the Scandinavian Caledonides predating the ≥10 km thick, post-415 Ma exhumation processes of ultrahigh-pressure rocks in southwestern Norway.

  11. Wedge-Filtering of Geomorphologic Terrestrial Laser Scan Data

    PubMed Central

    Panholzer, Helmut; Prokop, Alexander

    2013-01-01

    Terrestrial laser scanning is of increasing importance for surveying and hazard assessments. Digital terrain models are generated using the resultant data to analyze surface processes. In order to determine the terrain surface as precisely as possible, it is often necessary to filter out points that do not represent the terrain surface. Examples are vegetation, vehicles, and animals. Filtering in mountainous terrain is more difficult than in other topography types. Here, existing automatic filtering solutions are not acceptable, because they are usually designed for airborne scan data. The present article describes a method specifically suitable for filtering terrestrial laser scanning data. This method is based on the direct line of sight between the scanner and the measured point and the assumption that no other surface point can be located in the area above this connection line. This assumption is only true for terrestrial laser data, but not for airborne data. We present a comparison of the wedge filtering to a modified inverse distance filtering method (IDWMO) filtered point cloud data. Both methods use manually filtered surfaces as reference. The comparison shows that the mean error and root–mean-square-error (RSME) between the results and the manually filtered surface of the two methods are similar. A significantly higher number of points of the terrain surface could be preserved, however, using the wedge-filtering approach. Therefore, we suggest that wedge-filtering should be integrated as a further parameter into already existing filtering processes, but is not suited as a standalone solution so far. PMID:23429548

  12. RADIOGRAPHIC ASSESSMENT OF THE OPENING WEDGE PROXIMAL TIBIAL OSTEOTOMY

    PubMed Central

    Silva, Carlos Francisco Bittencourt; Camara, Eduardo Kastrup Bittencourt; Vieira, Luiz Antonio; Adolphsson, Fernando; Rodarte, Rodrigo Ribeiro Pinho

    2015-01-01

    Objective: To radiographically evaluate individuals who underwent opening wedge proximal tibial osteotomy, with the aim of analyzing the proximal tibial slope in the frontal and sagittal planes, and the patellar height. Method: The study included 22 individuals who were operated at the National Traumatology and Orthopedics Institute (INTO) for correction of varus angular tibial deviation using the opening wedge osteotomy (OWO) technique with the Orthofix monolateral external fixator. Patients with OWO whose treatment was completed between January 2000 and December 2006 were analyzed. The measurement technique consisted of using anteroposterior radiographs with loading and lateral views with the operated knees flexed at 30°. Results: There were no statistically significant differences between the pre and postoperative tibial slope and patellar height values in the patients evaluated. Conclusion: Opening wedge proximal tibial osteotomy is a technique that avoids the problems presented by high proximal tibial osteotomy, since it is done without causing changes to the extensor mechanism, ligament imbalance or distortions in the proximal tibia. PMID:27022577

  13. Geomorphological-thermo-mechanical modeling: Application to orogenic wedge dynamics

    NASA Astrophysics Data System (ADS)

    Ueda, K.; Willett, S. D.; Gerya, T.; Ruh, J.

    2015-09-01

    Coupled geomorphological-thermo-mechanical modeling is presented in a new implementation that combines two established thermo-mechanical and landscape evolution models. A finite-difference marker-in-cell technique is used to solve for the thermo-mechanical problem including complex visco-plastic rheologies in high resolution. Each timestep is synchronously solved with a fluvial landscape evolution model that includes numerical solution of fluvial incision and analytical hillslope processes for both diffusive and slope-limited processes on an adaptive grid. The implementation is successful in modeling large deformation at different scales. We demonstrate high degrees of coupling through processes such as exhumation of rocks with different erodibilities. Sensitivity of the coupled system evolution to surface parameters, and mechanical parameters, is explored for the established case of development of compressive wedges. The evolution of wedge models proves to be primarily sensitive to erodibility and the degree of river network integration. Relief follows deformation in propagating forward with wedge growth. We apply the method to a large-scale model of continental collision, in which a close relationship between deep tectonics, fluvial network evolution, and uplift and erosion can be demonstrated.

  14. Hypersingularity, electromagnetic edge condition, and an analytic hyperbolic wedge model.

    PubMed

    Li, Lifeng

    2014-04-01

    It is insufficient to consider that hypersingularity is unphysical solely based on energy considerations. With a proper combination of the two degenerate hypersingular modes, the energy-flux edge condition is satisfied. A hyperbolic wedge model is presented that is much simpler than the previous model for the purpose of studying singular characteristics of the edge fields. This model not only reproduces the sharp edge model as the wedge becomes infinitely sharp but also naturally shows how the two degenerate hypersingular modes of the sharp edge model should be combined. In an incidental study of the effect of rounding edges on numerical computation, I show that the converged results for rounded edges do not converge to a fixed value when the radius of curvature tends to zero, if the corresponding sharp edge supports hypersingularity. I also prove that introducing a small amount of absorption loss for the purpose of improving numerical convergence is effective only when the ratio of the real parts of the permittivities of the two media forming the wedge is close to -1. Finally I remark on the possible illposedness of the hypersingularity problem without imposition of the edge condition.

  15. The wedge hot-film anemometer in supersonic flow

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.

    1983-01-01

    A commercial wedge hot-film probe is studied to determine its heat transfer response in transonic to low supersonic flows of high unit Reynolds number. The results of this study show that its response in this flow regime differs from the response of cylindrical type sensors. Whereas the cylindrical sensor has the same sensitivity to velocity as to density for free-stream Mach numbers exceeding 1.3, the wedge probe sensitivity to velocity is always greater than its sensitivity to density over the entire flow regime. This property requires determination of three fluctuation components due to density, velocity, and temperature, in a transonic or supersonic turbulent flow. Sensitivity equations are derived based on the observed behavior of the wedge probe. Both the durability and the frequency response of the probe are excellent, the square wave insertion test indicating frequency response near 130 kHz. The directional response of the probe at sonic speed is poor and requires further examination before Reynolds stress measurements are attempted with dual sensor probes.

  16. On the acoustic wedge design and simulation of anechoic chamber

    NASA Astrophysics Data System (ADS)

    Jiang, Changyong; Zhang, Shangyu; Huang, Lixi

    2016-10-01

    This study proposes an alternative to the classic wedge design for anechoic chambers, which is the uniform-then-gradient, flat-wall (UGFW) structure. The working mechanisms of the proposed structure and the traditional wedge are analyzed. It is found that their absorption patterns are different. The parameters of both structures are optimized for achieving minimum absorber depth, under the condition of absorbing 99% of normal incident sound energy. It is found that, the UGFW structure achieves a smaller total depth for the cut-off frequencies ranging from 100 Hz to 250 Hz. This paper also proposes a modification for the complex source image (CSI) model for the empirical simulation of anechoic chambers, originally proposed by Bonfiglio et al. [J. Acoust. Soc. Am. 134 (1), 285-291 (2013)]. The modified CSI model considers the non-locally reactive effect of absorbers at oblique incidence, and the improvement is verified by a full, finite-element simulation of a small chamber. With the modified CSI model, the performance of both decorations with the optimized parameters in a large chamber is simulated. The simulation results are analyzed and checked against the tolerance of 1.5 dB deviation from the inverse square law, stipulated in the ISO standard 3745(2003). In terms of the total decoration depth and anechoic chamber performance, the UGFW structure is better than the classic wedge design.

  17. Dual Double-Wedge Pseudo-Depolarizer with Anamorphic PSF

    NASA Technical Reports Server (NTRS)

    Hill, Peter; Thompson, Patrick

    2012-01-01

    A polarized scene, which may occur at oblique illumination angles, creates a radiometric signal that varies as a function of viewing angle. One common optical component that is used to minimize such an effect is a polarization scrambler or depolarizer. As part of the CLARREO mission, the SOLARIS instrument project at Goddard Space Flight Center has developed a new class of polarization scramblers using a dual double-wedge pseudo-depolarizer that produces an anamorphic point spread function (PSF). The SOLARIS instrument uses two Wollaston type scramblers in series, each with a distinct wedge angle, to image a pseudo-depolarized scene that is free of eigenstates. Since each wedge is distinct, the scrambler is able to produce an anamorphic PSF that maintains high spatial resolution in one dimension by sacrificing the spatial resolution in the other dimension. This scrambler geometry is ideal for 1-D imagers, such as pushbroom slit spectrometers, which require high spectral resolution, high spatial resolution, and low sensitivity to polarized light. Moreover, the geometry is applicable to a wide range of scientific instruments that require both high SNR (signal-to-noise ratio) and low sensitivity to polarized scenes

  18. Shock interaction mechanisms on a double wedge at Mach 7

    NASA Astrophysics Data System (ADS)

    Durna, Ahmet Selim; El Hajj Ali Barada, Mohamad; Celik, Bayram

    2016-09-01

    Present computational study investigates formation and interaction mechanisms of shocks and boundary layer for low enthalpy Mach 7 flows of nitrogen over double wedges, which have fixed fore and various aft angles of 30° and 45°-60°, respectively. We use a density based finite-volume Navier-Stokes solver to simulate low enthalpy Mach 7 flows of nitrogen over double wedges. The solver is first and second order accurate in time and space, respectively. The meshes used in simulations of two-dimensional laminar flows consist of multiple blocks of structured mesh. Depending on the intensity, impingement angle, and impingement location of transmitted shock wave, the resulting adverse pressure gradient related disturbances on the wedge surface can trigger complex flow physics both in subsonic and supersonic regions. We observe a strong interaction between the deformation of the boundary layer and the bow shock as well as the transmitted shock for high aft angles. Comparison of the obtained results in terms of general flow physics shows that there exists an aft angle threshold value for such interaction which is in the range of 45°-50°.

  19. Quantitative testing critical-taper wedge theory with distinct-element modeling and the role of dynamics in controlling wedge tapers

    NASA Astrophysics Data System (ADS)

    Strayer, Luther; Suppe, John

    2014-05-01

    Critical-taper wedge mechanics (e.g. Davis, et al. 1983, Dahlen 1990) provides fundamental relationships between the observed tapered geometries of fold-and-thrust belts and accretionary wedges and their detachment and wedge strengths. This theory has given diverse insight into kinematics, roles of erosion and sedimentation, and the morphology of compressive mountain belts, much of which has been aided by extensive analog and numerical modeling. The field has grown large, with several thousand papers addressing real-world, analog, and numerical wedges (cf. Buiter 2012). The majority of the insight has been qualitative, but nevertheless quite influential in our current understanding of mountain belts and submarine wedges. In contrast, quantitative applications of wedge theory, either to nature or models, has been rather limited because of the complexity of most wedge equations. It it is easy to become "lost in parameter space" with many strength parameters that are difficult to constrain or have ambiguous meaning, given real-world data and observations. Recently wedge theory has been recast into a very simple form (Suppe 2007; Yeh and Suppe 2014) that provides an unambiguous relationship between the observed covariation of surface slope α with detachment dip β and the wedge W and fault F strengths with few assumptions. In the real world we have limited knowledge of strengths, forces, fluid pressures and earthquake history, or the relationship between strength heterogeneity and structural style, or to what extent the strength of a wedge is an evolving macroscopic property (e.g. folding, imbrications and strain localization) or a material property. The well-defined relationship between wedge taper and global strength makes numerical wedges an ideal tool for the study of compressive mountain belts. In this work: [1] We successfully test this simpler quantitative wedge theory over a very wide range of wedge strengths and structural styles using distinct

  20. Robustness of oscillatory α2 dynamos in spherical wedges

    NASA Astrophysics Data System (ADS)

    Cole, E.; Brandenburg, A.; Käpylä, P. J.; Käpylä, M. J.

    2016-10-01

    Context. Large-scale dynamo simulations are sometimes confined to spherical wedge geometries by imposing artificial boundary conditions at high latitudes. This may lead to spatio-temporal behaviours that are not representative of those in full spherical shells. Aims: We study the connection between spherical wedge and full spherical shell geometries using simple mean-field dynamos. Methods: We solve the equations for one-dimensional time-dependent α2 and α2Ω mean-field dynamos with only latitudinal extent to examine the effects of varying the polar angle θ0 between the latitudinal boundaries and the poles in spherical coordinates. Results: In the case of constant α and ηt profiles, we find oscillatory solutions only with the commonly used perfect conductor boundary condition in a wedge geometry, while for full spheres all boundary conditions produce stationary solutions, indicating that perfect conductor conditions lead to unphysical solutions in such a wedge setup. To search for configurations in which this problem can be alleviated we choose a profile of the turbulent magnetic diffusivity that decreases toward the poles, corresponding to high conductivity there. Oscillatory solutions are now achieved with models extending to the poles, but the magnetic field is strongly concentrated near the poles and the oscillation period is very long. By changing both the turbulent magnetic diffusivity and α profiles so that both effects are more concentrated toward the equator, we see oscillatory dynamos with equatorward drift, shorter cycles, and magnetic fields distributed over a wider range of latitudes. Those profiles thus remove the sensitive and unphysical dependence on θ0. When introducing radial shear, we again see oscillatory dynamos, and the direction of drift follows the Parker-Yoshimura rule. Conclusions: A reduced α effect near the poles with a turbulent diffusivity concentrated toward the equator yields oscillatory dynamos with equatorward migration and

  1. Assessment of computerized treatment planning system accuracy in calculating wedge factors of physical wedged fields for 6 MV photon beams.

    PubMed

    Muhammad, Wazir; Maqbool, Muhammad; Shahid, Muhammad; Hussain, Amjad; Tahir, Sajjad; Matiullah; Rooh, Gul; Ahmad, Tanveer; Lee, Sang Hoon

    2011-07-01

    Wedge filters are commonly used in external beam radiotherapy to achieve a uniform dose distribution within the target volume. The main objective of this study was to investigate the accuracy of the beam modifier algorithm of Theraplan plus (TPP version 3.8) treatment planning system and to confirm that either the beam hardening, beam softening and attenuation coefficients along with wedge geometry and measured wedge factor at single depth and multiple fields sizes can be the replacement of wedged profile and wedged cross-sectional data or not. In this regard the effect of beam hardening and beam softening was studied with physical wedges for 6 MV photons. The Normalized Wedge Factors (NWFs) were measured experimentally as well as calculated with the Theraplan plus, as a function of depth and field size in a water phantom for 15°, 30°, 45°, and 60° wedge filters. The beam hardening and softening was determined experimentally by deriving the required coefficients for all wedge angles. The TPP version 3.8 requires wedge transmission factor at single depth and multiple field sizes. Without incorporating the hardening and softening coefficients the percent difference between measured and calculated NFWs was as high as 7%. After the introduction of these parameters into the algorithm, the agreement between measured and TPP (V 3.8) calculated NWFs were improved to within 2 percent for various depths. Similar improvement was observed in TPP version 3.8 while calculating NWFs for various field sizes when the required coefficients were adjusted. In conclusion, the dose calculation algorithm of TPP version 3.8 showed good accuracy for a 6 MV photon beam provided beam hardening and softening parameters are taken into account. From the results, it is also concluded that, the beam hardening, beam softening and attenuation coefficients along with wedge geometry and measured wedge factor at single depth and multiple fields sizes can be the replacement of wedged profile and

  2. Impact of sedimentation on evolution of accretionary wedges: Insights from high-resolution thermomechanical modeling

    NASA Astrophysics Data System (ADS)

    Mannu, Utsav; Ueda, Kosuke; Willett, Sean D.; Gerya, Taras V.; Strasser, Michael

    2016-12-01

    Syntectonic sedimentation history is a potential cause of differentiated accretionary wedge structures along the subduction margin. Recent efforts to model the role of sedimentation on wedge evolution have highlighted the importance of spatiotemporal history of sedimentation on the evolution of the wedge. Moreover, reconstruction of deformation history of the accretionary wedges using reflection seismic and borehole data has further substantiated the impact of sedimentation on wedge evolution. We conduct several numerical experiments using a high-resolution dynamic 2-D thermomechanical plate subduction model to systematically investigate and quantify different effects of sedimentation on accretionary wedge evolution. Models with sedimentation suggest migration of deformation to parts of the wedge lying outside the sedimentation zone leading to emergence/reactivation of out-of-sequence thrusts (OOSTs). Frequency and length of new thrust sheets are correlated with sedimentation in the trench. Models undergo a transition period of 1.5 Myr following the onset of sedimentation, after which they continue to grow under a new steady state. Stabilization of the wedge and increased load on the oceanic plate due to sedimentation create conditions in which smaller wedge-top basins combine to form a large and flat forearc basin. Last but not the least, emergence of OOST in models of accretionary wedges undergoing sedimentation provides important insights in to evolution of potentially tsunamigenic OOSTs like the Megasplay Fault seaward of the Kumano forearc basin.

  3. Generation of high-order optical vortices by optical wedges system

    NASA Astrophysics Data System (ADS)

    Izdebskaya, Ya. V.; Shvedov, V. G.; Volyar, A. V.

    2005-11-01

    The aim of the given report is experimental and theoretical research of the diffraction of a Gaussian beam by the optical wedges system. It is shown that this system is able to form high-order optical vortices. The effectiveness of system is about 90%. It was shown, that each wedge changes a charge of phase singularity as a result of edge diffraction. The value topological charge of the optical vortex formed after system is defined by the number of wedges in the system. Changing mutual orientation corners of wedges we can select required conditions of the vortex core. It was revealed that the optical vortex appears structurally steady if the comer of mutual orientation of wedges equals α = πn (where n-number of wedges).

  4. Dosimetric Characteristics of 6 MV Modified Beams by Physical Wedges of a Siemens Linear Accelerator.

    PubMed

    Zabihzadeh, Mansour; Birgani, Mohammad Javad Tahmasebi; Hoseini-Ghahfarokhi, Mojtaba; Arvandi, Sholeh; Hoseini, Seyed Mohammad; Fadaei, Mahbube

    2016-01-01

    Physical wedges still can be used as missing tissue compensators or filters to alter the shape of isodose curves in a target volume to reach an optimal radiotherapy plan without creating a hotspot. The aim of this study was to investigate the dosimetric properties of physical wedges filters such as off-axis photon fluence, photon spectrum, output factor and half value layer. The photon beam quality of a 6 MV Primus Siemens modified by 150 and 450 physical wedges was studied with BEAMnrc Monte Carlo (MC) code. The calculated present depth dose and dose profile curves for open and wedged photon beam were in good agreement with the measurements. Increase of wedge angle increased the beam hardening and this effect was more pronounced at the heal region. Using such an accurate MC model to determine of wedge factors and implementation of it as a calculation algorithm in the future treatment planning systems is recommended.

  5. Thermodynamic and kinetic supercooling of liquid in a wedge pore.

    PubMed

    Nowak, Dominika; Heuberger, Manfred; Zäch, Michael; Christenson, Hugo K

    2008-10-21

    Cyclohexane allowed to capillary condense from vapor in an annular wedge pore of mica in a surface force apparatus (SFA) remains liquid down to at least 14 K below the bulk melting-point T(m). This is an example of supercooling of a liquid due to confinement, like melting-point depression in porous media. In the wedge pore, however, the supercooled liquid is in equilibrium with vapor, and the amount of liquid (and thereby the radius of curvature r of the liquid-vapor interface) depends on the surface tension gamma(LV) of the liquid, not the interfacial tension between the solid and liquid. At coexistence r is inversely proportional to the temperature depression DeltaT below T(m), in accordance with a recently proposed model [P. Barber, T. Asakawa, and H. K. Christenson, J. Phys. Chem. C 111, 2141 (2007)]. We have now extended this model to include effects due to the temperature dependence of both the surface tension and the enthalpy of melting. The predictions of the improved model have been quantitatively verified in experiments using both a Mark IV SFA and an extended surface force apparatus (eSFA). The three-layer interferometer formed by the two opposing, backsilvered mica surfaces in a SFA was analyzed by conventional means (Mark IV) and by fast spectral correlation of up to 40 fringes (eSFA). We discuss the absence of freezing in the outermost region of the wedge pore down to 14 K below T(m) and attribute it to nonequilibrium (kinetic) supercooling, whereas the inner region of the condensate is thermodynamically supercooled.

  6. Nonlinear Instability of Hypersonic Flow past a Wedge

    NASA Technical Reports Server (NTRS)

    Seddougui, Sharon O.; Bassom, Andrew P.

    1991-01-01

    The nonlinear stability of a compressible flow past a wedge is investigated in the hypersonic limit. The analysis follows the ideas of a weakly nonlinear approach. Interest is focussed on Tollmien-Schlichting waves governed by a triple deck structure and it is found that the attached shock can profoundly affect the stability characteristics of the flow. In particular, it is shown that nonlinearity tends to have a stabilizing influence. The nonlinear evolution of the Tollmien-Schlichting mode is described in a number of asymptotic limits.

  7. Detection of unsuspected ovarian pregnancy by wedge resection

    PubMed Central

    Helde, M. D.; Campbell, J. S.; Himaya, A.; Nuyens, J. J.; Cowley, F. C.; Hurteau, G. D.

    1972-01-01

    Five follicular ovarian implantations occurred among 200 ectopic pregnancies encountered during a 14-year period. Abortions from impregnated follicles may cause hemoperitoneum more often than is generally suspected. Wedge resection or cystectomy to ensure hemostasis provides tissue for histological examination, without which ruptured ovarian pregnancy may masquerade as rupture of a corpus luteum with hemorrhage (“ovarian apoplexy”). Including patients reported here, IUCD users have within the past five years accounted for about 10% of all ovarian pregnancies recorded in English. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:5057958

  8. Resilient seal ring assembly with spring means applying force to wedge member. [cryogenic applications

    NASA Technical Reports Server (NTRS)

    Myers, W. N.; Hein, L. A. (Inventor)

    1983-01-01

    A ring seal adapted for installation in an annular recess between a housing and a rotating or reciprocating shaft is described. The seal consists of a resilient ring cup member having a ring wedge member inserted in the center recess of the cup member to wedge the opposing lips of the cup member outwardly into a sealing relationship. A spring maintains the force against the wedge member.

  9. Contact and crack problems for an elastic wedge. [stress concentration in elastic half spaces

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Gupta, G. D.

    1974-01-01

    The contact and the crack problems for an elastic wedge of arbitrary angle are considered. The problem is reduced to a singular integral equation which, in the general case, may have a generalized Cauchy kernel. The singularities under the stamp as well as at the wedge apex were studied, and the relevant stress intensity factors are defined. The problem was solved for various wedge geometries and loading conditions. The results may be applicable to certain foundation problems and to crack problems in symmetrically loaded wedges in which cracks initiate from the apex.

  10. Late Holocene ice wedges near Fairbanks, Alaska, USA: environmental setting and history of growth.

    USGS Publications Warehouse

    Hamilton, T.D.; Ager, T.A.; Robinson, S.W.

    1983-01-01

    Test trenches excavated into muskeg near Fairbanks in 1969 exposed a polygonal network of active ice wedges. The history of ice-wedge growth shows that wedges can form and grow to more than 1m apparent width under mean annual temperatures that probably are close to those of the Fairbanks area today (-3.5oC) and under vegetation cover similar to that of the interior Alaskan boreal forest. The commonly held belief that ice wedges develop only below mean annual air temperatures of -6 to -8oC in the zone of continuous permafrost is invalid.-from Authors

  11. Mass stranding of wedge-tailed shearwater chicks in Hawaii

    USGS Publications Warehouse

    Work, T.M.; Rameyer, R.A.

    1999-01-01

    Unusual numbers of wedge-tailed shearwater (Puffinus pacificus) chicks stranded on Oahu (Hawaii, USA) in 1994. Compared to healthy wedge-tailed shearwater (WTSW) chicks, stranded chicks were underweight, dehydrated, leukopenic, lymphopenic, eosinopenic, and heterophilic; some birds were toxemic and septic. Stranded chicks also were hypoglycemic and had elevated aspartate amino transferase levels. Most chicks apparently died from emaciation, dehydration, or bacteremia. Because many birds with bacteremia also had severe necrosis of the gastrointestinal (GI) mucosa associated with bacteria, we suspect the GI tract to be the source of disseminated bacterial infection. The identity of the bacteria was not confirmed. The daily number of chicks stranded was significantly related to average wind speeds, and the mortality coincided with the fledging period for WTSW. Strong southeasterly winds were a distinguishing meteorologic factor in 1994 and contributed to the distribution of stranded chicks on Oahu. More objective data on WTSW demographics would enhance future efforts to determine predisposing causes of WTSW wrecks and their effects on seabird colonies.

  12. Mass stranding of wedge-tailed shearwater chicks in Hawaii.

    PubMed

    Work, T M; Rameyer, R A

    1999-07-01

    Unusual numbers of wedge-tailed shearwater (Puffinus pacificus) chicks stranded on Oahu (Hawaii, USA) in 1994. Compared to healthy wedge-tailed shearwater (WTSW) chicks, stranded chicks were underweight, dehydrated, leukopenic, lymphopenic, eosinopenic, and heterophilic; some birds were toxemic and septic. Stranded chicks also were hypoglycemic and had elevated aspartate amino transferase levels. Most chicks apparently died from emaciation, dehydration, or bacteremia. Because many birds with bacteremia also had severe necrosis of the gastrointestinal (GI) mucosa associated with bacteria, we suspect the GI tract to be the source of disseminated bacterial infection. The identity of the bacteria was not confirmed. The daily number of chicks stranded was significantly related to average wind speeds, and the mortality coincided with the fledging period for WTSW. Strong southeasterly winds were a distinguishing meteorologic factor in 1994 and contributed to the distribution of stranded chicks on Oahu. More objective data on WTSW demographics would enhance future efforts to determine predisposing causes of WTSW wrecks and their effects on seabird colonies.

  13. An automated optical wedge calibrator for Dobson ozone spectrophotometers

    NASA Technical Reports Server (NTRS)

    Evans, R. D.; Komhyr, W. D.; Grass, R. D.

    1994-01-01

    The Dobson ozone spectrophotometer measures the difference of intensity between selected wavelengths in the ultraviolet. The method uses an optical attenuator (the 'Wedge') in this measurement. The knowledge of the relationship of the wedge position to the attenuation is critical to the correct calculation of ozone from the measurement. The procedure to determine this relationship is time-consuming, and requires a highly skilled person to perform it correctly. The relationship has been found to change with time. For reliable ozone values, the procedure should be done on a Dobson instrument at regular intervals. Due to the skill and time necessary to perform this procedure, many instruments have gone as long as 15 years between procedures. This article describes an apparatus that performs the procedure under computer control, and is adaptable to the majority of existing Dobson instruments. Part of the apparatus is usable for normal operation of the Dobson instrument, and would allow computer collection of the data and real-time ozone measurements.

  14. Growth and mixing dynamics of mantle wedge plumes

    NASA Astrophysics Data System (ADS)

    Gorczyk, Weronika; Gerya, Taras V.; Connolly, James A. D.; Yuen, David A.

    2007-07-01

    Recent work suggests that hydrated partially molten thermal-chemical plumes that originate from subducted slab as a consequence of Rayleigh-Taylor instability are responsible for the heterogeneous composition of the mantle wedge. We use a two-dimensional ultrahigh-resolution numerical simulation involving 10 × 109 active markers to anticipate the detailed evolution of the internal structure of natural plumes beneath volcanic arcs in intraoceanic subduction settings. The plumes consist of partially molten hydrated peridotite, dry solid mantle, and subducted oceanic crust, which may compose as much as 12% of the plume. As plumes grow and mature these materials mix chaotically, resulting in attenuation and duplication of the original layering on scales of 1-1000 m. Comparison of numerical results with geological observations from the Horoman ultramafic complex in Japan suggests that mixing and differentiation processes related to development of partially molten plumes above slabs may be responsible for the strongly layered lithologically mixed (marble cake) structure of asthenospheric mantle wedges.

  15. Dying Flow Bursts as Generators of the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2016-07-01

    Many theories or conjectures exist on the driver of the substorm current wedge, e.g. rerouting of the tail current, current disruption, flow braking, vortex formation, and current sheet collapse. Magnitude, spatial scale, and temporal development of the related magnetic perturbations suggest that the generator is related to the interaction of the flow bursts with the dipolar magnetosphere after onset of reconnection in the near-Earth tail. The question remains whether it is the flow energy that feeds the wedge current or the internal energy of the arriving plasma. In this presentation I argue for the latter. The current generation is attributed to the force exerted by the dipolarized magnetic field of the flow bursts on the preceding layer of high-beta plasma after flow braking. The generator current is the grad-B current at the outer boundary of the compressed high-beta plasma layers. It needs the sequential arrival of several flow bursts to account for duration and magnitude of the ionospheric closure current.

  16. Dying Flow Bursts as Generators of the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Haerendel, G.

    2015-12-01

    Many theories or conjectures exist on the driver of the substorm current wedge, e.g. rerouting of the tail current, current disruption, flow braking, vortex formation, and current sheet collapse. Magnitude, spatial scale, and temporal development of the related magnetic perturbations suggest that the generator is related to the interaction of the flow bursts with the dipolar magnetosphere after onset of reconnection in the near-Earth tail. The question remains whether it is the flow energy that feeds the wedge current or the internal energy of the arriving plasma. In this presentation I argue for the latter. The current generation is attributed to the force exerted by the dipolarized magnetic field of the flow bursts on the preceding layer of high-beta plasma after flow braking. The generator current is the grad-B current at the outer boundary of the compressed high-beta plasma layers. It needs the sequential arrival of several flow bursts to account for duration and magnitude of the ionospheric closure current.

  17. Magmatic implications of mantle wedge plumes: Experimental study

    NASA Astrophysics Data System (ADS)

    Castro, A.; Gerya, T. V.

    2008-06-01

    Numerical and laboratory experiments beside natural observations suggest that hydration and partial melting along the subducting slab can trigger Rayleigh-Taylor instabilities that evolve into partially molten diapiric structures ("cold plumes") that rise through the hot asthenospheric wedge. Mixed cold plumes composed of tectonic melanges derived from subduction channels can transport the fertile subducted crustal materials towards hotter zones of the suprasubduction mantle wedge leading to the formation of silicic melts. We investigate magmatic consequences of this plausible geodynamic scenario by using an experimental approach. Melt compositions, fertility and reaction between silicic melts and the peridotite mantle (both hydrous and dry) were tested by means of piston-cylinder experiments at conditions of 1000°C and pressures of 2.0 and 2.5GPa. The results indicate that silicic melts of trondhjemite and granodiorite compositions may be produced in the ascending mixed plume megastructures. Our experiments show that the formation of an Opx-rich reaction band, developed at the contact between the silicic melts and the peridotite, protect silicic melts from further reaction in contrast to the classical view that silicic melts are completely consumed in the mantle. The mixed, mantle-crust isotopic signatures which are characteristic of many calc-alkaline batholiths are also expected from this petrogenetic scenario.

  18. Relation of the auroral substorm to the substorm current wedge

    NASA Astrophysics Data System (ADS)

    McPherron, Robert L.; Chu, Xiangning

    2016-12-01

    The auroral substorm is an organized sequence of events seen in the aurora near midnight. It is a manifestation of the magnetospheric substorm which is a disturbance of the magnetosphere brought about by the solar wind transfer of magnetic flux from the dayside to the tail lobes and its return through the plasma sheet to the dayside. The most dramatic feature of the auroral substorm is the sudden brightening and poleward expansion of the aurora. Intimately associated with this expansion is a westward electrical current flowing across the bulge of expanding aurora. This current is fed by a downward field-aligned current (FAC) at its eastern edge and an upward current at its western edge. This current system is called the substorm current wedge (SCW). The SCW forms within a minute of auroral expansion. FAC are created by pressure gradients and field line bending from shears in plasma flow. Both of these are the result of pileup and diversion of plasma flows in the near-earth plasma sheet. The origins of these flows are reconnection sites further back in the tail. The auroral expansion can be explained by a combination of a change in field line mapping caused by the substorm current wedge and a tailward growth of the outer edge of the pileup region. We illustrate this scenario with a complex substorm and discuss some of the problems associated with this interpretation.

  19. Investigation of a Wedge Adhesion Test for Edge Seals

    SciTech Connect

    Kempe, Michael; Wohlgemuth, John; Miller, David; Postak, Lori; Booth, Dennis; Phillips, Nancy

    2016-09-26

    Many photovoltaic (PV) technologies have been found to be sensitive to moisture that diffuses into a PV package. Even with the use of impermeable frontsheets and backsheets, moisture can penetrate from the edges of a module. To limit this moisture ingress pathway from occurring, manufacturers often use a low permeability polyisobutylene (PIB) based edge seal filled with desiccant to further restrict moisture ingress. Moisture ingress studies have shown that these materials are capable of blocking moisture for the 25-year life of a module; but to do so, they must remain well-adhered and free of cracks. This work focuses on adapting the Boeing Wedge test for use with edge seals laminated using glass substrates as part of a strategy to assess the long-term durability of edge seals. The advantage of this method is that it duplicates the residual stresses and strains that a glass/glass module may have when the lamination process results in some residual glass bending that puts the perimeter in tension. Additionally, this method allows one to simultaneously expose the material to thermal stress, humidity, mechanical stress, and ultraviolet radiation. The disadvantage of this method generally is that we are limited by the fracture toughness of the glass substrates that the edge seal is adhered to. However, the low toughness of typical uncrosslinked or sparsely crosslinked PIB makes them suitable for this technique. We present data obtained during the development of the wedge test for use with PV edge seal materials. This includes development of the measuring techniques and evaluation of the test method with relevant materials. We find consistent data within a given experiment, along with the theoretical independence of fracture toughness measurements with wedge thickness. This indicates that the test methodology is reproducible. However, even though individual experimental sets are consistent, the reproducibility between experimental sets is poor. We believe this may be

  20. Investigation of a wedge adhesion test for edge seals

    NASA Astrophysics Data System (ADS)

    Kempe, Michael; Wohlgemuth, John; Miller, David; Postak, Lori; Booth, Dennis; Phillips, Nancy

    2016-09-01

    Many photovoltaic (PV) technologies have been found to be sensitive to moisture that diffuses into a PV package. Even with the use of impermeable frontsheets and backsheets, moisture can penetrate from the edges of a module. To limit this moisture ingress pathway from occurring, manufacturers often use a low permeability polyisobutylene (PIB) based edge seal filled with desiccant to further restrict moisture ingress. Moisture ingress studies have shown that these materials are capable of blocking moisture for the 25-year life of a module; but to do so, they must remain well-adhered and free of cracks. This work focuses on adapting the Boeing Wedge test for use with edge seals laminated using glass substrates as part of a strategy to assess the long-term durability of edge seals. The advantage of this method is that it duplicates the residual stresses and strains that a glass/glass module may have when the lamination process results in some residual glass bending that puts the perimeter in tension. Additionally, this method allows one to simultaneously expose the material to thermal stress, humidity, mechanical stress, and ultraviolet radiation. The disadvantage of this method generally is that we are limited by the fracture toughness of the glass substrates that the edge seal is adhered to. However, the low toughness of typical uncrosslinked or sparsely crosslinked PIB makes them suitable for this technique. We present data obtained during the development of the wedge test for use with PV edge seal materials. This includes development of the measuring techniques and evaluation of the test method with relevant materials. We find consistent data within a given experiment, along with the theoretical independence of fracture toughness measurements with wedge thickness. This indicates that the test methodology is reproducible. However, even though individual experimental sets are consistent, the reproducibility between experimental sets is poor. We believe this may be

  1. Medical devices; obstetrical and gynecological devices; classification of the hemorrhoid prevention pressure wedge. Final rule.

    PubMed

    2011-04-15

    The Food and Drug Administration (FDA) is classifying the hemorrhoid prevention pressure wedge into class II (special controls). The special controls will apply to the device in order to provide a reasonable assurance of safety and effectiveness of the device. A hemorrhoid prevention pressure wedge provides support to the perianal region during the labor and delivery process.

  2. A quantum hybrid with a thin antenna at the vertex of a wedge

    NASA Astrophysics Data System (ADS)

    Carlone, Raffaele; Posilicano, Andrea

    2017-03-01

    We study the spectrum, resonances and scattering matrix of a quantum Hamiltonian on a "hybrid surface" consisting of a half-line attached by its endpoint to the vertex of a concave planar wedge. At the boundary of the wedge, outside the vertex, homogeneous Dirichlet conditions are imposed. The system is tunable by varying the measure of the angle at the vertex.

  3. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology

    NASA Astrophysics Data System (ADS)

    Liljedahl, Anna K.; Boike, Julia; Daanen, Ronald P.; Fedorov, Alexander N.; Frost, Gerald V.; Grosse, Guido; Hinzman, Larry D.; Iijma, Yoshihiro; Jorgenson, Janet C.; Matveyeva, Nadya; Necsoiu, Marius; Raynolds, Martha K.; Romanovsky, Vladimir E.; Schulla, Jörg; Tape, Ken D.; Walker, Donald A.; Wilson, Cathy J.; Yabuki, Hironori; Zona, Donatella

    2016-04-01

    Ice wedges are common features of the subsurface in permafrost regions. They develop by repeated frost cracking and ice vein growth over hundreds to thousands of years. Ice-wedge formation causes the archetypal polygonal patterns seen in tundra across the Arctic landscape. Here we use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over sub-decadal timescales. Initial thaw drains polygon centres and forms disconnected troughs that hold isolated ponds. Continued ice-wedge melting leads to increased trough connectivity and an overall draining of the landscape. We find that melting at the tops of ice wedges over recent decades and subsequent decimetre-scale ground subsidence is a widespread Arctic phenomenon. Although permafrost temperatures have been increasing gradually, we find that ice-wedge degradation is occurring on sub-decadal timescales. Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff, in particular due to changes in snow distribution as troughs form. We predict that ice-wedge degradation and the hydrological changes associated with the resulting differential ground subsidence will expand and amplify in rapidly warming permafrost regions.

  4. Comparison of dosimetric characteristics of Siemens virtual and physical wedges for ONCOR linear accelerator.

    PubMed

    Attalla, Ehab M; Abo-Elenein, H S; Ammar, H; El-Desoky, Ismail

    2010-07-01

    Dosimetric properties of virtual wedge (VW) and physical wedge (PW) in 6- and 10-MV photon beams from a Siemens ONCOR linear accelerator, including wedge factors, depth doses, dose profiles, peripheral doses, are compared. While there is a great difference in absolute values of wedge factors, VW factors (VWFs) and PW factors (PWFs) have a similar trend as a function of field size. PWFs have stronger depth dependence than VWF due to beam hardening in PW fields. VW dose profiles in the wedge direction, in general, match very well with those of PW, except in the toe area of large wedge angles with large field sizes. Dose profiles in the nonwedge direction show a significant reduction in PW fields due to off-axis beam softening and oblique filtration. PW fields have significantly higher peripheral doses than open and VW fields. VW fields have similar surface doses as the open fields, while PW fields have lower surface doses. Surface doses for both VW and PW increase with field size and slightly with wedge angle. For VW fields with wedge angles 45° and less, the initial gap up to 3 cm is dosimetrically acceptable when compared to dose profiles of PW. VW fields in general use less monitor units than PW fields.

  5. [Electron microscopic study of wedge-shaped defects of teeth on initial stage].

    PubMed

    Makeeva, I M; Biakova, S F; Chuev, V P; Sheveliuk, Iu V

    2009-01-01

    The aim of thes; study was to observe initial stage of wedge-shaped defects under scanning electron microscopy without prior samples preparation. There were revealed special features of structure of enamel and cement at initial stage of wedge-shaped defects in comparison to normal tissues.

  6. Reflection of a converging cylindrical shock wave segment by a straight wedge

    NASA Astrophysics Data System (ADS)

    Gray, B.; Skews, B.

    2017-01-01

    As a converging cylindrical shock wave propagates over a wedge, the shock wave accelerates and the angle between the shock wave and the wedge decreases. This causes the conditions at the reflection point to move from what would be the irregular reflection domain for a straight shock wave into the regular reflection domain. This paper covers a largely qualitative study of the reflection of converging shock wave segments with Mach numbers between 1.2 and 2.1 by wedges inclined at angles between 15° and 60° from experimental and numerical results. The sonic condition conventionally used for predicting the type of reflection of straight shock waves was found to also be suitable for predicting the initial reflection of a curved shock wave. Initially regular reflections persisted until the shock was completely reflected by the wedge, whereas the triple point of initially irregular reflections was observed to return to the wedge surface, forming transitioned regular reflection. After the incident shock wave was completely reflected by the wedge, a shock wave focusing mechanism was observed to amplify the pressure on the surface of the wedge by a factor of up to 100 for low wedge angles.

  7. Comparison of the hamstring/quadriceps ratio in females during squat exercise using various foot wedges

    PubMed Central

    Yoo, Won-gyu

    2016-01-01

    [Purpose] This study compared the hamstring/quadriceps ratio in females during squat exercise using various foot wedges. [Subjects and Methods] Nine females participated in this study. Surface electrodes measurements were taken over the hamstring and quadriceps under 3 squat exercise conditions, and the hamstring/quadriceps ratio was calculated. [Results] The hamstring/quadriceps ratio was significantly increased during squat exercise in inclined wedge condition (7.4 ± 1.8), compared to the declined wedge condition (5.3 ± 2.2) and no wedge condition (6.4 ± 3.2). [Conclusion] This study suggests that squat exercise in the inclined wedge condition may be effective for increasing the hamstring/quadriceps ratio in females. PMID:27630437

  8. Distortion of optical wedges with a large angle of incidence in a collimated beam

    NASA Astrophysics Data System (ADS)

    Mao, Wenwei; Xu, Yuxian

    1999-04-01

    The optical wedge engenders a distortion aberration in a collimated beam in general. Presented is a set of distortion formulas and of third-order distortion formulas in the component form of TAx and TAy for optical wedges. The main dependence of the distortion as a function of the apex angle, of the incident angle of the optical axis, and of the view field of the optical wedge is established. The slope formula of a curved line, which is the image of a straight line of an optical wedge, is developed. They are suited for the large incident angle of the optical axis and the small apex angle. The analysis and calculation indicate that the image of a square for an optical wedge is in the shape of a church bell with a slightly convex or flat side rather than with a concave side.

  9. Mechanics of fold-and-thrust belts and accretionary wedges Cohesive Coulomb theory

    NASA Technical Reports Server (NTRS)

    Dahlen, F. A.; Suppe, J.; Davis, D.

    1984-01-01

    A self-consistent theory for the mechanics of thin-skinned accretionary Coulomb wedges is developed and applied to the active fold-and-thrust belt of western Taiwan. The state of stress everywhere within a critical wedge is determined by solving the static equilibrium equations subject to the appropriate boundary conditions. The influence of wedge cohesion, which gives rise to a concave curvature of the critical topographic surface and affects the orientation of the principal stresses and Coulomb fracture within the wedge, is considered. The shape of the topographic surface and the angles at which thrust faults step up from the basal decollement in the Taiwanese belt is analyzed taking into account the extensive structural and fluid-pressure data available there. It is concluded that the gross geometry and structure of the Taiwan wedge are consistent with normal laboratory frictional and fracture strengths of sedimentary rocks.

  10. The accuracy of transoesophageal echocardiography in estimating pulmonary capillary wedge pressure in anaesthetised patients.

    PubMed

    Ali, M M; Royse, A G; Connelly, K; Royse, C F

    2012-02-01

    The objective of this study was to identify whether pulmonary capillary wedge pressure can be estimated in anaesthetised patients receiving mechanical ventilation, using transoesophageal echocardiography. A retrospective validation study investigated a 10-patient cohort with variable haemodynamic conditions, and a 102-patient series in which a single measurement was made during stable haemodynamic conditions. Concurrent echocardiographic Doppler and pulmonary artery catheter wedge pressure measurements were performed. In the 10-patient cohort, the systolic fraction of Doppler measurements in the pulmonary vein (r = -0.32, p = 0.035) and the E/A ratio (r = 0.56, p = 0.0009) were correlated with the wedge pressure. In all cases, the limits of agreement exceeded 10 mmHg, and sensitivity or specificity for detecting wedge pressure ≥ 15 mmHg was poor. This study demonstrates proof of concept that using transoesophageal echocardiography for estimating the pulmonary artery wedge pressure may not be sufficiently accurate for clinical use.

  11. Simple phase-shifting method in a wedge-plate lateral-shearing interferometer.

    PubMed

    Song, Jae Bong; Lee, Yun Woo; Lee, In Won; Lee, Yong-Hee

    2004-07-10

    A simple phase-shifting method in a wedge-plate lateral shearing interferometer is described. Simply moving the wedge plate in an in-plane parallel direction gives the amount of phase shift required for phase-shifting interferometry because the thickness of a wedge plate is not constant and varies along the wedge direction. This method requires only one additional linear translator to move the wedge plate. The required moving distance for a phase shift of the wave front with this method is of the order of a millimeter, whereas the typical moving distance for another method that uses a piezoelectric transducer is of the order of a wavelength. This method yields better precision in controlling the moving distance than do the other methods.

  12. Comparison of the hamstring/quadriceps ratio in females during squat exercise using various foot wedges.

    PubMed

    Yoo, Won-Gyu

    2016-08-01

    [Purpose] This study compared the hamstring/quadriceps ratio in females during squat exercise using various foot wedges. [Subjects and Methods] Nine females participated in this study. Surface electrodes measurements were taken over the hamstring and quadriceps under 3 squat exercise conditions, and the hamstring/quadriceps ratio was calculated. [Results] The hamstring/quadriceps ratio was significantly increased during squat exercise in inclined wedge condition (7.4 ± 1.8), compared to the declined wedge condition (5.3 ± 2.2) and no wedge condition (6.4 ± 3.2). [Conclusion] This study suggests that squat exercise in the inclined wedge condition may be effective for increasing the hamstring/quadriceps ratio in females.

  13. Periodic nanostructures from self assembled wedge-type block-copolymers

    SciTech Connect

    Xia, Yan; Sveinbjornsson, Benjamin R.; Grubbs, Robert H.; Weitekamp, Raymond; Miyake, Garret M.; Piunova, Victoria; Daeffler, Christopher Scot

    2015-06-02

    The invention provides a class of wedge-type block copolymers having a plurality of chemically different blocks, at least a portion of which incorporates a wedge group-containing block providing useful properties. For example, use of one or more wedge group-containing blocks in some block copolymers of the invention significantly inhibits chain entanglement and, thus, the present block copolymers materials provide a class of polymer materials capable of efficient molecular self-assembly to generate a range of structures, such as periodic nanostructures and microstructures. Materials of the present invention include copolymers having one or more wedge group-containing blocks, and optionally for some applications copolymers also incorporating one or more polymer side group-containing blocks. The present invention also provides useful methods of making and using wedge-type block copolymers.

  14. Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines

    DOEpatents

    Lindner, Melvin; Cottingham, James G.

    1996-03-12

    A wedge and spring assembly for use in electromagnets or dynamoelectric machines having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped.

  15. Compact optical isolator for fibers using birefringent wedges.

    PubMed

    Shirasaki, M; Asama, K

    1982-12-01

    A new type of optical isolator for fibers is proposed in this paper. A birefringent wedge used to separate and combine the polarized light is developed, giving the isolator low forward loss and high isolation. The antire-flection process at the fiber endface reduces the forward loss and reflected return. A forward loss of 0.8 dB, a backward loss of 35 dB, and a reflected return of -32 dB were obtained. These characteristics were measured from fiber to fiber using multimode fibers with 50-/microm core diam at a wavelength of 1.3 microm. Details of the design, fabrication, and characteristics of this isolator are presented.

  16. Computer dosimetry for flattened and wedged fast-neutron beams.

    PubMed

    Hogstrom, K R; Smith, A R; Almond, P R; Otte, V A; Smathers, J B

    1976-01-01

    Beam flattening by the use of polyethylene filters has been developed for the 50-MeV d in equilibrium Be fast-neutron therapy beam at the Texas A&M Variable-Energy Cyclotron (TAMVEC) as a result of the need for a more uniform dose distribution at depth within the patient. A computer algorithm has been developed that allows the use of a modified decrement line method to calculate dose distributions; standards decrement line methods do not apply because of off-axis peaking. The dose distributions for measured flattened beams are transformed into distributions that are physically equivalent to an unflattened distribution. In the transformed space, standard decrement line theory yields a distribution for any field size which, by applying the inverse transformation, generates the flattened dose distribution, including the off-axis peaking. A semiempirical model has been constructed that allows the calculation of dose distributions for wedged beams from open-beam data.

  17. Two-dimensional electronic spectroscopy with birefringent wedges

    SciTech Connect

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  18. Numerical investigation of shedding partial cavities over a sharp wedge

    NASA Astrophysics Data System (ADS)

    Budich, B.; Neuner, S.; Schmidt, S. J.; Adams, N. A.

    2015-12-01

    In this contribution, we examine transient dynamics and cavitation patterns of periodically shedding partial cavities by numerical simulations. The investigation reproduces reference experiments of the cavitating flow over a sharp wedge. Utilizing a homogeneous mixture model, full compressibility of the two-phase flow of water and water vapor is taken into account by the numerical method. We focus on inertia-dominated mechanisms, thus modeling the flow as inviscid. Based on the assumptions of thermodynamic equilibrium and barotropic flow, the thermodynamic properties are computed from closed-form analytical relations. Emphasis is put on a validation of the employed numerical approach. We demonstrate that computed shedding dynamics are in agreement with the references. Complex flow features observed in the experiments, including cavitating hairpin and horse-shoe vortices, are also predicted by the simulations. Furthermore, a condensation discontinuity occurring during the collapse phase at the trailing portion of the partial cavity is equally obtained.

  19. The Substorm Current Wedge: Further Insights from MHD Simulations

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, M.

    2015-01-01

    Using a recent magnetohydrodynamic simulation of magnetotail dynamics, we further investigate the buildup and evolution of the substorm current wedge (SCW), resulting from flow bursts generated by near-tail reconnection. Each flow burst generates an individual current wedge, which includes the reduction of cross-tail current and the diversion to region 1 (R1)-type field-aligned currents (earthward on the dawn and tailward on the duskside), connecting the tail with the ionosphere. Multiple flow bursts generate initially multiple SCW patterns, which at later times combine to a wider single SCW pattern. The standard SCWmodel is modified by the addition of several current loops, related to particular magnetic field changes: the increase of Bz in a local equatorial region (dipolarization), the decrease of |Bx| away from the equator (current disruption), and increases in |By| resulting from azimuthally deflected flows. The associated loop currents are found to be of similar magnitude, 0.1-0.3 MA. The combined effect requires the addition of region 2 (R2)-type currents closing in the near tail through dawnward currents but also connecting radially with the R1 currents. The current closure at the inner boundary, taken as a crude proxy of an idealized ionosphere, demonstrates westward currents as postulated in the original SCW picture as well as North-South currents connecting R1- and R2-type currents, which were larger than the westward currents by a factor of almost 2. However, this result should be applied with caution to the ionosphere because of our neglect of finite resistance and Hall effects.

  20. THE USE OF SINGULAR INTEGRALS IN WAVE DIFFRACTION PROBLEMS WITH THE SOLUTION OF THE PROBLEM OF SCATTERING BY A DIELECTRIC WEDGE,

    DTIC Science & Technology

    ELECTROMAGNETIC RADIATION, DIFFRACTION, WEDGES, WEDGES, PRISMATIC BODIES, COMPLEX VARIABLES , PRISMS(OPTICS), REFRACTION, FUNCTIONS(MATHEMATICS), REFLECTION, PARTIAL DIFFERENTIAL EQUATIONS, SCATTERING.

  1. Ice-wedge based permafrost chronologies and stable-water isotope records from Arctic Siberia

    NASA Astrophysics Data System (ADS)

    Wetterich, Sebastian; Opel, Thomas; Meyer, Hanno; Schwamborn, Georg; Schirrmeister, Lutz; Dereviagin, Alexander Yu.

    2016-04-01

    Late Quaternary permafrost of northern latitudes contains large proportions of ground ice, including pore ice, segregation ice, massive ice, buried glacier ice and in particular ice wedges. Fossil ice-wedges are remnants of polygonal patterned ground in former tundra areas, which evolved over several tens of thousands of years in non-glaciated Beringia. Ice wedges originate from repeated frost cracking of the ground in winter and subsequent crack filling by snowmelt and re-freezing in the ground in spring. Hence, the stable water isotope composition (δ18O, δD, d excess) of wedge ice derives from winter precipitation and is commonly interpreted as wintertime climate proxy. Paleoclimate studies based on ice-wedge isotope data cover different timescales and periods of the late Quaternary. (MIS 6 to MIS 1). In the long-term scale the temporal resolution is rather low and corresponds to mid- and late Pleistocene and Holocene stratigraphic units. Recent progress has been made in developing centennial Late Glacial and Holocene time series of ice-wedge stable isotopes by applying radiocarbon dating of organic remains in ice samples. Ice wedges exposed at both coasts of the Dmitry Laptev Strait (East Siberian Sea) were studied to deduce winter climate conditions since about 200 kyr. Ice wedges aligned to distinct late Quaternary permafrost strata were studied for their isotopic composition and dated by radiocarbon ages of organic matter within the wedge ice or by cosmogenic nuclide ratios (36Cl/Cl-) of the ice. The paleoclimate interpretation is furthermore based on geocryological and paleoecological proxy data and geochronological information (radiocarbon, luminescence, radioisotope disequilibria 230Th/U) from ice-wedge embedding frozen deposits. Coldest winter conditions are mirrored by most negative δ18O mean values of -37 ‰ and δD mean values of -290 ‰ from ice wedges of the Last Glacial Maximum (26 to 22 kyr BP) while late Holocene (since about 4 kyr BP) and in

  2. Critical taper wedge strength varies with structural style: results from distinct-element models

    NASA Astrophysics Data System (ADS)

    Strayer, L. M.; Suppe, J.

