Science.gov

Sample records for 10-formyl tetrahydrofolate deformylases

  1. Arabidopsis 10-formyl tetrahydrofolate deformylases are essential for photorespiration.

    PubMed

    Collakova, Eva; Goyer, Aymeric; Naponelli, Valeria; Krassovskaya, Inga; Gregory, Jesse F; Hanson, Andrew D; Shachar-Hill, Yair

    2008-07-01

    In prokaryotes, PurU (10-formyl tetrahydrofolate [THF] deformylase) metabolizes 10-formyl THF to formate and THF for purine and Gly biosyntheses. The Arabidopsis thaliana genome contains two putative purU genes, At4g17360 and At5g47435. Knocking out these genes simultaneously results in plants that are smaller and paler than the wild type. These double knockout (dKO) mutant plants show a 70-fold increase in Gly levels and accumulate elevated levels of 5- and 10-formyl THF. Embryo development in dKO mutants arrests between heart and early bent cotyledon stages. Mature seeds are shriveled, accumulate low amounts of lipids, and fail to germinate. However, the dKO mutant is only conditionally lethal and is rescued by growth under nonphotorespiratory conditions. In addition, culturing dKO siliques in the presence of sucrose restores normal embryo development and seed viability, suggesting that the seed and embryo development phenotypes are a result of a maternal effect. Our findings are consistent with the involvement of At4g17360 and At5g47435 proteins in photorespiration, which is to prevent excessive accumulation of 5-formyl THF, a potent inhibitor of the Gly decarboxylase/Ser hydroxymethyltransferase complex. Supporting this role, deletion of the At2g38660 gene that encodes the bifunctional 5,10-methylene THF dehydrogenase/5,10-methenyl THF cyclohydrolase that acts upstream of 5-formyl THF formation restored the wild-type phenotype in dKO plants.

  2. Genetic characterization of polypeptide deformylase, a distinctive enzyme of eubacterial translation.

    PubMed Central

    Mazel, D; Pochet, S; Marlière, P

    1994-01-01

    Deformylase performs an essential step in the maturation of proteins in eubacteria, by removing the formyl group from the N-terminal methionine residue of ribosome-synthesized polypeptides. In spite of this important role in translation, the enzyme had so far eluded characterization because of its instability. We report the isolation of the deformylase gene of Escherichia coli, def, by overexpression of a genomic library from a high-copy-number plasmid and selection for utilization of the substrate analogue formyl-leucyl-methionine as a source of methionine. The def gene encodes a 169 amino acid polypeptide that bears no obvious resemblance to other known proteins. It forms an operon with the fmt gene, that encodes the initiator methionyl-tRNA(i) transformylase, which was recently characterized (Guillon et al., J. Bacteriol., 174, 4294-4301, 1992). This operon was mapped at min 72 of the E. coli chromosome. The def gene could be inactivated if the fmt gene was also inactivated, or if biosynthesis of N10-formyl-tetrahydrofolate, the formyl donor in methionyl-tRNA(i) transformylation, was blocked by trimethoprim. These findings designate deformylase as a target for antibacterial chemotherapy. Images PMID:8112305

  3. Genetic characterization of polypeptide deformylase, a distinctive enzyme of eubacterial translation.

    PubMed

    Mazel, D; Pochet, S; Marlière, P

    1994-02-15

    Deformylase performs an essential step in the maturation of proteins in eubacteria, by removing the formyl group from the N-terminal methionine residue of ribosome-synthesized polypeptides. In spite of this important role in translation, the enzyme had so far eluded characterization because of its instability. We report the isolation of the deformylase gene of Escherichia coli, def, by overexpression of a genomic library from a high-copy-number plasmid and selection for utilization of the substrate analogue formyl-leucyl-methionine as a source of methionine. The def gene encodes a 169 amino acid polypeptide that bears no obvious resemblance to other known proteins. It forms an operon with the fmt gene, that encodes the initiator methionyl-tRNA(i) transformylase, which was recently characterized (Guillon et al., J. Bacteriol., 174, 4294-4301, 1992). This operon was mapped at min 72 of the E. coli chromosome. The def gene could be inactivated if the fmt gene was also inactivated, or if biosynthesis of N10-formyl-tetrahydrofolate, the formyl donor in methionyl-tRNA(i) transformylation, was blocked by trimethoprim. These findings designate deformylase as a target for antibacterial chemotherapy.

  4. Methylene tetrahydrofolate dehydrogenase/cyclohydrolase and the synthesis of 10-CHO-THF are essential in Leishmania major

    PubMed Central

    Murta, Silvane M. F.; Vickers, Tim J.; Scott, David A.; Beverley, Stephen M.

    2009-01-01

    Summary 10-formyl tetrahydrofolate is a key metabolite in C1 carbon metabolism, arising through the action of formate-tetrahydrofolate ligase (FTL) and/or 5,10-methenyltetrahydrofolate cyclohydrolase/5,10-methylene tetrahydrofolate dehydrogenase (DHCH). Leishmania major possesses single DHCH1 and FTL genes encoding exclusively cytosolic proteins, unlike other organisms where isoforms occur in the mitochondrion as well. Recombinant DHCH1 showed typical NADP+-dependent methylene tetrahydrofolate DH and 5,10-methenyltetrahydrofolate CH activities, and the DH activity was potently inhibited by a substrate analog 5,10-CO-THF (Ki 105 nM), as was Leishmania growth (EC50 1.1 μM). Previous studies showed null ftl− mutants were normal, raising the possibility that loss of the purine synthetic pathway had rendered 10-CHO-THF dispensable in evolution. We were unable to generate dhch1− null mutants by gene replacement, despite using a wide spectrum of nutritional supplements expected to bypass DHCH function. We applied an improved method for testing essential genes in Leishmania, based upon segregational loss of episomal complementing genes rather than transfection; analysis of ~1400 events without successful loss of DHCH1 again established its requirement. Lastly, we employed ‘genetic metabolite complementation’ using ectopically expressed FTL as an alternative source of 10-CHO-THF; now dhch1− null parasites were readily obtained. These data establish a requirement for 10-CHO tetrahydrofolate metabolism in L. major, and provide genetic and pharmacological validation of DHCH as a target for chemotherapy, in this and potentially other protozoan parasites. PMID:19183277

  5. Solution structure of nickel-peptide deformylase.

    PubMed

    Dardel, F; Ragusa, S; Lazennec, C; Blanquet, S; Meinnel, T

    1998-07-17

    In the accompanying paper, we report that zinc is unlikely to be the co-factor supporting peptide deformylase activity in vivo. In contrast, nickel binding promotes full enzyme activity. The three-dimensional structure of the resulting nickel-containing peptide deformylase (catalytic domain, residues 1 to 147) was solved by NMR using a 13C-15N-doubly labelled protein sample. A set of 2261 restraints could be collected, with an average of 15.4 per amino acid. The resolution, which shows a good definition for the position of most side-chains, is greatly improved compared to that previously reported for the zinc-containing, inactive form. A comparison of the two stuctures indicates however that both share the same 3D organization. This shows that the nature of the bound metal is the primary determinant of the hydrolytic activity of this enzyme. Site-directed mutagenesis enabled us to determine the conserved residues of PDF involved in the structure of the active site. In particular, a buried arginine appears to be critical for the positioning of Cys90, one of the metal ligands. Furthermore, the 3D structure of peptide deformylase was compared to thermolysin and metzincins. Although the structural folds are very different, they all display a common structural motif involving an alpha-helix and a three-stranded beta-sheet. These conserved structural elements build a common scaffold which includes the active site, suggesting a common hydrolytic mechanism for these proteases. Finally, an invariant glycine shared by both PDF and metzincins enables us to extend the conserved motif from HEXXH to HEXXHXXG.

  6. Characterization of peptide deformylase homologues from Staphylococcus epidermidis.

    PubMed

    Lin, Penghui; Hu, Tiancen; Hu, Jian; Yu, Wenqi; Han, Cong; Zhang, Jian; Qin, Guangrong; Yu, Kunqian; Götz, Friedrich; Shen, Xu; Jiang, Hualiang; Qu, Di

    2010-10-01

    The emergence of multi-drug-resistant strains of Staphylococcus epidermidis emphasizes the need to develop new antibiotics. The unique and essential role of the peptide deformylase (PDF) in catalysing the removal of the N-terminal formyl group from newly synthesized polypeptides in eubacteria makes it an attractive antibacterial drug target. In the present study, both deformylase homologues from S. epidermidis (SePDF-1 and SePDF-2) were cloned and expressed, and their enzymic activities were characterized. Co(2+)-substituted SePDF-1 exhibited much higher enzymic activity (k(cat)/K(m) 6.3 × 10(4) M(-1) s(-1)) than those of Ni(2+)- and Zn(2+)-substituted SePDF-1, and SePDF-1 showed much weaker binding ability towards Ni(2+) than towards Co(2+) and Zn(2+), which is different from PDF in Staphylococcus aureus (SaPDF), although they share 80 % amino-acid sequence identity. The determined crystal structure of SePDF-1 was similar to that of (SaPDF), except for differences in the metal-binding sites. The other deformylase homologue, SePDF-2, was shown to have no peptide deformylase activity; the function of SePDF-2 needs to be further investigated.

  7. Eukaryotic Peptide Deformylases. Nuclear-Encoded and Chloroplast-Targeted Enzymes in Arabidopsis1

    PubMed Central

    Dirk, Lynnette M.A.; Williams, Mark A.; Houtz, Robert L.

    2001-01-01

    Arabidopsis (ecotype Columbia-0) genes, AtDEF1and AtDEF2, represent eukaryotic homologs of the essential prokaryotic gene encoding peptide deformylase. Both deduced proteins contain three conserved protein motifs found in the active site of all eubacterial peptide deformylases, and N-terminal extensions identifiable as chloroplast-targeting sequences. Radiolabeled full-length AtDEF1 was imported and processed by isolated pea (Pisum sativum L. Laxton's Progress No. 9) chloroplasts and AtDEF1 and 2 were immunologically detected in Arabidopsis leaf and chloroplast stromal protein extracts. The partial cDNAs encoding the processed forms of Arabidopsis peptide deformylase 1 and 2 (pAtDEF1 and 2, respectively) were expressed in Escherichia coli and purified using C-terminal hexahistidyl tags. Both recombinant Arabidopsis peptide deformylases had peptide deformylase activity with unique kinetic parameters that differed from those reported for the E. coli enzyme. Actinonin, a specific peptide deformylase inhibitor, was effective in vitro against Arabidopsis peptide deformylase 1 and 2 activity, respectively. Exposure of several plant species including Arabidopsis to actinonin resulted in chlorosis and severe reductions in plant growth and development. The results suggest an essential role for peptide deformylase in protein processing in all plant plastids. PMID:11553738

  8. Drug forecast – the peptide deformylase inhibitors as antibacterial agents

    PubMed Central

    Guay, David R P

    2007-01-01

    The relatively rapid development of microbial resistance after the entry of every new antimicrobial into the marketplace necessitates a constant supply of new agents to maintain effective pharmacotherapy. Despite extensive efforts to identify novel lead compounds from molecular targets, only the peptide deformylase inhibitors (PDIs) have shown any real promise, with some advancing to phase I human trials. Bacterial peptide deformylase, which catalyzes the removal of the N-formyl group from N-terminal methionine following translation, is essential for bacterial protein synthesis, growth, and survival. The majority of PDIs are pseudopeptide hydroxamic acids and two of these (IV BB-83698 and oral NVP LBM-415) entered phase I human trials. However, agents to the present have suffered from major potential liabilities. Their in vitro activity has been limited to gram-positive aerobes and some anaerobes and has been quite modest against the majority of such species (MIC90 values ranging from 1–8 mg/L). They have exerted bacteriostatic, not bacteriocidal, activity, thus reducing their potential usefulness in the management of serious infections in the immunocompromised. The relative ease with which microorganisms have been able to develop resistance and the multiple available mechanisms of resistance (mutations in fmt, defB, folD genes; AcrAB/TolC efflux pump; overexpression of peptide deformylase) are worrisome. These could portend a short timespan of efficacy after marketing. Despite these current liabilities, further pursuit of more potent and broader spectrum PDIs which are less susceptible to bacterial mechanisms of resistance is still warranted. PMID:18472972

  9. New peptide deformylase inhibitors design, synthesis and pharmacokinetic assessment.

    PubMed

    Lv, Fengping; Chen, Chen; Tang, Yang; Wei, Jianhai; Zhu, Tong; Hu, Wenhao

    2016-08-01

    The docking approach for the screening of designed small molecule ligands, led to the identification of a critical arginine residue in peptide deformylase for spiro cyclopropyl PDF inhibitor's extra hydrophobic binding, providing us a useful tool for searching more efficient PDF inhibitors to fight for horrifying antibiotics resistance. Further synthetic modification was undertaken to optimize the potency of amide compounds. To lower metabolic susceptibility and in turn reduce unwanted metabolic toxicity that was observed clinically, while retaining desired antibacterial activity, the use of azoles as amide bioisosteres had also been investigated. After the completion of chemical synthesis, all the compounds were evaluated through in vitro antibacterial activity assay, some of which were further subject to in vivo rat pharmacokinetic assessment. Those findings in this letter showed that spiro cyclopropyl proline N-formyl hydroxylamines, and especially the bioisosteric azoles, can represent a promising class of PDF inhibitors.

  10. Peptide deformylase in Staphylococcus aureus: resistance to inhibition is mediated by mutations in the formyltransferase gene.

    PubMed

    Margolis, P S; Hackbarth, C J; Young, D C; Wang, W; Chen, D; Yuan, Z; White, R; Trias, J

    2000-07-01

    Peptide deformylase, a bacterial enzyme, represents a novel target for antibiotic discovery. Two deformylase homologs, defA and defB, were identified in Staphylococcus aureus. The defA homolog, located upstream of the transformylase gene, was identified by genomic analysis and was cloned from chromosomal DNA by PCR. A distinct homolog, defB, was cloned from an S. aureus genomic library by complementation of the arabinose-dependent phenotype of a P(BAD)-def Escherichia coli strain grown under arabinose-limiting conditions. Overexpression in E. coli of defB, but not defA, correlated to increased deformylase activity and decreased susceptibility to actinonin, a deformylase-specific inhibitor. The defB gene could not be disrupted in wild-type S. aureus, suggesting that this gene, which encodes a functional deformylase, is essential. In contrast, the defA gene could be inactivated; the function of this gene is unknown. Actinonin-resistant mutants grew slowly in vitro and did not show cross-resistance to other classes of antibiotics. When compared to the parent, an actinonin-resistant strain produced an attenuated infection in a murine abscess model, indicating that this strain also has a growth disadvantage in vivo. Sequence analysis of the actinonin-resistant mutants revealed that each harbors a loss-of-function mutation in the fmt gene. Susceptibility to actinonin was restored when the wild-type fmt gene was introduced into these mutant strains. An S. aureus Deltafmt strain was also resistant to actinonin, suggesting that a functional deformylase activity is not required in a strain that lacks formyltransferase activity. Accordingly, the defB gene could be disrupted in an fmt mutant.

  11. Transcriptional regulation of the human mitochondrial peptide deformylase (PDF).

    PubMed

    Pereira-Castro, Isabel; Costa, Luís Teixeira da; Amorim, António; Azevedo, Luisa

    2012-05-18

    The last years of research have been particularly dynamic in establishing the importance of peptide deformylase (PDF), a protein of the N-terminal methionine excision (NME) pathway that removes formyl-methionine from mitochondrial-encoded proteins. The genomic sequence of the human PDF gene is shared with the COG8 gene, which encodes a component of the oligomeric golgi complex, a very unusual case in Eukaryotic genomes. Since PDF is crucial in maintaining mitochondrial function and given the atypical short distance between the end of COG8 coding sequence and the PDF initiation codon, we investigated whether the regulation of the human PDF is affected by the COG8 overlapping partner. Our data reveals that PDF has several transcription start sites, the most important of which only 18 bp from the initiation codon. Furthermore, luciferase-activation assays using differently-sized fragments defined a 97 bp minimal promoter region for human PDF, which is capable of very strong transcriptional activity. This fragment contains a potential Sp1 binding site highly conserved in mammalian species. We show that this binding site, whose mutation significantly reduces transcription activation, is a target for the Sp1 transcription factor, and possibly of other members of the Sp family. Importantly, the entire minimal promoter region is located after the end of COG8's coding region, strongly suggesting that the human PDF preserves an independent regulation from its overlapping partner. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate.

    PubMed

    Ames, Tyler D; Rodionov, Dmitry A; Weinberg, Zasha; Breaker, Ronald R

    2010-07-30

    Comparative sequence analyses of bacterial genomes are revealing many structured RNA motifs that function as metabolite-binding riboswitches. We have identified an RNA motif frequently positioned in the 5' UTRs of folate transport and biosynthesis genes in Firmicute genomes. Biochemical experiments confirm that representatives of this new-found RNA class selectively bind derivatives of the vitamin folate, including di- and tetrahydrofolate coenzymes. In addition, representatives of this aptamer class occasionally reside upstream of RNA structures that are predicted to control translation initiation in response to ligand binding. These findings expand the number of coenzymes that are directly sensed by RNA and reveal possible riboswitch-controlled regulons that respond to changes in single-carbon metabolism.

  13. A Eubacterial Riboswitch Class that Senses the Coenzyme Tetrahydrofolate

    PubMed Central

    Ames, Tyler D.; Rodionov, Dmitry A.; Weinberg, Zasha; Breaker, Ronald R.

    2011-01-01

    SUMMARY Comparative sequence analyses of bacterial genomes are revealing many structured RNA motifs that function as metabolite-binding riboswitches. We have identified an RNA motif frequently positioned in the 5′ UTRs of folate transport and biosynthesis genes in Firmicute genomes. Biochemical experiments confirm that representatives of this newfound RNA class selectively bind derivatives of the vitamin folate, including di- and tetrahydrofolate coenzymes. In addition, representatives of this aptamer class occasionally reside upstream of RNA structures that are predicted to control translation initiation in response to ligand binding. These findings expand the number of coenzymes that are directly sensed by RNA and reveal possible riboswitch-controlled regulons that respond to changes in single-carbon metabolism. PMID:20659680

  14. Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms.

    PubMed

    Giglione, C; Serero, A; Pierre, M; Boisson, B; Meinnel, T

    2000-11-01

    The N-terminal protein processing pathway is an essential mechanism found in all organisms. However, it is widely believed that deformylase, a key enzyme involved in this process in bacteria, does not exist in eukaryotes, thus making it a target for antibacterial agents such as actinonin. In an attempt to define this process in higher eukaryotes we have used Arabidopsis thaliana as a model organism. Two deformylase cDNAs, the first identified in any eukaryotic system, and six distinct methionine aminopeptidase cDNAs were cloned. The corresponding proteins were characterized in vivo and in vitro. Methionine aminopeptidases were found in the cytoplasm and in the organelles, while deformylases were localized in the organelles only. Our work shows that higher plants have a much more complex machinery for methionine removal than previously suspected. We were also able to identify deformylase homologues from several animals and clone the corresponding cDNA from human cells. Our data provide the first evidence that lower and higher eukaryotes, as well as bacteria, share a similar N-terminal protein processing machinery, indicating universality of this system.

  15. Structure and function of a cyanophage-encoded peptide deformylase

    PubMed Central

    Frank, Jeremy A; Lorimer, Don; Youle, Merry; Witte, Pam; Craig, Tim; Abendroth, Jan; Rohwer, Forest; Edwards, Robert A; Segall, Anca M; Burgin, Alex B

    2013-01-01

    Bacteriophages encode auxiliary metabolic genes that support more efficient phage replication. For example, cyanophages carry several genes to maintain host photosynthesis throughout infection, shuttling the energy and reducing power generated away from carbon fixation and into anabolic pathways. Photodamage to the D1/D2 proteins at the core of photosystem II necessitates their continual replacement. Synthesis of functional proteins in bacteria requires co-translational removal of the N-terminal formyl group by a peptide deformylase (PDF). Analysis of marine metagenomes to identify phage-encoded homologs of known metabolic genes found that marine phages carry PDF genes, suggesting that their expression during infection might benefit phage replication. We identified a PDF homolog in the genome of Synechococcus cyanophage S-SSM7. Sequence analysis confirmed that it possesses the three absolutely conserved motifs that form the active site in PDF metalloproteases. Phylogenetic analysis placed it within the Type 1B subclass, most closely related to the Arabidopsis chloroplast PDF, but lacking the C-terminal α-helix characteristic of that group. PDF proteins from this phage and from Synechococcus elongatus were expressed and characterized. The phage PDF is the more active enzyme and deformylates the N-terminal tetrapeptides from D1 proteins more efficiently than those from ribosomal proteins. Solution of the X-ray/crystal structures of those two PDFs to 1.95 Å resolution revealed active sites identical to that of the Type 1B Arabidopsis chloroplast PDF. Taken together, these findings show that many cyanophages encode a PDF with a D1 substrate preference that adds to the repertoire of genes used by phages to maintain photosynthetic activities. PMID:23407310

  16. Compartmentation of cellular tetrahydrofolate pools in rat liver

    SciTech Connect

    Barlowe, C.K.; Appling, D.R.

    1987-05-01

    Folate coenzymes are essential in shuttling one carbon units between a number of cellular processes. Serine, glycine, histidine and formate may serve as one-carbon sources by donation of their one-carbon unit to tetrahydrofolate (THF) which may then be utilized in the biosynthesis of nucleic acids and amino acids or oxidized to carbon dioxide (CO/sub 2/) via formyl-THF dehydrogenase. Nitrous Oxide (N/sub 2/O) has been observed to inactivate methionine synthase causing an increase in the cellular concentration of methyl-THF at the expense of other folate forms, specifically THF. They are interested in determining if THF dependent pathways that utilize serine, formate and histidine are equally effected by N/sub 2/O. Radiometric methods indicate that oxidation of the ..beta..-carbon of serine to CO/sub 2/ is uneffected by N/sub 2/O exposure, but oxidation of formate and the 2-ring carbon of histidine to CO/sub 2/ are reduced by about 50% and 95% of control levels, respectively. In contrast, the use of these one carbon sources for purine biosynthesis are all reduced roughly 50% upon exposure to N/sub 2/O. These data suggest an intracellular compartmentation of THF pools available to different sources of one-carbon units.

  17. Catalysis of Methyl Group Transfers Involving Tetrahydrofolate and B12

    PubMed Central

    Ragsdale, Stephen W.

    2011-01-01

    This review focuses on the reaction mechanism of enzymes that use B12 and tetrahydrofolate (THF) to catalyze methyl group transfers. It also covers the related reactions that use B12 and tetrahydromethanopterin (THMPT), which is a THF analog used by archaea. In the past decade, our understanding of the mechanisms of these enzymes has increased greatly because the crystal structures for three classes of B12-dependent methyltransferases have become available and because biophysical and kinetic studies have elucidated the intermediates involved in catalysis. These steps include binding of the cofactors and substrates, activation of the methyl donors and acceptors, the methyl transfer reaction itself, and product dissociation. Activation of the methyl donor in one class of methyltransferases is achieved by an unexpected proton transfer mechanism. The cobalt (Co) ion within the B12 macrocycle must be in the Co(I) oxidation state to serve as a nucleophile in the methyl transfer reaction. Recent studies have uncovered important principles that control how this highly reducing active state of B12 is generated and maintained. PMID:18804699

  18. Structure of the Ni(II) complex of Escherichia coli peptide deformylase and suggestions on deformylase activities depending on different metal(II) centres.

    PubMed

    Yen, Ngo Thi Hai; Bogdanović, Xenia; Palm, Gottfried J; Kühl, Olaf; Hinrichs, Winfried

    2010-02-01

    Crystal structures of polypeptide deformylase (PDF) of Escherichia coli with nickel(II) replacing the native iron(II) have been solved with chloride and formate as metal ligands. The chloro complex is a model for the correct protonation state of the hydrolytic hydroxo ligand and the protonated status of the Glu133 side chain as part of the hydrolytic mechanism. The ambiguity that recently some PDFs have been identified with Zn(2+) ion as the active-site centre whereas others are only active with Fe(2+) (or Co(2+), Ni(2+) is discussed with respect to Lewis acid criteria of the metal ion and substrate activation by the CD loop.

  19. Structural variation and inhibitor binding in polypeptide deformylase from four different bacterial species.

    PubMed

    Smith, Kathrine J; Petit, Chantal M; Aubart, Kelly; Smyth, Martin; McManus, Edward; Jones, Jo; Fosberry, Andrew; Lewis, Ceri; Lonetto, Michael; Christensen, Siegfried B

    2003-02-01

    Polypeptide deformylase (PDF) catalyzes the deformylation of polypeptide chains in bacteria. It is essential for bacterial cell viability and is a potential antibacterial drug target. Here, we report the crystal structures of polypeptide deformylase from four different species of bacteria: Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Escherichia coli. Comparison of these four structures reveals significant overall differences between the two Gram-negative species (E. coli and H. influenzae) and the two Gram-positive species (S. pneumoniae and S. aureus). Despite these differences and low overall sequence identity, the S1' pocket of PDF is well conserved among the four enzymes studied. We also describe the binding of nonpeptidic inhibitor molecules SB-485345, SB-543668, and SB-505684 to both S. pneumoniae and E. coli PDF. Comparison of these structures shows similar binding interactions with both Gram-negative and Gram-positive species. Understanding the similarities and subtle differences in active site structure between species will help to design broad-spectrum polypeptide deformylase inhibitor molecules.

  20. [The C677T polymorphism in the methylene tetrahydrofolate reductase gene among Tunisian population].

    PubMed

    Jerbi, Z; Abdennebi, M; Douik, H; Ben Romdhane, H; Harzallah, L; Guemira, F; Ghanem, A

    2005-01-01

    The 5,10 methylene tetrahydrofolate reductase (MTHFR) is an enzyme that catalyzes the irreversible reduction of 5,10 methylene tetrahydrofolate into 5 methyl tetrahydrofolate. It is coded by a gene where several polymorphisms have been identified. The most common is the C677T polymorphism described as presenting an heterogeneous worldwide distribution and associated with different disorders such as cardiovascular and cancerous diseases. The aim of this work was to determine the allelic and genotypic frequencies of the C677T polymorphism among a Tunisian healthy population. The study concerned 185 subjects apparently healthy. It was carried out by the PCR/RFLP method, using the restriction enzyme Hinf I. The results has showed an allelic frequency of 17.8% with a genotype frequency of 5.4%. These values are intermediate between those observed in Africa and those observed in Western countries. They must be considered in the evaluation of the clinic significance of a predisposition to diseases.

  1. Docking studies of nickel-peptide deformylase (PDF) inhibitors: exploring the new binding pockets.

    PubMed

    Wang, Qiang; Zhang, Datong; Wang, Jianwu; Cai, Zhengting; Xu, Weiren

    2006-06-20

    The binding modes of a series of known activity inhibitors docking to Peptide deformylase (PDF) have been studied using molecular docking software AutoDock3.0.5. In this study, good correlation (R(2)=0.894) between calculated binding energies and experimental inhibitory activities is obtained. We find that some shallow pockets near the known active pocket are very important which can accommodate the side-chains of the inhibitor. Moreover, a new binding pocket is also explored. All these may provide something useful for designing the potent inhibitors.

  2. Substrate recognition and selectivity of peptide deformylase. Similarities and differences with metzincins and thermolysin.

    PubMed

    Ragusa, S; Mouchet, P; Lazennec, C; Dive, V; Meinnel, T

    1999-06-25

    The substrate specificity of Escherichia coli peptide deformylase was investigated by measuring the efficiency of the enzyme to cleave formyl- peptides of the general formula Fo-Xaa-Yaa-NH2, where Xaa represents a set of 27 natural and unusual amino acids and Yaa corresponds to a set of 19 natural amino acids. Substrates with bulky hydrophobic side-chains at the P1' position were the most efficiently cleaved, with catalytic efficiencies greater by two to five orders of magnitude than those associated with polar or charged amino acid side-chains. Among hydrophobic side-chains, linear alkyl groups were preferred at the P1' position, as compared to aryl-alkyl side-chains. Interestingly, in the linear alkyl substituent series, with the exception of norleucine, deformylase exhibits a preference for the substrate containing Met in the P1' position. Next, the influence in catalysis of the second side-chain was studied after synthesis of 20 compounds of the formula Fo-Nle-Yaa-NH2. Their deformylation rates varied within a range of only one order of magnitude. A 3D model of the interaction of PDF with an inhibitor was then constructed and revealed indeed the occurrence of a deep and hydrophobic S1' pocket as well as the absence of a true S2' pocket. These analyses pointed out a set of possible interactions between deformylase and its substrates, which could be the ground driving substrate specificity. The validity of this enzyme:substrate docking was further probed with the help of a set of site-directed variants of the enzyme. From this, the importance of residues at the bottom of the S1' pocket (Ile128 and Leu125) as well as the hydrogen bond network that the main chain of the substrate makes with the enzyme were revealed. Based on the numerous homologies that deformylase displays with thermolysin and metzincins, a mechanism of enzyme:substrate recognition and hydrolysis could finally be proposed. Specific features of PDF with respect to other members of the enzymes with

  3. The C-terminal residue of phage Vp16 PDF, the smallest peptide deformylase, acts as an offset element locking the active conformation.

    PubMed

    Grzela, Renata; Nusbaum, Julien; Fieulaine, Sonia; Lavecchia, Francesco; Bienvenut, Willy V; Dian, Cyril; Meinnel, Thierry; Giglione, Carmela

    2017-09-08

    Prokaryotic proteins must be deformylated before the removal of their first methionine. Peptide deformylase (PDF) is indispensable and guarantees this mechanism. Recent metagenomics studies revealed new idiosyncratic PDF forms as the most abundant family of viral sequences. Little is known regarding these viral PDFs, including the capacity of the corresponding encoded proteins to ensure deformylase activity. We provide here the first evidence that viral PDFs, including the shortest PDF identified to date, Vp16 PDF, display deformylase activity in vivo, despite the absence of the key ribosome-interacting C-terminal region. Moreover, characterization of phage Vp16 PDF underscores unexpected structural and molecular features with the C-terminal Isoleucine residue significantly contributing to deformylase activity both in vitro and in vivo. This residue fully compensates for the absence of the usual long C-domain. Taken together, these data elucidate an unexpected mechanism of enzyme natural evolution and adaptation within viral sequences.

  4. Formate-tetrahydrofolate ligase is involved in the virulence of Streptococcus suis serotype 2.

    PubMed

    Zheng, Chengkun; Xu, Jiali; Shi, Guolin; Zhao, Xigong; Ren, Sujing; Li, Jinquan; Chen, Huanchun; Bei, Weicheng

    2016-09-01

    Streptococcus suis is an emerging zoonotic pathogen that causes severe infections in pigs and humans. However, the pathogenesis of S. suis remains unclear. The present study targeted a putative virulence-associated factor (fhs, encoding the formate-tetrahydrofolate ligase) of S. suis. To investigate the role of fhs in the virulence potential of S. suis serotype 2, an fhs deletion mutant (Δfhs) and the corresponding complementation strain (CΔfhs) were generated. The Δfhs mutant displayed similar growth compared to that of the wild-type and complementation strains. Using murine and pig infection models, we demonstrated for the first time that the formate-tetrahydrofolate ligase is required for the full virulence of S. suis 2. Our findings provide a new insight into the pathogenesis of S. suis 2.

  5. Disk diffusion quality control guidelines for NVP-PDF 713: a novel peptide deformylase inhibitor.

    PubMed

    Anderegg, Tamara R; Jones, Ronald N

    2004-01-01

    NVP-PDF713 is a peptide deformylase inhibitor that has emerged as a candidate for treating Gram-positive infections and selected Gram-negative species that commonly cause community-acquired respiratory tract infections. This report summarizes the results of a multi-center (seven participants) disk diffusion quality control (QC) investigation for NVP PDF-713 using guidelines of the National Committee for Clinical Laboratory Standards and the standardized disk diffusion method. A total of 420 NVP-PDF 713 zone diameter values were generated for each QC organism. The proposed zone diameter ranges contained 97.6-99.8% of the reported participant results and were: Staphylococcus aureus ATCC 25923 (25-35 mm), Streptococcus pneumoniae ATCC 49619 (30-37 mm), and Haemophilus influenzae ATCC 49247 (24-32 mm). These QC criteria for the disk diffusion method should be applied during the NVP-PDF 713 clinical trials to maximize test accuracy.

  6. Discovery and refinement of a new structural class of potent peptide deformylase inhibitors.

    PubMed

    Boularot, Adrien; Giglione, Carmela; Petit, Sylvain; Duroc, Yann; Alves de Sousa, Rodolphe; Larue, Valéry; Cresteil, Thierry; Dardel, Frédéric; Artaud, Isabelle; Meinnel, Thierry

    2007-01-11

    New classes of antibiotics are urgently needed to counter increasing levels of pathogen resistance. Peptide deformylase (PDF) was originally selected as a specific bacterial target, but a human homologue, the inhibition of which causes cell death, was recently discovered. We developed a dual-screening strategy for selecting highly effective compounds with low inhibition effect against human PDF. We selected a new scaffold in vitro that discriminated between human and bacterial PDFs. Analyses of structure-activity relationships identified potent antibiotics such as 2-(5-bromo-1H-indol-3-yl)-N-hydroxyacetamide (6b) with the same mode of action in vivo as previously identified PDF inhibitors but without the apoptotic effects of these inhibitors in human cells.

  7. A unique peptide deformylase platform to rationally design and challenge novel active compounds

    PubMed Central

    Fieulaine, Sonia; Alves de Sousa, Rodolphe; Maigre, Laure; Hamiche, Karim; Alimi, Mickael; Bolla, Jean-Michel; Taleb, Abbass; Denis, Alexis; Pagès, Jean-Marie; Artaud, Isabelle; Meinnel, Thierry; Giglione, Carmela

    2016-01-01

    Peptide deformylase (PDF) is considered an excellent target to develop antibiotics. We have performed an extensive characterization of a new PDF from the pathogen Streptococcus agalactiae, showing properties similar to other known PDFs. S. agalactiae PDF could be used as PDF prototype as it allowed to get complete sets of 3-dimensional, biophysical and kinetic data with virtually any inhibitor compound. Structure-activity relationship analysis with this single reference system allowed us to reveal distinct binding modes for different PDF inhibitors and the key role of a hydrogen bond in potentiating the interaction between ligand and target. We propose this protein as an irreplaceable tool, allowing easy and relevant fine comparisons between series, to design, challenge and validate novel series of inhibitors. As proof-of-concept, we report here the design and synthesis of effective specific bacterial PDF inhibitors of an oxadiazole series with potent antimicrobial activity against a multidrug resistant clinical isolate. PMID:27762275

  8. Microbiome changes in healthy volunteers treated with GSK1322322, a novel antibiotic targeting bacterial peptide deformylase.

    PubMed

    Arat, Seda; Spivak, Aaron; Van Horn, Stephanie; Thomas, Elizabeth; Traini, Christopher; Sathe, Ganesh; Livi, George P; Ingraham, Karen; Jones, Lori; Aubart, Kelly; Holmes, David J; Naderer, Odin; Brown, James R

    2015-02-01

    GSK1322322 is a novel antibacterial agent under development, and it has known antibacterial activities against multidrug-resistant respiratory and skin pathogens through its inhibition of the bacterial peptide deformylase. Here, we used next-generation sequencing (NGS) of the bacterial 16S rRNA genes from stool samples collected from 61 healthy volunteers at the predosing and end-of-study time points to determine the effects of GSK1322322 on the gastrointestinal (GI) microbiota in a phase I, randomized, double-blind, and placebo-controlled study. GSK1322322 was administered either intravenously (i.v.) only or in an oral-i.v. combination in single- and repeat-dose-escalation infusions. Analysis of the 16S rRNA sequence data found no significant changes in the relative abundances of GI operational taxonomic units (OTUs) between the prestudy and end-of-study samples for either the placebo- or i.v.-only-treated subjects. However, oral-i.v. treatment resulted in significant decreases in some bacterial taxa, the Firmicutes and Bacteroidales, and increases in others, the Betaproteobacteria, Gammaproteobacteria, and Bifidobacteriaceae. Microbiome diversity plots clearly differentiated the end-of-study oral-i.v.-dosed samples from all others collected. The changes in genome function as inferred from species composition suggest an increase in bacterial transporter and xenobiotic metabolism pathways in these samples. A phylogenetic analysis of the peptide deformylase protein sequences collected from the published genomes of clinical isolates previously tested for GSK1322322 in vitro susceptibility and GI bacterial reference genomes suggests that antibiotic target homology is one of several factors that influences the response of GI microbiota to this antibiotic. Our study shows that dosing regimen and target class are important factors when considering the impact of antibiotic usage on GI microbiota. (This clinical trial was registered at the GlaxoSmithKline Clinical Study

  9. Inhibition of Chlamydial Infection in the Genital Tract of Female Mice by Topical Application of a Peptide Deformylase Inhibitor

    PubMed Central

    Balakrishnan, Amit; Wang, Lingling; Li, Xiaojin; Ohman-Strickland, Pamela; Malatesta, Paul; Fan, Huizhou

    2009-01-01

    Summary Chlamydia trachomatis is an obligate intracellular bacterium responsible for a number of health problems, including sexually transmitted infection in humans. We recently discovered that C. trachomatis infection in cell culture is highly susceptible to inhibitors of peptide deformylase, an enzyme that removes the N-formyl group from newly synthesized polypeptides. In this study, one of the deformylase inhibitors, GM6001, was tested for potential antichlamydial activity using a murine genital C. muridarum infection model. Topical application of GM6001 significantly reduced C. muridarum loading in BALB/c mice that were vaginally infected with the pathogen. In striking contrast, growth of the probiotic Lactobacillus plantarum is strongly resistant to the PDF inhibitor. GM6001 demonstrated no detectable toxicity against host cells. On the basis of these data and our previous observations, we conclude that further evaluation of PDF inhibitors for prevention and treatment of sexually transmitted chlamydial infection is warranted. PMID:17936604

  10. A novel class of inhibitors of peptide deformylase discovered through high-throughput screening and virtual ligand screening.

    PubMed

    Howard, Michael H; Cenizal, Teodorica; Gutteridge, Steven; Hanna, Wayne S; Tao, Yong; Totrov, Maxim; Wittenbach, Vernon A; Zheng, Ya-Jun

    2004-12-30

    Peptide deformylase (PDF) has been identified as a promising antibacterial and herbicide target. A structurally novel class of inhibitors containing a 2-thioxo-thiazolidin-4-one heterocycle substituted by an arylidene group at the 5-position and a hexanoic acid side chain at the 3-position was discovered independently via high-throughput screening and virtual ligand screening. Data mining and analogue synthesis established a structure--activity relationship for the side chain region that is consistent with the docked structure.

  11. Decreased rates of methionine synthesis by methylene tetrahydrofolate reductase-deficient fibroblasts and lymphoblasts.

    PubMed

    Boss, G R; Erbe, R W

    1981-06-01

    Methionine synthesis from homocysteine was measured in intact human fibroblasts and lymphoblasts using a [14C]formate label. Seven fibroblast lines and two lymphoblast lines derived from patients with 5,10-methylene tetrahydrofolate reductase deficiency had rates of methionine synthesis that were from 4 to 43% of normal. When the patients were divided by clinical status into mildly (two patients), moderately (two patients), and severely (three patients) affected, methionine biosynthesis expressed as a percent of control values was 43 and 33%, 11 and 10%, and 7, 6, and 4%, respectively, in fibroblasts. Similar data for the two lymphoblast lines were 36 and 26% for a mildly and moderately affected patient, respectively. These data are to be contrasted with the measurement of residual enzyme activity in cell extracts which agrees less precisely with the clinical status of the patients. In the presence of normal methionine synthetase activity, the rate of synthesis of methionine from homocysteine is a function of the activity of the enzyme 5,10-methylene tetrahydrofolate reductase, and measurement of the methionine biosynthetic capacity of cells deficient in this enzyme accurately reflects the clinical status of the patient from whom the cells were derived.

  12. Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor.

    PubMed

    Chen, D Z; Patel, D V; Hackbarth, C J; Wang, W; Dreyer, G; Young, D C; Margolis, P S; Wu, C; Ni, Z J; Trias, J; White, R J; Yuan, Z

    2000-02-15

    Peptide deformylase (PDF) is essential in prokaryotes and absent in mammalian cells, thus making it an attractive target for the discovery of novel antibiotics. We have identified actinonin, a naturally occurring antibacterial agent, as a potent PDF inhibitor. The dissociation constant for this compound was 0.3 x 10(-)(9) M against Ni-PDF from Escherichia coli; the PDF from Staphylococcus aureus gave a similar value. Microbiological evaluation revealed that actinonin is a bacteriostatic agent with activity against Gram-positive and fastidious Gram-negative microorganisms. The PDF gene, def, was placed under control of P(BAD) in E. coli tolC, permitting regulation of PDF expression levels in the cell by varying the external arabinose concentration. The susceptibility of this strain to actinonin increases with decreased levels of PDF expression, indicating that actinonin inhibits bacterial growth by targeting this enzyme. Actinonin provides an excellent starting point from which to derive a more potent PDF inhibitor that has a broader spectrum of antibacterial activity.