    2015-12-01

    Critical-taper theory has given diverse insight into kinematics, roles of erosion and sedimentation, and the morphology of compressive mountain belts. We have made progress by recasting the parameter-rich mathematics into a simpler form that describes a linear, co-varying relationship between surface slope and detachment dip (α, β), and internal- and basal-sliding strengths (W, F). Using distinct-element models, we tested this simpler theory over a range of wedge strengths and structural styles. We also obtained W & F from observations of surface slope α and detachment dip β in active natural systems, all of which including the numerical models, show wedges are strong but detachments are weak, with F/W=0.1 or less. Model-derived W & F vary about a mean that matches geometry-derived values. Time- and spatially-averaged dynamical F & W are observed to be equal to wedge-derived results. Critical taper reflects the dynamical strengths during wedge growth and is controlled dynamically as base friction varies between an assigned quasi-static value and lower values during slip events. In the wedge, W varies more than F, which may also be true for natural systems. Detachments have frictional stick/slip behavior on a basal wall, but the wedge has more going on within it. Tandem faulting & folding serve to simultaneously weaken and strengthen the wedge, and may occur anywhere: structural style appears to be important to wedge strength evolution. The dynamics of deformation within the wedge and slip upon the base control the finite wedge geometry: static strengths drop to dynamic levels during seismicity, resulting in materials and faults that are weaker than prescribed in models or determined by testing. Relationships between α and W & F are complex. All sudden, stepwise changes in α, W & F with time coincide with seismicity spikes in the models. Large events trigger or are triggered by large changes in F and W. We examine the complex details of dynamically driven

  3. Hyper-extended continental crust deformation in the light of Coulomb critical wedge theory

    NASA Astrophysics Data System (ADS)

    Nirrengarten, Michael; Manatschal, Gianreto; Yuan, Xiaoping; Kusznir, Nick; Maillot, Bertrand

    2016-04-01

    The rocks forming the wedge shape termination of hyper-extended continental crust are deformed in the frictional field during the last stage of continental rifting due to cooling and hydration. Seismic interpretation and field evidence show that the basal boundary of the wedge is a low frictional décollement level. The wedge shape, the frictional deformation and the basal décollement correspond to the requirements of the critical Coulomb wedge (CCW) theory which describes the stability limit of a frictional wedge over a décollement. In a simple shear separation model the upper-plate margin (in the hangingwall of the detachment fault) corresponds to a tectonic extensional wedge whereas the lower plate (in the footwall of the detachment fault) is a gravitational wedge. This major difference causes the asymmetry of conjugate hyper-extended rifted margins. We measure a dataset of upper and lower hyper-extended wedge and compare it to the stability envelope of the CCW theory for serpentine and clay friction. We find a good fit by adjusting fluid pressure. The main results of our analysis are that the crustal wedges of lower plate margins are close to the critical shape, which explains their low variability whereas upper plate wedges can be critical, sub- or sup- critical due to the detachment evolution during rifting. On the upper plate side, according to the Coulomb tectonic extensional wedge, faults should be oriented toward the continent. Observations showed some continentward faults in the termination of the continental crust but there are also oceanward faults. This can be explained by two processes, first continentward faults are created only over the detachment, therefore if part of the hyper-extended upper plate crust is not directly over the detachment it will not be part of the wedge. Secondly the tip block of the wedge can be detached creating an extensional allochthon induced by the flattening of the detachment near the surface, therefore continentward

  4. Biomechanical effects of lateral and medial wedge insoles on unilateral weight bearing

    PubMed Central

    Sawada, Tomonori; Kito, Nobuhiro; Yukimune, Masaki; Tokuda, Kazuki; Tanimoto, Kenji; Anan, Masaya; Takahashi, Makoto; Shinkoda, Koichi

    2016-01-01

    [Purpose] Lateral wedge insoles reduce the peak external knee adduction moment and are advocated for patients with knee osteoarthritis. However, some patients demonstrate adverse biomechanical effects with treatment. In this study, we examined the immediate effects of lateral and medial wedge insoles under unilateral weight bearing. [Subjects and Methods] Thirty healthy young adults participated in this study. The subjects were assessed by using the foot posture index, and were divided into three groups: normal foot, pronated foot, and supinated foot groups. The knee adduction moment and knee-ground reaction force lever arm under the studied conditions were measured by using a three-dimensional motion capture system and force plates. [Results] In the normal and pronated groups, the change in knee adduction moment significantly decreased under the lateral wedge insole condition compared with the medial wedge insole condition. In the normal group, the change in the knee-ground reaction force lever arm also significantly decreased under the lateral wedge insole condition than under the medial wedge insole condition. [Conclusion] Lateral wedge insoles significantly reduced the knee adduction moment and knee-ground reaction force lever arm during unilateral weight bearing in subjects with normal feet, and the biomechanical effects varied according to individual foot alignment. PMID:26957775

  5. What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?

    DOE PAGES

    Kim, Kyuho; Chang, C. S.; Seo, Janghoon; ...

    2017-01-24

    Here, in order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the fullmore » torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ|, and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.« less

  6. Semi-analytical solutions of groundwater flow in multi-zone (patchy) wedge-shaped aquifers

    NASA Astrophysics Data System (ADS)

    Samani, Nozar; Sedghi, Mohammad M.

    2015-03-01

    Alluvial fans are potential sites of potable groundwater in many parts of the world. Characteristics of alluvial fans sediments are changed radially from high energy coarse-grained deposition near the apex to low energy fine-grained deposition downstream so that patchy wedge-shaped aquifers with radial heterogeneity are formed. The hydraulic parameters of the aquifers (e.g. hydraulic conductivity and specific storage) change in the same fashion. Analytical or semi-analytical solutions of the flow in wedge-shaped aquifers are available for homogeneous cases. In this paper we derive semi-analytical solutions of groundwater flow to a well in multi-zone wedge-shaped aquifers. Solutions are provided for three wedge boundary configurations namely: constant head-constant head wedge, constant head-barrier wedge and barrier-barrier wedge. Derivation involves the use of integral transforms methods. The effect of heterogeneity ratios of zones on the response of the aquifer is examined. The results are presented in form of drawdown and drawdown derivative type curves. Heterogeneity has a significant effect on over all response of the pumped aquifer. Solutions help understanding the behavior of heterogeneous multi-zone aquifers for sustainable development of the groundwater resources in alluvial fans.

  7. A Study in Wedge Waves with Applications in Acoustic Delay- line

    NASA Astrophysics Data System (ADS)

    Tung, Po-Hsien; Wang, Wen-Chi; Yang, Che-Hua

    The acoustic delay line is usually used to supply protection from dangerous environment, to enhance signal intensity by fit geometry of analyte, or to achieve specific angle/focusing by Snell's law, but rarely to avoid noise from coupling agent and to raise spatial resolution by reducing contact area. This study is focused on wedge waves with applications in delay-line to solve the knot of traditionally transducer measurement. Wedge waves are guided acoustic waves propagating along the tip of a wedge. The advantages of wedge being used in acoustic delay line are wedge waves has large motion amplitude of anti-symmetric flexural (ASF) mode, low energy attenuation and the velocity of ASF more is regular weather frequency varied or not. According the characteristic of wedge wave and vibration direction of particle, the acoustical wedge delay line with high signal- noise-ratio, approximate point-like contact area, without coupling agent and in/out vibration measurement by specific experimental setup is developed.

  8. Inferring the spatial variation of the wedge strength based on a modified critical taper model

    NASA Astrophysics Data System (ADS)

    Yang, C.; Liu, H.; Hsieh, Y.; Dong, J.

    2013-12-01

    Critical taper wedge theory has been widely applied to evaluate the strength of the detachment fault and the wedge by measuring taper angle. Traditional taper model, which incorporated constant cohesion and friction angle, fails to explain the lateral variation of the taper angle. A modified critical taper model adopting nonlinear Hoek-Brown failure criterion is proposed accordingly. The fold-and-thrust belt of central Taiwan was studied. Based on the field works and laboratory tests, the geological strength index (GSI) and the uniaxial compressive strength were obtained and the wedge strength can be estimated accordingly. The GSI values from investigation are decreased from the west to the east along the cross section due to the wedge strength heterogeneity. The uniaxial compressive strength of intact rock varies from the age of formation and lithology. The estimated wedge strength exhibits a strong spatial variation. The strength of the detachment fault was derived from rotary shear tests using fault gouge materials under different velocities and normal stresses. General speaking, the steady-state friction coefficient are about 0.29-0.46 when the shear velocity less than 0.1 m/s. The friction coefficient is not sensitive to the normal stress. Consequently, the lateral variation of the taper angle, which calculated by modified critical taper model, is mainly dominated by the wedge strength heterogeneity and the thickening of the wedge from the west to the east.

  9. What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?

    NASA Astrophysics Data System (ADS)

    Kim, Kyuho; Chang, C. S.; Seo, Janghoon; Ku, S.; Choe, W.

    2017-01-01

    In order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the full torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ| , and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.

  10. Deformation of brittle-ductile thrust wedges in experiments and nature

    NASA Astrophysics Data System (ADS)

    Smit, J. H. W.; Brun, J. P.; Sokoutis, D.

    2003-10-01

    Even though the rheology of thrust wedges is mostly frictional, a basal ductile decollement is often involved. By comparison with purely frictional wedges, such brittle-ductile wedges generally display anomalous structures such as backward vergence, widely spaced thrust units, and nonfrontward sequences of thrust development. Laboratory experiments are used here to study the deformation of brittle-ductile thrust wedges. Results are compared with natural systems in the Jura Mountains and the northern Pakistan Salt Range and Potwar Plateau. Two series of three models are used to illustrate the effects of varying the basal wedge angle (β) and shortening rate (V). These two parameters directly control variations in relative strength between brittle and ductile layers (BD coupling). Wedges with strong BD coupling (low β and high V) give almost regular frontward sequences with closely spaced thrust units and, as such, are not significantly different from purely frictional wedges. Weak BD coupling (high β and low V) gives dominantly backward thrusting sequences. Intermediate BD coupling produces frontward-backward oscillating sequences. The spacing of thrust units increases as coupling decreases. Back thrusts develop in parts of a wedge where BD coupling is weak, regardless of the thrust sequence. Wedges with weak BD coupling need large amounts of bulk shortening (more than 30%) to attain a state of equilibrium, at which stable sliding along the base occurs. On this basis, we argue that a state of equilibrium has not yet been attained in at least some parts of the Jura Mountains and eastern Salt Range and Potwar Plateau thrust systems.

  11. Distribution and activity of ice wedges across the forest-tundra transition, western Arctic Canada

    NASA Astrophysics Data System (ADS)

    Kokelj, S. V.; Lantz, T. C.; Wolfe, S. A.; Kanigan, J. C.; Morse, P. D.; Coutts, R.; Molina-Giraldo, N.; Burn, C. R.

    2014-09-01

    Remote sensing, regional ground temperature and ground ice observations, and numerical simulation were used to investigate the size, distribution, and activity of ice wedges in fine-grained mineral and organic soils across the forest-tundra transition in uplands east of the Mackenzie Delta. In the northernmost dwarf-shrub tundra, ice wedge polygons cover up to 40% of the ground surface, with the wedges commonly exceeding 3 m in width. The largest ice wedges are in peatlands where thermal contraction cracking occurs more frequently than in nearby hummocky terrain with fine-grained soils. There are fewer ice wedges, rarely exceeding 2 m in width, in uplands to the south and none have been found in mineral soils of the tall-shrub tundra, although active ice wedges are found there throughout peatlands. In the spruce forest zone, small, relict ice wedges are restricted to peatlands. At tundra sites, winter temperatures at the top of permafrost are lower in organic than mineral soils because of the shallow permafrost table, occurrence of phase change at 0°C, and the relatively high thermal conductivity of icy peat. Due to these factors and the high coefficient of thermal contraction of frozen saturated peat, ice wedge cracking and growth is more common in peatlands than in mineral soil. However, the high latent heat content of saturated organic active layer soils may inhibit freezeback, particularly where thick snow accumulates, making the permafrost and the ice wedges in spruce forest polygonal peatlands susceptible to degradation following alteration of drainage or climate warming.

  12. Two brittle ductile transitions in subduction wedges, as revealed by topography

    NASA Astrophysics Data System (ADS)

    Thissen, C.; Brandon, M. T.

    2013-12-01

    Subduction wedges contain two brittle ductile transitions. One transition occurs within the wedge interior, and a second transition occurs along the decollement. The decollement typically has faster strain rates, which suggests that the brittle ductile transition along the decollement will be more rearward (deeper) than the transition within the interior. However, the presence of distinct rheologies or other factors such as pore fluid pressure along the decollement may reverse the order of the brittle-ductile transitions. We adopt a solution by Williams et al., (1994) to invert for these brittle ductile transitions using the wedge surface topography. At present, this model does not include an s point or sediment loading atop the wedge. The Hellenic wedge, however, as exposed in Crete presents an ideal setting to test these ideas. We find that the broad high of the Mediterranean ridge represents the coulomb frictional part of the Hellenic wedge. The rollover in topography north of the ridge results from curvature of the down going plate, creating a negative alpha depression in the vicinity of the Strabo, Pliny, and Ionian 'troughs' south of Crete. A steep topographic rise out of these troughs and subsequent flattening reflects the brittle ductile transition at depth in both the decollement and the wedge interior. Crete exposes the high-pressure viscous core of the wedge, and pressure solution textures provide additional evidence for viscous deformation in the rearward part of the wedge. The location of the decollement brittle ductile transition has been previously poorly constrained, and Crete has never experienced a subduction zone earthquake in recorded history. Williams, C. A., et al., (1994). Effect of the brittle ductile transition on the topography of compressive mountain belts on Earth and Venus. Journal of Geophysical Research Solid Earth

  13. Transonic Aerodynamic Characteristics of Two Wedge Airfoil Sections Including Unsteady Flow Studies

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick J.

    1959-01-01

    A two-dimensional wind-tunnel investigation has been conducted on a 20-percent-thick single-wedge airfoil section. Steady-state forces and moments were determined from pressure measurements at Mach numbers from 0.70 to about 1.25. Additional information on the flows about the single wedge is provided by means of instantaneous pressure measurements at Mach numbers up to unity. Pressure distributions were also obtained on a symmetrical double-wedge or diamond-shaped profile which had the same leading-edge included angle as the single-wedge airfoil. A comparison of the data on the two profiles to provide information on the effects of the afterbody showed that with the exception of drag, the single-wedge profile proved to be aerodynamically superior to the diamond profile in all respects. The lift effectiveness of the single-wedge airfoil section far exceeded that of conventional thin airfoil sections over the speed range of the investigation. Pitching-moment irregularities, caused by negative loadings near the trailing edge, generally associated with conventional airfoils of equivalent thicknesses were not exhibited by the single-wedge profile. Moderately high pulsating pressures existing over the base of the single-wedge airfoil section were significantly reduced as the Mach number was increased beyond 0.92 and the boundaries of the dead airspace at the base of the model converged to eliminate the vortex street in the wake. Increasing the leading-edge radius from 0 to 1 percent of the chord had a minor effect on the steady-state forces and generally raised the level of pressure pulsations over the forward part of the single-wedge profile.

  14. Measured Two-Dimensional Ice-Wedge Polygon Thermal Dynamics

    NASA Astrophysics Data System (ADS)

    Cable, William; Romanovsky, Vladimir; Busey, Robert

    2016-04-01

    Ice-wedge polygons are perhaps the most dominant permafrost related features in the arctic landscape. The microtopography of these features, that includes rims, troughs, and high and low polygon centers, alters the local hydrology, as water tends to collect in the low areas. During winter, wind redistribution of snow leads to an increased snowpack depth in the low areas, while the slightly higher areas often have very thin snow cover, leading to differences across the landscape in vegetation communities and soil moisture between higher and lower areas. These differences in local surface conditions lead to spatial variability of the ground thermal regime in the different microtopographic areas and between different types of ice-wedge polygons. To study these features in depth, we established temperature transects across four different types of ice-wedge polygons near Barrow, Alaska. The transects were composed of five vertical array thermistor probes (VATP) beginning in the center of each polygon and extending through the trough to the rim of the adjacent polygon. Each VATP had 16 thermistors from the surface to a depth of 1.5 m. In addition to these 80 subsurface temperature measurement points per polygon, soil moisture, thermal conductivity, heat flux, and snow depth were all measured in multiple locations for each polygon. Above ground, a full suite of micrometeorological instrumentation was present at each polygon. Data from these sites has been collected continuously for the last three years. We found snow cover, timing and depth, and active layer soil moisture to be major controlling factors in the observed thermal regimes. In troughs and in the centers of low-center polygons, the combined effect of typically saturated soils and increased snow accumulation resulted in the highest mean annual ground temperatures (MAGT). Additionally, these areas were the last part of the polygon to refreeze during the winter. However, increased active layer thickness was not

  15. Role of Hydrogen in stagnant slabs and big mantle wedge

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Zhao, D.

    2008-12-01

    Recent seismic tomography data imply that subducting slabs are stagnant at some regions such as beneath Japan and Northeast China [1, 2]. The stagnant slab can have an important effect on the overlying transition zone and upper mantle. A big mantle wedge (BMW) model has been proposed by Zhao [2], in which the stagnant slab in the transition zone could play an essential role in the intra-plate volcanic activities overlying the slab. Water released by the stagnant slab could be important for such igneous activities, such as Mt. Changbai in Northeast China. In cold subducting slabs, several hydrous minerals together with nominally anhydrous minerals accommodate OH and transport water into the transition zone [3]. The effect of dehydration of the stagnant slab has been analyzed by Richard et al. [4]. They argued that warming of the stagnant slab due to heat conduction could play an important role for the slab dehydration, and local oversaturation could be achieved due to decrease of the water solubility in minerals with temperature, and fluid can be formed in the overlying transition zone. We determined the hydrogen diffusion in wadsleyite and ringwoodite under the transition zone conditions in order to clarify the deep processes of the stagnant slabs, and found that diffusion rates of hydrogen are comparable with that of olivine [5]. We also determined the dihedral angle of aqueous fluid between wadsleyite grains and majorite grains under the transition zone conditions. The dihedral angles are very small, around 20-40 degrees, indicating that the oversaturated fluids can move rapidly by the percolation mechanism in the transition zone. The fluids moved to the top of the 410 km discontinuity can generate heavy hydrous melts due to a larger depression of the wet solidus at the base of the upper mantle [6]. Gravitationally stable hydrous melts can be formed at the base of the upper mantle, which is consistent with seismological observations of the low velocity beneath

  16. Application of the critical Coulomb wedge theory to hyper-extended, magma-poor rifted margins

    NASA Astrophysics Data System (ADS)

    Nirrengarten, M.; Manatschal, G.; Yuan, X. P.; Kusznir, N. J.; Maillot, B.

    2016-05-01

    The Critical Coulomb Wedge Theory (CCWT) has been extensively used in compressional tectonics to resolve the shape of orogenic or accretionary prisms, while it is less applied to extensional and gravitational wedges despite the fact that it can be described by the same equation. In particular, the hyper-extended domain at magma-poor rifted margins, forming the oceanward termination of extended continental crust, satisfies the three main requirements of the CCWT: 1) it presents a wedge shape, 2) the rocks forming the wedge are completely brittle (frictional), and 3) the base of the wedge corresponds to a low friction décollement. However hyper-extended margins present a fully frictional behaviour only for a very thin crust; therefore this study is limited to the termination of hyper-extended continental crust which deforms in the latest stage of continental rifting. In this paper we define a method to measure the surface slope and the basal deep of this wedge that we apply to 17 hyper-extended, magma-poor rifted margins in order to compare the results to the values predicted by the CCWT. Because conjugate pairs of hyper-extended, magma-poor rifted margins are commonly asymmetric, due to detachment faulting, the wedges in the upper and lower plate margins corresponding respectively to the hanging wall and footwall of the detachment system are different. While the stress field in the upper plate wedge corresponds to a tectonic extensional wedge, the one in the lower plate matches that of a gravity extensional wedge. Using typical frictional properties of phyllosilicates (e.g. clays and serpentine), the shape of the hyper-extended wedges can be resolved by the CCWT using consistent fluid overpressures. Our results show that all lower plate margins are gravitationally stable and therefore have a close to critical shape whereas the tectonic extensional wedges at upper plate margins are critical, sub or sup critical due to the detachment initial angle and the duration of

  17. Dose distribution analysis of physical and dynamic wedges by using an intensity-modulated radiotherapy MatriXX

    NASA Astrophysics Data System (ADS)

    Lee, Hae-Kag; Cho, Jae-Hwan; Cho, Dae-chul

    2013-05-01

    This study investigated differences between the physical wedge and the dynamic wedge distributions of radiation by using an intensity-modulated radiotherapy (ImRT) MatriXX. The linear accelerator used X-rays with energy levels of 6 MV and 10 MV to adjust the collimator by motoring the independent jaws (X1, X2, Y1, Y2) for setting wedge angles of 15, 30, 45, and 60 degrees. The collimator field size was set as 10 × 10 cm2 or 20 × 20 cm2 at the maximum dose point. The dose distribution for each wedge had ±5% and ±11% errors for field sizes of 10 × 10 cm2 and 20 × 20 cm2, respectively. The error was greatest at a wedge angle of 45 degrees and was pronounced at the end of the dynamic wedge where Y1 and Y2 met. Consequently, concluded that the dose distributions were similar for both wedges for the field size of a small beam profile. The beam dose was greatly increased at the end of the dynamic wedge. A more precise estimate of the therapeutic dose of radiation for a dynamic wedge that nearly matches that of the physical wedge can be achieved by correcting of the increasing part of the beam dose. The findings imply that a heavy wedge filter should not be used when calculating the isodose distribution and the therapeutic dose.

  18. Influence of intermolecular forces at critical-point wedge filling

    NASA Astrophysics Data System (ADS)

    Malijevský, Alexandr; Parry, Andrew O.

    2016-04-01

    We use microscopic density functional theory to study filling transitions in systems with long-ranged wall-fluid and short-ranged fluid-fluid forces occurring in a right-angle wedge. By changing the strength of the wall-fluid interaction we can induce both wetting and filling transitions over a wide range of temperatures and study the order of these transitions. At low temperatures we find that both wetting and filling transitions are first order in keeping with predictions of simple local effective Hamiltonian models. However close to the bulk critical point the filling transition is observed to be continuous even though the wetting transition remains first order and the wetting binding potential still exhibits a small activation barrier. The critical singularities for adsorption for the continuous filling transitions depend on whether retarded or nonretarded wall-fluid forces are present and are in excellent agreement with predictions of effective Hamiltonian theory even though the change in the order of the transition was not anticipated.

  19. Transonic flow past a wedge profile with detached bow wave

    NASA Technical Reports Server (NTRS)

    Vincenti, Walter G; Wagoner, Cleo B

    1952-01-01

    A theoretical study has been made of the aerodynamic characteristics at zero angle of attack of a thin, doubly symmetrical double-wedge profile in the range of supersonic flight speed in which the bow wave is detached. The analysis utilizes the equations of the transonic small-disturbance theory and involves no assumptions beyond those implicit in this theory. The mixed flow about the front half of the profile is calculated by relaxation solution of boundary conditions along the shock polar and sonic line. The purely subsonic flow about the rear of the profile is found by means of the method of characteristics specialized to the transonic small-disturbance theory. Complete calculations were made for four values of the transonic similarity parameter. These were found sufficient to bridge the gap between the previous results of Guderley and Yoshihara at a Mach number of 1 and the results which are readily obtained when the bow wave is attached and the flow is completely supersonic.

  20. Sinking, wedging, spreading - viscous spreading on a layer of fluid

    NASA Astrophysics Data System (ADS)

    Bergemann, Nico; Juel, Anne; Heil, Matthias

    2016-11-01

    We study the axisymmetric spreading of a sessile drop on a pre-existing layer of the same fluid in a regime where the drop is sufficiently large so that the spreading is driven by gravity while capillary and inertial effects are negligible. Experiments performed with 5 ml drops and layer thicknesses in the range 0.1 mm <= h <= 1 mm show that at long times the radius of the drop evolves as R tn , where the spreading exponent n increases with the layer thickness h. Numerical simulations, based on the axisymmetric free-surface Navier-Stokes equations, reveal three distinct spreading regimes depending on the layer thickness. For thick layers the drop sinks into the layer, accompanied by significant flow in the layer. By contrast, for thin layers the layer ahead of the propagating front is at rest and the spreading behaviour resembles that of a gravity-driven drop spreading on a dry substrate. In the intermediate regime the spreading is characterised by an advancing wedge, which is sustained by fluid flow from the drop into the layer.

  1. Lateral closed wedge osteotomy for cubitus varus deformity

    PubMed Central

    Srivastava, Amit K; Srivastava, DC; Gaur, SC

    2008-01-01

    Background: Lateral closed wedge (LCW) osteotomy is a commonly accepted method for the correction of the cubitus varus deformity. The fixation of osteotomy is required to prevent loss of correction achieved. The fixation of the osteotomy by the two screw and figure of eight wire is not stable enough to maintain the correction achieved during surgery. In this prospective study we supplemented the fixation by Kirschner's (K-) wires for stable fixation and evaluated the results. Materials and Methods: Twenty-one cases of the cubitus varus deformity following supracondylar fractures of the humerus were operated by LCW osteotomy during February 2001 to June 2006. The mean age of the patients at the time of corrective surgery was 8.5 years (range 6.6-14 years). The osteotomy was fixed by two screws with figure of eight tension band wire between them and the fixation was supplemented by passing two to three K-wires from the lateral condyle engaging the proximal medial cortex through the osteotomy site. Result: The mean follow-up period was 2.5 years (range seven months to 3.4 years). The results were assessed as per Morrey criteria. Eighteen cases showed excellent results and three cases showed good results. Two cases had superficial pin tract infection. Conclusion: The additional fixation by K wires controls rotational forces effectively besides angulation and translation forces and maintains the correction achieved peroperatively. PMID:19753237

  2. Influence of intermolecular forces at critical-point wedge filling.

    PubMed

    Malijevský, Alexandr; Parry, Andrew O

    2016-04-01

    We use microscopic density functional theory to study filling transitions in systems with long-ranged wall-fluid and short-ranged fluid-fluid forces occurring in a right-angle wedge. By changing the strength of the wall-fluid interaction we can induce both wetting and filling transitions over a wide range of temperatures and study the order of these transitions. At low temperatures we find that both wetting and filling transitions are first order in keeping with predictions of simple local effective Hamiltonian models. However close to the bulk critical point the filling transition is observed to be continuous even though the wetting transition remains first order and the wetting binding potential still exhibits a small activation barrier. The critical singularities for adsorption for the continuous filling transitions depend on whether retarded or nonretarded wall-fluid forces are present and are in excellent agreement with predictions of effective Hamiltonian theory even though the change in the order of the transition was not anticipated.

  3. Testing the critical Coulomb wedge theory on hyper-extended rifted margins

    NASA Astrophysics Data System (ADS)

    Nirrengarten, Michael; Manatschal, Gianreto; Kusznir, Nick

    2015-04-01

    Deformation of hyper-extended continental crust and its relationship with the underlying mantle is a key process in the evolution of rifted margins. Recent studies have focused on hyper-extension in rifted margins using different approaches such as numerical modelling, seismic interpretation, potential field methods and field observations. However many fundamental questions about the observed structures and their evolution during the formation of hyper-extended margins are still debated. In this study an observation driven approach has been used to characterise geometrical and physical attributes of the continental crust termination, considered as a hyper-extended wedge, in order to test the applicability of critical Coulomb wedge theory to hyper-extended margins. The Coulomb wedge theory was first developed on accretionary prisms and on fold and thrust belts, but it has also been applied in extensional settings. Coulomb wedge theory explains the evolution of the critical aperture angle of the wedge as a function of basal sliding without deformation in the overlying wedge. This critical angle depends on the frictional parameters of the material, the basal friction, the surface slope, the basal dip and the fluid pressure. If the evolution of hyper-extended wedges could be described by the critical Coulomb wedge theory, it would have a major impact in the understanding of the structural and physical evolution of rifted domains during the hyper-extension processes. On seismic reflection lines imaging magma-poor hyper-extended margins, the continental crust termination is often shown to form a hyper-extended wedge. ODP Sites 1067, 900 and 1068 on the Iberian margin as well as field observations in the Alps give direct access to the rocks forming the hyper-extended wedge, which are typically composed of highly deformed and hydrated continental rocks underlain by serpentinised mantle. The boundary between the hydrated continental and mantle rocks corresponds to a

  4. Development of Cone Wedge Ring Expansion Test to Evaluate Mechanical Properties of Clad Tubing Structure

    SciTech Connect

    Wang, Jy-An John

    2016-10-01

    To determine the hoop tensile properties of irradiated fuel cladding in a hot cell, a cone wedge ring expansion test method was developed. A four-piece wedge insert was designed with tapered angles matched to the cone shape of a loading piston. The ring specimen was expanded in the radial direction by the lateral expansion of the wedges under the downward movement of the piston. The advantages of the proposed method are that implementation of the test setup in a hot cell is simple and easy, and that it enables a direct strain measurement of the test specimen from the piston’s vertical displacement soon after the wedge-clad contact resistance is initiated.

  5. Unusual presentation of a complication after pulmonary wedge resection for coccidioma.

    PubMed

    Leduc, François; Thipphavong, Seng; Matzinger, Fred; Dennie, Carole; Sundaresan, Sudhir

    2009-12-01

    We report an unusual presentation of a complication after pulmonary wedge resection. A patient with a history of pulmonary wedge resection for coccidioma presented postoperatively with dyspnea and severe hypoxemia. Cerebral infarctions were diagnosed less than 1 year later. Cardiac magnetic resonance imaging and pulmonary angiogram revealed a pulmonary arteriovenous fistula. Surgical resection of the pulmonary arteriovenous fistula led to improved oxygen saturation and discontinuation of home oxygen.

  6. The effect of a dynamic wedge in the medial tangential field upon the contralateral breast dose

    SciTech Connect

    McParland, B.J. )

    1990-12-01

    The elevated incidence of breast cancer following irradiation of breast tissue has led to concern over the magnitude of the scattered radiation received by the uninvolved contralateral breast during radiation therapy for a primary breast lesion and the risk of an induced contralateral breast cancer. Some linear accelerators use a single dynamic (or universal) wedge that is mounted within the treatment head at an extended distance from the patient. Because of the combined effects of distance and shielding, the contralateral breast dose due to a medial tangent containing a dynamic wedge is expected to be less than that containing a conventional wedge. This paper presents contralateral breast dose (CBD) measurements performed on an anthropomorphic phantom with breast prostheses irradiated with 6 MV X rays from a linear accelerator equipped with a dynamic wedge. Doses were measured at 15 points within the contralateral breast prosthesis with thermoluminescent dosimeters. It was found that the contralateral breast dose per unit target breast dose decreases with the perpendicular distance from the posterior edge of the medial tangent to the dose measurement point and increases with effective wedge angle by factors ranging up to 2.8, in agreement with data presented earlier for a water phantom geometry. This dose elevation showed no statistically significant dependence (p less than 0.05) upon the perpendicular distance from the beam edge. Comparisons with data in the literature show that the contralateral breast dose increase by a dynamic wedge is typically only about half of that reported for a conventional wedge for the same wedge angle and distance from the beam.

  7. WEDGE ABSORBERS FOR MUON COOLING WITH A TEST BEAM AT MICE

    SciTech Connect

    Neuffer, David; Acosta, J.; Summers, D.; Mohayai, T.; Snopok, P.

    2016-10-18

    Emittance exchange mediated by wedge absorbers is required for longitudinal ionization cooling and for final transverse emittance minimization for a muon collider. A wedge absorber within the MICE beam line could serve as a demonstration of the type of emittance exchange needed for 6-D cooling, including the configurations needed for muon colliders. Parameters for this test are explored in simulation and possible experimental configurations with simulated results are presented.

  8. Wind-Tunnel and Flight Test Results for the Measurements of Flow Variables at Supersonic Speeds Using Improved Wedge and Conical Probes

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.; Maglieri, Domenic J.; Banks, Daniel W.; Frederick, Michael A.; Fuchs, Aaron W.

    2012-01-01

    The results of supersonic wind-tunnel tests on three probes at nominal Mach numbers of 1.6, 1.8 and 2.0 and flight tests on two of these probes up to a Mach number of 1.9 are described. One probe is an 8 deg. half-angle wedge with two total-pressure measurements and one static. The second, a conical probe, is a cylinder that has a 15 deg., semi-angle cone tip with one total-pressure orifice at the apex and four static-pressure orifices on the surface of the cone, 90 deg. apart, and about two-thirds of the distance from the cone apex to the base of the cone. The third is a 2 deg. semi-angle cone that has two static ports located 180 deg. apart about 1.5 inches behind the apex of the cone. The latter probe was included since it has been the "probe of choice" for wind-tunnel flow-field pressure measurements (or one similar to it) for the past half-century. The wedge and 15 deg. conical probes used in these tests were designed for flight diagnostic measurements for flight Mach numbers down to 1.35 and 1.15 respectively, and have improved capabilities over earlier probes of similar shape. The 15. conical probe also has a temperature sensor that is located inside the cylindrical part of the probe that is exposed to free-stream flow through an annulus at the apex of the cone. It enables the determination of free-stream temperature, density, speed of sound, and velocity, in addition to free-stream pressure, Mach number, angle of attack and angle of sideslip. With the time-varying velocity, acceleration can be calculated. Wind-tunnel tests of the two probes were made in NASA Langley Research Center fs Unitary Plan Wind Tunnel (UPWT) at Mach numbers of 1.6, 1.8, and 2.0. Flight tests were carried out at the NASA Dryden Flight Research Center (DFRC) on its F-15B aircraft up to Mach numbers of 1.9. The probes were attached to a fixture, referred to as the Centerline Instrumented Pylon (CLIP), under the fuselage of the aircraft. Problems controlling the velocity of the flow

  9. Effects on sitting pressure distribution during the application of different cushions and anterior height wedges.

    PubMed

    Go, Eun-Ji; Lee, Sang-Heon

    2017-03-01

    [Purpose] The purpose of this study was to investigate interface pressure redistribution in healthy volunteers when applying different cushions and anterior wedge heights. [Subjects and Methods] This study included 36 healthy individuals in their 20s. The peak and mean pressures were measured by applying different cushions and anterior wedge heights. The results were analyzed by using a one-way analysis of variance and post-hoc analysis. [Results] The peak and mean pressures were statistically significant based on the cushion types and anterior wedge height. The peak pressure was at its highest and lowest when sitting on a 6-cm anterior wedge and a foam cushion, respectively. The mean pressure was greatest when sitting on a 6-cm anterior wedge of a firm surface and smallest when sitting on a 5 cm foam cushion. [Conclusion] This study shows that the most effective method for pressure redistribution was sitting on a 5 cm foam cushion without an anterior wedge.

  10. The Effects of a Lateral Wedge Insole on Knee and Ankle Joints During Slope Walking.

    PubMed

    Uto, Yuki; Maeda, Tetsuo; Kiyama, Ryoji; Kawada, Masayuki; Tokunaga, Ken; Ohwatashi, Akihiko; Fukudome, Kiyohiro; Ohshige, Tadasu; Yoshimoto, Yoichi; Yone, Kazunori

    2015-12-01

    The purpose of this study was to determine whether a lateral wedge insole reduces the external knee adduction moment during slope walking. Twenty young, healthy subjects participated in this study. Subjects walked up and down a slope using 2 different insoles: a control flat insole and a 7° lateral wedge insole. A three-dimensional motion analysis system and force plate were used to examine the knee adduction moment, the ankle valgus moment, and the moment arm of the ground reaction force to the knee joint center in the frontal plane. The lateral wedge insole significantly decreased the moment arm of the ground reaction force, resulting in a reduction of the knee adduction moment during slope walking, similar to level walking. The reduction ratio of knee adduction moment by the lateral wedge insole during the early stance of up-slope walking was larger than that of level walking. Conversely, the lateral wedge insole increased the ankle valgus moment during slope walking, especially during the early stance phase of up-slope walking. Clinicians should examine the utilization of a lateral wedge insole for knee osteoarthritis patients who perform inclined walking during daily activity, in consideration of the load on the ankle joint.

  11. Evaluation method of lead measurement accuracy of gears using a wedge artefact

    NASA Astrophysics Data System (ADS)

    Komori, Masaharu; Takeoka, Fumi; Kubo, Aizoh; Okamoto, Kazuhiko; Osawa, Sonko; Sato, Osamu; Takatsuji, Toshiyuki

    2009-02-01

    The reduction of the vibration and noise of gears is an important issue in mechanical devices such as vehicles and wind turbines. The characteristics of the vibration and noise of gears are markedly affected by deviations of the tooth flank form of micrometre order; therefore, a strict quality control of the tooth flank form is required. The accuracy of the lead measurement for a gear-measuring instrument is usually evaluated using a master gear or a lead master. However, it is difficult to manufacture masters with high accuracy because the helix is a complicated geometrical form. In this paper, we propose a method of evaluating a gear-measuring instrument using a wedge artefact, which includes a highly precise plane surface. The concept of the wedge artefact is described and a mathematical model of the measuring condition of the wedge artefact is constructed. Theoretical measurement results for the wedge artefact are calculated. The wedge artefact is designed and produced on the basis of the theoretical measurement results. A measurement experiment using the wedge artefact is carried out and its effectiveness is verified.

  12. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing.

    PubMed

    Chen, Xiaoshu; Lindquist, Nathan C; Klemme, Daniel J; Nagpal, Prashant; Norris, David J; Oh, Sang-Hyun

    2016-12-14

    We present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomic layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip-gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip-gap geometry. The resulting nanometric hotspot volume is on the order of λ(3)/10(6). Experimentally, Raman enhancement factors exceeding 10(7) are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications.

  13. Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar.

    PubMed

    McKay, Jack A

    2002-03-20

    The Fabry-Perot interferometer is the standard instrument for the direct detection Doppler lidar measurement of atmospheric wind speeds. The multibeam Fizeau wedge has some practical advantages over the Fabry-Perot, such as the linear fringe pattern, and is evaluated for this application. The optimal Fizeau must have a resolving power of 10(6) or more. As the multibeam Fizeau wedge is pushed to such high resolving power, the interference fringes of the device become complicated by asymmetry and secondary maxima. A simple condition for the interferometer plate reflectance, optical gap, and wedge angle reveals whether a set of parameters will yield simple, Airy-like fringes or complex Fizeau fringes. Tilting of the Fizeau wedge improves the fringe shape and permits an extension of the regime of Airy-like fringes to higher resolving power. Sufficient resolving power for the wind lidar application is shown to be possible with a large-gap, low-finesse multibeam Fizeau wedge. Liabilities of the multibeam Fizeau wedge in the wind lidar application include a smaller acceptance solid angle and calibration sensitivity to localized deviations of the plates from the ideal.

  14. Acoustic field of a wedge-shaped section of a spherical cap transducer

    NASA Astrophysics Data System (ADS)

    Ketterling, Jeffrey A.

    2003-12-01

    The acoustic pressure field at an arbitrary point in space is derived for a wedge-shaped section of a spherical cap transducer using the spatial impulse response (SIR) method. For a spherical surface centered at the origin, a wedge shape is created by taking cuts in the X-Y and X-Z planes and removing the smallest surface component. Analytic expressions are derived for the SIR based on spatial location. The expressions utilize the SIR solutions for a spherical cap transducer [Arditi et al., Ultrason. Imaging 3, 37-61 (1981)] with additional terms added to account for the reduced surface area of the wedge. Results from the numerical model are compared to experimental measurements from a wedge transducer with an 8-cm outer diameter and 9-cm geometric focus. The experimental and theoretical -3-dB beamwidths agreed to within 10%+/-5%. The SIR model for a wedge-shaped transducer is easily extended to other spherically curved transducer geometries that consist of combinations of wedge sections and spherical caps.

  15. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing

    PubMed Central

    2016-01-01

    We present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomic layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ3/106. Experimentally, Raman enhancement factors exceeding 107 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications. PMID:27960527

  16. Effects on sitting pressure distribution during the application of different cushions and anterior height wedges

    PubMed Central

    Go, Eun-ji; Lee, Sang-Heon

    2017-01-01

    [Purpose] The purpose of this study was to investigate interface pressure redistribution in healthy volunteers when applying different cushions and anterior wedge heights. [Subjects and Methods] This study included 36 healthy individuals in their 20s. The peak and mean pressures were measured by applying different cushions and anterior wedge heights. The results were analyzed by using a one-way analysis of variance and post-hoc analysis. [Results] The peak and mean pressures were statistically significant based on the cushion types and anterior wedge height. The peak pressure was at its highest and lowest when sitting on a 6-cm anterior wedge and a foam cushion, respectively. The mean pressure was greatest when sitting on a 6-cm anterior wedge of a firm surface and smallest when sitting on a 5 cm foam cushion. [Conclusion] This study shows that the most effective method for pressure redistribution was sitting on a 5 cm foam cushion without an anterior wedge. PMID:28356617

  17. Investigation of Acoustical Shielding by a Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John

    2006-01-01

    Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.

  18. Investigation of Acoustical Shielding by a Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John

    2004-01-01

    Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.

  19. Saline Fluids in Subduction Channels and Mantle Wedge

    NASA Astrophysics Data System (ADS)

    Kawamoto, T.; Hertwig, A.; Schertl, H. P.; Maresch, W. V.; Shigeno, M.; Mori, Y.; Nishiyama, T.

    2015-12-01

    Saline fluids can transport large-ion-lithophile elements and carbonate. Subduction-zone fluids contain salts with various amounts of NaCl equivalent similar to that of the present and/or Phanerozoic seawater (about 3.5 wt% NaCl). The salinity of aqueous fluids in the mantle wedge decreases from trench side to back-arc side, although available data have been limited. Such saline fluids from mantle peridotite underneath Pinatubo, a frontal volcano of the Luzon arc, contain 5.1 wt% NaCl equivalent and CO2 [Kawamoto et al., 2013 Proc Natl Acad Sci USA] and in Ichinomegeta, a rear-arc volcano of the Northeast Japan arc, contain 3.7 wt% NaCl equivalent and CO2 [Kumagai et al., Contrib Mineral Petrol 2014]. Abundances of chlorine and H2O in olivine-hosted melt inclusions also suggest that aqueous fluids to produce frontal basalts have higher salinity than rear-arc basalts in Guatemala arc [Walker et al., Contrib Mineral Petrol 2003]. In addition to these data, quartz-free jadeitites contain fluid inclusions composed of aqueous fluids with 7 wt% NaCl equivalent and quartz-bearing jadeitite with 4.6 wt% NaCl equivalent in supra-subduction zones in Southwest Japan [Mori et al., 2015, International Eclogite Conference] and quartz-bearing jadeitite and jadeite-rich rocks contain fluid inclusions composed of aqueous fluids with 4.2 wt% NaCl equivalent in Rio San Juan Complex, Dominica Republic [Kawamoto et al., 2015, Goldschmidt Conference]. Aqueous fluids generated at pressures lower than conditions for albite=jadeite+quartz occurring at 1.5 GPa, 500 °C may contain aqueous fluids with higher salinity than at higher pressures.

  20. Flow Pattern relative to the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Chu, X.; McPherron, R. L.; Hsu, T.

    2013-12-01

    Magnetospheric substorms play a key role in the coupling of the solar wind and the magnetosphere. The Substorm Current Wedge (SCW) is a key element in the present physical model of substorms. It is widely accepted that the SCW is created by earthward busty flows, but the generation mechanism is still unknown. Previous studies suggest pressure gradients and magnetic vortices are possible candidates. Due to the sparse coverage of satellites in space, these studies were strongly dependent on the assumption that the satellites were in the generation region of the field-aligned currents (FAC) forming the SCW. In this work, we take advantage of an inversion technique that determines the parameters describing the SCW and perform a statistical study on the plasma and magnetic field parameters of the flow pattern relative to the SCW. The inversion technique finds the location and the intensity of the SCW from midlatitude magnetic data. The technique has been validated using auroral observations, Equivalent Ionospheric Currents (EIC), SYM-H index from SuperMAG, and magnetic perturbations at geosynchronous orbit by the GOES satellite. A database of substorm events has been created using midlatitude positive bays, which are the ground signature of the SCW at lower latitudes. The inversion technique is applied to each event in the database to determine the location of the origin of the SCW. The inversion results are also used to find conjunction events with space observations from VAP (RBSP), THEMIS and GOES. The plasma and magnetic field parameters such as the pressure gradient and magnetic vorticity are then categorized as a function of their location relative to the origin of the SCW. How the distribution/pattern of the pressure gradient and vorticity are related to the properties of the SCW (locations and intensity of the FAC), and flows (entropy, velocity and density) will be determined.

  1. Discrete dislocation plasticity analysis of the wedge indentation of films

    NASA Astrophysics Data System (ADS)

    Balint, D. S.; Deshpande, V. S.; Needleman, A.; Van der Giessen, E.

    2006-11-01

    The plane strain indentation of single crystal films on a rigid substrate by a rigid wedge indenter is analyzed using discrete dislocation plasticity. The crystals have three slip systems at ±35.3∘ and 90∘ with respect to the indentation direction. The analyses are carried out for three values of the film thickness, 2, 10 and 50 μm, and with the dislocations all of edge character modeled as line singularities in a linear elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated through a set of constitutive rules. Over the range of indentation depths considered, the indentation pressure for the 10 and 50 μm thick films decreases with increasing contact size and attains a contact size-independent value for contact lengths A>4 μm. On the other hand, for the 2 μm films, the indentation pressure first decreases with increasing contact size and subsequently increases as the plastic zone reaches the rigid substrate. For the 10 and 50 μm thick films sink-in occurs around the indenter, while pile-up occurs in the 2 μm film when the plastic zone reaches the substrate. Comparisons are made with predictions obtained from other formulations: (i) the contact size-independent indentation pressure is compared with that given by continuum crystal plasticity; (ii) the scaling of the indentation pressure with indentation depth is compared with the relation proposed by Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 43, 411-423]; and (iii) the computed contact area is compared with that obtained from the estimation procedure of Oliver and Pharr [1992. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564-1583].

  2. Flow bursts, breakup arc, and substorm current wedge

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2015-04-01

    Energy liberated by the reconnection process in the near-Earth tail is transported via flow bursts toward the dipolar magnetosphere during substorms. The breakup arc is a manifestation of the arrival of the bursts under flow braking and energy deposition. Its structure and behavior is analyzed on the basis of five striking spatial, temporal, and energetic properties, qualitatively and in part also quantitatively. A key element is the formation of stop layers. They are thin layers, of the width of an ion gyro radius, in which the magnetic field makes a transition from tail to near-dipolar magnetosphere configurations and in which the kinetic energy of fast flows is converted into electromagnetic energy of kinetic Alfvén waves. The flows arise from the relaxation of the strong magnetic shear stresses in the leading part of the flow bursts. The bright narrow arcs of less than 10 km width inside the broad poleward expanding breakup arc, Alfvénic in nature and visually characterized by erratic short-lived rays, are seen as traces of the stop layers. The gaps between two narrow and highly structured arcs are filled with more diffuse emissions. They are attributed to the relaxation of the less strained magnetic field of the flow bursts. Eastward flows along the arcs are linked to the shrinking gaps between two successive arcs and the entry of auroral streamers into the dipolar magnetosphere in the midnight sector. Flow braking in the stop layers forms multiple pairs of narrow balanced currents and cannot be behind the formation of the substorm current wedge. Instead, its origin is attributed to the force exerted by the dipolarized magnetic field of the flow bursts on the high-beta plasma, after the high magnetic shears have relaxed and the fast flows and stop layer process have subsided, in other words, to the "dying flow bursts."

  3. Acid tolerance of acid-adapted and nonadapted Escherichia coli O157:H7 following habituation (10 degrees C) in fresh beef decontamination runoff fluids of different pH values.

    PubMed

    Samelis, John; Kendall, Patricia; Smith, Gary C; Sofos, John N

    2004-04-01

    This study evaluated survival of Escherichia coli O157:H7 strain ATCC 43895 during exposure to pH 3.5 following its habituation for 2 or 7 days at 10 degrees in fresh beef decontamination waste runoff fluid mixtures (washings) containing 0, 0.02, or 0.2% of lactic or acetic acids. Meat washings and sterile water (control) were initially inoculated with approximately 5 log CFU/ml of acid- and nonadapted E. coli O157:H7 cells cultured (30 degrees C, 24 h) in broth with and without 1% glucose, respectively. After 2 days, E. coli O157:H7 survivors from acetate washings (pH 3.7 to 4.7) survived at pH 3.5 better than E. coli O157:H7 survivors from lactate washings (pH 3.1 to 4.6), especially when the original inoculum was acid adapted. Also, although E. coli O157:H7 habituated in sterile water for 2 days survived well at pH 3.5, the corresponding survivors from nonacid water meat washings (pH 6.8) were rapidly killed at pH 3.5, irrespective of acid adaptation. After 7 days, E. coli O157:H7 survivors from acetate washings (pH 3.6 to 4.7) continued to resist pH 3.5, whereas those from lactate washings died off. This loss of acid tolerance by E. coli O157:H7 was due to either its low survival in 0.2% lactate washings (pH 3.1) or its acid sensitization in 0.02% lactate washings, in which a Pseudomonas-like natural flora showed extensive growth (> 8 log CFU/ml) and the pH increased to 6.5 to 6.6. Acid-adapted E. coli O157:H7 populations habituated in water washings (pH 7.1 to 7.3) for 7 days continued to be acid sensitive, whereas nonadapted populations increased their acid tolerance, a response merely correlated with their slight (< 1 log) growth at 10 degrees C. These results indicate that the expression of high acid tolerance by acid-adapted E. coli O157:H7 can be maintained or enhanced in acid-diluted meat decontamination waste runoff fluids of pH levels that could permit long-term survival at 10 degrees C. Previous acid adaptation, however, could reduce the growth

  4. Three-Dimensional Vertebral Wedging in Mild and Moderate Adolescent Idiopathic Scoliosis

    PubMed Central

    Scherrer, Sophie-Anne; Begon, Mickaël; Leardini, Alberto; Coillard, Christine; Rivard, Charles-Hilaire; Allard, Paul

    2013-01-01

    Background Vertebral wedging is associated with spinal deformity progression in adolescent idiopathic scoliosis. Reporting frontal and sagittal wedging separately could be misleading since these are projected values of a single three-dimensional deformation of the vertebral body. The objectives of this study were to determine if three-dimensional vertebral body wedging is present in mild scoliosis and if there are a preferential vertebral level, position and plane of deformation with increasing scoliotic severity. Methodology Twenty-seven adolescent idiopathic scoliotic girls with mild to moderate Cobb angles (10° to 50°) participated in this study. All subjects had at least one set of bi-planar radiographs taken with the EOS® X-ray imaging system prior to any treatment. Subjects were divided into two groups, separating the mild (under 20°) from the moderate (20° and over) spinal scoliotic deformities. Wedging was calculated in three different geometric planes with respect to the smallest edge of the vertebral body. Results Factorial analyses of variance revealed a main effect for the scoliosis severity but no main effect of vertebral Levels (apex and each of the three vertebrae above and below it) (F = 1.78, p = 0.101). Main effects of vertebral Positions (apex and above or below it) (F = 4.20, p = 0.015) and wedging Planes (F = 34.36, p<0.001) were also noted. Post-hoc analysis demonstrated a greater wedging in the inferior group of vertebrae (3.6°) than the superior group (2.9°, p = 0.019) and a significantly greater wedging (p≤0.03) along the sagittal plane (4.3°). Conclusions Vertebral wedging was present in mild scoliosis and increased as the scoliosis progressed. The greater wedging of the inferior group of vertebrae could be important in estimating the most distal vertebral segment to be restrained by bracing or to be fused in surgery. Largest vertebral body wedging values obtained in the sagittal plane support the claim

  5. Climate adaptation wedges: a case study of premium wine in the western United States

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, Noah S.; White, Michael A.; Jones, Gregory V.; Ashfaq, Moetasim

    2011-04-01

    Design and implementation of effective climate change adaptation activities requires quantitative assessment of the impacts that are likely to occur without adaptation, as well as the fraction of impact that can be avoided through each activity. Here we present a quantitative framework inspired by the greenhouse gas stabilization wedges of Pacala and Socolow. In our proposed framework, the damage avoided by each adaptation activity creates an 'adaptation wedge' relative to the loss that would occur without that adaptation activity. We use premium winegrape suitability in the western United States as an illustrative case study, focusing on the near-term period that covers the years 2000-39. We find that the projected warming over this period results in the loss of suitable winegrape area throughout much of California, including most counties in the high-value North Coast and Central Coast regions. However, in quantifying adaptation wedges for individual high-value counties, we find that a large adaptation wedge can be captured by increasing the severe heat tolerance, including elimination of the 50% loss projected by the end of the 2030-9 period in the North Coast region, and reduction of the projected loss in the Central Coast region from 30% to less than 15%. Increased severe heat tolerance can capture an even larger adaptation wedge in the Pacific Northwest, including conversion of a projected loss of more than 30% in the Columbia Valley region of Washington to a projected gain of more than 150%. We also find that warming projected over the near-term decades has the potential to alter the quality of winegrapes produced in the western US, and we discuss potential actions that could create adaptation wedges given these potential changes in quality. While the present effort represents an initial exploration of one aspect of one industry, the climate adaptation wedge framework could be used to quantitatively evaluate the opportunities and limits of climate adaptation

  6. The effect of décollement dip on geometry and kinematics of model accretionary wedges

    NASA Astrophysics Data System (ADS)

    Koyi, Hemin A.; Vendeville, Bruno C.

    2003-09-01

    We conducted a series of sand-box models shortened asymmetrically above a frictional-plastic décollement to study the influence of amount and sense of the décollement dip on the geometry and kinematics of accretionary wedges. Model results illustrate that the amount and direction of décollement dip strongly influence the geometry and mode of deformation of the resulting wedge. In general, for models having similar décollement frictional parameters, the resulting wedge is steeper, grows higher and is shorter when shortened above a décollement that dips toward the hinterland. At 42% bulk shortening, the length/height ratio of wedges formed above a 5°-dipping décollement was equal to 2.4 whereas this ratio was equal to 3 for wedges shortened above a horizontal décollement. Moreover, models with a hinterland dipping décollement undergo larger amounts of layer parallel compaction (LPC) and area loss than models shortened above a non-dipping décollement. The effect of décollement dip on wedge deformation is most pronounced when basal friction is relatively high (μ b=0.55), whereas its effect is less significant in models where the basal décollement has a lower friction (μ b=0.37). Model results also show that increasing basal slope has a similar effect to that of increasing basal friction; the wedge grows taller and its critical taper steepens.