  13. Understanding the Origins of Time-Dependent Inhibition by Polypeptide Deformylase Inhibitors

    SciTech Connect

    Totoritis, Rachel; Duraiswami, Chaya; Taylor, Amy N.; Kerrigan, John J.; Campobasso, Nino; Smith, Katherine J.; Ward, Paris; King, Bryan W.; Murrayz-Thompson, Monique; Jones, Amber D.; Van Aller, Glenn S.; Aubart, Kelly M.; Zalacain, Magdalena; Thrall, Sara H.; Meek, Thomas D.; Schwartz, Benjamin

    2012-03-15

    The continual bacterial adaptation to antibiotics creates an ongoing medical need for the development of novel therapeutics. Polypeptide deformylase (PDF) is a highly conserved bacterial enzyme, which is essential for viability. It has previously been shown that PDF inhibitors represent a promising new area for the development of antimicrobial agents, and that many of the best PDF inhibitors demonstrate slow, time-dependent binding. To improve our understanding of the mechanistic origin of this time-dependent inhibition, we examined in detail the kinetics of PDF catalysis and inhibition by several different PDF inhibitors. Varying pH and solvent isotope led to clear changes in time-dependent inhibition parameters, as did inclusion of NaCl, which binds to the active site metal of PDF. Quantitative analysis of these results demonstrated that the observed time dependence arises from slow binding of the inhibitors to the active site metal. However, we also found several metal binding inhibitors that exhibited rapid, non-time-dependent onset of inhibition. By a combination of structural and chemical modification studies, we show that metal binding is only slow when the rest of the inhibitor makes optimal hydrogen bonds within the subsites of PDF. Both of these interactions between the inhibitor and enzyme were found to be necessary to observe time-dependent inhibition, as elimination of either leads to its loss.

  14. Structure and Activity of Human Mitochondrial Peptide Deformylase, a Novel Cancer Target

    SciTech Connect

    Escobar-Alvarez, Sindy; Goldgur, Yehuda; Yang, Guangli; Ouerfelli, Ouathek; Li, Yueming; Scheinberg, David A.

    2009-07-21

    Peptide deformylase proteins (PDFs) participate in the N-terminal methionine excision pathway of newly synthesized peptides. We show that the human PDF (HsPDF) can deformylate its putative substrates derived from mitochondrial DNA-encoded proteins. The first structural model of a mammalian PDF (1.7 A), HsPDF, shows a dimer with conserved topology of the catalytic residues and fold as non-mammalian PDFs. The HsPDF C-terminus topology and the presence of a helical loop (H2 and H3), however, shape a characteristic active site entrance. The structure of HsPDF bound to the peptidomimetic inhibitor actinonin (1.7 A) identified the substrate-binding site. A defined S1' pocket, but no S2' or S3' substrate-binding pockets, exists. A conservation of PDF-actinonin interaction across PDFs was observed. Despite the lack of true S2' and S3' binding pockets, confirmed through peptide binding modeling, enzyme kinetics suggest a combined contribution from P2'and P3' positions of a formylated peptide substrate to turnover.

  15. Ligand and Structure-Based Approaches for the Identification of Peptide Deformylase Inhibitors as Antibacterial Drugs

    PubMed Central

    Gao, Jian; Liang, Li; Zhu, Yasheng; Qiu, Shengzhi; Wang, Tao; Zhang, Ling

    2016-01-01

    Peptide deformylase (PDF) is a metalloprotease catalyzing the removal of a formyl group from newly synthesized proteins, which makes it an important antibacterial drug target. Given the importance of PDF inhibitors like actinonin in antibacterial drug discovery, several reported potent PDF inhibitors were used to develop pharmacophore models using the Galahad module of Sybyl 7.1 software. Generated pharmacophore models were composed of two donor atom centers, four acceptor atom centers and two hydrophobic groups. Model-1 was screened against the Zinc database and several compounds were retrieved as hits. Compounds with Qfit values of more than 60 were employed to perform a molecular docking study with the receptor Escherichia coli PDF, then compounds with docking score values of more than 6 were used to predict the in silico pharmacokinetic and toxicity risk via OSIRIS property explorer. Two known PDF inhibitors were also used to perform a molecular docking study with E. coli PDF as reference molecules. The results of the molecular docking study were validated by reproducing the crystal structure of actinonin. Molecular docking and in silico pharmacokinetic and toxicity prediction studies suggested that ZINC08740166 has a relatively high docking score of 7.44 and a drug score of 0.78. PMID:27428963

  16. Macrocyclic inhibitors for peptide deformylase: a structure-activity relationship study of the ring size.

    PubMed

    Hu, Xubo; Nguyen, Kiet T; Jiang, Vernon C; Lofland, Denene; Moser, Heinz E; Pei, Dehua

    2004-09-23

    Peptide deformylase (PDF) catalyzes the removal of the N-terminal formyl group from newly synthesized polypeptides in eubacteria. Its essential role in bacterial cells but not in mammalian cells makes it an attractive target for antibacterial drug design. We have previously reported an N-formylhydroxylamine-based, metal-chelating macrocyclic PDF inhibitor, in which the P(1)' and P(3)' side chains are covalently joined. In this work, we have carried out a structure-activity relationship study on the size of the macrocycle and found that 15-17-membered macrocycles are optimal for binding to the PDF active site. Unlike the acyclic compounds, which are simple competitive inhibitors, the cyclic compounds all act as slow-binding inhibitors. As compared to their acyclic counterparts, the cyclic inhibitors displayed 20-50-fold higher potency against the PDF active site (K(I) as low as 70 pM), improved selectivity toward PDF, and improved the metabolic stability in rat plasma. Some of the macrocyclic inhibitors had potent, broad spectrum antibacterial activity against clinically significant Gram-positive and Gram-negative pathogens. These results suggest that the macrocyclic scaffold provides an excellent lead for the development of a new class of antibiotics.

  17. Solvent-Assisted Slow Conversion of a Dithiazole Derivative Produces a Competitive Inhibitor of Peptide Deformylase

    PubMed Central

    Berg, Alexander K.; Yu, Qingfeng; Qian, Steven Y.; Haldar, Manas K.; Srivastava, D. K.

    2010-01-01

    SUMMARY Due to its potential as an antibiotic target, E. coli peptide deformylase (PDFEc) serves as a model enzyme system for inhibitor design. While investigating the structure-functional and inhibitory features of this enzyme, we unexpectedly discovered that 2-amino-5-mercapto-1,3,4-thiadiazole (AMT) served as a slow-binding inhibitor of PDFEc when the above compound was dissolved only in dimethylformamide (DMF), but not in any other solvent, and allowed to age. The time dependent inhibitory potency of the DMF-dissolved AMT was correlated with the broadening of the inhibitor's 295 nm spectral band toward the visible region, concomitant with the increase in the mass of the parent compound by about 2-fold. These data led to the suggestion that DMF facilitated the slow dimerization of AMT (via the formation of a disulfide bond), and that the dimeric form of AMT served as an inhibitor for PDFEc. The latter is not caused by the simple oxidation of sulfhydryl groups by oxidizing agents such as H2O2. Newly synthesized dimeric/dithiolated form of AMT (“bis-AMT”) exhibited similar spectral and inhibitory features as given by the parent compound when incubated with DMF. The computergraphic modeling data revealed that bis-AMT could be reliably accommodated within the active site pocket of PDFEc, and the above enzyme-ligand interaction involves coordination with the enzyme resident Ni2+ cofactor. The mechanism of the DMF-assisted activation of AMT (generating bis-AMT), the overall microscopic pathway for the slow-binding inhibition of PDFEc by bis-AMT, and the potential of bis-AMT to serve as a new class of antibiotic agent are presented. PMID:19922819

  18. Antibiotic Activity and Characterization of BB-3497, a Novel Peptide Deformylase Inhibitor

    PubMed Central

    Clements, John M.; Beckett, R. Paul; Brown, Anthony; Catlin, Graham; Lobell, Mario; Palan, Shilpa; Thomas, Wayne; Whittaker, Mark; Wood, Stephen; Salama, Sameeh; Baker, Patrick J.; Rodgers, H. Fiona; Barynin, Vladimir; Rice, David W.; Hunter, Michael G.

    2001-01-01

    Peptide deformylase (PDF) is an essential bacterial metalloenzyme which deformylates the N-formylmethionine of newly synthesized polypeptides and as such represents a novel target for antibacterial chemotherapy. To identify novel PDF inhibitors, we screened a metalloenzyme inhibitor library and identified an N-formyl-hydroxylamine derivative, BB-3497, and a related natural hydroxamic acid antibiotic, actinonin, as potent and selective inhibitors of PDF. To elucidate the interactions that contribute to the binding affinity of these inhibitors, we determined the crystal structures of BB-3497 and actinonin bound to Escherichia coli PDF at resolutions of 2.1 and 1.75 Å, respectively. In both complexes, the active-site metal atom was pentacoordinated by the side chains of Cys 90, His 132, and His 136 and the two oxygen atoms of N-formyl-hydroxylamine or hydroxamate. BB-3497 had activity against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis, and activity against some gram-negative bacteria. Time-kill analysis showed that the mode of action of BB-3497 was primarily bacteriostatic. The mechanism of resistance was via mutations within the formyltransferase gene, as previously described for actinonin. While actinonin and its derivatives have not been used clinically because of their poor pharmacokinetic properties, BB-3497 was shown to be orally bioavailable. A single oral dose of BB-3497 given 1 h after intraperitoneal injection of S. aureus Smith or methicillin-resistant S. aureus protected mice from infection with median effective doses of 8 and 14 mg/kg of body weight, respectively. These data validate PDF as a novel target for the design of a new generation of antibacterial agents. PMID:11158755

  19. Mechanism of time-dependent inhibition of polypeptide deformylase by actinonin.

    PubMed

    Van Aller, Glenn S; Nandigama, Ravi; Petit, Chantal M; DeWolf, Walt E; Quinn, Chad J; Aubart, Kelly M; Zalacain, Magdalena; Christensen, Siegfried B; Copeland, Robert A; Lai, Zhihong

    2005-01-11

    Polypeptide deformylase (PDF) is an essential bacterial metalloenzyme responsible for the removal of the N-formyl group from the N-terminal methionine of nascent polypeptides. Inhibition of bacterial PDF enzymes by actinonin, a naturally occurring antibacterial agent, has been characterized using steady-state and transient kinetic methods. Slow binding of actinonin to these enzymes is observed under steady-state conditions. Progress curve analysis is consistent with a two-step binding mechanism, in which tightening of the initial encounter complex (EI) results in a final complex (EI*) with an extremely slow, but observable, off-rate (t(1/2) for inhibitor dissociation >or=0.77 days). Stopped-flow measurement of PDF fluorescence confirms formation of EI and provides a direct measurement of the association rate. Rapid dilution studies establish that the potency of actinonin is enhanced by more than 2000-fold upon tightening of EI to form EI*, from K(i) = 530 nM (EI) to Ki*

  20. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing.

    PubMed

    Bingel-Erlenmeyer, Rouven; Kohler, Rebecca; Kramer, Günter; Sandikci, Arzu; Antolić, Snjezana; Maier, Timm; Schaffitzel, Christiane; Wiedmann, Brigitte; Bukau, Bernd; Ban, Nenad

    2008-03-06

    Messenger-RNA-directed protein synthesis is accomplished by the ribosome. In eubacteria, this complex process is initiated by a specialized transfer RNA charged with formylmethionine (tRNA(fMet)). The amino-terminal formylated methionine of all bacterial nascent polypeptides blocks the reactive amino group to prevent unfavourable side-reactions and to enhance the efficiency of translation initiation. The first enzymatic factor that processes nascent chains is peptide deformylase (PDF); it removes this formyl group as polypeptides emerge from the ribosomal tunnel and before the newly synthesized proteins can adopt their native fold, which may bury the N terminus. Next, the N-terminal methionine is excised by methionine aminopeptidase. Bacterial PDFs are metalloproteases sharing a conserved N-terminal catalytic domain. All Gram-negative bacteria, including Escherichia coli, possess class-1 PDFs characterized by a carboxy-terminal alpha-helical extension. Studies focusing on PDF as a target for antibacterial drugs have not revealed the mechanism of its co-translational mode of action despite indications in early work that it co-purifies with ribosomes. Here we provide biochemical evidence that E. coli PDF interacts directly with the ribosome via its C-terminal extension. Crystallographic analysis of the complex between the ribosome-interacting helix of PDF and the ribosome at 3.7 A resolution reveals that the enzyme orients its active site towards the ribosomal tunnel exit for efficient co-translational processing of emerging nascent chains. Furthermore, we have found that the interaction of PDF with the ribosome enhances cell viability. These results provide the structural basis for understanding the coupling between protein synthesis and enzymatic processing of nascent chains, and offer insights into the interplay of PDF with the ribosome-associated chaperone trigger factor.

  1. Antibiotic activity and characterization of BB-3497, a novel peptide deformylase inhibitor.

    PubMed

    Clements, J M; Beckett, R P; Brown, A; Catlin, G; Lobell, M; Palan, S; Thomas, W; Whittaker, M; Wood, S; Salama, S; Baker, P J; Rodgers, H F; Barynin, V; Rice, D W; Hunter, M G

    2001-02-01

    Peptide deformylase (PDF) is an essential bacterial metalloenzyme which deformylates the N-formylmethionine of newly synthesized polypeptides and as such represents a novel target for antibacterial chemotherapy. To identify novel PDF inhibitors, we screened a metalloenzyme inhibitor library and identified an N-formyl-hydroxylamine derivative, BB-3497, and a related natural hydroxamic acid antibiotic, actinonin, as potent and selective inhibitors of PDF. To elucidate the interactions that contribute to the binding affinity of these inhibitors, we determined the crystal structures of BB-3497 and actinonin bound to Escherichia coli PDF at resolutions of 2.1 and 1.75 A, respectively. In both complexes, the active-site metal atom was pentacoordinated by the side chains of Cys 90, His 132, and His 136 and the two oxygen atoms of N-formyl-hydroxylamine or hydroxamate. BB-3497 had activity against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis, and activity against some gram-negative bacteria. Time-kill analysis showed that the mode of action of BB-3497 was primarily bacteriostatic. The mechanism of resistance was via mutations within the formyltransferase gene, as previously described for actinonin. While actinonin and its derivatives have not been used clinically because of their poor pharmacokinetic properties, BB-3497 was shown to be orally bioavailable. A single oral dose of BB-3497 given 1 h after intraperitoneal injection of S. aureus Smith or methicillin-resistant S. aureus protected mice from infection with median effective doses of 8 and 14 mg/kg of body weight, respectively. These data validate PDF as a novel target for the design of a new generation of antibacterial agents.

  2. Expression, purification, and activity assay of peptide deformylase from Escherichia coli and Staphylococcus aureus.

    PubMed

    Che, Xuchun; Hu, Jinwei; Wang, Lijuan; Zhu, Zhifeng; Xu, Qiong; Lv, Junqiang; Fu, Zheng; Sun, Yajun; Sun, Jia; Lin, Gang; Lu, Rong; Yao, Zhi

    2011-11-01

    Peptide deformylase (PDF) is considered an attractive target for screening novel antibiotics. The PDF from Escherichia coli and Staphylococcus aureus are representative of the gram-negative species type of PDF (type I PDF) and the gram-positive species type of PDF (type II PDF), respectively. They could be used for screening broad-spectrum antibiotics. Herein, we cloned the def gene by PCR, inserted it into plasmid pET-22b-def, and transformed the plasmid into E. coli BL21 (DE3) cells, then the cells were induced by IPTG to express PDF. E. coli Ni(2+)-PDF was extracted and purified by ion-exchange chromatography and gel filtration chromatography. S. aureus PDFs were extracted and purified using the MagExtractor kit. The nickel form of S. aureus PDF was obtained by adding NiCl(2) to all reagents used for purification. Iron-enriched S. aureus PDF was obtained by adding FeCl(3) to the growth medium for E. coli BL21 (DE3) cells and adding FeCl(3) and catalase to all reagents used for purification. The activities of PDFs were analyzed, compared, and grouped according to the experimental conditions that produced optimal activity, and we used actinonin as an inhibitor of PDF and calculated the IC(50) value. We obtained high expression of E. coli and S. aureus PDF with high activity and stability. The function of PDFs was inhibited by actinonin in a dose-dependent manner. Results may be helpful for future mechanistic investigations of PDF as well as high-throughput screening for other PDF inhibitors.

  3. Intravenous infusion of iron and tetrahydrofolate does not influence intrauterine uteroferrin and secreted folate-binding protein content in swine.

    PubMed

    Vallet, J L; Christenson, R K; Klemcke, H G; Pearson, P L

    2001-01-01

    The effect of exogenous iron and folate on reproductive performance in swine is equivocal. However, the effect of exogenous iron and folate on secretion of their respective uterine transport proteins has never been reported. Twenty gilts were infused (n = 5 per treatment) with either 1) saline, 2) alpha-tocopherol, 3) alpha-tocopherol plus iron citrate, or 4) alpha-tocopherol plus tetrahydrofolate on d 11 to 14 of pregnancy. Intravenous infusion of iron citrate and tetrahydrofolate increased (P < 0.05) plasma iron and folate, respectively, for 6 to 8 h after treatment. Treatments had no effect on uterine content of uteroferrin or secreted folate-binding protein in uterine flushings obtained on d 15 of pregnancy. These data suggest that uterine secretion of uteroferrin and secreted folate-binding protein are not influenced by plasma levels of iron and folate, respectively, and may provide an explanation for the equivocal effect of iron and folate treatment on reproductive performance in gilts.

  4. Promiscuous and adaptable enzymes fill "holes" in the tetrahydrofolate pathway in Chlamydia species.

    PubMed

    Adams, Nancy E; Thiaville, Jennifer J; Proestos, James; Juárez-Vázquez, Ana L; McCoy, Andrea J; Barona-Gómez, Francisco; Iwata-Reuyl, Dirk; de Crécy-Lagard, Valérie; Maurelli, Anthony T

    2014-07-08

    Folates are tripartite molecules comprising pterin, para-aminobenzoate (PABA), and glutamate moieties, which are essential cofactors involved in DNA and amino acid synthesis. The obligately intracellular Chlamydia species have lost several biosynthetic pathways for essential nutrients which they can obtain from their host but have retained the capacity to synthesize folate. In most bacteria, synthesis of the pterin moiety of folate requires the FolEQBK enzymes, while synthesis of the PABA moiety is carried out by the PabABC enzymes. Bioinformatic analyses reveal that while members of Chlamydia are missing the genes for FolE (GTP cyclohydrolase) and FolQ, which catalyze the initial steps in de novo synthesis of the pterin moiety, they have genes for the rest of the pterin pathway. We screened a chlamydial genomic library in deletion mutants of Escherichia coli to identify the "missing genes" and identified a novel enzyme, TrpFCtL2, which has broad substrate specificity. TrpFCtL2, in combination with GTP cyclohydrolase II (RibA), the first enzyme of riboflavin synthesis, provides a bypass of the first two canonical steps in folate synthesis catalyzed by FolE and FolQ. Notably, TrpFCtL2 retains the phosphoribosyl anthranilate isomerase activity of the original annotation. Additionally, we independently confirmed the recent discovery of a novel enzyme, CT610, which uses an unknown precursor to synthesize PABA and complements E. coli mutants with deletions of pabA, pabB, or pabC. Thus, Chlamydia species have evolved a variant folate synthesis pathway that employs a patchwork of promiscuous and adaptable enzymes recruited from other biosynthetic pathways. Importance: Collectively, the involvement of TrpFCtL2 and CT610 in the tetrahydrofolate pathway completes our understanding of folate biosynthesis in Chlamydia. Moreover, the novel roles for TrpFCtL2 and CT610 in the tetrahydrofolate pathway are sophisticated examples of how enzyme evolution plays a vital role in the

  5. Folate in demethylation: the crystal structure of the rat dimethylglycine dehydrogenase complexed with tetrahydrofolate.

    PubMed

    Luka, Zigmund; Pakhomova, Svetlana; Loukachevitch, Lioudmila V; Newcomer, Marcia E; Wagner, Conrad

    2014-07-11

    Dimethylglycine dehydrogenase (DMGDH) is a mammalian mitochondrial enzyme which plays an important role in the utilization of methyl groups derived from choline. DMGDH is a flavin containing enzyme which catalyzes the oxidative demethylation of dimethylglycine in vitro with the formation of sarcosine (N-methylglycine), hydrogen peroxide and formaldehyde. DMGDH binds tetrahydrofolate (THF) in vivo, which serves as an acceptor of formaldehyde and in the cell the product of the reaction is 5,10-methylenetetrahydrofolate instead of formaldehyde. To gain insight into the mechanism of the reaction we solved the crystal structures of the recombinant mature and precursor forms of rat DMGDH and DMGDH-THF complexes. Both forms of DMGDH reveal similar kinetic parameters and have the same tertiary structure fold with two domains formed by N- and C-terminal halves of the protein. The active center is located in the N-terminal domain while the THF binding site is located in the C-terminal domain about 40Å from the isoalloxazine ring of FAD. The folate binding site is connected with the enzyme active center via an intramolecular channel. This suggests the possible transfer of the intermediate imine of dimethylglycine from the active center to the bound THF where they could react producing a 5,10-methylenetetrahydrofolate. Based on the homology of the rat and human DMGDH the structural basis for the mechanism of inactivation of the human DMGDH by naturally occurring His109Arg mutation is proposed. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Long-range pseudoknot interactions dictate the regulatory response in the tetrahydrofolate riboswitch

    SciTech Connect

    Huang, Lili; Ishibe-Murakami, Satoko; Patel, Dinshaw J.; Serganov, Alexander

    2011-09-15

    Tetrahydrofolate (THF), a biologically active form of the vitamin folate (B{sub 9}), is an essential cofactor in one-carbon transfer reactions. In bacteria, expression of folate-related genes is controlled by feedback modulation in response to specific binding of THF and related compounds to a riboswitch. Here, we present the X-ray structures of the THF-sensing domain from the Eubacterium siraeum riboswitch in the ligand-bound and unbound states. The structure reveals an 'inverted' three-way junctional architecture, most unusual for riboswitches, with the junction located far from the regulatory helix P1 and not directly participating in helix P1 formation. Instead, the three-way junction, stabilized by binding to the ligand, aligns the riboswitch stems for long-range tertiary pseudoknot interactions that contribute to the organization of helix P1 and therefore stipulate the regulatory response of the riboswitch. The pterin moiety of the ligand docks in a semiopen pocket adjacent to the junction, where it forms specific hydrogen bonds with two moderately conserved pyrimidines. The aminobenzoate moiety stacks on a guanine base, whereas the glutamate moiety does not appear to make strong interactions with the RNA. In contrast to other riboswitches, these findings demonstrate that the THF riboswitch uses a limited number of available determinants for ligand recognition. Given that modern antibiotics target folate metabolism, the THF riboswitch structure provides insights on mechanistic aspects of riboswitch function and may help in manipulating THF levels in pathogenic bacteria

  7. Vascular behcet and mutations in thrombogenic genes: methylene tetrahydrofolate reductase, factor V, and prothrombin.

    PubMed

    Dagan, Efrat; Baruch, Yoav; Fiorilli, Massimo; Rozenbaum, Michael; Rosner, Itzhak; Gershoni-Baruch, Ruth

    2012-01-01

    Vasculitis, thrombophlebitis, arterial aneurysms, and occlusions occur in about 25% of patients with Behçet's disease (BD). The common inherited gene defects, factor V (FV) 1691A (Leiden), methylene tetrahydrofolate reductase (MTHFR) 677T, and prothrombin 20210A, are known risk factors for thrombosis. The aim of the study was to evaluate the contribution of these mutations to thrombosis in Israeli patients with BD. Fifty-four patients with BD (n=54; 27 men and 27 women) underwent clinical and genetic evaluation. Most patients (n=43; 79.6%) were of Arab descent (31 sporadic and 12 familial cases from 4 families), and 11 patients (20.4%) were of Jewish descent (all sporadic cases). The FV Leiden mutation was identified in five patients (9.2%), and eight patients were MTHFR 677TT homozygotes (14.8%). None had the 20210A mutant prothrombin allele. No statistical differences between carriers and noncarriers with regards to demographic and disease manifestations were calculated. Arabs were diagnosed earlier than Jewish patients (25.8±11.6 compared with 37.2±10.7, p=0.01, respectively), but Jewish patients had, respectively, more events of deep vein thrombosis (DVT) compared with Arabs (3 of 11, 27.3% and 3 of 43, 7%, p=0.09). Thrombotic events in our patients with BD were not associated with variations in thrombophilic genes.

  8. Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers

    SciTech Connect

    Berman, M.H.; Frazer, A.C. )

    1992-03-01

    DL-Tetrahydrofolate (THF) and ATP were necessary for the anaerobic O-demethylation of phenylmethylethers in cell extracts of the type strain (ATCC 29683) of the homoacetogen Acetobacterium woodii. The reactants for this enzymatic activity have not been previously demonstrated in any system, nor has the mediating enzyme been studied. An assay using reaction mixtures containing 1 mM THF, 2 mM ATP, and 2 mM hydroferulate (i.e., 4-hydroxy,3-methoxyphenylpropionate) was developed and was performed under stringent anaerobic conditions. Pyridine nucleotides and several other possible cofactors were tested but had no effect on the activity. After centrifugation of disrupted cells at 27,000 x g, the activity was found primarily in the supernatant, which had a specific activity of 14.2 {plus minus} 0.5 nmol/min/mg of protein. At saturating levels of each of the other two substrates, apparent K{sub m} values for the variable substrate were 0.65 mM hydroferulate, 0.27 mM ATP, and 0.17 mM THF. Activity was significantly decreased when extract was preincubated at 60C and was completely lost after preincubation in air for 30 min. Thus, the soluble anaerobic O-demethylating enzyme system of A. woodii is oxygen sensitive. The THF- and ATP-dependent activity measurable in the soluble fraction of cell extracts constituted about 34% of the activity seen with intact cells.

  9. Variations in metabolic pathways create challenges for automated metabolic reconstructions: Examples from the tetrahydrofolate synthesis pathway

    PubMed Central

    de Crécy-Lagard, Valérie

    2014-01-01

    The availability of thousands of sequenced genomes has revealed the diversity of biochemical solutions to similar chemical problems. Even for molecules at the heart of metabolism, such as cofactors, the pathway enzymes first discovered in model organisms like Escherichia coli or Saccharomyces cerevisiae are often not universally conserved. Tetrahydrofolate (THF) (or its close relative tetrahydromethanopterin) is a universal and essential C1-carrier that most microbes and plants synthesize de novo. The THF biosynthesis pathway and enzymes are, however, not universal and alternate solutions are found for most steps, making this pathway a challenge to annotate automatically in many genomes. Comparing THF pathway reconstructions and functional annotations of a chosen set of folate synthesis genes in specific prokaryotes revealed the strengths and weaknesses of different microbial annotation platforms. This analysis revealed that most current platforms fail in metabolic reconstruction of variant pathways. However, all the pieces are in place to quickly correct these deficiencies if the different databases were built on each other's strengths. PMID:25210598

  10. Plasma homocysteine levels, methylene tetrahydrofolate reductase polymorphisms, and the risk of thromboembolism in children.

    PubMed

    Nahar, Akash; Sabo, Cynthia; Chitlur, Meera; Ravindranath, Yaddanapudi; Lusher, Jeanne; Rajpurkar, Madhvi

    2011-07-01

    Hyperhomocystenemia (HHcy) is a risk factor for thrombosis in adults. Polymorphisms in methylene tetrahydrofolate reductase (MTHFR) enzyme may cause HHcy. Data on their role in pediatric thromboembolism (TE) are sparse. Charts of patients from 1989 to 2007, with documented TE, were reviewed. Homocysteine (Hcy) levels were defined both as per the adult normal range and the age-specific normal ranges from literature. A total of 141 patients (67 females, 74 males) were identified. With age-specific normal ranges for Hcy, 15 patients were found to have HHcy: 6 had CT, 9 patients had CC, and none had TT MTHFR genotype. When adult normal range was used, HHcy (>12 μmol/L) was seen in 7 patients: 4 had CT and 3 had the CC genotype. Again, none had TT genotype. In addition, the mean Hcy levels were unaffected by sex and ethnicities, but universal folic acid supplementation (post 1996) lowered the mean. (1) Age-specific ranges for Hcy should be used in pediatrics for accurate diagnosis of HHcy. (2) MTHFR C677T polymorphism is not a risk factor in pediatric TE. (3) Folic acid supplementation could play a role in lowering the prevalence of HHcy.

  11. How water molecules affect the catalytic activity of hydrolases - A XANES study of the local structures of peptide deformylase

    NASA Astrophysics Data System (ADS)

    Cui, Peixin; Wang, Yu; Chu, Wangsheng; Guo, Xiaoyun; Yang, Feifei; Yu, Meijuan; Zhao, Haifeng; Dong, Yuhui; Xie, Yaning; Gong, Weimin; Wu, Ziyu

    2014-12-01

    Peptide deformylase (PDF) is a prokaryotic enzyme that catalyzes the deformylation of nascent peptides generated during protein synthesis and water molecules play a key role in these hydrolases. Using X-ray absorption near edge spectroscopy (XANES) and ab initio calculations we accurately probe the local atomic environment of the metal ion binding in the active site of PDF at different pH values and with different metal ions. This new approach is an effective way to monitor existing correlations among functions and structural changes. We show for the first time that the enzymatic activity depends on pH values and metal ions via the bond length of the nearest coordinating water (Wat1) to the metal ion. Combining experimental and theoretical data we may claim that PDF exhibits an enhanced enzymatic activity only when the distance of the Wat1 molecule with the metal ion falls in the limited range from 2.15 to 2.55 Å.

  12. Slow-binding inhibition of peptide deformylase by cyclic peptidomimetics as revealed by a new spectrophotometric assay.

    PubMed

    Nguyen, Kiet T; Hu, Xubo; Pei, Dehua

    2004-06-01

    A new spectrophotometric/fluorimetric assay for peptide deformylase (PDF) has been developed by coupling the PDF reaction with that of dipeptidyl peptidase I (DPPI) and using N-formyl-Met-Lys-AMC as substrate. Removal of the N-terminal formyl group by PDF renders the dipeptide an efficient substrate of DPPI, which subsequently removes the dipeptidyl units to release 7-amino-4-methylcoumarin as the chromophore/fluorophore. The PDF reaction is conveniently monitored on a UV-Vis spectrophotometer or a fluorimeter in a continuous fashion. The utility of the assay was demonstrated by determining the catalytic activity of PDF and the inhibition constants of PDF inhibitors. These studies revealed the slow-binding behavior of a previously reported macrocyclic PDF inhibitor. This method offers several advantages over the existing PDF assays and should be particularly useful for screening PDF inhibitors in the continuous fashion.

  13. Expression, crystallization and preliminary X-ray crystallographic analysis of peptide deformylase from Xanthomonas oryzae pv. oryzae.

    PubMed

    Ngo, Phuong-Thuy Ho; Kim, Jin-Kwang; Kim, Hyesoon; Jung, Junho; Ahn, Yeh-Jin; Kim, Jeong-Gu; Lee, Byoung-Moo; Kang, Lin-Woo

    2008-11-01

    Peptide deformylase (PDF) catalyzes the removal of the N-formyl group from the N-terminus of newly synthesized polypeptides; this process is crucial for cell survival. As it is an antibacterial drug target against Xanthomonas oryzae pv. oryzae (Xoo), PDF from Xoo was cloned, expressed, purified and crystallized. Native PDF crystals diffracted to 2.7 A resolution and belonged to the hexagonal space group P6(1)22, with unit-cell parameters a = b = 59.0, c = 266.3 A. One monomer is present in the asymmetric unit, with a corresponding crystal volume per protein weight of 3.50 A(3) Da(-1) and a solvent content of 64.9%.

  14. [Association between methylene-tetrahydrofolate reductase gene polymorphisms and chronic myeloid leukemia].

    PubMed

    Dorgham, Samia; Aberkane, Meriem; Boughrara, Wefa; Antar Soltan, Badra; Mehalhal, Nemra; Touhami, Hadj; Sidimansour, Noureddine; Merad Boudia, Nadia; Louhibi, Lotfi; Boudjema, Abdallah

    2014-09-01

    Methylene-tetrahydrofolate reductase (MTHFR) is a key enzyme of folate metabolism. Few studies were reported about its relationship with chronic myeloid leukemia (CML). We conducted a case-control study analyzing the prevalence of the polymorphisms MTHFR C677T and MTHFR A1298C in Algerians CML patients. Using TaqMan(®) allelic discrimination assay, we investigate MTHFR C677T and A1298C polymorphism distribution in 90 cases of CML and 100 healthy subjects. The frequencies of 677T alleles and genotypes 677TT and 677CT were significantly higher in cases than in control (P = 1E-6; OR = 6.77 [4.22-10.86]) and (P = 1E-6; OR = 10.38 [4.56-23.6]) respectively. Also, the frequencies of 1298C alleles and genotypes 1298CC and 1298AC were higher in cases (P = 9 E-6; OR = 2.65 [1.71-4.10]) and (P = 0.008; OR = 2.22 [1.21-4.06]) respectively. We report also the higher significance of the haplotype 677T/1298A and 677T/1298C in cases (P = 0.007; OR = 2.57 [1.26-5.24]) and (P = 5 E-6, OR = 6.91 [2.7646-17.2899]) respectively. Our results demonstrate that 677T and 1298C alleles are both associated with an increased risk of CML in Algeria.

  15. A Tetrahydrofolate-Dependent Methyltransferase Catalyzing the Demethylation of Dicamba in Sphingomonas sp. Strain Ndbn-20

    PubMed Central

    Yao, Li; Yu, Lin-Lu; Zhang, Jun-Jie; Xie, Xiang-Ting; Tao, Qing; Yan, Xin; Hong, Qing; Qiu, Ji-Guo

    2016-01-01

    ABSTRACT Sphingomonas sp. strain Ndbn-20 degrades and utilizes the herbicide dicamba as its sole carbon and energy source. In the present study, a tetrahydrofolate (THF)-dependent dicamba methyltransferase gene, dmt, was cloned from the strain, and three other genes, metF, dhc, and purU, which are involved in THF metabolism, were found to be located downstream of dmt. A transcriptional study revealed that the four genes constituted one transcriptional unit that was constitutively transcribed. Lysates of cells grown with glucose or dicamba exhibited almost the same activities, which further suggested that the dmt gene is constitutively expressed in the strain. Dmt shared 46% and 45% identities with the methyltransferases DesA and LigM from Sphingomonas paucimobilis SYK-6, respectively. The purified Dmt catalyzed the transfer of methyl from dicamba to THF to form the herbicidally inactive metabolite 3,6-dichlorosalicylic acid (DCSA) and 5-methyl-THF. The activity of Dmt was inhibited by 5-methyl-THF but not by DCSA. The introduction of a codon-optimized dmt gene into Arabidopsis thaliana enhanced resistance against dicamba. In conclusion, this study identified a THF-dependent dicamba methyltransferase, Dmt, with potential applications for the genetic engineering of dicamba-resistant crops. IMPORTANCE Dicamba is a very important herbicide that is widely used to control more than 200 types of broadleaf weeds and is a suitable target herbicide for the engineering of herbicide-resistant transgenic crops. A study of the mechanism of dicamba metabolism by soil microorganisms will benefit studies of its dissipation, transformation, and migration in the environment. This study identified a THF-dependent methyltransferase, Dmt, capable of catalyzing dicamba demethylation in Sphingomonas sp. Ndbn-20, and a preliminary study of its enzymatic characteristics was performed. Introduction of a codon-optimized dmt gene into Arabidopsis thaliana enhanced resistance against dicamba

  16. Crystal structure of the histone lysine specific demethylase LSD1 complexed with tetrahydrofolate.

    PubMed

    Luka, Zigmund; Pakhomova, Svetlana; Loukachevitch, Lioudmila V; Calcutt, M Wade; Newcomer, Marcia E; Wagner, Conrad

    2014-07-01

    An important epigenetic modification is the methylation/demethylation of histone lysine residues. The first histone demethylase to be discovered was a lysine-specific demethylase 1, LSD1, a flavin containing enzyme which carries out the demethylation of di- and monomethyllysine 4 in histone H3. The removed methyl groups are oxidized to formaldehyde. This reaction is similar to those performed by dimethylglycine dehydrogenase and sarcosine dehydrogenase, in which protein-bound tetrahydrofolate (THF) was proposed to serve as an acceptor of the generated formaldehyde. We showed earlier that LSD1 binds THF with high affinity which suggests its possible participation in the histone demethylation reaction. In the cell, LSD1 interacts with co-repressor for repressor element 1 silencing transcription factor (CoREST). In order to elucidate the role of folate in the demethylating reaction we solved the crystal structure of the LSD1-CoREST-THF complex. In the complex, the folate-binding site is located in the active center in close proximity to flavin adenine dinucleotide. This position of the folate suggests that the bound THF accepts the formaldehyde generated in the course of histone demethylation to form 5,10-methylene-THF. We also show the formation of 5,10-methylene-THF during the course of the enzymatic reaction in the presence of THF by mass spectrometry. Production of this form of folate could act to prevent accumulation of potentially toxic formaldehyde in the cell. These studies suggest that folate may play a role in the epigenetic control of gene expression in addition to its traditional role in the transfer of one-carbon units in metabolism.

  17. Decreased expression of methylene tetrahydrofolate reductase (MTHFR) gene in patients with rheumatoid arthritis.

    PubMed

    Remuzgo-Martínez, Sara; Genre, Fernanda; López-Mejías, Raquel; Ubilla, Begoña; Mijares, Veronica; Pina, Trinitario; Corrales, Alfonso; Blanco, Ricardo; Martín, Javier; Llorca, Javier; González-Gay, Miguel Á

    2016-01-01

    Impairment of methylene tetrahydrofolate reductase (MTHFR), a key enzyme in the folate metabolism, results in an elevated plasma level of homocysteine, considered an independent risk factor for cardiovascular (CV) disease. Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with increased risk of CV death. Polymorphisms in the MTHFR gene increase the frequency of CV disease in RA. The aim of this study was to determine the expression of MTHFR gene in patients with RA, with and without ischaemic heart disease (IHD). Relative expression of MTHFR gene and beta-actin and GAPDH as housekeeping genes was quantified by quantitative real-time polymerase chain reaction. It was analysed by the comparative Ct (threshold cycle) method in peripheral blood from 26 Spanish patients with RA (12 with IHD and 14 without IHD) and 10 healthy controls. MTHFR expression level in RA patients was also assessed according to disease activity, rheumatoid factor (RF) and anti-cyclic citrullinated peptide (anti-CCP) antibodies status. MTHFR expression was significantly reduced in patients with RA compared to controls (fold change = 0.85, p=0.029). It was especially true for RA patients with IHD (fold change= 0.79, p=0.021). However, no statistically significant relationship between MTHFR expression level in patients with RA and DAS28 CRP, DAS28 ESR, RF and anti-CCP status was observed. Patients with RA, in particular those with IHD, show a decreased expression of the MTHFR gene. This may support a potential implication of the transcriptional regulation of MTHFR in the pathogenesis of RA.

  18. DMSP: tetrahydrofolate methyltransferase from the marine sulfate-reducing bacterium strain WN

    NASA Astrophysics Data System (ADS)

    Jansen, M.; Hansen, T. A.

    2000-08-01

    Dimethylsulfoniopropionate (DMSP), an important compatible solute of many marine algae, can be metabolised by bacteria via cleavage to dimethylsulfide and acrylate or via an initial demethylation. This is the first report on the purification of an enzyme that specifically catalyses the demethylation of DMSP. The enzyme was isolated from the sulfate-reducing bacterium strain WN, which grows on DMSP and demethylates it to methylthiopropionate. DMSP:tetrahydrofolate (THF) methyltransferase from strain WN was purified 76-fold [to a specific activity of 40.5 μmol min -1 (mg protein) -1]. SDS polyacrylamide gel electrophoresis showed two bands of approximately 10 and 35 kDa; in particular the 35 kDa polypeptide became significantly enriched during the purification. Storage of the purified fraction at -20°C under nitrogen resulted in a 99% loss of activity in two days. The activity could be partially restored by addition of 200 μM cyanocobalamin, hydroxocobalamin or coenzyme B 12. ATP did not have any positive effect on activity. Reduction of the assay mixture by titanium(III)nitrilotriacetic acid slightly stimulated the activity. Gel filtration chromatography revealed a native molecular mass between 45 and 60 kDa for the DMSP:THF methyltransferase. The enzyme was most active at 35°C and pH 7.8. Glycine betaine, which can be considered an N-containing structural analogue of DMSP, did not serve as a methyl donor for DMSP:THF methyltransferase. Various sulfur-containing DMSP-analogues were tested but only methylethylsulfoniopropionate served as methyl donor. None of these compounds inhibited methyl transfer from DMSP to THF. Strain WN did not grow on any of the sulfur-containing DMSP-analogues.