  7. Climate adaptation wedges: a case study of premium wine in the western United States

    SciTech Connect

    Diffenbaugh, Noah; White, Michael A; Jones, Gregory V; Ashfaq, Moetasim

    2011-01-01

    Design and implementation of effective climate change adaptation activities requires quantitative assessment of the impacts that are likely to occur without adaptation, as well as the fraction of impact that can be avoided through each activity. Here we present a quantitative framework inspired by the greenhouse gas stabilization wedges of Pacala and Socolow. In our proposed framework, the damage avoided by each adaptation activity creates an 'adaptation wedge' relative to the loss that would occur without that adaptation activity. We use premium winegrape suitability in the western United States as an illustrative case study, focusing on the near-term period that covers the years 2000 39. We find that the projected warming over this period results in the loss of suitable winegrape area throughout much of California, including most counties in the high-value North Coast and Central Coast regions. However, in quantifying adaptation wedges for individual high-value counties, we find that a large adaptation wedge can be captured by increasing the severe heat tolerance, including elimination of the 50% loss projected by the end of the 2030 9 period in the North Coast region, and reduction of the projected loss in the Central Coast region from 30% to less than 15%. Increased severe heat tolerance can capture an even larger adaptation wedge in the Pacific Northwest, including conversion of a projected loss of more than 30% in the Columbia Valley region of Washington to a projected gain of more than 150%. We also find that warming projected over the near-term decades has the potential to alter the quality of winegrapes produced in the western US, and we discuss potential actions that could create adaptation wedges given these potential changes in quality. While the present effort represents an initial exploration of one aspect of one industry, the climate adaptation wedge framework could be used to quantitatively evaluate the opportunities and limits of climate adaptation

  8. Rainfall induced groundwater mound in wedge-shaped promontories: The Strack-Chernyshov model revisited

    NASA Astrophysics Data System (ADS)

    Kacimov, A. R.; Kayumov, I. R.; Al-Maktoumi, A.

    2016-11-01

    An analytical solution to the Poisson equation governing Strack's discharge potential (squared thickness of a saturated zone in an unconfined aquifer) is obtained in a wedge-shaped domain with given head boundary conditions on the wedge sides (specified water level in an open water body around a porous promontory). The discharge vector components, maximum elevation of the water table in promontory vertical cross-sections, quantity of groundwater seeping through segments of the wedge sides, the volume of fresh groundwater in the mound are found. For acute angles, the solution to the problem is non-unique and specification of the behaviour at infinity is needed. A ;basic; solution is distinguished, which minimizes the water table height above a horizontal bedrock. MODFLOW simulations are carried out in a finite triangular island and compare solutions with a constant-head, no-flow and ;basic; boundary condition on one side of the triangle. Far from the tip of an infinite-size promontory one has to be cautious with truncation of the simulated flow domains and imposing corresponding boundary conditions. For a right and obtuse wedge angles, there are no positive solutions for the case of constant accretion on the water table. In a particular case of a confined rigid wedge-shaped aquifer and incompressible fluid, from an explicit solution to the Laplace equation for the hydraulic head with arbitrary time-space varying boundary conditions along the promontory rays, essentially 2-D transient Darcian flows within the wedge are computed. They illustrate that surface water waves on the promontory boundaries can generate strong Darcian waves inside the porous wedge. Evaporation from the water table and sea-water intruded interface (rather than a horizontal bed) are straightforward generalizations for the Poissonian Strack potential.

  9. Prediction of knee joint moment changes during walking in response to wedged insole interventions.

    PubMed

    Lewinson, Ryan T; Stefanyshyn, Darren J

    2016-04-01

    Wedged insoles are prescribed for medial knee osteoarthritis to reduce the knee adduction moment; however, it is currently not possible to predict which patients will in fact experience reduced moments. The purpose of this study was to identify a simple method using two-dimensional data for predicting the expected change in knee adduction moments with wedged insoles. Knee adduction moments during walking were determined for healthy individuals (n = 15) and individuals with medial knee osteoarthritis (n = 19) while wearing their own shoe without an insole (control), with a 6-mm medial wedge and with a 6-mm lateral wedge. The percent changes relative to control were determined. Then, participants completed single-step trials with each footwear condition where only the changes in mediolateral positions of the knee joint center, shank center of mass, ankle joint center, and foot center of mass relative to control were determined. These variables were used as predictors in regression equations where the change in knee adduction moment during walking was the dependent variable. The change in mediolateral positions of the lower extremity during a single step significantly predicted the change in knee adduction moment during walking for the lateral wedge in both the healthy (R(2) = 0.72, p = 0.008) and knee osteoarthritis (R(2) = 0.52, p = 0.026) groups, and also for the medial wedge in both the healthy (R(2) = 0.67, p = 0.016) and knee osteoarthritis (R(2) = 0.54, p = 0.020) groups. The method of using mediolateral position data from a single-step movement to predict walking biomechanics was successful. These data are relatively simple to collect and analyze, offering the possibility for future incorporation into a wedge prediction system.

  10. SU-E-T-178: Clinical Feasibility of Multi-Leaf Collimator Based Dynamic Wedge

    SciTech Connect

    Jeong, C; Kwak, J; Ahn, S; Kim, J; Park, J; Yoon, S; Cho, B

    2015-06-15

    Purpose: A multi-leaf collimator (MLC) based dynamic wedge (MDW), which provide similar dose profile of physical wedge (PW) along x-jaw direction while significant monitor unit (MU) reduction, was developed and investigated for clinical use. Methods: A novel technique was used to create the wedge profile using MLC. A modification was applied to the DICOM-RT format file of the plan made with the PW to replace PW with MDW. The Varian enhanced dynamic wedge profile was used to produce MLC sequence, while the MU of the wedged field was recalculated using PW factor and fluence map. The profiles for all possible MDWs to substitute PWs were verified in 6/15 MV x-ray irradiations. New plans with MDWs were compared with the original plans in 5 rectal, 5 RT breast and 5 liver cases. Results: The wedge profile of the MDW fields were well matched with those of PWs inside the fields while less scatter than PW out of the fields. For plan comparisons of the clinical cases no significant dose discrepancy was observed between MDW plan and PW’s with the dose volume histograms. The maximum and mean doses in PTVs are agreed within 1.0%. The Result of OARs of MDW plans are slightly improved in the maximum doses (3.22 ∼ 150.4 cGy) and the mean doses (17.18 ∼ 85.52 cGy) on average for all cases while the prescribed doses are 45 Gy for rectal cases, 40 or 45 Gy for liver cases and 50 Gy for breast cases. The MUs of the fields which replace PW with MDW are reduced to 68% of those of PW. Conclusion: We developed a novel dynamic wedge technique with MLC that shows clinical advantage compared to PW.

  11. Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).

    PubMed

    Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P

    2014-01-01

    The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented.

  12. Distribution of lithium in the Cordilleran Mantle wedge

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Jean, M. M.; Seitz, H. M.

    2015-12-01

    Enriched fluid-mobile element (i.e., B, Li, Be) concentrations in peridotites from the Coast Range ophiolite are compelling evidence that this ophiolite originated in a subduction environment. A new method presented in Shervais and Jean (2012) for modeling the fluid enrichment process, represents the total addition of material to the mantle wedge source region and can be applied to any refractory mantle peridotite that has been modified by melt extraction and/or metasomatism. Although the end-result is attributed to an added flux of aqueous fluid or fluid-rich melt phase derived from the subducting slab, in the range of tens of parts per million - the nature and composition of this fluid could not be constrained. To address fluid(s) origins, we have analyzed Li isotopes in bulk rock peridotite and eclogite, and garnet separates, to identify possible sources, and fluid flow mechanisms and pathways. Bulk rock Li abundances of CRO peridotites (δ7Li = -14.3 to 5.5‰; 1.9-7.5 ppm) are indicative of Li addition and δ7Li-values are lighter than normal upper mantle values. However, Li abundances of clino- and orthopyroxene appear to record different processes operating during the CRO-mantle evolution. Low Li abundances in orthopyroxene (<1 ppm) suggest depletion via partial melting, whereas high concentrations in clinopyroxenes (>2 ppm) record subsequent interaction with Li-enriched fluids (or melts). The preferential partitioning of lithium in clinopyroxene could be indicative of a particular metasomatic agent, e.g., fluids from a dehydrating slab. Future in-situ peridotite isotope studies via laser ablation will further elucidate the fractionation of lithium between orthopyroxene, clinopyroxene, and serpentine. To obtain a more complete picture of the slab to arc transfer processes, we also measured eclogites and garnet separates to δ7Li= -18 to 3.5‰ (11.5-32.5 ppm) and δ7Li= 1.9 to 11.7‰ (0.7-3.9 ppm), respectively. In connection with previous studies focused

  13. Turbulent Spot Observations within a Hypervelocity Boundary Layer ona 5-degree Half-Angle Cone

    DTIC Science & Technology

    2012-04-01

    thermocouples in 20 rows. Bottom, from right to left: molybdenum tip, plastic holder with 316L stainless steel 10 micron porous section, aluminum cone...porous injector section is 4.13 cm in length and consists of sintered 316L stainless steel, with an average pore size of 10 microns. A detail view of

  14. Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens

    PubMed Central

    Hansen, S. M.; Schmandt, B.; Levander, A.; Kiser, E.; Vidale, J. E.; Abers, G. A.; Creager, K. C.

    2016-01-01

    Mount St Helens is the most active volcano within the Cascade arc; however, its location is unusual because it lies 50 km west of the main axis of arc volcanism. Subduction zone thermal models indicate that the down-going slab is decoupled from the overriding mantle wedge beneath the forearc, resulting in a cold mantle wedge that is unlikely to generate melt. Consequently, the forearc location of Mount St Helens raises questions regarding the extent of the cold mantle wedge and the source region of melts that are responsible for volcanism. Here using, high-resolution active-source seismic data, we show that Mount St Helens sits atop a sharp lateral boundary in Moho reflectivity. Weak-to-absent PmP reflections to the west are attributed to serpentinite in the mantle-wedge, which requires a cold hydrated mantle wedge beneath Mount St Helens (<∼700 °C). These results suggest that the melt source region lies east towards Mount Adams. PMID:27802263

  15. Interaction of disturbances with an oblique detonation wave attached to a wedge

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Hussaini, M. Y.

    1993-01-01

    The linear response of an oblique overdriven detonation to impose free stream disturbances or to periodic movements of the wedge is examined. The free stream disturbances are assumed to be steady vorticity waves and the wedge motions are considered to be time periodic oscillations either about a fixed pivot point or along the plane of symmetry of the wedge aligned with the incoming stream. The detonation is considered to be a region of infinitesimal thickness in which a finite amount of heat is released. The response to the imposed disturbances is a function of the Mach number of the incoming flow, the wedge angle, and the exothermocity of the reaction within the detonation. It is shown that as the degree of overdrive increases, the amplitude of the response increases significantly; furthermore, a fundamental difference in the dependence of the response on the parameters of the problem is found between the response to a free stream disturbance and to a disturbance emanating from the wedge surface.

  16. Interaction of disturbances with an oblique detonation wave attached to a wedge

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Hussaini, M. Y.

    1992-01-01

    The linear response of an oblique overdriven detonation to impose free stream disturbances or to periodic movements of the wedge is examined. The free stream disturbances are assumed to be steady vorticity waves and the wedge motions are considered to be time periodic oscillations either about a fixed pivot point or along the plane of symmetry of the wedge aligned with the incoming stream. The detonation is considered to be a region of infinitesmal thickness in which a finite amount of heat is released. The response to the imposed disturbances is a function of the Mach number of the incoming flow, the wedge angle, and the exothermocity of the reaction within the detonation. It is shown that as the degree of overdrive increases, the amplitude of the response increases significantly; furthermore, a fundamental difference in the dependence of the response on the parameters of the problem is found between the response to a free stream disturbance and to a disturbance emanating from the wedge surface.

  17. Measurement of photoneutron dose produced by wedge filters of a high energy linac using polycarbonate films.

    PubMed

    Hashemi, Seyed Mehdi; Hashemi-Malayeri, Bijan; Raisali, Gholamreza; Shokrani, Parvaneh; Sharafi, Ali Akbar; Torkzadeh, Falamarz

    2008-05-01

    Radiotherapy represents the most widely spread technique to control and treat cancer. To increase the treatment efficiency, high energy linacs are used. However, applying high energy photon beams leads to a non-negligible dose of neutrons contaminating therapeutic beams. In addition, using conventional linacs necessitates applying wedge filters in some clinical conditions. However, there is not enough information on the effect of these filters on the photoneutrons produced. The aim of this study was to investigate the change of photoneutron dose equivalent due to the use of linac wedge filters. A high energy (18 MV) linear accelerator (Elekta SL 75/25) was studied. Polycarbonate films were used to measure the dose equivalent of photoneutrons. After electrochemical etching of the films, the neutron dose equivalent was calculated using Hp(10) factor, and its variation on the patient plane at 0, 5, 10, 50 and 100 cm from the center of the X-ray beam was determined. By increasing the distance from the center of the X-ray beam towards the periphery, the photoneutron dose equivalent decreased rapidly for the open and wedged fields. Increasing of the field size increased the photoneutron dose equivalent. The use of wedge filter increased the proportion of the neutron dose equivalent. The increase can be accounted for by the selective absorption of the high energy photons by the wedge filter.

  18. Parental arc magma compositions dominantly controlled by mantle-wedge thermal structure

    NASA Astrophysics Data System (ADS)

    Turner, Stephen J.; Langmuir, Charles H.; Katz, Richard F.; Dungan, Michael A.; Escrig, Stéphane

    2016-10-01

    The processes that lead to the fourfold variation in arc-averaged compositions of mafic arc lavas remain controversial. Control by the mantle-wedge thermal structure is supported by chemical correlations with the thickness of the underlying arc crust, which affects the thermal state of the wedge. Control by down-going slab temperature is supported by correlations with the slab thermal parameter. The Chilean Southern Volcanic Zone provides a test of these hypotheses. Here we use chemical data to demonstrate that the Southern Volcanic Zone and global arc averages define the same chemical trends, both among elements and between elements and crustal thickness. But in contrast to the global arc system, the Southern Volcanic Zone is built on crust of variable thickness with a constant slab thermal parameter. This natural experiment, along with a set of numerical simulations, shows that global arc compositional variability is dominated by different extents of melting that are controlled by the thermal structure of the mantle wedge. Slab temperatures play a subordinate role. Variations in the subducting slab's fluid flux and sediment compositions, as well as mantle-wedge heterogeneities, produce second-order effects that are manifested as distinctive trace element and isotopic signatures; these can be more clearly elucidated once the importance of wedge thermal structure is recognized.

  19. Measurement of displacement using phase shifted wedge plate lateral shearing interferometry

    NASA Astrophysics Data System (ADS)

    Disawal, Reena; Prakash, Shashi

    2016-03-01

    In present communication, a simple technique for measurement of displacement using phase shifted wedge plate lateral shearing interferometry is described. The light beam from laser is expanded and illuminates a wedge plate of relatively large angle. Light transmitted through the wedge plate is converged onto a reflecting specimen using a focusing lens. Back-reflected wavefront from the specimen is incident on the wedge plate. Because of the tilt and shear of the wavefront reflected from the wedge plate, typical straight line fringes appear. These fringes are superimposed onto a sinusoidal grating forming a moiré pattern. The orientation of the moiré fringes is a function of specimen displacement. Four step phase shifting test procedure has been incorporated by translating the grating in phase steps of π/2. Necessary mathematical formulation to establish correlation between the 'difference phase' and the displacement of the specimen surface is undertaken. The technique is automatic and provides resolution and expanded uncertainty of 1 μm and 0.246 μm, respectively. Detailed uncertainty analysis is also reported.

  20. Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens.

    PubMed

    Hansen, S M; Schmandt, B; Levander, A; Kiser, E; Vidale, J E; Abers, G A; Creager, K C

    2016-11-01

    Mount St Helens is the most active volcano within the Cascade arc; however, its location is unusual because it lies 50 km west of the main axis of arc volcanism. Subduction zone thermal models indicate that the down-going slab is decoupled from the overriding mantle wedge beneath the forearc, resulting in a cold mantle wedge that is unlikely to generate melt. Consequently, the forearc location of Mount St Helens raises questions regarding the extent of the cold mantle wedge and the source region of melts that are responsible for volcanism. Here using, high-resolution active-source seismic data, we show that Mount St Helens sits atop a sharp lateral boundary in Moho reflectivity. Weak-to-absent PmP reflections to the west are attributed to serpentinite in the mantle-wedge, which requires a cold hydrated mantle wedge beneath Mount St Helens (<∼700 °C). These results suggest that the melt source region lies east towards Mount Adams.

  1. The Ronda peridotite (Spain): A natural template for seismic anisotropy in subduction wedges

    NASA Astrophysics Data System (ADS)

    Précigout, Jacques; Almqvist, Bjarne S. G.

    2014-12-01

    The origin of seismic anisotropy in mantle wedges remains elusive. Here we provide documentation of shear wave anisotropy (AVs) inferred from mineral fabric across a lithosphere-scale vestige of deformed mantle wedge in the Ronda peridotite. As predicted for most subduction wedges, this natural case exposes a transition from A-type to B-type olivine fabric that occurs with decreasing temperature and enhanced grain boundary sliding at the expense of dislocation creep. We show that B-type fabric AVs (maximum of 6%) does not support geophysical observations and modeling, which requires 8% AVs. However, an observed transitional olivine fabric (A/B) develops at intermediate temperatures (800-1000°C) and can generate AVs ≥ 8%. We predict that the A/B-type fabric can account for shear wave splitting in contrasting subduction settings, exemplified by the Ryukyu and Honshu subduction wedges. The Ronda peridotite therefore serves as a natural template to decipher the mantle wedge deformation from seismic anisotropy.

  2. Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens

    NASA Astrophysics Data System (ADS)

    Hansen, S. M.; Schmandt, B.; Levander, A.; Kiser, E.; Vidale, J. E.; Abers, G. A.; Creager, K. C.

    2016-11-01

    Mount St Helens is the most active volcano within the Cascade arc; however, its location is unusual because it lies 50 km west of the main axis of arc volcanism. Subduction zone thermal models indicate that the down-going slab is decoupled from the overriding mantle wedge beneath the forearc, resulting in a cold mantle wedge that is unlikely to generate melt. Consequently, the forearc location of Mount St Helens raises questions regarding the extent of the cold mantle wedge and the source region of melts that are responsible for volcanism. Here using, high-resolution active-source seismic data, we show that Mount St Helens sits atop a sharp lateral boundary in Moho reflectivity. Weak-to-absent PmP reflections to the west are attributed to serpentinite in the mantle-wedge, which requires a cold hydrated mantle wedge beneath Mount St Helens (<~700 °C). These results suggest that the melt source region lies east towards Mount Adams.

  3. Crossing the boundary: experimental investigation of water entry conditions of V-shaped wedges

    NASA Astrophysics Data System (ADS)

    Xiao, Tingben; Yohann, Daniel; Vincent, Lionel; Jung, Sunghwan; Kanso, Eva

    2016-11-01

    Seabirds that plunge-dive at high speeds exhibit remarkable abilities to withstand and mitigate impact forces. To minimize these forces, diving birds streamline their shape at impact, entering water with their sharp beak first. Here, we investigate the impact forces on rigid V-shaped wedges crossing the air-water interface at high Weber numbers. We vary the impact velocity V by adjusting the height from which the wedge is dropped. Both a high-speed camera and a force transducer are used to characterize the impact. We found that the splash base and air cavity show little dependence on the impact velocity when rescaling by inertial time d / V , where d is the breadth of the wedge. The peak impact force occurs at time tp smaller than the submersion time ts such that the ratio tp /ts is almost constant for all wedges and impact velocities V. We also found that the maximum impact force, like drag force, scales as AV2 , where A is the cross-sectional area of the wedge. We then propose analytical models of the impact force and splash dynamics. The theoretical predictions agree well with our experimental results. We conclude by commenting on the relevance of these results to understanding the mechanics of diving seabirds. We acknowledge support from the National Science Foundation.

  4. Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines

    DOEpatents

    Lindner, M.; Cottingham, J.G.

    1996-03-12

    A wedge and spring assembly for use in electromagnets or dynamoelectric machines is disclosed having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped. 6 figs.

  5. Dispersion analysis and measurement of circular cylindrical wedge-like acoustic waveguides.

    PubMed

    Yu, Tai-Ho

    2015-09-01

    This study investigated the propagation of flexural waves along the outer edge of a circular cylindrical wedge, the phase velocities, and the corresponding mode displacements. Thus far, only approximate solutions have been derived because the corresponding boundary-value problems are complex. In this study, dispersion curves were determined using the bi-dimensional finite element method and derived through the separation of variables and the Hamilton principle. Modal displacement calculations clarified that the maximal deformations appeared at the outer edge of the wedge tip. Numerical examples indicated how distinct thin-film materials deposited on the outer surface of the circular cylindrical wedge influenced the dispersion curves. Additionally, dispersion curves were measured using a laser-induced guided wave, a knife-edge measurement scheme, and a two-dimensional fast Fourier transform method. Both the numerical and experimental results correlated closely, thus validating the numerical solution.

  6. Achieving Hard X-ray Nanofocusing Using a Wedged Multilayer Laue Lens

    SciTech Connect

    Huang, Xiaojing; Conley, Raymond; Bouet, Nathalie; Zhou, Juan; Macrander, Albert; Maser, Jorg; Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Harder, Ross; Robinson, Ian K.; Kalbfleisch, Sebastian; Chu, Yong S.

    2015-05-04

    Here, we report on the fabrication and the characterization of a wedged multilayer Laue lens for x-ray nanofocusing. The lens was fabricated using a sputtering deposition technique, in which a specially designed mask was employed to introduce a thickness gradient in the lateral direction of the multilayer. X-ray characterization shows an efficiency of 27% and a focus size of 26 nm at 14.6 keV, in a good agreement with theoretical calculations. Our results indicate that the desired wedging is achieved in the fabricated structure. Furthermore, we anticipate that continuous development on wedged MLLs will advance x-ray nanofocusing optics to new frontiers and enrich capabilities and opportunities for hard X-ray microscopy.

  7. Monolithic integration of high-Q wedge resonators with vertically coupled waveguides

    NASA Astrophysics Data System (ADS)

    Ramiro-Manzano, Fernando; Prtljaga, Nikola; Pavesi, Lorenzo; Pucker, Georg; Ghulinyan, Mher

    2013-05-01

    Typical UHQ resonators, microspheres and microtoroids, lack the possibility of integration into lightwave circuits due to their planarity constrains. In this context, CMOS-compatible alternatives in the form of wedge resonators have been proposed. However, the mode retraction from the wedge cavity inhibits the possibility to side couple with integrated waveguides and therefore, halts the full integration within a planar lightwave circuit. In this work, we propose and demonstrate experimentally the complete integration of wedge resonators with vertically coupled dielectric bus waveguides. This coupling scheme permits to use arbitrary gaps, geometries and materials, enables simplified and precise control of the light injection into the cavity and opens the door to an industrial mass-fabrication of UHQ resonators.

  8. Wedge Shock and Nozzle Exhaust Plume Interaction in a Supersonic Jet Flow

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Zaman, Khairul; Fagan, Amy; Heath, Christopher

    2014-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the nozzle exhaust plume. Aft body shock waves that interact with the exhaust plume contribute to the near-field pressure signature of a vehicle. The plume and shock interaction was studied using computational fluid dynamics and compared with experimental data from a coaxial convergent-divergent nozzle flow in an open jet facility. A simple diamond-shaped wedge was used to generate the shock in the outer flow to study its impact on the inner jet flow. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the opposite plume boundary. The sonic boom pressure signature of the nozzle exhaust plume was modified by the presence of the wedge. Both the experimental results and computational predictions show changes in plume deflection.

  9. Effectiveness of a Wedge Probe to Measure Sonic Boom Signatures in a Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.; Elmiligui, Alaa A.

    2013-01-01

    A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel (UPWT) to determine the effectiveness of a wedge probe to measure sonic boom pressure signatures compared to a slender conical probe. A generic business jet model at a constant angle of attack and at a single model to probe separation distance was used to generate a sonic boom signature. Pressure signature data were acquired with both the wedge probe and a slender conical probe for comparison. The test was conducted at a Mach number of 2.0 and a free-stream unit Reynolds number of 2 million per foot. The results showed that the wedge probe was not effective in measuring the sonic boom pressure signature of the aircraft model in the supersonic wind tunnel. Data plots and a discussion of the results are presented. No tabulated data or flow visualization photographs are included.

  10. Pervasive seismic wave reflectivity and metasomatism of the Tonga mantle wedge.

    PubMed

    Zheng, Yingcai; Lay, Thorne; Flanagan, Megan P; Williams, Quentin

    2007-05-11

    Subduction zones play critical roles in the recycling of oceanic lithosphere and the generation of continental crust. Seismic imaging can reveal structures associated with key dynamic processes occurring in the upper-mantle wedge above the sinking oceanic slab. Three-dimensional images of reflecting interfaces throughout the upper-mantle wedge above the subducting Tonga slab were obtained by migration of teleseismic recordings of underside P- and S-wave reflections. Laterally continuous weak reflectors with tens of kilometers of topography were detected at depths near 90, 125, 200, 250, 300, 330, 390, 410, and 450 kilometers. P- and S-wave impedances decreased at the 330-kilometer and 450-kilometer reflectors, and S-wave impedance decreased near 200 kilometers in the vicinity of the slab and near 390 kilometers, just above the global 410-kilometer increase. The pervasive seismic reflectivity results from phase transitions and compositional zonation associated with extensive metasomatism involving slab-derived fluids rising through the wedge.

  11. Quantitative comparisons of analogue models of brittle wedge dynamics

    NASA Astrophysics Data System (ADS)

    Schreurs, Guido

    2010-05-01

    Analogue model experiments are widely used to gain insights into the evolution of geological structures. In this study, we present a direct comparison of experimental results of 14 analogue modelling laboratories using prescribed set-ups. A quantitative analysis of the results will document the variability among models and will allow an appraisal of reproducibility and limits of interpretation. This has direct implications for comparisons between structures in analogue models and natural field examples. All laboratories used the same frictional analogue materials (quartz and corundum sand) and prescribed model-building techniques (sieving and levelling). Although each laboratory used its own experimental apparatus, the same type of self-adhesive foil was used to cover the base and all the walls of the experimental apparatus in order to guarantee identical boundary conditions (i.e. identical shear stresses at the base and walls). Three experimental set-ups using only brittle frictional materials were examined. In each of the three set-ups the model was shortened by a vertical wall, which moved with respect to the fixed base and the three remaining sidewalls. The minimum width of the model (dimension parallel to mobile wall) was also prescribed. In the first experimental set-up, a quartz sand wedge with a surface slope of ˜20° was pushed by a mobile wall. All models conformed to the critical taper theory, maintained a stable surface slope and did not show internal deformation. In the next two experimental set-ups, a horizontal sand pack consisting of alternating quartz sand and corundum sand layers was shortened from one side by the mobile wall. In one of the set-ups a thin rigid sheet covered part of the model base and was attached to the mobile wall (i.e. a basal velocity discontinuity distant from the mobile wall). In the other set-up a basal rigid sheet was absent and the basal velocity discontinuity was located at the mobile wall. In both types of experiments

  12. Tectonic and gravity extensional collapses in overpressured cohesive and frictional wedges

    NASA Astrophysics Data System (ADS)

    Yuan, X. P.; Leroy, Y. M.; Maillot, B.

    2015-03-01

    Two modes of extensional collapse in a cohesive and frictional wedge of arbitrary topography, finite extent, and resting on an inclined weak décollement are examined by analytical means. The first mode consists of the gravitational collapse by the action of a half-graben, rooting on the décollement and pushing seaward the frontal part of the wedge. The second mode results from the tectonics extension at the back wall with a similar half-graben kinematics and the landward sliding of the rear part of the wedge. The predictions of the maximum strength theorem, equivalent to the kinematic approach of limit analysis and based on these two collapse mechanisms, not only match exactly the solutions of the critical Coulomb wedge theory, once properly amended, but generalizes them in several aspects: wedge of finite size, composed of cohesive material and of arbitrary topography. This generalization is advantageous to progress in our understanding of many laboratory experiments and field cases. For example, it is claimed from analytical results validated by experiments that the stability transition for a cohesive, triangular wedge occurs with the activation of the maximum length of the décollement. It is shown that the details of the topography, for the particular example of the Mejillones peninsula (North Chile) is, however, responsible for the selection of a short length-scale, dynamic instability corresponding to a frontal gravitational instability. A reasonable amount of cohesion is sufficient for the pressures proposed in the literature to correspond to a stability transition and not with a dynamically unstable state.

  13. The mantle wedge's transient 3-D flow regime and thermal structure

    NASA Astrophysics Data System (ADS)

    Davies, D. R.; Le Voci, G.; Goes, S.; Kramer, S. C.; Wilson, C. R.

    2016-01-01

    Arc volcanism, volatile cycling, mineralization, and continental crust formation are likely regulated by the mantle wedge's flow regime and thermal structure. Wedge flow is often assumed to follow a regular corner-flow pattern. However, studies that incorporate a hydrated rheology and thermal buoyancy predict internal small-scale-convection (SSC). Here, we systematically explore mantle-wedge dynamics in 3-D simulations. We find that longitudinal "Richter-rolls" of SSC (with trench-perpendicular axes) commonly occur if wedge hydration reduces viscosities to Pa s, although transient transverse rolls (with trench-parallel axes) can dominate at viscosities of Pa s. Rolls below the arc and back arc differ. Subarc rolls have similar trench-parallel and trench-perpendicular dimensions of 100-150 km and evolve on a 1-5 Myr time-scale. Subback-arc instabilities, on the other hand, coalesce into elongated sheets, usually with a preferential trench-perpendicular alignment, display a wavelength of 150-400 km and vary on a 5-10 Myr time scale. The modulating influence of subback-arc ridges on the subarc system increases with stronger wedge hydration, higher subduction velocity, and thicker upper plates. We find that trench-parallel averages of wedge velocities and temperature are consistent with those predicted in 2-D models. However, lithospheric thinning through SSC is somewhat enhanced in 3-D, thus expanding hydrous melting regions and shifting dehydration boundaries. Subarc Richter-rolls generate time-dependent trench-parallel temperature variations of up to K, which exceed the transient 50-100 K variations predicted in 2-D and may contribute to arc-volcano spacing and the variable seismic velocity structures imaged beneath some arcs.

  14. Porous Flow and Diffusion of Water in the Mantle Wedge: Melting and Hydration Patterns

    NASA Astrophysics Data System (ADS)

    Conder, J. A.

    2005-12-01

    It is widely accepted that melting at volcanic arcs is primarily triggered by fluxing the mantle wedge from the dehydrating subducting slab. However, there is less concensus regarding how water moves into and within the mantle wedge. There are at least four possible mechanisms for water migration in the wedge: buoyant porous flow, diffusion through mineral crystals, advection of hydrated minerals, and compositionally buoyant diapers. The latter two mechanisms require at least one of the first two to occur to get water from the slab into the wedge before they can function. Using geodynamic models of mantle flow in a simplified subduction setting, we explore the implications of diffusion and porous flow of water in the wedge, particularly as they would affect the time for recycling water through the subduction factory and the predicted pattern of basalt hydration across the arc. The slab is assumed to dehydrate in a continuous fashion as the solubility of water in subducted oceanic crust decreases with temperature and pressure and the water then enters the wedge via one of the two transport mechanisms. Diffusion is controlled by temperature and by which minerals are present. Although olivine dominates the mantle mineral fraction, pyroxenes may control the diffusion of water in the wedge as the diffusivity of pyroxene is one or more orders of magnitude greater than olivine. Even assuming the faster diffusion rate of orthopyroxene in the models, diffusion can only be an important transport mechanism when subduction rates are slower than ~3 cm/yr. Flux melting occurs in the wedge above where the slab is ~100-160 km deep with the maximum above where the slab is ~120 km deep. Models including porous flow can result in melting at higher subduction rates provided the permeability of the mantle is greater than 10-17 m2. The true magnitude of the permeability likely varies with the corresponding porosity created by the free phase. With porous flow, melting occurs 20-30 km

  15. Comparison of infinite and wedge fringe settings in Mach Zehnder interferometer for temperature field measurement

    SciTech Connect

    Haridas, Divya; P, Vibin Antony; Sajith, V.; Sobhan, C. B.

    2014-10-15

    Interferometric method, which utilizes the interference of coherent light beams, is used to determine the temperature distribution in the vicinity of a vertical heater plate. The optical components are arranged so as to obtain wedge fringe and infinite fringe patterns and isotherms obtained in each case were compared. In wedge fringe setting, image processing techniques has been used for obtaining isotherms by digital subtraction of initial parallel fringe pattern from deformed fringe pattern. The experimental results obtained are compared with theoretical correlations. The merits and demerits of the fringe analysis techniques are discussed on the basis of the experimental results.

  16. [Radiocarbon dating of pollen and spores in wedge ice from Iamal and Kolyma].

    PubMed

    Vasil'chuk, A K

    2004-01-01

    Radiocarbon dating of pollen concentrate from late Pleistocene syngenetic wedge ice was carried out using acceleration mass spectrometry (AMS) in Seyakha and Bizon sections. Comparison of the obtained dating with palynological analysis and AMS radiocarbon dating previously obtained for other organic fractions of the same samples allowed us to evaluate accuracy of dating of different fractions. Quantitative tests for data evaluation were considered in terms of possible autochthonous or allochthonous accumulation of the material on the basis of pre-Pleistocene pollen content in these samples. Paleoecological information content of pollen spectra from late Pleistocene syngenetic wedge ice was evaluated.

  17. Closing wedge osteotomy of the tibia and the femur in the treatment of gonarthrosis

    PubMed Central

    Sherman, Courtney

    2009-01-01

    New developments in osteotomy techniques and methods of fixation have caused a renewed interest in closing wedge osteotomies of the tibia and femur in the treatment of gonarthrosis. The rationale, definition and techniques of closing wedge tibial and femoral osteotomies in the treatment of gonarthrosis are discussed. The principal indications include unicompartmental medial and much less so, varus knee gonarthrosis and unicompartmental lateral or valgus knee gonarthrosis with a well-maintained range of motion in patients who are physiologically young. Newer techniques have provided more rigid fixation and improved accuracy of correction. PMID:19830426

  18. Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality.

    PubMed

    Dong, Xi; Harlow, Daniel; Wall, Aron C

    2016-07-08

    In this Letter we prove a simple theorem in quantum information theory, which implies that bulk operators in the anti-de Sitter/conformal field theory (AdS/CFT) correspondence can be reconstructed as CFT operators in a spatial subregion A, provided that they lie in its entanglement wedge. This is an improvement on existing reconstruction methods, which have at most succeeded in the smaller causal wedge. The proof is a combination of the recent work of Jafferis, Lewkowycz, Maldacena, and Suh on the quantum relative entropy of a CFT subregion with earlier ideas interpreting the correspondence as a quantum error correcting code.

  19. Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality

    NASA Astrophysics Data System (ADS)

    Dong, Xi; Harlow, Daniel; Wall, Aron C.

    2016-07-01

    In this Letter we prove a simple theorem in quantum information theory, which implies that bulk operators in the anti-de Sitter/conformal field theory (AdS/CFT) correspondence can be reconstructed as CFT operators in a spatial subregion A , provided that they lie in its entanglement wedge. This is an improvement on existing reconstruction methods, which have at most succeeded in the smaller causal wedge. The proof is a combination of the recent work of Jafferis, Lewkowycz, Maldacena, and Suh on the quantum relative entropy of a CFT subregion with earlier ideas interpreting the correspondence as a quantum error correcting code.

  20. Colluvial wedge imaging using traveltime and waveform tomography along the Wasatch Fault near Mapleton, Utah

    NASA Astrophysics Data System (ADS)

    Buddensiek, M.-L.; Sheng, J.; Crosby, T.; Schuster, G. T.; Bruhn, R. L.; He, R.

    2008-02-01

    Four high-resolution seismic surveys were conducted across the Wasatch Fault Zone near Mapleton, Utah. The objective was twofold: (1) To use velocity tomograms and reflection images to delineate fault structures and colluvial wedges to more than twice the depth of the Mapleton Megatrench excavated by URS personnel, (2) to assess the strengths and limitations of traveltime and waveform tomography by synthetic studies and comparison of the tomogram to the ground truth seen in the Megatrench log. Four out of the five faults within the trench area are accurately identified in the migrated image and in the tomograms, and the main fault's dip angle is estimated to be between 71 and 80°. Two additional faults are interpreted outside the trench. The faults can be delineated down to 30 m below the surface, which is 20 m deeper than the excavated trench. Five out of six colluvial wedges found in the trench log were seen as low-velocity zones (LVZs) in the tomogram, however the biggest colluvial wedge could not be identified by either tomography method. Waveform tomography prevailed over ray-based traveltime tomography by more clearly recovering the faults and LVZs. A newly discovered LVZ at a depth of 18-21 m below the surface possibly represents a colluvial wedge and is estimated to be less than 21000 years old. If this LVZ is a colluvial wedge, the earthquake history obtained by trenching can be extended from 13500 to 21000 yr with seismic tomography. Our results further demonstrate the capability of tomography in identifying faults, and show that waveform tomography more accurately resolves colluvial wedges compared to traveltime tomography. However, despite the successful recovery of most faults and some, but not all, colluvial wedges, both tomography methods show many more LVZs besides the wedges, so that an unambiguous interpretation cannot be made. A major part of the ambiguity in the tomograms is due to the many major faults, which result in an uneven raypath

  1. A wedged-peak-pulse design with medium fuel adiabat for indirect-drive fusion

    SciTech Connect

    Fan, Zhengfeng; Ren, Guoli; Liu, Bin; Wu, Junfeng; He, X. T.; Liu, Jie; Wang, L. F.; Ye, Wenhua

    2014-10-15

    In the present letter, we propose the design of a wedged-peak pulse at the late stage of indirect drive. Our simulations of one- and two-dimensional radiation hydrodynamics show that the wedged-peak-pulse design can raise the drive pressure and capsule implosion velocity without significantly raising the fuel adiabat. It can thus balance the energy requirement and hydrodynamic instability control at both ablator/fuel interface and hot-spot/fuel interface. This investigation has implication in the fusion ignition at current mega-joule laser facilities.

  2. Separation over a flat plate-wedge configuration at oceanic Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Campbell, D. R.

    1973-01-01

    An experimental study of flow over a two-dimensional flat plate-wedge configuration is presented. The investigation encompasses a range of Reynolds numbers characteristics of conditions encountered by deep submersible oceanic vehicles. Flow separation, similar to that found on high speed aircraft control surfaces, is reported and discussed in light of the laminar or transitional nature of the separated shear layer. As discovered in previous high Mach number studies of plate-wedge or ramp configurations, the dependency of the size of the separated region on free stream Reynolds number is reversed for laminar and transitional types of flow separation.

  3. Determination of refractive index of a simple negative, positive, or zero power lens using wedged plated interferometer

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Perera, G. M.; George, M. C.; Venkateswarlu, P.

    1990-01-01

    A nondestructive technique for measuring the refractive index of a negative lens using a wedged plate interferometer is described. The method can be also used for measuring the refractive index of convex or zero power lenses. Schematic diagrams are presented for the use of a wedged plate interferometer for measuring the refractive index of a concave lens and of a convex lens.

  4. Optical Performance Evaluation and Aligning Method for Solid Immersion Lens Assembly with Wedge Plate Lateral Shearing Interferometer

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Eui; Kim, Wan-Chin; Kim, Tae-Seob; Choi, Hyun; Yoon, Yong-Joong; Park, No-Cheol; Park, Young-Pil

    2007-08-01

    We present a simple and stable optical performance evaluation and aligning method for a solid immersion lens (SIL) assembly with a wedge plate lateral shearing interferometer (LSI). There are many advantages in the use of the wedge plate LSI compared with a current SIL measurement method using a Twyman-Green interferometer. We designed the thicknesses, wedge angles, materials, and reflectances of the first and second surfaces of the wedge plate to be 1 mm, 0.02°, fused silica and 21, and 30%, respectively. Simulation and experimental results are well matched in quantitative analyses at shear ratios of 10, 40, and 70%. On the basis of simulation results for an aberrated SIL assembly with many misaligned cases, we suggested the use of the aligning process with the wedge plate LSI.

  5. 16 CFR Figure 1 to Part 1508 - Crib Slat Loading Wedge

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Crib Slat Loading Wedge 1 Figure 1 to Part 1508 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR FULL-SIZE BABY CRIBS Pt. 1508, Fig. 1 Figure 1 to Part 1508—Crib Slat...

  6. 16 CFR Figure 1 to Part 1508 - Crib Slat Loading Wedge

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Crib Slat Loading Wedge 1 Figure 1 to Part 1508 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR FULL-SIZE BABY CRIBS Pt. 1508, Fig. 1 Figure 1 to Part 1508—Crib Slat...

  7. Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges.

    PubMed

    Miranda, Miguel; Fordell, Thomas; Arnold, Cord; L'Huillier, Anne; Crespo, Helder

    2012-01-02

    We present a simple and robust technique to retrieve the phase of ultrashort laser pulses, based on a chirped mirror and glass wedges compressor. It uses the compression system itself as a diagnostic tool, thereby making unnecessary the use of complementary diagnostic tools. We used this technique to compress and characterize 7.1 fs laser pulses from an ultrafast laser oscillator.

  8. Impingement of water droplets on wedges and diamond airfoils at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Serafini, John S

    1953-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees to 460 degrees R. Also, free-stream Mach numbers from 1.1 to 2.0, semi-apex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  9. On the Effect of Structural Response on the Hydrodynamic Loading of a Free-Falling Wedge

    NASA Astrophysics Data System (ADS)

    Ikeda, Christine; Taravella, Brandon; Judge, Carolyn

    2016-11-01

    High-speed planing craft are subjected to repeated slamming events in waves that can be very extreme depending on the wave topography, impact angle of the ship, forward speed of the ship, encounter angle, and height out of the water. The current work examines this fluid-structure interaction problem through the use of wedge drop experiments and a theoretical prediction. The experimental program consisted of two 20° deadrise angle wedges dropped from a range of heights, 0 . 15 <= H <= 0 . 6 m, while pressures and accelerations of the slam were measured. The first wedge had a rigid bottom, and the second wedge had a flexible bottom. Both experiments are compared with a non-linear boundary value flat cylinder theory in order to determine the effects of flexibility on the hydrodynamic pressure. The code assumes a rigid structure, therefore, the results between the code and the first experiment are in good agreement. The second experiment shows pressure magnitudes that are lower than the predictions due to the energy required to deform the structure. This work is funded by the Office of Naval Research and the state of Louisiana Board of Regents Industrial Ties and Reseach Subprogram.

  10. Interaction of light with a metal wedge: the role of diffraction in shaping energy flow.

    PubMed

    Xi, Yonggang; Jung, Yun Suk; Kim, Hong Koo

    2010-02-01

    When a light wave hits a metal wedge structure, the metal surfaces respond to the incident light by generating both free-space and surface-bound waves. Here we present a physical model that elucidates electromagnetic interactions of an incoming planar wave with a simple semi-infinite 90 degrees metal wedge. We show that a metal wedge structure possesses an intrinsic capability of directing the incident power around the corner into the forward direction. Interplay of the boundary diffraction wave and the incident and reflection waves in the near field region of a metal corner is found to form a basis of the funneling phenomena that are commonly observed in metal nanoslit structures. Theory and experiment reveal that the incident wave propagating parallel to the sidewall destructively interferes with the boundary diffraction wave forming a depleted-energy-flow region along the glancing angle direction. A physical understanding of various electromagnetic phenomena associated with a metal wedge structure confirms rich potential of the simple structure as an elemental building block of complex metal nanostructures.

  11. Analysis and measurement of electromagnetic scattering by pyramidal and wedge absorbers

    NASA Technical Reports Server (NTRS)

    Dewitt, B. T.; Burnside, Walter D.

    1986-01-01

    By modifying the reflection coefficients in the Uniform Geometrical Theory of Diffraction a solution that approximates the scattering from a dielectric wedge is found. This solution agrees closely with the exact solution of Rawlins which is only valid for a few minor cases. This modification is then applied to the corner diffraction coefficient and combined with an equivalent current and geometrical optics solutions to model scattering from pyramid and wedge absorbers. Measured results from 12 inch pyramid absorbers from 2 to 18 GHz are compared to calculations assuming the returns add incoherently and assuming the returns add coherently. The measured results tend to be between the two curves. Measured results from the 8 inch wedge absorber are also compared to calculations with the return being dominated by the wedge diffraction. The procedures for measuring and specifying absorber performance are discussed and calibration equations are derived to calculate a reflection coefficient or a reflectivity using a reference sphere. Shaping changes to the present absorber designs are introduced to improve performance based on both high and low frequency analysis. Some prototypes were built and tested.

  12. Geodetic observations of megathrust earthquakes and backarc wedge deformation across the central Andes

    NASA Astrophysics Data System (ADS)

    Weiss, J. R.; Brooks, B. A.; Foster, J. H.; Bevis, M. G.; Echalar, A.; Caccamise, D.; Heck, J. M.

    2014-12-01

    High-precision Global Positioning System (GPS) data offer an opportunity to investigate active orogenic wedges yet surface velocity fields are available for only a few examples worldwide. More observations are needed to link deformation processes across multiple timescales and to better understand strain accumulation and release in active wedge settings. Here we present a new GPS velocity field for the central Andes and the backarc orogenic wedge comprising the southern Subandes of Bolivia (SSA), a region previously thought to be mostly isolated from the plate boundary earthquake cycle. The time span of our observations (2000 to mid-2014) includes two megathrust earthquakes along the Chile trench that affected the SSA. The 2007 Mw 7.7 Tocopilla, Chile earthquake resulted in a regional postseismic decrease in the eastward component of horizontal surface velocities. Preliminary analysis of the deformation field from the April 01 2014 Mw 8.2 Pisagua, Chile earthquake also indicates a postseismic signal extending into the SSA. We create an interseismic velocity field for the SSA by correcting campaign GPS site velocities for the seasonal cycles estimated from continuous GPS site time series. We remove the effects of both megathrust events by estimating coseismic steps and fitting linear and logarithmic functions to the postseismic GPS site motions. The velocity estimates at most locations increase after correcting for the transients. This finding suggests that forces leading to shortening and earthquakes in the backarc wedge are not as temporally consistent as previously considered.

  13. Oxidation sharpening, template stripping, and passivation of ultra-sharp metallic pyramids and wedges.

    PubMed

    Im, Hyungsoon; Oh, Sang-Hyun

    2014-02-26

    Ultra-sharp metallic pyramids and wedges with tunable tip angles and 5-nm tip radii are replicated from oxidation-sharpened silicon templates with high throughput (80 million pyramids per wafer). Atomic layer deposition of Al2 O3 shells can protect these sharp pyramidal tips for subsequent usage in near-field imaging.

  14. Estimation of treatment efficacy with complier average causal effects (CACE) in a randomized stepped wedge trial.

    PubMed

    Gruber, Joshua S; Arnold, Benjamin F; Reygadas, Fermin; Hubbard, Alan E; Colford, John M

    2014-05-01

    Complier average causal effects (CACE) estimate the impact of an intervention among treatment compliers in randomized trials. Methods used to estimate CACE have been outlined for parallel-arm trials (e.g., using an instrumental variables (IV) estimator) but not for other randomized study designs. Here, we propose a method for estimating CACE in randomized stepped wedge trials, where experimental units cross over from control conditions to intervention conditions in a randomized sequence. We illustrate the approach with a cluster-randomized drinking water trial conducted in rural Mexico from 2009 to 2011. Additionally, we evaluated the plausibility of assumptions required to estimate CACE using the IV approach, which are testable in stepped wedge trials but not in parallel-arm trials. We observed small increases in the magnitude of CACE risk differences compared with intention-to-treat estimates for drinking water contamination (risk difference (RD) = -22% (95% confidence interval (CI): -33, -11) vs. RD = -19% (95% CI: -26, -12)) and diarrhea (RD = -0.8% (95% CI: -2.1, 0.4) vs. RD = -0.1% (95% CI: -1.1, 0.9)). Assumptions required for IV analysis were probably violated. Stepped wedge trials allow investigators to estimate CACE with an approach that avoids the stronger assumptions required for CACE estimation in parallel-arm trials. Inclusion of CACE estimates in stepped wedge trials with imperfect compliance could enhance reporting and interpretation of the results of such trials.

  15. 50 CFR Figure 17 to Part 223 - Boone Wedge Cut Escape Opening

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Boone Wedge Cut Escape Opening 17 Figure 17 to Part 223 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS THREATENED MARINE AND ANADROMOUS SPECIES...

  16. An Analytical Investigation of an Oscillating Wedge in a Supersonic Perfect Gas Flow. Ph.D Thesis - North Carolina State Univ., Raleigh

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.

    1971-01-01

    Several aspects of the oscillating wedge are investigated to evaluate both the resulting trends for the wedge and methods of analyzing unsteady flows. An existing hypersonic small disturbance theory for an oscillating thin wedge is extended and applied. A perturbation method involving linearization about the known flow is then derived and discussed. Subsequently, a finite difference technique for calculating the complete unsteady flow field of the wedge in motion is presented and discussed in conjunction with some calculated quasi-static nonlinear trends.

  17. Self-consistent orogenic wedge formation and shear zone propagation due to thermal softening

    NASA Astrophysics Data System (ADS)

    Jaquet, Yoann; Duretz, Thibault; Schmalholz, Stefan M.

    2016-04-01

    We present two dimensional numerical simulations of orogenic wedge formation for a viscoelastoplastic lithosphere under compression. The thermo-mechanical model is based on the principle of energy conservation and includes temperature-dependent rheologies. With this approach, shear zones caused by thermal softening develop spontaneously in the absence of strain softening. The initial locus of shear localization is controlled by either lateral temperature variations (100°C) at the model base or by lateral variations in crustal thickness. The first episode of strain localization occurs after 15% bulk shortening. With ongoing strain, a series of shear zones arise and propagate towards the foreland leading to the self-consistent formation of an orogenic wedge. We investigate the impact of bulk shortening rates, erosion and rheology on the dynamics of wedge formation, the associated topography and uplift rates. The maximum topography reaches up to 10 km and the surface morphology evolves according to shear zone activation and deactivation. Uplift rates are transient and peak values are maintained only on very short time scales. A running average of the uplift rate versus time curves with a time-window of 4 My provides average uplift rates in the order of a few millimeters per year. Erosion is an important parameter for the formation and the evolution of the wedge (e.g. can control the spacing of shear zones by modifying crustal thickness). Rheological parameters, such as the friction angle or the upper crustal viscosity, control the occurrence of strain localization. Bulk shortening rates between 10-15 and 10-16 s-1 do not have a major impact on the resulting wedge structure.

  18. Phase transitions and interface fluctuations in double wedges and bi-pyramids with competing surface fields

    NASA Astrophysics Data System (ADS)

    Müller, M.; Milchev, A.; Binder, K.; Landau, D. P.

    2008-08-01

    The interplay between surface and interface effects on binary AB mixtures that are confined in unconventional geometries is investigated by Monte Carlo simulations and phenomenological considerations. Both double-wedge and bi-pyramid confinements are considered and competing surface fields are applied at the two opposing halves of the system. Below the bulk critical temperature, domains of opposite order parameter are stabilized at the corresponding corners and an interface runs across the middle of the bi-partite geometry. Upon decreasing the temperature further one encounters a phase transition at which the AB symmetry is broken. The interface is localized in one of the two wedges or pyramids, respectively, and the order parameter is finite. In both cases, the transition becomes discontinuous in the thermodynamic limit but it is not a first-order phase transition. In an antisymmetric double wedge geometry the transition is closely related to the wedge-filling transition. Choosing the ratio of the cross-section L × L of the wedge and its length L y according to L y / L 3 = const., simulations and phenomenological consideration show that the new type of phase transition is characterized by critical exponents α = 3/4, β = 0, and γ = 5/4 for the specific heat, order parameter, and susceptibility, respectively. In an antisymmetric bi-pyramid the transition occurs at the cone-filling transition of a single pyramid. The important critical fluctuations are associated with the uniform translation of the interface and they can be described by a Landau-type free energy. Monte Carlo results provide evidence that the coefficients of this Landau-type free energy exhibit a system-size dependence, which gives rise to critical amplitudes that diverge with system size and result in a transition that becomes discontinuous in the thermodynamic limit.

  19. Complex interactions between diapirs and 4-D subduction driven mantle wedge circulation.

    NASA Astrophysics Data System (ADS)

    Sylvia, R. T.; Kincaid, C. R.

    2015-12-01

    Analogue laboratory experiments generate 4-D flow of mantle wedge fluid and capture the evolution of buoyant mesoscale diapirs. The mantle is modeled with viscous glucose syrup with an Arrhenius type temperature dependent viscosity. To characterize diapir evolution we experiment with a variety of fluids injected from multiple point sources. Diapirs interact with kinematically induced flow fields forced by subducting plate motions replicating a range of styles observed in dynamic subduction models (e.g., rollback, steepening, gaps). Data is collected using high definition timelapse photography and quantified using image velocimetry techniques. While many studies assume direct vertical connections between the volcanic arc and the deeper mantle source region, our experiments demonstrate the difficulty of creating near vertical conduits. Results highlight extreme curvature of diapir rise paths. Trench-normal deflection occurs as diapirs are advected downward away from the trench before ascending into wedge apex directed return flow. Trench parallel deflections up to 75% of trench length are seen in all cases, exacerbated by complex geometry and rollback motion. Interdiapir interaction is also important; upwellings with similar trajectory coalesce and rapidly accelerate. Moreover, we observe a new mode of interaction whereby recycled diapir material is drawn down along the slab surface and then initiates rapid fluid migration updip along the slab-wedge interface. Variability in trajectory and residence time leads to complex petrologic inferences. Material from disparate source regions can surface at the same location, mix in the wedge, or become fully entrained in creeping flow adding heterogeneity to the mantle. Active diapirism or any other vertical fluid flux mechanism employing rheological weakening lowers viscosity in the recycling mantle wedge affecting both solid and fluid flow characteristics. Many interesting and insightful results have been presented based

  20. Opening-wedge high tibial osteotomy: a seven - to twelve-year study

    PubMed Central

    PIPINO, GENNARO; INDELLI, PIER FRANCESCO; TIGANI, DOMENICO; MAFFEI, GIUSEPPE; VACCARISI, DAVIDE

    2016-01-01

    Purpose medial opening-wedge osteotomy is a widely performed procedure used to treat moderate isolated medial knee osteoarthritis. Historically, the literature has contained reports showing satisfactory mid-term results when accurate patient selection and precise surgical techniques were applied. This study was conducted to investigate the clinical and radiographic seven- to twelve-year results of opening-wedge high tibial osteotomy in a consecutive series of patients affected by varus knee malalignment with isolated medial compartment degenerative joint disease. Methods we reviewed a case series of 147 medial opening-wedge high tibial osteotomies at an average follow-up of 9.5 years. Endpoints for evaluation included the reporting of adverse effects, radiographic evidence of bone union, radiographic changes in the correction angle during union, and clinical and functional final outcomes. Results good or excellent results were obtained in 94% of the cases: the patients reported no major complications related to the opening-wedge high tibial osteotomy surgical technique, bone graft resorption, implant choice or postoperative rehabilitation protocol. At final follow-up, the average hip-knee angle was 4° of valgus without major loss of correction during the healing process. A statistically significant change in the patellar height was detected postoperatively, with a trend towards patella infera. Conclusions medial opening-wedge high tibial osteotomy is still a reliable method for correcting varus deformity while producing stable fixation, thus allowing satisfactory stability, adequate bone healing and satisfactory mid- to long-term results. Level of evidence Level IV, therapeutic cases series. PMID:27386441

  1. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization

    USGS Publications Warehouse

    Mark Torre Jorgenson,; Mikhail Kanevskiy,; Yuri Shur,; Natalia Moskalenko,; Dana Brown,; Wickland, Kimberly P.; Striegl, Robert G.; Koch, Joshua C.

    2015-01-01

    Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.

  2. Late Holocene stable-isotope based winter temperature records from ice wedges in the Northeast Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Opel, Thomas; Meyer, Hanno; Laepple, Thomas; Dereviagin, Alexander Yu.

    2016-04-01

    The Arctic is currently undergoing an unprecedented warming. This highly dynamic response on changes in climate forcing and the global impact of the Arctic water, carbon and energy balances make the Arctic a key region to study past, recent and future climate changes. Recent proxy-based temperature reconstructions indicate a long-term cooling over the past about 8 millennia that is mainly related to a decrease in solar summer insolation and has been reversed only by the ongoing warming. Climate model results on the other hand show no significant change or even a slight warming over this period. This model-proxy data mismatch might be caused by a summer bias of the used climate proxies. Ice wedges may provide essential information on past winter temperatures for a comprehensive seasonal picture of Holocene Arctic climate variability. Polygonal ice wedges are a widespread permafrost feature in the Arctic tundra lowlands. Ice wedges form by the repeated filling of thermal contraction cracks with snow melt water, which quickly refreezes at subzero ground temperatures and forms ice veins. As the seasonality of frost cracking and infill is generally related to winter and spring, respectively, the isotopic composition of wedge ice is indicative of past climate conditions during the annual cold season (DJFMAM, hereafter referred to as winter). δ18O of ice is interpreted as proxy for regional surface air temperature. AMS radiocarbon dating of organic remains in ice-wedge samples provides age information to generate chronologies for single ice wedges as well as regionally stacked records with an up to centennial resolution. In this contribution we seek to summarize Holocene ice-wedge δ18O based temperature information from the Northeast Siberian Arctic. We strongly focus on own work in the Laptev Sea region but consider as well literature data from other regional study sites. We consider the stable-isotope composition of wedge ice, ice-wedge dating and chronological

  3. Stable isotope and gas properties of two ice wedges from Cape Mamontov Klyk, Laptev Sea, Northern Siberia

    NASA Astrophysics Data System (ADS)

    Boereboom, T.; Samyn, D.; Meyer, H.; Tison, J.-L.

    2011-12-01

    This paper presents and discusses the texture, fabric and gas properties (contents of total gas, O2, N2, CO2, and CH4) of two ice wedges from Cape Mamontov Klyk, Laptev Sea, Northern Siberia. The two ice wedges display contrasting structures: one being of relatively "clean" ice and the other showing clean ice at its centre as well as debris-rich ice on its sides (referred to as ice-sand wedge). A comparison of gas properties, crystal size, fabrics and stable isotope data (δ18O and δD) allows discriminating between three different facies of ice with specific paleoenvironmental signatures, suggesting different climatic conditions and rates of biological activity. More specifically, total gas content and composition reveal variable intensities of meltwater infiltration and show the impact of biological processes with contrasting contributions from anaerobic and aerobic conditions. Stable isotope data are shown to be valid for discussing changes in paleoenvironmental conditions and/or decipher different sources for the snow feeding into the ice wedges with time. Our data also give support to the previous assumption that the composite ice wedge was formed in Pleistocene and the ice wedge in Holocene times. This study sheds more light on the conditions of ice wedge growth under changing environmental conditions.

  4. Wedge hybrid plasmonic THz waveguide with long propagation length and ultra-small deep-subwavelength mode area

    PubMed Central

    Gui, Chengcheng; Wang, Jian

    2015-01-01

    We present a novel design of wedge hybrid plasmonic terahertz (THz) waveguide consisting of a silicon (Si) nanowire cylinder above a triangular gold wedge with surrounded high-density polyethylene as cladding. It features long propagation length and ultra-small deep-subwavelength mode confinement. The mode properties of wedge hybrid plasmonic THz waveguide are comprehensively characterized in terms of propagation length (L), normalized mode area (Aeff /A0), figure of merit (FoM), and chromatic dispersion (D). The designed wedge hybrid plasmonic THz waveguide enables an ultra-small deep-subwavelength mode area which is more than one-order of magnitude smaller compared to previous rectangular one. When choosing the diameter of Si nanowire cylinder, a smaller diameter (e.g. 10 μm) is preferred to achieve longer L and higher FoM, while a larger diameter (e.g. 60 μm) is favorable to obtain smaller Aeff /A0 and higher FoM. We further study the impacts of possible practical fabrication errors on the mode properties. The simulated results of propagation length and normalized mode area show that the proposed wedge hybrid plasmonic THz waveguide is tolerant to practical fabrication errors in geometry parameters such as misalignment in the horizontal direction, variation of wedge tip angle, and variation of wedge tip curvature radius. PMID:26155782

  5. The effect of foot orthoses and in-shoe wedges during cycling: a systematic review

    PubMed Central

    2014-01-01

    Background The use of foot orthoses and in-shoe wedges in cycling are largely based on theoretical benefits and anecdotal evidence. This review aimed to systematically collect all published research on this topic, critically evaluate the methods and summarise the findings. Methods Study inclusion criteria were: all empirical studies that evaluated the effects of foot orthoses or in-shoe wedges on cycling; outcome measures that investigated physiological parameters, kinematics and kinetics of the lower limb, and power; and, published in English. Studies were located by data-base searching (Medline, CINAHL, Embase and SPORTDiscus) and hand-searching in February 2014. Selected studies were assessed for methodological quality using a modified Quality Index. Data were synthesised descriptively. Meta-analysis was not performed as the included studies were not sufficiently homogeneous to provide a meaningful summary. Results Six studies were identified as meeting the eligibility criteria. All studies were laboratory-based and used a repeated measures design. The quality of the studies varied, with Quality Index scores ranging from 7 to 10 out of 14. Five studies investigated foot orthoses and one studied in-shoe wedges. Foot orthoses were found to increase contact area in the midfoot, peak pressures under the hallux and were perceived to provide better arch support, compared to a control. With respect to physiological parameters, contrasting findings have been reported regarding the effect foot orthoses have on oxygen consumption. Further, foot orthoses have been shown to not provide effects on lower limb kinematics and perceived comfort. Both foot orthoses and in-shoe wedges have been shown to provide no effect on power. Conclusion In general, there is limited high-quality research on the effects foot orthoses and in-shoe wedges provide during cycling. At present, there is some evidence that during cycling foot orthoses: increase contact area under the foot and increase

  6. Modification of the Himalayan Orogenic Wedge by Late Cenozoic Southeastward Flow of Tibet

    NASA Astrophysics Data System (ADS)

    Hodges, K. V.; Whipple, K. X.; Kirby, E.; Arrowsmith, R.; Shirzaei, M.

    2014-12-01

    Continental plateaus are reservoirs of excess gravitational energy that can influence the late-stage geodynamic evolution of adjacent orogenic wedges. In the central Himalaya (80-88˚E), most late Cenozoic deformation has involved roughly N-S shortening within the Himalayan orogenic wedge. Within this region, all 1976-2014 Mw 5 and larger earthquakes had thrust mechanisms associated with slip along major arc-parallel structures within or at the base of the orogenic wedge. In contrast, the segment of the wedge between 88˚E and 91˚E - including easternmost Nepal, the Sikkim region of India, and Bhutan - is characterized by a complex deformation field that includes thrusting on arc-parallel wedge structures but also transcurrent faulting at high angles to the Himalayan arc. In fact, over the same 1976-2014 period, all but one of the Mw 5 and larger earthquakes in this region had transcurrent fault mechanisms, mostly consistent with dextral strike-slip along NW-striking faults. We refer to this region as the central-eastern Himalayan transition zone. Although direct field evidence of the surface breaks of these faults has not been established, the orientations of nodal planes of large earthquakes, as well as alignments of microearthquake arrays, suggest that they may connect northward to a discontinuous family of arc-parallel faults - most showing evidence for oblique slip, with variable normal and dextral-transcurrent components - which we interpret as the long-term structural manifestation of the boundary between the distinctive modern strain fields of Tibet (E-W extension) and the central Himalaya (N-S shortening). In addition, transverse faults of the central-eastern Himalayan transition zone may project southward, beneath sediments near the Ganges and Bhramaputra confluence, as dextral tear faults linking the active thrust front of the central Himalaya to the active thrust front of the Shillong Plateau in northeastern India. We hypothesize that the broadening of

  7. Effect of fluid overpressure on thrust wedges deformation - insight from sandbox models

    NASA Astrophysics Data System (ADS)

    Pons, A.; Mourgues, R.

    2012-04-01

    Elevated pore pressures are commonly invoked as a key factor for thrust wedges deformation. Even in the well-known and widely used critical taper model of an accretionary wedge, they are introduced as a first-order parameter. This parameter is the Hubbert-Rubey pore pressure ratio λ. Despite the fact that the importance of fluid overpressure is not discussed and that more and more field measurements focus on quantifying pressure distributions, either numerical or analogue modelers are a few to take into account fluid pressure in their modeling. In the critical taper model, fluid overpressure reduces frictional resistance at the base and many experimenters used low frictional materials to create basal detachments. But fluid overpressures also act as body forces on the whole wedge in addition to that of gravity and this second effect was never experimentally confirmed. In this work, we performed scaled experiments in which compressed air is used as the pore fluid, to understand how fluid pressure controls the first stages of thrusting. The models were built with non-cohesive sand in their upper part and glass microbeads for the décollement to insure the weakness of the detachment. Both materials have similar permeabilities and as we applied horizontally varying fluid pressureat the base of the model, the pore pressure ratio λ was almost constant in the whole wedge. We found a good match with the critical taper model predictions. Combining these experiments with an optical image correlation technique (particle imaging velocimetry - PIV), we were able to follow the strain in the model during the entire duration of the shortening. In particular, we studied the propagation of the décollement and highlighted a strong influence of the pressure ratio, λ, on the activation rate of the décollement. Indeed, higher the overpressure is, faster the propagation of the décollement is. Moreover, we found that the distance to the critical taper condition, which depends on both

  8. Subsurface Thermal Erosion Of Ice-Wedge Polygon Terrains: Implications For Arctic Geosystem In Transition

    NASA Astrophysics Data System (ADS)

    Fortier, D.; Godin, E.; Lévesque, E.; Veillette, A.

    2014-12-01

    Subsurface thermal erosion is triggered by convective heat transfers between flowing water and permafrost. For inland ice-wedge polygon terrains, heat advection due to infiltration of run-off in the massive ice wedges and the ice-rich upper portion of permafrost creates sink holes and networks of interconnected tunnels in the permafrost. Mass movements such as collapse of tunnel's roof, retrogressive thaw-slumping along exposed permafrost and active layer detachment slides lead to the development of extensive gully networks in the landscape. These gullies drastically change the hydrology of ice-wedge polygon terrains and the fluxes of heat, water, sediment and carbon within the permafrost geosystem. Exportation of sediments by fluvial processes within gullies are positive mechanical feed-back effects that keep gully channels active over decades. Along gully margins, drainage of disturbed polygons and ponds, slope drainage, soil consolidation, plant colonization of disturbed gully slopes and wet to mesic plant succession of drained polygons change the thermal properties of the active layer and create negative feedback effects that stabilize active erosion processes and promote permafrost recovery in gully slopes and adjacent disturbed polygons. On Bylot Island (Nunavut), over 40 gullies were mapped and monitored to characterize gully geomorphology, thermal and mechanical processes of gully erosion, rates of gully erosion over time within different sedimentary deposits, total volume of eroded permafrost at the landscape scale and gully hydrology. We conducted field and laboratory experiments to quantify heat convection processes and speed of ice wedge ablation in order to derive empirical equations to develop a numerical, fully-coupled, heat and mass (water) transfer model of ice-wedge thermal erosion. We used data collected over 10 years of geomorphological gully monitoring, regional climate scenarios, our physics-based numerical thermal erosion model and our field

  9. Behavior of the Siemens Virtual Wedge following an interruption to beam delivery.

    PubMed

    Richmond, N D; Walker, C P

    2003-01-01

    Investigations were made into the beam profile shape and dose delivered by the Siemens Virtual Wedge trade mark under standard operational conditions compared with those following delivery interruption on two Siemens Primus linear accelerators (Type 7445 and 8067) running different versions of control software (7.2 and 7.0, respectively). The shape of the Virtual Wedge trade mark profiles was found to be unaffected by beam delivery interruption. An increase in the dose delivered to the central axis was found when delivery was interrupted and subsequently resumed using information recorded in a recall data file on one of the accelerators. This dose increase was attributed to a difference in delivered monitor units recorded in the recall data file compared to those displayed on the linear accelerator control console.

  10. Laser Oscillator Incorporating a Wedged Polarization Rotator and a Porro Prism as Cavity Mirror

    NASA Technical Reports Server (NTRS)

    Li, Steven

    2011-01-01

    A laser cavity was designed and implemented by using a wedged polarization rotator and a Porro prism in order to reduce the parts count, and to improve the laser reliability. In this invention, a z-cut quartz polarization rotator is used to compensate the wavelength retardance introduced by the Porro prism. The polarization rotator rotates the polarization of the linear polarized beam with a designed angle that is independent of the orientation of the rotator. This unique property was used to combine the retardance compensation and a Risley prism to a single optical component: a wedged polarization rotator. This greatly simplifies the laser alignment procedure and reduces the number of the laser optical components.

  11. Wedge factor dependence with depth and field size for fast neutron beams.

    PubMed

    Popescu, Alina; Risler, Ruedi

    2003-07-21

    The dependence of the wedge factors (WFs) on field size (FS) and depth for a fast neutron beam has been investigated. In a previous study (Popescu et al 1999 Med. Phys. 26 541), a method was presented that allows a simple and accurate way of calculating the wedge-factor dependence on FS and depth in the case of a photon beam. The validity of a similar approach is tested in the present study for neutron beam dosimetry. The clinical neutron therapy system at the University of Washington (UW) has a flattening filter assembly consisting of two filters: a small field filter and a large field filter. Despite this complication, the approach presented in Popescu et al (1999 Med. Phys. 26 541) can be used to describe the WF dependence on FS and depth (d).

  12. Probing the two-Higgs-doublet wedge region with charged Higgs boson decays to boosted jets

    NASA Astrophysics Data System (ADS)

    Pedersen, Keith; Sullivan, Zack

    2017-02-01

    Two-Higgs-doublet extensions of the standard model, such as supersymmetry, predict the existence of charged Higgs bosons. We explore the reach for TeV-scale charged Higgs bosons through their associated production with top quarks, and their decay to boosted top jets and μx -tagged boosted bottom jets, at a 14 TeV CERN Large Hadron Collider and at a 100 TeV Future Circular Collider. In particular, we show the moderate tan β "wedge" region of parameter space cannot be probed at the Large Hadron Collider for TeV-scale H± because the cross section is too small. However, a 100 TeV future proton collider can close the wedge region below 2 TeV, and search for H± up to 6 TeV.

  13. A creep model for austenitic stainless steels incorporating cavitation and wedge cracking

    NASA Astrophysics Data System (ADS)

    Mahesh, S.; Alur, K. C.; Mathew, M. D.

    2011-01-01

    A model of damage evolution in austenitic stainless steels under creep loading at elevated temperatures is proposed. The initial microstructure is idealized as a space-tiling aggregate of identical rhombic dodecahedral grains, which undergo power-law creep deformation. Damage evolution in the form of cavitation and wedge cracking on grain-boundary facets is considered. Both diffusion- and deformation-driven grain-boundary cavity growth are treated. Cavity and wedge-crack length evolution are derived from an energy balance argument that combines and extends the models of Cottrell (1961 Trans. AIME 212 191-203), Williams (1967 Phil. Mag. 15 1289-91) and Evans (1971 Phil Mag. 23 1101-12). The time to rupture predicted by the model is in good agreement with published experimental data for a type 316 austenitic stainless steel under uniaxial creep loading. Deformation and damage evolution at the microscale predicted by the present model are also discussed.

  14. Soil carbon sequestration is a climate stabilization wedge: comments on Sommer and Bossio (2014).

    PubMed

    Lassaletta, Luis; Aguilera, Eduardo

    2015-04-15

    Sommer and Bossio (2014) model the potential soil organic carbon (SOC) sequestration in agricultural soils (croplands and grasslands) during the next 87 years, concluding that this process cannot be considered as a climate stabilization wedge. We argue, however, that the amounts of SOC potentially sequestered in both scenarios (pessimistic and optimistic) fulfil the requirements for being considered as wedge because in both cases at least 25 GtC would be sequestered during the next 50 years. We consider that it is precisely in the near future, and meanwhile other solutions are developed, when this stabilization effort is most urgent even if after some decades the sequestration rate is significantly reduced. Indirect effects of SOC sequestration on mitigation could reinforce the potential of this solution. We conclude that the sequestration of organic carbon in agricultural soils as a climate change mitigation tool still deserves important attention for scientists, managers and policy makers.

  15. On the shape of a droplet in a wedge: new insight from electrowetting.

    PubMed

    Baratian, D; Cavalli, A; van den Ende, D; Mugele, F

    2015-10-21

    The equilibrium morphology of liquid drops exposed to geometric constraints can be rather complex. Even for simple geometries, analytical solutions are scarce. Here, we investigate the equilibrium shape and position of liquid drops confined in the wedge between two solid surfaces at an angle α. Using electrowetting, we control the contact angle and thereby manipulate the shape and the equilibrium position of aqueous drops in ambient oil. In the absence of contact angle hysteresis and buoyancy, we find that the equilibrium shape is given by a truncated sphere, at a position that is determined by the drop volume and the contact angle. At this position, the net normal force between drop and the surfaces vanishes. The effect of buoyancy gives rise to substantial deviations from this equilibrium configuration which we discuss here as well. We eventually show how the geometric constraint and electrowetting can be used to position droplets inside a wedge in a controlled way, without mechanical actuation.

  16. Wightman function and scalar Casimir densities for a wedge with two cylindrical boundaries

    SciTech Connect

    Saharian, A.A. Tarloyan, A.S.

    2008-07-15

    Wightman function, the vacuum expectation values of the field square and the energy-momentum tensor are investigated for a massive scalar field with general curvature coupling parameter inside a wedge with two coaxial cylindrical boundaries. It is assumed that the field obeys Dirichlet boundary condition on bounding surfaces. The application of a variant of the generalized Abel-Plana formula enables to extract from the expectation values the contribution corresponding to the geometry of a wedge with a single shell and to present the interference part in terms of exponentially convergent integrals. The local properties of the vacuum are investigated in various asymptotic regions of the parameters. The vacuum forces acting on the boundaries are presented as the sum of self-action and interaction terms. It is shown that the interaction forces between the separate parts of the boundary are always attractive. The generalization to the case of a scalar field with Neumann boundary condition is discussed.

  17. Study of Cavitation in Wakes of Circular Cylinders and Symmetric Wedges Using X-ray Densitometry

    NASA Astrophysics Data System (ADS)

    Koot, Joachim; Wu, Juliana; Ganesh, Harish; Ceccio, Steven

    2016-11-01

    Cavitation in wakes behind canonical objects can exhibit variation in Strouhal number with a reduction in cavitation number. Circular cylinders of two diameters and symmetric wedges with a wedge angle of 15, 30, and 60 degrees are used to study cavitation in their wakes using X-ray densitometry. Using high speed video and X-ray densitometry, the nature of cavitation is studied in near-wake and a part of the far-wake region. In addition, acoustic measurements are also carried out to understand the spectral content of such wake cavities. Based on void fraction flow field and high-speed video measurements, the effect of cavitation on the Kármán vortex street spacing in the far wake region is studied. The results are the interpreted to explain the physical mechanisms responsible for the observed change in Strouhal number. Office of Naval Research.

  18. Opening-wedge osteotomy for angular deformities of long bones in children.

    PubMed

    Scheffer, M M; Peterson, H A

    1994-03-01

    Mild angular deformities associated with a mild limb-length discrepancy of long bones in children can be treated effectively with opening-wedge osteotomy with insertion of a specially prepared autogenous tricortical iliac-crest bone graft and with minimum or no internal fixation. Thirty-one osteotomies in twenty-six children satisfactorily corrected the deformities so that the angulation and length of the bone were comparable with the values on the normal, contralateral side. Physeal arrest or ipsilateral excision of a physeal bar was performed either concomitantly or at a separate operation in twenty-one of the twenty-six patients, to aid in the treatment of the limb-length discrepancy. Opening-wedge osteotomy is applicable for correction when the angular deformity is 25 degrees or less and the limb-length discrepancy is, or will be, twenty-five millimeters or less at maturity.

  19. [Optimization of treatment of wedge-shaped tooth defects with hyperesthesia].

    PubMed

    Bulgakova, A I; Islamova, D M; Valeev, I V; Davydova, S V

    2013-01-01

    Development of tooth wedge-shaped defect leads to a gradual loss of hard tissue and is characterized by pain. Most often patients complain of pain and aesthetic defect that adversely affects the emotional status and quality of life. Search for adequate means and methods of treatment providing increased resistance of dental hard tissues and reducing hyperesthesia is challenging for dentists. Wedge-shaped defect and hyperesthesia as concomitant symptom was found in the city of Ufa in the 5.65 and 63.0% of dental patients, respectively. Analysis of the questionnaires revealed a relationship between the sociological parameters (gender, age, profession) and the patient's quality of life. Improvement of all clinical manifestations was observed in the result of complex treatment.

  20. Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets

    NASA Astrophysics Data System (ADS)

    Gu, Lin; Sigle, Wilfried; Koch, Christoph T.; Ögüt, Burcu; van Aken, Peter A.; Talebi, Nahid; Vogelgesang, Ralf; Mu, Jianlin; Wen, Xiaogang; Mao, Jian

    2011-05-01

    Using energy-filtered transmission electron microscopy we measured surface-plasmon resonances of gold nanoplatelets with different shapes and edge lengths at high spatial resolution. We find equidistant maxima of the energy-loss probability along the platelet edges. The plasmon dispersion of the different geometries is very similar, i.e., hardly dependent on specimen shape. The experimental results are verified by means of finite-difference time-domain calculations which reveal the presence of wedge-plasmon polaritons propagating along the platelet edges. At platelet corners, apart from radiative losses, wedge-plasmon polaritons are partially reflected or transmitted to neighboring edges. The interference of all these contributions leads to the observed plasmon resonance modes. This is an essential step towards a thorough understanding of plasmon eigenmodes in prismatic nanoplatelets.

  1. Determination of ordinary and extraordinary refractive indices of nematic liquid crystals by using wedge cells

    NASA Astrophysics Data System (ADS)

    Kędzierski, J.; Raszewski, Z.; Kojdecki, M. A.; Kruszelnicki-Nowinowski, E.; Perkowski, P.; Piecek, W.; Miszczyk, E.; Zieliński, J.; Morawiak, P.; Ogrodnik, K.

    2010-06-01

    A new accurate and fast interference method for determining ordinary and extraordinary refractive indices of nematic liquid crystals is presented and discussed. The method relies on microscopic measurements of distances between interference fringes appearing in polarised parallel coherent monochromatic light beam transmitted normally to the surfaces through a wedge cell filled with a nematic. Both glass plates confining the cell are coated with a partly transparent thin film of metal which is deposited by evaporation in vacuum. Owing to the multiple reflections between the surfaces and a small edge angle, the interference fringes observed near the wedge apex edge are sharp and equidistant. To apply this method one needs only small amount of an investigated liquid crystal. Basic mathematical formulae and results of an experiment are briefly discussed.

  2. High-energy rate forgings of wedges. Characterization of processing conditions

    SciTech Connect

    Reynolds, Thomas Bither; Everhart, Wesley; Switzner, Nathan T; Balch, Dorian K.; San Marchi, Christopher W.

    2014-05-01

    The wedge geometry is a simple geometry for establishing a relatively constant gradient of strain in a forged part. The geometry is used to establish gradients in microstructure and strength as a function of strain, forging temperature, and quenching time after forging. This geometry has previously been used to benchmark predictions of strength and recrystallization using Sandias materials model for type 304L austenitic stainless steel. In this report, the processing conditions, in particular the times to forge and quench the forged parts, are summarized based on information recorded during forging on June 18, 2013 of the so-called wedge geometry from type 316L and 21Cr-6Ni-9Mn austenitic stainless steels.

  3. Development and verification of a cementless novel tapered wedge stem for total hip arthroplasty.

    PubMed

    Faizan, Ahmad; Wuestemann, Thies; Nevelos, Jim; Bastian, Adam C; Collopy, Dermot

    2015-02-01

    Most current tapered wedge hip stems were designed based upon the original Mueller straight stem design introduced in 1977. These stems were designed to have a single medial curvature and grew laterally to accommodate different sizes. In this preclinical study, the design and verification of a tapered wedge stem using computed tomography scans of 556 patients are presented. The computer simulation demonstrated that the novel stem, designed for proximal engagement, allowed for reduced distal fixation, particularly in the 40-60 year male population. Moreover, the physical micromotion testing and finite element analysis demonstrated that the novel stem allowed for reduced micromotion. In summary, preclinical data suggest that the computed tomography based stem design described here may offer enhanced implant fit and reduced micromotion.

  4. 2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranada, Felix A.

    2014-01-01

    This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF).

  5. Continuous transformation of a -1/2 wedge disclination line to a +1/2 one

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun-Ichi

    2010-04-01

    It is known that, in the order-parameter space S2/Z2 (a typical example being a uniaxial nematic liquid crystal in three dimensions), a -1/2 wedge disclination line and a +1/2 one are topologically equivalent and can thus be transformed continuously into each other. Here we report the realization of this transformation in a simulation of a cholesteric blue phase under an electric field.

  6. Equal inclination interference principles in a rectangular cavity and in an isosceles wedge

    NASA Astrophysics Data System (ADS)

    Zhou, Guo-Quan; Sui, Shi-Xian

    1994-09-01

    We introduce the principles of multiple-beam interference in two optical interference structures--the rectangular cavity and the isosceles wedge with a large vertex angle--and prove that they both meet the requirements of interference. We also explain the equivalent and complementary effects of these two structures to Fabry-Perot interference technology and discuss the distinctive characteristics and the possibility of application. Furthermore, we display our initial experimental results.

  7. Plastic deformation drives wrinkling, saddling and wedging of annular bilayer nanostructures

    PubMed Central

    Cho, Jeong-Hyun; Datta, Dibakar; Park, Si-Young; Shenoy, Vivek B.; Gracias, David H.

    2010-01-01

    We describe the spontaneous wrinkling, saddling, and wedging of metallic, annular bilayer nanostructures driven by grain coalescence in one of the layers. Experiments revealed these different outcomes based on the dimensions of the annuli and we find that the essential features are captured using finite element simulations of the plastic deformation in the metal bilayers. Our results show that the dimensions and nanomechanics associated with the plastic deformation of planar nanostructures can be important in forming complex three dimensional nanostructures. PMID:21090597

  8. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges

    PubMed Central

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-01-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10−3 S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10−1 S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front. PMID:27386526

  9. Spatial variability of E. coli in an urban salt-wedge estuary.

    PubMed

    Jovanovic, Dusan; Coleman, Rhys; Deletic, Ana; McCarthy, David

    2017-01-15

    This study investigated the spatial variability of a common faecal indicator organism, Escherichia coli, in an urban salt-wedge estuary in Melbourne, Australia. Data were collected through comprehensive depth profiling in the water column at four sites and included measurements of temperature, salinity, pH, dissolved oxygen, turbidity, and E. coli concentrations. Vertical variability of E. coli was closely related to the salt-wedge dynamics; in the presence of a salt-wedge, there was a significant decrease in E. coli concentrations with depth. Transverse variability was low and was most likely dwarfed by the analytical uncertainties of E. coli measurements. Longitudinal variability was also low, potentially reflecting minimal die-off, settling, and additional inputs entering along the estuary. These results were supported by a simple mixing model that predicted E. coli concentrations based on salinity measurements. Additionally, an assessment of a sentinel monitoring station suggested routine monitoring locations may produce conservative estimates of E. coli concentrations in stratified estuaries.

  10. Dose conformation to the spine during palliative treatments using dynamic wedges

    SciTech Connect

    Ormsby, Matthew A.; Herndon, R. Craig; Kaczor, Joseph G.

    2013-07-01

    Radiation therapy is commonly used to alleviate pain associated with metastatic disease of the spine. Often, isodose lines are manipulated using dynamic or physical wedges to encompass the section of spine needing treatment while minimizing dose to normal tissue. We will compare 2 methods used to treat the entire thoracic spine. The first method treats the thoracic spine with a single, nonwedged posterior-anterior (PA) field. Dose is prescribed to include the entire spine. Isodose lines tightly conform to the top and bottom vertebrae, but vertebrae between these 2 received more than enough coverage. The second method uses a combination of wedges to create an isodose line that mimics the curvature of the thoracic spine. This “C”-shaped curvature is created by overlapping 2 fields with opposing dynamic wedges. Machine constraints limit the treatment length and therefore 2 isocenters are used. Each of the 2 PA fields contributes a portion of the total daily dose. This technique creates a “C”-shaped isodose line that tightly conforms to the thoracic spine, minimizing normal tissue dose. Spinal cord maximum dose is reduced, as well as mean dose to the liver, esophagus, and heart.

  11. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Panel test articles included a metallic separation bolt imbedded in the compression-pad and heat shield materials, resulting in a circular protuberance over a flat plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.

  12. The self-interaction of a fluid interface, the wavevector dependent surface tension and wedge filling.

    PubMed

    Parry, Andrew O; Rascón, Carlos

    2011-01-12

    We argue that whenever an interface, separating bulk fluid phases, adopts a non-planar configuration (induced by a confining geometry or thermal fluctuations, say), the energy cost of it will contain a non-local self-interaction term. For systems with short-ranged forces and Ising symmetry, we determine the self-interaction by integrating out bulk-like degrees of freedom from a more microscopic Landau-Ginzburg-Wilson model. The self-interaction can be written in a simple diagrammatic form involving integrals over effective two-body forces acting at the interface and consistently accounts for a number of known features of the microscopic model, including the wavevector dependence of the surface tension describing the fluctuations of a near planar interface. When applied to wedge filling transitions, the self-interaction describes the attraction between the wetting films on either side of the wedge. We show that, for sufficiently acute wedges, this can alter the order of the filling phase transition.

  13. Viscid-inviscid interaction associated with incompressible flow past wedges at high Reynolds number

    NASA Technical Reports Server (NTRS)

    Warpinski, N. R.; Chow, W. L.

    1977-01-01

    An analytical method is suggested for the study of the viscid inviscid interaction associated with incompressible flow past wedges with arbitrary angles. It is shown that the determination of the nearly constant pressure (base pressure) prevailing within the near wake is really the heart of the problem, and the pressure can only be established from these interactive considerations. The basic free streamline flow field is established through two discrete parameters which adequately describe the inviscid flow around the body and the wake. The viscous flow processes such as the boundary layer buildup, turbulent jet mixing, and recompression are individually analyzed and attached to the inviscid flow in the sense of the boundary layer concept. The interaction between the viscous and inviscid streams is properly displayed by the fact that the aforementioned discrete parameters needed for the inviscid flow are determined by the viscous flow condition at the point of reattachment. It is found that the reattachment point behaves as a saddle point singularity for the system of equations describing the recompressive viscous flow processes, and this behavior is exploited for the establishment of the overall flow field. Detailed results such as the base pressure, pressure distributions on the wedge, and the geometry of the wake are determined as functions of the wedge angle.

  14. Dose conformation to the spine during palliative treatments using dynamic wedges.

    PubMed

    Ormsby, Matthew A; Herndon, R Craig; Kaczor, Joseph G

    2013-01-01

    Radiation therapy is commonly used to alleviate pain associated with metastatic disease of the spine. Often, isodose lines are manipulated using dynamic or physical wedges to encompass the section of spine needing treatment while minimizing dose to normal tissue. We will compare 2 methods used to treat the entire thoracic spine. The first method treats the thoracic spine with a single, nonwedged posterior-anterior (PA) field. Dose is prescribed to include the entire spine. Isodose lines tightly conform to the top and bottom vertebrae, but vertebrae between these 2 received more than enough coverage. The second method uses a combination of wedges to create an isodose line that mimics the curvature of the thoracic spine. This "C"-shaped curvature is created by overlapping 2 fields with opposing dynamic wedges. Machine constraints limit the treatment length and therefore 2 isocenters are used. Each of the 2 PA fields contributes a portion of the total daily dose. This technique creates a "C"-shaped isodose line that tightly conforms to the thoracic spine, minimizing normal tissue dose. Spinal cord maximum dose is reduced, as well as mean dose to the liver, esophagus, and heart.

  15. Shock Wave Boundary Layer Interaction Mechanism on a Double Wedge Geometry

    NASA Astrophysics Data System (ADS)

    Celik, Bayram; Barada, Mohammad Adel El Hajj Ali; Durna, Ahmet Selim

    2015-11-01

    A hypersonic test series by Swantek & Austin report complex shock wave boundary layer interaction mechanisms and unsteady surface heat flux from a double wedge geometry in a low enthalpy Mach 7 flow. In order to understand the physics of the flow and the heat transfer, we study the flow computationally and compare the results for the double wedge geometries, whose second angle is higher and lower than the maximum deflection angle at Mach 7. Apart from the numbers of comprehensive computational studies on the subject available in open literature, our study aims to describe the flow physics by taking the influence of both boundary layers that are formed on the two walls of the wedge into account. In addition to describing the flow and heat transfer mechanisms, we investigate the time for the flows to reach steady state. We evaluate the interaction mechanisms in term of instant and time average surface heat flux distributions. We perform all computations using a finite volume based compressible Navier-Stokes solver, rhoCentralFoam, which is one of the several compressible flow solvers of an open source software, openFOAM.

  16. Computational analysis of asymmetric water entry of wedge and ship section at constant velocity

    NASA Astrophysics Data System (ADS)

    Rahaman, Md. Mashiur; Ullah, Al Habib; Afroz, Laboni; Shabnam, Sharmin; Sarkar, M. A. Rashid

    2016-07-01

    Water impact problems receive much attention due to their short duration and large unsteady component of hydrodynamic loads. The effect of water entry has several important applications in various aspects of the naval field. Significant attention has been given to various water entry phenomena such as ship slamming, planning hulls, high-speed hydrodynamics of seaplanes, surface-piercing propellers and the interaction of high-speed liquid drops with structural elements. Asymmetric water entry may be caused by various natural phenomena such as weather conditions or strong winds. Since the determination of hydrodynamic impact load plays a vital role in designing safe and effcient vessels, an accurate and reliable prediction method is necessary to investigate asymmetric water entry problems. In this paper, water entry of a two-dimensional wedge and ship section at constant velocity in asymmetric condition will be analysed numerically and the effects of asymmetric impact on the velocity and pressure distribution will be discussed. The finite volume method is employed to solve the dynamic motion of the wedge in two-phase flow. During the water entry, the air and water interface is described implicitly by the volume of fluid (VOF) scheme. The numerical code and method was first validated for symmetric condition by one of the present author is applied for asymmetric wedge and ship section. The free surface, velocity and pressure distribution for asymmetric water entry are investigated and visualized with contour plots at different time steps.

  17. 3D Surgical Printing Cutting Guides for Open-Wedge High Tibial Osteotomy: Do It Yourself.

    PubMed

    Pérez-Mañanes, Rubén; Burró, Juan Arnal; Manaute, Jose Rojo; Rodriguez, Francisco Chana; Martín, Javier Vaquero

    2016-11-01

    Opening wedge osteotomy has recently gained popularity, thanks to the recent implementation of locking plates, which have shown equivalent stability with greater reproducibility, accuracy, and longevity than the closing wedge techniques and a lower prosthetic conversion rate. We present a new "do-it-yourself" cutting guides system for tibial opening osteotomy. Using a conventional computed tomography digital image, a positioning guide and wedge spacers were printed in three dimensions (3D) for implementing the osteotomy and obtaining the planned correction. The surgeon makes the whole process in a do-it-yourself style. This new technique was used in eight cases. Previous opening osteotomies with the standard technique were used as control (20 cases). Surgical time, fluoroscopic time, and accuracy of the axial correction were measured. The use of a custom positioning guide reduced the surgical (31 minutes less) and fluoroscopic times (6.9 times less) while achieving a high-axis correction accuracy compared with the standard technique. Digitally planned and executed osteotomies under 3D printed osteotomy positioning guides help the surgeon to minimize human error while reducing surgical time. The reproducibility of this technique is very robust, allowing a transfer of the steps planned in a virtual environment to the operating table.

  18. Base pressure associated with incompressible flow past wedges at high Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Warpinski, N. R.; Chow, W. L.

    1979-01-01

    A model is suggested to study the viscid-inviscid interaction associated with steady incompressible flow past wedges of arbitrary angles. It is shown from this analysis that the determination of the nearly constant pressure (base pressure) prevailing within the near wake is really the heart of the problem and this pressure can only be determined from these interactive considerations. The basic free streamline flow field is established through two discrete parameters which should adequately describe the inviscid flow around the body and the wake. The viscous flow processes such as boundary-layer buildup along the wedge surface, jet mixing, recompression, and reattachment which occurs along the region attached to the inviscid flow in the sense of the boundary-layer concept, serve to determine the aforementioned parameters needed for the establishment of the inviscid flow. It is found that the point of reattachment behaves as a saddle point singularity for the system of equations describing the viscous recompression process. Detailed results such as the base pressure, pressure distributions on the wedge surface, and the wake geometry as well as the influence of the characteristic Reynolds number are obtained. Discussion of these results and their comparison with the experimental data are reported.

  19. Outcomes of Opening Wedge Osteotomy to Correct Angular Deformity in Small Finger Clinodactyly

    PubMed Central

    Piper, Samantha L.; Goldfarb, Charles A.

    2015-01-01

    Purpose To evaluate the outcomes and complications in a series of children with clinodactyly treated with opening wedge osteotomy of the abnormal phalanx. Methods We performed a retrospective review of all children with clinodactyly treated at our institution with opening wedge osteotomy of the abnormal middle phalanx between 2003 and 2013. Patients with concomitant pathology or prior surgery in the affected finger were excluded. Pre and postoperative clinical angle, radiographic angle, digital range of motion, and pain were compared, and complications were recorded. Results Thirteen digits in 9 patients were included. All had greater than 20° of preoperative clinical angulation (mean 36°). Mean age at the time of surgery was 11 years and mean duration of follow-up was 25 months (12–43 months). All digits had significant improvement (mean 32°) in clinical and radiographic angles after surgery. This improvement was maintained at final follow-up in 12 digits. Six patients had pain preoperatively and no patient had pain postoperatively. One digit had a recurrent deformity at final follow-up, and 3 digits developed stiffness at the distal interphalangeal joint. Conclusions Opening wedge osteotomy is an effective treatment for angulation in children with clinodactyly. We counsel families regarding the risk of distal interphalangeal joint stiffness. Level of Evidence: Therapeutic Level IV PMID:25754787

  20. Integrated waste management as a climate change stabilisation wedge for the Maltese islands.

    PubMed

    Falzon, Clyde; Fabri, Simon G; Frysinger, Steven

    2013-01-01

    The continuous increase in anthropogenic greenhouse gas emissions occurring since the Industrial Revolution is offering significant ecological challenges to Earth. These emissions are leading to climate changes which bring about extensive damage to communities, ecosystems and resources. The analysis in this article is focussed on the waste sector within the Maltese islands, which is the largest greenhouse gas emitter in the archipelago following the energy and transportation sectors. This work shows how integrated waste management, based on a life cycle assessment methodology, acts as an effective stabilisation wedge strategy for climate change. Ten different scenarios applicable to the Maltese municipal solid waste management sector are analysed. It is shown that the scenario that is most coherent with the stabilisation wedges strategy for the Maltese islands consists of 50% landfilling, 30% mechanical biological treatment and 20% recyclable waste export for recycling. It is calculated that 16.6 Mt less CO2-e gases would be emitted over 50 years by means of this integrated waste management stabilisation wedge when compared to the business-as-usual scenario. These scientific results provide evidence in support of policy development in Malta that is implemented through legislation, economic instruments and other applicable tools.

  1. Analysis and design of wedge projection display system based on ray retracing method.

    PubMed

    Lee, Chang-Kun; Lee, Taewon; Sung, Hyunsik; Min, Sung-Wook

    2013-06-10

    A design method for the wedge projection display system based on the ray retracing method is proposed. To analyze the principle of image formation on the inclined surface of the wedge-shaped waveguide, the bundle of rays is retraced from an imaging point on the inclined surface to the aperture of the waveguide. In consequence of ray retracing, we obtain the incident conditions of the ray, such as the position and the angle at the aperture, which provide clues for image formation. To illuminate the image formation, the concept of the equivalent imaging point is proposed, which is the intersection where the incident rays are extended over the space regardless of the refraction and reflection in the waveguide. Since the initial value of the rays arriving at the equivalent imaging point corresponds to that of the rays converging into the imaging point on the inclined surface, the image formation can be visualized by calculating the equivalent imaging point over the entire inclined surface. Then, we can find image characteristics, such as their size and position, and their degree of blur--by analyzing the distribution of the equivalent imaging point--and design the optimized wedge projection system by attaching the prism structure at the aperture. The simulation results show the feasibility of the ray retracing analysis and characterize the numerical relation between the waveguide parameters and the aperture structure for on-axis configuration. The experimental results verify the designed system based on the proposed method.

  2. Body radiation exposure in breast cancer radiotherapy: Impact of breast IMRT and virtual wedge compensation techniques

    SciTech Connect

    Woo, Tony; Pignol, Jean-Philippe . E-mail: Jean-Philippe.Pignol@sw.ca; Rakovitch, Eileen; Vu, Toni; Hicks, Deanna; O'Brien, Peter; Pritchard, Kathleen

    2006-05-01

    Purpose: Recent reports demonstrate a dramatically increased rate of secondary leukemia for breast cancer patients receiving adjuvant high-dose anthracycline and radiotherapy, and that radiation is an independent factor for the development of leukemia. This study aimed to evaluate the radiation body exposure during breast radiotherapy and to characterize the factors associated with an increased exposure. Patients and Methods: In a prospective cohort of 120 women, radiation measurements were taken from four sites on the body at the time of adjuvant breast radiotherapy. Multiple regression analysis was performed to analyze patient and treatment factors associated with the amount of scattered radiation. Results: For standard 50 Gy breast radiotherapy, the minimal dose received by abdominal organs is on average 0.45 Gy, ranging from 0.06 to 1.55 Gy. The use of physical wedges as a compensation technique was the most significant factor associated with increased scattered dose (p < 0.001), resulting in approximately three times more exposure compared with breast intensity-modulated radiation therapy (IMRT) and dynamic wedge. Conclusions: The amount of radiation that is scattered to a patient's body is consistent with exposure reported to be associated with excess of leukemia. In accordance with the As Low As Reasonably Achievable (ALARA) principle, we recommend using breast IMRT or virtual wedging for the radiotherapy of breast cancer receiving high-dose anthracycline chemotherapy.

  3. Seismological evidence for a sub-volcanic arc mantle wedge beneath the Denali volcanic gap, Alaska

    USGS Publications Warehouse

    McNamara, D.E.; Pasyanos, M.E.

    2002-01-01

    Arc volcanism in Alaska is strongly correlated with the 100 km depth contour of the western Aluetian Wadati-Benioff zone. Above the eastern portion of the Wadati-Benioff zone however, there is a distinct lack of volcanism (the Denali volcanic gap). We observe high Poisson's ratio values (0.29-0.33) over the entire length of the Alaskan subduction zone mantle wedge based on regional variations of Pn and Sn velocities. High Poisson's ratios at this depth (40-70 km), adjacent to the subducting slab, are attributed to melting of mantle-wedge peridotites, caused by fluids liberated from the subducting oceanic crust and sediments. Observations of high values of Poisson's ratio, beneath the Denali volcanic gap suggest that the mantle wedge contains melted material that is unable to reach the surface. We suggest that its inability to migrate through the overlying crust is due to increased compression in the crust at the northern apex of the curved Denali fault.

  4. Extension of a double-wedged orogen potentially leads to the current South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, G.; Lavier, L. L.

    2015-12-01

    The South China Sea (SCS) is surrounded by South China on the NW, Palawan and Reed Bank on the SE, as well as several microplates, resembling a jigsaw puzzle. In an attempt to better understand its evolution, we designed simplified thermomechanical models to simulate extension of a double-wedge-shaped orogen with highlands on both sides and lowland in the center to mimic the geological condition of the proto-SCS. We imposed constant extension rates on both sides and Gaussian-shaped thermal impulse in the center. We also varied the strength of lower crust but did not explicitly incorporate mid-ocean ridges and searfloor spreading mechanisms. We currently used symmetric double-wedge, but further tests are planed for asymmetric double-wedges. Our preliminary results show that the models produced many structures that resemble those of SCS, such as 1) a series of domino or conjugate faults sitting above a subsurface detachment (or décollement), 2) exhumed domes of middle-lower crust, 3) extreme thinning of both upper crust and lower crust, and 4) propagation of extension towards NW and SE margins. Our models suggest that superimposition of these modeled characteristics produced during several phases of extension of the SCS that may be due to thermal impulsion, magmatic events, and subduction related relaxation potentially produces high resemblance of the SCS.

  5. Automatic lumbar vertebra segmentation from clinical CT for wedge compression fracture diagnosis

    NASA Astrophysics Data System (ADS)

    Ghosh, Subarna; Alomari, Raja'S.; Chaudhary, Vipin; Dhillon, Gurmeet

    2011-03-01

    Lumbar vertebral fractures vary greatly in types and causes and usually result from severe trauma or pathological conditions such as osteoporosis. Lumbar wedge compression fractures are amongst the most common ones where the vertebra is severely compressed forming a wedge shape and causing pain and pressure on the nerve roots and the spine. Since vertebral segmentation is the first step in any automated diagnosis task, we present a fully automated method for robustly localizing and segmenting the vertebrae for preparation of vertebral fracture diagnosis. Our segmentation method consists of five main steps towards the CAD(Computer-Aided Diagnosis) system: 1) Localization of the intervertebral discs. 2) Localization of the vertebral skeleton. 3) Segmentation of the individual vertebra. 4) Detection of the vertebrae center line and 5) Detection of the vertebrae major boundary points. Our segmentation results are promising with an average error of 1.5mm (modified Hausdorff distance metric) on 50 clinical CT cases i.e. a total of 250 lumbar vertebrae. We also present promising preliminary results for automatic wedge compression fracture diagnosis on 15 cases, 7 of which have one or more vertebral compression fracture, and obtain an accuracy of 97.33%.

  6. The equal limbs lateral closing wedge osteotomy for correction of cubitus varus in children.

    PubMed

    El-Adl, Wael

    2007-10-01

    Many methods have been described for correction of cubitus varus; the lateral closing-wedge osteotomy of French is the most popular. Although many authors reported successful correction, some authors since then have been critical of that osteotomy, alluding to problems with a lateral bulge or the scar. The aim of the present study is to evaluate a technique of correction of posttraumatic cubitus varus in children with an equal limbs laterally closing-wedge osteotomy of the distal humerus. From 2003 to 2006, twelve patients underwent supracondylar osteotomies for correction of cubitus varus in the Mansoura University Hospital. The average age was 8.7 years. The average follow-up was 20 months. The average preoperative carrying angle was 25 degrees varus, and this was corrected to an average of 5 degrees valgus. There was no noticeable prominence of the lateral condyle or an unsightly scar. This study shows that the equal limbs laterally closing-wedge osteotomy is simple, safe, and associated with an excellent cosmetic outcome and a low complication rate.

  7. Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge.

    PubMed

    Katayama, Ikuo; Hirauchi, Ken-ichi; Michibayashi, Katsuyoshi; Ando, Jun-ichi

    2009-10-22

    Seismic anisotropy is a powerful tool for detecting the geometry and style of deformation in the Earth's interior, as it primarily reflects the deformation-induced preferred orientation of anisotropic crystals. Although seismic anisotropy in the upper mantle is generally attributed to the crystal-preferred orientation of olivine, the strong trench-parallel anisotropy (delay time of one to two seconds) observed in several subduction systems is difficult to explain in terms of olivine anisotropy, even if the entire mantle wedge were to act as an anisotropic source. Here we show that the crystal-preferred orientation of serpentine, the main hydrous mineral in the upper mantle, can produce the strong trench-parallel seismic anisotropy observed in subduction systems. High-pressure deformation experiments reveal that the serpentine c-axis tends to rotate to an orientation normal to the shear plane during deformation; consequently, seismic velocity propagating normal to the shear plane (plate interface) is much slower than that in other directions. The seismic anisotropy estimated for deformed serpentine aggregates is an order of magnitude greater than that for olivine, and therefore the alignment of serpentine in the hydrated mantle wedge results in a strong trench-parallel seismic anisotropy in the case of a steeply subducting slab. This hypothesis is also consistent with the presence of a hydrous phase in the mantle wedge, as inferred from anomalously low seismic-wave velocities.

  8. Fifteen cases clinical analysis of wedge-shaped resection of uterus treating adenomyosis-CONSORT.

    PubMed

    Shu, ShanRong; Luo, Xin; Wang, ZhiXin; Yao, YuHong

    2016-06-01

    To investigate the improvement of dysmenorrhea and menorrhagia after wedge-shaped resection of uterus. The clinical data of 15 patients who experienced wedge-shaped resection of uterus for adenomyosis were retrospectively analyzed from September 2012 to October 2013. We use the amount of the completed soaked napkins to measure the menstrual blood volume, and the visual analog scale to evaluate the degree of dysmenorrhea. We used the 2 index to evaluate the improvement of dysmenorrhea and menorrhagia after operation. All operations were successful, no serious complication occurred. Before the operation, all 15 patients used more than 25 pieces of completed soaked napkins, after the operation, 13 patients had significantly decreased menstrual flow, the average amount of completed soaked napkins was 3.6. Meanwhile, 2 patients had no menstrual after surgery. Before the operation, among the 10 patients with severe dysmenorrhea, 9 patients had significant relief on pain, they only experienced slight pain after surgery, only 1 patient still experienced moderate pain. Two patients with slight pain had no pain after operation. Among the 3 patients with moderate pain, 2 patients experienced slight pain and 1 patient felt no pain after operation. The wedge-shaped resection of uterus is a safe and effective procedure to significantly reduce menorrhagia and alleviate the extent of dysmenorrhea, which is a promising alternative for patient who suffered from dysmenorrhea and menorrhagia for adenomyosis.

  9. 76 FR 52313 - Heavy Forged Hand Tools (i.e., Axes & Adzes, Bars & Wedges, Hammers & Sledges, and Picks...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Heavy Forged Hand Tools (i.e., Axes & Adzes, Bars & Wedges, Hammers & Sledges... AGENCY: Import Administration, International Trade Administration, Department of Commerce. SUMMARY: As...

  10. Effect of a pelvic wedge and belt on the medial and lateral hamstring muscles during knee flexion.

    PubMed

    Yoo, Won-Gyu

    2017-01-01

    [Purpose] This study developed a pelvic wedge and belt and investigated their effects on the selective activation of medial and lateral hamstring muscles during knee flexion. [Subjects and Methods] Nine adults were enrolled. The participants performed exercises without and with the pelvic wedge and belt, and the electromyographic activities of the medial and lateral hamstring muscles were recorded. [Results] The activity of the medial hamstring was increased significantly when using the pelvic wedge and belt, while the activity of the lateral hamstring did not differ significantly. [Conclusion] The pelvic wedge and belt provide a self-locked position during knee flexion in the prone position. Prone knee flexion in this position is an effective self-exercise for balanced strengthening of the medial hamstring.

  11. Effect of a pelvic wedge and belt on the medial and lateral hamstring muscles during knee flexion

    PubMed Central

    Yoo, Won-gyu

    2017-01-01

    [Purpose] This study developed a pelvic wedge and belt and investigated their effects on the selective activation of medial and lateral hamstring muscles during knee flexion. [Subjects and Methods] Nine adults were enrolled. The participants performed exercises without and with the pelvic wedge and belt, and the electromyographic activities of the medial and lateral hamstring muscles were recorded. [Results] The activity of the medial hamstring was increased significantly when using the pelvic wedge and belt, while the activity of the lateral hamstring did not differ significantly. [Conclusion] The pelvic wedge and belt provide a self-locked position during knee flexion in the prone position. Prone knee flexion in this position is an effective self-exercise for balanced strengthening of the medial hamstring. PMID:28210048

  12. Scattering of an arbitrary plane wave by a dielectric wedge: Integral equations and fields near the edge

    NASA Astrophysics Data System (ADS)

    Marx, Egon

    2007-12-01

    The behavior of the field components near the edge has been shown to be that of the static fields, which is derived here without rigor for an infinite wedge. Fields scattered by a finite dielectric wedge illuminated by an arbitrary plane monochromatic wave are computed using either singular or hypersingular integral equations (SIEs or HIEs), derived by the single integral equation method. Field components are then computed near the edge of a finite wedge. Longitudinal components of the fields behave like constants, other components of the electric field behave like those in the transverse magnetic mode, and other components of the magnetic field behave like those in the transverse electric mode. Exceptions occur when approaching the wedge along the bisector. Boundary functions and transverse field components computed with SIEs rise more sharply than predicted approaching the edge after a range in which the agreement with those computed with HIEs is good.

  13. The role of heterogeneous fluid pressures in the shape of critical-taper submarine wedges, with application to Barbados

    NASA Astrophysics Data System (ADS)

    Yeh, En-Chao; Suppe, John

    2014-05-01

    Some classic accretionary wedges such as Nankai trough and Barbados are mechanically heterogeneous based on their spatial variation in taper, showing inward decrease in surface slope α without covariation in detachment dip β. Possible sources of regional heterogeniety include variation in fluid pressure, density, cohesion and fault strength, which can be constrained by the seismic or borehole observable parameter, fluid-retention depth Z_FRD, below which compaction is strongly diminished. In particular the Hubbert-Rubey fluid-pressure weakening can be addressed as (1-lambda)~0.6Z_FRD/Z. We recast the heterogeneous critical-taper wedge theory of Dahlen (1990) in terms of the observable Z_FRD/H, where H is the detachment depth, which allows for real world applications. For example, seismic velocity and borehole data from the Barbados shows that the fluid-retention depth Z_FRD is approximately constant and Z_FRD/H decreases inward. This leads to a factor of four inward decreases in wedge strength, dominated by fluid pressure, with only a second-order role for density and cohesion. An inward decrease in wedge strength should by itself produce an increase in taper, therefore the observed decreasing taper must be dominated by decreasing fault strength mu_b* from 0.03 to 0.01. Static fluid-pressures along the detachment in equilibrium with the overlying wedge predict the observed wedge geometry well, given a constant intrinsic friction coefficient mu_b=0.15.