  19. A New Synthetic Route to N-Benzyl Carboxamides through the Reverse Reaction of N-Substituted Formamide Deformylase

    PubMed Central

    Hashimoto, Yoshiteru; Sakashita, Toshihide; Fukatsu, Hiroshi; Sato, Hiroyoshi

    2014-01-01

    Previously, we isolated a new enzyme, N-substituted formamide deformylase, that catalyzes the hydrolysis of N-substituted formamide to the corresponding amine and formate (H. Fukatsu, Y. Hashimoto, M. Goda, H. Higashibata, and M. Kobayashi, Proc. Natl. Acad. Sci. U. S. A. 101:13726–13731, 2004, doi:10.1073/pnas.0405082101). Here, we discovered that this enzyme catalyzed the reverse reaction, synthesizing N-benzylformamide (NBFA) from benzylamine and formate. The reverse reaction proceeded only in the presence of high substrate concentrations. The effects of pH and inhibitors on the reverse reaction were almost the same as those on the forward reaction, suggesting that the forward and reverse reactions are both catalyzed at the same catalytic site. Bisubstrate kinetic analysis using formate and benzylamine and dead-end inhibition studies using a benzylamine analogue, aniline, revealed that the reverse reaction of this enzyme proceeds via an ordered two-substrate, two-product (bi-bi) mechanism in which formate binds first to the enzyme active site, followed by benzylamine binding and the subsequent release of NBFA. To our knowledge, this is the first report of the reverse reaction of an amine-forming deformylase. Surprisingly, analysis of the substrate specificity for acids demonstrated that not only formate, but also acetate and propionate (namely, acids with numbers of carbon atoms ranging from C1 to C3), were active as acid substrates for the reverse reaction. Through this reaction, N-substituted carboxamides, such as NBFA, N-benzylacetamide, and N-benzylpropionamide, were synthesized from benzylamine and the corresponding acid substrates. PMID:24123742

  20. Insights into the substrate specificity of plant peptide deformylase, an essential enzyme with potential for the development of novel biotechnology applicatons in agriculture

    SciTech Connect

    Dirk, Lynnette M.A.; Schmidt, Jack J.; Cai, Yiying; Barnes, Jonathan C.; Hanger, Katherine M.; Nayak, Nihar R.; Williams, Mark A.; Grossman, Robert B.; Houtz, Robert L.; Rodgers, David W.

    2008-07-28

    The crystal structure of AtPDF1B [Arabidopsis thaliana PDF (peptide deformylase) 1B; EC 3.5.1.88], a plant specific deformylase, has been determined at a resolution of 2.4 {angstrom} (1 {angstrom}=0.1 nm). The overall fold of AtPDF1B is similar to other peptide deformylases that have been reported. Evidence from the crystal structure and gel filtration chromatography indicates that AtPDF1B exists as a symmetric dimer. PDF1B is essential in plants and has a preferred substrate specificity towards the PS II (photosystem II) D1 polypeptide. Comparative analysis of AtPDF1B, AtPDF1A, and the type 1B deformylase from Escherichia coli, identifies a number of differences in substrate binding subsites that might account for variations in sequence preference. A model of the N-terminal five amino acids from the D1 polypeptide bound in the active site of AtPDF1B suggests an influence of Tyr{sup 178} as a structural determinant for polypeptide substrate specificity through hydrogen bonding with Thr{sup 2} in the D1 sequence. Kinetic analyses using a polypeptide mimic of the D1 N-terminus was performed on AtPDF1B mutated at Tyr{sup 178} to alanine, phenylalanine or arginine (equivalent residue in AtPDF1A). The results suggest that, whereas Tyr{sup 178} can influence catalytic activity, other residues contribute to the overall preference for the D1 polypeptide.

  1. Isolation and identification of FR198248, a hydroxylated 1,3-dihydroisobenzofuran, from Aspergillus flavipes as an inhibitor of peptide deformylase.

    PubMed

    Kwon, Yun-Ju; Zheng, Chang-Ji; Kim, Won-Gon

    2010-01-01

    Two highly hydroxylated 1,3-dihydroisobenzofurans, FR198248 (1) and FR202306 (2), were isolated as peptide deformylase (PDF) inhibitors from Aspergillus flavipes. Compounds 1 and 2 inhibited Staphylococus aureus PDF with IC(50) values of 3.6 and 2.5 microM, respectively, and also showed antibacterial activity with an MIC value of 25 microg/ml. In contrast, 6-O-methyl derivative 3 of compound 2 was inactive against both PDF and S. aureus.

  2. A role for tetrahydrofolates in the metabolism of iron-sulfur clusters in all domains of life.

    PubMed

    Waller, Jeffrey C; Alvarez, Sophie; Naponelli, Valeria; Lara-Nuñez, Aurora; Blaby, Ian K; Da Silva, Vanessa; Ziemak, Michael J; Vickers, Tim J; Beverley, Stephen M; Edison, Arthur S; Rocca, James R; Gregory, Jesse F; de Crécy-Lagard, Valérie; Hanson, Andrew D

    2010-06-08

    Iron-sulfur (Fe/S) cluster enzymes are crucial to life. Their assembly requires a suite of proteins, some of which are specific for particular subsets of Fe/S enzymes. One such protein is yeast Iba57p, which aconitase and certain radical S-adenosylmethionine enzymes require for activity. Iba57p homologs occur in all domains of life; they belong to the COG0354 protein family and are structurally similar to various folate-dependent enzymes. We therefore investigated the possible relationship between folates and Fe/S cluster enzymes using the Escherichia coli Iba57p homolog, YgfZ. NMR analysis confirmed that purified YgfZ showed stereoselective folate binding. Inactivating ygfZ reduced the activities of the Fe/S tRNA modification enzyme MiaB and certain other Fe/S enzymes, although not aconitase. When successive steps in folate biosynthesis were ablated, folE (lacking pterins and folates) and folP (lacking folates) mutants mimicked the ygfZ mutant in having low MiaB activities, whereas folE thyA mutants supplemented with 5-formyltetrahydrofolate (lacking pterins and depleted in dihydrofolate) and gcvP glyA mutants (lacking one-carbon tetrahydrofolates) had intermediate MiaB activities. These data indicate that YgfZ requires a folate, most probably tetrahydrofolate. Importantly, the ygfZ mutant was hypersensitive to oxidative stress and grew poorly on minimal media. COG0354 genes of bacterial, archaeal, fungal, protistan, animal, or plant origin complemented one or both of these growth phenotypes as well as the MiaB activity phenotype. Comparative genomic analysis indicated widespread functional associations between COG0354 proteins and Fe/S cluster metabolism. Thus COG0354 proteins have an ancient, conserved, folate-dependent function in the activity of certain Fe/S cluster enzymes.

  3. Delineation of Alternative Conformational States in E.coli Peptide Deformylase via Thermodynamic Studies for the Binding of Actinonin†

    PubMed Central

    Berg, Alexander K.; Srivastava, D. K.

    2009-01-01

    We investigated the binding of a naturally occurring antibiotic, actinonin, to the Ni2+ reconstituted recombinant form of E. coli peptide deformylase (PDFEc) via isothermal titration microcalorimetry. The binding data conformed to both exothermic and endothermic phases with magnitudes of ΔG°, ΔH°, and TΔS° being equal to −12, −2.7, and 9.3, and −8.7, 3.9, and 12.6 kcal/mol, respectively. Evidently, although both phases are dominated by favorable entropic changes, the exothermic phase has about 6.7 kcal/mol enthalpic advantage over the endothermic phase. We observed that the removal of bound Ni2+ from PDFEc abolished the exothermic phase without affecting the endothermic phase, but it was regained upon addition of Zn2+. In conjunction with metal analysis data, we propose that the recombinant form of PDFEc is expressed in two stable conformational states that yield markedly distinct ITC profiles (i.e., exothermic versus endothermic) upon interaction with actinonin. The existence of two conformational states of PDFEc is further supported by the observation of two distinct and independent transitions during the thermal unfolding of the enzyme. In addition, the thermodynamic data reveals that the formation of the PDFEc-actinonin complex results in the transfer of one H+ from the enzyme phase to the bulk solvent at pH 6.3. Both exothermic and endothermic phases produce highly negative ΔCp° values, but there is no apparent enthalpy-entropy compensation effect upon formation of the PDFEc-actinonin complex. In view of the known structural features of the enzyme, arguments are presented that the alternative conformational states of PDFEc are modulated by the metal ligation at the enzyme site. PMID:19191548

  4. Truncation of Peptide Deformylase Reduces the Growth Rate and Stabilizes Solvent Production in Clostridium beijerinckii NCIMB 8052

    PubMed Central

    Evans, Victoria J.; Liyanage, Hemachandra; Ravagnani, Adriana; Young, Michael; Kashket, Eva R.

    1998-01-01

    The wild-type strain of Clostridium beijerinckii NCIMB 8052 tends to degenerate (i.e., lose the ability to form solvents) after prolonged periods of laboratory culture. Several Tn1545 mutants of this organism showing enhanced long-term stability of solvent production were isolated. Four of them harbor identical insertions within the fms (def) gene, which encodes peptide deformylase (PDF). The C. beijerinckii fms gene product contains four diagnostic residues involved in the Zn2+ coordination and catalysis found in all PDFs, but it is unusually small, because it lacks the dispensable disordered C-terminal domain. Unlike previously characterized PDFs from Escherichia coli and Thermus thermophilus, the C. beijerinckii PDF can apparently tolerate N-terminal truncation. The Tn1545 insertion in the mutants is at a site corresponding to residue 15 of the predicted gene product. This probably removes 23 N-terminal residues from PDF, leaving a 116-residue protein. The mutant PDF retains at least partial function, and it complements an fms(Ts) strain of E. coli. Northern hybridizations indicate that the mutant gene is actively transcribed in C. beijerinckii. This can only occur from a previously unsuspected, outwardly directed promoter located close to the right end of Tn1545. The Tn1545 insertion in fms causes a reduction in the growth rate of C. beijerinckii, and, associated with this, the bacteria display an enhanced stability of solvent production. The latter phenotype can be mimicked in the wild type by reducing the growth rate. Therefore, the observed amelioration of degeneration in the mutants is probably due to their reduced growth rates. PMID:9572951

  5. Structure-activity relationship analysis of the peptide deformylase inhibitor 5-bromo-1H-indole-3-acetohydroxamic acid.

    PubMed

    Petit, Sylvain; Duroc, Yann; Larue, Valéry; Giglione, Carmela; Léon, Carole; Soulama, Coralie; Denis, Alexis; Dardel, Frédéric; Meinnel, Thierry; Artaud, Isabelle

    2009-02-01

    The lead compound 5-bromoindolyl-3-acetohydroxamic acid (10) was recently identified as a potent inhibitor of bacterial peptide deformylases (PDFs). The synthesis and associated activities of new variants were investigated at position 5 to optimize the fit at the S1' subsite and at position 1 to improve both potency and antibacterial activity. A morphomimetic series, termed "reverse-indole" was synthesized. The indole derivatives remain selective in vitro inhibitors of PDF2 over PDF1. Bromide is the best group at position 5 and cannot be replaced by bulkier substituents. In this series, an N-benzyl group at position 1 in 19 e improves the potency relative to 10. In the case of PDF1, and unlike PDF2, potency is increased as the alkyl chain becomes longer and more ramified. These data support the results of NMR footprinting experiments that were performed with (15)N-labeled Ni-PDF and the corresponding 3-acetic acid derivatives. Most of the compounds have antibacterial activities toward B. subtilis, but are inefficient toward E. coli owing to active removal by the major efflux pumps. Among the reverse-indole derivatives, 23 c, which is the exact mirror image of 19 e, shows strong potency in vitro against PDF2, but little against PDF1, although this compound displays significant antibacterial activity toward an efflux-minus mutant of E. coli. All the compounds were assessed with major pathogenic bacteria, but most of them are inefficient antibacterial agents. The reverse-indole compounds 23 a and 23 c have potency against S. pneumoniae that is similar to that of actinonin.

  6. Frequency of Spontaneous Resistance to Peptide Deformylase Inhibitor GSK1322322 in Haemophilus influenzae, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae.

    PubMed

    Min, Sharon; Ingraham, Karen; Huang, Jianzhong; McCloskey, Lynn; Rilling, Sarah; Windau, Anne; Pizzollo, Jason; Butler, Deborah; Aubart, Kelly; Miller, Linda A; Zalacain, Magdalena; Holmes, David J; O'Dwyer, Karen

    2015-08-01

    The continuous emergence of multidrug-resistant pathogenic bacteria is compromising the successful treatment of serious microbial infections. GSK1322322, a novel peptide deformylase (PDF) inhibitor, shows good in vitro antibacterial activity and has demonstrated safety and efficacy in human proof-of-concept clinical studies. In vitro studies were performed to determine the frequency of resistance (FoR) to this antimicrobial agent in major pathogens that cause respiratory tract and skin infections. Resistance to GSK1322322 occurred at high frequency through loss-of-function mutations in the formyl-methionyl transferase (FMT) protein in Staphylococcus aureus (4/4 strains) and Streptococcus pyogenes (4/4 strains) and via missense mutations in Streptococcus pneumoniae (6/21 strains), but the mutations were associated with severe in vitro and/or in vivo fitness costs. The overall FoR to GSK1322322 was very low in Haemophilus influenzae, with only one PDF mutant being identified in one of four strains. No target-based mutants were identified from S. pyogenes, and only one or no PDF mutants were isolated in three of the four S. aureus strains studied. In S. pneumoniae, PDF mutants were isolated from only six of 21 strains tested; an additional 10 strains did not yield colonies on GSK1322322-containing plates. Most of the PDF mutants characterized from those three organisms (35/37 mutants) carried mutations in residues at or in close proximity to one of three highly conserved motifs that are part of the active site of the PDF protein, with 30 of the 35 mutations occurring at position V71 (using the S. pneumoniae numbering system). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Crystallization and preliminary X-ray crystallographic analysis of peptide deformylase (PDF) from Bacillus cereus in ligand-free and actinonin-bound forms

    SciTech Connect

    Park, Joon Kyu; Moon, Jin Ho; Kim, Jae-Hong; Kim, Eunice EunKyeong

    2005-01-01

    Peptide deformylase (PDF) from B. cereus has been overexpressed, purified and crystallized in ligand-free and actinonin-bound forms. Diffraction data have been collected from these crystals to 1.7 and 2.0 Å resolution, respectively. In bacteria, protein expression initiates with an N-formyl group and this needs to be removed in order to ensure proper bacterial growth. These formylation and deformylation processes are unique to eubacteria; therefore, inhibition of these would provide a novel antibacterial therapy. Deformylation is carried out by peptide deformylase (PDF). PDF from Bacillus cereus, one of the major pathogenic bacteria, was cloned into expression plasmid pET-28a (Novagen), overexpressed in Escherichia coli BL21 (DE3) and purified to high quality. Crystals have been obtained of both ligand-free PDF and PDF to which actinonin, a highly potent naturally occurring inhibitor, is bound. Both crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 42.72, b = 44.04, c = 85.19 Å and a = 41.31, b = 44.56, c = 84.47 Å, respectively. Diffraction data were collected to 1.7 Å resolution for the inhibitor-free crystals and to 2.0 Å resolution for the actinonin-bound crystals.

  8. Assessment of Folic Acid Supplementation in Pregnant Women by Estimation of Serum Levels of Tetrahydrofolic Acid, Dihydrofolate Reductase, and Homocysteine.

    PubMed

    Naithani, Manisha; Saxena, Vartika; Mirza, Anissa Atif; Kumari, Ranjeeta; Sharma, Kapil; Bharadwaj, Jyoti

    2016-01-01

    Background. Status of folic acid use in pregnant women of the hilly regions in North India was little known. This study was carried out to assess the folic acid use and estimate folate metabolites in pregnant women of this region. Materials and Methods. This cross-sectional study is comprised of 76 pregnant women, whose folic acid supplementation was assessed by a questionnaire and serum levels of homocysteine, tetrahydrofolic acid (THFA), and dihydrofolate reductase (DHFR) were estimated using Enzyme Linked Immunoassays. Results. The study data revealed awareness of folic acid use during pregnancy was present in 46.1% and 23.7% were taking folic acid supplements. The study depicted that there was no statistically significant difference between serum levels of THFA and DHFR in pregnant women with and without folic acid supplements (p = 0.790). Hyperhomocysteinemia was present in 15.78% of the participants. Conclusion. Less awareness about folic acid supplementation and low use of folic acid by pregnant women were observed in this region. Sufficient dietary ingestion may suffice for the escalated requirements in pregnancy, but since this cannot be ensured, hence folic acid supplementation should be made as an integral part of education and reproductive health programs for its better metabolic use, growth, and development of fetus.

  9. Assessment of Folic Acid Supplementation in Pregnant Women by Estimation of Serum Levels of Tetrahydrofolic Acid, Dihydrofolate Reductase, and Homocysteine

    PubMed Central

    Saxena, Vartika; Mirza, Anissa Atif; Kumari, Ranjeeta; Sharma, Kapil; Bharadwaj, Jyoti

    2016-01-01

    Background. Status of folic acid use in pregnant women of the hilly regions in North India was little known. This study was carried out to assess the folic acid use and estimate folate metabolites in pregnant women of this region. Materials and Methods. This cross-sectional study is comprised of 76 pregnant women, whose folic acid supplementation was assessed by a questionnaire and serum levels of homocysteine, tetrahydrofolic acid (THFA), and dihydrofolate reductase (DHFR) were estimated using Enzyme Linked Immunoassays. Results. The study data revealed awareness of folic acid use during pregnancy was present in 46.1% and 23.7% were taking folic acid supplements. The study depicted that there was no statistically significant difference between serum levels of THFA and DHFR in pregnant women with and without folic acid supplements (p = 0.790). Hyperhomocysteinemia was present in 15.78% of the participants. Conclusion. Less awareness about folic acid supplementation and low use of folic acid by pregnant women were observed in this region. Sufficient dietary ingestion may suffice for the escalated requirements in pregnancy, but since this cannot be ensured, hence folic acid supplementation should be made as an integral part of education and reproductive health programs for its better metabolic use, growth, and development of fetus. PMID:27064332

  10. Equivalent absorption and in vivo kinetics of tritiated folic acid and 5-formyl-tetrahydrofolic acid in rats

    SciTech Connect

    Bhandari, S.D.; Gregory, J.F. )

    1990-02-26

    The intestinal absorption and in vivo turnover kinetics of ({sup 3}H)folic acid (FA) and (6S)-5-formyl-({sup 3}H)tetrahydrofolate (5-CHO-THF) were examined to determine whether differences exist in the inherent bioavailability of these forms of the vitamin. Following oral administration of 2 {mu}Ci/100 g body weight (in 50 mM sodium ascorbate, pH 7), a biphasic pattern of urinary tritium excretion was observed for each labeled folate. The following kinetic results were obtained (n=9). Little tritium was found in the GI tract after 8 hours, which indicated nearly complete absorption of each folate. HPLC analysis of urine revealed similar excretory patterns over 0-8 days post-dose for each folate administered, and the patterns of hepatic ({sup 3}H)folates were equivalent when examined after 8 hours and 4 days post-dose. These findings indicate that the bioavailability FA and 5-formyl-THF is equivalent.

  11. Overcoming a hemihedral twinning problem in tetrahydrofolate-dependent O -demethylase crystals by the microseeding method

    SciTech Connect

    Harada, Ayaka; Sato, Yukari; Kamimura, Naofumi; Venugopalan, Nagarajan; Masai, Eiji; Senda, Toshiya

    2016-11-30

    A tetrahydrofolate-dependentO-demethylase, LigM, fromSphingobiumsp. SYK-6 was crystallized by the hanging-drop vapour-diffusion method. However, the obtainedP3121 orP3221 crystals, which diffracted to 2.5–3.3 Å resolution, were hemihedrally twinned. To overcome the twinning problem, microseeding usingP3121/P3221 crystals as microseeds was performed with optimization of the reservoir conditions. As a result, another crystal form was obtained. The newly obtained crystal diffracted to 2.5–3.0 Å resolution and belonged to space groupP21212, with unit-cell parametersa= 102.0,b= 117.3,c= 128.1 Å. TheP21212 crystals diffracted to better than 2.0 Å resolution after optimizing the cryoconditions. Phasing using the single anomalous diffraction method was successful at 3.0 Å resolution with a Pt-derivative crystal. This experience suggested that microseeding is an effective method to overcome the twinning problem, even when twinned crystals are utilized as microseeds.

  12. Overcoming a hemihedral twinning problem in tetrahydrofolate-dependent O -demethylase crystals by the microseeding method

    SciTech Connect

    Harada, Ayaka; Sato, Yukari; Kamimura, Naofumi; Venugopalan, Nagarajan; Masai, Eiji; Senda, Toshiya

    2016-11-30

    A tetrahydrofolate-dependentO-demethylase, LigM, from Sphingobiumsp. SYK-6 was crystallized by the hanging-drop vapour-diffusion method. However, the obtained P3121 orP3221 crystals, which diffracted to 2.5–3.3 Å resolution, were hemihedrally twinned. To overcome the twinning problem, microseeding using P3121/P32 21 crystals as microseeds was performed with optimization of the reservoir conditions. As a result, another crystal form was obtained. The newly obtained crystal diffracted to 2.5–3.0 Å resolution and belonged to space group P21212, with unit-cell parametersa= 102.0,b= 117.3,c = 128.1 Å. The P21212 crystals diffracted to better than 2.0 Å resolution after optimizing the cryoconditions. Phasing using the single anomalous diffraction method was successful at 3.0 Å resolution with a Pt-derivative crystal. This experience suggested that microseeding is an effective method to overcome the twinning problem, even when twinned crystals are utilized as microseeds.

  13. Non-coding nucleotides and amino acids near the active site regulate peptide deformylase expression and inhibitor susceptibility in Chlamydia trachomatis

    PubMed Central

    Bao, Xiaofeng; Pachikara, Niseema D.; Oey, Christopher B.; Balakrishnan, Amit; Westblade, Lars F.; Tan, Ming; Chase, Theodore; Nickels, Bryce E.

    2011-01-01

    Chlamydia trachomatis, an obligate intracellular bacterium, is a highly prevalent human pathogen. Hydroxamic-acid-based matrix metalloprotease inhibitors can effectively inhibit the pathogen both in vitro and in vivo, and have exhibited therapeutic potential. Here, we provide genome sequencing data indicating that peptide deformylase (PDF) is the sole target of the inhibitors in this organism. We further report molecular mechanisms that control chlamydial PDF (cPDF) expression and inhibition efficiency. In particular, we identify the σ66-dependent promoter that controls cPDF gene expression and demonstrate that point mutations in this promoter lead to resistance by increasing cPDF transcription. Furthermore, we show that substitution of two amino acids near the active site of the enzyme alters enzyme kinetics and protein stability. PMID:21719536

  14. Crystal Structures of Peptide Deformylase from Rice Pathogen Xanthomonas oryzae pv. oryzae in Complex with Substrate Peptides, Actinonin, and Fragment Chemical Compounds.

    PubMed

    Ngo, Ho-Phuong-Thuy; Ho, Thien-Hoang; Lee, Inho; Tran, Huyen-Thi; Sur, Bookyo; Kim, Seunghwan; Kim, Jeong-Gu; Ahn, Yeh-Jin; Cha, Sun-Shin; Kang, Lin-Woo

    2016-10-05

    Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight on rice; this species is one of the most destructive pathogenic bacteria in rice cultivation worldwide. Peptide deformylase (PDF) catalyzes the removal of the N-formyl group from the N-terminus of newly synthesized polypeptides in bacterial cells and is an important target to develop antibacterial agents. We determined crystal structures of Xoo PDF (XoPDF) at up to 1.9 Å resolution, which include apo, two substrate-bound (methionine-alanine or methionine-alanine-serine), an inhibitor-bound (actinonin), and six fragment chemical-bound structures. Six fragment chemical compounds were bound in the substrate-binding pocket. The fragment chemical-bound structures were compared to the natural PDF inhibitor actinonin-bound structure. The fragment chemical molecules will be useful to design an inhibitor specific to XoPDF and a potential pesticide against Xoo.

  15. Factor V Leiden, prothrombin G20210A, and methylene tetrahydrofolate reductase mutations and stillbirth: the Stillbirth Collaborative Research Network.

    PubMed

    Silver, Robert M; Saade, George R; Thorsten, Vanessa; Parker, Corette B; Reddy, Uma M; Drews-Botsch, Carey; Conway, Deborah; Coustan, Donald; Dudley, Donald J; Bukowski, Radek; Rowland Hogue, Carol J; Pinar, Halit; Varner, Michael W; Goldenberg, Robert; Willinger, Marian

    2016-10-01

    An evaluation for heritable thrombophilias is recommended in the evaluation of stillbirth. However, the association between thrombophilias and stillbirth remains uncertain. We sought to assess the association between maternal and fetal/placental heritable thrombophilias and stillbirth in a population-based, case-control study in a geographically, racially, and ethnically diverse population. We conducted secondary analysis of data from the Stillbirth Collaborative Research Network, a population-based case-control study of stillbirth. Testing for factor V Leiden, prothrombin G20210A, methylene tetrahydrofolate reductase C677T and A1298C, and plasminogen activating inhibitor (PAI)-1 4G/5G mutations was done on maternal and fetal (or placental) DNA from singleton pregnancies. Data analyses were weighted for oversampling and other aspects of the design. Odds ratios (OR) were generated from univariate models regressing stillbirth/live birth status on each thrombophilia marker. Results were available for ≥1 marker in 488 stillbirths and 1342 live birth mothers and 405 stillbirths and 990 live birth fetuses. There was an increased odds of stillbirth for maternal homozygous factor V Leiden mutation (2/488; 0.4% vs 1/1380; 0.0046%; OR, 87.44; 95% confidence interval, 7.88-970.92). However, there were no significant differences in the odds of stillbirth for any other maternal thrombophilia, even after stratified analyses. Fetal 4G/4G PAI-1 (OR, 0.63; 95% confidence interval, 0.43-0.91) was associated with decreased odds of stillbirth. Other fetal thrombophilias were similar among groups. Most maternal and fetal thrombophilias were not associated with stillbirth. Maternal factor V Leiden was weakly associated with stillbirth, and the fetal PAI-1 4G/4G polymorphism was associated with live birth. Our data do not support routine testing for heritable thrombophilias as part of an evaluation for possible causes of stillbirth. Copyright © 2016. Published by Elsevier Inc.

  16. Adaptive developmental plasticity in methylene tetrahydrofolate reductase (MTHFR) C677T polymorphism limits its frequency in South Indians.

    PubMed

    Naushad, Shaik Mohammad; Krishnaprasad, Chintakindi; Devi, Akella Radha Rama

    2014-05-01

    Methylene tetrahydrofolate reductase (MTHFR) C677T polymorphism shows considerable heterogeneity in its distribution in humans worldwide. The current study was conducted to investigate whether this polymorphism exhibited adaptive developmental plasticity in the control of the TT-genotype frequency. We screened 1,818 South Indian subjects (895 males and 923 females) for MTHFR C677T polymorphism using PCR-restriction fragment length polymorphism approach. MTHFR 677T-allele frequency in males and females was 9.1 and 11.0%, respectively. Compared to females, males had lower frequency of TT-genotype [odds ratio 0.31, 95% confidence interval (CI) 0.08-1.01]. The frequency of MTHFR 677T-allele was highest in the age group of 20-40 years and it gradually decreased from 40-60 to 60-80 years (P trend<0.0001). MTHFR 677TT-genotype was associated with 7.02-folds (95% CI: 2.12-25.63, P<0.0001) cumulative risk for recurrent pregnancy loss (RPL), neural tube defects (NTDs) and deep vein thrombosis (DVT). Linear regression model suggested that male gender exhibited increased homocysteine levels by 9.35 μmol/L while each MTHFR 677T-allele contributed to 4.63 μmol/L increase in homocysteine. Plasma homocysteine showed inverse correlation with dietary folate (r=-0.17, P<0.0001), B2 (r=-0.14, P<0.0001) and B6 (r=-0.07, P=0.03). Examination of the spontaneously aborted fetuses (n=35) showed no significant association of fetal genotype on its in utero viability. From the current study, it was concluded that C677T seemed to have acquired adaptive developmental plasticity among South Indians due to environmental influences thus contributing to hyperhomocysteinemia and its associated complications such as RPL, NTDs, DVT, etc.

  17. Supplementation with apple juice can compensate for folate deficiency in a mouse model deficient in methylene tetrahydrofolate reductase activity.

    PubMed

    Chan, A; Ortiz, D; Rogers, E; Shea, T B

    2011-03-01

    Folate insufficiency promotes developmental as well as age-related disorders of the nervous system. The C677T variant of 5',10' methylene tetrahydrofolate reductase (MTHFR; which utilizes folate to regenerate methionine from homocysteine) displays reduced activity, and therefore promotes functional folate deficiency. Mice heterozygously lacking this gene (MTHFR+/- mice) represent a useful model for analysis of the impact of MTHFR deficiency and potential compensatory approaches. Since consumption of apple products has benefited mouse models subjected to dietary and/or genetically-induced folate deficiency, we compared the impact of supplementation with apple juice on cognitive and neuromuscular performance of mice MTHFR+/+ and +/- mice with and without dietary folate deficiency. Mice were maintained for 1 month on a standard, complete diet, or a challenge diet lacking folate, and vitamin E and containing a 50 g iron/500 g total diet as a pro-oxidant. Additional groups received apple juice concentrate (AJC) diluted to 0.5% (vol/vol) in their sole source of drinking water. MTHFR+/- mice demonstrated significantly impaired cognitive performance in standard reward-based T maze and the non-reward-based Y maze tests as compared to MTHFR+/+ when maintained on the complete diet; supplementation with AJC improved the performance of MTHFR+/- to the level observed for MTHFR+/+ mice. Maintenance for 1 month on the deficient diet reduced the performance of both genotypes in both tests, but supplementation with AJC prevented these reductions. MTHFR+/+ and +/- displayed virtually identical neuromuscular performance in the standard paw grip endurance test when maintained on the complete diet, and displayed similar, non-significant declines in performance when maintained on the deficient diet. Supplementation of either diet with AJC dramatically improved the performance of both genotypes. The findings presented herein indicate that supplementation with AJCs can compensate for

  18. Microscale synthesis of isotopically labeled R-[6-xH]N5,N10-methylene-5,6,7,8-tetrahydrofolate as a cofactor for thymidylate synthase.

    PubMed

    Agrawal, Nitish; Mihai, Cornelia; Kohen, Amnon

    2004-05-01

    A one-pot synthesis of isotopically labeled R-[6-xH]N5,N10-methylene-5,6,7,8-tetrahydrofolate (CH2H4F) is presented, where x=1, 2, or 3 represents hydrogen, deuterium, or tritium, respectively. The current procedure offers high-yield, high-purity, and microscale-quantity synthesis. In this procedure, two enzymes were used simultaneously in the reaction mixture. The first was Thermoanaerobium brockii alcohol dehydrogenase, which stereospecifically catalyzed a hydride transfer from C-2-labeled isopropanol to the re face of oxidized nicotinamide adenine dinucleotide phosphate to form R-[4-xH]-labeled reduced nicotinamide adenine dinucleotide phosphate. The second enzyme, Escherichia coli dihydrofolate reductase, used the xH to reduce 7,8-dihydrofolate (H2F) to form S-[6-xH]5,6,7,8-tetrahydrofolate (S-[6-xH]H4F). The enzymatic reactions were followed by chemical trapping of S-[6-xH]H4F with formaldehyde to form the final product. Product purification was carried out in a single step by reverse phase high-pressure liquid chromatography separation followed by lyophilization. Two analytical methods were developed to follow the reaction progress. Finally, the utility of the labeled cofactor in mechanistic studies of thymidylate synthase is demonstrated by measuring the tritium kinetic isotope effect on the enzyme's second order rate constant.

  19. Structures of E. coli peptide deformylase bound to formate: insight into the preference for Fe2+ over Zn2+ as the active site metal.

    PubMed

    Jain, Rinku; Hao, Bing; Liu, Ren-Peng; Chan, Michael K

    2005-04-06

    E. coli peptide deformylase (PDF) catalyzes the deformylation of nascent polypeptides generated during protein synthesis. While PDF was originally thought to be a zinc enzyme, subsequent studies revealed that the active site metal is iron. In an attempt to understand this unusual metal preference, high-resolution structures of Fe-, Co-, and Zn-PDF were determined in complex with its deformylation product, formate. In all three structures, the formate ion binds the metal and forms hydrogen-bonding interactions with the backbone nitrogen of Leu91, the amide side chain of Gln50, and the carboxylate side chain of Glu133. One key difference, however, is how the formate binds the metal. In Fe-PDF and Co-PDF, formate binds in a bidentate fashion, while in Zn-PDF, it binds in a monodentate fashion. Importantly, these structural results provide the first clues into the origins of PDF's metal-dependent activity differences. On the basis of these structures, we propose that the basis for the higher activity of Fe-PDF stems from the better ability of iron to bind and activate the tetrahedral transition state required for cleavage of the N-terminal formyl group.

  20. Role of the AcrAB-TolC efflux pump in determining susceptibility of Haemophilus influenzae to the novel peptide deformylase inhibitor LBM415.

    PubMed

    Dean, Charles R; Narayan, Shubha; Daigle, Denis M; Dzink-Fox, JoAnn L; Puyang, Xiaoling; Bracken, Kathryn R; Dean, Karl E; Weidmann, Beat; Yuan, Zhengyu; Jain, Rakesh; Ryder, Neil S

    2005-08-01

    Haemophilus influenzae isolates vary widely in their susceptibilities to the peptide deformylase inhibitor LBM415 (MIC range, 0.06 to 32 microg/ml); however, on average, they are less susceptible than gram-positive organisms, such as Staphylococcus aureus and Streptococcus pneumoniae. Insertional inactivation of the H. influenzae acrB or tolC gene in strain NB65044 (Rd strain KW20) increased susceptibility to LBM415, confirming a role for the AcrAB-TolC pump in determining resistance. Consistent with this, sequencing of a PCR fragment generated with primers flanking the acrRA region from an LBM415-hypersusceptible H. influenzae clinical isolate revealed a genetic deletion of acrA. Inactivation of acrB or tolC in several clinical isolates with atypically reduced susceptibility to LBM415 (MIC of 16 microg/ml or greater) significantly increased susceptibility, confirming that the pump is also a determinant of decreased susceptibility in these clinical isolates. Examination of acrR, encoding the putative repressor of pump gene expression, from several of these strains revealed mutations introducing frameshifts, stop codons, and amino acid changes relative to the published sequence, suggesting that loss of pump repression leads to decreased susceptibility. Supporting this, NB65044 acrR mutants selected by exposure to LBM415 at 8 microg/ml had susceptibilities to LBM415 and other pump substrates comparable to the least sensitive clinical isolates and showed increased expression of pump genes.

  1. Reduced susceptibility of Haemophilus influenzae to the peptide deformylase inhibitor LBM415 can result from target protein overexpression due to amplified chromosomal def gene copy number.

    PubMed

    Dean, Charles R; Narayan, Shubha; Richards, Joel; Daigle, Denis M; Esterow, Stacy; Leeds, Jennifer A; Kamp, Heather; Puyang, Xiaoling; Wiedmann, Brigitte; Mueller, Dieter; Voshol, Hans; van Oostrum, Jan; Wall, Daniel; Koehn, James; Dzink-Fox, Joann; Ryder, Neil S

    2007-03-01

    Previous genetic analysis of Haemophilus influenzae revealed two mechanisms associated with decreased susceptibility to the novel peptide deformylase inhibitor LBM415: AcrAB-TolC-mediated efflux and Fmt bypass, resulting from mutations in the pump repressor gene acrR and in the fmt gene, respectively. We have isolated an additional mutant, CDS23 (LBM415 MIC, 64 microg/ml versus 4 microg/ml against the parent strain NB65044) that lacks mutations in the acrR or fmt structural genes or in the gene encoding Def, the intracellular target of LBM415. Western immunoblot analysis, two-dimensional gel electrophoresis, and tryptic digestion combined with mass spectrometric identification showed that the Def protein was highly overexpressed in the mutant strain. Consistent with this, real-time reverse transcription-PCR revealed a significant increase in def transcript titer. No mutations were found in the region upstream of def that might account for altered expression; however, pulsed-field gel electrophoresis suggested that a genetic rearrangement of the region containing def had occurred. Using a combination of PCR, sequencing, and Southern blot analyses, it was determined that the def gene had undergone copy number amplification, explaining the high level of target protein expression. Inactivation of the AcrAB-TolC efflux pump in this mutant increased susceptibility 16-fold, highlighting the role of efflux in exacerbating the overall reduced susceptibility resulting from target overexpression.

  2. Understanding the highly efficient catalysis of prokaryotic peptide deformylases by shedding light on the determinants specifying the low activity of the human counterpart.

    PubMed

    Fieulaine, Sonia; Desmadril, Michel; Meinnel, Thierry; Giglione, Carmela

    2014-02-01

    Peptide deformylases (PDFs), which are essential and ubiquitous enzymes involved in the removal of the N-formyl group from nascent chains, are classified into four subtypes based on the structural and sequence similarity of specific conserved domains. All PDFs share a similar three-dimensional structure, are functionally interchangeable in vivo and display similar properties in vitro, indicating that their molecular mechanism has been conserved during evolution. The human mitochondrial PDF is the only exception as despite its conserved fold it reveals a unique substrate-binding pocket together with an unusual kinetic behaviour. Unlike human PDF, the closely related mitochondrial PDF1As from plants have catalytic efficiencies and enzymatic parameters that are similar to those of other classes of PDFs. Here, the aim was to identify the structural basis underlying the properties of human PDF compared with all other PDFs by focusing on plant mitochondrial PDF1A. The construction of a chimaera composed of plant PDF1A with the nonrandom substitutions found in a conserved motif of its human homologue converted it into an enzyme with properties similar to the human enzyme, indicating the crucial role of these positions. The crystal structure of this human-like plant PDF revealed that substitution of two residues leads to a reduction in the volume of the ligand-binding site together with the introduction of negative charges, unravelling the origin of the weak affinity of human PDF for its substrate. In addition, the substitution of the two residues of human PDF modifies the transition state of the reaction through alteration of the network of interactions between the catalytic residues and the substrate, leading to an overall reduced reaction rate.

  3. Phosphate triester hydrolysis promoted by an N2S(thiolate)Zn complex: mechanistic implications for the metal-dependent reactivity of peptide deformylase.

    PubMed

    Goldberg, David P; diTargiani, Robert C; Namuswe, Frances; Minnihan, Ellen C; Chang, SeChin; Zakharov, Lev N; Rheingold, Arnold L

    2005-10-17

    The zinc(II) complex (PATH)ZnOH, where PATH is an N2S(thiolate) ligand, has been investigated for its ability to promote the hydrolysis of the phosphate triester tris(4-nitrophenyl) phosphate (TNP). The hydrolysis of TNP was examined as a function of PATH-zinc(II) complex concentration, substrate concentration, and pH in a water/ethanol mixture (66:33 v/v) at 25 degrees C. The reaction is first order in both zinc(II) complex and substrate, and the second-order rate constants were derived from linear plots of the observed pseudo-first-order rate constants versus zinc complex concentration at different pH values. A pH-rate profile yielded a kinetic pK(a) of 8.52(5) for the zinc-bound water molecule and a pH-independent rate constant of 16.1(7) M(-1) s(-1). Temperature-dependent studies showed linear Eyring behavior, yielding the activation parameters DeltaH++ = 36.9(1) kJ mol(-1) and DeltaS++ = -106.7(4) J mol(-1) K(-1). Interpretation of the kinetic data leads to the conclusion that hydrolysis of TNP takes place through a hybrid mechanism, in which the metal center plays a dual role of providing a nucleophilic hydroxide and activating the substrate through a Lewis acid effect. The synthesis and structural characterization of the related nickel(II) and iron(II) complexes [(PATH)2Ni2]Br2 (2) and (PATH)2Fe2Cl2 (3) are also described. Taken together, these data suggest a possible explanation for the low reactivity of the zinc(II) form of peptide deformylase as compared to the iron(II) form.

  4. Expression of the tetrahydrofolate-dependent nitric oxide synthase from the green alga Ostreococcus tauri increases tolerance to abiotic stresses and influences stomatal development in Arabidopsis.

    PubMed

    Foresi, Noelia; Mayta, Martín L; Lodeyro, Anabella F; Scuffi, Denise; Correa-Aragunde, Natalia; García-Mata, Carlos; Casalongué, Claudia; Carrillo, Néstor; Lamattina, Lorenzo

    2015-06-01

    Nitric oxide (NO) is a signaling molecule with diverse biological functions in plants. NO plays a crucial role in growth and development, from germination to senescence, and is also involved in plant responses to biotic and abiotic stresses. In animals, NO is synthesized by well-described nitric oxide synthase (NOS) enzymes. NOS activity has also been detected in higher plants, but no gene encoding an NOS protein, or the enzymes required for synthesis of tetrahydrobiopterin, an essential cofactor of mammalian NOS activity, have been identified so far. Recently, an NOS gene from the unicellular marine alga Ostreococcus tauri (OtNOS) has been discovered and characterized. Arabidopsis thaliana plants were transformed with OtNOS under the control of the inducible short promoter fragment (SPF) of the sunflower (Helianthus annuus) Hahb-4 gene, which responds to abiotic stresses and abscisic acid. Transgenic plants expressing OtNOS accumulated higher NO concentrations compared with siblings transformed with the empty vector, and displayed enhanced salt, drought and oxidative stress tolerance. Moreover, transgenic OtNOS lines exhibited increased stomatal development compared with plants transformed with the empty vector. Both in vitro and in vivo experiments indicate that OtNOS, unlike mammalian NOS, efficiently uses tetrahydrofolate as a cofactor in Arabidopsis plants. The modulation of NO production to alleviate abiotic stress disturbances in higher plants highlights the potential of genetic manipulation to influence NO metabolism as a tool to improve plant fitness under adverse growth conditions.

  5. Comparative genomics guided discovery of two missing archaeal enzyme families involved in the biosynthesis of the pterin moiety of tetrahydromethanopterin and tetrahydrofolate.