  14. Laparoscopic wedge resection and partial nephrectomy--the Washington University experience and review of the literature.

    PubMed

    McDougall, E M; Elbahnasy, A M; Clayman, R V

    1998-01-01

    Open partial nephrectomy is an accepted form of treatment for a variety of benign conditions and for localized renal cell carcinoma. To date, there is limited experience with the clinical application of laparoscopic partial nephrectomy and wedge resection for benign and malignant disease of the kidney. Herein, we report our clinical experience with laparoscopic partial nephrectomy and a review of the current literature. Twelve patients (27-81 years) have undergone laparoscopic wedge resection (3) or attempted polar partial nephrectomy (9) since 1993. In the group of 12 patients, 5 had a mass suspicious for a malignancy, 4 patients had symptomatic polar calyceal dilation with or without stone disease, and 3 patients had an atrophic or hydronephrotic upper pole moiety. Among the patients in the polar nephrectomy group, a third were converted to an open procedure. The remaining 6 patients had a mean operative time of 6.5 hours (5.7-8.3 hours). These patients resumed their oral intake on average 0.8 days postoperatively. In the 2 patients with a mass, the final pathology was oncocytoma (1), and xanthogranulomatous reaction in a renal cyst (1). Postoperative complications included a nephrocutaneous fistula which was endoscopically fulgurated, a retroperitoneal urinoma which was percutaneously drained, and a two-day bout of ileus. The mean hospital stay was 5.3 days (2-9). Their full convalescence was completed in a mean of 4.2 weeks (2-8). Three patients underwent a wedge resection for a superficial < 2 cm mass. The average operative time in this group was 3.5 hours (2-5.4). The mean time to resuming oral intake was 0.7 days (0.3-0.7). The final pathology was oncocytoma (1), oncocytic renal cell cancer (1), and old infarction (1); none of the patients had any complications. The mean hospital stay was 2.7 days (2-4). Convalescence was completed in 4 weeks (range 1-8). Laparoscopic wedge resection and polar partial nephrectomy are feasible, albeit currently tedious

  15. Laparoscopic Wedge Resection and Partial Nephrectomy - The Washington University Experience and Review of the Literature

    PubMed Central

    Elbahnasy, Abdelhamid M.; Clayman, Ralph V.

    1998-01-01

    Open partial nephrectomy is an accepted form of treatment for a variety of benign conditions and for localized renal cell carcinoma. To date, there is limited experience with the clinical application of laparoscopic partial nephrectomy and wedge resection for benign and malignant disease of the kidney. Herein, we report our clinical experience with laparoscopic partial nephrectomy and a review of the current literature. Twelve patients (27 - 81 years) have undergone laparoscopic wedge resection (3) or attempted polar partial nephrectomy (9) since 1993. In the group of 12 patients, 5 had a mass suspicious for a malignancy, 4 patients had symptomatic polar calyceal dilation with or without stone disease, and 3 patients had an atrophic or hydronephrotic upper pole moiety. Among the patients in the polar nephrectomy group, a third were converted to an open procedure. The remaining 6 patients had a mean operative time of 6.5 hours (5.7 - 8.3 hours). These patients resumed their oral intake on average 0.8 days postoperatively. In the 2 patients with a mass, the final pathology was oncocytoma (1), and xanthogranulomatous reaction in a renal cyst (1). Postoperative complications included a nephrocutaneous fistula which was endoscopically fulgurated, a retroperitoneal urinoma which was percutaneously drained, and a two-day bout of ileus. The mean hospital stay was 5.3 days (2-9). Their full convalescence was completed in a mean of 4.2 weeks (2 - 8). Three patients underwent a wedge resection for a superficial < 2 cm mass. The average operative time in this group was 3.5 hours (2 - 5.4). The mean time to resuming oral intake was 0.7 days (0.3 - 0.7). The final pathology was oncocytoma (1), oncocytic renal cell cancer (1), and old infarction (1); none of the patients had any complications. The mean hospital stay was 2.7 days (2- 4). Convalescence was completed in 4 weeks (range 1-8). Laparoscopic wedge resection and polar partial nephrectomy are feasible, albeit currently

  16. Zig-Zag Thermal-Chemical 3-D Instabilities in the Mantle Wedge: Numerical Study

    NASA Astrophysics Data System (ADS)

    Zhu, G.; Gerya, T. V.; Arcay, D.; Yuen, D. A.

    2008-12-01

    To understand the plume initiation and propagation it is important to understand whether small-scale convection is occurring under the back-arc in the Low Viscosity Wedge(LVW) and its implication on the island-arc volcanism. Honda et al. [Honda and Saito, 2003; Honda, et al., 2007]) already deployed small- scale convection in the Low Viscosity Wedge (LVW) above a subducting slab with kinematically imposed velocity boundary condition. They have suggested that a roll (finger)-like pattern of hot and cold anomalies emerges in the mantle wedge above the subducting slab. Here, we perform three-dimensional coupled petrological-thermomechanical numerical simulations of intraoceanic one-sided subduction with spontaneously bending retreating slab characterized by weak hydrated upper interface by using multigrid approach combined with characteristics-based marker-in-cell method with conservative finite difference schemes[Gerya and Yuen, 2003a], to investigate the 3D instabilities above the slab and lateral variation along the arc. Our results show that water released from subducting slab through dehydration reactions may lower the viscosity of the mantle. It allows the existence of wave-like small-scale convection in the LVW, which is shown as roll-like structure in 2D petrological-thermomechanical numerical experiments [Gorczyk et al., 2006] using in-situ rock properties computed on the basis of Gibbs free energy minimization. However, in our 3D cases, the rolls aligning with the arc mainly occur earlier , while zig-zag small-scale thermal-chemical instabilities may episodically form above the slab at later stages, which is different from the aligning finger-like pattern in purely thermal models (Honda et al,2003;2007). Also in contrast to thermal convection chemically buoyant hydrated plumes rising from the slab in our models are actually colder then the mantle wedge [Gerya and Yuen 2003b] which also strongly modify both the convection pattern and the seismic structure in

  17. Alternating augite-plagioclase wedges in basement dolerites of Lockne impact structure, Sweden: A new shock wave-induced deformation feature

    NASA Astrophysics Data System (ADS)

    Agarwal, A.; Reznik, B.; Alva-Valdivia, L. M.; Srivastava, D. C.

    2017-03-01

    This paper reports peculiar alternating augite-plagioclase wedges in basement dolerites of Lockne impact structure, Sweden. The combined microscopic and spectroscopic studies of the micro/nanoscale wedges reveal that these are deformation-induced features. First, samples showing wedges, 12 out of 18 studied, are distributed in the impact structure within a radius of up to 10 km from the crater center. Second, the margins between the augite and labradorite wedges are sharp and the {110} prismatic cleavage of augite develops into fractures and thereafter into wedges. The fractures are filled with molten labradorite pushed from the neighboring bulk labradorite grain. Third, compared to the bulk labradorite, the dislocation density and the residual strain in the labradorite wedges are significantly higher. A possible mechanism of genesis of the wedges is proposed. The mechanism explains that passing of the shock waves in the basement dolerite induced (i) formation of microfractures in augite and labradorite; (ii) development of the augite prismatic cleavages into the wedges, which overprint the microfracture in the labradorite wedges; and (iii) thereafter, infilling of microfractures in the augite wedges by labradorite.

  18. Saltwater wedge variation in a non-anthropogenic coastal karst aquifer influenced by a strong tidal range (Burren, Ireland)

    NASA Astrophysics Data System (ADS)

    Perriquet, Marie; Leonardi, Véronique; Henry, Tiernan; Jourde, Hervé

    2014-11-01

    Spatial and temporal changes in saltwater wedges in coastal karst aquifers are still poorly understood, largely due to complex mixing processes in these heterogeneous environments, but also due to anthropogenic forcing such as pumping, which commonly affect natural variations in wedges. The purpose of this study was first to characterize the hydrodynamic functioning of a karst aquifer in an oceanic temperate climate with little anthropogenic pressure but strongly influenced by a high tidal range and second, to evaluate the extent and movements of a saltwater wedge influenced by both the tide and the natural recharge of the aquifer. Variations in specific conductivity combined with water chemistry results from six boreholes and two lakes located in the Bell Harbour catchment (western Ireland) enabled us to assess the extent of the intrusion of the saltwater wedge into the aquifer as a function of both karst recharge and tidal movements at high/low and neap/spring tidal cycles. The marked spatial disparity of the saltwater wedge was analysed as a function of both the hydrodynamic and the structural properties of the karst aquifer. Results showed that the extent of the saltwater wedge depended not only on the intrinsic properties of the aquifer but also on the relative influence of the recharge and the tide on groundwater levels, which have opposite effects. Recharge in the Burren area throughout the year is large enough to prevent saltwater intruding more than about one kilometre from the shore. A strong tidal amplitude seems to be the motor of sudden saltwater intrusion observed in the aquifer near the shore while the position of the groundwater level seems to influence the intensity of the salinity increase. Competition between recharge and the tide thus controls the seawater inputs, hence explaining temporal and spatial changes in the saltwater wedge in this coastal karst aquifer.

  19. Distant effects in bivergent orogenic belts - How retro-wedge erosion triggers resource formation in pro-foreland basins

    NASA Astrophysics Data System (ADS)

    Hoth, Silvan; Kukowski, Nina; Oncken, Onno

    2008-08-01

    Timeseries derived from two-dimensional sandbox simulations involving surface erosion are taken for the first time to be implemented into flexure calculations of foreland basins. Based on our results we highlight that orogenic systems are a four component system, consisting of a pro-foreland basin, a pro-wedge, a retro-wedge, and a retro-foreland basin. These four components are mechanically coupled via the load dependence of tectonic faulting [Mandl, G., 1988. Mechanics of tectonic faulting, 1st Edition. Elsevier, Amsterdam.] and the finite flexural rigidity of lithospheric plates [Beaumont, C., 1981. Foreland basins. Geophys. J. R. Astron. Soc. 5 (2), 291-329.]. We further demonstrate that the impact of pro-wedge erosion is most pronounced within the pro-wedge but also modifies the shape and size of the retro-wedge, which in turn changes the geometry and propagation velocity of the retro-foreland basin and vice versa. This suggests that one out of the four components of an orogenic system cannot be fully understood without recognition of the other three components. Thus, spatial separation between processes or observations does not necessarily imply their physical independence. This conceptual model is applied in a case study to the Pyrenean orogenic wedge and its Ebro and Aquitaine foreland basins. Our analysis suggests that the Pyrenean pro- and retro-wedge are mechanically coupled and that this coupling manifests itself in the migration of depocentres in both foreland basins. We finally explore implications for the formation of Mississippi Valley Type deposits.

  20. Control of structural inheritance on thrust initiation and material transfer in accretionary wedges

    NASA Astrophysics Data System (ADS)

    Leever, Karen; Geersen, Jacob; Ritter, Malte; Lieser, Kathrin; Behrmann, Jan

    2016-04-01

    Faults in the incoming sediment layer are commonly observed in subduction zone settings and well developed in the incoming plate off Sumatra. To investigate how they affect the structural development of the accretionary wedge, we conducted a series of 2D analogue tectonic experiments in which a 2 cm thick quartz sand layer on top of a thin detachment layer of glass beads was pulled against a rigid backstop by a basal conveyor belt in a 20cm wide box with glass walls. A gap at the base of the back wall avoids entrainment of the glass beads. At regular spacing of either 2.3, 5.5 or 7.8 cm (fractions of the thrust sheet length in the reference model), conjugate pairs of weakness zones dipping 60deg were created by cutting the sand layer with a thin (1 mm) metal blade. Both the undisturbed sand and the pre-cuts have an angle of internal friction of ~29o, but their cohesion is different by 50 Pa (110 Pa for the undisturbed material, 60 Pa along the pre-cuts). Friction of the glass beads is ~24deg. The experiments are monitored with high resolution digital cameras; displacement fields derived from digital image correlation are used to constrain fault activity. In all experiments, a critically tapered wedge developed with a surface slope of 7.5deg. In the reference model (no weakness zones in the input section), the position of new thrust faults is controlled by the frontal slope break. The average length of the thrust sheets is 11 cm and the individual thrusts accommodate on average 8 cm displacement each. The presence of weakness zones causes thrust initiation at a position different from the reference case, and affects their dip. For a fault spacing of 7.8 cm (or 75% of the reference thrust sheet length), every single incoming weakness zone causes the formation of a new thrust, thus resulting in thrust sheets shorter than the equilibrium case. In addition, less displacement is accommodated on each thrust. As a consequence, the frontal taper is smaller than expected

  1. The Superimposed Paleocene-Miocene Tectonics of the middle part of the Nallihan Wedge (NW Turkey)

    NASA Astrophysics Data System (ADS)

    Şahin, Murat; Yaltirak, Cenk

    2015-04-01

    In the NW Turkey, the area between the suture zones of the Rhodope-Pontide Ocean and Izmir-Ankara Ocean, and North Anatolian Fault Zone (NAFZ) and Thrace-Eskişehir Fault Zone (TEFZ) is known as the Nallıhan Wedge. The shape of Nallıhan Wedge is a 90 degree counter-clockwise rotated isosceles triangle. The northwestern boundary is a part of NAFZ and the southwestern boundary is a part of TEFZ. The 160 km-long eastern boundary is located at around Beypazarı and western corner is on the Bursa Plain. Nallıhan is situated at the centre of this isosceles triangle. While all the thrusts and folds shrink towards to the west and show an imbricate-like structure, the characteristics of the folds turn into to the open folds. Thrusts faults are locally observed as blind and almost perpendicular thrusts at the fold limbs towards to the east. The rocks of the study area show different characteristics according to their types and basins of formation. On the other hand the structural properties of these rocks display the effects of the closure of the Intra-Pontide and Izmir-Ankara Oceans in between Paleocene and Early Oligocene. During Miocene, the thrust faults reactivated and a deformation formed the NEE-SWW left lateral strike-slip faults parallel to these thrust faults. Whereas the first events are related to the closure of the branches of Neo-Tethys, the Miocene deformation is probably based on the Miocene tectonics of the Western Anatolia by the reason of equivalent age of the TEFZ. In this framework, the deformation of the Nallıhan Wedge presents significant information about the period between the evolution of Paleotectonic and Neotectonic of Turkey.

  2. Stabilization Wedges and the Management of Global Carbon for the next 50 years

    ScienceCinema

    Socolow, Robert [Princeton University, Princeton, New Jersey, United States

    2016-07-12

    More than 40 years after receiving a Ph.D. in physics, I am still working on problems where conservation laws matter. In particular, for the problems I work on now, the conservation of the carbon atom matters. I will tell the saga of an annual flow of 8 billion tons of carbon associated with the global extraction of fossil fuels from underground. Until recently, it was taken for granted that virtually all of this carbon will move within weeks through engines of various kinds and then into the atmosphere. For compelling environmental reasons, I and many others are challenging this complacent view, asking whether the carbon might wisely be directed elsewhere. To frame this and similar discussions, Steve Pacala and I introduced the 'stabilization wedge' in 2004 as a useful unit for discussing climate stabilization. Updating the definition, a wedge is the reduction of CO2 emissions by one billion tons of carbon per year in 2057, achieved by any strategy generated as a result of deliberate attention to global carbon. Each strategy uses already commercialized technology, generally at much larger scale than today. Implementing seven wedges should enable the world to achieve the interim goal of emitting no more CO2 globally in 2057 than today. This would place humanity, approximately, on a path to stabilizing CO2 at less than double the pre-industrial concentration, and it would put those at the helm in the following 50 years in a position to drive CO2 emissions to a net of zero in the following 50 years. Arguably, the tasks of the two half-centuries are comparably difficult.

  3. Experimental simulation of frost wedging-induced crack propagation in alpine rockwall

    NASA Astrophysics Data System (ADS)

    Jia, Hailiang; Leith, Kerry; Krautblatter, Michael

    2016-04-01

    Frost wedging is widely presumed to be the principal mechanism responsible for shattering jointed low-porosity rocks in high alpine rockwalls. The interaction of ice and rock physics regulates the efficacy of frost wedging. In order to better understand temporal aspects of this interaction, we present results of a series of laboratory experiments monitoring crack widening as a result of ice formation in an artificial crack (4mm wide, 80mm deep) cut 20 mm from the end of a rectangular granite block. Our results indicate that i) freezing direction plays a key role in determining the magnitude of crack widening; in short-term (1 day) experiments, maximum crack widening during top-down freezing (associated with 'autumn' conditions) was around 0.11mm, while inside-out freezing (resulting from 'spring' conditions) produced only 0.02 mm of deformation; ii) neither ice, nor water pressure (direct tension and hydraulic fracturing respectively) caused measurable irreversible crack widening during short-term tests, as the calculated maximum stress intensity at the crack tip was less than the fracture toughness of our granite sample; iii) development of ice pressure is closely related to the mechanical properties of the fracture in which it forms, and as such, the interaction of ice and rock is intrinsically dynamic; iv) irreversible crack widening (about 0.03mm) was only observed following a long-term (53 day) experiment representing a simplified transition from autumn to winter conditions. We suggest this is the result of stress corrosion aided by strong opening during freezing, and to a lesser degree by ice segregation up to one week after the initial freezing period, and downward migration of liquid water during the remainder of the test. Our results suggest the fundamental assumption of frost wedging, that rapid freezing from open ends of cracks can seal water inside the crack and thus cause damage through excessive stresses induced by volumetric expansion seems

  4. The effect of a compliant accretionary wedge on earthquake rupture and tsunamigenesis

    NASA Astrophysics Data System (ADS)

    Lotto, Gabriel; Jeppson, Tamara; Dunham, Eric; Tobin, Harold

    2016-04-01

    The 11 March 2011 Tohoku megathrust earthquake ruptured through the shallowest part of the subduction zone boundary, resulting in tens of meters of displacement at the seafloor. This extreme shallow slip generated a devastating tsunami. The elastic properties of off-fault materials have an important role in determining slip along a fault. Laboratory ultrasonic velocity measurements performed on samples of rock obtained from the area surrounding the Tohoku earthquake principal fault zone during the Japan Trench Fast Drilling Project (JFAST) have shown that shallow off-fault materials are extremely compliant - P-wave velocities of 2.0-2.4 km/s, S-wave velocities of 0.7-1.0 km/s, and shear moduli ranging from 1.0-2.2 GPa. Seismic imaging around the JFAST drill site corroborates the presence of a compliant, low-velocity frontal prism at the toe of the hanging wall. This compliant wedge is likely a fairly robust feature across the horizontal extent of the Japan Trench and may have contributed to the large amount of displacement recorded. In order to investigate the impact of compliant off fault materials on earthquake rupture and tsunamigenesis, we employ a 2-D finite difference method that models the full seismic and tsunami wavefield associated with dynamic rupture on a dipping fault in a heterogeneous medium. Our numerical method rigorously couples the elastodynamic response of the solid Earth to that of a compressible ocean in the presence of gravity. Idealized models of subduction zone earthquakes show that the presence of a compliant wedge leads to increased slip, greater seafloor displacement, and a larger tsunami. However, preliminary results for a representative Tohoku geometry were not so simple; the compliant wedge enhanced slip and seafloor deformation but only in a localized zone, and tsunami height was not significantly affected. This surprising result indicates that the details of geometry and material structure we observe in real subduction zones are

  5. Using cyclic steps on drift wedges to amend established models of carbonate platform slopes

    NASA Astrophysics Data System (ADS)

    Betzler, Christian; Lindhorst, Sebastian; Eberli, Gregor; Reijmer, John; Lüdmann, Thomas

    2015-04-01

    Hydroacoustic and sedimentological data of the western flank of Great Bahama Bank and Cay Sal Bank document how the interplay of offbank sediment export, along-slope transport, and erosion together shape facies and thickness distribution of slope deposits. The integrated data set depicts the combined product of these processes and allows formulating a comprehensive model of a periplatform drift that significantly amends established models of carbonate platform slope facies distribution and geometry. The basinward thinning wedge of the periplatform drift at the foot of the escarpment of Great Bahama Bank displays along- and down-slope variations in sedimentary architecture. Sediments consist of periplatform ooze, i.e. carbonate mud and muddy carbonate sand, coarsening basinward. In zones of lower contour current speed, depth related facies belts develop. In the upper part of the periplatform drift wedge in a water depth of 180 to 300 m and slope angles of 6° - 9° the seafloor displays a smooth surface. Parasound data indicate that this facies is characterized by a parallel layering. Basinward, the slope shows a distinct break at which the seafloor inclination diminishes to 1° to 2°. Downslope of this break, the drift wedge has a 3 - 4 km wide pervasive cover of bedforms down to a water depth of around 500 m. The steep flanks and internal stratification of the wavy bedforms face upslope, indicating upstream migration; the bedforms therefore share all the characteristics of cyclic step sedimentation. This is the first description of cyclic step sedimentation patterns in carbonate slope depositional systems. This new slope sedimentation model aids in understanding the complexity of carbonate slope sedimentation models with facies belts perpendicular and parallel to the platform margin. The new model sharply contrasts with existing slope facies models in which facies belts are solely positioned parallel to the platform margin.

  6. Earthquake occurrence processes in the Indo-Burmese wedge and Sagaing fault region

    NASA Astrophysics Data System (ADS)

    Kundu, Bhaskar; Gahalaut, V. K.

    2012-02-01

    Earthquakes in the Indo-Burmese wedge and Sagaing fault regions occur in response to the partitioning of the India-Sunda motion along these two distinct boundaries. Under the accretionary wedge of the Indo-Burmese arc, majority of the earthquakes occur in the depth range of 30-60 km and define an eastward gently dipping seismicity trend surface that coincides with the Indian slab. The dip of the slab steepens in the east direction and earthquakes occur down to a depth of 150 km, though the slab can be traced up to the 660 km discontinuity. Although these features are similar to a subduction zone, the nature of the earthquakes and our analysis of their focal mechanisms suggest that these earthquakes are of intra-slab type which occur on steep plane within the Indian plate and the sense of motion implies a northward relative motion with respect to the Sunda plate. Thus these earthquakes and the stress state do not support active subduction across the Indo-Burmese arc which is also consistent with the relative motion of India-Sunda plates. The absence of inter-plate earthquakes, lack of evidence of the occurrence of great earthquakes in the historical records and non-seismogenic nature of the plate interface under the accretionary wedge suggest that seismic hazard due to earthquakes along the plate boundary may be relatively low. However, major intra-slab earthquakes at shallow and intermediate depths may still cause damage in the sediment filled valley regions of Manipur and Cachar in India and Chittagong and Sylhet regions of Bangladesh. In the Sagaing fault region, earthquakes occur through dextral strike slip motion along the north-south oriented plane and the stress state is consistent with the plate motion across the Sagaing fault.

  7. Observations of the Columbia River salt wedge and estuarine turbidity maximum using AUVs

    NASA Astrophysics Data System (ADS)

    McNeil, C. L.; Shcherbina, A.; Litchendorf, T.; Sanford, T. B.; Martin, D.; Baptista, A. M.; Lopez, J.; Crump, B.

    2012-12-01

    We present detailed observations of the salt wedge and estuarine turbidity maxima (ETM) in the North Channel of the Columbia River estuary (OR, USA) under conditions of high river discharge during May 2012. Measurements were made using two REMUS-100 autonomous underwater vehicles (AUVs; Hydroid, Inc.) equipped with SBE-49 CTDs (Seabird-Electronics, Inc.) for water temperature and salinity, upward/downward looking ADCPs (Teledyne RDI, Inc.) for currents, and ECO Puck triplets (WET Labs, Inc.) for optical backscatter measurement of turbidity. The acoustic backscatter intensity from the ADCP was also used as a proxy measurement for suspended sediments and was found to correlate quite well with the optical backscatter measurements. Daily forecasts of tidal currents in the estuary were used to simulate the AUV path in advance of deployment to aid data collection. Repeat AUV sections were made along and across the channel during flood tide. The turbidity and height above riverbed of the bottom boundary layer was observed to increase toward the deeper waters at the center of the channel. An ETM-like feature was observed ahead of the advancing salt wedge front with locally higher turbidity levels, presumably the result of flocculation and resuspension. To visualize better the repeat section measurements we made data movies. Each frame of the movie is our best estimate of a synoptic snapshot of along-section tracer distribution at a given point in time. These snapshots were created by re-location of non-synoptic AUV measurements to account for the advection of water parcels. An example data movie showing the intrusion of the salt wedge during the flood tide will be presented.

  8. Lateral wedges alter mediolateral load distributions at the knee joint in obese individuals.

    PubMed

    Russell, Elizabeth M; Miller, Ross H; Umberger, Brian R; Hamill, Joseph

    2013-05-01

    Obesity is the primary risk factor for knee osteoarthritis (OA). Greater external knee adduction moments, surrogate measures for medial compartment loading, are present in Obese individuals and may predispose them to knee OA. Laterally wedged insoles decrease the magnitude of the external adduction moment in Obese individuals but it is unknown how they alter the center of pressure on the tibial plateau. A gait analysis was performed on 14 Obese (avg. 29.3 years; BMI range: 30.3-51.6 kg/m(2) ) and 14 lean women (avg. 26.1 years; BMI range: 20.9-24.6 kg/m(2) ) with and without a full-length, wedged insole. Computed joint angles, joint moments, and knee extensor strength values were input into a musculoskeletal model to estimate center of pressure of the contact force on the tibial plateau. Statistical significance was assessed using a two-way ANOVA to compare the main effects of group and insole condition (α = 0.05). The insole resulted in a significant (p < 0.01) lateral shift in the center of pressure location in both the Obese and Control groups (mean: 2.9 ± 0.7 and 1.5 ± 0.7 mm, respectively). The insole also significantly reduced the peak external knee adduction moment 1.88 ± 1.82 N m in the Control group (p < 0.01) and 3.62 ± 3.90 N m in the Obese group (p < 0.01). The results of this study indicate the effects of a prophylactic wedged insole for reducing the magnitude of the load on the knee's medial compartment in Obese women who are at risk for knee OA development.

  9. Hinterland-vergent tectonic wedge below the Riwat thrust, Himalayan foreland, Pakistan: Implications for hydrocarbon exploration

    SciTech Connect

    Jadoon, I.A.K.; Frisch, W.

    1997-03-01

    The Riwat thrust, with a surface trace of over 50 km, is one of the major faults in the footwall of the main boundary thrust in the Himalayan foreland of Pakistan. Surface geology shows that the Riwat thrust is a foreland-vergent thrust along which lower to middle Siwalik molasse strata are thrust southward over upper Siwalik strata. Seismic reflection interpretation shows that the Riwat thrust developed as a roof thrust of a hinterland-vergent tectonic wedge (triangle zone) underlain by evaporites. The Riwat thrust propagates upsection from depth of about 4 km at the base of the Siwalik Group. At this depth, it merges into a hinterland-vergent blind thrust that propagates upsection as a ramp from Eocambrian evaporites covering the basement at a depth of about 6 km. Bounded between this set of conjugate faults, a tectonic wedge of Eocambrian (evaporites) to Neogene strata is thrust toward the hinterland to form a triangle zone. The roof thrusts of triangles zones have been widely mapped as backthrusts in deformed mountain fronts. Hinterland motion of tectonic wedges as in the Riwat thrust triangle zone may be a feature of the fold-and-thrust belts underlain by evaporites acting as an extremely weak decollement layer. Their recognition, with a trap-forming geometry below a thrust, is important for interpreting particular fold belts and for hydrocarbon exploration. These structures could be predicted by the surface geology data where hinterland vergence of a fold below a thrust is apparent; however, seismic reflection data appear to be critical in recognizing these structures.

  10. Numerical modeling of mantle wedge processes and exhumation of UHP mantle in subduction zones

    NASA Astrophysics Data System (ADS)

    Gorczyk, W.; Gerya, T. V.; Guillot, S.; Connolly, J. A.; Yuen, D.

    2007-12-01

    The upwelling of subduction generated partially molten rocks is potentially a mechanism for the exhumation of UHP rocks through the mantle wedge. We investigated this processes using a 2-D coupled petrological- thermomechanical model that incorporates slab dehydration and water transport as well as partial melting of mantle and crustal rocks. This approach allows us to study the dynamics of mantle wedge processes including evolution of partially molten plumes and their interaction with surrounding dry mantle. To study the internal structure of the plumes we used ultra-high resolution numerical simulations with 10 billion active markers to detail the internal structure of natural plumes originating from the slab. The plumes consist of partially molten hydrated peridotite, dry solid mantle and subducted oceanic crust, which may comprise up to 12 volume % of the plume. As the plumes grow and mature these materials mix chaotically resulting in attenuation and duplication of the original layering on scales of 1-1000 m. Comparison of numerical results with geological observations from the Horoman ultramafic complex in Japan suggests that mixing and differentiation processes related to development of partially molten plumes above slabs may be responsible for strongly layered lithologically mixed (marble cake) structure of asthenospheric mantle wedges. The recent discovery of garnet bearing peridotites in the subduction zone of the Great Antilles in Hispaniola has raised questions about the process that leads to their exhumation. To evaluate whether upwelling plumes are a plausible exhumation mechanism we investigated the dynamics of subduction of slow spreading ridges. The results show that subduction of strongly serpentinized oceanic plate causes strong dehydration of the slab and leads to a rheological weakening of the interface between subducting and overriding plate. This weakening triggers trench retreat and massive asthenospheric upwelling into the gap between the

  11. Predicting orogenic wedge styles as a function of analogue erosion law and material softening

    NASA Astrophysics Data System (ADS)

    Mary, Baptiste C. L.; Maillot, Bertrand; Leroy, Yves M.

    2013-10-01

    The evolution of a compressive frictional wedge on a weak, frictional and planar décollement, subjected to frontal accretion, is predicted with a two step method called sequential limit analysis. The first step consists in finding, with the kinematic approach of limit analysis, the length of the active décollement and the dips of the emerging ramp and of the conjugate shear plane composing the emerging thrust fold. The second step leads to a modification of the geometry, first, because of the thrust fold development due to compression and, second, because of erosion. Erosion consists in removing periodically any material above a fictitious line at a selected slope, as done in analogue experiments. This application of sequential limit analysis generalizes the critical Coulomb wedge theory since it follows the internal deformation development. With constant frictional properties, the deformation is mostly diffuse, a succession of thrust folds being activated so that the topographic slope reaches exactly the theoretical, critical value. Frictional weakening on the ramps results in a deformation style composed of thrust sheets and horses. Applying an erosion slope at the critical topographic value leads to exhumation in the frontal, central, or rear region of the wedge depending on the erosion period and the weakening. Erosion at slopes slightly above or below the critical value results in exhumation toward the foreland or the hinterland, respectively, regardless of the erosion period. Exhumation is associated with duplexes, imbricate fans, antiformal stacks, and major backthrusting. Comparisons with sandbox experiments confirm that the thickness, dips, vergence, and exhumation of thrust sheets can be reproduced with friction and erosion parameters within realistic ranges of values.

  12. Remodeling after lateral closing-wedge osteotomy in children with cubitus varus.

    PubMed

    Lee, Soon Chul; Shim, Jong Sup; Sul, Eun Jin; Seo, Sung Wook

    2012-06-01

    The purpose of this study was to evaluate the effectiveness of supracondylar lateral closing-wedge osteotomy of the humerus in children and the postoperative remodeling of the lateral condylar prominence. Lateral closing-wedge osteotomy for cubitus varus deformity was performed in 52 children. In all cases, medial translation for decreasing lateral condylar prominence or transposition of the ulnar nerve was not performed. Mean patient age was 8.8 years. Mean follow-up was 42 months. Clinical and radiological results were analyzed at last follow-up. Mean range of motion of the elbow in flexion and extension improved significantly (P<.05). Mean humeroulnar angle and mean shaft-condylar angle were significantly corrected (P<.05), and the angles between the affected and contralateral sides were not significantly different at last follow-up. Mean lateral condylar prominence index significantly decreased from 38.8% to 3.4%, and mean lateral condylar prominence amount decreased from -31.6% to -65.0% (P<.05 and P<.05, respectively). The amount of lateral condylar prominence remodeling was statistically correlated with the severity of preoperative cubitus varus, length of follow-up, and age at operation (P<.05 for all). The mean change in lateral condylar prominence amount in patients younger than 11 years (36.6%) was significantly greater than the mean change in lateral condylar prominence amount in patients aged 12 years or older (20.4%) (P=.001). Supracondylar lateral closing wedge osteotomy of the humerus is a simple and effective operation for correction of cubitus varus in children younger than 11 years with a considerable amount of lateral condylar prominence remodeling.

  13. Mantle wedge anisotropy in Southern Tyrrhenian Subduction Zone (Italy), from receiver function analysis

    NASA Astrophysics Data System (ADS)

    Piana Agostinetti, Nicola; Park, Jeffrey; Lucente, Francesco Pio

    2008-12-01

    We constrain mantle wedge seismic structure in the Southern Tyrrhenian Subduction Zone (Italy) using teleseismic receiver functions (RF) recorded at station CUC of the Mednet seismographic network. Station CUC lies above the northern portion of the Calabrian slab segment, which is recognized from deep seismicity and tomographic imaging as a narrow, laterally high-arched slab fragment, extending from the surface below Calabria down to the transition zone. To better define the descending slab interface and possible shear-coupled flow in the mantle wedge above the slab, we computed receiver functions from the P-coda of 147 teleseismic events to analyze the back-azimuth dependence of Ps converted phases from interfaces beneath CUC. We stack the RF data-set with back azimuth to compute its harmonic expansion, which relates to the effects of interface dip and anisotropy at layer boundaries. The seismic structure constrained through the RF analysis is characterized in its upper part by a sub-horizontal Moho at about 25 km depth, overlying a thin isotropic layer at top of mantle. For the deeper part, back-azimuth variation suggests two alternative models, each with an anisotropic layer between two dipping interfaces near 70- and 90-km depth, with fast- and slow-symmetry axes, respectively, above the Apennines slab. Although independent evidence suggests a north-south strike for the slab beneath CUC, the trend of the inferred anisotropy is 45° clockwise from north, inconsistent with a simple downdip shear-coupled flow model in the supra-slab mantle wedge. However complexities of flow and induced rock fabric in the Tyrrhenian back arc may arise due to several concurring factors such as the arcuate shape of the Apennines slab, its retreating kinematics, or slab edge effects.

  14. Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1

    DOE Data Explorer

    Chowdhury, Taniya; Graham, David

    2013-12-08

    This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties. In February 2016, two columns (carbon and carbon:nitrogen in soil layer) were added to the data but no existing data values changed. See documentation. The new filename is version 2. In July 2016, data for two soil cores were added. The new filename is version 3.

  15. Longitudinal polarization periodicity of unpolarized light passing through a double wedge depolarizer.

    PubMed

    de Sande, Juan Carlos G; Santarsiero, Massimo; Piquero, Gemma; Gori, Franco

    2012-12-03

    The polarization characteristics of unpolarized light passing through a double wedge depolarizer are studied. It is found that the degree of polarization of the radiation propagating after the depolarizer is uniform across transverse planes after the depolarizer, but it changes from one plane to another in a periodic way giving, at different distances, unpolarized, partially polarized, or even perfectly polarized light. An experiment is performed to confirm this result. Measured values of the Stokes parameters and of the degree of polarization are in complete agreement with the theoretical predictions.

  16. On the interaction between the shock wave attached to a wedge and freestream disturbances

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.; Lasseigne, D. Glenn; Hussaini, M. Y.

    1993-01-01

    A study of the interaction of small amplitude, unsteady, freestream disturbances with a shock wave induced by a wedge in supersonic flow is presented. These disturbances may be acoustic waves, vorticity waves, or entropy waves (or indeed a combination of all three). Their interactions then generate behind the shock disturbances of all three classes, an aspect that is investigated in some detail, our motivation being to investigate possible mechanisms for boundary-layer receptivity, caused through the amplification and modification of freestream turbulence through the shock-body coupling. Also, the possibility of enhanced mixing owing to additional vorticity produced by the shock-body coupling is investigated.

  17. Laboratory experiments on subduction-induced circulation in the wedge and the evolution of mantle diapirs

    NASA Astrophysics Data System (ADS)

    Sylvia, R. T.; Kincaid, C. R.; Behn, M. D.; Zhang, N.

    2014-12-01

    Circulation in subduction zones involves large-scale, forced-convection by the motion of the down-going slab and small scale, buoyant diapirs of hydrated mantle or subducted sediments. Models of subduction-diapir interaction often neglect large-scale flow patterns induced by rollback, back-arc extension and slab morphology. We present results from laboratory experiments relating these parameters to styles of 4-D wedge circulation and diapir ascent. A glucose fluid is used to represent the mantle. Subducting lithosphere is modeled with continuous rubber belts moving with prescribed velocities, capable of reproducing a large range in downdip relative rollback plate rates. Differential steepening of distinct plate segments simulates the evolution of slab gaps. Back-arc extension is produced using Mylar sheeting in contact with fluid beneath the overriding plate that moves relative to the slab rollback rate. Diapirs are introduced at the slab-wedge interface in two modes: 1) distributions of low density rigid spheres and 2) injection of low viscosity, low density fluid to the base of the wedge. Results from 30 experiments with imposed along-trench (y) distributions of buoyancy, show near-vertical ascent paths only in cases with simple downdip subduction and ratios (W*) of diapir rise velocity to downdip plate rate of W*>1. For W* = 0.2-1, diapir ascent paths are complex, with large (400 km) lateral offsets between source and surfacing locations. Rollback and back-arc extension enhance these offsets, occasionally aligning diapirs from different along-trench locations into trench-normal, age-progressive linear chains beneath the overriding plate. Diapirs from different y-locations may surface beneath the same volcanic center, despite following ascent paths of very different lengths and transit times. In cases with slab gaps, diapirs from the outside edge of the steep plate move 1000 km parallel to the trench before surfacing above the shallow dipping plate. "Dead zones

  18. Geometry of the transition criterion of shock wave reflection over a wedge

    NASA Astrophysics Data System (ADS)

    Cui, T.; Jiao, X.; Yu, D.

    2015-01-01

    The hysteresis phenomena of shock wave reflection observed during recent numerical and experimental investigations are analyzed in this paper using dynamical system theory. It is found through the analysis that the geometry of the transition criterion of shock wave reflection over a wedge has the shape of a butterfly. Knowledge of the geometry can provide important information on the hysteresis behavior of shock wave reflection. The geometry of the transition criterion can be used not only for the explanation of already known hysteresis behavior of shock wave reflection, but also for the prediction of novel hysteresis phenomena.

  19. High-Speed Ion Flow, Substorm Current Wedge, and Multiple Pi 2 Pulsations

    DTIC Science & Technology

    2007-11-02

    5.76 65.8 22.96 -20.5 03 6. 66 23 -2 20 3 .5 .19 D.6 Figure 12. Magnetic field data measured on the ISEE 1 satellite in the GSE...ISMC-TR-99-04 AEROSPACE REPORT NO. TR-99(8570)- 3 iHigh-Speed Ion Flow, Substorm Current Wedge, land Multiple Pi 2 Pulsations >0 December 1998...and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20S03. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 20 December 1998 3

  20. Fluid and mass transfer into the cold mantle wedge of subduction zones: budgets and seismic constraints

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Hacker, B. R.; Van Keken, P. E.; Nakajima, J.; Kita, S.

    2015-12-01

    Dehydration of subducting plates should hydrate the shallow overlying mantle wedge where mantle is cold. In the shallow mantle wedge hydrous phases, notably serpentines, chlorite, brucite and talc should be stable to form a significant reservoir for H2O. Beneath this cold nose thermal models suggest only limited slab dehydration occurs at depths less than ca. 80 km except in warm subduction zones, but fluids may flow updip from deeper within the subducting plate to hydrate the shallow mantle. We estimate the total water storage capacity in cold noses, at temperatures where hydrous phases are stable, to be roughly 2-3% the mass of the global ocean. At modern subduction flux rates its full hydration could be achieved in 50-100 Ma if all subducting water devolatilized in the upper 100 km flows into the wedge; these estimates have at least a factor of two uncertainty. To investigate the extent to which wedge hydration actually occurs we compile and generate seismic images of forearc mantle regions. The compilation includes P- and S-velocity images with good sampling below the Moho and above the downgoing slab in forearcs, from active-source imaging, local earthquake tomography and receiver functions, while avoiding areas of complex tectonics. Well-resolved images exist for Cascadia, Alaska, the Andes, Central America, North Island New Zealand, and Japan. We compare the observed velocities to those predicted from thermal-petrologic models. Among these forearcs, Cascadia stands out as having upper-mantle seismic velocities lower than overriding crust, consistent with high (>50%) hydration. Most other forearcs show Vp close to 8.0 km/s and Vp/Vs of 1.73-1.80. We compare these observations to velocities predicted from thermal-mineralogical models. Velocities are slightly slower than expected for dry peridotite and allow 10-20% hydration, but also could also be explained as relict accreted rock, or delaminated, relaminated, or offscraped crustal material mixed with mantle

  1. Analysis of a wedge prism to perform small-angle beam deviation

    NASA Astrophysics Data System (ADS)

    Senderakova, Dagmar; Strba, Anton

    2003-07-01

    The contribution is to present both the theoretical and experimental analysis of a wedge prism, which allows us to perform very small angle deviation of a passing beam in a simply way. No high precise steering element is necessary. The results of the theoretical analysis, i.e. the dependence of the propagation vector on the angle of incidence had been verified experimentally, using both Mach-Zehnder interferometer and a holographic grating. The results obtained have proved the advantage of the method proposed, which may be of great importance anywhere if small-angle deviation of propagation wave vector is needed.

  2. Polarization sensitive localization based super-resolution microscopy with a birefringent wedge

    NASA Astrophysics Data System (ADS)

    Sinkó, József; Gajdos, Tamás; Czvik, Elvira; Szabó, Gábor; Erdélyi, Miklós

    2017-03-01

    A practical method has been presented for polarization sensitive localization based super-resolution microscopy using a birefringent dual wedge. The measurement of the polarization degree at the single molecule level can reveal the chemical and physical properties of the local environment of the fluorescent dye molecule and can hence provide information about the sub-diffraction sized structure of biological samples. Polarization sensitive STORM imaging of the F-Actins proved correlation between the orientation of fluorescent dipoles and the axis of the fibril.

  3. Wedge Absorbers for Final Cooling for a High-Energy High-Luminosity Lepton Collider

    SciTech Connect

    Neuffer, David; Mohayai, Tanaz; Snopok, Pavel; Summers, Don

    2016-06-01

    A high-energy high-luminosity muon collider scenario requires a "final cooling" system that reduces transverse emittance to ~25 microns (normalized) while allowing longitudinal emittance increase. Ionization cooling using high-field solenoids (or Li Lens) can reduce transverse emittances to ~100 microns in readily achievable configurations, confirmed by simulation. Passing these muon beams at ~100 MeV/c through cm-sized diamond wedges can reduce transverse emittances to ~25 microns, while increasing longitudinal emittance by a factor of ~5. Implementation will require optical matching of the exiting beam into downstream acceleration systems.

  4. Changes in basal dip and frictional properties controlling orogenic wedge propagation and frontal collapse: the External central Betics case

    NASA Astrophysics Data System (ADS)

    Jiménez-Bonilla, Alejandro; Torvela, Taija; Balanyá, Juan-Carlos; Díaz-Azpiroz, Manuel; Expósito, Inmaculada

    2016-04-01

    Orogenic wedges and their key component, thin-skinned fold-and-thrust belts (FTBs), have been extensively studied through both field examples and modelling. The overall dynamics of FTBs are, therefore, well understood. One of the less understood aspects is: what is the combined influence of across-strike changes in the detachment properties and the basement topography on the behaviour of an orogenic wedge, as the deformation progresses towards the foreland? In this study, we use field data combined with reflection seismic interpretation and well data from the External Zones of the Central Betics FTB, S Spain, to identify a basement "threshold" coinciding with a thinning out of a weak substrate (Triassic evaporites) in the wedge basal detachment. The basal changes influenced the tempo-spatial (4D) local wedge dynamics at ~Early Langhian times, leading to stagnation of FTB propagation, topographic build-up and subsequent collapse of the FTB front, which was enhanced by arc-parallel stretching. This development led to a formation of an important depocentre filled with a thick Langhian mélange unit and later sediments deposited in the NW-migrating foreland basin. This case study illustrates the importance of across-strike changes in wedge basal properties to the stability of the FTB front, especially in terms of the collapse/extensional structures.

  5. Ankle motion influences the external knee adduction moment and may predict who will respond to lateral wedge insoles?: an ancillary analysis from the SILK trial

    PubMed Central

    Chapman, G.J.; Parkes, M.J.; Forsythe, L.; Felson, D.T.; Jones, R.K.

    2015-01-01

    Summary Objective Lateral wedge insoles are a potential simple treatment for medial knee osteoarthritis (OA) patients by reducing the external knee adduction moment (EKAM). However in some patients, an increase in their EKAM is seen. Understanding the role of the ankle joint complex in the response to lateral wedge insoles is critical in understanding and potentially identifying why some patients respond differently to lateral wedge insoles. Method Participants with medial tibiofemoral OA underwent gait analysis whilst walking in a control shoe and a lateral wedge insole. We evaluated if dynamic ankle joint complex coronal plane biomechanical measures could explain and identify those participants that increased (biomechanical non-responder) or decreased (biomechanical responder) EKAM under lateral wedge conditions compared to the control shoe. Results Of the 70 participants studied (43 male), 33% increased their EKAM and 67% decreased their EKAM. Overall, lateral wedge insoles shifted the centre of foot pressure laterally, increased eversion of the ankle/subtalar joint complex (STJ) and the eversion moment compared to the control condition. Ankle angle at peak EKAM and peak eversion ankle/STJ complex angle in the control condition predicted if individuals were likely to decrease EKAM under lateral wedge conditions. Conclusions Coronal plane ankle/STJ complex biomechanical measures play a key role in reducing EKAM when wearing lateral wedge insoles. These findings may assist in the identification of those individuals that could benefit more from wearing lateral wedge insoles. PMID:25749010

  6. An Experimental Investigation of Transonic Flow Past Two-Dimensional Wedge and Circular-Arc Sections Using A Mach-Zehnder Interferometer

    NASA Technical Reports Server (NTRS)

    Bryson, Arthur Earl, Jr

    1952-01-01

    Report presents the results of interferometer measurements of the flow field near two-dimensional wedge and circular-arc sections of zero angle of attack at high-subsonic and low-supersonic velocities. Both subsonic flow with local supersonic zone and supersonic flow with detached shock wave have been investigated. Pressure distributions and drag coefficients as a function of Mach number have been obtained. The wedge data are compared with the theoretical work on flow past wedge sections of Guderley and Yoshihara, Vincenti and Wagner, and Cole. Pressure distributions and drag coefficients for the wedge and circular-arc sections are presented throughout the entire transonic range of velocities.

  7. Kinematic evolution of thrusts wedge and erratic line length balancing: insights from deformed sandbox models

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohammad Irfan; Dubey, A. K.; Toscani, Giovanni; Bonini, Lorenzo; Seno, Silvio

    2014-01-01

    Kinematic evolution of fold-thrust structures has been investigated by analogue models that include syntectonic sedimentation. Different decollement dips and basement thicknesses produced different wedge geometries and propagating characteristics. A model with one decollement level was characterized by a closely spaced thrust system during early stages of shortening as compared to the late stages. The frequency of fault nucleation was rapid during the early stages of deformation. Conversely, the frequency of fault nucleation was low and thrust spacing was significantly wider in a model with two decollement levels. Individual faults became locked at steep dips and deformation stepped forward as a new fault nucleated in-sequence in front of the older locked structure. Once the thrust system was established up to 27 % overall shortening, an overlying bed was introduced to simulate syntectonic deformation. Model sand wedge did not grow self similarly but rather its length and height increased episodically with deformation. Restoration of deformed models show that layer parallel shortening accommodated for approximately half of the total model shortening across the multilayers. Calculated error in apparent layer shortening from the restored layers revealed a direct relation with depth of the layers in the models. The experimental results are comparable to a natural example from the Northern Apennines fold-and-thrust belts.

  8. Simulation of arrested salt wedges with a multi-layer Shallow Water Lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Prestininzi, P.; Montessori, A.; La Rocca, M.; Sciortino, G.

    2016-10-01

    The ability to accurately and efficiently model the intrusion of salt wedges into river beds is crucial to assay its interaction with human activities and the natural environment. We present a 2D multi-layer Shallow Water Lattice Boltzmann (SWLB) model able to predict the salt wedge intrusion in river estuaries. The formulation usually employed for the simulation of gravity currents is here equipped with proper boundary conditions to handle both the downstream seaside outlet and the upstream river inlet. Firstly, the model is validated against highly accurate semi-analytical solutions of the steady state 1D two-layer Shallow Water model. Secondly, the model is applied to a more complex, fully 3D geometry, to assess its capability to handle realistic cases. The simple formulation proposed for the shear interlayer stress is proven to be consistent with the general 3D viscous solution. In addition to the accuracy, the model inherits the efficiency of the Lattice Boltzmann approach to fluid dynamics problems.

  9. A phenomenological model for intergranular failure by r-type and wedge-type cavitation

    SciTech Connect

    Lee, S.B.; Miller, A.K.

    1995-07-01

    Equations to predict local intergranular failure (by r-type and wedge-type cavitation and the coupling between them) have been developed. The derivation has utilized physically based concepts such as thermal activation of the controlling processes, wedge cracking driven by grain boundary sliding, and cavity growth driven by diffusion. It has also been based upon phenomenological observations such as the variation in the steady-state creep rate with stress and temperature, incomplete healing of cavities under compression, and differences in life under slow-fast and fast-slow cycling. The model has been tested against data on the low-cycle fatigue life of 304 stainless steel under unequal ramp rates. The new equations simulate, for example, the differences in life produced by slow-fast, fast-slow, and equal ramp rate cycling in terms of their effects on internal cavitation. Together with the new equations` ability to treat monotonic creep rupture, these comparisons demonstrate that the intergranular failure equations are capable of simulating a number of phenomena of importance in life prediction for high-temperature structures.

  10. Structure of the Yeast DEAD Box Protein Mss116p Reveals Two Wedges that Crimp RNA

    SciTech Connect

    Del Campo, Mark; Lambowitz, Alan M.

    2010-01-12

    The yeast DEAD box protein Mss116p is a general RNA chaperone that functions in mitochondrial group I and II intron splicing, translational activation, and RNA end processing. Here we determined high-resolution X-ray crystal structures of Mss116p complexed with an RNA oligonucleotide and ATP analogs AMP-PNP, ADP-BeF{sub 3}, or ADP-AlF{sub 4}{sup -}. The structures show the entire helicase core acting together with a functionally important C-terminal extension. In all structures, the helicase core is in a closed conformation with a wedge {alpha} helix bending RNA 3' of the central bound nucleotides, as in previous DEAD box protein structures. Notably, Mss116p's C-terminal extension also bends RNA 5' of the central nucleotides, resulting in RNA crimping. Despite reported functional differences, we observe few structural changes in ternary complexes with different ATP analogs. The structures constrain models of DEAD box protein function and reveal a strand separation mechanism in which a protein uses two wedges to act as a molecular crimper.

  11. Electromagnetic and scalar diffraction by a right-angled wedge with a uniform surface impedance

    NASA Technical Reports Server (NTRS)

    Hwang, Y. M.

    1974-01-01

    The diffraction of an electromagnetic wave by a perfectly-conducting right-angled wedge with one surface covered by a dielectric slab or absorber is considered. The effect of the coated surface is approximated by a uniform surface impedance. The solution of the normally incident electromagnetic problem is facilitated by introducing two scalar fields which satisfy a mixed boundary condition on one surface of the wedge and a Neumann of Dirichlet boundary condition on the other. A functional transformation is employed to simplify the boundary conditions so that eigenfunction expansions can be obtained for the resulting Green's functions. The eigenfunction expansions are transformed into the integral representations which then are evaluated asymptotically by the modified Pauli-Clemmow method of steepest descent. A far zone approximation is made to obtain the scattered field from which the diffraction coefficient is found for scalar plane, cylindrical or sperical wave incident on the edge. With the introduction of a ray-fixed coordinate system, the dyadic diffraction coefficient for plane or cylindrical EM waves normally indicent on the edge is reduced to the sum of two dyads which can be written alternatively as a 2 X 2 diagonal matrix.

  12. Compact multi-projection 3D display using a wedge prism

    NASA Astrophysics Data System (ADS)

    Park, Soon-gi; Lee, Chang-Kun; Lee, Byoungho

    2015-03-01

    We propose a compact multi-projection system based on integral floating method with waveguide projection. Waveguide projection can reduce the projection distance by multiple folding of optical path inside the waveguide. The proposed system is composed of a wedge prism, which is used as a waveguide, multiple projection-units, and an anisotropic screen made of floating lens combined with a vertical diffuser. As the projected image propagates through the wedge prism, it is reflected at the surfaces of prism by total internal reflections, and the final view image is created by the floating lens at the viewpoints. The position of view point is decided by the lens equation, and the interval of view point is calculated by the magnification of collimating lens and interval of projection-units. We believe that the proposed method can be useful for implementing a large-scale autostereoscopic 3D system with high quality of 3D images using projection optics. In addition, the reduced volume of the system will alleviate the restriction of installment condition, and will widen the applications of a multi-projection 3D display.

  13. Living on the wedge: female control of paternity in a cooperatively polyandrous cichlid.

    PubMed

    Kohda, Masanori; Heg, Dik; Makino, Yoshimi; Takeyama, Tomohiro; Shibata, Jun-ya; Watanabe, Katsutoshi; Munehara, Hiroyuki; Hori, Michio; Awata, Satoshi

    2009-12-07

    Theories suggest that, in cooperatively breeding species, female control over paternity and reproductive output may affect male reproductive skew and group stability. Female paternity control may come about through cryptic female choice or female reproductive behaviour, but experimental studies are scarce. Here, we show a new form of female paternity control in a cooperatively polyandrous cichlid fish (Julidochromis transcriptus), in which females prefer wedge-shaped nesting sites. Wedge-shaped sites allowed females to manipulate the siring success of the group member males by spawning the clutch at the spot where the large males were just able to enter and fertilize the outer part of the clutch. Small males fertilized the inner part of the clutch, protected from the large aggressive males, leading to low male reproductive skew. Small males provided more brood care than large males. Multiple paternity induced both males to provide brood care and reduced female brood care accordingly. This is, to our knowledge, the first documented case in a species with external fertilization showing female mating behaviour leading to multiple male paternity and increased male brood care as a result.

  14. Computational Analysis of Arc-Jet Wedge Tests Including Ablation and Shape Change

    NASA Technical Reports Server (NTRS)

    Goekcen, Tahir; Chen, Yih-Kanq; Skokova, Kristina A.; Milos, Frank S.

    2010-01-01

    Coupled fluid-material response analyses of arc-jet wedge ablation tests conducted in a NASA Ames arc-jet facility are considered. These tests were conducted using blunt wedge models placed in a free jet downstream of the 6-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. The fluid analysis includes computational Navier-Stokes simulations of the nonequilibrium flowfield in the facility nozzle and test box as well as the flowfield over the models. The material response analysis includes simulation of two-dimensional surface ablation and internal heat conduction, thermal decomposition, and pyrolysis gas flow. For ablating test articles undergoing shape change, the material response and fluid analyses are coupled in order to calculate the time dependent surface heating and pressure distributions that result from shape change. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator. Effects of the test article shape change on fluid and material response simulations are demonstrated, and computational predictions of surface recession, shape change, and in-depth temperatures are compared with the experimental measurements.

  15. Living on the wedge: female control of paternity in a cooperatively polyandrous cichlid

    PubMed Central

    Kohda, Masanori; Heg, Dik; Makino, Yoshimi; Takeyama, Tomohiro; Shibata, Jun-ya; Watanabe, Katsutoshi; Munehara, Hiroyuki; Hori, Michio; Awata, Satoshi

    2009-01-01

    Theories suggest that, in cooperatively breeding species, female control over paternity and reproductive output may affect male reproductive skew and group stability. Female paternity control may come about through cryptic female choice or female reproductive behaviour, but experimental studies are scarce. Here, we show a new form of female paternity control in a cooperatively polyandrous cichlid fish (Julidochromis transcriptus), in which females prefer wedge-shaped nesting sites. Wedge-shaped sites allowed females to manipulate the siring success of the group member males by spawning the clutch at the spot where the large males were just able to enter and fertilize the outer part of the clutch. Small males fertilized the inner part of the clutch, protected from the large aggressive males, leading to low male reproductive skew. Small males provided more brood care than large males. Multiple paternity induced both males to provide brood care and reduced female brood care accordingly. This is, to our knowledge, the first documented case in a species with external fertilization showing female mating behaviour leading to multiple male paternity and increased male brood care as a result. PMID:19726479

  16. [Evaluation of the bite block wedged between the maxillary and mandibular molars].

    PubMed

    Katoh, H; Nishiyama, J; Takiguchi, M; Yamamoto, M; Fujita, K; Yamasaki, Y

    1996-12-01

    The purpose of this study was to compare our original bite block (T-X Block) wedged between the maxillary and mandibular molars, with the standard gum bite block, in 200 patients whose tracheas were intubated. During emergence from isoflurane anesthesia, no trouble occurred in T-X Block group (n = 100). On the other hand, lip damage and ejection of the bite block were found in 11 and 10 cases, respectively, in gum bite block group (n = 100). As another study, an opening between the maxillary and mandibular incisor edges was measured with T-X Block placed in twenty patients under general anesthesia. The inter-incisal distances in one way of using it as a smaller wedge and in the other way as a bigger one were 21.6 +/- 2.4 and 25.2 +/- 2.6 mm, respectively. Those values were significantly larger than thickness of the gum bite block. T-X Block is very useful because its use causes no complications and makes it easier to insert a naso-gastric tube as well as to clean the oral cavity with suction by giving a larger opening of the mouth.

  17. Joule-Heating-Induced Damage in Cu-Al Wedge Bonds Under Current Stressing

    NASA Astrophysics Data System (ADS)

    Yang, Tsung-Han; Lin, Yu-Min; Ouyang, Fan-Yi

    2014-01-01

    Copper wires are increasingly used to replace gold wires in wire-bonding technology owing to their better electrical properties and lower cost. However, not many studies have been conducted on electromigration-induced failure of Cu wedge bonds on Al metallization. In this study, we investigated the failure mechanism of Cu-Al wedge bonds under high current stressing from 4 × 104 A/cm2 to 1 × 105 A/cm2 at ambient temperature of 175°C. The resistance evolution of samples during current stressing and the microstructure of the joint interface between the Cu wire and Al-Si bond pad were examined. The results showed that abnormal crack formation accompanying significant intermetallic compound growth was observed at the second joint of the samples, regardless of the direction of electric current for both current densities of 4 × 104 A/cm2 and 8 × 104 A/cm2. We propose that this abnormal crack formation at the second joint is mainly due to the higher temperature induced by the greater Joule heating at the second joint for the same current stressing, because of its smaller bonded area compared with the first joint. The corresponding fluxes induced by the electric current and chemical potential difference between Cu and Al were calculated and compared to explain the failure mechanism. For current density of 1 × 105 A/cm2, the Cu wire melted within 0.5 h owing to serious Joule heating.

  18. An experimental investigation of supersonic flow past a wedge-cylinder configuration

    NASA Technical Reports Server (NTRS)

    Barnette, D. W.

    1976-01-01

    An experimental investigation of supersonic flow past double-wedge configurations was conducted. Over the range of geometries tested, it was found that, while theoretical solutions both for a Type V pattern and for a Type VI pattern could be generated for a particular flow condition (as defined by the geometry and the free-stream conditions), the weaker, Type VI pattern was observed experimentally. More rigorous flow-field solutions were developed for the flow along the wing leading-edge. Solutions were developed for the three-dimensional flow in the plane of symmetry of a swept cylinder (which represented the wing leading-edge) which was mounted on a wedge (which generated the "bow" shock wave). A numerical code was developed using integral techniques to calculate the flow in the shock layer upstream of the interaction region (i.e., near the wing root). Heat transfer rates were calculated for various free stream conditions. The present investigation was undertaken to examine the effects of crossflow on the resultant flow-field and to verify the flow model used in theoretical calculations.

  19. Assessing Strain Mapping by Electron Backscatter Diffraction and Confocal Raman Microscopy Using Wedge-indented Si

    PubMed Central

    Friedman, Lawrence H.; Vaudin, Mark D.; Stranick, Stephan J.; Stan, Gheorghe; Gerbig, Yvonne B.; Osborn, William; Cook, Robert F.

    2016-01-01

    The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA-AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2 × 10−4 in strain. CRM was similarly precise, but was limited in accuracy to several times this value. PMID:26939030

  20. Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing

    PubMed Central

    2016-01-01

    We present large-scale reproducible fabrication of multifunctional ultrasharp metallic structures on planar substrates with capabilities including magnetic field nanofocusing and plasmonic sensing. Objects with sharp tips such as wedges and pyramids made with noble metals have been extensively used for enhancing local electric fields via the lightning-rod effect or plasmonic nanofocusing. However, analogous nanofocusing of magnetic fields using sharp tips made with magnetic materials has not been widely realized. Reproducible fabrication of sharp tips with magnetic as well as noble metal layers on planar substrates can enable straightforward application of their material and shape-derived functionalities. We use a template-stripping method to produce plasmonic-shell-coated nickel wedge and pyramid arrays at the wafer-scale with tip radius of curvature close to 10 nm. We further explore the magnetic nanofocusing capabilities of these ultrasharp substrates, deriving analytical formulas and comparing the results with computer simulations. These structures exhibit nanoscale spatial control over the trapping of magnetic microbeads and nanoparticles in solution. Additionally, enhanced optical sensing of analytes by these plasmonic-shell-coated substrates is demonstrated using surface-enhanced Raman spectroscopy. These methods can guide the design and fabrication of novel devices with applications including nanoparticle manipulation, biosensing, and magnetoplasmonics. PMID:26837912

  1. Active destabilization of base pairs by a DNA glycosylase wedge initiates damage recognition.

    PubMed

    Kuznetsov, Nikita A; Bergonzo, Christina; Campbell, Arthur J; Li, Haoquan; Mechetin, Grigory V; de los Santos, Carlos; Grollman, Arthur P; Fedorova, Olga S; Zharkov, Dmitry O; Simmerling, Carlos

    2015-01-01

    Formamidopyrimidine-DNA glycosylase (Fpg) excises 8-oxoguanine (oxoG) from DNA but ignores normal guanine. We combined molecular dynamics simulation and stopped-flow kinetics with fluorescence detection to track the events in the recognition of oxoG by Fpg and its mutants with a key phenylalanine residue, which intercalates next to the damaged base, changed to either alanine (F110A) or fluorescent reporter tryptophan (F110W). Guanine was sampled by Fpg, as evident from the F110W stopped-flow traces, but less extensively than oxoG. The wedgeless F110A enzyme could bend DNA but failed to proceed further in oxoG recognition. Modeling of the base eversion with energy decomposition suggested that the wedge destabilizes the intrahelical base primarily through buckling both surrounding base pairs. Replacement of oxoG with abasic (AP) site rescued the activity, and calculations suggested that wedge insertion is not required for AP site destabilization and eversion. Our results suggest that Fpg, and possibly other DNA glycosylases, convert part of the binding energy into active destabilization of their substrates, using the energy differences between normal and damaged bases for fast substrate discrimination.

  2. A dual wedge microneedle for sampling of perilymph solution via round window membrane.

    PubMed

    Watanabe, Hirobumi; Cardoso, Luis; Lalwani, Anil K; Kysar, Jeffrey W

    2016-04-01

    Precision medicine for inner-ear disease is hampered by the absence of a methodology to sample inner-ear fluid atraumatically. The round window membrane (RWM) is an attractive portal for accessing cochlear fluids as it heals spontaneously. In this study, we report on the development of a microneedle for perilymph sampling that minimizes the size of RWM perforation, facilitates quick aspiration, and provides precise volume control. Here, considering the mechanical anisotropy of the RWM and hydrodynamics through a microneedle, a 31G stainless steel pipe was machined into wedge-shaped design via electrical discharge machining. The sharpness of the needle was evaluated via a surface profilometer. Guinea pig RWM was penetrated in vitro, and 1 μL of perilymph was sampled and analyzed via UV-vis spectroscopy. The prototype wedge shaped needle was successfully fabricated with the tip curvature of 4.5 μm and the surface roughness of 3.66 μm in root mean square. The needle created oval perforation with minor and major diameter of 143 and 344 μm (n = 6). The sampling duration and standard deviation of aspirated volume were 3 s and 6.8 % respectively. The protein concentration was 1.74 mg/mL. The prototype needle facilitated precise perforation of RWMs and rapid aspiration of cochlear fluid with precise volume control. The needle design is promising and requires testing in human cadaveric temporal bone and further optimization to become clinically viable.

  3. Numerical solution of the asymmetric water impact of a wedge in three degrees of freedom

    NASA Astrophysics Data System (ADS)

    Ghazizade-Ahsaee, H.; Nikseresht, A. H.

    2013-06-01

    Impact problems associated with water entry have important applications in various aspects of naval architecture and ocean engineering. Estimation of hydrodynamic impact forces especially during the first instances after the impact is very important and is of interest. Since the estimation of hydrodynamic impact load plays an important role in safe design and also in evaluation of structural weight and costs, it is better to use a reliable and accurate prediction method instead of a simple estimation resulted by analyzing methods. In landing of flying boats, some phenomena such as weather conditions and strong winds can cause asymmetric instead of symmetric descent. In this paper, a numerical simulation of the asymmetric impact of a wedge, as the step of a flying boat, considering dynamic equations in two-phase flow is taken into account. The dynamic motion of the wedge in two-phase flow is solved based on finite volume method with volume of fluid (VOF) scheme considering dynamic equations. Then the effects of different angles of impact and water depth on the velocity change and slamming forces in an asymmetric impact are investigated. The comparison between the simulation results and experimental data verifies the accuracy of the method applied in the present study.

  4. Microchip and wedge ion funnels and planar ion beam analyzers using same

    DOEpatents

    Shvartsburg, Alexandre A; Anderson, Gordon A; Smith, Richard D

    2012-10-30

    Electrodynamic ion funnels confine, guide, or focus ions in gases using the Dehmelt potential of oscillatory electric field. New funnel designs operating at or close to atmospheric gas pressure are described. Effective ion focusing at such pressures is enabled by fields of extreme amplitude and frequency, allowed in microscopic gaps that have much higher electrical breakdown thresholds in any gas than the macroscopic gaps of present funnels. The new microscopic-gap funnels are useful for interfacing atmospheric-pressure ionization sources to mass spectrometry (MS) and ion mobility separation (IMS) stages including differential IMS or FAIMS, as well as IMS and MS stages in various configurations. In particular, "wedge" funnels comprising two planar surfaces positioned at an angle and wedge funnel traps derived therefrom can compress ion beams in one dimension, producing narrow belt-shaped beams and laterally elongated cuboid packets. This beam profile reduces the ion density and thus space-charge effects, mitigating the adverse impact thereof on the resolving power, measurement accuracy, and dynamic range of MS and IMS analyzers, while a greater overlap with coplanar light or particle beams can benefit spectroscopic methods.

  5. Classification and 3D averaging with missing wedge correction in biological electron tomography ☆

    PubMed Central

    Bartesaghi, A.; Sprechmann, P.; Liu, J.; Randall, G.; Sapiro, G.; Subramaniam, S.

    2008-01-01

    Strategies for the determination of 3D structures of biological macromolecules using electron crystallography and single-particle electron microscopy utilize powerful tools for the averaging of information obtained from 2D projection images of structurally homogeneous specimens. In contrast, electron tomographic approaches have often been used to study the 3D structures of heterogeneous, one-of-a-kind objects such as whole cells where image-averaging strategies are not applicable. Complex entities such as cells and viruses, nevertheless, contain multiple copies of numerous macromolecules that can individually be subjected to 3D averaging. Here we present a complete framework for alignment, classification, and averaging of volumes derived by electron tomography that is computationally efficient and effectively accounts for the missing wedge that is inherent to limited-angle electron tomography. Modeling the missing data as a multiplying mask in reciprocal space we show that the effect of the missing wedge can be accounted for seamlessly in all alignment and classification operations. We solve the alignment problem using the convolution theorem in harmonic analysis, thus eliminating the need for approaches that require exhaustive angular search, and adopt an iterative approach to alignment and classification that does not require the use of external references. We demonstrate that our method can be successfully applied for 3D classification and averaging of phantom volumes as well as experimentally obtained tomograms of GroEL where the outcomes of the analysis can be quantitatively compared against the expected results. PMID:18440828

  6. Stem thrust prediction model for W-K-M double wedge parallel expanding gate valves

    SciTech Connect

    Eldiwany, B.; Alvarez, P.D.; Wolfe, K.

    1996-12-01

    An analytical model for determining the required valve stem thrust during opening and closing strokes of W-K-M parallel expanding gate valves was developed as part of the EPRI Motor-Operated Valve Performance Prediction Methodology (EPRI MOV PPM) Program. The model was validated against measured stem thrust data obtained from in-situ testing of three W-K-M valves. Model predictions show favorable, bounding agreement with the measured data for valves with Stellite 6 hardfacing on the disks and seat rings for water flow in the preferred flow direction (gate downstream). The maximum required thrust to open and to close the valve (excluding wedging and unwedging forces) occurs at a slightly open position and not at the fully closed position. In the nonpreferred flow direction, the model shows that premature wedging can occur during {Delta}P closure strokes even when the coefficients of friction at different sliding surfaces are within the typical range. This paper summarizes the model description and comparison against test data.

  7. Injuries Due to Wedging of Bicycle Wheels in On-road Tram Tracks

    PubMed Central

    Deunk, Jaap; Harmsen, Annelieke M. K.; Schonhuth, Casper P.; Bloemers, Frank W.

    2014-01-01

    Background: In cities with trams as public transportation, tram tracks are often on public roads, creating a shared road situation with other road participants like cyclists. Beside the risk of direct collisions, this situation can also lead to bicycle wheels getting wedged in tram tracks, causing cyclists to fall. Objectives: The aim of this study was to gain more insight in the injury pattern of this trauma mechanism and to draw attention to the risks of the infrastructural situation with on-road tram tracks. Patients and Methods: A one-year, prospective, observational cohort study was conducted. All patients admitted after presentation to the emergency department of a level 1 trauma center, who got injured because their bicycle wheels got wedged in tram tracks, were included. Data were collected on patient demographics, type of injury and treatment. Results: Ten patients were included. Six were male. The mean age was 38 years. Six patients required surgery, mostly because of extremity injuries. Mean duration of admission was 4 days. Mean injury severity score was 13. One patient died as a result of the injuries sustained in the accident. Conclusions: Tram tracks on public roads are potentially dangerous and can lead to serious injuries and even mortality amongst cyclist. Operative intervention is frequently needed. PMID:25685751

  8. Jurassic tectonic wedging and crustal block rotation, northern Sierra Nevada California

    SciTech Connect

    Harwood, D.S.; Griscom, A. )

    1993-04-01

    Rocks in the northern Sierra Nevada east of the Feather River peridotite belt (FRPB) and south of 39[degree]45 minutes N. strike NNW, dip steeply E and form an east-facing homoclinal section as much as 35km thick. The lower Paleozoic Shoo Fly Complex (SFC), the oldest and western-most unit in the homoclinal section, is faulted against the FRPB. Middle Jurassic volcanic rocks (Jv) at the top of the homoclinal section are down-faulted against Paleozoic rocks to the east along the Talbot fault (TF). A positive aeromagnetic anomaly and east-sloping gradient south of 39[degree]45 minutes N. indicate that the east contact of the FRPB dips about 45[degree]E. beneath the homoclinal section and extends to a depth of at least 10km. The contact between the buried FRPB and the homoclinal section is interpreted to be the roof thrust of an east-tapering wedge of serpentinized oceanic crust and upper mantle, probably emplaced in the Early and Middle Jurassic. Normal, west-down displacement on the Talbot fault, contemporaneous with east-vergent edging, resulted in eastward block rotation of the rocks above the wedge, syndepositional thickening of the Early and Middle Jurassic Sailor Canyon Formation (Jsc) relative to the coeval rocks east of the Talbot fault, and structural control for Middle Jurassic magmatism.

  9. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab

    PubMed Central

    Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma. Hannah T.; Okuno, Mitsuru; Kobayashi, Tetsuo

    2013-01-01

    Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure–temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge. PMID:23716664

  10. Thick lung wedge resection for acute life-threatening massive hemoptysis due to aortobronchial fistula

    PubMed Central

    Ozawa, Yuichiro; Nakajima, Tomomi; Ikeda, Akihiko; Konishi, Taisuke; Matsuzaki, Kanji

    2016-01-01

    Massive hemoptysis from an aortobronchial fistula due to thoracic aortic dissection is an extremely rare symptom, but is a potentially life-threatening condition. We report a case of acute massive hemoptysis due to aortobronchial fistula that was successfully controlled by a simple and rapid thick wedge resection of the lung with hematoma by using the black cartilage stapler. A 65-year-old man was admitted to our hospital with acute massive hemoptysis. After tracheal intubation, chest computed tomography revealed hematoma in the left lung and ruptured aortic dissection from the distal arch to the descending aorta. He was diagnosed with aortobronchial fistula and underwent an emergency surgery on the same day. We performed posterolateral thoracotomy. A dissecting aortic aneurysm (diameter, ~80 mm) with adhesion of the left upper lobe and the superior segment of the lower lobe was found. The lung parenchyma expanded with the hematoma. We stapled the upper and lower lobes by using the black cartridge stapler along the aortopulmonary window. Massive hemoptysis disappeared, and the complete aortic dissection appeared. Aortic dissection with adherent lung was excised, and graft replacement of the distal arch and descending thoracic aorta was performed. Proximal lung wedge resection using black cartridge stapler is a simple and quick method to control massive hemoptysis from aortic dissection; hence, this procedure is an effective option to control massive hemoptysis due to aortobronchial fistula. This technique could rapidly stop massive hemoptysis and prevent dissection of the adherent lung tissue and intra-thoracic bleeding. PMID:27747035

  11. Magnetotail flux accumulation leading to auroral expansion and a substorm current wedge: case study

    NASA Astrophysics Data System (ADS)

    Chu, X.; McPherron, R. L.; Hsu, T. S.; Angelopoulos, V.; Weygand, J. M.; Strangeway, R. J.; Liu, J.

    2015-12-01

    Magnetotail burst busty flows, magnetic field dipolarization, and auroral poleward expansion are linked to the development of substorm current wedges (SCW). Although auroral brightening is often attributed to field-aligned currents (FACs) in the SCW produced by flow vorticity and pressure redistribution, in-situ observations addressing the mechanism that generates these currents have been scarce. Conjugate observations and modelling results utilizing magnetotail satellites, inversion technique for SCW, and auroral imagers were used to study the release, transport, and accumulation of magnetic flux by flows; dipolarization associated with substorm current wedge formation; and auroral poleward expansion during an isolated substorm on 13 February 2008. During early expansion phase, magnetic flux released by magnetic reconnection was transported by earthward flows. Some magnetic flux was accumulated in the near-Earth region, and the remainder was transported azimuthally by flow diversion. The accumulated flux created a high pressure region with vertically dipolarized and azimuthally bent magnetic field lines. The rotation of the magnetic field lines was consistent with the polarity of the SCW. In the near-Earth region, good agreement was found among the magnetic flux transported by the flows, the accumulated flux causing dipolarization inside the SCW, and the flux enclosed within the poleward-expanded auroral oval. This agreement demonstrates that magnetic flux from the flows accumulated and generated the SCW, the magnetic dipolarization, and the auroral poleward expansion. The quantity of accumulated flux appears to determine the amplitudes of these phenomena.

  12. Ingestion of plastic debris by Laysan albatrosses and wedge-tailed shearwaters in the Hawaiian Islands

    USGS Publications Warehouse

    Fry, D.M.; Fefer, S.I.; Sileo, L.

    1987-01-01

    Surveys of Laysan Albatross and Wedge-tailed Shearwaters on Midway and Oahu Island, Hawaii, identified a high proportion of birds with plastic in the upper gastrointestinal tract, representing hazards to the health of adult birds and their chicks. Fifty Laysan Albatross chicks were examined for plastic items lodged within the upper digestive tract. Forty-five (90%) contained plastic, including 3 chicks having proventricular impactions or ulcerative lesions. Plastic items in 21 live albatross chicks weighed a mean of 35.7 g chicka??1 (range 1a??175 g). Four dead birds contained 14a??175 g (mean 76.7 g). Two of four adult albatross examined contained plastic in the gut. Laysan albatross chicks have the highest reported incidence and amount of ingested plastic of any seabird species. Twelve of 20 adult Wedge-tailed Shearwaters (60%) contained plastic particles 2a??4 mm in diameter. Impaction did not appear to be a significant hazard for adult shearwaters. Shearwater chicks were not examined. Chemical toxicity of plastic polymers, plasticizers and antioxidant additives is low, although many pigments are toxic and plastics may serve as vehicles for the adsorption of organochlorine pollutants from sea water, and the toxicity of plastics is unlikely to pose significant hazard compared to obstruction and impaction of the gut.

  13. Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing.

    PubMed

    Kumar, Shailabh; Johnson, Timothy W; Wood, Christopher K; Qu, Tao; Wittenberg, Nathan J; Otto, Lauren M; Shaver, Jonah; Long, Nicholas J; Victora, Randall H; Edel, Joshua B; Oh, Sang-Hyun

    2016-04-13

    We present large-scale reproducible fabrication of multifunctional ultrasharp metallic structures on planar substrates with capabilities including magnetic field nanofocusing and plasmonic sensing. Objects with sharp tips such as wedges and pyramids made with noble metals have been extensively used for enhancing local electric fields via the lightning-rod effect or plasmonic nanofocusing. However, analogous nanofocusing of magnetic fields using sharp tips made with magnetic materials has not been widely realized. Reproducible fabrication of sharp tips with magnetic as well as noble metal layers on planar substrates can enable straightforward application of their material and shape-derived functionalities. We use a template-stripping method to produce plasmonic-shell-coated nickel wedge and pyramid arrays at the wafer-scale with tip radius of curvature close to 10 nm. We further explore the magnetic nanofocusing capabilities of these ultrasharp substrates, deriving analytical formulas and comparing the results with computer simulations. These structures exhibit nanoscale spatial control over the trapping of magnetic microbeads and nanoparticles in solution. Additionally, enhanced optical sensing of analytes by these plasmonic-shell-coated substrates is demonstrated using surface-enhanced Raman spectroscopy. These methods can guide the design and fabrication of novel devices with applications including nanoparticle manipulation, biosensing, and magnetoplasmonics.

  14. Potential theory for shock reflection by a large-angle wedge

    PubMed Central

    Chen, Gui-Qiang; Feldman, Mikhail

    2005-01-01

    When a plane shock hits a wedge head on, it experiences a reflection, and then a self-similar reflected shock moves outward as the original shock moves forward in time. Experimental, computational, and asymptotic analysis has shown that various patterns of reflected shocks may occur, including regular and Mach reflection. However, most fundamental issues for shock reflection phenomena have not been understood, such as the transition among the different patterns of shock reflection; therefore, it is essential to establish a global existence and stability theory for shock reflection. On the other hand, there has been no rigorous mathematical result on the global existence and stability of solutions to shock reflection, especially for potential flow, which has widely been used in aerodynamics. The theoretical problems involve several challenging difficulties in the analysis of nonlinear partial differential equations including elliptic-hyperbolic mixed type, free-boundary problems, and corner singularity, especially when an elliptic degenerate curve meets a free boundary. Here we develop a potential theory to overcome these difficulties and to establish the global existence and stability of solutions to shock reflection by a large-angle wedge for potential flow. The techniques and ideas developed will be useful to other nonlinear problems involving similar difficulties. PMID:16230619

  15. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab.

    PubMed

    Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma Hannah T; Okuno, Mitsuru; Kobayashi, Tetsuo

    2013-06-11

    Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure-temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge.

  16. Dynamics of Sub-Micron Bubbles Growing in a Wedge in the Low Capillary Number Regime

    NASA Astrophysics Data System (ADS)

    Norton, Michael; Park, Jeung; Kodambaka, Suneel; Ross, Frances; Bau, Haim

    2014-11-01

    Using a hermetically-sealed liquid cell, we observed the growth and migration of bubbles (tens to hundreds of nanometers in diameter) with a transmission electron microscope. The internal pressure of the liquid caused the thin silicon nitride membranes that comprise the cell's observation windows to bow outward, creating spatial gradients in the liquid cell's height. As a result, growing bubbles migrated in the direction of increasing cell height. To better understand the migration dynamics, we developed a simple, two-dimensional model to predict the translational velocity of a bubble that makes contact with both wedge surfaces as a function of the bubble growth rate and wedge opening angle. The model is valid in the asymptotic limit of zero capillary number and relies on a phenomenological relationship between the contact line velocity and the dynamic contact angle. The theoretical predictions are compared with experimental observations. MN was supported, in part, by the Nano/Bio Interface Center through the National Science Foundation NSEC DMR08-32802. HHB and FR were supported, in part, by Grants 1129722 and 1066573 from the National Science Foundation.

  17. Polarization induced two dimensional confinement of carriers in wedge shaped polar semiconductors

    PubMed Central

    Deb, S.; Bhasker, H. P.; Thakur, Varun; Shivaprasad, S. M.; Dhar, S.

    2016-01-01

    A novel route to achieve two dimensional (2D) carrier confinement in a wedge shaped wall structure made of a polar semiconductor has been demonstrated theoretically. Tapering of the wall along the direction of the spontaneous polarization leads to the development of charges of equal polarity on the two inclined facades of the wall. Polarization induced negative (positive) charges on the facades can push the electrons (holes) inward for a n-type (p-type) material which results in the formation of a 2D electron (hole) gas at the central plane and ionized donors (acceptors) at the outer edges of the wall. The theory shows that this unique mode of 2D carrier confinement can indeed lead to a significant enhancement of carrier mobility. It has been found that the reduced dimensionality is not the only cause for the enhancement of mobility in this case. Ionized impurity scattering, which is one of the major contributer to carrier scattering, is significantly suppressed as the carriers are naturally separated from the ionized centers. A recent experimental finding of very high electron mobility in wedge shaped GaN nanowall networks has been analyzed in the light of this theoretical reckoning. PMID:27210269

  18. Deep seismic imaging of the Cadomian thrust wedge of Northern Brittany

    NASA Astrophysics Data System (ADS)

    Bitri, Adnand; Brun, Jean Pierre; Truffert, Catherine; Guennoc, Pol

    2001-02-01

    The Armor seismic profile (AR1, AR2) crosscuts the major units of the Cadomian Domain (600-540 Ma) of Northern Brittany and extends the offshore SWAT 10 profile (BIRPS-ECORS program). We thus have a combined 95-km-long NNW-SSE section for describing the regional-scale structure of the Cadomian crust in the area. Following reprocessing and migration of the southern end of the SWAT 10 profile so that it could be compared with the AR1-AR2 Armor profile, a structural interpretation of the composite profile was carried out taking into account gravity modelling and magnetotelluric soundings. The SWAT 10-Armor profile reveals the existence of steeply dipping thrust faults in the upper crust representing a thrust wedge with a gently northwest-dipping sole. This Cadomian thrust system continues below the unmetamorphosed Brioverian and Palaeozoic sediments of central Brittany and beyond the southern end of the profile in the Central Armorican Domain. It supports previous interpretations of dominant oblique-type thrusting during Cadomian tectonics proposed on the basis of geological field evidence and confirms the existence of a major northwest-dipping thrust fault that brings the volcanic-arc formations of the Saint-Brieuc Unit onto the metasediments of the Saint-Malo Unit. The profile also emphasises the regional extent of a thrust wedge at the scale of the whole Cadomian domain of Northern Brittany.

  19. Supercritical aqueous fluids in subduction zones carrying carbon and sulfur: oxidants for the mantle wedge?

    NASA Astrophysics Data System (ADS)

    Sverjensky, Dimitri; Manning, Craig

    2014-05-01

    Much speculation surrounds the nature of aqueous fluids in subduction zones. Aqueous fluids likely trigger partial melting in the mantle wedge, influencing the chemistry of the magmas that erupt in island arcs. They also may play a role in transporting elements that could metasomatize and oxidize the overlying mantle wedge, most importantly C, S and Fe. However, full coupling of aqueous fluid chemistry with the silicate, carbonate, C, sulfide and sulfate minerals has remained limited to pressures of 0.5 GPa because of limitations on the HKF aqueous ion equation of state. Recent progress in developing a Deep Earth Water model (Sverjensky et al., 2014), calibrated with new experimental data, now enables a detailed evaluation of the evolution of aqueous fluid chemistry to a pressure of 6 GPa, well into subduction zone conditions. We report aqueous speciation models for eclogitic aqueous fluids constrained by model mineral assemblages that give preliminary indications of the solubilities of elements that could contribute to mass transfer and redox changes in the mantle wedge. For example, at 600 °C and 2.5 GPa, an aqueous fluid in equilibrium with jadeite, paragonite, muscovite, quartz, lawsonite, almandine, talc, magnesite and pyrite at QFM oxidation state with 0.1 molal total Cl, contains 5.5 molal C, 0.04 molal S, and 9 micromolal Fe. The fluid has a pH of 4.7, much greater than the neutral pH of 3.3; the predominant species and molalities are CO2 (5.0), Na+ (0.44), Si(OH)4 (0.36), HCO3- (0.26), H3SiO4- (0.23), CaHCO3+ (0.18), silica dimer (0.10), Cl- (0.09), K+ (0.08), HCOO- (0.06), H2S (0.03). Calculations for model eclogitic fluids at the higher pressures and temperatures of subarc conditions also show that the solubility of C is much greater than either S or Fe at QFM. However, in subarc eclogitic fluids of higher oxidation state (QFM +3 to +4) in equilibrium with hematite, anhydrite, jadeite, kyanite, phlogopite, coesite, lawsonite, almandine-pyrope, and

  20. Measuring linac photon beam energy through EPID image analysis of physically wedged fields

    SciTech Connect

    Dawoud, S. M. Weston, S. J.; Bond, I.; Ward, G. C.; Rixham, P. A.; Mason, J.; Huckle, A.; Sykes, J. R.

    2014-02-15

    Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful tools for measuring several parameters of interest in linac quality assurance (QA). However, a method for measuring linac photon beam energy using EPIDs has not previously been reported. In this report, such a method is devised and tested, based on fitting a second order polynomial to the profiles of physically wedged beams, where the metric of interest is the second order coefficientα. The relationship between α and the beam quality index [percentage depth dose at 10 cm depth (PDD{sub 10})] is examined to produce a suitable calibration curve between these two parameters. Methods: Measurements were taken in a water-tank for beams with a range of energies representative of the local QA tolerances about the nominal value 6 MV. In each case, the beam quality was found in terms of PDD{sub 10} for 100 × 100 mm{sup 2} square fields. EPID images of 200 × 200 mm{sup 2} wedged fields were then taken for each beam and the wedge profile was fitted in MATLAB 2010b (The MathWorks, Inc., Natick, MA). α was then plotted against PDD{sub 10} and fitted with a linear relation to produce the calibration curve. The uncertainty in α was evaluated by taking five repeat EPID images of the wedged field for a beam of 6 MV nominal energy. The consistency of measuring α was found by taking repeat measurements on a single linac over a three month period. The method was also tested at 10 MV by repeating the water-tank crosscalibration for a range of energies centered approximately about a 10 MV nominal value. Finally, the calibration curve from the test linac and that from a separate clinical machine were compared to test consistency of the method across machines in a matched fleet. Results: The relationship betweenα and PDD{sub 10} was found to be strongly linear (R{sup 2} = 0.979) while the uncertainty in α was found to be negligible compared to that associated with measuring PDD{sub 10} in the water-tank (

  1. Temporal evolution of fO2 in the Mariana mantle wedge

    NASA Astrophysics Data System (ADS)

    Brounce, M. N.; Kelley, K. A.; Cottrell, E.

    2013-12-01

    The elevated oxygen fugacity (fO2) recorded by arc lavas appears to be linked to slab fluid influence globally and locally; however, many details regarding the capacity that slab fluids have to oxidize the mantle wedge remain unknown. At the time of subduction initiation, melts may be produced by a combination of decompression and fluid-fluxed melting and the role of flux melting may increase as the subduction zone matures (Reagan et al., 2010, G3 11(3)). Immediately prior to subduction initiation, the mantle presumably has fO2 and fluid concentrations similar to mid-ocean ridge (MOR) source mantle (near the quartz-fayalite-magnetite buffer, QFM, and relatively dry). As subduction zones mature, slab fluids may become more dominant in melt generation as evidenced by increases in fluid-mobile trace element signatures, but the fO2 of slab fluids and temporal changes in the fO2 of erupted basalt remains undocumented. The Mariana forearc southwest of Guam records the initiation of Pacific plate subduction (Reagan et al., 2010). At the base, fore-arc basalts (FAB) erupted at the immediate onset of subduction (51-52 Ma) show minor traces of slab fluid influence and likely reflect decompression melting that occurred as mantle rose to accommodate the sinking Pacific plate. The FAB are overlain by 37-44 Ma 'transitional' basalts whose fluid mobile trace element enrichments indicate that slab fluids have greater influence in their petrogenesis. These lavas provide the opportunity to directly constrain the timescales of mantle wedge oxidation during the initiation and maturation of an oceanic subduction zone. We present Fe3+/ΣFe ratios (μ-XANES) determined on FAB and transitional basalt glasses, paired with previously published major and trace element data. These glasses range in MgO from 2.75 - 7.56 wt% and have Fe3+/ΣFe ratios (0.171 - 0.208) that are slightly more oxidized than MORB (0.16), similar to Mariana trough lavas that reflect minor traces of slab fluid influence

  2. Mechanics of brittle transpressional wedges: constraints from complementary analogue and numerical modelling

    NASA Astrophysics Data System (ADS)

    Leever, K.; Thieulot, C.; Oncken, O.

    2012-12-01

    Analogue tectonic modeling combined with digital image analysis (PIV) gives high resolution constraints on the kinematics of (crustal) deformation. Observations are, however, limited to the model surface. While 3D numerical codes suffer much lower resolution than their analogue counterparts, they do allow unrestrained access to the internal dynamics. We apply both methods to constrain the mechanics of brittle transpressional wedges as fully as possible, allowing for a validation of existing analytical models. In this contribution, we highlight the strong control of erosional unloading on strain partitioning in highly oblique convergence. Results from analogue modelling Analogue tectonic transpression models with a brittle rheology and driven by constant basal kinematic boundary conditions were run at convergence angles of 10°, 20° and 30°. In one end member series, no erosion was applied. In the other series, the wedge topography was fully removed at 3 cm displacement increments. The models were observed with digital cameras. Using PIV, displacement fields were calculated and the slip on individual fault segments was derived. The analogue models reveal a strong dependence of fault kinematics on erosional unloading. The model series without erosion show a two-stage evolution. An initial, transient "oblique wedge" stage with oblique slip on pro- and retro-shear is followed by a steady state stage of "strain partitioning", in which slip is partitioned between strike-slip on a sub-vertical fault above the velocity discontinuity and oblique slip (20-30° obliquity, depending on the convergence angle) on the pro-shears. In this stage, the retro-shear accommodates near-orthogonal slip (5-10° obliquity). In the model series with erosion, a strike-slip fault develops as well. However, probably due to its inclined geometry, a larger component of the boundary-parallel displacement remains to be accommodated on the pro-shears. Slip on the retro-shear remains highly oblique

  3. Crack-opening displacements in center-crack, compact, and crack-line wedge-loaded specimens. [of flat plates

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1976-01-01

    The theoretical crack-opening displacements for center-crack, compact, and crack-line wedge-loaded specimens (reported in the ASTM Proposed Recommended Practice for R-Curve Determination (1974)) disagree with experimental measurements in the literature. The disagreement is a result of using approximate specimen configurations and load representation to obtain the theoretical displacements. An improved method of boundary collocation is presented which was used to obtain the theoretical displacements in these three specimen types; the actual specimen configurations and more accurate load representation were used. In the analysis of crack-opening displacements in the compact and crack-line wedge-loaded specimens, the effects of the pin-loaded holes were also included. The theoretical calculations agree with the experimental measurements reported in the literature. Also examined are accurate polynomial expressions for crack-opening displacements in both compact and crack-line wedge-loaded specimens.

  4. Investigation of the failure behaviour of vertebral trabecular architectures under uni-axial compression and wedge action loading conditions.

    PubMed

    McDonnell, P; Harrison, N; McHugh, P E

    2010-07-01

    Vertebral wedge fractures are associated with combined compression and flexure loading and are the most common fracture type for human vertebrae. In this study, rapid prototype (RP) biomodels of human vertebral trabecular bone were mechanically tested under uni-axial compression loading and also under wedge action loading (combination of compression and flexure loading) to investigate the mode of failure and the ultimate loads that could be sustained under these different loading conditions. Two types of trabecular bone models were manufactured and tested: baseline models which were directly derived from microCT scans of human thoracic vertebrae, and osteoporotic models which were generated from the baseline models using a custom-developed bone loss algorithm. The ultimate load for each model under compression and wedge action loading was determined and a video was recorded of each test so that failure mechanisms could be evaluated. The results of the RP model mechanical tests showed that the ultimate loads that could be supported by vertebral trabecular architectures under wedge action loading were less than those that could be supported under uni-axial compression loading by up to 26%. Also, the percentage reduction in strength from the baseline value due to osteoporotic bone loss was slightly less for the wedge action loading compared to uni-axial compression loading. Analysis of the videos for each test revealed that failure occurred in localised regions of the trabecular structure due to bending and buckling of thin vertical struts. These results suggest that vertebral trabecular bone is more susceptible to failure from wedge action loading compared to uni-axial compression loading, although this effect is not exacerbated by osteoporotic bone loss.

  5. Coulomb theory applied to accretionary and nonaccretionary wedges: Possible causes for tectonic erosion and/or frontal accretion

    NASA Astrophysics Data System (ADS)

    Lallemand, Serge E.; Schnürle, Philippe; Malavieille, Jacques

    1994-06-01

    Based on observations from both modem convergent margins and sandbox modeling, we examine the possible conditions favoring frontal accretion and/or frontal and basal tectonic erosion. Mean characteristic parameters (μ, μ*b and λ) are used to discuss the mechanical stability of 28 transects across the frontal part of convergent margins where the Coulomb theory is applicable. Natural observations reveal that "typical accretionary wedges" are characterized by low tapers with smooth surface slope and subducting plate, low convergence rates and thick trench sediment, while "nonaccretionary wedges" display large tapers with irregular surface slopes and rough subducting plate, high convergence rates and almost no trench fill. Sandbox experiments were performed to illustrate the effects of seamounts/ridges in the subduction zone on the deformation of an accretionary wedge. These experiments show that a wedge of sand is first trapped and pushed in front of the seamount which acts as a moving bulldozer. This is followed by a tunnelling effect of the subducting seamount through the frontal wedge material, which results in considerable sand reworking. At an advanced subduction stage, the décollement jumps back from a high level in the wedge to its former basal position. We conclude that a high trench sedimentation rate relative to the convergence rate leads to frontal accretion. In contrast, several conditions may favor tectonic erosion of the upper plate. First, oceanic features, such as grabens, seamounts or ridges, may trap upper plate material during their subduction process. Second, destabilization of the upper plate material by internal fluid overpressuring causing hydrofracturing is probably another important mechanism.

  6. Intensity-Modulated Radiotherapy Results in Significant Decrease in Clinical Toxicities Compared With Conventional Wedge-Based Breast Radiotherapy

    SciTech Connect

    Harsolia, Asif; Kestin, Larry; Grills, Inga; Wallace, Michelle; Jolly, Shruti; Jones, Cortney; Lala, Moinaktar; Martinez, Alvaro; Schell, Scott; Vicini, Frank A. . E-mail: fvicini@beaumont.edu

    2007-08-01

    Purpose: We have previously demonstrated that intensity-modulated radiotherapy (IMRT) with a static multileaf collimator process results in a more homogenous dose distribution compared with conventional wedge-based whole breast irradiation (WBI). In the present analysis, we reviewed the acute and chronic toxicity of this IMRT approach compared with conventional wedge-based treatment. Methods and Materials: A total of 172 patients with Stage 0-IIB breast cancer were treated with lumpectomy followed by WBI. All patients underwent treatment planning computed tomography and received WBI (median dose, 45 Gy) followed by a boost to 61 Gy. Of the 172 patients, 93 (54%) were treated with IMRT, and the 79 patients (46%) treated with wedge-based RT in a consecutive fashion immediately before this cohort served as the control group. The median follow-up was 4.7 years. Results: A significant reduction in acute Grade 2 or worse dermatitis, edema, and hyperpigmentation was seen with IMRT compared with wedges. A trend was found toward reduced acute Grade 3 or greater dermatitis (6% vs. 1%, p = 0.09) in favor of IMRT. Chronic Grade 2 or worse breast edema was significantly reduced with IMRT compared with conventional wedges. No difference was found in cosmesis scores between the two groups. In patients with larger breasts ({>=}1,600 cm{sup 3}, n = 64), IMRT resulted in reduced acute (Grade 2 or greater) breast edema (0% vs. 36%, p <0.001) and hyperpigmentation (3% vs. 41%, p 0.001) and chronic (Grade 2 or greater) long-term edema (3% vs. 30%, p 0.007). Conclusion: The use of IMRT in the treatment of the whole breast results in a significant decrease in acute dermatitis, edema, and hyperpigmentation and a reduction in the development of chronic breast edema compared with conventional wedge-based RT.

  7. Confined deep water system development on the accretionary wedge (Miocene, Kahramanmaraş Foreland Basin, S turkey)

    NASA Astrophysics Data System (ADS)

    Gül, Murat; Cronin, Bryan T.; Gürbüz, Kemal

    2012-09-01

    According to theoretical studies, the foreland basin consists of: accretionary wedge (including wedge top or piggyback basin), foredeep, forebulge and backbulge depozones. All of them are parallel to the orogenic belts of the overlying and underlying plates. The closure of the southern branch of the Neotethys during the Late Cretaceous led to an oblique collision of the Arabian Plate and the Anatolide-Taurides Platform, leading to the development of the Miocene Kahramanmaraş Foreland Basin (KFB). Thus, the promontory shape of the Arabian Plate prevented the development of an accretionary wedge parallel to the orogenic belt. The accretionary wedge of the KFB includes blocks of various sizes and age (mainly Mesozoic limestone) scattered within an Early Tertiary matrix (mass wasting deposits and shallow to deep marine sediments). At the beginning of the Miocene, transtensional tectonism led to the development of half-graben basins on top of the accretionary wedge. These basins (namely; the Tekir and Çukurhisar) also cut the foredeep of the KFB obliquely (in contrast with the theoretical study). This paper focuses on the evolution and fillings of those basins. Initially, claystone and basin margin reef deposits filled the half-graben basins as a consequence of the Lower Miocene sea invasion. Then, long and narrow conglomeratic channels starting from the northern edge of the basins (fan-delta) progressed southwards, passing into sandy lobes, then into claystones. An activation of the boundary faults of the wedge top basin stopped the progression of the Lower-Middle Miocene sediments and led to their deformation. Then, the sedimentation of the KFB shifted towards the basin centre during the Middle Miocene.

  8. Mixed convection flow over a stretching porous wedge with Newtonian heating in the presence of heat generation or absorption

    NASA Astrophysics Data System (ADS)

    Ashraf, M.; Narahari, Marneni; Muthuvalu, Mohana Sundaram

    2016-11-01

    Time independent mixed convective boundary layer flow of a viscous fluid over a porous stretching wedge is investigated analytically. The porous wedge is subjected to Newtonian heating in the existence of heat generation /absorption. Employing non-dimensional transformations the governing PDE's converted to nonlinear ODE's which are further solved by using homotopy analysis method. The convergence of the solution is properly checked and the effects of various involved parameters on velocity and temperature distributions are illustrated through graphs. The reliability and effectiveness of HAM have been verified by comparing the present analytical results with existing numerical results for skin-friction coefficient. The results are found to be in good agreement.

  9. On the validity of 2D critical taper theory in 3D wedges: defining a lateral deformation length scale

    NASA Astrophysics Data System (ADS)

    Leever, Karen; Oncken, Onno; Thorden Haug, Øystein

    2015-04-01

    For 2D critical taper theory to be applicable to 3D natural cases, cylindric deformation is a requirement. The assumption of cylindricity is violated in case of localized perturbations (subducting seamount, localized sedimentation) or due to a lateral change in decollement strength or depth. In natural accretionary wedges and fold-and-thrust belts, along strike changes may occur in a variety of ways: geometrical (due to a protruding indenter or a change in decollement depth), through a lateral change in basal friction (leading to laterally different tapers), or through a change in surface slope (by strongly localized fan sedimentation on accretionary wedges). Recent numerical modelling results (Ruh et al., 2013) have shown that lateral coupling preferentially occurs for relatively small perturbations, i.e. the horizontal shear stress caused by the perturbation is supported by the system. Lateral linking of the wedge in front of a protruding indenter to the wedge in front of the trailing edge of the back stop leads to curved thrust fronts and importantly it has been noted that even outside the curved zone, where the wedge front is again parallel to the direction of tectonic transport, the lateral effect is still evident: both tapers are different from the analytical prediction. We present results from a 3D analogue modelling parameter study to investigate this behavior more quantitatively, with the objective of empirically finding a lateral length scale of deformation in brittle contractional wedges. For a given wedge strength (angle of internal friction), we infer this to be a function of the size (width) of the perturbation and its magnitude (difference in basal friction). To this end we run different series of models in which we systematically vary the width and/or magnitude of a local perturbation. In the first series, the width of a zone of high basal friction is varied, in the second series we vary the width of an indenter and in the third series

  10. Enhancement of measurement sensitivity in the formation of shear interferograms of transparent plates with small residual wedging

    SciTech Connect

    But', A I; Lyalikov, A M

    2011-10-31

    We have proposed a method for increasing the sensitivity of measurements of the wedge angle in transparent plates. The method is based on formation of the holographic shear interferograms using a combination of 180 Degree-Sign rotation of the plate with byturn adjustment of interferograms in its images to an infinitely wide fringe. The sensitivity enhancement is due to the increased number of interference fringes in the observed images of the wedged plate, which favours the reduction of the measurement error during optical processing of the obtained interferograms. Data on the experimental validation of the proposed method are presented.

  11. Alpine collisional wedge sequence of shortening from thermal, thermochronological and geochronological data.

    NASA Astrophysics Data System (ADS)

    Boutoux, Alexandre; Bellahsen, Nicolas; Nanni, Ugo; Pik, Raphael; Rolland, Yann; Verlaguet, Anne; Lacombe, Olivier; Vitale Brovarone, Alberto

    2015-04-01

    Thermicity and kinematics of collisional wedges are key to understand crustal rheology during collision, especially in thick-skinned mountain belts, where deep crustal levels are exhumed. In the Western Alps, the large body of available data now allows a detailed study of both structural and thermal evolution. In this contribution, from new (U-Th-Sm)/He data on zircon and new Raman Spectroscopy on Carbonaceous Material (RSCM) data on samples from the Aiguilles Rouges and Mont Blanc massifs (External Crystalline Massifs, Western Alps) and their cover, coupled to HeFTy thermal modeling, we constrain the thermal evolution and exhumation of the massifs. In the Aiguilles Rouges massif, the peak temperature was about 315°C, which is significantly higher than previously estimated, and thus close to the peak temperature reached by the Mont Blanc massif (400°C). Moreover, (U-Th-Sm)/He data (and literature data) point toward a coeval cooling and exhumation of both massifs. These results allow refining both the thermal structure evolution and the structural evolution of the external Western Alps. In this scenario, which highlights a forward propagation of shortening, the Mont Blanc massif was shortened at thermal peak during Oligocene times (30-23 Ma). It is noteworthy that this thermal peak lasted 10-15 Ma in the Mont Blanc massif, and probably 5-10 Ma in the Aiguilles Rouges massif. At 23 Ma, the Mont Blanc Shear Zone was activated and the massif started to exhume slowly. At 16 Ma, the exhumation rate increased, coevally with the activation of a crustal ramp below the Aiguilles Rouges massif, the Mont Blanc Back Thrust, and the activity of the Mont Blanc Shear Zone: the zone of underplating below the wedge thus widened at this time. Finally, at 11 Ma, the Jura fold-and-thrust-belt formed at the wedge front. One of the major results of this contribution is the significant shortening that the External Crystalline Massifs experienced during their thermal peak (lasting around

  12. Experiments on melt-rock reaction in the shallow mantle wedge

    NASA Astrophysics Data System (ADS)

    Mitchell, Alexandra L.; Grove, Timothy L.

    2016-12-01

    This experimental study simulates the interaction of hotter, deeper hydrous mantle melts with shallower, cooler depleted mantle, a process that is expected to occur in the upper part of the mantle wedge. Hydrous reaction experiments ( 6 wt% H2O in the melt) were conducted on three different ratios of a 1.6 GPa mantle melt and an overlying 1.2 GPa harzburgite from 1060 to 1260 °C. Reaction coefficients were calculated for each experiment to determine the effect of temperature and starting bulk composition on final melt compositions and crystallizing assemblages. The experiments used to construct the melt-wall rock model closely approached equilibrium and experienced <5% Fe loss or gain. Experiments that experienced higher extents of Fe loss were used to critically evaluate the practice of "correcting" for Fe loss by adding iron. At low ratios of melt/mantle (20:80 and 5:95), the crystallizing assemblages are dunites, harzburgites, and lherzolites (as a function of temperature). When the ratio of deeper melt to overlying mantle is 70:30, the crystallizing assemblage is a wehrlite. This shows that wehrlites, which are observed in ophiolites and mantle xenoliths, can be formed by large amounts of deeper melt fluxing though the mantle wedge during ascent. In all cases, orthopyroxene dissolves in the melt, and olivine crystallizes along with pyroxenes and spinel. The amount of reaction between deeper melts and overlying mantle, simulated here by the three starting compositions, imposes a strong influence on final melt compositions, particularly in terms of depletion. At the lowest melt/mantle ratios, the resulting melt is an extremely depleted Al-poor, high-Si andesite. As the fraction of melt to mantle increases, final melts resemble primitive basaltic andesites found in arcs globally. An important element ratio in mantle lherzolite composition, the Ca/Al ratio, can be significantly elevated through shallow mantle melt-wall rock reaction. Wall rock temperature is a key

  13. Lithium Isotope Study of Peridotite-Slab Fluid Interactions in the Mariana Forearc Mantle Wedge

    NASA Astrophysics Data System (ADS)

    Lui-Heung, C.; Savov, I. P.; Ryan, J. G.

    2006-05-01

    Drilling of the Mariana forearc region during ODP Leg 195 at S. Chamorro Seamount recovered serpentinized peridotite clasts enclosed by serpentinite muds and slab-derived porefluids. In the serpentinized peridotite clasts the ranges of Li abundance (1- 8 ppm) and δ7Li (-1.4 to +5 ‰) are similar to those reported for the forearc- serpentinites of the Conical Seamount [Benton et al., 2004]. Although the serpentinized muds show Li abundances comparable to the clasts (0.5- 10 ppm; average: 2.5 ppm), they have higher δ7Li (+13.4 ‰). Heavier isotopic composition of serpentinized muds confirms the inferences from REE modeling and the visual observations for the presence of 5-10 % metabasalt component, most probably from the Pacific oceanic crust. Fluids (pH up to 12.5) circulating within the muds are highly depleted in Li and show dramatic 7Li-enrichment relative to seawater (δ7Li up to 47 per mil). These characteristics are consistent with near complete removal of Li from slab fluids into minerals of the sepentinite assemblage. We will present a model to describe the fluid-rock interaction including a reconstruction of the Li isotope compositions of the fluids as they leave the subducted slab assemblage, before transiting through the Mariana mantle wedge. Our model will evaluate the importance of Raleigh- type distillation processes under high P/low T conditions within the sub-arc mantle. Because both Conical and S.Chamorro seamounts are sampling approx. 30 km deep column of similarly depleted mantle wedge immediately above the subducting Pacific plate, the clasts may have similar Li systematics due to the effect of equally long transit through the mantle. The similarity in δ7Li signature among all arc lavas implies that although the ultimate source of Li is the subducting slab, the final Li isotope makeup of arc magmatic suites is controlled by the degree of mantle wedge- fluid/ (melt?) interaction upon emplacement.