    PubMed

    de Crécy-Lagard, Valérie; Phillips, Gabriela; Grochowski, Laura L; El Yacoubi, Basma; Jenney, Francis; Adams, Michael W W; Murzin, Alexey G; White, Robert H

    2012-11-16

    C-1 carriers are essential cofactors in all domains of life, and in Archaea, these can be derivatives of tetrahydromethanopterin (H(4)-MPT) or tetrahydrofolate (H(4)-folate). Their synthesis requires 6-hydroxymethyl-7,8-dihydropterin diphosphate (6-HMDP) as the precursor, but the nature of pathways that lead to its formation were unknown until the recent discovery of the GTP cyclohydrolase IB/MptA family that catalyzes the first step, the conversion of GTP to dihydroneopterin 2',3'-cyclic phosphate or 7,8-dihydroneopterin triphosphate [El Yacoubi, B.; et al. (2006) J. Biol. Chem., 281, 37586-37593 and Grochowski, L. L.; et al. (2007) Biochemistry46, 6658-6667]. Using a combination of comparative genomics analyses, heterologous complementation tests, and in vitro assays, we show that the archaeal protein families COG2098 and COG1634 specify two of the missing 6-HMDP synthesis enzymes. Members of the COG2098 family catalyze the formation of 6-hydroxymethyl-7,8-dihydropterin from 7,8-dihydroneopterin, while members of the COG1634 family catalyze the formation of 6-HMDP from 6-hydroxymethyl-7,8-dihydropterin. The discovery of these missing genes solves a long-standing mystery and provides novel examples of convergent evolutions where proteins of dissimilar architectures perform the same biochemical function.

  6. Hyperhomocysteinemia and the compound heterozygous state for methylene tetrahydrofolate reductase are independent risk factors for deep vein thrombosis among South Indians.

    PubMed

    Naushad, Sm; Jamal, Nurul Jain; Angalena, R; Prasad, C Krishna; Devi, A Radha Rama

    2007-03-01

    To investigate the role of methylene tetrahydrofolate reductase (MTHFR) (677 C-->T and 1298 A-->C), factor V (1691 G-->A), factor II (20210 G-->A) genetic polymorphisms and hyperhomocysteinemia in the aetiology of deep vein thrombosis (DVT) in 163 cases and 163 controls. Polymerase chain reaction-restriction fragment length polymorphism was used for genotyping, reverse-phase high-performance liquid chromatography for plasma homocysteine, and Student's t-test and Fisher exact tests were used for statistical analysis. Elevated mean plasma homocysteine levels were observed in DVT cases irrespective of gender differences. Homocysteine elevation above the 95th percentile of the control group associated with 9.4-fold and 7.6-fold increased risk for DVT in men and women, respectively. Genotyping showed the MTHFR 677CT/1298AC genotype (i.e. compound heterozygosity) is associated with 3.5-fold risk for thrombosis. The factor V Leiden mutation frequency was higher in DVT cases, but not statistically significant; however, genetic predisposition to this mutation was associated with early age of DVT onset. Factor II mutation was absent in cases and controls. Co-segregation of two or more risk factors was associated with 11.7-fold increased risk for thrombosis. This study projects that hyperhomocysteinemia and compound heterozygous state for MTHFR are independent risk factors for DVT among South Indians.

  7. Pharmacokinetics/Pharmacodynamics of Peptide Deformylase Inhibitor GSK1322322 against Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus in Rodent Models of Infection.

    PubMed

    Hoover, Jennifer; Lewandowski, Thomas; Straub, Robert J; Novick, Steven J; DeMarsh, Peter; Aubart, Kelly; Rittenhouse, Stephen; Zalacain, Magdalena

    2015-10-19

    GSK1322322 is a novel inhibitor of peptide deformylase (PDF) with good in vitro activity against bacteria associated with community-acquired pneumonia and skin infections. We have characterized the in vivo pharmacodynamics (PD) of GSK1322322 in immunocompetent animal models of infection with Streptococcus pneumoniae and Haemophilus influenzae (mouse lung model) and with Staphylococcus aureus (rat abscess model) and determined the pharmacokinetic (PK)/PD index that best correlates with efficacy and its magnitude. Oral PK studies with both models showed slightly higher-than-dose-proportional exposure, with 3-fold increases in area under the concentration-time curve (AUC) with doubling doses. GSK1322322 exhibited dose-dependent in vivo efficacy against multiple isolates of S. pneumoniae, H. influenzae, and S. aureus. Dose fractionation studies with two S. pneumoniae and S. aureus isolates showed that therapeutic outcome correlated best with the free AUC/MIC (fAUC/MIC) index in S. pneumoniae (R(2), 0.83), whereas fAUC/MIC and free maximum drug concentration (fCmax)/MIC were the best efficacy predictors for S. aureus (R(2), 0.9 and 0.91, respectively). Median daily fAUC/MIC values required for stasis and for a 1-log10 reduction in bacterial burden were 8.1 and 14.4 for 11 S. pneumoniae isolates (R(2), 0.62) and 7.2 and 13.0 for five H. influenzae isolates (R(2), 0.93). The data showed that for eight S. aureus isolates, fAUC correlated better with efficacy than fAUC/MIC (R(2), 0.91 and 0.76, respectively), as efficacious AUCs were similar for all isolates, independent of their GSK1322322 MIC (range, 0.5 to 4 μg/ml). Median fAUCs of 2.1 and 6.3 μg · h/ml were associated with stasis and 1-log10 reductions, respectively, for S. aureus.

  8. A single-nucleotide polymorphism in the methylene tetrahydrofolate reductase (MTHFR) gene is associated with risk of radiation pneumonitis in lung cancer patients treated with thoracic radiation therapy.

    PubMed

    Mak, Raymond H; Alexander, Brian M; Asomaning, Kofi; Heist, Rebecca S; Liu, Chen-yu; Su, Li; Zhai, Rihong; Ancukiewicz, Marek; Napolitano, Brian; Niemierko, Andrzej; Willers, Henning; Choi, Noah C; Christiani, David C

    2012-07-15

    This study examined the association between functional single-nucleotide polymorphisms in candidate genes from oxidative stress pathways and risk of radiation pneumonitis (RP) in patients treated with thoracic radiation therapy for locally advanced lung cancer. A review was conducted of 136 patients treated with radiation therapy for lung cancer between 2001 and 2007, and who had prior genotyping of functional single-nucleotide polymorphisms in oxidative stress genes including superoxide dismutase 2 (SOD2; rs4880) and methylene tetrahydrofolate reductase (MTHFR; rs1801131, rs1801133). RP events were retrospectively scored using the National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.0. Cox proportional hazard regression was performed to identify clinical variables and genotypes associated with risk of RP of grades ≥2 and ≥3 on univariate and multivariate analysis, respectively. P values were corrected for multiple hypothesis esting. With a median follow-up of 21.4 months, the incidence of grade ≥2 RP was 29% and grade ≥3 RP was 14%. On multivariate analysis, after adjusting for clinical factors such as concurrent chemotherapy and consolidation docetaxel, and lung dosimetric parameters such as volume receiving greater than 20 Gy and mean lung dose, MTHFR genotype (rs1801131; AA versus AC/CC) was significantly associated with risk of grade ≥2 RP (hazard ratio: 0.37; 95% confidence interval: 0.18-0.76; P = .006, corrected P = .018) and grade ≥3 RP (hazard ratio: 0.21; 95% confidence interval: 0.06-0.70; P = .01; corrected P = .03). SOD2 genotype was not associated with RP. This study showed an association between MTHFR genotype and risk of clinically significant RP. Further study of MTHFR-related pathways may provide insight into the mechanisms behind RP. Copyright © 2011 American Cancer Society.

  9. Association between C677T polymorphism of methylene tetrahydrofolate reductase and congenital heart disease: meta-analysis of 7697 cases and 13,125 controls.

    PubMed

    Mamasoula, Chrysovalanto; Prentice, R Reid; Pierscionek, Tomasz; Pangilinan, Faith; Mills, James L; Druschel, Charlotte; Pass, Kenneth; Russell, Mark W; Hall, Darroch; Töpf, Ana; Brown, Danielle L; Zelenika, Diana; Bentham, Jamie; Cosgrove, Catherine; Bhattacharya, Shoumo; Riveron, Javier Granados; Setchfield, Kerry; Brook, J David; Bu'Lock, Frances A; Thornborough, Chris; Rahman, Thahira J; Doza, Julian Palomino; Tan, Huay L; O'Sullivan, John; Stuart, A Graham; Blue, Gillian; Winlaw, David; Postma, Alex V; Mulder, Barbara J M; Zwinderman, Aelko H; van Engelen, Klaartje; Moorman, Antoon F M; Rauch, Anita; Gewillig, Marc; Breckpot, Jeroen; Devriendt, Koen; Lathrop, G Mark; Farrall, Martin; Goodship, Judith A; Cordell, Heather J; Brody, Lawrence C; Keavney, Bernard D

    2013-08-01

    Association between the C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene and congenital heart disease (CHD) is contentious. We compared genotypes between CHD cases and controls and between mothers of CHD cases and controls. We placed our results in context by conducting meta-analyses of previously published studies. Among 5814 cases with primary genotype data and 10 056 controls, there was no evidence of association between MTHFR C677T genotype and CHD risk (odds ratio [OR], 0.96 [95% confidence interval, 0.87-1.07]). A random-effects meta-analysis of all studies (involving 7697 cases and 13 125 controls) suggested the presence of association (OR, 1.25 [95% confidence interval, 1.03-1.51]; P=0.022) but with substantial heterogeneity among contributing studies (I(2)=64.4%) and evidence of publication bias. Meta-analysis of large studies only (defined by a variance of the log OR <0.05), which together contributed 83% of all cases, yielded no evidence of association (OR, 0.97 [95% confidence interval, 0.91-1.03]) without significant heterogeneity (I(2)=0). Moreover, meta-analysis of 1781 mothers of CHD cases (829 of whom were genotyped in this study) and 19 861 controls revealed no evidence of association between maternal C677T genotype and risk of CHD in offspring (OR, 1.13 [95% confidence interval, 0.87-1.47]). There was no significant association between MTHFR genotype and CHD risk in large studies from regions with different levels of dietary folate. The MTHFR C677T polymorphism, which directly influences plasma folate levels, is not associated with CHD risk. Publication biases appear to substantially contaminate the literature with regard to this genetic association.

  10. Association between C677T Polymorphism of Methylene Tetrahydrofolate Reductase and Congenital Heart Disease: Meta-Analysis of 7,697 Cases and 13,125 Controls

    PubMed Central

    Mamasoula, Chrysovalanto; Prentice, R. Reid; Pierscionek, Tomasz; Pangilinan, Faith; Mills, James L.; Druschel, Charlotte; Pass, Kenneth; Russell, Mark W.; Hall, Darroch; Töpf, Ana; Brown, Danielle L.; Zelenika, Diana; Bentham, Jamie; Cosgrove, Catherine; Bhattacharya, Shoumo; Riveron, Javier Granados; Setchfield, Kerry; Brook, J. David; Bu'Lock, Frances A.; Thornborough, Chris; Rahman, Thahira J.; Doza, Julian Palomino; Tan, Huay L.; O'Sullivan, John; Stuart, A. Graham; Blue, Gillian; Winlaw, David; Postma, Alex V.; Mulder, Barbara J.M.; Zwinderman, Aelko H.; van Engelen, Klaartje; Moorman, Antoon F.M.; Rauch, Anita; Gewillig, Marc; Breckpot, Jeroen; Devriendt, Koen; Lathrop, G. Mark; Farrall, Martin; Goodship, Judith A.; Cordell, Heather J.; Brody, Lawrence C.; Keavney, Bernard D.

    2013-01-01

    Background Association between the C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene and congenital heart disease (CHD) is contentious. Methods and Results We compared genotypes between CHD cases and controls, and between mothers of CHD cases and controls. We placed our results in context by conducting metaanalyses of previously published studies. Among 5,814 cases with primary genotype data and 10,056 controls, there was no evidence of association between MTHFR C677T genotype and CHD risk (OR 0.96 [95% CI 0.87-1.07]). A random-effects meta-analysis of all studies (involving 7,697 cases and 13,125 controls) suggested the presence of association (OR 1.25 [95% CI 1.03-1.51]; p=0.022), but with substantial heterogeneity among contributing studies (I2=64.4%), and evidence of publication bias. Meta-analysis of large studies only (defined by a variance of the log OR less than 0.05), which together contributed 83% of all cases, yielded no evidence of association (OR 0.97 [95% CI 0.91-1.03]), without significant heterogeneity (I2=0). Moreover, meta-analysis of 1,781 mothers of CHD cases (829 of whom were genotyped in this study) and 19,861 controls revealed no evidence of association between maternal C677T genotype and risk of CHD in offspring (OR 1.13 [95% CI 0.87-1.47]). There was no significant association between MTHFR genotype and CHD risk in large studies from regions with different levels of dietary folate. Conclusions The MTHFR C677T polymorphism, which directly influences plasma folate levels, is not associated with CHD risk. Publication biases appear to substantially contaminate the literature with regard to this genetic association. PMID:23876493

  11. Cellular Pharmacokinetics and Intracellular Activity of the Novel Peptide Deformylase Inhibitor GSK1322322 against Staphylococcus aureus Laboratory and Clinical Strains with Various Resistance Phenotypes: Studies with Human THP-1 Monocytes and J774 Murine Macrophages

    PubMed Central

    Peyrusson, Frédéric; Butler, Deborah

    2015-01-01

    GSK1322322 is a peptide deformylase inhibitor active against Staphylococcus aureus strains resistant to currently marketed antibiotics. Our aim was to assess the activity of GSK1322322 against intracellular S. aureus using an in vitro pharmacodynamic model and, in parallel, to examine its cellular pharmacokinetics and intracellular disposition. For intracellular activity analysis, we used an established model of human THP-1 monocytes and tested one fully susceptible S. aureus strain (ATCC 25923) and 8 clinical strains with resistance to oxacillin, vancomycin, daptomycin, macrolides, clindamycin, linezolid, or moxifloxacin. Uptake, accumulation, release, and subcellular distribution (cell fractionation) of [14C]GSK1322322 were examined in uninfected murine J774 macrophages and uninfected and infected THP-1 monocytes. GSK1322322 demonstrated a uniform activity against the intracellular forms of all S. aureus strains tested, disregarding their resistance phenotypes, with a maximal relative efficacy (Emax) of a 0.5 to 1 log10 CFU decrease compared to the original inoculum within 24 h and a static concentration (Cs) close to its MIC in broth. Influx and efflux were very fast (<5 min to equilibrium), and accumulation was about 4-fold, with no or a minimal effect of the broad-spectrum eukaryotic efflux transporter inhibitors gemfibrozil and verapamil. GSK1322322 was recovered in the cell-soluble fraction and was dissociated from the main subcellular organelles and from bacteria (in infected cells). The results of this study show that GSK1322322, as a typical novel deformylase inhibitor, may act against intracellular forms of S. aureus. They also suggest that GSK1322322 has the ability to freely diffuse into and out of eukaryotic cells as well as within subcellular compartments. PMID:26169402

  12. The 380 kb pCMU01 plasmid encodes chloromethane utilization genes and redundant genes for vitamin B12- and tetrahydrofolate-dependent chloromethane metabolism in Methylobacterium extorquens CM4: a proteomic and bioinformatics study.

    PubMed

    Roselli, Sandro; Nadalig, Thierry; Vuilleumier, Stéphane; Bringel, Françoise

    2013-01-01

    Chloromethane (CH3Cl) is the most abundant volatile halocarbon in the atmosphere and contributes to the destruction of stratospheric ozone. The only known pathway for bacterial chloromethane utilization (cmu) was characterized in Methylobacterium extorquens CM4, a methylotrophic bacterium able to utilize compounds without carbon-carbon bonds such as methanol and chloromethane as the sole carbon source for growth. Previous work demonstrated that tetrahydrofolate and vitamin B12 are essential cofactors of cmuA- and cmuB-encoded methyltransferases of chloromethane dehalogenase, and that the pathway for chloromethane utilization is distinct from that for methanol. This work reports genomic and proteomic data demonstrating that cognate cmu genes are located on the 380 kb pCMU01 plasmid, which drives the previously defined pathway for tetrahydrofolate-mediated chloromethane dehalogenation. Comparison of complete genome sequences of strain CM4 and that of four other M. extorquens strains unable to grow with chloromethane showed that plasmid pCMU01 harbors unique genes without homologs in the compared genomes (bluB2, btuB, cobA, cbiD), as well as 13 duplicated genes with homologs of chromosome-borne genes involved in vitamin B12-associated biosynthesis and transport, or in tetrahydrofolate-dependent metabolism (folC2). In addition, the presence of both chromosomal and plasmid-borne genes for corrinoid salvaging pathways may ensure corrinoid coenzyme supply in challenging environments. Proteomes of M. extorquens CM4 grown with one-carbon substrates chloromethane and methanol were compared. Of the 49 proteins with differential abundance identified, only five (CmuA, CmuB, PurU, CobH2 and a PaaE-like uncharacterized putative oxidoreductase) are encoded by the pCMU01 plasmid. The mainly chromosome-encoded response to chloromethane involves gene clusters associated with oxidative stress, production of reducing equivalents (PntAA, Nuo complex), conversion of tetrahydrofolate

  13. Methylene Tetrahydrofolate Reductase (MTHFR) rs868014 Polymorphism Regulated by miR-1203 Associates with Risk and Short Term Outcome of Ischemic Stroke.

    PubMed

    He, Wei; Lu, Minzhi; Li, Guoqing; Sun, Zhigang; Liu, Dinghua; Gu, Lujun

    2017-01-01

    Genetic polymorphisms of methylene tetrahydrofolate reductase (MTHFR) were associated with ischemic stroke risk. This study analyzed MTHFR polymorphisms at the 3'-untranslated region for association with risk and outcome of ischemic stroke in a Chinese Han population. 500 patients and 600 healthy volunteers were enrolled for MTHFR rs868014 genotyping identified bioinformatically. The binding of miR-1203 to MTHFR rs868014 was determined by luciferase assay, MTHFR expression was assessed using qRT-PCR, and plasma homocysteine levels were assayed by ELISA. Cigarette smoking, alcohol consumption, diabetes, hypertension (all P <0.001), low levels of serum high-density lipoprotein-C (P = 0.01), and high levels of serum low-density lipoprotein-C (P = 0.005) were associated with an increased risk of developing ischemic stroke. BMI and total serum cholesterol concentration was not associated with ischemic stroke. MTHFR rs868014 TC and CC genotypes were significantly associated with increased risk of ischemic stroke compared with the TT genotype (OR: 1.52; 95% CI: 1.01-3.39 for TC genotype, while OR: 1.99; 95% CI: 1.29-3.88 for CC genotype). Furthermore, the MTHFR rs868014 SNP was associated with a poor short-term ischemic stroke outcome. qRT-PCR confirmed that MTHFR rs868014 TC or CC genotypes could facilitate miR-1203 binding leading to low MTHFR levels in cells. In addition, patients carrying the MTHFR rs868014 TC or CC genotypes were associated with accumulation of serum tHcy and a poor ischemic stroke outcome. Linkage disequilibrium analysis indicated that the newly identified SNP rs868014 was strongly linked with the MTHFR A1298C polymorphism. This study demonstrates that the MTHFR rs868014 SNP is associated with increased risk in developing ischemic stroke, miR-1203 binding, low MTHFR levels in cells, and poor shot term outcome of patients. © 2017 The Author(s)Published by S. Karger AG, Basel.

  14. The Inhibition and Resistance Mechanisms of Actinonin, Isolated from Marine Streptomyces sp. NHF165, against Vibrio anguillarum

    PubMed Central

    Yang, Na; Sun, Chaomin

    2016-01-01

    Vibrio sp. is the most serious pathogen in marine aquaculture, and the development of anti-Vibrio agents is urgently needed. However, it is extreme lack of high-throughput screening (HTS) model for searching anti-Vibrio compounds. Here, we established a protein-based HTS screening model to identify agents targeting peptide deformylase (PDF) of Vibrio anguillarum. To find potential anti-Vibrio compounds, crude extracts derived from marine actinomycetes were applied for screening with this model. Notably, crude extract of strain Streptomyces sp. NHF165 inhibited dramatically both on V. anguillarum PDF (VaPDF) activity and V. anguillarum cell growth. And actinonin was further identified as the functional component. Anti-VaPDF and anti-V. anguillarum activities of actinonin were dose-dependent, and the IC50 values were 6.94 and 2.85 μM, respectively. To understand the resistance of V. anguillarum against actinonin, spontaneous V. anguillarum mutants with resistance against actinonin were isolated. Surprisingly, for the resistant strains, the region between 774 and 852 base pairs was found to be absent in the gene folD which produces 10-formyl-tetrahydrofolate, a donor of N-formyl to Met-tRNAfmet. When compared to the wild type strain, ΔfolD mutant showed eight times of minimum inhibition concentration on actinonin, however, the folD complementary strain could not grow on the medium supplemented with actinonin, which suggested that folD gene mutation was mainly responsible for the actinonin resistance. To our knowledge, this is the first report showing that marine derived Streptomyces sp. could produce actinonin with anti-VaPDF activity and the resistance against actinonin by V. anguillarum is mediated by mutation in folD gene. PMID:27679625

  15. Effects of thyroxine on the synthesis of folate coenzymes in rat liver

    PubMed Central

    Pasquali, P.; Landi, L.; Bovina, C.; Marchetti, M.

    1970-01-01

    1. The effects of thyroidectomy and of `acute' and `chronic' administration of thyroxine on the synthesis of folate coenzymes were studied by determining the liver contents of folate active derivatives and the enzymic activities involved in their biosynthesis. The effect of thyroxine on the same enzymes in vitro was also studied. 2. In thyroidectomized rats the liver contents of folate coenzymes did not change except for a slight decrease in the contents of 5-formyltetrahydrofolate and tetrahydrofolate compared with those in control rats. 3. In the same animals serine hydroxymethyltransferase and formyltetrahydrofolate synthetase activities decreased markedly. 4. The `chronic' administration of thyroxine to thyroidectomized rats caused more evident variations in the liver contents of folate coenzymes and in particular a decrease in the contents of 5-formyltetrahydrofolate, tetrahydrofolate, 5(or 10)-formyl derivatives of tetrahydropteroylpolyglutamate and of 5(or 10)-formyl derivatives of pteroylpolyglutamate. 5. The enzymic activities did not show significant variations. 6. The `acute' administration of thyroxine caused changes in the liver contents of some folate derivatives such as 10-formyldihydrofolate, 10-formylfolate, tetrahydrofolate and the 10-formyl derivative of dihydropteroylpolyglutamate. In these animals also the enzymic activities were unchanged. 7. No effect of thyroxine on enzymic activities in vitro was observed. PMID:5414097

  16. Effect of cisplatin on intracellular folate compounds in L1210 cells

    SciTech Connect

    Vitols, K.S.; Monteiano, Y.D.

    1987-05-01

    The biologically active form of the anticancer agent Cisplatin, cis-diamminediaquaplatinum(II)-ion, reacts rapidly with tetrahydrofolate at pH 7 and 37/sup 0/C to form a stable complex. The purified platinum-tetrahydrofolate derivative has also been shown to inhibit the dihydrofolate reductase and the folate transport system of L1210 cells. To determine whether platinum-tetrahydrofolate complex formation would be observed under in vivo conditions, intracellular folates of L1210 cells were labeled by growth on (/sup 3/H)folate and then analyzed by reverse phase HPLC. No evidence for the intracellular formation of platinum tetrahydrofolate was found in cells grown for 48 in the presence of 10/sup -7/ M Cisplatin. The profile of intracellular folate monoglutamates, however, was distinctly different. The level of 5,10-methenyltetrahydrofolate was decreased, and increases were seen in the levels of tetrahydrofolate and its 5-formyl and 10-formyl derivatives. These changes in intracellular folates are compared to those seen when L1210 cells are treated with the antifolate drug, Methotrexate, and the implications for cell kill are examined.

  17. Quantitative flux analysis reveals folate-dependent NADPH production

    NASA Astrophysics Data System (ADS)

    Fan, Jing; Ye, Jiangbin; Kamphorst, Jurre J.; Shlomi, Tomer; Thompson, Craig B.; Rabinowitz, Joshua D.

    2014-06-01

    ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP+ to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP+ and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.

  18. 10-Formyl-2,4,6,8,12-penta­nitro-2,4,6,8,10,12-hexa­azatetra­cyclo­[5.5.0.03,11.05,9]dodeca­ne

    PubMed Central

    Jin, Shaohua; Chen, Shusen; Chen, Huaxiong; Li, Lijie; Shi, Yanshan

    2009-01-01

    The title compound, C7H7N11O11 (PNMFIW), is a caged heterocycle substituted with five nitro and one formyl groups. It is related to the hexa­azaisowurtzitane family of high-density high-energy polycyclic cage compounds. Four nitro groups are appended to the four N atoms of the two five-membered rings, while a nitro group and a formyl are attached to the two N atoms of the six-membered ring. PMID:21578838

  19. Cyanobacterial aldehyde deformylase oxygenation of aldehydes yields n-1 aldehydes and alcohols in addition to alkanes.

    PubMed

    Aukema, Kelly G; Makris, Thomas M; Stoian, Sebastian A; Richman, Jack E; Münck, Eckard; Lipscomb, John D; Wackett, Lawrence P

    2013-10-04

    Aldehyde-deformylating oxygenase (ADO) catalyzes O2-dependent release of the terminal carbon of a biological substrate, octadecanal, to yield formate and heptadecane in a reaction that requires external reducing equivalents. We show here that ADO also catalyzes incorporation of an oxygen atom from O2 into the alkane product to yield alcohol and aldehyde products. Oxygenation of the alkane product is much more pronounced with C9-10 aldehyde substrates, so that use of nonanal as the substrate yields similar amounts of octane, octanal, and octanol products. When using doubly-labeled [1,2-(13)C]-octanal as the substrate, the heptane, heptanal and heptanol products each contained a single (13)C-label in the C-1 carbons atoms. The only one-carbon product identified was formate. [(18)O]-O2 incorporation studies demonstrated formation of [(18)O]-alcohol product, but rapid solvent exchange prevented similar determination for the aldehyde product. Addition of [1-(13)C]-nonanol with decanal as the substrate at the outset of the reaction resulted in formation of [1-(13)C]-nonanal. No (13)C-product was formed in the absence of decanal. ADO contains an oxygen-bridged dinuclear iron cluster. The observation of alcohol and aldehyde products derived from the initially formed alkane product suggests a reactive species similar to that formed by methane monooxygenase (MMO) and other members of the bacterial multicomponent monooxygenase family. Accordingly, characterization by EPR and Mössbauer spectroscopies shows that the electronic structure of the ADO cluster is similar, but not identical, to that of MMO hydroxylase component. In particular, the two irons of ADO reside in nearly identical environments in both the oxidized and fully reduced states, whereas those of MMOH show distinct differences. These favorable characteristics of the iron sites allow a comprehensive determination of the spin Hamiltonian parameters describing the electronic state of the diferrous cluster for the first time for any biological system. The nature of the diiron cluster and the newly recognized products from ADO catalysis hold implications for the mechanism of C-C bond cleavage.

  20. Antistaphylococcal Activity of LBM415, a New Peptide Deformylase Inhibitor, Compared with Those of Other Agents

    PubMed Central

    Credito, Kim; Lin, Gengrong; Ednie, Lois M.; Appelbaum, Peter C.

    2004-01-01

    The MICs of LBM415, a new peptide diformylase inhibitor, were ≤0.06 to 4.0 μg/ml for 258 isolates of Staphylococcus aureus and coagulase-negative staphylococci. LBM415 MICs were similar irrespective of whether the strains were methicillin susceptible or resistant. All strains were also susceptible to vancomycin, linezolid, ranbezolid, daptomycin, oritavancin, and quinupristin-dalfopristin. LBM415 at the MIC was bacteriostatic after 24 h. PMID:15388473

  1. Antistaphylococcal activity of LBM415, a new peptide deformylase inhibitor, compared with those of other agents.

    PubMed

    Credito, Kim; Lin, Gengrong; Ednie, Lois M; Appelbaum, Peter C

    2004-10-01

    The MICs of LBM415, a new peptide diformylase inhibitor, were

  2. Promiscuous and Adaptable Enzymes Fill “Holes” in the Tetrahydrofolate Pathway in Chlamydia Species

    PubMed Central

    Adams, Nancy E.; Thiaville, Jennifer J.; Proestos, James; Juárez-Vázquez, Ana L.; McCoy, Andrea J.; Barona-Gómez, Francisco; Iwata-Reuyl, Dirk

    2014-01-01

    ABSTRACT Folates are tripartite molecules comprising pterin, para-aminobenzoate (PABA), and glutamate moieties, which are essential cofactors involved in DNA and amino acid synthesis. The obligately intracellular Chlamydia species have lost several biosynthetic pathways for essential nutrients which they can obtain from their host but have retained the capacity to synthesize folate. In most bacteria, synthesis of the pterin moiety of folate requires the FolEQBK enzymes, while synthesis of the PABA moiety is carried out by the PabABC enzymes. Bioinformatic analyses reveal that while members of Chlamydia are missing the genes for FolE (GTP cyclohydrolase) and FolQ, which catalyze the initial steps in de novo synthesis of the pterin moiety, they have genes for the rest of the pterin pathway. We screened a chlamydial genomic library in deletion mutants of Escherichia coli to identify the “missing genes” and identified a novel enzyme, TrpFCtL2, which has broad substrate specificity. TrpFCtL2, in combination with GTP cyclohydrolase II (RibA), the first enzyme of riboflavin synthesis, provides a bypass of the first two canonical steps in folate synthesis catalyzed by FolE and FolQ. Notably, TrpFCtL2 retains the phosphoribosyl anthranilate isomerase activity of the original annotation. Additionally, we independently confirmed the recent discovery of a novel enzyme, CT610, which uses an unknown precursor to synthesize PABA and complements E. coli mutants with deletions of pabA, pabB, or pabC. Thus, Chlamydia species have evolved a variant folate synthesis pathway that employs a patchwork of promiscuous and adaptable enzymes recruited from other biosynthetic pathways. PMID:25006229

  3. Deletion of Mthfd1l causes embryonic lethality and neural tube and craniofacial defects in mice.

    PubMed

    Momb, Jessica; Lewandowski, Jordan P; Bryant, Joshua D; Fitch, Rebecca; Surman, Deborah R; Vokes, Steven A; Appling, Dean R

    2013-01-08

    Maternal supplementation with folic acid is known to reduce the incidence of neural tube defects (NTDs) by as much as 70%. Despite the strong clinical link between folate and NTDs, the biochemical mechanisms through which folic acid acts during neural tube development remain undefined. The Mthfd1l gene encodes a mitochondrial monofunctional 10-formyl-tetrahydrofolate synthetase, termed MTHFD1L. This gene is expressed in adults and at all stages of mammalian embryogenesis with localized regions of higher expression along the neural tube, developing brain, craniofacial structures, limb buds, and tail bud. In both embryos and adults, MTHFD1L catalyzes the last step in the flow of one-carbon units from mitochondria to cytoplasm, producing formate from 10-formyl-THF. To investigate the role of mitochondrial formate production during embryonic development, we have analyzed Mthfd1l knockout mice. All embryos lacking Mthfd1l exhibit aberrant neural tube closure including craniorachischisis and exencephaly and/or a wavy neural tube. This fully penetrant folate-pathway mouse model does not require feeding a folate-deficient diet to cause this phenotype. Maternal supplementation with sodium formate decreases the incidence of NTDs and partially rescues the growth defect in embryos lacking Mthfd1l. These results reveal the critical role of mitochondrially derived formate in mammalian development, providing a mechanistic link between folic acid and NTDs. In light of previous studies linking a common splice variant in the human MTHFD1L gene with increased risk for NTDs, this mouse model provides a powerful system to help elucidate the specific metabolic mechanisms that underlie folate-associated birth defects, including NTDs.

  4. Natural folates from biofortified tomato and synthetic 5-methyl-tetrahydrofolate display equivalent bioavailability in a murine model.

    PubMed

    Castorena-Torres, Fabiola; Ramos-Parra, Perla A; Hernández-Méndez, Rogelio V; Vargas-García, Andrés; García-Rivas, Gerardo; de la Garza, Rocío I Díaz

    2014-03-01

    Folate deficiency is a global health problem related to neural tube defects, cardiovascular disease, dementia, and cancer. Considering that folic acid (FA) supply through industrialized foods is the most successful intervention, limitations exist for its complete implementation worldwide. Biofortification of plant foods, on the other hand, could be implemented in poor areas as a complementary alternative. A biofortified tomato fruit that accumulates high levels of folates was previously developed. In this study, we evaluated short-term folate bioavailability in rats infused with this folate-biofortified fruit. Fruit from tomato segregants hyperaccumulated folates during an extended ripening period, ultimately containing 3.7-fold the recommended dietary allowance in a 100-g portion. Folate-depleted Wistar rats separated in three groups received a single dose of 1 nmol of folate/g body weight in the form of lyophilized biofortified tomato fruit, FA, or synthetic 5-CH3-THF. Folate bioavailability from the biofortified tomato was comparable to that of synthetic 5-CH3-THF, with areas under the curve (AUC(0-∞)) of 2,080 ± 420 and 2,700 ± 220 pmol · h/mL, respectively (P = 0.12). Whereas, FA was less bioavailable with an AUC(0-∞) of 750 ± 10 pmol · h/mL. Fruit-supplemented animals reached maximum levels of circulating folate in plasma at 2 h after administration with a subsequent steady decline, while animals treated with FA and synthetic 5-CH3-THF reached maximum levels at 1 h. Pharmacokinetic parameters revealed that biofortified tomato had slower intestinal absorption than synthetic folate forms. This is the first study that demonstrates the bioavailability of folates from a biofortified plant food, showing its potential to improve folate deficiency.

  5. Retinal Ganglion Cell Loss and Mild Vasculopathy in Methylene Tetrahydrofolate Reductase (Mthfr)-Deficient Mice: A Model of Mild Hyperhomocysteinemia.

    PubMed

    Markand, Shanu; Saul, Alan; Roon, Penny; Prasad, Puttur; Martin, Pamela; Rozen, Rima; Ganapathy, Vadivel; Smith, Sylvia B

    2015-04-01

    Methylenetetrahydrofolate reductase (Mthfr) is a key enzyme in homocysteine-methionine metabolism. We investigated Mthfr expression in retina and asked whether mild hyperhomocysteinemia, due to Mthfr deficiency, alters retinal neurovascular structure and function. Expression of Mthfr was investigated at the gene and protein level using quantitative (q) RT-PCR, in situ hybridization, immunoblotting, and immunohistochemistry (IHC). The Mthfr+/+ and Mthfr+/- mice were subjected to comprehensive evaluation using ERG, funduscopy, fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), HPLC, and morphometric and IHC analysis of glial fibrillary acidic protein (GFAP) at 8 to 24 weeks. Gene and protein analyses disclosed widespread retinal expression of Mthfr. Electroretinography (ERG) revealed a significant decrease in positive scotopic threshold response in retinas of Mthfr+/- mice at 24 weeks. Fundus examination in mice from both groups was normal; FA revealed areas of focal vascular leakage in 20% of Mthfr+/- mice at 12 to 16 weeks and 60% by 24 weeks. The SD-OCT revealed a significant decrease in nerve fiber layer (NFL) thickness at 24 weeks in Mthfr+/- compared to Mthfr+/+ mice. There was a 2-fold elevation in retinal hcy at 24 weeks in Mthfr+/- mice by HPLC and IHC. Morphometric analysis revealed an approximately 20% reduction in cells in the ganglion cell layer of Mthfr+/- mice at 24 weeks. The IHC indicated significantly increased GFAP labeling suggestive of Müller cell activation. Mildly hyperhomocysteinemic Mthfr+/- mice demonstrate reduced ganglion cell function, thinner NFL, and mild vasculopathy by 24 weeks. The retinal phenotype is similar to that of hyperhomocysteinemic mice with deficiency of cystathionine-β-synthase (Cbs) reported earlier. The data support the hypothesis that hyperhomocysteinemia may be causative in certain retinal neurovasculopathies.

  6. Retinal Ganglion Cell Loss and Mild Vasculopathy in Methylene Tetrahydrofolate Reductase (Mthfr)-Deficient Mice: A Model of Mild Hyperhomocysteinemia

    PubMed Central

    Markand, Shanu; Saul, Alan; Roon, Penny; Prasad, Puttur; Martin, Pamela; Rozen, Rima; Ganapathy, Vadivel; Smith, Sylvia B.

    2015-01-01

    Purpose. Methylenetetrahydrofolate reductase (Mthfr) is a key enzyme in homocysteine-methionine metabolism. We investigated Mthfr expression in retina and asked whether mild hyperhomocysteinemia, due to Mthfr deficiency, alters retinal neurovascular structure and function. Methods. Expression of Mthfr was investigated at the gene and protein level using quantitative (q) RT-PCR, in situ hybridization, immunoblotting, and immunohistochemistry (IHC). The Mthfr+/+ and Mthfr+/− mice were subjected to comprehensive evaluation using ERG, funduscopy, fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), HPLC, and morphometric and IHC analysis of glial fibrillary acidic protein (GFAP) at 8 to 24 weeks. Results. Gene and protein analyses disclosed widespread retinal expression of Mthfr. Electroretinography (ERG) revealed a significant decrease in positive scotopic threshold response in retinas of Mthfr+/− mice at 24 weeks. Fundus examination in mice from both groups was normal; FA revealed areas of focal vascular leakage in 20% of Mthfr+/− mice at 12 to 16 weeks and 60% by 24 weeks. The SD-OCT revealed a significant decrease in nerve fiber layer (NFL) thickness at 24 weeks in Mthfr+/− compared to Mthfr+/+ mice. There was a 2-fold elevation in retinal hcy at 24 weeks in Mthfr+/− mice by HPLC and IHC. Morphometric analysis revealed an approximately 20% reduction in cells in the ganglion cell layer of Mthfr+/− mice at 24 weeks. The IHC indicated significantly increased GFAP labeling suggestive of Müller cell activation. Conclusions. Mildly hyperhomocysteinemic Mthfr+/− mice demonstrate reduced ganglion cell function, thinner NFL, and mild vasculopathy by 24 weeks. The retinal phenotype is similar to that of hyperhomocysteinemic mice with deficiency of cystathionine-β-synthase (Cbs) reported earlier. The data support the hypothesis that hyperhomocysteinemia may be causative in certain retinal neurovasculopathies. PMID:25766590

  7. The toxicity of methanol

    SciTech Connect

    Tephly, T.R. )

    1991-01-01

    Methanol toxicity in humans and monkeys is characterized by a latent period of many hours followed by a metabolic acidosis and ocular toxicity. This is not observed in most lower animals. The metabolic acidosis and blindness is apparently due to formic acid accumulation in humans and monkeys, a feature not seen in lower animals. The accumulation of formate is due to a deficiency in formate metabolism which is, in turn, related, in part, to low hepatic tetrahydrofolate (H{sub 4}folate). An excellent correlation between hepatic H{sub 4} folate and formate oxidation rates has been shown within and across species. Thus, humans and monkeys possess low hepatic H{sub 4}folate levels, low rates of formate oxidation and accumulation of formate after methanol. Formate, itself, produces blindness in monkeys in the absence of metabolic acidosis. In addition to low hepatic H{sub 4}folate concentrations, monkeys and humans also have low hepatic 10-formyl H{sub 4}folate dehydrogenase levels, the enzyme which is the ultimate catalyst for conversion of formate to carbon dioxide. This review presents the basis for the role of folic acid-dependent reactions in the regulation of methanol toxicity.

  8. An Ancient Riboswitch Class in Bacteria Regulates Purine Biosynthesis and One-carbon Metabolism

    PubMed Central

    Kim, Peter B.; Nelson, James W.; Breaker, Ronald R.

    2015-01-01

    SUMMARY Over thirty years ago, ZTP (5-amino-4-imidazole carboxamide riboside 5'-triphosphate), a modified purine biosynthetic intermediate, was proposed to signal 10-formyl-tetrahydrofolate (10f-THF) deficiency in bacteria. However, the mechanisms by which this putative alarmone or its precursor ZMP (5-aminoimidazole-4-carboxamide ribonucleotide, also known as AICAR) brings about any metabolic changes remain unexplained. Herein we report the existence of a widespread riboswitch class that is most commonly associated with genes related to de novo purine biosynthesis and one carbon metabolism. Biochemical data confirms that members of this riboswitch class selectively bind ZMP and ZTP with nanomolar affinity, while strongly rejecting numerous natural analogs. Indeed, increases in the ZMP/ZTP pool, caused by folate stress in bacterial cells, trigger changes in the expression of a reporter gene fused to representative ZTP riboswitches in vivo. The wide distribution of this riboswitch class suggests that ZMP/ZTP signaling is important for species in numerous bacterial lineages. PMID:25616067

  9. Proteomic characterization of the effects of clofibrate on protein expression in rat liver.

    PubMed

    Léonard, Jean-François; Courcol, Martine; Mariet, Claire; Charbonnier, Aurore; Boitier, Eric; Duchesne, Marc; Parker, Fabienne; Genet, Bruno; Supatto, Françoise; Roberts, Ruth; Gautier, Jean-Charles

    2006-03-01

    Clofibrate is a peroxisome proliferator known to induce liver tumours in rats. A proteomics study was conducted to provide new insights into the molecular mechanisms of clofibrate-induced non-genotoxic hepatocarcinogenesis. Rats were treated with 250 mg/kg day clofibrate orally and sacrificed after 7 days. Proteins extracted from the liver were analysed by 2-DE using DIGE technology. The protein identification performed by MS showed that clofibrate induced up-regulation of 77 proteins and down-regulation of 27 proteins. The highest expression ratios corresponded to proteins involved in a series of biochemical pathways such as lipid metabolism, fatty acid metabolism, amino acid metabolism, protein metabolism, citric acid cycle, xenobiotic detoxification and oxidative stress. Proteins implicated in cell proliferation and apoptosis, such as prohibitin, 10-formyl tetrahydrofolate dehydrogenase, senescence marker protein-30, pyridoxine 5'-phosphate oxidase and vimentin, were also identified as being regulated. These results provide leads for further investigations into the molecular mechanisms of liver tumours induced by clofibrate. In addition, MS results showed that a series of regulated proteins were detected as several spots corresponding to different pI and/or M(r). Differential effects on those variants could result from specific PTM and could be a specific molecular signature of the clofibrate-induced protein expression modulation in rat liver.