  14. Thrust fault growth within accretionary wedges: New Insights from 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Orme, H.; Bell, R. E.; Jackson, C. A. L.

    2015-12-01

    The shallow parts of subduction megathrust faults are typically thought to be aseismic and incapable of propagating seismic rupture. The 2011 Tohoku-Oki earthquake, however, ruptured all the way to the trench, proving that in some locations rupture can propagate through the accretionary wedge. An improved understanding of the structural character and physical properties of accretionary wedges is therefore crucial to begin to assess why such anomalously shallow seismic rupture occurs. Despite its importance, we know surprisingly little regarding the 3D geometry and kinematics of thrust network development in accretionary prisms, largely due to a lack of 3D seismic reflection data providing high-resolution, 3D images of entire networks. Thus our current understanding is largely underpinned by observations from analogue and numerical modelling, with limited observational data from natural examples. In this contribution we use PSDM, 3D seismic reflection data from the Nankai margin (3D Muroto dataset, available from the UTIG Academic Seismic Portal, Marine Geoscience Data System) to examine how imbricate thrust fault networks evolve during accretionary wedge growth. Previous studies have reported en-echelon thrust fault geometries from the NW part of the dataset, and have related this complex structure to seamount subduction. We unravel the evolution of faults within the protothrust and imbricate thrust zones by interpreting multiple horizons across faults and measuring fault displacement and fold amplitude along-strike; by doing this, we are able to investigate the three dimensional accrual of strain. We document a number of local displacement minima along-strike of faults, suggesting that, the protothrust and imbricate thrusts developed from the linkage of smaller, previously isolated fault segments. We also demonstrate that the majority of faults grew upward from the décollement, although there is some evidence for downward fault propagation. Our observations

  15. Upper crustal mechanical stratigraphy and the evolution of thrust wedges: insights from sandbox analogue experiments

    NASA Astrophysics Data System (ADS)

    Milazzo, Flavio; Storti, Fabrizio; Nestola, Yago; Cavozzi, Cristian; Magistroni, Corrado; Meda, Marco; Salvi, Francesca

    2016-04-01

    Crustal mechanical stratigraphy i.e. alternating mechanically weaker and stronger layers within the crust, plays a key role in determining how contractional deformations are accommodated at convergent plate boundaries. In the upper crust, evaporites typically provide preferential décollement layers for fault localization and foreland ward propagation, thus significantly influencing evolution of thrust-fold belts in terms of mechanical balance, geometries, and chronological sequences of faulting. Evaporites occur at the base of many passive margin successions that underwent positive inversion within orogenic systems. They typically produce salient geometries in deformation fronts, as in the Jura in the Northern Alps, the Salakh Arch in the Oman Mountains, or the Ainsa oblique thrust-fold belt in the Spanish Pyrenees. Evaporites frequently occur also in foredeep deposits, as in the Apennines, the Pyrenees, the Zagros etc. causing development of additional structural complexity. Low-friction décollement layers also occur within sedimentary successions involved in thrust-fold belts and they contribute to the development of staircase fault trajectories. The role of décollement layers in thrust wedge evolution has been investigated in many experimental works, particularly by sandbox analogue experiments that have demonstrated the impact of basal weak layers on many first order features of thrust wedges, including the dominant fold vergence, the timing of fault activity, and the critical taper. Some experiments also investigated on the effects of weak layers within accreting sedimentary successions, showing how this triggers kinematic decoupling of the stratigraphy above and below the décollements, thus enhancing disharmonic deformation. However, at present a systematic experimental study of the deformation modes of an upper crustal mechanical stratigraphy consisting of both low-friction and viscous décollement layers is still missing in the specific literature. In

  16. The Theory of Wedge Penetration at Oblique Incidence and its Application to the Calculation of Forces on a Yawed Shot Impacting on Armour Plate at Any Angle

    DTIC Science & Technology

    1946-03-01

    at any angle of incidence and any angle of yaw, are calculated by a method of approximation based on the solution of the associated plastic problem of...solution of the associated plastic problem of oblique penetration by a wedge and take into account the formation of a coronet or lip. For a wedge of

  17. Use of arc-jet hypersonic blunted wedge flows for evaluating performance of Orbiter TPS

    NASA Technical Reports Server (NTRS)

    Rochelle, W. C.; Battley, H. H.; Gallegos, J. J.

    1979-01-01

    Arc-jet tests at NASA/JSC have been conducted recently to evaluate the performance of the Orbiter Thermal Protection System (TPS) on three critical areas of the side and top of the Orbiter fuselage: (1) cargo bay door, (2) crew access door, and (3) LRSI/FRSI joint regions. Test articles corresponding to these three areas on the Orbiter were mounted in an arc-jet test chamber in a blunted-wedge holder and exposed to hypersonic flow at various angles of attack. The effects of flow direction, heating load, and overtemperature were investigated. In addition, the reuse capability of the TPS materials was evaluated, along with the protection of the pressure seals within the test articles. Thermal match model predictions correlated well with primary structure thermocouple data. Heating rate and pressure predictions based on a nonequilibrium flow field computer program showed good agreement with arc-jet test data and existing hypersonic flow theories.

  18. [Diversity of bacterial forms in ice wedge of the Mamontova Gora Glacial complex (central Yakutiya)].

    PubMed

    Filippova, S N; Surgucheva, N A; Sorokin, V V; Cherbunina, M Iu; Karnysheva, E A; Brushkov, A V; Gal'chenko, V F

    2014-01-01

    Electron microscopic investigation of four samples of ancient ice wedge from the Pleistocene glacial complex of Mamontova Gora (Yakutiya, Russia) revealed high diversity of bacteriomorphic particles. Their structural features included the presence of electron-transparent zones, presumably inclusions containing storage compounds, and microenvironment (capsules or external sheaths). These features may be a result of adaptive strategies providing for microbial survival under permafrost conditions. Predominance of rod-shaped forms morphologically resembling coryneform actinobacteria was found. X-ray microanalysis revealed organic origin of bacteriomorphic particles. Some particles were characterized by incomplete spectra of the major biogenic elements, resulting probably from low-temperature damage to the cellular structures. Total numbers of aerobic heterotrophic bacteria determined by plating on nutrient media were comparable to the values obtained for permafrost soils and Arctic ice. Predominance of coryneform actinobacteria was observed. Abundance of these evolutionarily early groups of actinobacteria may indicate the ancient origin of the microflora of the relic frozen rocks.

  19. CYCLIC MAGNETIC ACTIVITY DUE TO TURBULENT CONVECTION IN SPHERICAL WEDGE GEOMETRY

    SciTech Connect

    Kaepylae, Petri J.; Mantere, Maarit J.; Brandenburg, Axel

    2012-08-10

    We report on simulations of turbulent, rotating, stratified, magnetohydrodynamic convection in spherical wedge geometry. An initially small-scale, random, weak-amplitude magnetic field is amplified by several orders of magnitude in the course of the simulation to form oscillatory large-scale fields in the saturated state of the dynamo. The differential rotation is solar-like (fast equator), but neither coherent meridional poleward circulation nor near-surface shear layer develop in these runs. In addition to a poleward branch of magnetic activity beyond 50 Degree-Sign latitude, we find for the first time a pronounced equatorward branch at around 20 Degree-Sign latitude, reminiscent of the solar cycle.

  20. Wedge sampling for computing clustering coefficients and triangle counts on large graphs

    SciTech Connect

    Seshadhri, C.; Pinar, Ali; Kolda, Tamara G.

    2014-05-08

    Graphs are used to model interactions in a variety of contexts, and there is a growing need to quickly assess the structure of such graphs. Some of the most useful graph metrics are based on triangles, such as those measuring social cohesion. Despite the importance of these triadic measures, algorithms to compute them can be extremely expensive. We discuss the method of wedge sampling. This versatile technique allows for the fast and accurate approximation of various types of clustering coefficients and triangle counts. Furthermore, these techniques are extensible to counting directed triangles in digraphs. Our methods come with provable and practical time-approximation tradeoffs for all computations. We provide extensive results that show our methods are orders of magnitude faster than the state of the art, while providing nearly the accuracy of full enumeration.

  1. Experimental investigation of the transport of sulfur from the subducting crust to the mantle wedge

    NASA Astrophysics Data System (ADS)

    Jego, S.; Dasgupta, R.

    2011-12-01

    Subduction zone magmas are considered to be important carriers of sulfur from the sub-arc mantle wedge to the arc crust - through deposition of sulfide ores, and to the atmosphere - through volcanic degassing. Slab-derived sulfur is also proposed to be linked to the oxidation state of the mantle wedge [1]. However, the origin of the sulfur enrichment of most of arc magmas and the transport of sulfur from the subducting slab to the mantle wedge are poorly understood. Here we report experimental measurements of the sulfur content at sulfide saturation (SCSS) of slab-derived hydrous partial melts at a pressure of 2.0 GPa and a temperature range of 800-1050 °C. A synthetic MORB + 6.8 wt.% H2O doped with 1 wt% S (added as pyrite) was used as starting material. The experiments were conducted in a piston-cylinder device with samples contained in Au inner capsules and Ni-NiO (fO2 = FMQ+0.5) or Co-CoO mixtures in Au-Pd outer capsules. Sulfur concentrations in quenched silicate glass and the major element composition of the experimental phases were determined by EPMA. All the experiments contain garnet, cpx, rutile, pyrrhotite, and fluid with amphibole, quartz, and silicate melt present at 800, 800-950, and 850-1050 °C, respectively. The partial melt composition ranges from rhyolitic to dacitic with increasing temperature and melting degree (up to ~30 wt% partial melt). At 1000-1050 °C, the pyrrhotite crystals are almost completely consumed. At all the temperatures investigated, sulfur concentrations in melt are very low, from 60 to >300 ppm S, but consistent with previous experiments at lower pressures [2, 3]. Sulfur contents of the melts appear to be controlled by sulfur fugacity fS2 (calculated from the composition of pyrrhotite crystals) and temperature. Bulk mass balance calculations show that the proportion of sulfur dissolved in the silicate melt is always very low, i.e., less than 1 wt% of the amount of sulfur initially added to the system is transferred to the

  2. Diagnosing segmental wedge fracture of the tibia before performing intramedullary nailing.

    PubMed

    Gutowski, Christina; Abrams, Jeffrey S; Gutowski, W T

    2013-08-01

    Tibial shaft fractures with a wedge butterfly segment are often repaired with intramedullary fixation. At the time of presentation, the fragment may appear benign on radiographs as a portion of the cortical bone in an acceptable position. However, a segment that includes the entire circumference of the tibial cortex can be a problem during surgical stabilization. This ring effect will demand cannulation of the butterfly segment with the guide wire before rod insertion. Since computed tomography is not always necessary for minimally displaced fractures, this issue may not be discovered until surgery. Lack of cannulation may lead to painful nonunion. Preoperative recognition of this fracture pattern and intraoperative butterfly cannulation will improve the postoperative stability of this fracture.

  3. Benchmarking the Sandbox: Quantitative Comparisons of Numerical and Analogue Models of Brittle Wedge Dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Buiter, S.; Schreurs, G.; Geomod2008 Team

    2010-12-01

    When numerical and analogue models are used to investigate the evolution of deformation processes in crust and lithosphere, they face specific challenges related to, among others, large contrasts in material properties, the heterogeneous character of continental lithosphere, the presence of a free surface, the occurrence of large deformations including viscous flow and offset on shear zones, and the observation that several deformation mechanisms may be active simultaneously. These pose specific demands on numerical software and laboratory models. By combining the two techniques, we can utilize the strengths of each individual method and test the model-independence of our results. We can perhaps even consider our findings to be more robust if we find similar-to-same results irrespective of the modeling method that was used. To assess the role of modeling method and to quantify the variability among models with identical setups, we have performed a direct comparison of results of 11 numerical codes and 15 analogue experiments. We present three experiments that describe shortening of brittle wedges and that resemble setups frequently used by especially analogue modelers. Our first experiment translates a non-accreting wedge with a stable surface slope. In agreement with critical wedge theory, all models maintain their surface slope and do not show internal deformation. This experiment serves as a reference that allows for testing against analytical solutions for taper angle, root-mean-square velocity and gravitational rate of work. The next two experiments investigate an unstable wedge, which deforms by inward translation of a mobile wall. The models accommodate shortening by formation of forward and backward shear zones. We compare surface slope, rate of dissipation of energy, root-mean-square velocity, and the location, dip angle and spacing of shear zones. All models show similar cross-sectional evolutions that demonstrate reproducibility to first order. However

  4. Spin and wedge representations of infinite-dimensional Lie algebras and groups

    PubMed Central

    Kac, Victor G.; Peterson, Dale H.

    1981-01-01

    We suggest a purely algebraic construction of the spin representation of an infinite-dimensional orthogonal Lie algebra (sections 1 and 2) and a corresponding group (section 4). From this we deduce a construction of all level-one highest-weight representations of orthogonal affine Lie algebras in terms of creation and annihilation operators on an infinite-dimensional Grassmann algebra (section 3). We also give a similar construction of the level-one representations of the general linear affine Lie algebra in an infinite-dimensional “wedge space.” Along these lines we construct the corresponding representations of the universal central extension of the group SLn(k[t,t-1]) in spaces of sections of line bundles over infinite-dimensional homogeneous spaces (section 5). PMID:16593029

  5. MHD forced convection flow adjacent to a non-isothermal wedge

    SciTech Connect

    Yih, K.A.

    1999-08-01

    The problem of magnetohydrodynamic (MHD) incompressible viscous flow has many important engineering applications in devices such as MHD power generator and the cooling of reactors. In this analysis, the effects of viscous dissipation and stress work on the MHD forced convection adjacent to a non-isothermal wedge is numerically analyzed. These partial differential equations are transformed into the nonsimilar boundary layer equations and solved by the Keller box method. Numerical results for the local friction coefficient and the local Nusselt number are presented for the pressure gradient parameter m, the magnetic parameter {xi}, the Prandtl number Pr, and the Eckert number Ec. In general, increasing the pressure gradient parameter m or the magnetic parameter {xi} or the Prandtl number Pr or decreasing the Eckert number EC increases the local Nusselt number.

  6. Mosaic wedge-and-strip arrays for large format microchannel plate detectors

    NASA Technical Reports Server (NTRS)

    Martin, Christopher; Rasmussen, Andrew

    1989-01-01

    The authors present a novel method for joining wedge-and-strip patterns on single anodes in a mosaic array. With only a modest increase in complexity over three-conductor anodes currently in use, the ultimate detector position resolution can be significantly improved, and large-format microchannel plate detectors with pore-size-limited resolution are made possible. The problem of the transition from one anode to the next has been solved with a novel linear encoding scheme, which exhibits essentially distortionless behavior at boundaries parallel to the conducting elements and only slight distortion at the orthogonal boundaries. The ultimate resolution for two anode designs, one designed for large-format imaging and the other for high-resolution spectroscopy, is also predicted.

  7. Wedge sampling for computing clustering coefficients and triangle counts on large graphs

    DOE PAGES

    Seshadhri, C.; Pinar, Ali; Kolda, Tamara G.

    2014-05-08

    Graphs are used to model interactions in a variety of contexts, and there is a growing need to quickly assess the structure of such graphs. Some of the most useful graph metrics are based on triangles, such as those measuring social cohesion. Despite the importance of these triadic measures, algorithms to compute them can be extremely expensive. We discuss the method of wedge sampling. This versatile technique allows for the fast and accurate approximation of various types of clustering coefficients and triangle counts. Furthermore, these techniques are extensible to counting directed triangles in digraphs. Our methods come with provable andmore » practical time-approximation tradeoffs for all computations. We provide extensive results that show our methods are orders of magnitude faster than the state of the art, while providing nearly the accuracy of full enumeration.« less

  8. Phase-Shift Master-Slave Mechanisms for High Angular-Speed Wedge-Prism Systems

    NASA Astrophysics Data System (ADS)

    Chappuis, Olivier; Clavel, Reymond

    2013-02-01

    Laser micro-machining requires high dynamic laser spot trajectory and accuracy to control the laser beam scanning. A well-known technique to scan a laser beam over a specimen is to use a pair of wedge-prisms. However, it is difficult to master-slave the phase-shift between two rotating prisms at high angular-speed. We present here two drive mechanisms that decouple the phase-shift control and the angular-speed control. These mechanisms simplify the required control architecture and are suitable to achieve a high-dynamic trajectory. These concepts are based on differential timing belts and gears mechanisms that modify the phase-shift between the prisms without interrupting the rotation. This article focuses on the kinematic and mechanical design aspects of such mechanisms.

  9. Elastic-plastic finite-element analyses of thermally cycled single-edge wedge specimens

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1982-01-01

    Elastic-plastic stress-strain analyses were performed for single-edge wedge alloys subjected to thermal cycling in fluidized beds. Three cases (NASA TAZ-8A alloy under one cycling condition and 316 stainless steel alloy under two cycling conditions) were analyzed by using the MARC nonlinear, finite-element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions that used the NASTRAN and ISO3DQ computer programs. The NASA TAZ-8A case exhibited no plastic strains, and the elastic and elastic-plastic analyses gave identical results. Elastic-plastic analyses of the 316 stainless steel alloy showed plastic strain reversal with a shift of the mean stresses in the compressive direction. The maximum equivalent total strain ranges for these cases were 13 to 22 percent greater than that calculated from elastic analyses.

  10. Electric currents of a substorm current wedge on 24 February 2010

    NASA Astrophysics Data System (ADS)

    Connors, Martin; McPherron, Robert L.; Anderson, Brian J.; Korth, Haje; Russell, Christopher T.; Chu, Xiangning

    2014-07-01

    The three-dimensional "substorm current wedge" (SCW) was postulated by McPherron et al. (1973) to explain substorm magnetic perturbations. The origin and coherence as a physical system of this important paradigm of modern space physics remained unclear, however, with progress hindered by gross undersampling, and uniqueness problems in data inversion. Complementing AMPERE (Active Magnetosphere and Planetary Electrodynamics Response Experiment) space-derived radial electric currents with ground magnetic data allowing us to determine currents from the ionosphere up, we overcome problems of uniqueness identified by Fukushima (1969, 1994). For a substorm on 24 February 2010, we quantify SCW development consistently from ground and space data. Its westward electrojet carries 0.5 MA in the more poleward part of the auroral oval, in Region 1 (R1) sense spanning midnight. The evening sector electrojet also feeds into its upward current. We thus validate the SCW concept and obtain parameters needed for quantitative study of substorms.

  11. The Effect of Three-Dimensional Freestream Disturbances on the Supersonic Flow Past a Wedge

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.; Lasseigne, D. Glenn; Hussaini, M. Y.

    1997-01-01

    The interaction between a shock wave (attached to a wedge) and small amplitude, three-dimensional disturbances of a uniform, supersonic, freestream flow are investigated. The paper extends the two-dimensional study of Duck et al, through the use of vector potentials, which render the problem tractable by the same techniques as in the two-dimensional case, in particular by expansion of the solution by means of a Fourier-Bessel series, in appropriately chosen coordinates. Results are presented for specific classes of freestream disturbances, and the study shows conclusively that the shock is stable to all classes of disturbances (i.e. time periodic perturbations to the shock do not grow downstream), provided the flow downstream of the shock is supersonic (loosely corresponding to the weak shock solution). This is shown from our numerical results and also by asymptotic analysis of the Fourier-Bessel series, valid far downstream of the shock.

  12. Elastic-plastic finite-element analyses of thermally cycled double-edge wedge specimens

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Hunt, L. E.

    1982-01-01

    Elastic-plastic stress-strain analyses were performed for double-edge wedge specimens subjected to thermal cycling in fluidized beds at 316 and 1088 C. Four cases involving different nickel-base alloys (IN 100, Mar M-200, NASA TAZ-8A, and Rene 80) were analyzed by using the MARC nonlinear, finite element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions obtained by using the NASTRAN and ISO3DQ computer programs. Equivalent total strain ranges at the critical locations calculated by elastic analyses agreed within 3 percent with those calculated from elastic-plastic analyses. The elastic analyses always resulted in compressive mean stresses at the critical locations. However, elastic-plastic analyses showed tensile mean stresses for two of the four alloys and an increase in the compressive mean stress for the highest plastic strain case.

  13. Tubulation by amphiphysin requires concentration-dependent switching from wedging to scaffolding

    PubMed Central

    Isas, J. Mario; Ambroso, Mark R.; Hegde, Prabhavati B.; Langen, Jennifer; Langen, Ralf

    2015-01-01

    Summary BAR proteins are involved in a variety of membrane remodeling events, but how they can mold membranes into different shapes remains poorly understood. Using EPR, we find that vesicle binding of the N-BAR protein amphiphysin is predominantly mediated by the shallow insertion of amphipathic N-terminal helices. In contrast, the interaction with tubes involves deeply inserted N-terminal helices together with the concave surface of the BAR domain, which acts as a scaffold. Combined with the observed concentration dependence of tubulation and BAR domain scaffolding, the data indicate that initial membrane deformations and vesicle binding are mediated by insertion of amphipathic helical wedges, while tubulation requires high protein densities at which oligomeric BAR domain scaffolds form. In addition, we identify a pocket of residues on the concave surface of the BAR domain that deeply insert into tube membrane. Interestingly, this pocket harbors a number of disease mutants in the homologous amphiphysin 2. PMID:25865245

  14. Theoretical study of the transonic lift of a double-wedge profile with detached bow wave

    NASA Technical Reports Server (NTRS)

    Vincenti, Walter G; Wagoner, Cleo B

    1954-01-01

    A theoretical study is described of the aerodynamic characteristics at small angle of attack of a thin, double-wedge profile in the range of supersonic flight speed in which the bow wave is detached. The analysis is carried out within the framework of the transonic (nonlinear) small-disturbance theory, and the effects of angle of attack are regarded as a small perturbation on the flow previously calculated at zero angle. The mixed flow about the front half of the profile is calculated by relaxation solution of a suitably defined boundary-value problem for transonic small-disturbance equation in the hodograph plane (i.e., the Tricomi equation). The purely supersonic flow about the rear half is found by an extension of the usual numerical method of characteristics. Analytical results are also obtained, within the framework of the same theory, for the range of speed in which the bow wave is attached and the flow is completely supersonic.

  15. Double-wedged Wollaston-type polarimeter design and integration to RTT150-TFOSC

    NASA Astrophysics Data System (ADS)

    Helhel, Selcuk; Kirbiyik, Halil; Bayar, Cevdet; Khamitov, Irek; Kahya, Gizem; Okuyan, Oguzhan

    2016-07-01

    Photometric and spectroscopic observation capabilities of 1.5-m Russian- Turkish Telescope RTT150 has been broadened with the integration of presented polarimeter. The well-known double-wedged Wollaston-type dual-beam technique was preferred and applied to design and produce it. The designed polarimeter was integrated into the telescope detector TFOSC, and called TFOSC-WP. Its capabil- ities and limitations were attempted to be determined by a number of observation sets. Non-polarized and strongly polarized stars were observed to determine its limi- tations as well as its linearity. An instrumental intrinsic polarization was determined for the 1×5 arcmin field of view in equatorial coordinate system, the systematic error of polarization degree as 0.2% %, and position angle as 1.9°. These limitations and capabilities are denoted as good enough to satisfy telescopes' present and future astrophysical space missions related to GAIA and SRG projects.

  16. Metamorphism of peritotites in the mantle wedge above the subduction zone: Hydration of the lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Savelieva, G. N.; Raznitsin, Yu. N.; Merkulova, M. V.

    2016-05-01

    Two areas with different types of hydration (serpentinization), which occurred in two settings distinct in temperatures, pressures, and stresses, are spatially individualized in the ophiolitic ultramafic massifs of the Polar Urals. The high-temperature hydration of ultramafic rocks occurred in the lithosphere of the mantle wedge directly above the subducted slab. The initial conditions of hydration are limited to 1.2-2 GPa and 650-700°C; a stable assemblage of olivine + antigorite + magnetite → amphibole → talc → chlorite was formed at 0.9-1.2 GPa and 550-600°C. The low-temperature mesh lizardite-chrysotile serpentinization occurred in the crustal, near-surface conditions. Both types of hydration were accompanied by release of hydrogen, which participates in abiogenic CH4 synthesis in the presence of CO2 dissolved in water.

  17. LOVEL: a low-velocity aerodynamic heating code for flat-plates, wedges, and cones

    SciTech Connect

    Thornton, A.L.

    1981-12-01

    The LOVEL computer program calculates the boundary-layer edge conditions for subsonic and supersonic flow over flat-plate, wedge, and cone geometries for freestream Mach conditions (M/sub infinity/ < 3. Cold-wall heat-transfer calculations use reference temperature correlations based on boundary-layer edge Mach number to compute fluid properties. The first part of this report describes the theory used in the computation of the cold-wall heat-transfer rates; the second part describes in detail the input/output format for the LOVEL computer program. Outputs include freestream conditions, boundary-layer edge conditions, cold-wall heat-transfer rates, plots of heating rates, and punched-card output for use in ablation and in-depth transient heat-conduction computer codes.

  18. Spectral analysis of gravity anomalies and the architecture of tectonic wedging, NE Venezuela and Trinidad

    NASA Astrophysics Data System (ADS)

    Russo, R. M.; Speed, R. C.

    1994-06-01

    We have analyzed the spectral content of free air gravity anomalies in the Caribbean-South American plate boundary zone in order to determine better the near-surface (0-120 km) distribution of crustal and upper mantle elements which give rise to the unusual gravity field of this region. The plate boundary zone in northeastern Venezuela and Trinidad is the site of the world's sea level continental minimum of Bouguer gravity anomalies, yet the region is also one of mild topography (mean value 43 m, maximum 1200 m). We find the mean depths to interfaces of significant density contrast at a variety of depths for portions of the plate boundary zone. We interpret interfaces at 30-35 km and 32 km beneath the Guyana Shield and the Aves Ridge, respectively, to be the Moho. Other shallow interfaces (5-14 km) are most likely sediment cover-basement contacts in the Maturin foreland basin and southern Grenada Basin. Deeper interfaces (54-63 km) we associate with loaded and downwarped continental and oceanic South American lithosphere. The deepest boundaries, at depths of 89-120 km, may be related to detached or detaching oceanic lithosphere overridden by continental South America. We use our results to test the tectonic wedging model of the plate boundary zone recently published by Russo and Speed (1992). We find that the tectonic wedging model adequately describes many of the structural boundaries inferable from our analysis of gravity anomalies but that the model must be modified to include a thinner Guyana Shield crust.

  19. Climate stabilization wedges in action: a systems approach to energy sustainability for Hawaii Island.

    PubMed

    Johnson, Jeremiah; Chertow, Marian

    2009-04-01

    Pacala and Socolow developed a framework to stabilize global greenhouse gas levels for the next fifty years using wedges of constant size representing an increasing use of existing technologies and approaches for energy efficiency, carbon free generation, renewables, and carbon storage. The research presented here applies their approach to Hawaii Island, with modifications to support local scale analysis and employing a "bottom-up" methodology that allows for wedges of various sizes. A discretely bounded spatial unit offers a testing ground for a holistic approach to improving the energy sector with the identification of local options and limitations to the implementation of a comprehensive energy strategy. Nearly 80% of total primary energy demand across all sectors for Hawaii Island is currently met using petroleum-based fuels.The Sustainable Energy Plan scenario included here presents an internally consistent set of recommendations bounded by local constraints in areas such as transportation efficiency, centralized renewable generation (e.g., geothermal, wind), reduction in transmission losses, and improved building efficiency. This scenario shows thatthe demand for primary energy in 2030 could be reduced by 23% through efficiency measures while 46% could be met by renewable generation, resulting in only 31% of the projected demand being met by fossil fuels. In 2030, the annual releases of greenhouse gases would be 3.2 Mt CO2-eq/year under the Baseline scenario, while the Sustainable Energy Plan would reduce this to 1.2 Mt CO2-eq/year--an annual emissions rate 40% below 2006 levels and 10% below 1990 levels. The total for greenhouse gas emissions during the 24-year study period (2007 to 2030) is 59.9 Mt CO2-eq under the Baseline scenario and 32.5 Mt CO2-eq under the Sustainable Energy Plan scenario. Numerous combinations of efficiency and renewable energy options can be employed in a manner that stabilizes the greenhouse gas emissions of Hawaii Island.

  20. Fast-track rehabilitation following video-assisted pulmonary sublobar wedge resection: A prospective randomized study

    PubMed Central

    Asteriou, Christos; Lazopoulos, Achilleas; Rallis, Thomas; Gogakos, Apostolos S; Paliouras, Dimitrios; Barbetakis, Nikolaos

    2016-01-01

    BACKGROUND: Postoperative morbidity and inhospital length of stay are considered major determinants of total health care expenditure associated with thoracic operations. The aim of this study was to prospectively evaluate the role of video-assisted thoracic surgery (VATS) compared to mini-muscle-sparing thoracotomy in facilitating early recovery and hospital discharge after pulmonary sublobar wedge resections. PATIENTS AND METHODS: A total number of 120 patients undergoing elective pulmonary sublobar wedge resection were randomly assigned to VATS (n = 60) or mini-muscle-sparing thoracotomy (n = 60). The primary endpoint was time to hospital discharge. Postoperative complications, cardiopulmonary morbidity and 30-day mortality served as secondary endpoints. RESULTS: Patients' baseline demographic and clinical data did not differ among study arms as well as the number of pulmonary segments resected and the morphology of the nodular lesions. Total hospital stay was significantly shorter in patients assigned to the thoracoscopic technique as opposed to those who were operated using the mini-muscle-sparing thoracotomy approach (4 ± 0.6 versus 4.4 ± 0.6 days respectively, P = 0.006). Multivariate analysis revealed that VATS approach was inversely associated with longer inhospital stay whereas the number of resected segments was positively associated with an increased duration of hospitalization. Patients in the VATS group were less likely to develop atelectasis (≥1 lobe) compared to those who underwent thoracotomy (0% versus 6.7% respectively, P = 0.042). Kaplan-Meier analysis revealed similar 30-day mortality rates in both study arms (Log-rank P = 0.560). CONCLUSION: VATS was associated with shorter duration of hospitalization positively affecting the patients' quality of life and satisfaction. Significant suppression of the total cost of recovery after thoracoscopic pulmonary resections is expected. PMID:27279390

  1. Personalized implant for high tibial opening wedge: combination of solid freeform fabrication with combustion synthesis process.

    PubMed

    Zhim, Fouad; Ayers, Reed A; Moore, John J; Moufarrège, Richard; Yahia, L'Hocine

    2012-09-01

    In this work a new generation of bioceramic personalized implants were developed. This technique combines the processes of solid freeform fabrication (SFF) and combustion synthesis (CS) to create personalized bioceramic implants with tricalcium phosphate (TCP) and hydroxyapatite (HA). These porous bioceramics will be used to fill the tibial bone gap created by the opening wedge high tibial osteotomy (OWHTO). A freeform fabrication with three-dimensional printing (3DP) technique was used to fabricate a metallic mold with the same shape required to fill the gap in the opening wedge osteotomy. The mold was subsequently used in a CS process to fabricate the personalized ceramic implants with TCP and HA compositions. The mold geometry was designed on commercial 3D CAD software. The final personalized bioceramic implant was produced using a CS process. This technique was chosen because it exploits the exothermic reaction between P₂O₅ and CaO. Also, chemical composition and distribution of pores in the implant could be controlled. To determine the chemical composition, the microstructure, and the mechanical properties of the implant, cylindrical shapes were also fabricated using different fabrication parameters. Chemical composition was performed by X-ray diffraction. Pore size and pore interconnectivity was measured and analyzed using an electronic microscope system. Mechanical properties were determined by a mechanical testing system. The porous TCP and HA obtained have an open porous structure with an average 400 µm channel size. The mechanical behavior shows great stiffness and higher load to failure for both ceramics. Finally, this personalized ceramic implant facilitated the regeneration of new bone in the gap created by OWHTO and provides additional strength to allow accelerated rehabilitation.

  2. The detailed spatial structure of field-aligned currents comprising the substorm current wedge

    NASA Astrophysics Data System (ADS)

    Murphy, Kyle R.; Mann, Ian R.; Rae, I. Jonathan; Waters, Colin L.; Frey, Harald U.; Kale, Andy; Singer, Howard J.; Anderson, Brian J.; Korth, Haje

    2013-12-01

    We present a comprehensive two-dimensional view of the field-aligned currents (FACs) during the late growth and expansion phases for three isolated substorms utilizing in situ observations from the Active Magnetosphere and Planetary Electrodynamics Response Experiment and from ground-based magnetometer and optical instrumentation from the Canadian Array for Realtime Investigations of Magnetic Activity and Time History of Events and Macroscale Interactions during Substorms ground-based arrays. We demonstrate that the structure of FACs formed during the expansion phase and associated with the substorm current wedge is significantly more complex than a simple equivalent line current model comprising a downward FAC in the east and upward FAC in the west. This two-dimensional view demonstrates that azimuthal bands of upward and downward FACs with periodic structuring in latitude form across midnight and can span up to 8 h of magnetic local time. However, when averaged over latitude, the overall longitudinal structure of the net FACs resembles the simpler equivalent line current description of the substorm current wedge (SCW). In addition, we demonstrate that the upward FAC elements of the structured SCW are spatially very well correlated with discrete aurora during the substorm expansion phase and that discrete changes in the FAC topology are observed in the late growth phase prior to auroral substorm expansion phase onset. These observations have important implications for determining how the magnetosphere and ionosphere couple during the late growth phase and expansion phase, as well as providing important constraints on the magnetospheric generator of the FACs comprising the SCW.

  3. Optical linear polarimetry of Solar System bodies using a Wedged Double Wollaston.

    NASA Astrophysics Data System (ADS)

    Gorosabel, J.; García Muñoz, A.; Sánchez-Lavega, A.; Hueso, R.; Pérez Hoyos, S.

    2015-05-01

    The gases and aerosols contained in a planetary atmosphere leave characteristic signatures on the reflected radiation. Hence we could use the polarization state of emergent radiation to investigate the atmospheric optical properties of the planet. We report on the first polarimetric tests of Jupiter and Saturn recently carried out with a Wedged Double Wollaston (WeDoWo) prism attached to the ALFOSC instrument mounted at NOT. A WeDoWo is composed of a suitable combination of two glass wedges and two Wollaston prisms in the parallel beam ALFOSC. The edges split the beam and feed the Wollaston prims with axes rotated by 45 deg. Thus, the relative intensities of the output light provides the angle and degree of the input photons. The four images are taken simultaneously and hence at identical planet rotation and atmospheric conditions. In order avoid overlap of the 4 images in the CCD, a 10" wide slit is placed on the telescope focal plane. Polarimetry complements the extended technique of photometry by probing different atmospheric altitudes, characterizing the particles in suspension in the atmosphere. In observations with spatial resolution of the planet disk, polarimetry may be sensitive to the phenomenon of limb polarization and to the occurrence of polar hazes (as for Jupiter). We plan to complement the observational work with modelling. For that purpose, we are using a novel Pre-conditioned Backward Monte Carlo (PBMC) algorithm that computes the full Stokes vector for multiple scattering. We are also developing a new calibration code in order to systematize the data reduction. Despite the potentialities of the technique, there has been no systematic survey of the Solar System planets in polarimetric mode. In the medium term we plan to extend the WeDoWo use to other objects of the Solar System.

  4. Deformation transients in the brittle regime: Insights from spring-wedge experiments

    NASA Astrophysics Data System (ADS)

    Rosenau, Matthias; Santimano, Tasca; Oncken, Onno

    2016-04-01

    Deformation of the earth's crust varies over timescales ranging from the seismic cycle to plate tectonic phases. Seismic cycles can generically be explained by sudden coseismic release of strain energy accumulated slowly over the interseismic period. The simplest models of such transient behavior is a spring-slider system where the spring stores elastic energy and the slider is characterized by static and dynamic friction at its base allowing cyclic occurrence of slip instabilities. Here we extend this model by allowing the slider to deform in an accretionary wedge type system. Because cyclic thrust formation is associated with bulk strain weakening this should introduce slip instabilities at the time-scale of accretionary cycles superimposed on seismic cycles which are controlled by static and dynamic friction at the wedge base. To test this hypothesis we set up sandbox-type experiments where the backwall is not rigid but elastic. We vary stiffness, friction coefficients and amount of strain weakening during fault formation and reactivation within realistic ranges when scaled to nature and monitor backwall push force and surface deformation at high resolution. We observe slip instabilities both at seismic and accretionary cycle scale. Depending on the ratio of the amount of strain weakening to elastic stiffness, shortening rate increases transiently by a factor of 2-3 during fault growth. Applied to nature our observation suggests that episodic deformation transients might be interpreted as longterm slip instabilities related to crustal weakening at all relevant spatial scales: At local scale "slow earthquakes" might be interpreted as the result of the interplay between matrix stiffness and strain weakening in fault gouge material. At regional scale, applying buckling theory, we predict that deformation zones bordered by "soft" oceanic plates (e.g. the Andes) are more susceptible to deformation transients than "stiff" intracontinental settings (e.g. the Himalaya).

  5. Dependence of poleward auroral and equatorward motion on substorm current wedge

    NASA Astrophysics Data System (ADS)

    Chu, X.; McPherron, R. L.; Hsu, T. S.; Angelopoulos, V.; Pu, Z.; Yao, Z.; Zhang, H.; Connors, M. G.

    2014-12-01

    Flux pileup from fast flows and dipolarization, physical processes in the magnetotail, cause auroral evolution (brightening, poleward expansion, and equatorward motion) in the ionosphere during substorms. Although such flows have been shown to produce auroral brightening, the causes of auroral poleward expansion and equatorward motion remain unclear. Two mechanisms, tailward movement of the pileup region and dipolarization of the substorm current wedge (SCW), are thought to contribute to auroral poleward expansion, but no study has addressed which mechanism makes the dominant contribution. The hypothesis that auroral poleward expansion is caused by the tailward-moving pileup region is based on the assumption of a steady magnetosphere. This assumption is not necessarily true during substorms, however, because dipolarization of the SCW changes magnetospheric configuration and thus ionospheric footprints (and mapping) of the flows. Because they lack a dynamic SCW, previous magnetospheric models are statistical and static. We evaluated the dynamic effect of the SCW using a dynamic magnetospheric model in which the SCW is superimposed on Tsyganenko model. The current wedge is obtained from a recently developed inversion model using only ground magnetic field data as input, and model parameters are updated every minute. Applying our dynamic magnetospheric model to data from an isolated substorm observed by THEMIS and GOES 10 spacecraft and ground ASIs on 13 February 2008, we found that 1) our model predicts dipolarization at GOES 10 (it can predict near-Earth magnetic variations with ground data alone); 2) there is a good temporal correlation between successive auroral brightenings and flows; 3) flow footprints from our model are collocated with auroral poleward expansion and equatorward motion. These results suggest that in this event, auroral poleward expansion and equatorward motion are mainly caused by mapping changes in the dynamic magnetosphere by the SCW.

  6. Anterior opening wedge osteotomy of the proximal tibia for anterior knee pain in idiopathic hyperextension knees

    PubMed Central

    van Raaij, T. M.

    2006-01-01

    We analysed 20 patients with 24 knees affected by idiopathic genu recurvatum who were treated with an anterior opening wedge osteotomy of the proximal tibia because of anterior knee pain. We managed to attain full satisfaction in 83% of the patients with a mean follow-up of 7.4 years. The mean Hospital for Special Surgery score was 90.3 (range 70.5–99.5), and the mean Knee Society score score was 94.6 (70–100) for function and 87.7 (47–100) for pain. The mean Western Ontario and McMaster University Osteoarthritis Index score for knee function was 87.5 (42–100), for stiffness 82.8 (25–100) and for pain 87.3 (55–100). Radiographs showed a significant increase in posterior tibial slope of 9.4 deg and a significant decrease of patellar height according to the Blackburne–Peel method of 0.16 postoperatively. No cases of non-union, deep infection or compartment syndrome were seen. No osteoarthritic changes in the lateral or medial knee compartment were found with more than 5 years’ follow-up in 16 patients with 19 affected knees. Three out of the four dissatisfied patients had a patella infera which led to patellofemoral complaints. One patient in the study underwent a secondary superior displacement of the patella with excellent results. We conclude that in a selected group of patients with idiopathic genu recurvatum and anterior knee pain an opening wedge osteotomy of the proximal tibia can be beneficial. PMID:16521014

  7. In situ spatiotemporal measurements of the detailed azimuthal substructure of the substorm current wedge

    PubMed Central

    Forsyth, C; Fazakerley, A N; Rae, I J; J Watt, C E; Murphy, K; Wild, J A; Karlsson, T; Mutel, R; Owen, C J; Ergun, R; Masson, A; Berthomier, M; Donovan, E; Frey, H U; Matzka, J; Stolle, C; Zhang, Y

    2014-01-01

    The substorm current wedge (SCW) is a fundamental component of geomagnetic substorms. Models tend to describe the SCW as a simple line current flowing into the ionosphere toward dawn and out of the ionosphere toward dusk, linked by a westward electrojet. We use multispacecraft observations from perigee passes of the Cluster 1 and 4 spacecraft during a substorm on 15 January 2010, in conjunction with ground-based observations, to examine the spatial structuring and temporal variability of the SCW. At this time, the spacecraft traveled east-west azimuthally above the auroral region. We show that the SCW has significant azimuthal substructure on scales of 100 km at altitudes of 4000–7000 km. We identify 26 individual current sheets in the Cluster 4 data and 34 individual current sheets in the Cluster 1 data, with Cluster 1 passing through the SCW 120–240 s after Cluster 4 at 1300–2000 km higher altitude. Both spacecraft observed large-scale regions of net upward and downward field-aligned current, consistent with the large-scale characteristics of the SCW, although sheets of oppositely directed currents were observed within both regions. We show that the majority of these current sheets were closely aligned to a north-south direction, in contrast to the expected east-west orientation of the preonset aurora. Comparing our results with observations of the field-aligned current associated with bursty bulk flows (BBFs), we conclude that significant questions remain for the explanation of SCW structuring by BBF-driven “wedgelets.” Our results therefore represent constraints on future modeling and theoretical frameworks on the generation of the SCW. Key Points The substorm current wedge (SCW) has significant azimuthal structure Current sheets within the SCW are north-south aligned The substructure of the SCW raises questions for the proposed wedgelet scenario PMID:26167439

  8. 76 FR 24856 - Heavy Forged Hand Tools (i.e., Axes & Adzes, Bars & Wedges, Hammers & Sledges, and Picks...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF COMMERCE International Trade Administration Heavy Forged Hand Tools (i.e., Axes & Adzes, Bars & Wedges, Hammers & Sledges..., Department of Commerce. SUMMARY: On January 3, 2011, the Department of Commerce (``Department'') initiated...

  9. Acute effects of lateral shoe wedges on joint biomechanics of patients with medial compartment knee osteoarthritis during stationary cycling.

    PubMed

    Gardner, Jacob K; Klipple, Gary; Stewart, Candice; Asif, Irfan; Zhang, Songning

    2016-09-06

    Cycling is commonly prescribed for individuals with knee osteoarthritis (OA) but very little biomechanical research exists on the topic. Individuals with OA may be at greater risk of OA progression or other knee injuries because of their altered knee kinematics. This study investigated the effects of lateral wedges on knee joint biomechanics and pain in patients with medial compartment knee OA during stationary cycling. Thirteen participants with OA and 11 paired healthy participants volunteered for this study. A motion analysis system and a customized instrumented pedal were used to collect 5 pedal cycles of kinematics and kinetics, respectively, during 2 minutes of cycling in 1 neutral and 2 lateral wedge (5° and 10°) conditions. Participants pedaled at 60 RPM and an 80W workrate and rated their knee pain on a visual analog scale during each minute of each condition. There was a 22% decrease in the internal knee abduction moment with the 10° wedge. However, this finding was not accompanied by a decrease in knee adduction angle or subjective pain. Additionally, there was an increase in vertical and horizontal pedal reaction force which may negate the advantages of the decreased internal knee abduction moment. For people with medial knee OA, cycling with 10° lateral wedges may not be sufficient to slow the progression of OA beyond the neutral riding condition.

  10. Anatexis of accretionary wedge, Pacific-type magmatism, and formation of vertically stratified continental crust in the Altai Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Jiang, Y. D.; Schulmann, K.; Sun, M.; Å típská, P.; Guy, A.; Janoušek, V.; Lexa, O.; Yuan, C.

    2016-12-01

    Granitoid magmatism and its role in differentiation and stabilization of the Paleozoic accretionary wedge in the Chinese Altai are evaluated in this study. Voluminous Silurian-Devonian granitoids intruded a greywacke-dominated Ordovician sedimentary succession (the Habahe Group) of the accretionary wedge. The close temporal and spatial relationship between the regional anatexis and the formation of granitoids, as well as their geochemical similarities including rather unevolved Nd isotopic signatures and the strong enrichment of large-ion lithophile elements relative to many of the high field strength elements, may indicate that the granitoids are product of partial melting of the accretionary wedge rocks. Whole-rock geochemistry and pseudosection modeling show that regional anatexis of fertile sediments could have produced a large amount of melts compositionally similar to the granitoids. Such process could have left a high-density garnet- and/or garnet-pyroxene granulite residue in the deep crust, which can be the major reason for the gravity high over the Chinese Altai. Our results show that melting and crustal differentiation can transform accretionary wedge sediments into vertically stratified and stable continental crust. This may be a key mechanism contributing to the peripheral continental growth worldwide.

  11. Effects of cohesion on the structural and mechanical evolution of fold and thrust belts and contractional wedges: Discrete element simulations

    NASA Astrophysics Data System (ADS)

    Morgan, Julia K.

    2015-05-01

    Particle-based numerical simulations of cohesive contractional wedges can yield important perspectives on the formation and evolution of fold and thrust belts, offering particular insights into the mechanical evolution of the systems. Results of several discrete element method simulations are presented here, demonstrating the stress and strain evolution of systems with different initial cohesive strengths. Particle assemblages consolidated under gravity, and bonded to impart cohesion, are pushed from the left at a constant velocity above a weak, unbonded décollement surface. Internal thrusting causes horizontal shortening and vertical thickening, forming wedge geometries. The mean wedge taper is similar for all simulations, consistent with their similar residual and basal sliding friction values. In all examples presented here, both forethrusts and back thrusts occur, but forethrusts accommodate most of the shortening. Fault spacing and offset increase with increasing cohesion. Significant tectonic volume strain also occurs, with the greatest incremental volume strain occurring just outboard of the deformation front. This diffuse shortening serves to strengthen the unfaulted domain in front of the deformed wedge, preconditioning these materials for brittle (dilative) failure. The reach of this volumetric strain and extent of décollement slip increase with cohesive strength, defining the extent of stress transmission. Stress paths for elements tracked through the simulations demonstrate systematic variations in shear stress in response to episodes of both décollement slip and thrust fault activity, providing a direct explanation for stress fluctuations during convergence.

  12. 16 CFR Figure 1 to Part 1213 - Wedge Block for Tests in § 1213.4(a), (b) and (c)

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Wedge Block for Tests in § 1213.4(a), (b) and (c) 1 Figure 1 to Part 1213 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR ENTRAPMENT HAZARDS IN BUNK BEDS Pt. 1213, Fig. 1...

  13. 16 CFR Figure 1 to Part 1513 - Wedge Block for Tests in § 1513.4 (a), (b), and (c)

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Wedge Block for Tests in § 1513.4 (a), (b), and (c) 1 Figure 1 to Part 1513 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BUNK BEDS Pt. 1513, Fig. 1 Figure 1 to Part...

  14. 16 CFR Figure 1 to Part 1213 - Wedge Block for Tests in § 1213.4(a), (b), and (c)

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Wedge Block for Tests in § 1213.4(a), (b), and (c) 1 Figure 1 to Part 1213 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR ENTRAPMENT HAZARDS IN BUNK BEDS Pt. 1213, Fig. 1...

  15. 16 CFR Figure 1 to Part 1513 - Wedge Block for Tests in § 1513.4 (a), (b), and (c)

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Wedge Block for Tests in § 1513.4 (a), (b), and (c) 1 Figure 1 to Part 1513 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BUNK BEDS Pt. 1513, Fig. 1 Figure 1 to Part...

  16. Thermal modeling of the southern Alaska subduction zone: Insight into the petrology of the subducting slab and overlying mantle wedge

    SciTech Connect

    Ponko, S.C.; Peacock, S.M.

    1995-11-10

    This report discusses a two-dimensional thermal model of the southern Alaska subduction zone. This model allows specfic predictions to be made about the pressure-temperature conditions and mineralogy of the subducting oceanic crust and the mantle wedge and assess different petrologic models for the generation of Alaskan arc magmas.

  17. The role of subducting bathymetric highs on the oceanic crust to deformation of accretionary wedge and earthquake segmentation in the Java forearc

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Mukti, M.; Deighton, I.

    2014-12-01

    Stratigraphic and structural observations of newly acquired seismic reflection data along the offshore south Java reveal the structural style of deformation along the forearc and the role of subducting bathymetric highs to the morphology of the forearc region. The forearc region can be divided in to two major structural units: accretionary wedge and forearc and forearc basin where a backthrust marks the boundary between the accretionary wedge and the forearc basin sediments. The continuous compression in the subduction zone has induced younger landward-vergent folds and thrusts within the seaward margin of the forearc basin sediments, which together with the backthrust is referred as the Offshore South Java Fault Zone (OSJFZ), representing the growth of the accretionary wedge farther landward. Seaward-vergent imbricated thrusts have deformed the sediments in the accretionary wedge younging seaward, and have developed fold-thrust belts in the accretionary wedge toward trench. Together with the backthrusts, these seaward-vergent thrusts characterize the growth of accretionary wedge in South of Java trench. Based on these new results, we suggest that accretionary wedge mechanic is not the first order factor in shaping the morphology of the accretionary wedge complex. Instead the subducting bathymetric highs play the main role in shaping the forearc that are manifested in the uplift of the forearc high and intense deformation along the OSJFZ. These subducting highs also induce compression within the accretionary sediments, evident from landward deflection of the subduction front at the trench and inner part of accretionary wedge in the seaward margin of the forearc basin. Intense deformation is also observed on the seaward portion of the accretionary wedge area where the bathymetric highs subducted. We suggest that these subducted bathymetric features define the segment boundaries for megathrust earthquakes, and hence reducing the maximum size of the earthquakes in the

  18. Transition Within a Hypervelocity Boundary Layer on a 5-Degree Half-Angle Cone in Air/CO2 Mixtures

    DTIC Science & Technology

    2013-01-01

    into the T5 nozzle at run time, in order to maximize the linear extent of the cone within the test rhombus defined by the expansion fan radiating from...reservoir, which serves as the inflow for the nozzle flow simulations. The reservoir conditions are obtained by solving for chemical and thermal...CEA) code. These conditions are allowed to expand through the nozzle using the CFD solver described below. For the current computational analysis

  19. Novel Ordered Stepped-Wedge Cluster Trial Designs for Detecting Ebola Vaccine Efficacy Using a Spatially Structured Mathematical Model

    PubMed Central

    Diakite, Ibrahim; Mooring, Eric Q.; Velásquez, Gustavo E.; Murray, Megan B.

    2016-01-01

    Background During the 2014 Ebola virus disease (EVD) outbreak, policy-makers were confronted with difficult decisions on how best to test the efficacy of EVD vaccines. On one hand, many were reluctant to withhold a vaccine that might prevent a fatal disease from study participants randomized to a control arm. On the other, regulatory bodies called for rigorous placebo-controlled trials to permit direct measurement of vaccine efficacy prior to approval of the products. A stepped-wedge cluster study (SWCT) was proposed as an alternative to a more traditional randomized controlled vaccine trial to address these concerns. Here, we propose novel “ordered stepped-wedge cluster trial” (OSWCT) designs to further mitigate tradeoffs between ethical concerns, logistics, and statistical rigor. Methodology/Principal Findings We constructed a spatially structured mathematical model of the EVD outbreak in Sierra Leone. We used the output of this model to simulate and compare a series of stepped-wedge cluster vaccine studies. Our model reproduced the observed order of first case occurrence within districts of Sierra Leone. Depending on the infection risk within the trial population and the trial start dates, the statistical power to detect a vaccine efficacy of 90% varied from 14% to 32% for standard SWCT, and from 67% to 91% for OSWCTs for an alpha error of 5%. The model’s projection of first case occurrence was robust to changes in disease natural history parameters. Conclusions/Significance Ordering clusters in a step-wedge trial based on the cluster’s underlying risk of infection as predicted by a spatial model can increase the statistical power of a SWCT. In the event of another hemorrhagic fever outbreak, implementation of our proposed OSWCT designs could improve statistical power when a step-wedge study is desirable based on either ethical concerns or logistical constraints. PMID:27509037

  20. Sandbox modeling of evolving thrust wedges with different preexisting topographic relief: Implications for the Longmen Shan thrust belt, eastern Tibet

    NASA Astrophysics Data System (ADS)

    Sun, Chuang; Jia, Dong; Yin, Hongwei; Chen, Zhuxin; Li, Zhigang; Shen, Li; Wei, Dongtao; Li, Yiquan; Yan, Bin; Wang, Maomao; Fang, Shaozhi; Cui, Jian

    2016-06-01

    To understand the effects of substantial topographic relief on deformation localization in the seismically active mountains, like the Longmen Shan thrust belt in the eastern Tibet, sandbox experiments were performed based on the framework of the critical taper theory. First, a reference experiment revealed that the critical taper angle was 12° for our experimental materials. Subsequently, different proto wedges (subcritical (6° in taper angle), critical (12°), and supercritical (20°)) were introduced to cover the range of natural topographic relief, and we used two setups: setup A considered only across-strike topographic relief, whereas setup B investigated along-strike segmentation of topography, consist of two adjacent proto wedges. In all experiments, thrust wedges grew by in-sequence accretion of thrust sheets. Setup A revealed an alternating mode of slip partitioning on the accreted thrusts, with large-displacement thrust and small-displacement thrust developing in turn. And contrasting wedge evolutions occurred according to whether the proto wedge was subcritical or critical-supercritical. In setup B, the differential deformation along the strike produced transverse structures such as tear fault and lateral ramp during frontal accretion. The observed tear fault and its associated thrust system resemble the seismogenic fault system of the 2008 Mw7.9 Wenchuan earthquake. Our experimental results could also explain first-order deformation features observed in the Longmen Shan. Consequently, we conclude that topographic features, including topographic relief across the range and along-strike segmentation of topography, contribute significantly to the kinematics and deformation localization in such active mountains.