  10. Phosphate Triester Hydrolysis Promoted by an N2S (thiolate) Zinc Complex: Mechanistic Implications for the Metal-Dependent Reactivity of Peptide Deformylase

    USDA-ARS?s Scientific Manuscript database

    The zinc(II) complex (PATH)ZnOH, where PATH is an N2S(thiolate) ligand, has been investigated for its ability to promote the hydrolysis of the phosphate triester tris(4-nitrophenyl) phosphate (TNP). The hydrolysis of TNP was examined as a function of PATH-zinc(II) complex concentration, substrate co...

  11. Genetic variation in Glutathione S-Transferase Omega-1, Arsenic Methyltransferase and Methylene-tetrahydrofolate Reductase, arsenic exposure and bladder cancer: a case–control study

    PubMed Central

    2012-01-01

    Background Ingestion of groundwater with high concentrations of inorganic arsenic has been linked to adverse health outcomes, including bladder cancer, however studies have not consistently observed any elevation in risk at lower concentrations. Genetic variability in the metabolism and clearance of arsenic is an important consideration in any investigation of its potential health risks. Therefore, we examined the association between genes thought to play a role in the metabolism of arsenic and bladder cancer. Methods Single nucleotide polymorphisms (SNPs) in GSTO-1, As3MT and MTHFR were genotyped using DNA from 219 bladder cancer cases and 273 controls participating in a case–control study in Southeastern Michigan and exposed to low to moderate (<50 μg/L) levels of arsenic in their drinking water. A time-weighted measure of arsenic exposure was constructed using measures from household water samples combined with past residential history, geocoded and merged with archived arsenic data predicted from multiple resources. Results While no single SNP in As3MT was significantly associated with bladder cancer overall, several SNPs were associated with bladder cancer among those exposed to higher arsenic levels. Individuals with one or more copies of the C allele in rs11191439 (the Met287Thr polymorphism) had an elevated risk of bladder cancer (OR = 1.17; 95% CI = 1.04-1.32 per 1 μg/L increase in average exposure). However, no association was observed between average arsenic exposure and bladder cancer among TT homozygotes in the same SNP. Bladder cancer cases were also 60% less likely to be homozygotes for the A allele in rs1476413 in MTHFR compared to controls (OR = 0.40; 95% CI = 0.18-0.88). Conclusions Variation in As3MT and MTHFR is associated with bladder cancer among those exposed to relatively low concentrations of inorganic arsenic. Further investigation is warranted to confirm these findings. PMID:22747749

  12. Plasma homocysteine levels correlated to interactions between folate status and methylene tetrahydrofolate reductase gene mutation in women with unexplained recurrent pregnancy loss.

    PubMed

    Kumar, K S D; Govindaiah, V; Naushad, S E; Devi, R R; Jyothy, A

    2003-01-01

    Hyperhomocysteinaemia, a risk factor for recurrent pregnancy loss, is related either to a hereditary defect within the methionine-homocysteine pathway or it might be acquired as a result of deficiencies of vitamin B(12) and folate (B(9)). Because hyperhomocysteinaemia seems to be determined by both genetic and environmental factors, the current study was undertaken to find out the interactions between folate status and MTHFR mutation on the homocysteine concentration in 24 women experiencing unexplained three or more consecutive recurrent pregnancy losses. The median fasting total plasma homocysteine concentration in the study group was 10.23 micro mol/l compared to 8.95 micro mol/l; P = 0.096 in the controls. Elevated homocysteine levels > 18 micro mol/l, which was considered to be a risk factor for recurrent early pregnancy loss, was found in four women in the study group and none among the controls. Lower red cell folate levels (normal range >/= 160 ng/ml) were observed in nine (37.5%) women among the study group, compared to five (20.84%) women among controls. The mean +/- SD red cell folate levels in the study group was found to be 154.37 +/- 37.07, while in the controls it was 159.0 +/- 28.97. In the present study six women in the study group and two among controls were found to be carriers for the C677T MTHFR mutation. None were homozygous for the mutant (TT) allele. The highest values of homocysteine concentration were found in women experiencing recurrent pregnancy loss with both the CT genotype and folate deficiency. Identification of hyperhomocysteinaemia in women with recurrent pregnancy loss may help in therapeutic normalisation and might permit a normal birth.

  13. Multidisciplinary approach and anesthetic management of a surgical cancer patient with methylene tetrahydrofolate reductase deficiency: a case report and review of the literature.

    PubMed

    Cascella, Marco; Cascella, Marco Mc; Arcamone, Manuela; Arcamone, Manuela Ma; Morelli, Emanuela; Morelli, Emanuela Em; Viscardi, Daniela; Viscardi, Daniela Dv; Russo, Viera; Russo, Viera Vr; De Franciscis, Silvia; De Franciscis, Silvia Sdf; Belli, Andrea; Belli, Andrea Ab; Accardo, Rosanna; Accardo, Rosanna Ra; Caliendo, Domenico; Caliendo, Domenico Dc; De Luca, Elena; De Luca, Elena Edl; Di Caprio, Barbara; Di Caprio, Barbara Bdc; Di Sauro, Francesco; Di Sauro, Francesco Fds; Giannoni, Giovanni; Giannoni, Giovanni Gg; Iermano, Carmine; Iermano, Carmine Ci; Maciariello, Maria; Maciariello, Maria Mm; Marracino, Marcella; Marracino, Marcella Mm; Cuomo, Arturo; Cuomo, Arturo Ac

    2015-08-20

    Hyperhomocysteinemia is a known risk factor for myocardial infarction, stroke, peripheral vascular disease, and thrombosis. Elevated plasma homocysteine levels have been demonstrated in patients with recurrent episodes or a single episode of thrombosis. Here we describe the development of cardiovascular disease as a complication of a surgical intervention in a patient with colorectal cancer and hyperhomocysteinemia. A 65-year-old Caucasian man complained of pain and constipation, attributed to previously diagnosed adenocarcinoma (stage IIB) of the hepatic flexure. An anamnestic investigation showed that he had undergone two surgical interventions. During both, he suffered thrombotic postoperative complications, a deep vein thrombosis of the upper extremity after the first operation and retinal vein occlusion after the second. He was diagnosed with hyperhomocysteinemia associated with a homozygous C677T mutation of the gene encoding the enzyme methylenetetrahydrofolate reductase. Our patient was initially treated with folic acid and high-dose B vitamins. On day 7 he underwent a right hemicolectomy. Anesthesia was performed with sevoflurane in 40% O2 and without the use of nitrous oxide. Postoperatively, our patient remained on folic acid and B vitamins and was without immediate or subsequent complications. Neoplastic disease and related surgery followed by the administration of chemotherapeutic drugs alter the hemostatic balance in cancer patients. Those suspected of also having a thrombophilic disease require a thorough laboratory diagnostic workup, including a molecular analysis aimed at identifying the genetic mutation responsible for the hyperhomocysteinemia, as indicated. The case described in this report highlights the importance of a multidisciplinary approach that includes expertise in peri-operative anesthesia, surgery, oncology, and hematology.

  14. Strand-specific RNA-seq analysis of the Lactobacillus delbrueckii subsp. bulgaricus transcriptome.

    PubMed

    Zheng, Huajun; Liu, Enuo; Shi, Tao; Ye, Luyi; Konno, Tomonobu; Oda, Munehiro; Ji, Zai-Si

    2016-02-01

    Lactobacillus delbrueckii subsp. bulgaricus 2038 (Lb. bulgaricus 2038) is an industrial bacterium that is used as a starter for dairy products. We proposed several hypotheses concerning its industrial features previously. Here, we utilized RNA-seq to explore the transcriptome of Lb. bulgaricus 2038 from four different growth phases under whey conditions. The most abundantly expressed genes in the four stages were mainly involved in translation (for the logarithmic stage), glycolysis (for control/lag stages), lactic acid production (all the four stages), and 10-formyl tetrahydrofolate production (for the stationary stage). The high expression of genes like d-lactate dehydrogenase was thought as a result of energy production, and consistent expression of EPS synthesis genes, the restriction-modification (RM) system and the CRISPR/Cas system were validated for explaining the advantage of this strain in yoghurt production. Several postulations, like NADPH production through GapN bypass, converting aspartate into carbon-skeleton intermediates, and formate production through degrading GTP, were proved not working under these culture conditions. The high expression of helicase genes and co-expressed amino acids/oligopeptides transporting proteins indicated that the helicase might mediate the strain obtaining nitrogen source from the environment. The transport system of Lb. bulgaricus 2038 was found to be regulated by antisense RNA, hinting the potential application of non-coding RNA in regulating lactic acid bacteria (LAB) gene expression. Our study has primarily uncovered Lb. bulgaricus 2038 transcriptome, which could gain a better understanding of the regulation system in Lb. bulgaricus and promote its industrial application.

  15. Crystal structure of avian aminoimidazole-4-carboxamide ribonucleotide transformylase in complex with a novel non-folate inhibitor identified by virtual ligand screening.

    PubMed

    Xu, Lan; Li, Chenglong; Olson, Arthur J; Wilson, Ian A

    2004-11-26

    Aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase), one of the two folate-dependent enzymes in the de novo purine biosynthesis pathway, is a promising target for anti-neoplastic chemotherapy. Although classic antifolates, such as methotrexate, have been developed as anticancer agents, their general toxicity and drug resistance are major issues associated with their clinical use and future development. Identification of inhibitors with novel scaffolds could be an attractive alternative. We present here the crystal structure of avian AICAR Tfase complexed with the first non-folate based inhibitor identified through virtual ligand screening of the National Cancer Institute Diversity Set. The inhibitor 326203-A (2-[5-hydroxy-3-methyl-1-(2-methyl-4-sulfophenyl)-1H-pyrazol-4-ylazo]-4-sulfo-benzoic acid) displayed competitive inhibition against the natural cofactor, 10-formyl-tetrahydrofolate, with a K(i) of 7.1 mum. The crystal structure of AICAR Tfase with 326203-A at 1.8 A resolution revealed a unique binding mode compared with antifolate inhibitors. The inhibitor also accessed an additional binding pocket that is not occupied by antifolates. The sulfonate group of 326203-A appears to form the dominant interaction of the inhibitor with the proposed oxyanion hole through interaction with a helix dipole and Lys(267). An aromatic interaction with Phe(316) also likely contributes to favorable binding. Based on these structural insights, several inhibitors with improved potency were subsequently identified in the National Cancer Institute Compound Library and the Available Chemical Directory by similarity search and molecular modeling methods. These results provide further support for our combined virtual ligand screening rational design approach for the discovery of novel, non-folate-based inhibitors of AICAR Tfase.

  16. CO synthesized from the central one-carbon pool as source for the iron carbonyl in O2-tolerant [NiFe]-hydrogenase

    PubMed Central

    Bürstel, Ingmar; Siebert, Elisabeth; Zebger, Ingo; Friedrich, Bärbel

    2016-01-01

    Hydrogenases are nature’s key catalysts involved in both microbial consumption and production of molecular hydrogen. H2 exhibits a strongly bonded, almost inert electron pair and requires transition metals for activation. Consequently, all hydrogenases are metalloenzymes that contain at least one iron atom in the catalytic center. For appropriate interaction with H2, the iron moiety demands for a sophisticated coordination environment that cannot be provided just by standard amino acids. This dilemma has been overcome by the introduction of unprecedented chemistry—that is, by ligating the iron with carbon monoxide (CO) and cyanide (or equivalent) groups. These ligands are both unprecedented in microbial metabolism and, in their free form, highly toxic to living organisms. Therefore, the formation of the diatomic ligands relies on dedicated biosynthesis pathways. So far, biosynthesis of the CO ligand in [NiFe]-hydrogenases was unknown. Here we show that the aerobic H2 oxidizer Ralstonia eutropha, which produces active [NiFe]-hydrogenases in the presence of O2, employs the auxiliary protein HypX (hydrogenase pleiotropic maturation X) for CO ligand formation. Using genetic engineering and isotope labeling experiments in combination with infrared spectroscopic investigations, we demonstrate that the α-carbon of glycine ends up in the CO ligand of [NiFe]-hydrogenase. The α-carbon of glycine is a building block of the central one-carbon metabolism intermediate, N10-formyl-tetrahydrofolate (N10-CHO-THF). Evidence is presented that the multidomain protein, HypX, converts the formyl group of N10-CHO-THF into water and CO, thereby providing the carbonyl ligand for hydrogenase. This study contributes insights into microbial biosynthesis of metal carbonyls involving toxic intermediates. PMID:27930319

  17. Structure of a Sugar N-Formyltransferase from Campylobacter jejuni¶

    PubMed Central

    Thoden, James B.; Goneau, Marie-France; Gilbert, Michel; Holden, Hazel M.

    2014-01-01

    The O-antigens, which are components of the outer membranes of Gram-negative bacteria, are responsible for the wide species variations seen in nature and are thought to play a role in bacterial virulence. They often contain unusual dideoxysugars such as 3,6-dideoxy-3-formamido-D-glucose (Qui3NFo). Here, we describe a structural and functional investigation of the protein C8J_1081 from Campylobacter jejuni 81116, which is involved in the biosynthesis of Qui3NFo. Specifically, the enzyme, hereafter referred to as WlaRD, catalyzes the N-formylation of dTDP-3,6-dideoxy-3-amino-D-glucose (dTDP-Qui3N) using N10-formyltetrahydrofolate as the carbon source. For this investigation, seven X-ray structures of WlaRD, in complexes with various dTDP-linked sugars and cofactors, were determined to resolutions of 1.9 Å or better. One of the models, with bound N10-formyltetrahydrofolate and dTDP, represents the first glimpse of an N-formyltransferase with its natural cofactor. Another model contains the reaction products, tetrahydrofolate and dTDP-Qui3NFo. In combination, the structures provide snapshots of the WlaRD active site before and after catalysis. On the basis of these structures, three amino acid residues were targeted for study: Asn 94, His 96, and Asp 132. Mutations of any of these residues resulted in a complete loss of enzymatic activity. Given the position of His 96 in the active site, it can be postulated that it functions as the active site base to remove a proton from the sugar amino group as it attacks the carbonyl carbon of the N-10 formyl group of the cofactor. Enzyme assays demonstrate that WlaRD is also capable of utilizing dTDP-3,6-dideoxy-3-amino-D-galactose (dTDP-Fuc3N) as a substrate, albeit at a much reduced catalytic efficiency. PMID:23898784

  18. Mthfs is an Essential Gene in Mice and a Component of the Purinosome

    PubMed Central

    Field, Martha S.; Anderson, Donald D.; Stover, Patrick J.

    2011-01-01

    this study indicate that MTHFS enhances purine biosynthesis by delivering 10-formylTHF to the purinosome in a SUMO-dependent fashion. PMID:22303332

  19. Multistep Resistance Selection and Postantibiotic-Effect Studies of the Antipneumococcal Activity of LBM415 Compared to Other Agents▿

    PubMed Central

    Kosowska-Shick, Klaudia; Credito, Kim L.; Pankuch, Glenn A.; DeWasse, Bonifacio; McGhee, Pamela; Appelbaum, Peter C.

    2007-01-01

    LBM415 is a peptide deformylase inhibitor active against gram-positive bacterial species and some gram-negative species. In multiselection studies, LBM415 had low MICs against all Streptococcus pneumoniae strains tested, regardless of their genotype, and selected resistant clones after 14 to 50 days. MIC increases correlated with changes mostly in the 70GXGXAAXQ77 motif in peptide deformylase. The postantibiotic effect of LBM415 ranged from 0.3 to 1.4 h. PMID:17116666

  20. Multistep resistance selection and postantibiotic-effect studies of the antipneumococcal activity of LBM415 compared to other agents.

    PubMed

    Kosowska-Shick, Klaudia; Credito, Kim L; Pankuch, Glenn A; DeWasse, Bonifacio; McGhee, Pamela; Appelbaum, Peter C

    2007-02-01

    LBM415 is a peptide deformylase inhibitor active against gram-positive bacterial species and some gram-negative species. In multiselection studies, LBM415 had low MICs against all Streptococcus pneumoniae strains tested, regardless of their genotype, and selected resistant clones after 14 to 50 days. MIC increases correlated with changes mostly in the 70GXGXAAXQ77 motif in peptide deformylase. The postantibiotic effect of LBM415 ranged from 0.3 to 1.4 h.

  1. Folate-Dependent Purine Nucleotide Biosynthesis in Humans1

    PubMed Central

    Baggott, Joseph E; Tamura, Tsunenobu

    2015-01-01

    Purine nucleotide biosynthesis de novo (PNB) requires 2 folate-dependent transformylases—5′-phosphoribosyl-glycinamide (GAR) and 5′-phosphoribosyl-5-aminoimidazole-4-carboxamide (AICAR) transformylases—to introduce carbon 8 (C8) and carbon 2 (C2) into the purine ring. Both transformylases utilize 10-formyltetrahydrofolate (10-formyl-H4folate), where the formyl-carbon sources include ring-2-C of histidine, 3-C of serine, 2-C of glycine, and formate. Our findings in human studies indicate that glycine provides the carbon for GAR transformylase (exclusively C8), whereas histidine and formate are the predominant carbon sources for AICAR transformylase (C2). Contrary to the previous notion, these carbon sources may not supply a general 10-formyl-H4folate pool, which was believed to equally provide carbons to C8 and C2. To explain these phenomena, we postulate that GAR transformylase is in a complex with the trifunctional folate-metabolizing enzyme (TFM) and serine hydroxymethyltransferase to channel carbons of glycine and serine to C8. There is no evidence for channeling carbons of histidine and formate to AICAR transformylase (C2). GAR transformylase may require the TFM to furnish 10-formyl-H4folate immediately after its production from serine to protect its oxidation to 10-formyldihydrofolate (10-formyl-H2folate), whereas AICAR transformylase can utilize both 10-formyl-H2folate and 10-formyl-H4folate. Human liver may supply AICAR to AICAR transformylase in erythrocytes/erythroblasts. Incorporation of ring-2-C of histidine and formate into C2 of urinary uric acid presented a circadian rhythm with a peak in the morning, which corresponds to the maximum DNA synthesis in the bone marrow, and it may be useful in the timing of the administration of drugs that block PNB for the treatment of cancer and autoimmune disease. PMID:26374178

  2. Folate composition of ten types of mushrooms determined by liquid chromatography-mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    White button, crimini, shiitake, maitake, enoki, oyster, chanterelle, morel, portabella, and uv-treated portabella mushrooms were sampled from U.S. retail outlets and major producers. Folate (5-methyltetrahydrofolate [5MTHF], 10-formyl folate [10FF], 5-formyltetrahydrofolate [5FTHF]) was analyzed u...

  3. Activity of formylphosphate in the reaction catalyzed by formyltetrahydrofolate synthetase

    SciTech Connect

    Jahansouz, H.; Kofron, J.L.; Smithers, G.W.; Himes, R.H.; Reed, G.H.

    1986-05-01

    Formylphosphate (FP), a putative enzyme-bound intermediate in the reaction catalyzed by N/sup 10/-formylH/sub 4/folate synthetase, was synthesized from formylfluoride and Pi. Measurement of hydrolysis rates by /sup 31/P NMR showed that FP is very unstable with a half-life of 48 min at 20/sup 0/C and pH 7. At pH 7 hydrolysis occurs with O-P bond cleavage as shown by /sup 18/O incorporation from /sup 18/O-H/sub 2/O into Pi. The substrate activity of FP was tested in the reaction catalyzed by N/sup 10/-formylH/sub 4/folate synthetase isolated from Clostridium cylindrosporum. MgATP + H/sub 4/folate + HCOO/sup -/ in equilibrium MgADP + Pi +N/sup 10/-formylH/sub 4/folate FP supports the reaction in both the forward and reverse directions. Thus, N/sup 10/-formylH/sub 4/folate is produced from H/sub 4/-folate and FP but only if ADP is present, and ATP is produced from FP and ADP but only if H/sub 4/folate is present. The requirements for H/sub 4/folate in the synthesis of ATP from ADP and FP and for ADP in the synthesis of N/sup 10/-formylH/sub 4/folate from FP and H/sub 4/folate, are consistent with past kinetic and isotope exchange studies which showed that the reaction proceeds by a sequential mechanism and that all three substrates must be present for any reaction to occur.

  4. Corrinoid-Dependent Methyl Transfer Reactions Are Involved in Methanol and 3,4-Dimethoxybenzoate Metabolism by Sporomusa ovata.

    PubMed

    Stupperich, E; Konle, R

    1993-09-01

    Washed and air-oxidized proteins from Sporomusa ovata cleaved the C-O bond of methanol or methoxyaromatics and transferred the methyl to dl-tetrahydrofolate. The reactions strictly required a reductive activation by titanium citrate, catalytic amounts of ATP, and the addition of dl-tetrahydrofolate. Methylcorrinoid-containing proteins carried the methanol methyl, which was transferred to dl-tetrahydrofolate at a specific rate of 120 nmol h mg of protein. Tetrahydrofolate methylation diminished after the addition of 1-iodopropane or when the methyl donor methanol was replaced by 3,4-dimethoxybenzoate. However, whole Sporomusa cells utilize the methoxyl groups of 3,4-dimethoxybenzoate as a carbon source by a sequential O demethylation to 4-hydroxy-3-methoxybenzoate and 3,4-dihydroxybenzoate. The in vitro O demethylation of 3,4-[4-methoxyl-C]dimethoxybenzoate proceeded via two distinct corrinoid-containing proteins to form 5-[C]methyltetrahydrofolate at a specific rate of 200 nmol h mg of protein. Proteins from 3,4-dimethoxybenzoate-grown cells efficiently used methoxybenzoates with vicinal substituents only, but they were unable to activate methanol. These results emphasized that specific enzymes are involved in methanol activation as well as in the activation of various methoxybenzoates and that similar corrinoid-dependent methyl transfer pathways are employed in 5-methyl-tetrahydrofolate formation from these substrates. Methyl-tetrahydrofolate could be demethylated by a distinct methyl transferase. That enzyme activity was present in washed and air-oxidized cell extracts from methanol-grown cells and from 3,4-dimethoxybenzoate-grown cells. It used cob(I)alamin as the methyl acceptor in vitro, which was methylated at a rate of 48 nmol min mg of protein even when ATP was omitted from the assay mixture. This methyl-cob(III)alamin formation made possible a spectrophotometric quantification of the preceding methyl transfers from methanol or methoxybenzoates to dl-tetrahydrofolate.

  5. 1,3,4-Oxadiazole Derivatives: Synthesis, Characterization, Antimicrobial Potential, and Computational Studies

    PubMed Central

    Kajal, Anu; Saini, Vipin; Prasad, Deo Nanadan

    2014-01-01

    We report the synthesis and biological assessment of 1,3,4-oxadiazole substituted 24 derivatives as novel, potential antibacterial agents. The structures of the newly synthesized derivatives were established by the combined practice of UV, IR, 1H NMR, 13C NMR, and mass spectrometry. Further these synthesized derivatives were subjected to antibacterial activity against all the selected microbial strains in comparison with amoxicillin and cefixime. The antibacterial activity of synthesized derivatives was correlated with their physicochemical and structural properties by QSAR analysis using computer assisted multiple regression analysis and four sound predictive models were generated with good R2, R adj 2, and Fischer statistic. The derivatives with potent antibacterial activity were subjected to molecular docking studies to investigate the interactions between the active derivatives and amino acid residues existing in the active site of peptide deformylase to assess their antibacterial potential as peptide deformylase inhibitor. PMID:25147788

  6. Lentils (Lens culinaris L.), a rich source of folates

    USDA-ARS?s Scientific Manuscript database

    Pulses contain folates in the form of reduced tetrahydrofolate which is the biologically active form absorbed in the jejunum. Genetic biofortification potential of US-grown lentils (Lens culinaris L.) with the bioavailable form of folate has not been widely studied. The objectives of this study wer...

  7. Folate metabolite profiling of different cell types and embryos suggests variation in folate one-carbon metabolism, including developmental changes in human embryonic brain.

    PubMed

    Leung, Kit-Yi; De Castro, Sandra C P; Cabreiro, Filipe; Gustavsson, Peter; Copp, Andrew J; Greene, Nicholas D E

    2013-06-01

    Folates act as co-factors for transfer of one-carbon units for nucleotide production, methylation and other biosynthetic reactions. Comprehensive profiling of multiple folates can be achieved using liquid chromatography tandem mass spectrometry, enabling determination of their relative abundance that may provide an indication of metabolic differences between cell types. For example, cell lines exposed to methotrexate showed a dose-dependent elevation of dihydrofolate, consistent with inhibition of dihydrofolate reductase. We analysed the folate profile of E. coli sub-types as well as cell lines and embryonic tissue from both human and mouse. The folate profile of bacteria differed markedly from those of all the mammalian samples, most notably in the greater abundance of formyl tetrahydrofolate. The overall profiles of mouse and human fibroblasts and mid-gestation mouse embryos were broadly similar, with specific differences. The major folate species in these cell types was 5-methyl tetrahydrofolate, in contrast to lymphoblastoid cell lines in which the predominant form was tetrahydrofolate. Analysis of embryonic human brain revealed a shift in folate profile with increasing developmental stage, with a decline in relative abundance of dihydrofolate and increase in 5-methyl tetrahydrofolate. These cell type-specific and developmental changes in folate profile may indicate differential requirements for the various outputs of folate metabolism.

  8. Status of vitamin B-12 and B-6 but not of folate, homocysteine and the methylenetetrahydrofolate reductase C677T polymorphism are associated with impaired cognition and depression in adults

    USDA-ARS?s Scientific Manuscript database

    The C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene differs in frequency in different ethnic groups which have differing prevalence of age-related cognitive impairments. We used a battery of neuropsychological tests to examine association of the MTHFR C677T polymorphism w...

  9. Alteration of the alkaloid profile in genetically modified tobacco reveals a role of methylenetetrahydrofolate reductase in nicotine N-demethylation

    USDA-ARS?s Scientific Manuscript database

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine forming Met, which is then used for the syn...

  10. Relationship between the 19 base pair deletion polymorphism in DHFR and unmetabolized folic and in plasma and RBC folate

    USDA-ARS?s Scientific Manuscript database

    Background: A 19 base pair (bp) deletion allele of dihydrofolate reductase (DHFR), an enzyme that makes folic acid metabolically active and reduces dihydrofolate to tetrahydrofolate to stimulate folate turnover, has been implicated in folate related health outcomes. Objective: Examine the effect ...

  11. Prevalence of MTHFR C677T Polymorphism in North Indian Mothers Having Babies with Trisomy 21 Down Syndrome

    ERIC Educational Resources Information Center

    Kohli, Utkarsh; Arora, Sadhna; Kabra, Madhulika; Ramakrishnan, Lakshmy; Gulati, Sheffali; Pandey, Ravindra

    2008-01-01

    Recent studies have evaluated possible links between polymorphisms in maternal folate metabolism genes and Down syndrome. Some of these studies show a significantly increased prevalence of the C677T polymorphism of the 5,10-methylene tetrahydrofolate reductase (NADPH) gene (MTHFR) among mothers who have had babies with Down syndrome. This study…

  12. A 19-base pair deletion polymorphism in dihydrofolate reductase is associated with increased unmetabolized folic acid in plasma and decreased red blood cell folate

    USDA-ARS?s Scientific Manuscript database

    Dihydrofolate reductase (DHFR) catalyzes the reduction of folic acid to tetrahydrofolate (THF). A 19-bp noncoding deletion allele maps to intron 1, beginning 60 bases from the splice donor site, and has been implicated in neural tube defects and cancer, presumably by influencing folate metabolism. T...

  13. Prevalence of MTHFR C677T Polymorphism in North Indian Mothers Having Babies with Trisomy 21 Down Syndrome

    ERIC Educational Resources Information Center

    Kohli, Utkarsh; Arora, Sadhna; Kabra, Madhulika; Ramakrishnan, Lakshmy; Gulati, Sheffali; Pandey, Ravindra

    2008-01-01

    Recent studies have evaluated possible links between polymorphisms in maternal folate metabolism genes and Down syndrome. Some of these studies show a significantly increased prevalence of the C677T polymorphism of the 5,10-methylene tetrahydrofolate reductase (NADPH) gene (MTHFR) among mothers who have had babies with Down syndrome. This study…

  14. Say what? The activity of the polyamine biosynthesis inhibitor difluoromethylornithine (DFMO) in chemoprevention is a result of reduced thymidine pools?

    PubMed Central

    Casero, Robert A.

    2013-01-01

    Summary In the current issue of Cancer Discovery, Witherspoon, Lipkin and colleagues use an unbiased metabolite profiling approach to study the effects of polyamine depletion by DFMO in colon cancer cells. Their surprising findings indicate that it is a decrease in thymidine pools resulting from altered tetrahydrofolate availability rather than decreases in polyamines that produce cytostasis. PMID:24019331

  15. Say what? The activity of the polyamine biosynthesis inhibitor difluoromethylornithine in chemoprevention is a result of reduced thymidine pools?

    PubMed

    Casero, Robert A

    2013-09-01

    In this issue of Cancer Discovery, Witherspoon and colleagues use an unbiased metabolite profiling approach to study the effects of polyamine depletion by 2-difluoromethylornithine in colon cancer cells. Their surprising findings indicate that it is a decrease in thymidine pools resulting from altered tetrahydrofolate availability rather than decreases in polyamines that produces cytostasis.

  16. Is the coexistence of mutations in the genes of factor V and MTHFR a predisposing factor for massive skin necrosis due to loxoscelism?

    PubMed

    Mandel, Y; Grotto, I; Gdalevich, M; Mimouni, D; Ashkenazi, I; Haviv, J; Shpilberg, O

    1998-01-01

    A 28-year-old previously healthy man was diagnosed as having an extensive necrotic lesion of his calf due to loxoscelism. One year later he was diagnosed as having co-inheritance of mutations in factor V and methyl tetrahydrofolate reductase (MTHFR). This is the first report of a possible etiologic connection between loxoscelism necrotic lesions and thrombogenic diseases.

  17. Prevalence of MTHFR C677T and MS A2756G polymorphisms in major depressive disorder, and their impact on response to fluoxetine treatment

    USDA-ARS?s Scientific Manuscript database

    To examine the prevalence of the C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene and the A2756G polymorphism of methionine synthase (MS), and their impact on antidepressant response. We screened 224 subjects (52% female, mean age 39 +/- 11 years) with SCID-diagnosed major...

  18. Corrinoid-Dependent Methyl Transfer Reactions Are Involved in Methanol and 3,4-Dimethoxybenzoate Metabolism by Sporomusa ovata

    PubMed Central

    Stupperich, Erhard; Konle, Ralph

    1993-01-01

    Washed and air-oxidized proteins from Sporomusa ovata cleaved the C-O bond of methanol or methoxyaromatics and transferred the methyl to dl-tetrahydrofolate. The reactions strictly required a reductive activation by titanium citrate, catalytic amounts of ATP, and the addition of dl-tetrahydrofolate. Methylcorrinoid-containing proteins carried the methanol methyl, which was transferred to dl-tetrahydrofolate at a specific rate of 120 nmol h-1 mg of protein-1. Tetrahydrofolate methylation diminished after the addition of 1-iodopropane or when the methyl donor methanol was replaced by 3,4-dimethoxybenzoate. However, whole Sporomusa cells utilize the methoxyl groups of 3,4-dimethoxybenzoate as a carbon source by a sequential O demethylation to 4-hydroxy-3-methoxybenzoate and 3,4-dihydroxybenzoate. The in vitro O demethylation of 3,4-[4-methoxyl-14C]dimethoxybenzoate proceeded via two distinct corrinoid-containing proteins to form 5-[14C]methyltetrahydrofolate at a specific rate of 200 nmol h-1 mg of protein-1. Proteins from 3,4-dimethoxybenzoate-grown cells efficiently used methoxybenzoates with vicinal substituents only, but they were unable to activate methanol. These results emphasized that specific enzymes are involved in methanol activation as well as in the activation of various methoxybenzoates and that similar corrinoid-dependent methyl transfer pathways are employed in 5-methyl-tetrahydrofolate formation from these substrates. Methyl-tetrahydrofolate could be demethylated by a distinct methyl transferase. That enzyme activity was present in washed and air-oxidized cell extracts from methanol-grown cells and from 3,4-dimethoxybenzoate-grown cells. It used cob(I)alamin as the methyl acceptor in vitro, which was methylated at a rate of 48 nmol min-1 mg of protein-1 even when ATP was omitted from the assay mixture. This methyl-cob(III)alamin formation made possible a spectrophotometric quantification of the preceding methyl transfers from methanol or

  19. Evaluation of ascorbic acid in protecting labile folic acid derivatives.

    PubMed

    Wilson, S D; Horne, D W

    1983-11-01

    The use of ascorbic acid as a reducing agent to protect labile, reduced derivatives of folic acid has been evaluated by high-performance liquid chromatographic separations and Lactobacillus casei microbiological assay of eluate fractions. Upon heating for 10 min at 100 degrees C, solutions of tetrahydropteroylglutamic acid (H4PteGlu) in 2% sodium ascorbate gave rise to 5,10-methylene-H4PteGlu and 5-methyl-H4PteGlu. H2PteGlu acid gave rise to 5-methyl-H4PteGlu and PteGlu. 10-Formyl-H4PteGlu gave rise to 5-formyl-H4PteGlu and 10-formyl-PteGlu. 5-Formyl-H4-PteGlu gave rise to a small amount of 10-formyl-PteGlu. 5-Methyl-H4PteGlu and PteGlu appeared stable to these conditions. These interconversions were not seen when solutions of these folate derivatives were kept at 0 degrees C in 1% ascorbate. These observations indicate that elevated temperatures are necessary for the interconversions of folates in ascorbate solutions. Assays of ascorbic acid solutions indicated the presence of formaldehyde (approximately equal to 6 mM). This was confirmed by the identification of 3,5-diacetyl-1,4-dihydrolutidine by UV, visible, and fluorescence spectroscopy and by thin-layer chromatography of chloroform extracts of the reaction mixture of ascorbic acid solutions, acetylacetone, and ammonium acetate. These results indicate that solutions of sodium ascorbate used at elevated temperatures are not suitable for extracting tissue for the subsequent assay of the individual folic acid derivatives.

  20. Evaluation of ascorbic acid in protecting labile folic acid derivatives.

    PubMed Central

    Wilson, S D; Horne, D W

    1983-01-01

    The use of ascorbic acid as a reducing agent to protect labile, reduced derivatives of folic acid has been evaluated by high-performance liquid chromatographic separations and Lactobacillus casei microbiological assay of eluate fractions. Upon heating for 10 min at 100 degrees C, solutions of tetrahydropteroylglutamic acid (H4PteGlu) in 2% sodium ascorbate gave rise to 5,10-methylene-H4PteGlu and 5-methyl-H4PteGlu. H2PteGlu acid gave rise to 5-methyl-H4PteGlu and PteGlu. 10-Formyl-H4PteGlu gave rise to 5-formyl-H4PteGlu and 10-formyl-PteGlu. 5-Formyl-H4-PteGlu gave rise to a small amount of 10-formyl-PteGlu. 5-Methyl-H4PteGlu and PteGlu appeared stable to these conditions. These interconversions were not seen when solutions of these folate derivatives were kept at 0 degrees C in 1% ascorbate. These observations indicate that elevated temperatures are necessary for the interconversions of folates in ascorbate solutions. Assays of ascorbic acid solutions indicated the presence of formaldehyde (approximately equal to 6 mM). This was confirmed by the identification of 3,5-diacetyl-1,4-dihydrolutidine by UV, visible, and fluorescence spectroscopy and by thin-layer chromatography of chloroform extracts of the reaction mixture of ascorbic acid solutions, acetylacetone, and ammonium acetate. These results indicate that solutions of sodium ascorbate used at elevated temperatures are not suitable for extracting tissue for the subsequent assay of the individual folic acid derivatives. PMID:6415653

  1. A FRET enzyme-based probe for monitoring hydrogen sulfide.

    PubMed

    Strianese, Maria; Palm, Gottfried J; Milione, Stefano; Kühl, Olaf; Hinrichs, Winfried; Pellecchia, Claudio

    2012-11-05

    Fluorescently labeled cobalt peptide deformylase (Co-PDF) can be efficiently used as a fluorescence-resonance-energy-transfer-based sensing device for hydrogen sulfide (H(2)S). The proof of concept of our sensor system is substantiated by spectroscopic, structural, and theoretical results. Monohydrogen sulfide coordination to Co-PDF and Ni-PDF was verified by X-ray crystallography. Density functional theory calculations were performed to gain insight into the characteristics of the coordination adduct between H(2)S and the cobalt cofactor in Co-PDF.

  2. Chronicles in drug discovery.

    PubMed

    Khurdayan, V; Bozzo, J; Sorbera, L

    2005-06-01

    Chronicles in Drug Discovery is a series of brief reports on timely topics in the field of drug R&D. This month's chronicles contain the following reports: Targeting DNA repair enzymes instead of viral proteins provides a great advantage in preventing the emergence of resistant mutants. A striking increase in therapeutic approaches for the treatment of IBD has been fueled by an improved understanding of the mechanisms that underlie its pathophysiology. Peptide deformylase inhibitors are under active investigation for bacterial infections and cancer treatment. Dopamine D3 receptors present an attractive target for alcoholism therapy since they are involved in the mechanisms of alcohol dependency and abuse.

  3. The Search for Herbal Antibiotics: An In-Silico Investigation of Antibacterial Phytochemicals

    PubMed Central

    Snow Setzer, Mary; Sharifi-Rad, Javad; Setzer, William N.

    2016-01-01

    Recently, the emergence and spread of pathogenic bacterial resistance to many antibiotics (multidrug-resistant strains) have been increasing throughout the world. This phenomenon is of great concern and there is a need to find alternative chemotherapeutic agents to combat these antibiotic-resistant microorganisms. Higher plants may serve as a resource for new antimicrobials to replace or augment current therapeutic options. In this work, we have carried out a molecular docking study of a total of 561 antibacterial phytochemicals listed in the Dictionary of Natural Products, including 77 alkaloids (17 indole alkaloids, 27 isoquinoline alkaloids, 4 steroidal alkaloids, and 28 miscellaneous alkaloids), 99 terpenoids (5 monoterpenoids, 31 sesquiterpenoids, 52 diterpenoids, and 11 triterpenoids), 309 polyphenolics (87 flavonoids, 25 chalcones, 41 isoflavonoids, 5 neoflavonoids, 12 pterocarpans, 10 chromones, 7 condensed tannins, 11 coumarins, 30 stilbenoids, 2 lignans, 5 phenylpropanoids, 13 xanthones, 5 hydrolyzable tannins, and 56 miscellaneous phenolics), 30 quinones, and 46 miscellaneous phytochemicals, with six bacterial protein targets (peptide deformylase, DNA gyrase/topoisomerase IV, UDP-galactose mutase, protein tyrosine phosphatase, cytochrome P450 CYP121, and NAD+-dependent DNA ligase). In addition, 35 known inhibitors were docked with their respective targets for comparison purposes. Prenylated polyphenolics showed the best docking profiles, while terpenoids had the poorest. The most susceptible protein targets were peptide deformylases and NAD+-dependent DNA ligases. PMID:27626453

  4. Mutations in ADE3 reduce the efficiency of the omnipotent suppressor sup45-2.

    PubMed

    Song, J M; Liebman, S W

    1989-12-01

    Mutations in a known yeast gene, ADE3, were shown to act as an antisuppressor, reducing the efficiency of the omnipotent suppressor, sup45-2. The ADE3 locus encodes the trifunctional enzyme C1-tetrahydrofolate synthase, which is required for the biosynthesis of purines, thymidylate, methionine, histidine, pantothenic acid and formylmethionyl-tRNA(fMet. The role of this enzyme in translational fidelity had not previously been suspected.

  5. Whipple's disease, genomics, and drug therapy

    SciTech Connect

    Cannon, William R.