  1. 3D Stress-Strain Analysis of a Failed Limestone Wedge Influenced by an Intact Rock Bridge

    NASA Astrophysics Data System (ADS)

    Paronuzzi, Paolo; Bolla, Alberto; Rigo, Elia

    2016-08-01

    This paper presents a back-analysis of a rock wedge failure (volume = 25-30 m3) that involved a limestone scarp in the Rosandra valley (Trieste karst, NE Italy). Thanks to the mechanical survey of the detachment surface, a single rock bridge having a size of about 15 cm × 30 cm has been ascertained. A 3D stress-strain analysis has been performed to examine the influence of the rock bridge on the block stability (initial unweathered condition: strength reduction factor SRF equal to 1.14). The shear strength provided by the basal and lateral joints represents the main contributing factor for the wedge stability (about 60-75 % of the whole resisting system). However, the equilibrium of the wedge was temporarily attained thanks to the strength contribution provided by the rock bridge (25-40 %) until the acting forces locally exceeded the resisting forces, thus determining the bridge rupture and, as a consequence, the wedge collapse. The mean shear stress acting on the rock bridge at failure ranges from about 3.5 to 5 MPa. Calculated block displacements up to failure vary from 0.6 to 1.5 mm, depending on the different elastic modulus assumed for the wedge ( E = 30, 10, and 4 GPa). Pre-collapse block displacements increase as a result of the shear strength decrease that was initially caused by the weathering of the delimiting rock joints and, further, by the progressive failure of the rock bridge. The cohesion at failure of the rock bridge ranges from 2.1 to 2.6 MPa (friction angle of intact rock φ = 40°).

  2. Recent movements along the Main Boundary Thrust of the Himalayas: Normal faulting in an over-critical thrust wedge?

    NASA Astrophysics Data System (ADS)

    Mugnier, Jean-Louis; Huyghe, Pascale; Chalaron, Edouard; Mascle, Georges

    1994-11-01

    The Main Boundary Thrust (MBT) is one of the major Himalayan thrusts occurring during the Cainozoic, and it is presently incorporated within the Himalayan thrust wedge (Lesser and Outer Himalayas) displaced above the Indian lithosphere. Nonetheless the MBT shows recent normal displacement along most of its length. We suggest that the orientation of the major principal stress within the Himalayan thrust wedge deviates significantly from the horizontal and when this deviation exceeds the dip of the vectors normal to back-tilted thrusts, the normal component of displacement may act along these faults. Steep north-dipping segments of the MBT therefore show a normal component of displacement if a geometrical definition is used, but they are faults in a compressional regime where the major principal stress axis has deviated from the horizontal. Micro-structural data recorded along the Surkhet-Ghorahi segment of the MBT are consistent with a strong deviation of the state of stress. The presence of such peculiar normal faulting along the MBT is used to calibrate the mechanical characteristics of the belt considered as a Coulomb wedge. The following characteristics are suggested: (a) very poor strength contrast between basal decollement and rocks in the wedge body, (b) a high pore fluid pressure ratio (probably close to 0.8-0.9) and a higher fluid pressure ratio (close to 1.0) along the active normal faults if a high internal friction angle (close to the Byerlee value) is considered. The strong deviation in principal stress direction may have recently increased, due to a taper of the Himalayan wedge exceeding the stability boundary and may be controlled by erosion and isostatic uplift rebound of the Himalayan range.

  3. Role of Neogene Exhumation and Sedimentation on Critical-Wedge Kinematics in the Zagros Orogenic Belt, Northeastern Iraq, Kurdistan

    NASA Astrophysics Data System (ADS)

    Koshnaw, R. I.; Horton, B. K.; Stockli, D. F.; Barber, D. E.; Tamar-Agha, M. Y.; Kendall, J. J.

    2014-12-01

    The Zagros orogenic belt and foreland basin formed during the Cenozoic Arabia-Eurasia collision, but the precise histories of shortening and sediment accumulation remain ambiguous, especially at the NW extent of the fold-thrust belt in Iraqi Kurdistan. This region is characterized by well-preserved successions of Cenozoic clastic foreland-basin fill and deformed Paleozoic-Mesozoic hinterland bedrock. The study area provides an excellent opportunity to investigate the linkage between orogenic wedge behavior and surface processes of erosion and deposition. The aim of this research is to test whether the Zagros orogenic wedge advanced steadily under critical to supercritical wedge conditions involving in-sequence thrusting with minimal erosion or propagated intermittently under subcritical condition involving out-of-sequence deformation with intense erosion. These endmember modes of mountain building can be assessed by integrating geo/thermochronologic and basin analyses techniques, including apatite (U-Th)/He thermochronology, detrital zircon U-Pb geochronology, stratigraphic synthesis, and seismic interpretations. Preliminary apatite (U-Th)/He data indicate activation of the Main Zagros Fault (MZF) at ~10 Ma with frontal thrusts initiating at ~8 Ma. However, thermochronometric results from the intervening Mountain Front Flexure (MFF), located between the MZF and the frontal thrusts, suggest rapid exhumation at ~6 Ma. These results suggest that the MFF, represented by the thrust-cored Qaradagh anticline, represents a major episode of out-of-sequence deformation. Detrital zircon U-Pb analyses from the Neogene foreland-basin deposits show continuous sediment derivation from sources to the NNE in Iraq and western Iran, suggesting that out-of-sequence thrusting did not significantly alter sedimentary provenance. Rather, intense hinterland erosion and recycling of older foreland-basin fill dominated sediment delivery to the basin. The irregular distribution of

  4. Effects of medially wedged foot orthoses on knee and hip joint running mechanics in females with and without patellofemoral pain syndrome.

    PubMed

    Boldt, Andrew R; Willson, John D; Barrios, Joaquin A; Kernozek, Thomas W

    2013-02-01

    We examined the effects of medially wedged foot orthoses on knee and hip joint mechanics during running in females with and without patellofemoral pain syndrome (PFPS). We also tested if these effects depend on standing calcaneal eversion angle. Twenty female runners with and without PFPS participated. Knee and hip joint transverse and frontal plane peak angle, excursion, and peak internal knee and hip abduction moment were calculated while running with and without a 6° full-length medially wedged foot orthoses. Separate 3-factor mixed ANOVAs (group [PFPS, control] x condition [medial wedge, no medial wedge] x standing calcaneal angle [everted, neutral, inverted]) were used to test the effect of medially wedged orthoses on each dependent variable. Knee abduction moment increased 3% (P = .03) and hip adduction excursion decreased 0.6° (P < .01) using medially wedged foot orthoses. No significant group x condition or calcaneal angle x condition effects were observed. The addition of medially wedged foot orthoses to standardized running shoes had minimal effect on knee and hip joint mechanics during running thought to be associated with the etiology or exacerbation of PFPS symptoms. These effects did not appear to depend on injury status or standing calcaneal posture.

  5. Rivers, re-entrants, and 3D variations in orogenic wedge development: a case study of the NW Indian Himalaya

    NASA Astrophysics Data System (ADS)

    Webb, A. G.; Yu, H.; Hendershott, Z.

    2010-12-01

    Orogenic wedges are standard elements of collisional plate tectonics, from accretionary prisms to retro-arc basins. Recent study of orogenic wedge development has focused on links between mechanisms of internal deformation and surface processes. Models of orogenic wedges are commonly presented in the cross-section plane, which is generally effective as wedges largely develop via plane strain. The 3rd dimension can be utilized to explore effects of differences in controlling parameters on wedge evolution. We are investigating a stretch of the western Himalayan orogenic wedge that has two prominent changes in along-strike morphology: (1) a tectonic window (the Kullu Window) that appears to be strongly influenced by erosion along the 3rd largest river in the Himalayan system, the Sutlej River and (2) the Kangra Re-entrant, the largest re-entrant along the Himalayan arc. In addition to the along-strike heterogeneity, a key advantage of the proposed study area is its rich stratigraphy, with the most known diversity in the Himalayan arc. The stratigraphic wealth, combined with the along-strike heterogeneity in exposure level, offers a high resolution view of regional structural geometry. Our preliminary reconstructions suggest that the Sutlej River erosion increases the exposure depth and shortening budget across a narrow segment of the orogen, strongly warping the Kullu Window. Previous models have suggested that the out-of-sequence Munsiari thrust is the main structure associated with Kullu window formation, while our work suggests that most of this uplift and warping is accomplished by antiformal stacking of basement thrust horses. Late Miocene ages (U-Pb ages of zircons and Th-Pb ages of monazites) from a leucogranite in the core of the Kullu Window along the Sutlej River further suggests that this segment of the orogen represents a middle ground between plane strain orogenic wedge development and a tectonic aneurysm model. We have constructed a palinspastic

  6. Structural and morphological evolution of thrust wedges above a ductile layer with different viscous behavior

    NASA Astrophysics Data System (ADS)

    Cerca, M.; Barrientos, B.; Garcia-Marquez, J.; Portillo-Pineda, R.; Hernandez-Bernal, C.

    2007-05-01

    A series of scaled physical experiments illustrate the importance of differences in density and viscous behavior of décollement in the structural evolution of thrust wedges during shortening. In particular, we have analyzed the effect of changes in viscosity in the morphological evolution and strain of the brittle overburden surface. Ten models properly scaled in geometry and mechanical behavior of natural geological materials were deformed at the Modeling Laboratory (LAMMG) of UNAM. Mechanical stratification of the models included basal and upper brittle layers of 1 and 2 cm, respectively; separated by an intermediate viscous layer of 0.5 cm. Brittle layers were constructed with grains of quartz sand following a Mohr-Coulomb criterion of faulting and bulk density of ca. 1300 kg m-3. The viscous layer was composed of silicon-sand mixtures having differences in dynamic viscosity (Pa s) and density (kg m-3) as the following cases: (A) 2.0 e 4 and 978, (B) 3.3 e 4 and 1195, (C) 4.7 e 4 and 1270. The experiments were carried out in a Plexiglas box of 40x15x10 cm and deformed by moving a vertical wall at a constant velocity of 1.5 cm hr-1. Cross sections of the experiments were obtained for values of bulk shortening of ca. 20 and 40 percent. The modeling results suggest a close relation of structural style of the thrust wedge with the initial conditions of décollement viscosity. Low viscosity models have a structural development characterized by low angle napes and detachment folds with limb rotation indicating a predominant vergence towards foreland. High viscosity models have a greater mechanical coupling between décollement and overburden and develop preferentially detachment folds with higher elevation and undefined vergence. The evolution of the surface in two models with different initial dynamic viscosity, cases A and B, was analyzed at the optical interferometry laboratory of CIO with two full-field optical techniques: fringe projection and laser speckle

  7. Decarbonation and carbonation processes in the slab and mantle wedge - insights from thermomechanical modeling

    NASA Astrophysics Data System (ADS)

    Gonzalez, C. M.; Gorczyk, W.; Connolly, J. A.; Gerya, T.; Hobbs, B. E.; Ord, A.

    2013-12-01

    Subduction zones offer one of the most geologically active and complex systems to investigate. They initiate a process in which crustal sediments are recycled, mantle heterogeneities arise, and mantle wedge refertilization occurs via slab derived volatiles and magma generation. Slab derived volatiles, consisting primarily of H2O - CO2 fluids, are especially critical in subduction evolution as they rheologically weaken the mantle wedge, decrease solidus temperatures, and rock-fluid interactions result in metasomatism. While the effects of H2O in these processes have been well studied in the past decades, CO2's role remains open for much scientific study. This is partly attributed to the sensitivity of decarbonation to the thermal gradient of the subduction zone, bulk compositions (sediments, basalts, peridotites) and redox state of the mantle. Here we show benchmarking results of a subduction scenario that implements carbonation-decarbonation reactions into a fully coupled petrological-thermomechanical numerical modeling code. We resolve stable mineralogy and extract rock properties via Perple_X at a resolution of 5°C and 25 MPa. The numerical technique employed is a characteristics-based marker-in-cell technique with conservative finite-differences that includes visco-elastic-plastic rheologies (I2ELVIS). The devolatilized fluids are tracked via markers that are either generated or consumed based on P-T conditions. The fluids are also allowed to freely advect within the velocity field. The hosts for CO2 in this system are computed via GLOSS average sediments (H2O: 7.29 wt% & CO2: 3.01 wt%), metabasalts ( H2O: 2.63 & CO2: 2.90 wt%), and ophicarbonates (H2O: 1.98 wt% & CO2: 5.00 wt%). Our results demonstrate the feasibility of applying this decarbonation-carbonation numerical method to a range of geodynamic scenarios that simulate the removal of CO2 from the subducting slab. Such applicable scenarios include sediment diapirism into the convecting wedge and better

  8. Deformation processes in orogenic wedges: New methods and application to Northwestern Washington State

    NASA Astrophysics Data System (ADS)

    Thissen, Christopher J.

    Permanent deformation records aspects of how material moves through a tectonic environment. The methods required to measure deformation vary based on rock type, deformation process, and the geological question of interest. In this thesis we develop two new methods for measuring permanent deformation in rocks. The first method uses the autocorrelation function to measure the anisotropy present in two-dimensional photomicrographs and three-dimensional X-ray tomograms of rocks. The method returns very precise estimates for the deformation parameters and works best for materials where the deformation is recorded as a shape change of distinct fabric elements, such as grains. Our method also includes error estimates. Image analysis techniques can focus the method on specific fabric elements, such as quartz grains. The second method develops a statistical technique for measuring the symmetry in a distribution of crystal orientations, called a lattice-preferred orientation (LPO). We show that in many cases the symmetry of the LPO directly constrains the symmetry of the deformation, such axial flattening vs. pure shear vs. simple shear. In addition to quantifying the symmetry, the method uses the full crystal orientation to estimate symmetry rather than pole figures. Pole figure symmetry can often be misleading. This method works best for crystal orientations measured in samples deformed by dislocation creep, but otherwise can be used on any mineral without requiring information about slip systems. In Chapter 4 we show how deformation measurements can be used to inform regional tectonic and orogenic models in the Pacific Northwestern United States. A suite of measurements from the Olympic Mountains shows that uplift and deformation of the range is consistent with an orogenic wedge model driven by subduction of the Juan de Fuca plate, and not northward forearc migration of the Oregon block. The deformation measurements also show that deformation within the Olympic Mountains

  9. Spatially Concentrated Erosion Focuses Deformation Within the Himalayan Orogenic Wedge: Sutlej Valley, NW Himalaya, India

    NASA Astrophysics Data System (ADS)

    Thiede, R. C.; Arrowsmith, J.; Bookhagen, B.; McWilliams, M.; Sobel, E. R.; Strecker, M. R.

    2004-12-01

    Long-term erosion processes in the NW-Himalaya have not only shaped the distribution of topography and relief, but may also exert a regional control on the kinematic history of the Himalayan orogenic wedge. The topographic front of the orogenic wedge forms the southern margin of the High Himalaya and may be related to subsurface structures such as a crustal ramp or a blind thrust. Drastic along- and across-strike erosional gradients characterize the modern Himalaya and range from high-erosion regions along the southern High Himalayan front where monsoonal precipitation is able to penetrate far into the range, to low-erosion sectors across the moderately elevated Lesser Himalaya to the south and the high-elevation, arid sectors to the north. Published paleo-elevation estimates from the Thakkhola Graben (Nepal) suggest that by ~11 Ma the southern Tibetan Plateau and probably the High Himalaya had been uplifted to elevations comparable to the recent conditions. Thus, the presently observed pronounced erosional gradients have likely existed across the orogen since then. However, the cause of high rock-uplift and exhumation rates along distinct segments of the southern front of the High Himalaya are still a matter of debate. New apatite fission track (AFT) and 40Ar/39Ar data sampled along an orogen-perpendicular transect following the Sutlej Valley, approximately perpendicular to the Himalayan orogen, constrain the distribution patterns of rapid cooling related to rock uplift and exhumation. Combined with published thermochronologic data, this comprehensive AFT dataset from south of the High Himalaya mountain front to the interior of the Tethyan Himalaya allows us to derive a regional uplift and exhumation scenario. Our new 40Ar/39Ar ages ranging between 17 and 4 Ma reveal diachronous exhumation of two crystalline nappes (Higher and Lesser Himalayan crystalline) during Miocene-Pliocene time. In contrast, the AFT data ranging from 1.3 to 4.6 Ma indicate synchronous, fast

  10. Comparison of theoretical fixation stability of three devices employed in medial opening wedge high tibial osteotomy: a finite element analysis

    PubMed Central

    2014-01-01

    Background Medial open wedge high tibial osteotomy is a well-established procedure for the treatment of unicompartmental osteoarthritis and symptomatic varus malalignment. We hypothesized that different fixation devices generate different fixation stability profiles for the various wedge sizes in a finite element (FE) analysis. Methods Four types of fixation were compared: 1) first and 2) second generation Puddu plates, and 3) TomoFix plate with and 4) without bone graft. Cortical and cancellous bone was modelled and five different opening wedge sizes were studied for each model. Outcome measures included: 1) stresses in bone, 2) relative displacement of the proximal and distal tibial fragments, 3) stresses in the plates, 4) stresses on the upper and lower screw surfaces in the screw channels. Results The highest load for all fixation types occurred in the plate axis. For the vast majority of the wedge sizes and fixation types the shear stress (von Mises stress) was dominating in the bone independent of fixation type. The relative displacements of the tibial fragments were low (in μm range). With an increasing wedge size this displacement tended to increase for both Puddu plates and the TomoFix plate with bone graft. For the TomoFix plate without bone graft a rather opposite trend was observed. For all fixation types the occurring stresses at the screw-bone contact areas pulled at the screws and exceeded the allowable threshold of 1.2 MPa for at least one screw surface. Of the six screw surfaces that were studied, the TomoFix plate with bone graft showed a stress excess of one out of twelve and without bone graft, five out of twelve. With the Puddu plates, an excess stress occurred in the majority of screw surfaces. Conclusions The different fixation devices generate different fixation stability profiles for different opening wedge sizes. Based on the computational simulations, none of the studied osteosynthesis fixation types warranted an intransigent full

  11. Tectonic Evolution of Naxos (cyclades): A Record of The Thermal-mechanical Evolution of An Orogenic Wedge

    NASA Astrophysics Data System (ADS)

    Vanderhaeghe, O.; Duchêne, S.; Hibsch, C.; Malartre, F.; Aissa, R.; Martin, L.; Fotiades, .; de St Blanquat, M.; Habert, G.

    A synthesis of published work and preliminary results from a multidisciplinary study of the various crustal levels exposed in the island of Naxos in the Cyclades allows to propose a model for the evolution of the orogenic accretionary wedge in this region. Naxos is characterized by the juxtaposition of metamorphic rocks and Late Oligocene- Early Miocene to Upper Pliocene sedimentary basins along a low-angle detachment. Migmatites, dated at ca. 15 Ma (Keay et al., 2001), appear in the core of a structural dome and are surrounded by a sequence of metasedimentary rocks. From the edge of the island to the core of the dome, the metasedimentary sequence is affected by a metamorphism grading from blue schists to amphibolite facies (Jansen and Schuil- ing, 1976). Ar-Ar ages decrease from ca. 45 in the blue schists to ca. 10 Ma in the migmatites (Andriessen et al., 1979, Wijbrans and McDougall, 1986). The sedimen- tary basins are filled mainly by coarse silicoclastic deposits. Sedimentological and geomorphological features suggest a transition from a shallow marine to a continental environment during Miocene time. Data from the metamorphic rocks indicate that the dynamic evolution of the wedge is marked by a first stage of burial and subsequent exhumation of the metasedimen- tary rocks controlled by the interplay between deformation related to convergence and denudation (erosion and tectonic). The formation of the dome cored by migmatites is interpreted as the result of the development of a gravitational instability associated to the genesis of a partially molten layer at depth in the thickened orogenic wedge. This event is synchronous to the activity of the low-angle detachment and the per- vasive top-to-the-North non-coaxial deformation which affects all rock units above the migmatites. The nature of the link between diapiric upwelling of the dome and the transition from thickening to thinning of the orogenic wedge remains to be estab- lished. Progressive exhumation and

  12. Mud volcano venting induced gas hydrate formation at the upper slope accretionary wedge, offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Saulwood; Tseng, Yi-Ting; Cheng, Wan-Yen; Chou, Cheng-Tien; Chen, NeiChen; Hsieh, I.-Chih

    2016-04-01

    TsanYao Mud Volcano (TYMV) is the largest mud volcano cone in the Hengchun Mud Volcano Group (HCMVG), located at the upper slope of the accrretionary wedge, southwest of Taiwan. The region is under active tectonic activity with the Philippine Plate, moving northwestward at a rate of ~8 cm/year. This region also receives huge quantity of suspended particle load of ~100 mT/year at present time from adjacent small rivers of the Island of Taiwan. Large loads of suspended sediments influx become a major source of organic carbon and later gas and other hydrocarbon. Gas and fluid in the mud volcano are actively venting from deep to the sea floor on the upper slope of the accretionary wedge. In order to understand venting on the HCMVG, echo sounder, towcam and coring were carried out. Pore water sulfate, chloride, potassium, calcium, stable isotope O-18, gas compositions, dissolved sulfide were analysed. The HCMVG consists of 12 volcano cones of different sizes. Large quantity of gas and fluid are venting directly from deep to the TYMV structure high, as well as 50+ other vents as appeared as flares on the echo sounder. Some flares are reaching to the atmosphere and likely a source of green house gases to the atmosphere. Venting fluids include gas bubbles, suspended particle, mud, and breccia. Breccia size could reach more than 12 cm in diameter. Circular bands in different color appeared around the cone may represent stages of vent eruptions. Compositions of vent gas include methane, ethane and propane. High proportions of ethane and propane in the vent gas demonstrated that source of gas are thermogenic in origin. Patchy authigenic carbonate, bacterial mats, bivalves, tube worms and other chemosynthesis organisms were supported by venting gas AOM process near the sea floor. Pore water chloride concentrations show distinct variation pattern from center cone to the side of the volcano, with low in the center and high away from the cone. Pore water with higher than seawater

  13. Holocene ice-wedge polygon development in northern Yukon permafrost peatlands (Canada)

    NASA Astrophysics Data System (ADS)

    Fritz, Michael; Wolter, Juliane; Rudaya, Natalia; Palagushkina, Olga; Nazarova, Larisa; Obu, Jaroslav; Rethemeyer, Janet; Lantuit, Hugues; Wetterich, Sebastian

    2016-09-01

    Ice-wedge polygon (IWP) peatlands in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from an IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, δ13C), stable water isotopes (δ18O, δD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions of the IWP field that developed after drainage (SU3: 3120 cal yrs BP to 2012 CE). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatom species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic diatom species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at

  14. Deformation in the mantle wedge associated with Laramide flat-slab subduction

    NASA Astrophysics Data System (ADS)

    Behr, Whitney M.; Smith, Douglas

    2016-07-01

    Laramide crustal deformation in the Rocky Mountains of the west-central United States is often considered to relate to a narrow segment of shallow subduction of the Farallon slab, but there is no consensus as to how deformation along the slab-mantle lithosphere interface was accommodated. Here we investigate deformation in mantle rocks associated with hydration and shear above the flat-slab at its contact with the base of the North American plate. The rocks we focus on are deformed, hydrated, ultramafic inclusions hosted within diatremes of the Navajo Volcanic Field in the central Colorado Plateau that erupted during the waning stages of the Laramide orogeny. We document a range of deformation textures, including granular peridotites, porphyroclastic peridotites, mylonites, and cataclasites, which we interpret to reflect different proximities to a slab-mantle-interface shear zone. Mineral assemblages and chemistries constrain deformation to hydrous conditions in the temperature range ˜550-750°C. Despite the presence of hydrous phyllosilicates in modal percentages of up to 30%, deformation was dominated by dislocation creep in olivine. The mylonites exhibit an uncommon lattice preferred orientation (LPO) in olivine, known as B-type LPO in which the a-axes are aligned perpendicular to the flow direction. The low temperature, hydrated setting in which these fabrics formed is consistent with laboratory experiments that indicate B-type LPOs form under conditions of high stress and high water contents; furthermore, the mantle wedge context of these LPOs is consistent with observations of trench-parallel anisotropy in the mantle wedge above many modern subduction zones. Differential stress magnitudes in the mylonitic rocks estimated using paleopiezometry range from 290 to 444 MPa, and calculated effective viscosities using a wet olivine flow law are on the order of 1019-1023 Pa s. The high stress magnitudes, high effective viscosities, and high strains recorded in these

  15. Global typology of urban energy use and potentials for an urbanization mitigation wedge

    PubMed Central

    Creutzig, Felix; Baiocchi, Giovanni; Bierkandt, Robert; Pichler, Peter-Paul; Seto, Karen C.

    2015-01-01

    The aggregate potential for urban mitigation of global climate change is insufficiently understood. Our analysis, using a dataset of 274 cities representing all city sizes and regions worldwide, demonstrates that economic activity, transport costs, geographic factors, and urban form explain 37% of urban direct energy use and 88% of urban transport energy use. If current trends in urban expansion continue, urban energy use will increase more than threefold, from 240 EJ in 2005 to 730 EJ in 2050. Our model shows that urban planning and transport policies can limit the future increase in urban energy use to 540 EJ in 2050 and contribute to mitigating climate change. However, effective policies for reducing urban greenhouse gas emissions differ with city type. The results show that, for affluent and mature cities, higher gasoline prices combined with compact urban form can result in savings in both residential and transport energy use. In contrast, for developing-country cities with emerging or nascent infrastructures, compact urban form, and transport planning can encourage higher population densities and subsequently avoid lock-in of high carbon emission patterns for travel. The results underscore a significant potential urbanization wedge for reducing energy use in rapidly urbanizing Asia, Africa, and the Middle East. PMID:25583508

  16. Self-assembling supramolecular systems of different symmetry formed by wedged macromolecular dendrons

    NASA Astrophysics Data System (ADS)

    Shcherbina, M. A.; Bakirov, A. V.; Yakunin, A. N.; Percec, V.; Beginn, U.; Möller, M.; Chvalun, S. N.

    2012-03-01

    The main stages of the self-assembling of supramolecular ensembles have been revealed by studying different functional wedged macromolecules: polymethacrylates with tapered side chains based on gallic acid, their macromonomers, and salts of 2,3,4- and 3,4,5-tris(dodecyloxy)benzenesulphonic acid. The first stage is the formation of individual supramolecular aggregates (long cylinders or spherical micelles) due to the weak noncovalent interactions of mesogenic groups and the subsequent ordering in these aggregates, which is accompanied by a decrease in the free energy of the system. Supramolecular aggregates, in turn, form 2D or 3D lattices. The shape of supramolecular aggregates and its change with temperature are delicate functions of the mesogen chemical structure; this circumstance makes it possible to rationally design complex self-assembling systems with the ability to respond smartly to external stimuli. X-ray diffraction analysis allows one to study the structure of supramolecular systems with different degrees of order, determine the type of mesophases formed by these systems, and reveal the phase behavior of the material. Particular attention has been paid to the method for reconstruction of electron density distribution from the relative reflection intensity. The application of a suite of experimental methods, including wide- and small-angle X-ray diffraction, molecular modeling, differential scanning calorimetry, and polarization optical microscopy, allows one to establish the relationship between the shape of the structural unit (molecule or molecular aggregate), the nature of the interaction, and the phase behavior of the material.

  17. Capillary migration of large confined super-hydrophobic drops in wedges

    NASA Astrophysics Data System (ADS)

    Torres, Logan; Weislogel, Mark; Arnold, Sam

    2016-11-01

    When confined within an interior corner, drops and bubbles migrate to regions of minimum energy by the combined effects of surface tension, surface wetting, and corner geometry. Such capillary phenomena are exploited for passive phase separation operations in micro-fluidic devices on earth and macro-fluidic devices aboard spacecraft. Our study focuses on the migration of large inertial-capillary drops confined between two planar super-hydrophobic surfaces. In our experiments, the near weightless environment of a drop tower produces Bo <<1 for drop volumes O(10mL) with migration velocities up to 10 cm/s. We observe transient power law behavior as a function of drop volume, wedge angle, initial confinement, and fluid properties including contact angle. We then further demonstrate how the experiment method may be employed as a large horizontal quiescent droplet generator for studies ranging from inertial non-wetting moving contact line investigations to large geyser-free horizontal drop impacts. NASA Cooperative Agreement NNX12AO47A, URMP.

  18. Numerical Studies on the Performance of Scramjet Combustor with Alternating Wedge-Shaped Strut Injector

    NASA Astrophysics Data System (ADS)

    Choubey, Gautam; Pandey, K. M.

    2017-04-01

    Numerical analysis of the supersonic combustion and flow structure through a scramjet engine at Mach 7 with alternating wedge fuel injection and with three angle of attack (α=-3°, α=0°, α=3°) have been studied in the present research article. The configuration used here is slight modification of the Rabadan et al. scramjet model. Steady two dimensional (2D) Reynolds-averaged Navier-Stokes (RANS) simulation and Shear stress transport (SST) based on k-ω turbulent model is used to predict the shock structure and combustion phenomenon inside the scramjet combustor. All the simulations are done by using Ansys 14-Fluent code. The combustion model used here is the combination of eddy dissipation and finite rate chemistry models since this model avoids Arrhenius calculations in which reaction rates are controlled by turbulence. Present results show that the geometry with negative angle of attack (α=-3°) have lowest ignition delay and it improves the performance of scramjet combustor as compared to geometry with α=0°, α=3°. The combustion phenomena and efficiency is also found to be stronger and highest in case of α=-3°.

  19. DNA binding properties of human Cdc45 suggest a function as molecular wedge for DNA unwinding.

    PubMed

    Szambowska, Anna; Tessmer, Ingrid; Kursula, Petri; Usskilat, Christian; Prus, Piotr; Pospiech, Helmut; Grosse, Frank

    2014-02-01

    The cell division cycle protein 45 (Cdc45) represents an essential replication factor that, together with the Mcm2-7 complex and the four subunits of GINS, forms the replicative DNA helicase in eukaryotes. Recombinant human Cdc45 (hCdc45) was structurally characterized and its DNA-binding properties were determined. Synchrotron radiation circular dichroism spectroscopy, dynamic light scattering, small-angle X-ray scattering and atomic force microscopy revealed that hCdc45 exists as an alpha-helical monomer and possesses a structure similar to its bacterial homolog RecJ. hCdc45 bound long (113-mer or 80-mer) single-stranded DNA fragments with a higher affinity than shorter ones (34-mer). hCdc45 displayed a preference for 3' protruding strands and bound tightly to single-strand/double-strand DNA junctions, such as those presented by Y-shaped DNA, bubbles and displacement loops, all of which appear transiently during the initiation of DNA replication. Collectively, our findings suggest that hCdc45 not only binds to but also slides on DNA with a 3'-5' polarity and, thereby acts as a molecular 'wedge' to initiate DNA strand displacement.

  20. Spectroradiometer with wedge interference filters (SWIF): measurements of the spectral optical depths at Mauna Loa Observatory.

    PubMed

    Vasilyev, O B; Leyva, A; Muhila, A; Valdes, M; Peralta, R; Kovalenko, A P; Welch, R M; Berendes, T A; Isakov, V Y; Kulikovskiy, Y P; Sokolov, S S; Strepanov, N N; Gulidov, S S; von Hoyningen-Huene, W

    1995-07-20

    A spectroradiometer with wedge interference filters (SWIF) (the filters were produced by Carl Zeiss, Jena, Germany) and a CCD matrix (which was of Russian production) that functions as the sensor has been designed and built for use in ground-based optical sensing of the atmosphere and the Earth's surface in the spectral range of 0.35-1.15 µm. Absolute calibration of this instrument was performed through a series of observations of direct solar radiation at Mauna Loa Observatory (MLO) in Hawaii in May and June 1993. Spectral optical depth (SOD) measurements that were made during these field experiments provided detailed spectral information about both aerosol extinction (scattering plus absorption) and molecular absorption in the atmosphere above the site at MLO. The aerosol-SOD measurements were compared with narrow-band radiometer measurements at wavelengths of 380, 500, and 778 nm The SWIF and narrow-band radiometer measurements are in agreement to within the experimental error. At a wavelength of 500 nm, the aerosol SOD was found to be approximately 0.045. Adescription of the SWIF instrument, its absolute calibration, and the determination of atmospheric SOD's at MLO are presented.

  1. Smectite diagenesis, pore-water freshening, and fluid flow at the toe of the Nankai wedge

    USGS Publications Warehouse

    Brown, K.M.; Saffer, D.M.; Bekins, B.A.

    2001-01-01

    The presence of low-chloride fluids in the lowermost sediments drilled at Ocean Drilling Program Site 808, at the Nankai accretionary wedge, has been considered as prime evidence for long-distance, lateral fluid flow from depth. Here, we re-evaluate the potential role of in situ reaction of smectite (S) to illite (I) in the genesis of this low chloride anomaly. This reaction is known to be occurring at Site 808, with both the S content and S to I ratio in the mixed layer clays decreasing substantially with depth. We show that the bulk of the chloride anomaly can generate by in situ clay dehydration, particularly if pre-reaction smectite abundances (Ai) approach ?? 10-15% of the bulk sediment. The Ai values, however, are not well constrained. At Ai values < 10-15%, an additional source of low-Cl fluid centered close to the de??collement could be required. Thus, there remains the important possibility that the observed low-Cl anomaly is a compound effect of both lateral flow and in situ smectite dehydration. ?? 2001 Elsevier Science B.V. All rights reserved.

  2. Optical image encryption based on a joint Fresnel transform correlator with double optical wedges.

    PubMed

    Shen, Xueju; Dou, Shuaifeng; Lei, Ming; Chen, Yudan

    2016-10-20

    An optical cryptosystem based on the joint Fresnel transform correlator (JFTC) with double optical wedges is designed. The designed cryptosystem retains the two major advantages of JTC-based optical cryptosystems. First, the encrypted image is real-valued and therefore is easier to record and transmit. Second, the encryption process is simplified, since it doesn't require accurate alignment of optical elements or the generation of the complex conjugate of the key. Also, the designed optical cryptosystem can produce a decrypted image with higher quality than a JTC-based optical cryptosystem, because the original encrypted image is divided by the Fresnel transform power distribution of the key mask to generate the new encrypted image, which significantly reduces the noise during the decryption process. Simulation results showed that the correlation coefficient of the decrypted image and the original image can reach as large as 0.9819 after denoising and adequately selecting half-central interval a and encrypted image width w. Another improvement relative to JTC-based optical cryptosystems is that the attack resistibility gets enhanced due to the nonlinearity of the encryption process as well as the additional key parameter a, which enlarges the key space.

  3. Prediction of orbiter RSI tile gap heating ratios from NASA/Ames double wedge model test

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In-depth gap heating ratios for Orbiter RSI tile sidewalls were predicted based on near steady state temperature measurements obtained from double wedge model tests. An analysis was performed to derive gap heating ratios which would result in the best fit of test data; provide an assessment of open gap response, and supply the definition of gap filler requirements on the Orbiter. A comparison was made of these heating ratios with previously derived ratios in order to verify the extrapolation of the wing glove data to Orbiter flight conditions. The analysis was performed with the Rockwell TPS Multidimensional Heat Conduction Program for a 3-D, 2.0-inch thick flat RSI tile with 255 nodal points. The data from 14 tests was used to correlate with the analysis. The results show that the best-fit heating ratios at the station farthest upstream on the model for most gap depths were less than the extrapolated values of the wing glove model heating ratios. For the station farthest downstream on the model, the baseline heating ratios adequately predicted or over-predicted the test data.

  4. Buried Middle Pleistocene ice wedge systems and longterm survival of ancient Yedoma carbon

    NASA Astrophysics Data System (ADS)

    Froese, D. G.; Jensen, B. J.; Reyes, A.; Poinar, H.; Shapiro, B.; Zazula, G.; Calmels, F.

    2012-12-01

    Deep syngenetic permafrost of Beringia, or the deep Yedoma, hosts a reservoir of at least several hundred Pg of C that has survived through multiple interglaciations at least as warm or warmer than the present interglaciation. Relatively few sites are known across the northern hemisphere to estimate this reservoir, but based on a review of existing data, it appears that this reservoir is largely a feature of the Middle Pleistocene and may not pre-date the Early to Middle Pleistocene transition. Relict polygonal ice-wedge networks associated with syngenetic permafrost are present at four sites in the discontinuous permafrost zone of central Yukon. They are stratigraphically associated with the Gold Run tephra (ca. 700 ka) and other Middle Pleistocene tephra beds, consistent with their normal magnetic polarity and vertebrate fossil assemblages. Soil organic matter content within these deposits is indistinguishable from Late Pleistocene and Holocene organic matter, with organic carbon ranging between 1 and 15% reflecting the depositional context. Plant and vertebrate communities show that the majority of this material accumulated in typical steppe-tundra ecosystems associated with Pleistocene cold stages, similar to late Pleistocene contexts. Where differences are more pronounced, however, is at the molecular scale. Ancient biomolecules show much greater rates of DNA damage reflected by decreases in the obtained plant and bacterial sequence diversity and elevated deamination of the 5 and 3' termini of DNA molecules, characteristic of ancient DNA extracts.

  5. The SPECT/CT Evaluation of Compartmental Changes after Open Wedge High Tibial Osteotomy

    PubMed Central

    Kim, Tae Won; Kim, Byung Kag; Kim, Dong Whan; Sim, Jae Ang; Lee, Beom Koo; Lee, Yong Seuk

    2016-01-01

    Purpose The purpose of this study was to evaluate compartmental changes using combined single-photon emission computerized tomography and conventional computerized tomography (SPECT/CT) after open wedge high tibial osteotomy (OWHTO) for providing clinical guidance for proper correction. Materials and Methods Analysis was performed using SPECT/CT from around 1 year after surgery on 22 patients who underwent OWHTO. Postoperative mechanical axis was measured and classified into 3 groups: group I (varus), group II (0°–3° valgus), and group III (>3° valgus). Patella location was evaluated using Blackburne-Peel (BP) ratio. On SPECT/CT, the knee joint was divided into medial, lateral, and patellofemoral compartments and the brighter signal was marked as a positive signal. Results Increased signal activity in the medial compartment was observed in 12 cases. No correlation was observed between postoperative mechanical axis and medial signal increase. Lateral increased signal activity was observed in 3 cases, and as valgus degree increased, lateral compartment’s signal activity increased. Increased signal activity of the patellofemoral joint was observed in 7 cases, and significant correlation was observed between changes in BP ratio and increased signal activity. Conclusions For the treatment of medial osteoarthritis, OWHTO requires overcorrection that does not exceed 3 valgus. In addition, the possibility of a patellofemoral joint problem after OWHTO should be kept in mind. PMID:27894172

  6. The Effects of Offsetting and Wedging Cell Lattices in the On-Ramp System

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Zhou, Feng-Yan; Chen, Jian-Hua

    On-ramp is generally regarded as one of the key bottlenecks along the highway. In the present paper, three different merging relationships between on-ramp and main lane are analyzed and presented. The first case parallels each cellular position of accelerating lane to that of main lane. In the second case, each cell of accelerating lane keeps half cell ahead. The third case wedges each cell of accelerating lane into cells of main lane from 1/4 overlap to all. Based on a cellular automaton model, the simulations have been done to demonstrate how vehicles from on-ramp affect the traffic flow moving on main road under the above three different cases. The results show that driver behavior under the third case is closer to the real traffic situation in China, where an on-ramp car finds it hard to merge into main lane with the same velocity. All three phase diagrams show the complex phase transitions, but this reflects the degree of the stochastic nature of traffic flow in reality.

  7. Active shortening within the Himalayan orogenic wedge implied by the 2015 Gorkha earthquake

    NASA Astrophysics Data System (ADS)

    Whipple, Kelin X.; Shirzaei, Manoochehr; Hodges, Kip V.; Ramon Arrowsmith, J.

    2016-09-01

    Models of Himalayan neotectonics generally attribute active mountain building to slip on the Himalayan Sole Thrust, also termed the Main Himalayan Thrust, which accommodates underthrusting of the Indian Plate beneath Tibet. However, the geometry of the Himalayan Sole Thrust and thus how slip along it causes uplift of the High Himalaya are unclear. We show that the geodetic record of the 2015 Gorkha earthquake sequence significantly clarifies the architecture of the Himalayan Sole Thrust and suggests the need for revision of the canonical view of how the Himalaya grow. Inversion of Gorkha surface deformation reveals that the Himalayan Sole Thrust extends as a planar gently dipping fault surface at least 20-30 km north of the topographic front of the High Himalaya. This geometry implies that building of the high range cannot be attributed solely to slip along the Himalayan Sole Thrust over a steep ramp; instead, shortening within the Himalayan wedge is required to support the topography and maintain rapid rock uplift. Indeed, the earthquake sequence may have included a moderate rupture (Mw 6.9) on an out-of-sequence thrust fault at the foot of the High Himalaya. Such internal deformation is an expected response to sustained, focused rapid erosion, and may be common to most compressional orogens.

  8. Global typology of urban energy use and potentials for an urbanization mitigation wedge.

    PubMed

    Creutzig, Felix; Baiocchi, Giovanni; Bierkandt, Robert; Pichler, Peter-Paul; Seto, Karen C

    2015-05-19

    The aggregate potential for urban mitigation of global climate change is insufficiently understood. Our analysis, using a dataset of 274 cities representing all city sizes and regions worldwide, demonstrates that economic activity, transport costs, geographic factors, and urban form explain 37% of urban direct energy use and 88% of urban transport energy use. If current trends in urban expansion continue, urban energy use will increase more than threefold, from 240 EJ in 2005 to 730 EJ in 2050. Our model shows that urban planning and transport policies can limit the future increase in urban energy use to 540 EJ in 2050 and contribute to mitigating climate change. However, effective policies for reducing urban greenhouse gas emissions differ with city type. The results show that, for affluent and mature cities, higher gasoline prices combined with compact urban form can result in savings in both residential and transport energy use. In contrast, for developing-country cities with emerging or nascent infrastructures, compact urban form, and transport planning can encourage higher population densities and subsequently avoid lock-in of high carbon emission patterns for travel. The results underscore a significant potential urbanization wedge for reducing energy use in rapidly urbanizing Asia, Africa, and the Middle East.

  9. Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone

    PubMed Central

    Nagaya, Takayoshi; Walker, Andrew M.; Wookey, James; Wallis, Simon R.; Ishii, Kazuhiko; Kendall, J. -Michael

    2016-01-01

    It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed. PMID:27436676

  10. Agenesis of the Corpus Callosum Due to Defective Glial Wedge Formation in Lhx2 Mutant Mice.

    PubMed

    Chinn, Gregory A; Hirokawa, Karla E; Chuang, Tony M; Urbina, Cecilia; Patel, Fenil; Fong, Jeanette; Funatsu, Nobuo; Monuki, Edwin S

    2015-09-01

    Establishment of the corpus callosum involves coordination between callosal projection neurons and multiple midline structures, including the glial wedge (GW) rostrally and hippocampal commissure caudally. GW defects have been associated with agenesis of the corpus callosum (ACC). Here we show that conditional Lhx2 inactivation in cortical radial glia using Emx1-Cre or Nestin-Cre drivers results in ACC. The ACC phenotype was characterized by aberrant ventrally projecting callosal axons rather than Probst bundles, and was 100% penetrant on 2 different mouse strain backgrounds. Lhx2 inactivation in postmitotic cortical neurons using Nex-Cre mice did not result in ACC, suggesting that the mutant phenotype was not autonomous to the callosal projection neurons. Instead, ACC was associated with an absent hippocampal commissure and a markedly reduced to absent GW. Expression studies demonstrated strong Lhx2 expression in the normal GW and in its radial glial progenitors, with absence of Lhx2 resulting in normal Emx1 and Sox2 expression, but premature exit from the cell cycle based on EdU-Ki67 double labeling. These studies define essential roles for Lhx2 in GW, hippocampal commissure, and corpus callosum formation, and suggest that defects in radial GW progenitors can give rise to ACC.

  11. Benthic macrofaunal dynamics and environmental stress across a salt wedge Mediterranean estuary.

    PubMed

    Nebra, Alfonso; Alcaraz, Carles; Caiola, Nuno; Muñoz-Camarillo, Gloria; Ibáñez, Carles

    2016-06-01

    The spatial distribution of benthic macroinvertebrate community in relation to environmental factors was studied along the Ebro Estuary (NE Iberian Peninsula), a salt wedge Mediterranean estuary. Both ordination methods and generalized additive models were performed to identify the different benthic assemblages and their relationship to abiotic factors. Our results showed a strong relationship between macrofaunal assemblages and the predominant environmental gradients (e.g. salinity); thus revealing spatial differences in their structure and composition. Two different stretches were identified, namely the upper (UE) and the lower Ebro Estuary (LE). UE showed riverine characteristics and hence was colonized by a freshwater community; whereas LE was influenced by marine intrusion and sustained a complex marine-origin community. However, within each stretch, water and sediment characteristics played an important role in explaining species composition differences among sampling stations. Moreover, outcomes suggested a total species replacement pattern, instead of the nestedness pattern usually associated with well-mixed temperate estuaries. The sharp species turnover together with the estuarine stratification point out that the Ebro Estuary is working, in terms of ecological boundaries, under an ecotone model. Finally, despite obvious differences with well mixed estuaries (i.e. lack of tidal influence, stratification and species turnover), the Ebro Estuary shares important ecological attributes with well-mixed temperate estuaries.

  12. Measurement of birefringence of optical materials using a wedged plate interferometer

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Perera, G. M.; George, M. C.; Venkateswarlu, Putcha

    1990-01-01

    A nondestructive technique for measuring the birefringence of optical materials such as calcite using wedged plate interferometer is presented. The sample needed for measuring the refractive index must be polished in the form of a parallel plate. The method is based on the measurement of the longitudinal displacement of the focus when the parallel plate is inserted in a converging beam of light. The displacement of the focus is a measure of the refractive index of the optical material. In the case of a uniaxial crystal, the displacement of the focus for the extraordinary ray is different from the displacement of the focus for the ordinary ray. Hence the birefringence of the crystal is determined by measuring the difference between the two focii. It is possible to obtain an accuracy up to 0.0002 in the measurement of birefringence depending on the sample thickness. The method should find its application for the characterization of new crystals in various material research and crystal growth laboratories.

  13. Nano Conductive Ceramic Wedged Graphene Composites as Highly Efficient Metal Supports for Oxygen Reduction

    PubMed Central

    Wu, Peng; Lv, Haifeng; Peng, Tao; He, Daping; Mu, Shichun

    2014-01-01

    A novel conductive ceramic/graphene nanocomposite is prepared to prohibit the re-stacking of reduced graphene oxide (RGO) by wedging zirconium diboride (ZrB2) nanoparticles (NPs) into multiple layer nanosheets using a simple solvothermal method. Surprisingly, the RGO/ZrB2 nanocomposite supported Pt NPs shows very excellent catalytic activity. Its electrochemical surface area (ECSA) is up to 148 m2g−1 (very approaches the geometry surface area of 155 m2g−1), much greater than that of the previous report (usually less than 100 m2g−1). The mass activity is as high as 16.8 A/g−1, which is almost 2 times and 5 times that of Pt/RGO (8.6 A/g−1) and Pt/C (3.2 A/g−1), respectively, as benchmarks. Moreover, after 4000 cycles the catalyst shows only 61% of ECSA loss, meaning a predominantly electrochemical stability. The remarkably improved electrochemical properties with much high Pt utilization of the new catalyst show a promising application in low temperature fuel cells and broader fields. PMID:24495943

  14. Stationary bubble formation and cavity collapse in wedge-shaped hoppers

    PubMed Central

    Yagisawa, Yui; Then, Hui Zee; Okumura, Ko

    2016-01-01

    The hourglass is one of the apparatuses familiar to everyone, but reveals intriguing behaviors peculiar to granular materials, and many issues are remained to be explored. In this study, we examined the dynamics of falling sand in a special form of hourglass, i.e., a wedge-shaped hopper, when a suspended granular layer is stabilized to a certain degree. As a result, we found remarkably different dynamic regimes of bubbling and cavity. In the bubbling regime, bubbles of nearly equal size are created in the sand at a regular time interval. In the cavity regime, a cavity grows as sand beads fall before a sudden collapse of the cavity. Bubbling found here is quite visible to a level never discussed in the physics literature and the cavity regime is a novel phase, which is neither continuous, intermittent nor completely blocked phase. We elucidate the physical conditions necessary for the bubbling and cavity regimes and develop simple theories for the regimes to successfully explain the observed phenomena by considering the stability of a suspended granular layer and clogging of granular flow at the outlet of the hopper. The bubbling and cavity regimes could be useful for mixing a fluid with granular materials. PMID:27138747

  15. Development and testing of a prototype mosaic wedge-and-strip anode detector

    NASA Technical Reports Server (NTRS)

    Rasmussen, A.; Martin, C.

    1989-01-01

    A preliminary laboratory study of a prototype mosaic wedge-and-strip anode, a new class of readout system that will furnish large format, high resolution microchannel plate detectors with comparatively simple readout electronics is described. The goals of this study were to demonstrate the linearity of the mosaic anode algorithm, and to verify the predicted resolution performance in a realistic detector configuration. It is found that the nonlinearity introduced at the boundary between two anodes is limited to 50-100 microns. It is also shown that the spatial resolution of the detector is limited mainly by partition noise to about 35 microns (FWHM) at a gain of 2 x 10 to the 7th. A systematic investigation of the charge distribution arriving at the anode is also described. Using the relative charges arriving on the two anodes of the mosaic pattern, the detailed shape of the distribution and its dependence on MCP-anode voltage, MCP voltage, and pulse height are determined. A significant dependence of the profile on pulse height, which can introduce a pulse height dependence to the centroid calculation, particularly near the anode edges is found. Improved anode designs which will achieve the optimal performance are discussed.

  16. Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone.

    PubMed

    Nagaya, Takayoshi; Walker, Andrew M; Wookey, James; Wallis, Simon R; Ishii, Kazuhiko; Kendall, J-Michael

    2016-07-20

    It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed.

  17. Lateral closing wedge supracondylar osteotomy of humerus for post-traumatic cubitus varus in children.

    PubMed

    Devnani, A S

    1997-01-01

    Cubitus varus deformity following mal-union of a supracondylar fracture of the humerus in children causes no functional disability, but surgical correction is often requested to improve the appearance of the arm. Maintaining the correction after supracondylar osteotomy is a difficult aspect of the operative treatment and remains controversial. Nine children aged between 6 and 12 years (average 8 years and 11 months) underwent lateral closing wedge supracondylar osteotomy of the humerus, for deformity ranging between 10 and 20 degrees (average 13 degrees). The correction required ranged between 16 and 30 degrees (average 21 degrees). The osteotomy was internally fixed with a two hole marrow plate. At follow-up, which ranged between 3 months and 6 years (average 34 months), six patients were graded as good, two as satisfactory and one as a poor result. One patient had transient radial nerve palsy which recovered completely in 2 months. The patient who was graded poor had undercorrection of the deformity at the original operation. There was no incidence of loss of correction due to implant failure. Complete section of the bone to allow medial displacement of the distal fragment is recommended, thereby avoiding lateral bony prominence at the elbow.

  18. Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone

    NASA Astrophysics Data System (ADS)

    Nagaya, Takayoshi; Walker, Andrew M.; Wookey, James; Wallis, Simon R.; Ishii, Kazuhiko; Kendall, J.-Michael

    2016-07-01

    It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed.

  19. Sample size calculation for stepped wedge and other longitudinal cluster randomised trials.

    PubMed

    Hooper, Richard; Teerenstra, Steven; de Hoop, Esther; Eldridge, Sandra

    2016-11-20

    The sample size required for a cluster randomised trial is inflated compared with an individually randomised trial because outcomes of participants from the same cluster are correlated. Sample size calculations for longitudinal cluster randomised trials (including stepped wedge trials) need to take account of at least two levels of clustering: the clusters themselves and times within clusters. We derive formulae for sample size for repeated cross-section and closed cohort cluster randomised trials with normally distributed outcome measures, under a multilevel model allowing for variation between clusters and between times within clusters. Our formulae agree with those previously described for special cases such as crossover and analysis of covariance designs, although simulation suggests that the formulae could underestimate required sample size when the number of clusters is small. Whether using a formula or simulation, a sample size calculation requires estimates of nuisance parameters, which in our model include the intracluster correlation, cluster autocorrelation, and individual autocorrelation. A cluster autocorrelation less than 1 reflects a situation where individuals sampled from the same cluster at different times have less correlated outcomes than individuals sampled from the same cluster at the same time. Nuisance parameters could be estimated from time series obtained in similarly clustered settings with the same outcome measure, using analysis of variance to estimate variance components. Copyright © 2016 John Wiley & Sons, Ltd.

  20. A quality assurance tool for helical tomotherapy using a step-wedge phantom and the on-board MVCT detector.

    PubMed

    Althof, Vincent; van Haaren, Paul; Westendorp, Rik; Nuver, Tonnis; Kramer, Dinant; Ikink, Marijke; Bel, Arjen; Minken, Andre

    2012-01-05

    The purpose of this study was to develop and evaluate filmless quality assurance (QA) tools for helical tomotherapy by using the signals from the on-board megavoltage computed tomography (MVCT) detector and applying a dedicated step-wedge phantom. The step-wedge phantom is a 15 cm long step-like aluminum block positioned on the couch. The phantom was moved through the slit beam and MVCT detector signals were analyzed. Two QA procedures were developed, with gantry fixed at 0°: 1) step-wedge procedure: to check beam energy consistency, field width, laser alignment with respect to the virtual isocenter, couch movement, and couch velocity; and 2) completion procedure: to check the accuracy of a field abutment made by the tomotherapy system after a treatment interruption. The procedures were designed as constancy tool and were validated by measurement of deliberately induced variations and comparison with a reference method. Two Hi-Art II machines were monitored over a period of three years using the step-wedge procedures. The data acquisition takes 5 minutes. The analysis is fully automated and results are available directly after acquisition. Couch speed deviations up to 2% were induced. The mean absolute difference between expected and measured couch speed was 0.2% ± 0.2% (1 standard deviation SD). Field width was varied around the 10 mm nominal size, between 9.7 and 11.1 mm, in steps of 0.2 mm. Mean difference between the step-wedge analysis and the reference method was < 0.01 mm ± 0.03 mm (1 SD). Laser (mis)alignment relative to a reference situation was detected with 0.3 mm precision (1SD). The step-wedge profile was fitted to a PDD in water. The PDD ratio D20/D10, measured at depths of 20 cm and 10 cm, was used to check beam energy consistency. Beam energy variations were induced. Mean difference between step-wedge and water PDD ratios was 0.2% ± 0.3% (1SD). The completion procedure was able to reveal abutment mismatches with a mean error of -0.6 mm ± 0.2 mm