    2003-05-31

    The recent articles concerning the release of the genome for Tropheryma whipplei [1, 2], the causative agent of Whipple's disease, anticipate new medical discoveries and conclusions that will be drawn from the decoding of the genome. Although the reports mention that genes for key metabolic processes were missing, we were nevertheless surprised to find that the genome does not contain the coding sequence for dihydrofolate reductase (DHFR). This is significant because competitive inhibition of DHFR by trimethoprim is the mode of action of this antibacterial agent. Lacking an adequate population for clinical studies, retrospective analyses and patient series ([3, 4] references therein) have concluded that the drug combination of trimethoprim and sulfamethoxazole are the preferred treatment regimes. The treatment goal is to disrupt purine and pyrimidine synthesis, and hence replication, by shutting down tetrahydrofolate biosynthesis. However, while the use of trimethoprim will affect the host, thereby indirectly affect the bacterium through a reduced tetrahydorfolate pool, it is unlikely that trimethoprim has any effect on tetrahydrofolate production in T. whipplei. To be sure that there weren't any weak homologues to DHFR or that the DHFR gene was somehow missed due to being part of a multi-functional enzyme, we performed a sequence search (TBLASTN) of the T. whipplei genome using the DHFR protein sequence from the fellow actinomycete, Mycobaterium tuberculosis, as the target sequence. No close or distant homologues were found. While some bacterial plasmids code for a type II DHFR that has no homology to the more common type I DHFR found in most species, type II DHFR does not bind trimethoprim and tetrahydrofolate production is unaffected by the presence of trimethoprim. Furthermore, the genome additionally lacks a gene for thymidylate synthetase, another key enzyme in the folate-one carbon pathway that utilizes the DHFR product tetrahydrofolate. Lacking randomized

  6. Simple procedure for the synthesis of high specific activity tritiated (6S)-5-formyltetrahydrofolate

    SciTech Connect

    Moran, R.G.; Colman, P.D.

    1982-05-01

    The 5-position of tetrahydrofolate was found to be unusually reactive with low concentrations of formic acid in the presence of a water-soluble carbodiimide. The product of this reaction has neutral and acid ultraviolet spectra and chromatographic behavior consistent with its identity as 5-formyltetrahydrofolate (leucovoriun). When enzymatically synthesized (6S)-tetrahydrofolate was used as starting material, the product supported the growth of folate-depleted L1210 cells at one-half the concentration required for authentic (6R,S)-leucovorin. This reaction has been used to produce high specific activity (44 Ci/mmol) (/sup 3/H)(6S)-5-formyltetrahydrofolate in high yield. Experiments with (/sup 14/C)formic acid indicate that 1 mol of formate reacted per mol of tetrahydrofolate but that no reaction occurred with a variety of other folate compounds. (6S)-5-Formyltetrahydrofolate, labeled in the formyl group with /sup 14/C, has also been synthesized using this reaction. These easily produced, labeled folates should allow close examination of the transport and utilization of leucovorin and of the mechanism of reversal of methotrexate toxicity by reduced folate cofactors.

  7. Formate can differentiate between hyperhomocysteinemia due to impaired remethylation and impaired transsulfuration

    PubMed Central

    Lamarre, Simon G.; Molloy, Anne M.; Reinke, Stacey N.; Sykes, Brian D.; Brosnan, Margaret E.

    2012-01-01

    Formate can differentiate between hyperhomocysteinemia due to impaired remethylation and impaired transsulfuration. Am J Physiol Endocrinol Metab 301: E000–E000, 2011. First published September 20, 2011; 10.1152/ajpendo.00345.2011.—We carried out a 1H-NMR metabolomic analysis of sera from vitamin B12-deficient rats. In addition to the expected increases in methylmalonate and homocysteine (Hcy), we observed an approximately sevenfold increase in formate levels, from 64 μM in control rats to 402 μM in vitamin B12-deficient rats. Urinary formate was also elevated. This elevation of formate could be attributed to impaired one-carbon metabolism since formate is assimilated into the one-carbon pool by incorporation into 10-formyl-THF via the enzyme 10-formyl-THF synthase. Both plasma and urinary formate were also increased in folate-deficient rats. Hcy was elevated in both the vitamin B12- and folate-deficient rats. Although plasma Hcy was also elevated, plasma formate was unaffected in vitamin B6-deficient rats (impaired transsulfuration pathway). These results were in accord with a mathematical model of folate metabolism, which predicted that reduction in methionine synthase activity would cause increased formate levels, whereas reduced cystathionine β-synthase activity would not. Our data indicate that formate provides a novel window into cellular folate metabolism, that elevated formate can be a useful indicator of deranged one-carbon metabolism and can be used to discriminate between the hyperhomocysteinemia caused by defects in the remethylation and transsulfuration pathways. PMID:21934042

  8. 5-Formyltetrahydrofolate is an inhibitory but well tolerated metabolite in Arabidopsis leaves.

    PubMed

    Goyer, Aymeric; Collakova, Eva; Díaz de la Garza, Rocío; Quinlivan, Eoin P; Williamson, Jerry; Gregory, Jesse F; Shachar-Hill, Yair; Hanson, Andrew D

    2005-07-15

    5-Formyltetrahydrofolate (5-CHO-THF) is formed via a second catalytic activity of serine hydroxymethyltransferase (SHMT) and strongly inhibits SHMT and other folate-dependent enzymes in vitro. The only enzyme known to metabolize 5-CHO-THF is 5-CHO-THF cycloligase (5-FCL), which catalyzes its conversion to 5,10-methenyltetrahydrofolate. Because 5-FCL is mitochondrial in plants and mitochondrial SHMT is central to photorespiration, we examined the impact of an insertional mutation in the Arabidopsis 5-FCL gene (At5g13050) under photorespiratory (30 and 370 micromol of CO2 mol(-1)) and non-photorespiratory (3200 micromol of CO2 mol(-1)) conditions. The mutation had only mild visible effects at 370 micromol of CO2 mol(-1), reducing growth rate by approximately 20% and delaying flowering by 1 week. However, the mutation doubled leaf 5-CHO-THF level under all conditions and, under photorespiratory conditions, quadrupled the pool of 10-formyl-/5,10-methenyltetrahydrofolates (which could not be distinguished analytically). At 370 micromol of CO2 mol(-1), the mitochondrial 5-CHO-THF pool was 8-fold larger in the mutant and contained most of the 5-CHO-THF in the leaf. In contrast, the buildup of 10-formyl-/5,10-methenyltetrahydrofolates was extramitochondrial. In photorespiratory conditions, leaf glycine levels were up to 46-fold higher in the mutant than in the wild type. Furthermore, when leaves were supplied with 5-CHO-THF, glycine accumulated in both wild type and mutant. These data establish that 5-CHO-THF can inhibit SHMT in vivo and thereby influence glycine pool size. However, the near-normal growth of the mutant shows that even exceptionally high 5-CHO-THF levels do not much affect fluxes through SHMT or any other folate-dependent reaction, i.e. that 5-CHO-THF is well tolerated in plants.

  9. Design, Synthesis, and Antibacterial Activities of Novel Heterocyclic Arylsulphonamide Derivatives.

    PubMed

    Singh, Anuradha; Srivastava, Ritika; Singh, Ramendra K

    2017-02-13

    Design, synthesis, and antibacterial activities of a series of arylsulphonamide derivatives as probable peptide deformylase (PDF) inhibitors have been discussed. Compounds have been designed following Lipinski's rule and after docking into the active site of PDF protein (PDB code: 1G2A) synthesized later on. Furthermore, to assess their antibacterial activity, screening of the compound was done in vitro conditions against Gram-positive and Gram-negative bacterial strains. In silico, studies revealed these compounds as potential antibacterial agents and this fact was also supported by their prominent scoring functions. Antibacterial results indicated that these molecules possessed a significant activity against Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Escherichia coli with MIC values ranging from 0.06 to 0.29 μM. TOPKAT results showed that high LD50 values and the compounds were assumed non-carcinogenic when various animal models were studied computationally.

  10. Antibacterial agents: patent highlights January to June 2004.

    PubMed

    Phillips, Oludotun A

    2004-08-01

    This review presents highlights of 32 patents, published between January and June 2004, detailing different classes of antibacterial agents. Disclosures on novel oxazolidinone derivatives with antibacterial activity continue to dominate patent publications in recent years. Novel oxazolidinone derivatives active against linezolid-resistant cocci are reviewed. Patents on beta-lactam antibiotics focused mainly on developing new processes and formulations to improve cost, purity and pharmacokinetic parameters of existing clinical agents. Disclosures on novel potential dual-acting macrolide-quinolone hybrids designed to overcome erythromycin resistance, and new macrolide derivatives with antimycobacterial activity are described. Also presented are novel antibacterial agents, including peptide deformylase and cell-wall inhibitors, and those with undefined mechanisms of action as potential lead compounds, as well as quinolone and quinoline derivatives.

  11. Interplay between trigger factor and other protein biogenesis factors on the ribosome

    NASA Astrophysics Data System (ADS)

    Bornemann, Thomas; Holtkamp, Wolf; Wintermeyer, Wolfgang

    2014-06-01

    Nascent proteins emerging from translating ribosomes in bacteria are screened by a number of ribosome-associated protein biogenesis factors, among them the chaperone trigger factor (TF), the signal recognition particle (SRP) that targets ribosomes synthesizing membrane proteins to the membrane and the modifying enzymes, peptide deformylase (PDF) and methionine aminopeptidase (MAP). Here, we examine the interplay between these factors both kinetically and at equilibrium. TF rapidly scans the ribosomes until it is stabilized on ribosomes presenting TF-specific nascent chains. SRP binding to those complexes is strongly impaired. Thus, TF in effect prevents SRP binding to the majority of ribosomes, except those presenting SRP-specific signal sequences, explaining how the small amount of SRP in the cell can be effective in membrane targeting. PDF and MAP do not interfere with TF or SRP binding to translating ribosomes, indicating that nascent-chain processing can take place before or in parallel with TF or SRP binding.

  12. Measurement of environmental formylmethionyl-peptides.

    PubMed

    Siegel, P D; Ronk, E A; Clark, P R; Shahan, T A; Castranova, V

    1994-07-01

    Formylmethionyl-peptides are naturally occurring, biologically active ligands produced by bacteria. They produce a variety of biological effects including neutrophil chemotaxis, cellular degranulation, oxygen-free radical production, and smooth muscle contraction. Our studies have demonstrated that oxidized and reduced forms of formylmethionyl-leucyl-phenylalanine (fMLP) can be detected in bulk environmental organic dust samples. Organic dust fMLP content may not reflect total formylmethionyl-peptide content and pathological sequelae. Attempts to develop a total formylmethionyl-peptide assay that would reflect its pathological potential have thus far been unsuccessful. Information has been derived concerning the biology of formylmethionyl-peptides from these studies. Chromatographic, radioenzymatic, and radioreceptor-ligand binding studies were performed. High-performance liquid chromatography (HPLC) analysis of synthetic and environmental fMLP demonstrated that fMLP is labile, forming three oxidation products. HPLC is limited by inadequate sensitivity for air sample analysis and the probability of the presence of multiple formylmethionyl-peptides. Deformylases were isolated from Escherichia coli, but their usefulness in a competitive assay to detect formylmethionyl-peptides was limited by specificity differences from that for biological receptors. Receptor binding studies were conducted in an attempt to replace the deformylase with a biological receptor. The receptor binding patterns noted were consistent with the existence of three distinct formylmethionyl-peptide receptor subsets in neutrophils and alveolar macrophages. The plurality of fMLP receptor subtypes interfered with formylmethionyl-peptide measurement in a competitive assay. Formylmethionyl-peptides may contribute to organic dust-induced disease, but better techniques for the assessment of exposure to these agents are needed to properly assess their health impact.

  13. Role of renal metabolism and excretion in 5-nitrofuran-induced uroepithelial cancer in the rat.

    PubMed Central

    Spry, L A; Zenser, T V; Cohen, S M; Davis, B B

    1985-01-01

    5-Nitrofurans have been used in the study of chemical carcinogenesis. There is substantial evidence that N-[4-(5-nitro-2-furyl)-2-thiazolyl] formamide (FANFT) is deformylated to 2-amino-4-(5-nitro-2-furyl)thiazole (ANFT) in the process of FANFT-induced bladder cancer. Paradoxically, ANFT is less potent as a uroepithelial carcinogen than FANFT when fed to rats. Feeding aspirin with FANFT to rats decreases the incidence of bladder cancer. Isolated kidneys were perfused with 5-nitrofurans to determine renal clearances and whether aspirin acts to decrease urinary excretion of the carcinogen. In FANFT-perfused kidneys, FANFT was deformylated to ANFT and excreted (1.06 +/- 0.22 nmol/min) at a rate eightfold higher than excretion of FANFT. In kidneys perfused with equimolar ANFT, excretion of ANFT was 0.25 +/- 0.05 nmol/min, which suggests a coupling of renal deformylation of FANFT to excretion of ANFT in FANFT-perfused kidneys. Neither aspirin nor probenecid altered the urinary excretion or half-life of FANFT or ANFT. In rats fed 0.2% FANFT as part of their diet, coadministration of aspirin (0.5%) increased urinary excretion of ANFT during a 12-wk feeding study, which suggests decreased tissue binding or metabolism of ANFT. Kidney perfusion with acetylated ANFT (NFTA), a much less potent uroepithelial carcinogen, resulted in no ANFT excretion or accumulation, which indicates the specificity of renal deformylase. Renal deformylase activity was found in broken cell preparations of rat and human kidney. These data describe a unique renal metabolic/excretory coupling for these compounds that appears to explain the differential carcinogenic potential of the 5-nitrofurans tested. These results are consistent with the hypothesis that aspirin decreases activation of ANFT by inhibiting prostaglandin H synthase. PMID:4044826

  14. Synthesis and deformylation of Staphylococcus aureus delta-toxin are linked to tricarboxylic acid cycle activity.

    PubMed

    Somerville, Greg A; Cockayne, Alan; Dürr, Manuela; Peschel, Andreas; Otto, Michael; Musser, James M

    2003-11-01

    In bacteria, translation initiates with formyl-methionine; however, the N-terminal formyl group is usually removed by peptide deformylase, an enzymatic activity requiring iron. Staphylococcus aureus delta-toxin is a 26-amino-acid polypeptide secreted predominantly with a formylated N-terminal methionine, which led us to investigate regulation of delta-toxin deformylation. We observed that during exponential and early postexponential growth, delta-toxin accumulated in the culture medium in formylated and deformylated forms. In contrast, only formylated delta-toxin accumulated after the early postexponential phase. The transition from producing both species of delta-toxin to producing only formyl-methionine-containing delta-toxin coincided with increased tricarboxylic acid (TCA) cycle activity. The TCA cycle contains several iron-requiring enzymes, which led us to hypothesize that TCA cycle induction depletes the iron in the culture medium, thereby inhibiting peptide deformylase activity. As expected, S. aureus depletes the iron in the culture medium between the postexponential and stationary phases of growth. Inhibition of delta-toxin deformylation was relieved by TCA cycle inactivation or by addition of supplemental iron to the culture medium. Of interest, peptides containing formyl-methionine are potent chemoattractants for neutrophils, suggesting that delta-toxin deformylation may have functional consequences. We found neutrophil chemotactic activity only with formylated delta-toxin. The S. aureus TCA cycle is derepressed upon depletion of rapidly catabolizable carbon sources; this coincides with the transition to producing only formylated delta-toxin and results in an increased inflammatory response. The proinflammatory response should increase host cell damage and result in the release of nutrients. Taken together, these results establish that there is an important linkage between bacterial metabolism and pathogenesis.

  15. Novel Isonitrile Hydratase Involved in Isonitrile Metabolism*

    PubMed Central

    Sato, Hiroyoshi; Hashimoto, Yoshiteru; Fukatsu, Hiroshi; Kobayashi, Michihiko

    2010-01-01

    We previously discovered N-substituted formamide deformylase (NfdA) in Arthrobacter pascens F164, which degrades N-substituted formamide (Fukatsu, H., Hashimoto, Y., Goda, M., Higashibata, H., and Kobayashi, M. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 13726–13731). In this study, we found an enzyme involved in the first step of isonitrile metabolism, isonitrile hydratase, that hydrates isonitrile to the corresponding N-substituted formamide. First, we investigated the optimum culture conditions for the production of isonitrile hydratase. The highest enzyme activity was obtained when A. pascens F164 was cultured in a nutrient medium containing N-benzylformamide. This Arthrobacter isonitrile hydratase was purified, characterized, and compared with Pseudomonas putida N19-2 isonitrile hydratase (InhA), which is the sole one reported at present. Arthrobacter isonitrile hydratase was found to have a molecular mass of about 530 kDa and to consist of 12 identical subunits. The apparent Km value for cyclohexyl isocyanide was 0.95 ± 0.05 mm. A. pascens F164 grew and exhibited the isonitrile hydratase and N-substituted formamide deformylase activities when cultured in a medium containing an isonitrile as the sole carbon and nitrogen sources. However, both enzyme activities were not observed on culture in a medium containing glycerol and (NH4)2SO4 as the sole carbon and nitrogen sources, respectively. These findings suggested that the Arthrobacter enzyme is an inducible enzyme, possibly involved in assimilation and/or detoxification of isonitrile. Moreover, gene cloning of the Arthrobacter enzyme revealed no sequence similarity between this enzyme and InhA. Comparison of their properties and features demonstrated that the two enzymes are biochemically, immunologically, and structurally different from each other. Thus, we discovered a new isonitrile hydratase named InhB. PMID:20826798

  16. Mammalian folylpoly-. gamma. -glutamate synthetase. 2. Substrate specificity and kinetic properties

    SciTech Connect

    Cichowicz, D.J.; Shane, B.

    1987-01-27

    The specificity of hog liver folylpolyglutamate synthetase for folate substrates and for nucleotide and L-(/sup 14/C)glutamate substrates and analogues has been investigated. The kinetic mechanism, determined by using aminopterin as the folate substrate, is ordered Ter-Ter with MgATP binding first, folate second, and glutamate last. This mechanism precludes the sequential addition of glutamate moieties to enzyme-bound folate. Folate, dihydrofolate, and tetrahydrofolate possess the optimal configurations for catalysis while 5- and 10-position substitutions of the folate molecule impair catalysis. k/sub cat/ values decrease with increasing glutamate chain length, and the rate of decrease varies depending on the state of reduction and substitution of the folate molecule. Folate binding, as assessed by on rates, is slow. Dihydrofolate exhibits the fastest rate, and the rates are slightly reduced for tetrahydrofolate and 10-formyltetrahydrofolate and greatly reduced for 5-methyltetrahydrofolate and folic acid. Tetrahydrofolate polyglutamates are the only long glutamate chain length folates with detectable substrate activity. The specificity of the L-glutamate binding site is very narrow. L-Homocysteate and 4-threo-fluoroglutamate are alternate substrates and act as chain termination inhibitors in that their addition to the folate molecule prevents or severely retards the further addition of glutamate moieties. The K/sub m/ for glutamate is dependent on the folate substrate used. MgATP is the preferred nucleotide substrate, and ..beta..,..gamma..-methylene-ATP, ..beta..,..gamma..-imido-ATP, adenosine 5'-O-(3-thiotriphosphate), P/sup 1/,P/sup 5/-di(adenosine-5') pentaphosphate, and free ATP/sup 4 -/ are potent inhibitors of the reaction.

  17. Substrate activity of synthetic formyl phosphate in the reaction catalyzed by formyltetrahydrofolate synthetase

    SciTech Connect

    Smithers, G.W.; Jahansouz, H.; Kofron, J.L.; Himes, R.H.; Reed, G.H.

    1987-06-30

    Formyl phosphate, a putative enzyme-bound intermediate in the reaction catalyzed by formyltetrahydrofolate synthetase (EC 6.3.4.3), was synthesized from formyl fluoride and inorganic phosphate, and the product was characterized by /sup 31/P, /sup 1/H, and /sup 13/C nuclear magnetic resonance (NMR). Measurement of hydrolysis rates by /sup 31/P NMR indicates that formyl phosphate is particularly labile, with a half-life of 48 min in a buffered neutral solution at 20 /sup 0/C. At pH 7, hydrolysis occurs with P-O bond cleavage, as demonstrated by /sup 18/O incorporation from H/sub 2//sup 18/O into P/sub i/, while at pH 1 and pH 13 hydrolysis occurs with C-O bond cleavage. The substrate activity of formyl phosphate was tested in the reaction catalyzed by formyltetrahydrofolate synthetase isolated from Clostridium cylindrosporum. Formyl phosphate supports the reaction in both the forward and reverse directions. Thus, N/sup 10/-formyltetrahydrofolate is produced from tetrahydrofolate and formyl phosphate in a reaction mixture that contains enzyme, Mg(II), and ADP, and ATP is produced from formyl phosphate and ADP with enzyme, Mg(II), and tetrahydrofolate present. The requirements for ADP and for tetrahydrofolate as cofactors in these reactions are consistent with previous steady-state kinetic and isotope exchange studies, which demonstrated that all substrate subsites must be occupied prior to catalysis. The k/sub cat/ values for both the forward and reverse directions, with formyl phosphate as the substrate, are much lower than those for the normal forward and reverse reactions. Kinetic analysis of the formyl phosphate supported reactions indicates that the low steady-state rates observed for the synthetic intermediate are most likely due to the sequential nature of the normal reaction.

  18. The role of purine degradation in methane biosynthesis and energy production in Methanococcus vannielii. Progress report

    SciTech Connect

    DeMoll, E.

    1998-11-01

    Firstly, characterization of a purine degrading pathway in Methanococcus vannielii was determined. The pathway is similar to that described for Clostridia. The M. vannielli pathway differs in a few respects from the Clostridial pathway. The pathway of Clostridia uses tetrahydrofolic acid (THF), whereas the pathway of M. vannielii uses tetrahydromethanopterin (H{sub 4}MPt) as a cofactor in the transfer of both the formimino moiety of formiminoglycine and apparently in the cleavage of glycine by a glycin decarboxylase type mechanism that is dependent upon at least H{sub 4}MPt and either NAD{sup +} or NADP{sup +}. Secondly, the relationship of purine degradation to methanogenesis was investigated.

  19. Interaction of Human Hemoglobin with Methotrexate

    NASA Astrophysics Data System (ADS)

    Zaharia, M.; Gradinaru, R.

    2015-05-01

    This study focuses on the interaction between methotrexate and human hemoglobin using steady-state ultraviolet-visible and fluorescence quenching methods. Fluorescence quenching was found to be valuable in assessing drug binding to hemoglobin. The quenching of methotrexate is slightly smaller than the quenching observed with related analogs (dihydrofolate and tetrahydrofolate). The quenching studies were performed at four different temperatures and various pH values. The number of binding sites for tryptophan is ~1. Parameter-dependent assays revealed that electrostatic forces play an essential role in the methotrexate-hemoglobin interaction. Furthermore, the complex was easily eluted using gel filtration chromatography.

  20. [Photobiochemistry of folates: a photochemical reduction of folic acid].

    PubMed

    Vechtomova, Iu L; Telegina, T A; Kolesnikov, M P; Kritskiĭ, M S

    2010-01-01

    Exposure of deaerated folic acid solutions containing an electron donor to UV radiation (310-390 nm, I = 0.4 W m(-2)) induced formation of dihydrofolic acid (DHFA), a photoexcitation which gave tetrahydrofolic acid (THFA). Only DHFA was formed in the presence of EDTA (E'o = +0.40 V), while the presence of stronger reductants-NADH (E'o = -0.32 V) and boron hydride (E'o = -0.48 V)-induced photoreduction to THFA. It was demonstrated that UV radiation had no effect on the THFA formylation, giving the coenzyme 5,10-methenyltetrahydrofolic acid and its transformation into another coenzyme, 5-formyltetrahydrofolic acid.

  1. Chromosomal localization of the gene for the human trifunctional enzyme, methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase.

    PubMed Central

    Rozen, R; Barton, D; Du, J; Hum, D W; MacKenzie, R E; Francke, U

    1989-01-01

    A trifunctional protein in man, 5,10-methylenetetrahydrofolate dehydrogenase-5,10-methenyltetrahydrofolate cyclohydrolase-10-formyltetrahydrofolate synthetase, catalyzes three consecutive steps in the interconversion of tetrahydrofolate derivatives; these derivatives supply one-carbon units for intermediary metabolism. Somatic cell hybridization and in situ hybridization were used to localize the functional gene coding for this protein--to human chromosome 14q24, near the c-fos and TGF-beta 3 loci. A second hybridizing sequence, possibly a pseudogene, was identified near the centromere of the X chromosome, at Xp11. Images Figure 1 PMID:2786332

  2. Is hyperhomocysteinemia relevant in patients with celiac disease?

    PubMed Central

    Casella, Giovanni; Bassotti, Gabrio; Villanacci, Vincenzo; Bella, Camillo Di; Pagni, Fabio; Corti, Gian Luigi; Sabatino, Giuseppe; Piatti, Mara; Baldini, Vittorio

    2011-01-01

    AIM: To investigate whether this might be related to the presence of hyperhomocysteinemia. METHODS: From January 1998 to December 2008, we evaluated the presence of hyperhomocysteinemia in a series of 165 adult celiac disease (CD) patients (138 females and 27 males, mean age 43 years). RESULTS: Hyperhomocysteinemia was evident in 32 patients (19.3%), although most of them had moderate levels (mean value 25 mcg/ml; range 15-30). Only one patient had a history of myocardial infarction (heterozygosis for N5-N10-metil tetrahydrofolate reductase mutation). CONCLUSION: The systematic assessment of hyperhomocysteinemia seems, at present, unjustified in CD patients. PMID:21734805

  3. Clustered folate receptors deliver 5-methyltetrahydrofolate to cytoplasm of MA104 cells

    PubMed Central

    1996-01-01

    Previously, a high affinity, glycosylphosphatidylinositol-anchored receptor for folate and a caveolae internalization cycle have been found necessary for potocytosis of 5-methyltetrahydrofolate in MA104. We now show by cell fractionation that folate receptors also must be clustered in caveolae for potocytosis. An enriched fraction of caveolae from control cells retained 65-70% of the [3H]folic acid bound to cells in culture. Exposure of cells to the cholesterol-binding drug, filipin, which is known to uncluster receptors, shifted approximately 50% of the bound [3H]folic acid from the caveolae fraction to the noncaveolae membrane fraction and markedly inhibited internalization of [3H]folic acid. An mAb directed against the folate receptor also shifted approximately 50% of the caveolae-associated [3H]folic acid to noncaveolae membrane, indicating the antibody perturbs the normal receptor distribution. Concordantly, the mAb inhibited the delivery of 5-methyl[3H]tetrahydrofolate to the cytoplasm. Receptor bound 5- methyl[3H]tetrahydrofolate moved directly from caveolae to the cytoplasm and was not blocked by phenylarsine oxide, an inhibitor of receptor-mediated endocytosis. These results suggest cell fractionation can be used to study the uptake of molecules by caveolae. PMID:8794859

  4. Bacterial growth with chlorinated methanes.

    PubMed Central

    Leisinger, T; Braus-Stromeyer, S A

    1995-01-01

    Chlorinated methanes are important industrial chemicals and significant environmental pollutants. While the highly chlorinated methanes, trichloromethane and tetrachloromethane, are not productively metabolized by bacteria, chloromethane and dichloromethane are used by both aerobic and anaerobic methylotrophic bacteria as carbon and energy sources. Some of the dehalogenation reactions involved in the utilization of the latter two compounds have been elucidated. In a strictly anaerobic acetogenic bacterium growing with chloromethane, an inducible enzyme forming methyltetrahydrofolate and chloride from chloromethane and tetrahydrofolate catalyzes dehalogenation of the growth substrate. A different mechanism for the nucleophilic displacement of chloride is observed in aerobic methylotrophic bacteria utilizing dichloromethane as the sole carbon and energy source. These organisms possess the enzyme dichloromethane dehalogenase which, in a glutathione-dependent reaction, converts dichloromethane to inorganic chloride and formaldehyde, a central metabolite of methylotrophic growth. Sequence comparisons have shown that bacterial dichloromethane dehalogenases belong to the glutathione S-transferase enzyme family, and within this family to class Theta. The dehalogenation reactions underlying aerobic utilization of chloromethane by a pure culture and anaerobic growth with dichloromethane by an acetogenic mixed culture are not known. It appears that they are based on mechanisms other than nucleophilic attack by tetrahydrofolate or glutathione. PMID:8565906

  5. Folates as adjuvants to anticancer agents: Chemical rationale and mechanism of action.

    PubMed

    Danenberg, Peter V; Gustavsson, Bengt; Johnston, Patrick; Lindberg, Per; Moser, Rudolf; Odin, Elisabeth; Peters, Godefridus J; Petrelli, Nicholas

    2016-10-01

    Folates have been used with cytotoxic agents for decades and today they are used in hundreds of thousands of patients annually. Folate metabolism is complex. In the treatment of cancer with 5-fluorouracil, the administration of folates mechanistically leads to the formation of [6R]-5,10-methylene-tetrahydrofolate, and the increased concentration of this molecule leads to stabilization of the ternary complex comprising thymidylate synthase, 2'-deoxy-uridine-5'-monophosphate, and [6R]-5,10-methylene-tetrahydrofolate. The latter is the only natural folate that can bind directly in the ternary complex, with other folates requiring metabolic activation. Modulation of thymidylate synthase activity became central in the study of folate/cytotoxic combinations and, despite wide use, research into the folate component was neglected, leaving important questions unanswered. This article revisits the mechanisms of action of folates and evaluates commercially available folate derivatives in the light of current research. Better genomic insight and availability of new analytical techniques and stable folate compounds may open new avenues of research and therapy, ultimately bringing increased clinical benefit to patients.

  6. Hyperhomocysteinemia-induced upper extremity deep vein thrombosis and pulmonary embolism in a patient with methyltetrahydrofolate reductase mutation: a case report and literature review.

    PubMed

    Gao, Lin; Kolanuvada, Bangaruraju; Naik, Geetha; Zhang, Yingzhong; Zhao, Min; Sun, Lili; Alaie, Dariush; Petrillo, Richard L

    2016-09-01

    The study highlights pulmonary embolism and deep vein thrombosis by methylene tetrahydrofolate reductase (MTHFR) deficiency-related hyperhomocysteinemia occurring in rare locations of left veins superior to the heart extensively. A 59-year-old white man with history of leg pain, smoking, weight loss, benign prostatic hyperplasia, lipoma and panic attack presented with shortness of breath and chest pain for 2 days precipitated by not feeling well for months. The diagnostic workup revealed pulmonary embolism and deep vein thrombosis in the left subclavian vein which extended throughout the left brachiocephalic vein to the superior vena cava and left jugular vein. Further workup showed moderate hyperhomocysteinemia with normal levels of vitamin B6, B12 and folic acid. Methylene tetrahydrofolate reductase genetic study found the patient to be homozygous for G677T variant. He was started on low-molecular-weight heparin and was discharged on oral anticoagulant. No recurrent thrombotic episodes were witnessed after 4 months of follow-up after discharge.

  7. Chemical modification of cysteine and tyrosine residues in formyltetrahydrofolate synthetase from Clostridium thermoaceticum

    SciTech Connect

    Elliott, J.I.; Ljungdahl, L.G.

    1982-04-01

    The chemical modification of cysteine and tyrosine residues in formyltetrahydrofolate synthetase from Clostridium thermoaceticum has been examined relative to enzymatic activity and reactivity of these groups in the native protein. 4,4'-Dipyridyl disulfide, dansylaziridine, and fluorescein mercuric acetate all reacted with just one of six sulfhydryls per enzyme subunit, resulting in activities of 100, 95 and 70%, respectively. The K/sub m/ values for MgATP, formate, and tetrahydrofolate were unaltered in the modified enzymes. ATP did produce a 2.5-fold reduction in the rate of reaction between the enzyme and 4,4'-dipyridyl disulfide. Tetranitromethane reacted most rapidly with a single sulfhydryl group per subunit to produce a 20 to 30% loss in activity. Subsequent additions of tetranitromethane modified 2.2 tyrosines per subunit which was proportional to the loss of the remaining enzymatic activity. Folic acid, a competitive inhibitor, protected against modification of the tyrosines and the associated activity losses; however, the oxidation of the single sulfhydryl group and the initial 20 to 30% activity loss were unaffected. In the presence of folic acid, higher concentrations of tetranitromethane produced a loss of the remaining activity proportional to the modification of 1.2 tyrosines per subunit. It is proposed that at least 1 tyrosine critical for enzymatic activity is located at or near the folic acid/tetrahydrofolate binding site.

  8. Delivery of folates to the cytoplasm of MA104 cells is mediated by a surface membrane receptor that recycles

    SciTech Connect

    Kamen, B.A.; Wang, M.T.; Streckfuss, A.J.; Peryea, X.; Anderson, R.G.

    1988-09-25

    MA104 cells, as well as several other rapidly dividing tissue culture cells, have a folate-binding protein associated with their cell surface. The protein has the properties of a membrane receptor: (a) 5-methyl(/sup 3/H)tetrahydrofolic acid binds with high affinity (Kd approximately equal to 3 nM); (b) the protein is an integral membrane protein; (c) it appears to deliver physiological concentrations of 5-methyl(/sup 3/H)tetrahydrofolic acid to the inside of the cell; (d) binding activity is regulated by the concentration of folate within the cell. To better understand the mechanism of action of this receptor, we have studied the pathway of folate internalization. We present evidence that during internalization: (a) folate binds to the membrane receptor; (b) the ligand-receptor complex moves into the cell; (c) the ligand is released from the receptor in an acidic intracellular compartment and moves into the cytoplasm; and (d) the unoccupied receptor returns to the cell surface.

  9. Physiology and biochemistry of single carbon catabolism by Butyribacterium methylotrophicum, and anaerobic acetogen

    SciTech Connect

    Kerby, R.

    1986-01-01

    The catabolism of methanol, formate, carbon monoxide, and carbon dioxide by the anaerobic acetogen Butyribacterium methylotrophicum was examined by several fermentation time course, /sup 13/C-NMR, /sup 14/C radioisotope tracer, and enzyme level analyses. During the simultaneous consumption of methanol and a more oxidized cosubstrate, methanol carbon was primarily funneled into the acetate methyl group with the co-substrate carbon predominantly incorporated into the acetate carboxyl. Formate and carbon monoxide were also simultaneously consumed and were preferentially distributed into the acetate methyl and carboxyl groups, respectively. These studies supported the function of a bifurcated single carbon catabolic pathway with carbonyl and methyl group synthesis routes jointed at acetyl-CoA, the primary reduced product. Isotope dilution experiments testified to the key role of carbon dioxide as the sole carbon unit which links the two halves of this catabolic mechanism. High levels of carbon monoxide and formate dehydrogenases and the tetrahydrofolate-requiring enzymes including methylene-tetrahydrofolate reductase correlated with the consumption of certain single carbon substrates. Implications of this catabolic scheme on acetogenic ATP synthesis via electron transport phosphorylation are discussed and the results of proton motive force analyses presented.

  10. Biochemistry of B12-cofactors in human metabolism.

    PubMed

    Kräutler, Bernhard

    2012-01-01

    Vitamin B12, the "antipernicious anaemia factor", is a crystallisable cobalt-complex, which belongs to a group of unique "complete" corrinoids, named cobalamins (Cbl). In humans, instead of the "vitamin", two organometallic B12-forms are coenzymes in two metabolically important enzymes: Methyl-cobalamin, the cofactor of methionine synthase, and coenzyme B12 (adenosyl-cobalamin), the cofactor of methylmalonyl-CoA mutase. The cytoplasmatic methionine synthase catalyzes the transfer of a methyl group from N-methyl-tetrahydrofolate to homocysteine to yield methionine and to liberate tetrahydrofolate. In the mitochondrial methylmalonyl-CoA mutase a radical process transforms methylmalonyl-CoA (a remains e.g. from uneven numbered fatty acids) into succinyl-CoA, for further metabolic use. In addition, in the human mitochondria an adenosyl-transferase incorporates the organometallic group of coenzyme B12. In all these enzymes, the bound B12-derivatives engage (or are formed) in exceptional organometallic enzymatic reactions. This chapter recapitulates the physiological chemistry of vitamin B12, relevant in the context of the metabolic transformation of B12-derivatives into the relevant coenzyme forms and their use in B12-dependent enzymes.

  11. Relative bioavailability of folate from the traditional food plant Moringa oleifera L. as evaluated in a rat model.

    PubMed

    Saini, R K; Manoj, P; Shetty, N P; Srinivasan, K; Giridhar, P

    2016-01-01

    Moringa oleifera is an affordable and rich source of dietary folate. Quantification of folate by HPLC showed that 5-formyl-5,6,7,8-tetrahydrofolic acid (502.1 μg/100 g DW) and 5,6,7,8-tetrahydrofolic acid (223.9 μg/100 g DW) as the most dominant forms of folate in M. oleifera leaves. The bioavailability of folate and the effects of folate depletion and repletion on biochemical and molecular markers of folate status were investigated in Wistar rats. Folate deficiency was induced by keeping the animals on a folate deficient diet with 1 % succinyl sulfathiazole (w/w). After the depletion period, animals were repleted with different levels of folic acid and M. oleifera leaves as a source of folate. Feeding the animals on a folate deficient diet for 7 weeks caused a significant (3.4-fold) decrease in serum folate content, compared to non-depleted control animals. Relative bioavailability of folate from dehydrated leaves of M. oleifera was 81.9 %. During folate depletion and repletion, no significant changes in liver glycine N-methyl transferase and 5-methyltetrahydrofolate-homocysteine methyltransferase expression were recorded. In RDA calculations, only 50 % of natural folate is assumed to be bioavailable. Therefore, the bioavailability of folate from Moringa is much higher, suggesting that M. oleifera based food can be used as a significant source of folate.

  12. Structural Biology of the Purine Biosynthetic Pathway

    PubMed Central

    Zhang, Yang; Morar, Mariya; Ealick, Steven E.

    2008-01-01

    Purine biosynthesis requires ten enzymatic transformations to generate inosine monophosphate. PurF, PurD, PurL, PurM, PurC, and PurB are common to all pathways, while PurN or PurT, PurK/PurE-I or PurE-II, PurH or PurP, and PurJ or PurO catalyze the same steps in different organisms. X-ray crystal structures are available for all 15 purine biosynthetic enzymes, including seven ATP-dependent enzymes, two amidotransferases and two tetrahydrofolate-dependent enzymes. Here we summarize the structures of the purine biosynthetic enzymes, discuss similarities and differences, and present arguments for pathway evolution. Four of the ATP-dependent enzymes belong to the ATP-grasp superfamily and two to the PurM superfamily. The amidotransferases are unrelated with one utilizing an NTN-glutaminase and the other utilizing a triad glutaminase. Likewise the tetrahydrofolate-dependent enzymes are unrelated. Ancestral proteins may have included a broad specificity enzyme instead of PurD, PurT, PurK, PurC, and PurP, and a separate enzyme instead of PurM and PurL. PMID:18712276

  13. Chemical modification of cysteine and tyrosine residues in formyltetrahydrofolate synthetase from Clostridium thermoaceticum

    SciTech Connect

    Elliott, J.I.; Ljungdahl, L.G.

    1982-04-01

    The chemical modification of cysteine and tyrosine residues in formyltetrahydrofolate synthetase from Clostridium thermoaceticum has been examined relative to enzymatic activity and reactivity of these groups in the native protein. 4,4'-Dipyridyl disulfide, dansylaziridine, and fluorescein mercuric acetate all reacted with just one of six sulfhydryls per enzyme subunit, resulting in activities of 100, 95 and 70%, respectively. The K/sub m/ values for MgATP, formate, and tetrahydrofolate were unaltered in the modified enzymes. ATP did produce a 2.5-fold reduction in the rate of reaction between the enzyme and 4,4'-dipyridyl disulfide. Tetranitromethane reacted most rapidly with a single sulfhydryl group per subunit to produce a 20 to 30% loss in activity. Subsequent additions of tetranitromethane modified 2.2 tyrosines per subunit which was proportional to the loss of the remaining enzymatic activity. Folic acid, a competitive inhibitor, protected against modification of the tyrosines and the associated activity losses; however, the oxidation of the single sulfhydryl group and the initial 20 to 30% activity loss were unaffected. In the presence of folic acid, higher concentrations of tetranitromethane produced a loss of the remaining activity proportional to the modification of 1.2 tyrosines per subunit. It is proposed that at least 1 tyrosine critical for enzymatic activity is located at or near the folic acid/tetrahydrofolate binding site.

  14. Metabolomic fingerprint reveals that metformin impairs one-carbon metabolism in a manner similar to the antifolate class of chemotherapy drugs

    PubMed Central

    Cufí, Sílvia; Martin-Castillo, Begoña; Micol, Vicente; Joven, Jorge; Segura-Carretero, Antonio; Menendez, Javier A.

    2012-01-01

    Metabolomic fingerprint of breast cancer cells treated with the antidiabetic drug metformin revealed a significant accumulation of 5-formimino-tetrahydrofolate, one of the tetrahydrofolate forms carrying activated one-carbon units that are essential for the de novo synthesis of purines and pyrimidines. De novo synthesis of glutathione, a folate-dependent pathway interconnected with one-carbon metabolism was concomitantly depleted in response to metformin. End-product reversal studies demonstrated that thymidine alone leads to a significant but incomplete protection from metformin's cytostatic effects. The addition of the substrate hypoxanthine for the purine salvage pathway produces major rightward shifts in metformin's growth inhibition curves. Metformin treatment failed to activate the DNA repair protein ATM kinase and the metabolic tumor suppressor AMPK when thymidine and hypoxanthine were present in the extracellular milieu. Our current findings suggest for the first time that metformin can function as an antifolate chemotherapeutic agent that induces the ATM/AMPK tumor suppressor axis secondarily following the alteration of the carbon flow through the folate-related one-carbon metabolic pathways. PMID:22837425

  15. Global RNA Fold and Molecular Recognition for a pfl Riboswitch Bound to ZMP, a Master Regulator of One-Carbon Metabolism.

    PubMed

    Ren, Aiming; Rajashankar, Kanagalaghatta R; Patel, Dinshaw J

    2015-08-04

    ZTP, the pyrophosphorylated analog of ZMP (5-amino-4-imidazole carboxamide ribose-5'-monophosphate), was identified as an alarmone that senses 10-formyl-tetrahydroflate deficiency in bacteria. Recently, a pfl riboswitch was identified that selectively binds ZMP and regulates genes associated with purine biosynthesis and one-carbon metabolism. We report on the structure of the ZMP-bound Thermosinus carboxydivorans pfl riboswitch sensing domain, thereby defining the pseudoknot-based tertiary RNA fold, the binding-pocket architecture, and principles underlying ligand recognition specificity. Molecular recognition involves shape complementarity, with the ZMP 5-amino and carboxamide groups paired with the Watson-Crick edge of an invariant uracil, and the imidazole ring sandwiched between guanines, while the sugar hydroxyls form intermolecular hydrogen bond contacts. The burial of the ZMP base and ribose moieties, together with unanticipated coordination of the carboxamide by Mg(2+), contrasts with exposure of the 5'-phosphate to solvent. Our studies highlight the principles underlying RNA-based recognition of ZMP, a master regulator of one-carbon metabolism.

  16. Global RNA Fold and Molecular Recognition for a pfl Riboswitch Bound to ZMP, a Master Regulator of One-Carbon Metabolism

    DOE PAGES

    Ren, Aiming; Rajashankar, Kanagalaghatta R.; Patel, Dinshaw J.

    2015-06-25

    ZTP, the pyrophosphorylated analog of ZMP (5- amino-4-imidazole carboxamide ribose-5'-monophosphate), was identified as an alarmone that senses 10-formyl-tetrahydroflate deficiency in bacteria. Recently, a pfl riboswitch was identified that selectively binds ZMP and regulates genes associated with purine biosynthesis and one-carbon metabolism. Here we report on the structure of the ZMP-bound Thermosinus carboxydivorans pfl riboswitch sensing domain, thereby defining the pseudoknot-based tertiary RNA fold, the binding-pocket architecture, and principles underlying ligand recognition specificity. Molecular recognition involves shape complementarity, with the ZMP 5-amino and carboxamide groups paired with the Watson-Crick edge of an invariant uracil, and the imidazole ring sandwiched between guanines,more » while the sugar hydroxyls form intermolecular hydrogen bond contacts. The burial of the ZMP base and ribose moieties, together with unanticipated coordination of the carboxamide by Mg2+, contrasts with exposure of the 5'-phosphate to solvent. Lastly, our studies highlight the principles underlying RNA-based recognition of ZMP, a master regulator of one-carbon metabolism.« less

  17. Global RNA Fold and Molecular Recognition for a pfl Riboswitch Bound to ZMP, a Master Regulator of One-Carbon Metabolism

    SciTech Connect

    Ren, Aiming; Rajashankar, Kanagalaghatta R.; Patel, Dinshaw J.

    2015-06-25

    ZTP, the pyrophosphorylated analog of ZMP (5- amino-4-imidazole carboxamide ribose-5'-monophosphate), was identified as an alarmone that senses 10-formyl-tetrahydroflate deficiency in bacteria. Recently, a pfl riboswitch was identified that selectively binds ZMP and regulates genes associated with purine biosynthesis and one-carbon metabolism. Here we report on the structure of the ZMP-bound Thermosinus carboxydivorans pfl riboswitch sensing domain, thereby defining the pseudoknot-based tertiary RNA fold, the binding-pocket architecture, and principles underlying ligand recognition specificity. Molecular recognition involves shape complementarity, with the ZMP 5-amino and carboxamide groups paired with the Watson-Crick edge of an invariant uracil, and the imidazole ring sandwiched between guanines, while the sugar hydroxyls form intermolecular hydrogen bond contacts. The burial of the ZMP base and ribose moieties, together with unanticipated coordination of the carboxamide by Mg2+, contrasts with exposure of the 5'-phosphate to solvent. Lastly, our studies highlight the principles underlying RNA-based recognition of ZMP, a master regulator of one-carbon metabolism.

  18. Staphylococcus aureus Formyl-Methionyl Transferase Mutants Demonstrate Reduced Virulence Factor Production and Pathogenicity

    PubMed Central

    Lewandowski, Thomas; Huang, Jianzhong; Fan, Frank; Rogers, Shannon; Gentry, Daniel; Holland, Reannon; DeMarsh, Peter; Zalacain, Magdalena

    2013-01-01

    Inhibitors of peptide deformylase (PDF) represent a new class of antibacterial agents with a novel mechanism of action. Mutations that inactivate formyl methionyl transferase (FMT), the enzyme that formylates initiator methionyl-tRNA, lead to an alternative initiation of protein synthesis that does not require deformylation and are the predominant cause of resistance to PDF inhibitors in Staphylococcus aureus. Here, we report that loss-of-function mutations in FMT impart pleiotropic effects that include a reduced growth rate, a nonhemolytic phenotype, and a drastic reduction in production of multiple extracellular proteins, including key virulence factors, such as α-hemolysin and Panton-Valentine leukocidin (PVL), that have been associated with S. aureus pathogenicity. Consequently, S. aureus FMT mutants are greatly attenuated in neutropenic and nonneutropenic murine pyelonephritis infection models and show very high survival rates compared with wild-type S. aureus. These newly discovered effects on extracellular virulence factor production demonstrate that FMT-null mutants have a more severe fitness cost than previously anticipated, leading to a substantial loss of pathogenicity and a restricted ability to produce an invasive infection. PMID:23571548

  19. Therapeutic options and emerging alternatives for multidrug resistant staphylococcal infections.

    PubMed

    Magana, Maria; Ioannidis, Anastasios; Magiorkinis, Emmanouil; Ursu, Oleg; Bologa, Cristian G; Chatzipanagiotou, Stylianos; Hamblin, Michael R; Tegos, George P

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) remains the single biggest challenge in infectious disease in the civilized world. Moreover, vancomycin resistance is also spreading, leading to fears of untreatable infections as were common in ancient times. Molecular microbiology and bioinformatics have revealed many of the mechanisms involved in resistance development. Mobile genetic elements, up-regulated virulence factors and multi-drug efflux pumps have been implicated. A range of approved antibiotics from the glycopeptide, lipopeptide, pleuromutilin, macrolide, oxazolidinone, lincosamide, aminoglycoside, tetracycline, steptogramin, and cephalosporin classes has been employed to treat MRSA infections. The upcoming pipeline of drugs for MRSA includes some new compounds from the above classes, together with fluoroquinolones, antibacterial peptide mimetics, aminomethylciclines, porphyrins, peptide deformylase inhibitors, oxadiazoles, and diaminopyrimidines. A range of non-drug alternative approaches has emerged for MRSA treatment. Bacteriophage-therapy including purified lysins has made a comeback after being discovered in the 1930s. Quorum-sensing inhibitors are under investigation. Small molecule inhibitors of multi-drug efflux pumps may potentiate existing antibiotics. The relative failure of staphylococcal vaccines is being revisited by efforts with multi-valent vaccines and improved adjuvants. Photodynamic therapy uses non-toxic photosensitizers and harmless visible light to produce reactive oxygen species that can nonspecifically destroy bacteria while preserving host cells. Preparation of nanoparticles can kill bacteria themselves, as well as improve the delivery of anti-bacterial drugs. Anti-MRSA drug discovery remains an exciting field with great promise for the future.

  20. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Chu, W. S.; Yang, F. F.; Yu, M. J.; Chen, D. L.; Guo, X. Y.; Zhou, D. W.; Shi, N.; Marcelli, A.; Niu, L. W.; Teng, M. K.; Gong, W. M.; Benfatto, M.; Wu, Z. Y.

    2007-09-01

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase ( LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

  1. Docking modes of BB-3497 into the PDF active site--a comparison of the pure MM and QM/MM based docking strategies.

    PubMed

    Kumari, Tripti; Issar, Upasana; Kakkar, Rita

    2014-01-01

    Peptide deformylase (PDF) has emerged as an important antibacterial drug target. Considerable effort is being directed toward developing peptidic and non-peptidic inhibitors for this metalloprotein. In this work, the known peptidic inhibitor BB-3497 and its various ionization and tautomeric states are evaluated for their inhibition efficiency against PDF using a molecular mechanics (MM) approach as well as a mixed quantum mechanics/molecular mechanics (QM/MM) approach, with an aim to understand the interactions in the binding site. The evaluated Gibbs energies of binding with the mixed QM/MM approach are shown to have the best predictive power. The experimental pose is found to have the most negative Gibbs energy of binding, and also the smallest strain energy. A quantum mechanical evaluation of the active site reveals the requirement of strong chelation by the ligand with the metal ion. The investigated ligand chelates the metal ion through the two oxygens of its reverse hydroxamate moiety, particularly the N-O(-) oxygen, forming strong covalent bonds with the metal ion, which is penta-coordinated. In the uninhibited state, the metal ion is tetrahedrally coordinated, and hence chelation with the inhibitor is associated with an increase of the metal ion coordination. Thus, the strong binding of the ligand at the binding site is accounted for.

  2. Successful COG8 and PDF overlap is mediated by alterations in splicing and polyadenylation signals.

    PubMed

    Pereira-Castro, Isabel; Quental, Rita; da Costa, Luís T; Amorim, António; Azevedo, Luisa

    2012-02-01

    Although gene-free areas compose the great majority of eukaryotic genomes, a significant fraction of genes overlaps, i.e., unique nucleotide sequences are part of more than one transcription unit. In this work, the evolutionary history and origin of a same-strand gene overlap is dissected through the analysis of COG8 (component of oligomeric Golgi complex 8) and PDF (peptide deformylase). Comparative genomic surveys reveal that the relative locations of these two genes have been changing over the last 445 million years from distinct chromosomal locations in fish to overlapping in rodents and primates, indicating that the overlap between these genes precedes their divergence. The overlap between the two genes was initiated by the gain of a novel splice donor site between the COG8 stop codon and PDF initiation codon. Splicing is accomplished by the use of the PDF acceptor, leading COG8 to share the 3'end with PDF. In primates, loss of the ancestral polyadenylation signal for COG8 makes the overlap between COG8 and PDF mandatory, while in mouse and rat concurrent overlapping and non-overlapping Cog8 transcripts exist. Altogether, we demonstrate that the origin, evolution and preservation of the COG8/PDF same-strand overlap follow similar mechanistic steps as those documented for antisense overlaps where gain and/or loss of splice sites and polyadenylation signals seems to drive the process.

  3. Dual binding mode of the nascent polypeptide-associated complex reveals a novel universal adapter site on the ribosome.

    PubMed

    Pech, Markus; Spreter, Thomas; Beckmann, Roland; Beatrix, Birgitta

    2010-06-18

    Nascent polypeptide-associated complex (NAC) was identified in eukaryotes as the first cytosolic factor that contacts the nascent polypeptide chain emerging from the ribosome. NAC is present as a homodimer in archaea and as a highly conserved heterodimer in eukaryotes. Mutations in NAC cause severe embryonically lethal phenotypes in mice, Drosophila melanogaster, and Caenorhabditis elegans. In the yeast Saccharomyces cerevisiae NAC is quantitatively associated with ribosomes. Here we show that NAC contacts several ribosomal proteins. The N terminus of betaNAC, however, specifically contacts near the tunnel exit ribosomal protein Rpl31, which is unique to eukaryotes and archaea. Moreover, the first 23 amino acids of betaNAC are sufficient to direct an otherwise non-associated protein to the ribosome. In contrast, alphaNAC (Egd2p) contacts Rpl17, the direct neighbor of Rpl31 at the ribosomal tunnel exit site. Rpl31 was also recently identified as a contact site for the SRP receptor and the ribosome-associated complex. Furthermore, in Escherichia coli peptide deformylase (PDF) interacts with the corresponding surface area on the eubacterial ribosome. In addition to the previously identified universal adapter site represented by Rpl25/Rpl35, we therefore refer to Rpl31/Rpl17 as a novel universal docking site for ribosome-associated factors on the eukaryotic ribosome.

  4. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxgenase with a bacterial type-I fatty acid synthase in E. coli

    DOE PAGES

    Coursolle, Dan; Shanklin, John; Lian, Jiazhang; ...

    2015-06-23

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products inmore » BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg/L long chain alcohol/alkane products including a 57 mg/L titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system.« less

  5. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxgenase with a bacterial type-I fatty acid synthase in E. coli

    SciTech Connect

    Coursolle, Dan; Shanklin, John; Lian, Jiazhang; Zhao, Huimin

    2015-06-23

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products in BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg/L long chain alcohol/alkane products including a 57 mg/L titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system.

  6. AepA of Pectobacterium is not involved in the regulation of extracellular plant cell wall degrading enzymes production.

    PubMed

    Kõiv, Viia; Andresen, Liis; Mäe, Andres

    2010-06-01

    Plant cell wall degrading enzymes (PCWDE) are the major virulence determinants in phytopathogenic Pectobacterium, and their production is controlled by many regulatory factors. In this study, we focus on the role of the AepA protein, which was previously described to be a global regulator of PCWDE production in Pectobacterium carotovorum (Murata et al. in Mol Plant Microbe Interact 4:239-246, 1991). Our results show that neither inactivation nor overexpression of aepA affects PCWDE production in either Pectobacterium atrosepticum SCRI1043 or Pectobacterium carotovorum subsp. carotovorum SCC3193. The previously published observation based on the overexpression of aepA could be explained by the presence of the adjacent regulatory rsmB gene in the constructs used. Our database searches indicated that AepA belongs to the YtcJ subfamily of amidohydrolases. YtcJ-like amidohydrolases are present in bacteria, archaea, plants and some fungi. Although AepA has 28% identity with the formamide deformylase NfdA in Arthrobacter pascens F164, AepA was unable to catalyze the degradation of NdfA-specific N-substituted formamides. We conclude that AepA is a putative aminohydrolase not involved in regulation of PCWDE production.

  7. The Effect of Food and Formulation on the Pharmacokinetics, Safety, and Tolerability of GSK1322322 in Healthy Volunteers

    PubMed Central

    Naderer, Odin; Jones, Lori S; Zhu, John; Coffin, Mark D; Kurtinecz, Milena; Dumont, Etienne

    2015-01-01

    GSK1322322 is the first in a new class of antibiotics that inhibit peptide deformylase, necessary for bacterial protein maturation. Previously, low absolute bioavailability was observed for the 1500-mg oral tablet formulation, resulting in a less than dose-proportional increase from the 1000-mg dose. Furthermore, high variability of pharmacokinetic (PK) parameters within cohorts was suggested to be associated with differences in body weight. This open-label, randomized, 4-period, crossover, single-dose phase I study in healthy individuals compared the PK, safety, and tolerability of free base oral tablets under fasted or fed conditions with intravenous and oral mesylate salt solution of GSK1322322 under fasted conditions. Absolute bioavailability of GSK1322322 1500-mg free base tablets under fasted conditions, fed conditions, and oral mesylate salt solution was 57%, 77%, and 92%, respectively. Moderate-fat/calorie food intake increased area under the concentration–time curve (AUC0−∞) by 36%, maintained maximum observed concentration (Cmax), and delayed time to Cmax. It appeared that AUC0−∞ decreased with body weight, whereas clearance increased. GSK1322322 administration resulted in only mild-to-moderate adverse events. These results support future clinical investigations of the free base oral tablet formulation of GSK1322322 1500 mg after intake of a moderate-fat/calorie meal, including further investigation of a potential weight-based dosage change. PMID:26097792

  8. Identification of differentially expressed genes in Sulfobacillus sp. TPY grown on either elemental sulphur or Fe(2+).

    PubMed

    Qi, Huizhou; Chen, Hong; Ao, Jingqun; Zhou, Hongbo; Chen, Xinhua

    2010-10-01

    Sulfobacillus sp. TPY is a moderately thermophilic and acidophilic bacterium found in hydrothermal vents in the Pacific Ocean. This bacterium can oxidize ferrous sulfate (Fe(2+)) and elemental sulfur (S(0)) under separate conditions. We used random arbitrarily primed polymerase chain reaction (RAP-PCR) to screen and identify differentially expressed genes from bacteria grown on Fe(2+) or S(0) as the energy source. Fifty-five differential cDNA fragments were isolated and subjected to single-pass sequencing. Thirty-five fragments were identified as orthologs of known genes in the GenBank databases, of which 19 were confirmed to be differentially expressed at the transcriptional level by Northern blot analysis. Among these 19 genes, 14 genes, including isocitrate dehydrogenase, formyltetrahydrofolate deformylase, 3-hydroxybutyryl-CoA dehydrogenase, and GTP-binding protein, were upregulated in TPY grown on Fe(2+) or downregulated in TPY grown on S(0), while five genes such as the outer membrane adhesion-like protein, phosphomannomutase, and cysteine desulfurase sufS were upregulated in TPY strain grown on S(0) or downregulated in TPY grown on Fe(2+). These altered genes are involved in metabolism, osmotic stress, cell membrane alterations, oxidative stress, and the regulatory adaptive response. These results will aid our understanding of the molecular basis of Fe(2+) or S(0) oxidation by the moderately thermophilic and acidophilic bacteria.

  9. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxygenase with a bacterial type-I fatty acid synthase in E. coli.

    PubMed

    Coursolle, Dan; Lian, Jiazhang; Shanklin, John; Zhao, Huimin

    2015-09-01

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products in BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg L(-1) long chain alcohol/alkane products including a 57 mg L(-1) titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system.

  10. Recently approved and investigational antibiotics for treatment of severe infections caused by Gram-positive bacteria.

    PubMed

    Appelbaum, Peter C; Jacobs, Michael R

    2005-10-01

    The development of resistance in the major pathogenic Gram-positive genera Staphylococcus and Streptococccus has led to the need for new agents that are able to overcome existing resistance mechanisms or that have novel mechanisms of action. There is currently a dearth of new agents that are active against resistant bacterial species. Agents that have recently been approved for clinical use include linezolid, the first oxazolidinone in clinical use, daptomycin, the first lipopeptide in clinical use, and telithromycin, a ketolide that is derived from clarithromycin. Agents currently in clinical development include tigecycline, a broad-spectrum intravenous tetracycline, ceftobiprole, a broad-spectrum cephalosporin that has activity against methicillin-resistant staphylococci, DX-619 and WCK-771, which are potent quinolones that have activity against quinolone-resistant staphylococci, oritavancin and dalbavancin, both of which are new glycopeptides, and iclaprim, which is a diaminopyrimidine. Additional agents that are in preclinical development against Gram-positive pathogens include quinoline-naphthyridine agents, which target novel DNA gyrase sites, other novel quinolones that have high potency, peptide deformylase inhibitors, and new lincosamide, oxazolidinone, lipopeptide and cephalosporin derivatives. Misuse of potent new agents will, however, result in the inevitable development of resistance to these agents; responsible use of potent new agents is required to prevent continuation of this vicious cycle.

  11. Structural basis for the inhibition of M1 family aminopeptidases by the natural product actinonin: Crystal structure in complex with E. coli aminopeptidase N

    PubMed Central

    Ganji, Roopa Jones; Reddi, Ravikumar; Gumpena, Rajesh; Marapaka, Anil Kumar; Arya, Tarun; Sankoju, Priyanka; Bhukya, Supriya; Addlagatta, Anthony

    2015-01-01

    Actinonin is a pseudotripeptide that displays a high affinity towards metalloproteases including peptide deformylases (PDFs) and M1 family aminopeptidases. PDF and M1 family aminopeptidases belong to thermolysin-metzincin superfamily. One of the major differences in terms of substrate binding pockets between these families is presence (in M1 aminopeptidases) or absence (in PDFs) of an S1 substrate pocket. The binding mode of actinonin to PDFs has been established previously; however, it is not clear how the actinonin, without a P1 residue, would bind to the M1 aminopeptidases. Here we describe the crystal structure of Escherichia coli aminopeptidase N (ePepN), a model protein of the M1 family aminopeptidases in complex with actinonin. For comparison we have also determined the structure of ePepN in complex with a well-known tetrapeptide inhibitor, amastatin. From the comparison of the actinonin and amastatin ePepN complexes, it is clear that the P1 residue is not critical as long as strong metal chelating head groups, like hydroxamic acid or α-hydroxy ketone, are present. Results from this study will be useful for the design of selective and efficient hydroxamate inhibitors against M1 family aminopeptidases. PMID:25644575

  12. Structural basis for the inhibition of M1 family aminopeptidases by the natural product actinonin: Crystal structure in complex with E. coli aminopeptidase N.

    PubMed

    Ganji, Roopa Jones; Reddi, Ravikumar; Gumpena, Rajesh; Marapaka, Anil Kumar; Arya, Tarun; Sankoju, Priyanka; Bhukya, Supriya; Addlagatta, Anthony

    2015-05-01

    Actinonin is a pseudotripeptide that displays a high affinity towards metalloproteases including peptide deformylases (PDFs) and M1 family aminopeptidases. PDF and M1 family aminopeptidases belong to thermolysin-metzincin superfamily. One of the major differences in terms of substrate binding pockets between these families is presence (in M1 aminopeptidases) or absence (in PDFs) of an S1 substrate pocket. The binding mode of actinonin to PDFs has been established previously; however, it is not clear how the actinonin, without a P1 residue, would bind to the M1 aminopeptidases. Here we describe the crystal structure of Escherichia coli aminopeptidase N (ePepN), a model protein of the M1 family aminopeptidases in complex with actinonin. For comparison we have also determined the structure of ePepN in complex with a well-known tetrapeptide inhibitor, amastatin. From the comparison of the actinonin and amastatin ePepN complexes, it is clear that the P1 residue is not critical as long as strong metal chelating head groups, like hydroxamic acid or α-hydroxy ketone, are present. Results from this study will be useful for the design of selective and efficient hydroxamate inhibitors against M1 family aminopeptidases.

  13. Control of protein life-span by N-terminal methionine excision

    PubMed Central

    Giglione, Carmela; Vallon, Olivier; Meinnel, Thierry

    2003-01-01

    Peptide deformylases (PDFs) have been discovered recently in eukaryotic genomes, and it appears that N-terminal methionine excision (NME) is a conserved pathway in all compartments where protein synthesis occurs. This work aimed at uncovering the function(s) of NME in a whole proteome, using the chloroplast-encoded proteins of both Arabidopsis thaliana and Chlamydomonas reinhardtii as model systems. Dis ruption of PDF1B in A.thaliana led to an albino phenotype, and an extreme sensitivity to the PDF- specific inhibitor actinonin. In contrast, a knockout line for PDF1A exhibited no apparent phenotype. Photosystem II activity in C.reinhardtii cells was substantially reduced by the presence of actinonin. Pulse–chase experiments revealed that PDF inhibi tion leads to destabilization of a crucial subset of chloroplast-encoded photosystem II components in C.reinhardtii. The same proteins were destabilized in pdf1b. Site-directed substitutions altering NME of the most sensitive target, subunit D2, resulted in similar effects. Thus, plastid NME is a critical mechanism specifically influencing the life-span of photosystem II polypeptides. A general role of NME in modulating the half-life of key subsets of proteins is suggested. PMID:12505980

  14. Development of nitrilase promoter-derived inducible vectors for Streptomyces.

    PubMed

    Matsumoto, Masako; Hashimoto, Yoshiteru; Saitoh, Yuki; Kumano, Takuto; Kobayashi, Michihiko

    2016-06-01

    An inducible expression vector, pSH19, which harbors regulatory expression system PnitA-NitR, for streptomycetes was constructed previously. Here, we have modified pSH19 to obtain shuttle vectors for Streptomyces-E. coli by introducing the replication origin of a plasmid for E. coli (ColE1) and an antibiotic-resistant gene. Six inducible shuttle vectors, pESH19cF, pESH19cR, pESH19kF, pESH19kR, pESH19aF, and pESH19aR, for Streptomyces-E. coli, were successfully developed. The stability of these vectors was examined in five different E. coli strains and Streptomyces lividans TK24. The stability test showed that the pSH19-derived shuttle vectors were stable in E. coli Stbl2 and S. lividans TK24. Heterologous expression experiments involving each of the catechol 2,3-dioxygenase, nitrilase, and N-substituted formamide deformylase genes as a reporter gene showed that pESH19cF, pESH19kF, and pESH19aF possess inducible expression ability in S. lividans TK24. Thus, these vectors were found to be useful expression tools for experiments on both Gram-negative and Gram-positive bacterial genes.

  15. Error-prone initiation factor 2 mutations reduce the fitness cost of antibiotic resistance

    PubMed Central

    Zorzet, Anna; Pavlov, Michael Y; Nilsson, Annika I; Ehrenberg, Måns; Andersson, Dan I

    2010-01-01

    Mutations in the fmt gene (encoding formyl methionine transferase) that eliminate formylation of initiator tRNA (Met-tRNAi) confer resistance to the novel antibiotic class of peptide deformylase inhibitors (PDFIs) while concomitantly reducing bacterial fitness. Here we show in Salmonella typhimurium that novel mutations in initiation factor 2 (IF2) located outside the initiator tRNA binding domain can partly restore fitness of fmt mutants without loss of antibiotic resistance. Analysis of initiation of protein synthesis in vitro showed that with non-formylated Met-tRNAi IF2 mutants initiated much faster than wild-type IF2, whereas with formylated fMet-tRNAi the initiation rates were similar. Moreover, the increase in initiation rates with Met-tRNAi conferred by IF2 mutations in vitro correlated well with the increase in growth rate conferred by the same mutations in vivo, suggesting that the mutations in IF2 compensate formylation deficiency by increasing the rate of in vivo initiation with Met-tRNAi. IF2 mutants had also a high propensity for erroneous initiation with elongator tRNAs in vitro, which could account for their reduced fitness in vivo in a formylation-proficient strain. More generally, our results suggest that bacterial protein synthesis is mRNA-limited and that compensatory mutations in IF2 could increase the persistence of PDFI-resistant bacteria in clinical settings. PMID:20132454

  16. Folate administration increases n-3 polyunsaturated fatty acids in rat plasma and tissue lipids.

    PubMed

    Pita, M L; Delgado, M J

    2000-09-01

    It has been shown that folic acid deficiency can modify polyunsaturated fatty acid (PUFA) metabolism and thus could contribute to the development of cardiovascular diseases. We have studied the effect of folate administration on fatty acid composition of plasma, platelet, erythrocyte, intestinal and liver lipids. Two groups of rats were daily injected with either saline solution (control group) or 5-methyl-tetrahydrofolate (MTHF) solution (MTHF group) for 15 days. Changes induced by folate treatment on n-6 PUFA were not very significant. Linoleic acid only decreased in liver and intestinal phospholipids of MTHF rats whereas arachidonic acid was unaffected by folate administration. However, n-3 PUFA significantly increased in plasma lipid fractions and in platelet, erythrocyte and intestinal phospholipids. It is well known that n-3 PUFA show antithrombotic properties. Thus, the increase of n-3 PUFA observed after MTHF administration might contribute to the prevention of vascular disorders.

  17. B vitamin polymorphisms and behavior: evidence of associations with neurodevelopment, depression, schizophrenia, bipolar disorder and cognitive decline.

    PubMed

    Mitchell, E Siobhan; Conus, Nelly; Kaput, Jim

    2014-11-01

    The B vitamins folic acid, vitamin B12 and B6 are essential for neuronal function, and severe deficiencies have been linked to increased risk of neurodevelopmental disorders, psychiatric disease and dementia. Polymorphisms of genes involved in B vitamin absorption, metabolism and function, such as methylene tetrahydrofolate reductase (MTHFR), cystathionine β synthase (CβS), transcobalamin 2 receptor (TCN2) and methionine synthase reductase (MTRR), have also been linked to increased incidence of psychiatric and cognitive disorders. However, the effects of these polymorphisms are often quite small and many studies failed to show any meaningful or consistent associations. This review discusses previous findings from clinical studies and highlights gaps in knowledge. Future studies assessing B vitamin-associated polymorphisms must take into account not just traditional demographics, but subjects' overall diet, relevant biomarkers of nutritional status and also analyze related genetic factors that may exacerbate behavioral effects or nutritional status.

  18. Isolation and characterization of a human intestinal bacterium, Eubacterium sp. ARC-2, capable of demethylating arctigenin, in the essential metabolic process to enterolactone.

    PubMed

    Jin, Jong-Sik; Zhao, Yu-Feng; Nakamura, Norio; Akao, Teruaki; Kakiuchi, Nobuko; Hattori, Masao

    2007-05-01

    Plant lignans, such as pinoresinol diglucoside, secoisolariciresinol diglucoside and arctiin, are metabolized to mammalian lignans, enterolactone or enterodiol, by human intestinal bacteria. Their metabolic processes include deglucosylation, ring cleavage, demethylation, dehydroxylation and oxidation. Here we isolated an intestinal bacterium capable of demethylating arctigenin, an aglycone of arctiin, to 2,3-bis(3,4-dihydroxybenzyl)butyrolactone (1) from human feces, and identified as an Eubacterium species (E. sp. ARC-2), which is similar to Eubacterium limosum on the basis of morphological and biochemical properties and 16S rRNA gene sequencing. By incubating with E. sp. ARC-2, arctigenin was converted to 1 through stepwise demethylation. Demethylation of arctigenin by E. sp. ARC-2 was tetrahydrofolate- and ATP-dependent, indicating that the reaction was catalyzed by methyltransferase. Moreover, E. sp. ARC-2 transformed secoisolariciresinol to 2,3-bis(3,4-dihydroxybenzyl)-1,4-butanediol by demethylation.

  19. Arabidopsis plastidial folylpolyglutamate synthetase is required for nitrogen metabolism under nitrate-limited condition in darkness.

    PubMed

    Meng, Hongyan; Xu, Bosi; Zhang, Chunyi; Jiang, Ling

    2017-01-08

    Folates play an important role in plant metabolism. Here we report a T-DNA insertion mutant (atdfb-3) of the plastidial folylpolyglutamate synthetase gene (AtDFB) was defective in folate metabolism and nitrogen metabolism under nitrate-limited conditions in darkness. Exogenous applied 5-formyl-tetrahydrofolate (5-F-THF) completely restored nitrogen content, soluble protein, total amino acids, individual amino acids including Glu, Gln, Asp, Asn, Pro, Arg and Met, nitrate, and endogenous 5-F-THF in atdfb-3 to the wild-type level. At the same time the application of 5-F-THF partially restored the content of Ser and nitrite in the mutant. Taken together, these results indicated that intact folate metabolism was necessary for nitrogen metabolism in Arabidopsis thaliana under nitrate-limited condition in darkness, providing novel insights into function of folate. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Neonatal stroke associated with de novo antiphospholipid antibody and homozygous 1298C/C methylenetetrahydrofolate reductase mutation

    PubMed Central

    Rego Sousa, Paulo; Figueira, Ricardo; Vasconcellos, Rui

    2012-01-01

    Antiphospholipid antibodies are a recognised prothrombotic risk factor associated with acute ischaemic infarction. Most autoimmune diseases are rare in infants, and in the neonatal period, autoimmunity is related to transplacental passage of maternal immunoglobulin G autoantibodies. Distinguishing between de novo and acquired autoimmunity has important therapeutic implications and is crucial for determining the prognosis. We present a case of a neonatal thrombotic stroke associated with de novo synthesis of antiphospholipid antibodies, a homozygous 1298C/C methylene-tetrahydrofolate reductase mutation and a double-homozygous plasminogen activator inhibitor 1 polymorphism (PAI-1 844A/A and 675 4G/4G), which may have increased the final thrombotic risk. Her mother was not positive for antiphospholipid antibodies. The authors highlight an unequivocal evidence of a de novo case of paediatric antiphospholipid antibody syndrome and emphasise the need for a thorough investigation in cases of neonatal stroke including molecular thrombophilia study. PMID:23162020

  1. Role of spiramycin/cotrimoxazole association in the mother-to-child transmission of toxoplasmosis infection in pregnancy.

    PubMed

    Valentini, P; Annunziata, M L; Angelone, D F; Masini, L; De Santis, M; Testa, A; Grillo, R L; Speziale, D; Ranno, O

    2009-03-01

    The purpose of this report is to evaluate the efficacy and safety of spiramycin/cotrimoxazole in the mother-to-child transmission of Toxoplasma gondii infection. We retrospectively analysed 76 infants born to mothers with toxoplasmosis during pregnancy and estimated the risk of mother-to-child transmission considering the gestational age at the time of infection. Seventy-six mothers were given spiramycin, cotrimoxazole and folinic acid; only two babies (2.6%) were infected by Toxoplasma and none of them showed signs or symptoms of congenital infection or interference of sulphamid on tetrahydrofolate reductase (THFR) either at birth or during follow-up. Treatment did not need to be stopped in any mother because of adverse drug effects. Our results seem to encourage the use of spiramycin/cotrimoxazole in women with toxoplasmosis during pregnancy.

  2. Methoxyl groups of lignin are essential carbon donors in C1 metabolism of Sphingobium sp. SYK-6.

    PubMed

    Sonoki, Tomonori; Masai, Eiji; Sato, Kanna; Kajita, Shinya; Katayama, Yoshihiro

    2009-09-01

    Sphingobium sp. SYK-6 can utilize lignin biphenyl compounds, such as 2,2'-dihydroxy-3,3'-dimethoxy-5,5'-dicarboxybiphenyl (DDVA). In the metabolism of DDVA, this microorganism exploits two O -demethylation systems with different substrate specificities, namely, a DDVA-specific oxygenative O -demethylation system and a vanillate-specific (VA-specific) tetrahydrofolate-dependent (THF-dependent) methyltransferase system. We examined the way in which these two systems interact in the metabolism of lignin in Sphingobium sp. SYK-6. Our results indicate that THF accepts methyl groups derived not only from the THF-dependent O -demethylation of VA but also from the oxygenative O -demethylation of DDVA. Thus, the methoxyl groups of lignin model compounds are an essential source of carbon in Sphingobium sp. SYK-6. ((c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  3. DNA damage during glycation of lysine by methylglyoxal: assessment of vitamins in preventing damage.

    PubMed

    Suji, G; Sivakami, S

    2007-11-01

    Amino acids react with methylglyoxal to form advanced glycation end products. This reaction is known to produce free radicals. In this study, cleavage to plasmid DNA was induced by the glycation of lysine with methylglyoxal in the presence of iron(III). This system was found to produce superoxide as well as hydroxyl radicals. The abilities of various vitamins to prevent damage to plasmid DNA were evaluated. Pyridoxal-5-phosphate showed maximum protection, while pyridoxamine showed no protection. The protective abilities could be directly correlated to inhibition of production of hydroxyl and superoxide radicals. Pyridoxal-5-phosphate exhibited low radical scavenging ability as evaluated by its TEAC, but showed maximum protection probably by interfering in free radical production. Pyridoxamine did not inhibit free radical production. Thiamine and thiamine pyrophosphate, both showed protective effects albeit to different extents. Tetrahydrofolic acid showed better antioxidant activity than folic acid but was found to damage DNA by itself probably by superoxide generation.

  4. Studies of dimethylglycine oxidase isoenzymes in Arthrobacter globiformis cells.

    PubMed

    Casaitė, Vida; Povilonienė, Simona; Meškienė, Rita; Rutkienė, Rasa; Meškys, Rolandas

    2011-04-01

    Glycine betaine (GB) could be used by Arthrobacter globiformis cells as a sole carbon source. The cells took up this molecule in the low as well as in the high salinity medium. Addition of GB to the mineral medium with high salt concentration revealed that GB was also used as an osmoprotectant. Dimethylglycine oxidase (DMGO) was involved in the catabolism of GB. Two genes for DMGO were detected in a cloned 26267 bp fragment of A. globiformis DNA. The genes involved in the tetrahydrofolate-dependent assimilation of methyl groups were located nearby the two of DMGO genes. Both cloned A. globiformis DMGO were active. The activity of DMGO was detected in A. globiformis cells and it depended on the addition of GB and the salinity of the medium. Reverse transcription-PCR demonstrated that the addition of GB influenced the transcription of dmg genes.

  5. Mycobacterium tuberculosis dihydrofolate reductase reveals two conformational states and a possible low affinity mechanism to antifolate drugs.

    PubMed

    Dias, Marcio Vinicius Bertacine; Tyrakis, Petros; Domingues, Romenia Ramos; Paes Leme, Adriana Franco; Blundell, Tom L

    2014-01-07

    Inhibition of the biosynthesis of tetrahydrofolate (THF) has long been a focus in the treatment of both cancer and infectious diseases. Dihydrofolate reductase (DHFR), which catalyzes the last step, is one of the most thoroughly explored targets of this pathway, but there are no DHFR inhibitors used for tuberculosis treatment. Here, we report a structural, site-directed mutagenesis and calorimetric analysis of Mycobacterium tuberculosis DHFR (MtDHFR) in complex with classical DHFR inhibitors. Our study provides insights into the weak inhibition of MtDHFR by trimethoprim and other antifolate drugs, such as pyrimethamine and cycloguanil. The construction of the mutant Y100F, together with calorimetric studies, gives insights into low affinity of MtDHFR for classical DHFR inhibitors. Finally, the structures of MtDHFR in complex with pyrimethamine and cycloguanil define important interactions in the active site and provide clues to the more effective design of antibiotics targeted against MtDHFR.

  6. Inherited and acquired thrombophilia: pregnancy outcome and treatment.

    PubMed

    De Santis, Marco; Cavaliere, A F; Straface, G; Di Gianantonio, E; Caruso, A

    2006-08-01

    Maternal thrombophilias increases the risk of an adverse pregnancy outcome. An extensive literature review highlights the role of inherited and acquired thrombophilic disorders in spontaneous abortion, both early and late, recurrent or isolate, in intrauterine growth retardation, in placenta abruption, in pre-eclampsia and in venous thromboembolism. We have particularly focused attention on the following factors: antithrombin III (ATIII), proteins C (PC) and S (PS) deficiencies, genetic mutations particularly factor V Leiden (FVL), prothrombin gene G20210A (PTM) and the thermolabile variant of the methylene tetrahydrofolate reductase C677T (MTHFR) gene, lupus anticoagulant (LAC) and anticardiolipin antibodies, VIIIc factor, hyperhomocysteinemia and acquired activated protein C resistance. Appropriate treatment can improve pregnancy outcome without teratogenic effects.

  7. Enzymology of the Wood–Ljungdahl Pathway of Acetogenesis

    PubMed Central

    Ragsdale, Stephen W.

    2011-01-01

    The biochemistry of acetogenesis is reviewed. The microbes that catalyze the reactions that are central to acetogenesis are described and the focus is on the enzymology of the process. These microbes play a key role in the global carbon cycle, producing over 10 trillion kilograms of acetic acid annually. Acetogens have the ability to anaerobically convert carbon dioxide and CO into acetyl-CoA by the Wood–Ljungdahl pathway, which is linked to energy conservation. They also can convert the six carbons of glucose stoichiometrically into 3 mol of acetate using this pathway. Acetogens and other anaerobic microbes (e.g., sulfate reducers and methanogens) use the Wood–Ljungdahl pathway for cell carbon synthesis. Important enzymes in this pathway that are covered in this review are pyruvate ferredoxin oxidoreductase, CO dehydrogenase/acetyl-CoA synthase, a corrinoid iron-sulfur protein, a methyltransferase, and the enzymes involved in the conversion of carbon dioxide to methyl-tetrahydrofolate. PMID:18378591

  8. Genetic Association Study of Putative Functional Single Nucleotide Polymorphisms of Genes in Folate Metabolism and Spina Bifida

    PubMed Central

    Martinez, Carla A.; Northrup, Hope; Lin, Jone-Ing; Morrison, Alanna C.; Fletcher, Jack M.; Tyerman, Gayle H.; Au, Kit Sing

    2009-01-01

    OBJECTIVE We tested putative functional single nucleotide polymorphisms (SNPs) in genes which regulate the folate/homocysteine metabolism pathway for their contribution to spina bifida (SB) susceptibility. STUDY DESIGN The study consisted of 610 unrelated simplex SB patient families. Genotypes of 46 SNPs located in the coding sequence or promoter region of 11 genes were investigated. Associations between transmission of alleles and SB in the offspring were examined using the reconstruction-combined transmission disequilibrium test. RESULTS Significant association of SNP rs5742905 in cystathionine-β-synthase (CBS), rs1643649 in dihydrofolate reductase (DHFR), rs2853533 in thymidylate synthetase (TYMS), and rs3737965 in methylene-tetrahydrofolate-reductase (MTHFR) was found (p= 0.015, 0.041, 0.021, and 0.007 respectively). CONCLUSION Transmission disequilibrium of SNP alleles in CBS, DHFR, MTHFR and TYMS confers an increased susceptibility to SB. PMID:19683694

  9. Expression cloning of a human cDNA encoding folylpoly(gamma-glutamate) synthetase and determination of its primary structure.

    PubMed Central

    Garrow, T A; Admon, A; Shane, B

    1992-01-01

    A human cDNA for folypoly(gamma-glutamate) synthetase [FPGS; tetrahydrofolate:L-glutamate gamma-ligase (ADP forming), EC 6.3.2.17] has been cloned by functional complementation of an Escherichia coli folC mutant. The cDNA encodes a 545-residue protein of M(r) 60,128. The deduced sequence has regions that are highly homologous to peptide sequences obtained from purified pig liver FPGS and shows limited homology to the E. coli and Lactobacillus casei FPGSs. Expression of the cDNA in E. coli results in elevated expression of an enzyme with characteristics of mammalian FPGS. Expression of the cDNA in AUXB1, a mammalian cell lacking FPGS activity, overcomes the cell's requirement for thymidine and purines but does not overcome the cell's glycine auxotrophy, consistent with expression of the protein in the cytosol but not the mitochondria. PMID:1409616

  10. Kinetic and Chemical Mechanism of the Dihydrofolate Reductase from Mycobacterium tuberculosis

    PubMed Central

    Czekster, Clarissa M.; Vandemeulebroucke, An; Blanchard, John S.

    2010-01-01

    Dihydrofolate reductase from Mycobacterium tuberculosis catalyzes the NAD(P)H dependent reduction of dihydrofolate, yielding NAD(P)+ and tetrahydrofolate, the primary one carbon unit carrier in biology. Tetrahydrofolate needs to be recycled so that reactions involved in dTMP synthesis and purine metabolism are maintained. In this work, we report the kinetic characterization of the MtDHFR. This enzyme has a sequential steady-state random kinetic mechanism, probably with a preferred pathway with NADPH binding first. A pKa value for an enzymic acid of approximately 7.0 was identified from the pH dependence of V, and the analysis of the primary kinetic isotope effects revealed that the hydride transfer step is at least partly rate limiting throughout the pH range analyzed. Additionally, the determination and analysis of solvent, and multiple kinetic isotope effects was conducted, and equilibrium isotope effects were measured on the equilibrium constant. D2OV and D2OV/K[4R-4-2H]-NADH were slightly inverse at pH 6.0, and inverse values for D2OV[4R-4-2H]-NADH and D2OV/K[4R-4-2H]-NADH suggested that a pre-equilibrium protonation is occurring before the hydride transfer step, indicating a stepwise mechanism for proton and hydride transfer. The same value was obtained for DkH at pH values of 5.5 and 7.5, reaffirming the rate-limiting nature of the hydride transfer step. A chemical mechanism is proposed based on the results obtained here. PMID:21138249

  11. A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase

    DOE PAGES

    Ticak, Tomislav; Kountz, D. J.; Girosky, K. E.; ...

    2014-10-13

    COG5598 comprises a large number of proteins related to MttB, the trimethylamine:corrinoid methyltransferase. MttB has a genetically encoded pyrrolysine residue proposed essential for catalysis. MttB is the only known trimethylamine methyltransferase, yet the great majority of members of COG5598 lack pyrrolysine, leaving the activity of these proteins an open question. Here, we describe the function of one of the nonpyrrolysine members of this large protein family. Three nonpyrrolysine MttB homologs are encoded in Desulfitobacterium hafniense, a Gram-positive strict anaerobe present in both the environment and human intestine. D. hafniense was found capable of growth on glycine betaine with electron acceptorsmore » such as nitrate or fumarate, producing dimethylglycine and CO2 as products. Examination of the genome revealed genes for tetrahydrofolate-linked oxidation of a methyl group originating from a methylated corrinoid protein, but no obvious means to carry out corrinoid methylation with glycine betaine. DSY3156, encoding one of the nonpyrrolysine MttB homologs, was up-regulated during growth on glycine betaine. The recombinant DSY3156 protein converts glycine betaine and cob(I)alamin to dimethylglycine and methylcobalamin. To our knowledge, DSY3156 is the first glycine betaine:corrinoid methyltransferase described, and a designation of MtgB is proposed. Additionally, DSY3157, an adjacently encoded protein, was shown to be a methylcobalamin:tetrahydrofolate methyltransferase and is designated MtgA. Homologs of MtgB are widely distributed, especially in marine bacterioplankton and nitrogen-fixing plant symbionts. Lastly, they are also found in multiple members of the human microbiome, and may play a beneficial role in trimethylamine homeostasis, which in recent years has been directly tied to human cardiovascular health.« less

  12. A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase

    SciTech Connect

    Ticak, Tomislav; Kountz, D. J.; Girosky, K. E.; Krzycki, J. A.; Ferguson, D. J.

    2014-10-13

    COG5598 comprises a large number of proteins related to MttB, the trimethylamine:corrinoid methyltransferase. MttB has a genetically encoded pyrrolysine residue proposed essential for catalysis. MttB is the only known trimethylamine methyltransferase, yet the great majority of members of COG5598 lack pyrrolysine, leaving the activity of these proteins an open question. Here, we describe the function of one of the nonpyrrolysine members of this large protein family. Three nonpyrrolysine MttB homologs are encoded in Desulfitobacterium hafniense, a Gram-positive strict anaerobe present in both the environment and human intestine. D. hafniense was found capable of growth on glycine betaine with electron acceptors such as nitrate or fumarate, producing dimethylglycine and CO2 as products. Examination of the genome revealed genes for tetrahydrofolate-linked oxidation of a methyl group originating from a methylated corrinoid protein, but no obvious means to carry out corrinoid methylation with glycine betaine. DSY3156, encoding one of the nonpyrrolysine MttB homologs, was up-regulated during growth on glycine betaine. The recombinant DSY3156 protein converts glycine betaine and cob(I)alamin to dimethylglycine and methylcobalamin. To our knowledge, DSY3156 is the first glycine betaine:corrinoid methyltransferase described, and a designation of MtgB is proposed. Additionally, DSY3157, an adjacently encoded protein, was shown to be a methylcobalamin:tetrahydrofolate methyltransferase and is designated MtgA. Homologs of MtgB are widely distributed, especially in marine bacterioplankton and nitrogen-fixing plant symbionts. Lastly, they are also found in multiple members of the human microbiome, and may play a beneficial role in trimethylamine homeostasis, which in recent years has been directly tied to human cardiovascular health.

  13. Incomplete Wood–Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring Dehalococcoides mccartyi

    PubMed Central

    Zhuang, Wei-Qin; Yi, Shan; Bill, Markus; Brisson, Vanessa L.; Feng, Xueyang; Men, Yujie; Conrad, Mark E.; Tang, Yinjie J.; Alvarez-Cohen, Lisa

    2014-01-01

    The acetyl-CoA “Wood–Ljungdahl” pathway couples the folate-mediated one-carbon (C1) metabolism to either CO2 reduction or acetate oxidation via acetyl-CoA. This pathway is distributed in diverse anaerobes and is used for both energy conservation and assimilation of C1 compounds. Genome annotations for all sequenced strains of Dehalococcoides mccartyi, an important bacterium involved in the bioremediation of chlorinated solvents, reveal homologous genes encoding an incomplete Wood–Ljungdahl pathway. Because this pathway lacks key enzymes for both C1 metabolism and CO2 reduction, its cellular functions remain elusive. Here we used D. mccartyi strain 195 as a model organism to investigate the metabolic function of this pathway and its impacts on the growth of strain 195. Surprisingly, this pathway cleaves acetyl-CoA to donate a methyl group for production of methyl-tetrahydrofolate (CH3-THF) for methionine biosynthesis, representing an unconventional strategy for generating CH3-THF in organisms without methylene-tetrahydrofolate reductase. Carbon monoxide (CO) was found to accumulate as an obligate by-product from the acetyl-CoA cleavage because of the lack of a CO dehydrogenase in strain 195. CO accumulation inhibits the sustainable growth and dechlorination of strain 195 maintained in pure cultures, but can be prevented by CO-metabolizing anaerobes that coexist with D. mccartyi, resulting in an unusual syntrophic association. We also found that this pathway incorporates exogenous formate to support serine biosynthesis. This study of the incomplete Wood–Ljungdahl pathway in D. mccartyi indicates a unique bacterial C1 metabolism that is critical for D. mccartyi growth and interactions in dechlorinating communities and may play a role in other anaerobic communities. PMID:24733917

  14. Incomplete Wood-Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring Dehalococcoides mccartyi.

    PubMed

    Zhuang, Wei-Qin; Yi, Shan; Bill, Markus; Brisson, Vanessa L; Feng, Xueyang; Men, Yujie; Conrad, Mark E; Tang, Yinjie J; Alvarez-Cohen, Lisa

    2014-04-29

    The acetyl-CoA "Wood-Ljungdahl" pathway couples the folate-mediated one-carbon (C1) metabolism to either CO2 reduction or acetate oxidation via acetyl-CoA. This pathway is distributed in diverse anaerobes and is used for both energy conservation and assimilation of C1 compounds. Genome annotations for all sequenced strains of Dehalococcoides mccartyi, an important bacterium involved in the bioremediation of chlorinated solvents, reveal homologous genes encoding an incomplete Wood-Ljungdahl pathway. Because this pathway lacks key enzymes for both C1 metabolism and CO2 reduction, its cellular functions remain elusive. Here we used D. mccartyi strain 195 as a model organism to investigate the metabolic function of this pathway and its impacts on the growth of strain 195. Surprisingly, this pathway cleaves acetyl-CoA to donate a methyl group for production of methyl-tetrahydrofolate (CH3-THF) for methionine biosynthesis, representing an unconventional strategy for generating CH3-THF in organisms without methylene-tetrahydrofolate reductase. Carbon monoxide (CO) was found to accumulate as an obligate by-product from the acetyl-CoA cleavage because of the lack of a CO dehydrogenase in strain 195. CO accumulation inhibits the sustainable growth and dechlorination of strain 195 maintained in pure cultures, but can be prevented by CO-metabolizing anaerobes that coexist with D. mccartyi, resulting in an unusual syntrophic association. We also found that this pathway incorporates exogenous formate to support serine biosynthesis. This study of the incomplete Wood-Ljungdahl pathway in D. mccartyi indicates a unique bacterial C1 metabolism that is critical for D. mccartyi growth and interactions in dechlorinating communities and may play a role in other anaerobic communities.

  15. Interactions between 7-hydroxymethotrexate and methotrexate at the cellular level in the Ehrlich ascites tumor in vitro.

    PubMed

    Fabre, G; Matherly, L H; Fabre, I; Cano, J P; Goldman, I D

    1984-03-01

    Studies were undertaken to characterize the cellular pharmacology of 7-hydroxymethotrexate (7-OH-MTX) in Ehrlich ascites tumor cells, compare it to that of methotrexate (MTX), and define the interactions between the parent compound and its catabolite. Transport of 7-OH-MTX is mediated by the MTX-tetrahydrofolate cofactor carrier, with a Km of 9 microM in comparison to the MTX Km of 5 microM. Both compounds mutually inhibit their influx and steady-state levels of free drug accumulated. While influx of 7-OH-MTX is slower than influx of MTX, 7-OH-MTX efflux is likewise slower, so that the steady-state level of 7-OH-MTX achieved is comparable to that of MTX. Influx of 7-OH-MTX is inhibited by extracellular 5-formyltetrahydrofolate and trans-stimulated in cells preloaded with this tetrahydrofolate cofactor. The energetics of 7-OH-MTX transport is similar to that of MTX in the influx and net transport are stimulated by sodium azide, while net transport is reduced by glucose. As observed for MTX, 7-OH-MTX transport is sensitive to the anionic composition of the extracellular compartment and was shown to be inhibited by organic and inorganic phosphates. 7-OH-MTX does not, alone, inhibit [3H]deoxyuridine incorporation into DNA at concentrations of up to 50 microM. However, the catabolite reduces MTX inhibition of deoxyuridine metabolism, presumably due to the reduction in the free level of intracellular MTX achieved. These findings support the possibility that when 7-OH-MTX accumulates to high levels relative to MTX in clinical regimens, it may modulate the pharmacological effects of MTX.

  16. Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis

    NASA Astrophysics Data System (ADS)

    Giancaspero, Teresa Anna; Colella, Matilde; Brizio, Carmen; Difonzo, Graziana; Fiorino, Giuseppina Maria; Leone, Piero; Brandsch, Roderich; Bonomi, Francesco; Iametti, Stefania; Barile, Maria

    2015-04-01

    The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in energetic metabolism, epigenetics, protein folding, as well as in a number of diverse regulatory processes. The problem of localisation of flavin cofactor synthesis events and in particular of the FAD synthase (EC 2.7.7.2) in HepG2 cells is addressed here by confocal microscopy in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalysed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesising activity, hFADS is able to operate as a FAD "chaperone". The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear or a mitochondrial enzyme that is lysine specific demethylase 1 (LSD1, EC 1.-.-.-) and dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4), respectively which carry out similar reactions of oxidative demethylation, assisted by tetrahydrofolate used to form 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells.

  17. Oxalyl-Coenzyme A Reduction to Glyoxylate Is the Preferred Route of Oxalate Assimilation in Methylobacterium extorquens AM1

    PubMed Central

    Schneider, Kathrin; Skovran, Elizabeth

    2012-01-01

    Oxalate catabolism is conducted by phylogenetically diverse organisms, including Methylobacterium extorquens AM1. Here, we investigate the central metabolism of this alphaproteobacterium during growth on oxalate by using proteomics, mutant characterization, and 13C-labeling experiments. Our results confirm that energy conservation proceeds as previously described for M. extorquens AM1 and other characterized oxalotrophic bacteria via oxalyl-coenzyme A (oxalyl-CoA) decarboxylase and formyl-CoA transferase and subsequent oxidation to carbon dioxide via formate dehydrogenase. However, in contrast to other oxalate-degrading organisms, the assimilation of this carbon compound in M. extorquens AM1 occurs via the operation of a variant of the serine cycle as follows: oxalyl-CoA reduction to glyoxylate and conversion to glycine and its condensation with methylene-tetrahydrofolate derived from formate, resulting in the formation of C3 units. The recently discovered ethylmalonyl-CoA pathway operates during growth on oxalate but is nevertheless dispensable, indicating that oxalyl-CoA reductase is sufficient to provide the glyoxylate required for biosynthesis. Analysis of an oxalyl-CoA synthetase- and oxalyl-CoA-reductase-deficient double mutant revealed an alternative, although less efficient, strategy for oxalate assimilation via one-carbon intermediates. The alternative process consists of formate assimilation via the tetrahydrofolate pathway to fuel the serine cycle, and the ethylmalonyl-CoA pathway is used for glyoxylate regeneration. Our results support the notion that M. extorquens AM1 has a plastic central metabolism featuring multiple assimilation routes for C1 and C2 substrates, which may contribute to the rapid adaptation of this organism to new substrates and the eventual coconsumption of substrates under environmental conditions. PMID:22493020

  18. Oxalyl-coenzyme A reduction to glyoxylate is the preferred route of oxalate assimilation in Methylobacterium extorquens AM1.

    PubMed

    Schneider, Kathrin; Skovran, Elizabeth; Vorholt, Julia A

    2012-06-01

    Oxalate catabolism is conducted by phylogenetically diverse organisms, including Methylobacterium extorquens AM1. Here, we investigate the central metabolism of this alphaproteobacterium during growth on oxalate by using proteomics, mutant characterization, and (13)C-labeling experiments. Our results confirm that energy conservation proceeds as previously described for M. extorquens AM1 and other characterized oxalotrophic bacteria via oxalyl-coenzyme A (oxalyl-CoA) decarboxylase and formyl-CoA transferase and subsequent oxidation to carbon dioxide via formate dehydrogenase. However, in contrast to other oxalate-degrading organisms, the assimilation of this carbon compound in M. extorquens AM1 occurs via the operation of a variant of the serine cycle as follows: oxalyl-CoA reduction to glyoxylate and conversion to glycine and its condensation with methylene-tetrahydrofolate derived from formate, resulting in the formation of C3 units. The recently discovered ethylmalonyl-CoA pathway operates during growth on oxalate but is nevertheless dispensable, indicating that oxalyl-CoA reductase is sufficient to provide the glyoxylate required for biosynthesis. Analysis of an oxalyl-CoA synthetase- and oxalyl-CoA-reductase-deficient double mutant revealed an alternative, although less efficient, strategy for oxalate assimilation via one-carbon intermediates. The alternative process consists of formate assimilation via the tetrahydrofolate pathway to fuel the serine cycle, and the ethylmalonyl-CoA pathway is used for glyoxylate regeneration. Our results support the notion that M. extorquens AM1 has a plastic central metabolism featuring multiple assimilation routes for C1 and C2 substrates, which may contribute to the rapid adaptation of this organism to new substrates and the eventual coconsumption of substrates under environmental conditions.

  19. Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis

    PubMed Central

    Giancaspero, Teresa A.; Colella, Matilde; Brizio, Carmen; Difonzo, Graziana; Fiorino, Giuseppina M.; Leone, Piero; Brandsch, Roderich; Bonomi, Francesco; Iametti, Stefania; Barile, Maria

    2015-01-01

    The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in a broad spectrum of biological activities, among which energetic metabolism and chromatin remodeling. Subcellular localisation of FAD synthase (EC 2.7.7.2, FADS), the second enzyme in the FAD forming pathway, is addressed here in HepG2 cells by confocal microscopy, in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalyzed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesizing activity, hFADS is able to operate as a FAD “chaperone.” The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear lysine-specific demethylase 1 (LSD1) or a mitochondrial dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4). Both enzymes carry out similar reactions of oxidative demethylation, in which tetrahydrofolate is converted into 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells. PMID:25954742

  20. Structure of aryl O -demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism

    DOE PAGES

    Kohler, Amanda C.; Mills, Matthew J. L.; Adams, Paul D.; ...

    2017-04-03

    Some strains of soil and marine bacteria have evolved intricate metabolic pathways for using environmentally derived aromatics as a carbon source. Many of these metabolic pathways go through intermediates such as vanillate, 3-O-methylgallate, and syringate. Demethylation of these compounds is essential for downstream aryl modification, ring opening, and subsequent assimilation of these compounds into the tricarboxylic acid (TCA) cycle, and, correspondingly, there are a variety of associated aryl demethylase systems that vary in complexity. Intriguingly, only a basic understanding of the least complex system, the tetrahydrofolate-dependent aryl demethylase LigM from Sphingomonas paucimobilis, a bacterial strain that metabolizes lignin-derived aromatics, wasmore » previously available. LigM-catalyzed demethylation enables further modification and rin g opening of the single-ring aromatics vanillate and 3-Omethylgallate, which are common byproducts of biofuel production. We characterize aryl O-demethylation by LigM and report its 1.81-Å crystal structure, revealing a unique demethylase fold and a canonical folate-binding domain. Structural homology and geometry optimization calculations enabled the identification of LigM's tetrahydrofolate-binding site and protein-folate interactions. Computationally guided mutagenesis and kinetic analyses allowed the identification of the enzyme's aryl-binding site location and determination of its unique, catalytic tyrosine-dependent reaction mechanism. This work defines LigM as a distinct demethylase, both structurally and functionally, and provides insight into demethylation and its reaction requirements. Our results afford the mechanistic details required for efficient utilization of LigM as a tool for aryl O-demethylation and as a component of synthetic biology efforts to valorize previously underused aromatic compounds.« less

  1. Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis.

    PubMed

    Giancaspero, Teresa A; Colella, Matilde; Brizio, Carmen; Difonzo, Graziana; Fiorino, Giuseppina M; Leone, Piero; Brandsch, Roderich; Bonomi, Francesco; Iametti, Stefania; Barile, Maria

    2015-01-01

    The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in a broad spectrum of biological activities, among which energetic metabolism and chromatin remodeling. Subcellular localisation of FAD synthase (EC 2.7.7.2, FADS), the second enzyme in the FAD forming pathway, is addressed here in HepG2 cells by confocal microscopy, in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalyzed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesizing activity, hFADS is able to operate as a FAD "chaperone." The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear lysine-specific demethylase 1 (LSD1) or a mitochondrial dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4). Both enzymes carry out similar reactions of oxidative demethylation, in which tetrahydrofolate is converted into 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells.

  2. Combined structural and biochemical analysis of the H-T complex in the glycine decarboxylase cycle: evidence for a destabilization mechanism of the H-protein.

    PubMed

    Guilhaudis, L; Simorre, J P; Blackledge, M; Marion, D; Gans, P; Neuburger, M; Douce, R

    2000-04-18

    The lipoate containing H-protein plays a pivotal role in the catalytic cycle of the glycine decarboxylase complex (GDC), undergoing reducing methylamination, methylene transfer, and oxidation. The transfer of the CH(2) group is catalyzed by the T-protein, which forms a 1:1 complex with the methylamine-loaded H-protein (Hmet). The methylamine group is then deaminated and transferred to the tetrahydrofolate-polyglutamate (H(4)FGlu(n)) cofactor of T-protein, forming methylenetetrahydrofolate-polyglutamate. The methylamine group is buried inside the protein structure and highly stable. Experimental data show that the H(4)FGlu(n) alone does not induce transfer of the methylene group, and molecular modeling also indicates that the reaction cannot take place without significant structural perturbations of the H-protein. We have, therefore, investigated the effect of the presence of the T-protein on the stability of Hmet. Addition of T-protein without H(4)FGlu(n) greatly increases the rate of the unloading reaction of Hmet, reducing the activation energy by about 20 kcal mol(-1). Differences of the (1)H and (15)N chemical shifts of the H-protein in its isolated form and in the complex with the T-protein show that the interaction surface for the H-protein is localized on one side of the cleft where the lipoate arm is positioned. This suggests that the role of the T-protein is not only to locate the tetrahydrofolate cofactor in a position favorable for a nucleophilic attack on the methylene carbon but also to destabilize the H-protein in order to facilitate the unlocking of the arm and initiate the reaction.

  3. A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase.

    PubMed

    Ticak, Tomislav; Kountz, Duncan J; Girosky, Kimberly E; Krzycki, Joseph A; Ferguson, Donald J

    2014-10-28

    COG5598 comprises a large number of proteins related to MttB, the trimethylamine:corrinoid methyltransferase. MttB has a genetically encoded pyrrolysine residue proposed essential for catalysis. MttB is the only known trimethylamine methyltransferase, yet the great majority of members of COG5598 lack pyrrolysine, leaving the activity of these proteins an open question. Here, we describe the function of one of the nonpyrrolysine members of this large protein family. Three nonpyrrolysine MttB homologs are encoded in Desulfitobacterium hafniense, a Gram-positive strict anaerobe present in both the environment and human intestine. D. hafniense was found capable of growth on glycine betaine with electron acceptors such as nitrate or fumarate, producing dimethylglycine and CO2 as products. Examination of the genome revealed genes for tetrahydrofolate-linked oxidation of a methyl group originating from a methylated corrinoid protein, but no obvious means to carry out corrinoid methylation with glycine betaine. DSY3156, encoding one of the nonpyrrolysine MttB homologs, was up-regulated during growth on glycine betaine. The recombinant DSY3156 protein converts glycine betaine and cob(I)alamin to dimethylglycine and methylcobalamin. To our knowledge, DSY3156 is the first glycine betaine:corrinoid methyltransferase described, and a designation of MtgB is proposed. In addition, DSY3157, an adjacently encoded protein, was shown to be a methylcobalamin:tetrahydrofolate methyltransferase and is designated MtgA. Homologs of MtgB are widely distributed, especially in marine bacterioplankton and nitrogen-fixing plant symbionts. They are also found in multiple members of the human microbiome, and may play a beneficial role in trimethylamine homeostasis, which in recent years has been directly tied to human cardiovascular health.

  4. A novel mouse model for genetic variation in 10-formyltetrahydrofolate synthetase exhibits disturbed purine synthesis with impacts on pregnancy and embryonic development.

    PubMed

    Christensen, K E; Deng, L; Leung, K Y; Arning, E; Bottiglieri, T; Malysheva, O V; Caudill, M A; Krupenko, N I; Greene, N D; Jerome-Majewska, L; MacKenzie, R E; Rozen, R

    2013-09-15

    Genetic variants in one-carbon folate metabolism have been identified as risk factors for disease because they may impair the production or use of one-carbon folates required for nucleotide synthesis and methylation. p.R653Q (1958G>A) is a single-nucleotide polymorphism (SNP) in the 10-formyltetrahydrofolate (formylTHF) synthetase domain of the trifunctional enzyme MTHFD1; this domain produces the formylTHF which is required for the de novo synthesis of purines. Approximately 20% of Caucasians are homozygous for the Q allele. MTHFD1 p.R653Q has been proposed as a risk factor for neural tube defects (NTDs), congenital heart defects (CHDs) and pregnancy losses. We have generated a novel mouse model in which the MTHFD1 synthetase activity is inactivated without affecting protein expression or the other activities of this enzyme. Complete loss of synthetase activity (Mthfd1S(-/-)) is incompatible with life; embryos die shortly after 10.5 days gestation, and are developmentally delayed or abnormal. The proportion of 10-formylTHF in the plasma and liver of Mthfd1S(+/-) mice is reduced (P < 0.05), and de novo purine synthesis is impaired in Mthfd1S(+/-) mouse embryonic fibroblasts (MEFs, P < 0.005). Female Mthfd1S(+/-) mice had decreased neutrophil counts (P < 0.05) during pregnancy and increased incidence of developmental defects in embryos (P = 0.052). These findings suggest that synthetase deficiency may lead to pregnancy complications through decreased purine synthesis and reduced cellular proliferation. Additional investigation of the impact of synthetase polymorphisms on human pregnancy is warranted.

  5. Revisiting and re-engineering the classical zinc finger peptide: consensus peptide-1 (CP-1).

    PubMed

    Besold, Angelique N; Widger, Leland R; Namuswe, Frances; Michalek, Jamie L; Michel, Sarah L J; Goldberg, David P

    2016-04-01

    Zinc plays key structural and catalytic roles in biology. Structural zinc sites are often referred to as zinc finger (ZF) sites, and the classical ZF contains a Cys2His2 motif that is involved in coordinating Zn(II). An optimized Cys2His2 ZF, named consensus peptide 1 (CP-1), was identified more than 20 years ago using a limited set of sequenced proteins. We have reexamined the CP-1 sequence, using our current, much larger database of sequenced proteins that have been identified from high-throughput sequencing methods, and found the sequence to be largely unchanged. The CCHH ligand set of CP-1 was then altered to a CAHH motif to impart hydrolytic activity. This ligand set mimics the His2Cys ligand set of peptide deformylase (PDF), a hydrolytically active M(II)-centered (M = Zn or Fe) protein. The resultant peptide [CP-1(CAHH)] was evaluated for its ability to coordinate Zn(II) and Co(II) ions, adopt secondary structure, and promote hydrolysis. CP-1(CAHH) was found to coordinate Co(II) and Zn(II) and a pentacoordinate geometry for Co(II)-CP-1(CAHH) was implicated from UV-vis data. This suggests a His2Cys(H2O)2 environment at the metal center. The Zn(II)-bound CP-1(CAHH) was shown to adopt partial secondary structure by 1-D (1)H NMR spectroscopy. Both Zn(II)-CP-1(CAHH) and Co(II)-CP-1(CAHH) show good hydrolytic activity toward the test substrate 4-nitrophenyl acetate, exhibiting faster rates than most active synthetic Zn(II) complexes.

  6. Formyl-methionine as a degradation signal at the N-termini of bacterial proteins

    PubMed Central

    Piatkov, Konstantin I.; Vu, Tri T. M.; Hwang, Cheol-Sang; Varshavsky, Alexander

    2015-01-01

    In bacteria, all nascent proteins bear the pretranslationally formed N-terminal formyl-methionine (fMet) residue. The fMet residue is cotranslationally deformylated by a ribosome-associated deformylase. The formylation of N-terminal Met in bacterial proteins is not strictly essential for either translation or cell viability. Moreover, protein synthesis by the cytosolic ribosomes of eukaryotes does not involve the formylation of N-terminal Met. What, then, is the main biological function of this metabolically costly, transient, and not strictly essential modification of N terminal Met, and why has Met formylation not been eliminated during bacterial evolution? One possibility is that the similarity of the formyl and acetyl groups, their identical locations in N terminally formylated (Nt formylated) and Nt-acetylated proteins, and the recently discovered proteolytic function of Nt-acetylation in eukaryotes might also signify a proteolytic role of Nt formylation in bacteria. We addressed this hypothesis about fMet based degradation signals, termed fMet/N-degrons, using specific E. coli mutants, pulse-chase degradation assays, and protein reporters whose deformylation was altered, through site-directed mutagenesis, to be either rapid or relatively slow. Our findings strongly suggest that the formylated N-terminal fMet can act as a degradation signal, largely a cotranslational one. One likely function of fMet/N-degrons is the control of protein quality. In bacteria, the rate of polypeptide chain elongation is nearly an order of magnitude higher than in eukaryotes. We suggest that the faster emergence of nascent proteins from bacterial ribosomes is one mechanistic and evolutionary reason for the pretranslational design of bacterial fMet/N degrons, in contrast to the cotranslational design of analogous Ac/N degrons in eukaryotes. PMID:26866044

  7. Fmt bypass in Pseudomonas aeruginosa causes induction of MexXY efflux pump expression.

    PubMed

    Caughlan, Ruth E; Sriram, Shubha; Daigle, Denis M; Woods, Angela L; Buco, Jennifer; Peterson, Ron L; Dzink-Fox, Joann; Walker, Susan; Dean, Charles R

    2009-12-01

    The intrinsic resistance of P. aeruginosa PAO1 to the peptide deformylase inhibitor (PDF-I) LBM415 was mediated by the MexAB-OprM and MexXY-OprM efflux pumps, the latter of which was strongly induced by LBM415. Single-step exposure of PAO1 deleted for mexAB-oprM (therefore lacking both MexAB-OprM and MexXY-OprM functions) to PDF-Is selected for nfxB mutants, which express the MexCD-OprJ efflux pump, indicating that these compounds are also substrates for this pump. Selection of resistant mutants by use of levels of LBM415 greater than that accommodated by efflux yielded two additional groups of mutations, in the methionyl-tRNA(fmet) formyltransferase (fmt) and folD genes. Both mechanisms are known to impose an in vitro growth deficit (also observed here), presumably due to impairment of protein synthesis. We surmised that this inherent impairment of protein synthesis would upregulate expression of mexXY in a fashion similar to upregulation by LBM415 or by ribosome inhibitory compounds. Transcriptional profiling and/or mexX::lux promoter fusion analysis revealed that fmt and folD mutants were strongly upregulated for mexXY and another gene known to be required for upregulation of the pump, PA5471. Complementation of the fmt mutation in trans reversed this constitutive expression. This supports the notion that MexXY has a natural physiological function responding to impairment of ribosome function or protein synthesis and that fmt mutation (Fmt bypass) and folD mutation generate the intracellular mexXY-inducing signal.

  8. Identification of iron-responsive proteins expressed by Chlamydia trachomatis reticulate bodies during intracellular growth.

    PubMed

    Dill, Brian D; Dessus-Babus, Sophie; Raulston, Jane E

    2009-01-01

    The obligate intracellular bacterium Chlamydia trachomatis serovar E is the most prevalent cause of bacterial sexually transmitted disease. With an established requirement for iron, the developmental cycle arrests at the intracellular reticulate body stage during iron restriction, resulting in a phenomenon termed persistence. Persistence has implications in natural infections for altered expression of virulence factors and antigens, in addition to a potential role in producing chronic infection. In this study, chlamydial proteins in iron-restricted, infected HEC-1B cells were radiolabelled during mid-developmental cycle growth, harvested, and separated using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Of approximately 250 radiolabelled protein species visualized, densitometric analysis revealed 25 proteins that increased in expression under iron restriction compared to iron-sufficient control samples; ten protein species identified by mass spectrometry are involved in the oxidative damage response (alkyl hydroperoxide reductase, 6-phosphogluconolactonase and acyl carrier protein synthase), transcription (RNA polymerase subunit alpha and transcription anti-termination factors NusA and NusG), protein modification (peptide deformylase and trigger factor), and virulence (Chlamydia protein associating with death domains, CADD). Transcript-level expression patterns of ahpC, devB, cadd, fabF and ct538 were measured by quantitative RT-PCR throughout the developmental cycle, and each gene examined demonstrated a significant but small mid-cycle increase in transcript level in iron-restricted cultures compared to iron-replete controls. Taken together, these data suggest that the primary response of chlamydiae to reduced iron availability is to increase expression of proteins involved in protection against oxidative damage via iron-catalysed generation of reactive oxygen species and adaptation to stress by increasing expression of transcriptional machinery

  9. Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440.

    PubMed

    Jiménez, José I; Canales, Angeles; Jiménez-Barbero, Jesús; Ginalski, Krzysztof; Rychlewski, Leszek; García, José L; Díaz, Eduardo

    2008-08-12

    The aerobic catabolism of nicotinic acid (NA) is considered a model system for degradation of N-heterocyclic aromatic compounds, some of which are major environmental pollutants; however, the complete set of genes as well as the structural-functional relationships of most of the enzymes involved in this process are still unknown. We have characterized a gene cluster (nic genes) from Pseudomonas putida KT2440 responsible for the aerobic NA degradation in this bacterium and when expressed in heterologous hosts. The biochemistry of the NA degradation through the formation of 2,5-dihydroxypyridine and maleamic acid has been revisited, and some gene products become the prototype of new types of enzymes with unprecedented molecular architectures. Thus, the initial hydroxylation of NA is catalyzed by a two-component hydroxylase (NicAB) that constitutes the first member of the xanthine dehydrogenase family whose electron transport chain to molecular oxygen includes a cytochrome c domain. The Fe(2+)-dependent dioxygenase (NicX) converts 2,5-dihydroxypyridine into N-formylmaleamic acid, and it becomes the founding member of a new family of extradiol ring-cleavage dioxygenases. Further conversion of N-formylmaleamic acid to formic and maleamic acid is catalyzed by the NicD protein, the only deformylase described so far whose catalytic triad is similar to that of some members of the alpha/beta-hydrolase fold superfamily. This work allows exploration of the existence of orthologous gene clusters in saprophytic bacteria and some pathogens, where they might stimulate studies on their role in virulence, and it provides a framework to develop new biotechnological processes for detoxification/biotransformation of N-heterocyclic aromatic compounds.

  10. Measurements of Intra- and Extra-Cellular 5-Methyltetrahydrofolate Indicate that Bifidobacterium Adolescentis DSM 20083T and Bifidobacterium Pseudocatenulatum DSM 20438T Do Not Actively Excrete 5-Methyltetrahydrofolate In vitro

    PubMed Central

    Kopp, Markus; Dürr, Kerstin; Steigleder, Matthias; Clavel, Thomas; Rychlik, Michael

    2017-01-01

    Certain intestinal bifidobacteria have the ability to synthesize folates. In vitro experiments revealed a high production, cellular accumulation, and release of reduced folate vitamers like 5-methyltetrahydrofolate and tetrahydrofolate in folate-free medium (FFM). However, it is still unclear to which extent synthesized folates are polyglutamylated and probably not available for transport, and if they are actively released by excretion. To address these questions, we characterized intra- and extra-cellular pteroylmonoglutamates and polyglutamylated 5-methyltetrahydrofolate (5-CH3-H4PteGlu2−4) in Bifidobacterium adolescentis DSM 20083T and Bifidobacterium pseudocatenulatum DSM 20438T in vitro. Folates were measured by means of stable isotope dilution assays (SIDA) coupled with LC-MS/MS analysis using [2H4]-5-methyltetrahydrofolic acid, [2H4]-tetrahydrofolic acid, and [2H4]-5-formyltetrahydrofolic acid as internal standards. Cell viability was examined by fluorescence microscopy. Quantitation of folate production by B. adolescentis during the stationary phase revealed a linear increase of dead cells paralleled by increasing concentration of 5-formyltetrahydrofolate and 5-methyltetrahydrofolate (100% 5-CH3-H4PteGlu4) in FFM, whereas the intracellular concentrations of these vitamers remained constant. After 24 h, B. adolescentis (125 mg cells, wet weight) produced a total amount of 0.846 nmol 5-CH3-H4folate: 0.385 ± 0.059 nmol (46 ± 7%) and 0.461 ± 0.095 nmol (54 ± 11%) measured in the intracellular (viable cells; 52 ± 3% measured by fluorescence microscopy) and extracellular (lysed cells; 48 ± 3%) fraction, respectively. For B. pseudocatenulatum (124 mg cells, wet weight), 1.135 nmol 5-CH3-H4folate was produced after 24 h, and a similar proportionality between intra- and extra-cellular folate concentrations and viable/lysed cells was observed. These results indicate that the strains tested produce and accumulate 5-CH3-H4PteGlu4 for cellular metabolism, and

  11. Chloromethane-dependent expression of the cmu gene cluster of Hyphomicrobium chloromethanicum.

    PubMed

    Borodina, Elena; McDonald, Ian R; Murrell, J Colin

    2004-07-01

    undetected hutI and metF genes located 3' of the paaE gene in H. chloromethanicum. MetF, a putative methylene-tetrahydrofolate reductase, had 27% identity to MetF from M. chloromethanicum. Mutational and transcriptional analysis data indicated that, in H. chloromethanicum, CH(3)Cl is metabolized via a corrinoid-specific (cmuA) and tetrahydrofolate-dependent (metF, purU, folD) methyltransfer system.

  12. Phosphoserine phosphatase is required for serine and one-carbon unit synthesis in Hydrogenobacter thermophilus.

    PubMed

    Kim, Keugtae; Chiba, Yoko; Kobayashi, Azusa; Arai, Hiroyuki; Ishii, Masaharu

    2017-08-07

    Hydrogenobacter thermophilus is an obligate chemolithoautotrophic bacterium of the phylum Aquificae and is capable of fixing carbon dioxide through the reductive TCA cycle. The recent discovery of two novel-type phosphoserine phosphatases (PSPs) in H. thermophilus suggests the presence of a phosphorylated serine biosynthetic pathway; however, the physiological role of these novel-type, metal-independent PSPs (iPSPs) in H. thermophilus has not been confirmed. In the present study, a deletion mutant of pspA, the catalytic subunit of iPSPs, was constructed and characterized. The generated mutant was a serine auxotroph, suggesting that the novel-type PSPs and phosphorylated serine synthetic pathway are essential for serine anabolism in H. thermophilus. As an autotrophic medium supplemented with glycine did not support the growth of the mutant, the reversible enzyme serine hydroxymethyltransferase does not appear to synthesize serine from glycine, and may therefore generate glycine and 5,10-CH2-tetrahydrofolate (5,10-CH2-THF) from serine. This speculation is supported by the lack of glycine cleavage activity, which is needed to generate 5,10-CH2-THF, in H. thermophilus Determining the mechanism of 5,10-CH2-THF synthesis is important for understanding the fundamental anabolic pathways of organisms, because 5,10-CH2-THF is a major one-carbon donor that is used for the synthesis of various essential compounds, including nucleic and amino acids. The findings from the present experiments using a pspA-deletion mutant have confirmed the physiological role of iPSPs as serine producers, and also show that serine is a major donor of one-carbon units in H. thermophilusImportance Serine biosynthetic and catabolic pathways are intimately related with the metabolism of 5,10-CH2-tetrahydrofolate (5,10-CH2-THF), a one-carbon donor that is utilized for the biosynthesis of various essential compounds. For this reason, determining the mechanism of serine synthesis is important for

  13. Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli.

    PubMed

    Hansen, Sonja; Lewis, Kim; Vulić, Marin

    2008-08-01

    Bacterial populations produce a small number of persister cells that exhibit multidrug tolerance. Persister cells are largely responsible for the antibiotic recalcitrance of biofilm infections. The mechanism of persister cell formation largely remains unknown due to the challenges in identifying persister genes. We screened an ordered comprehensive library of 3,985 Escherichia coli knockout strains to identify mutants with altered antibiotic tolerance. Stationary-state cultures in 96-well plates were exposed to ofloxacin at a concentration which allows only tolerant persister cells to survive. The persister cell level of each culture was determined. A total of 150 mutants with decreased persistence were identified in the initial screen, and subsequent validation confirmed that neither the growth rate nor the ofloxacin MIC was affected for 10 of them. The genes affected in these strains were dnaJ and dnaK (chaperones), apaH (diadenosine tetraphosphatase), surA (peptidyl-prolyl cis-trans isomerase), fis and hns (global regulators), hnr (response regulator of RpoS), dksA (transcriptional regulator of rRNA transcription), ygfA (5-formyl-tetrahydrofolate cyclo-ligase), and yigB (flavin mononucleotide [FMN] phosphatase). The prominent presence of global regulators among these strains pointed to the likely redundancy of persister cell formation mechanisms: the elimination of a regulator controlling several redundant persister genes would be expected to produce a phenotype. This observation is consistent with previous findings for a possible role of redundant genes such as toxin/antitoxin modules in persister cell formation. ygfA and yigB were of special interest. The mammalian homolog of YgfA (methenyltetrahydrofolate synthetase) catalyzes the conversion of 5-formyl-tetrahydrofolate (THF) into the rapidly degraded 5,10-methenyl-THF, depleting the folate pool. The YigB protein is a phosphatase of FMN which would deplete the pool of this cofactor. Stochastic overexpression

  14. Utility of the clinical practice of administering thrombophilic screening and antithrombotic prophylaxis with low-molecular-weight heparin to healthy donors treated with G-CSF for mobilization of peripheral blood stem cells.

    PubMed

    Martino, Massimo; Luise, Francesca; Oriana, Vincenzo; Console, Giuseppe; Moscato, Tiziana; Mammì, Corrado; Messina, Giuseppe; Massara, Elisabetta; Irrera, Giuseppe; Piromalli, Angela; Lombardo, Vincenzo Trapani; Laganà, Carmelo; Iacopino, Pasquale

    2007-01-01

    The aim of the study was to verify the utility of the clinical practice of administering thrombophilic screening and antithrombotic prophylaxis with low-molecular-weight heparin to healthy donors receiving granulocyte colony-stimulating factor to mobilize peripheral blood stem cells. Thrombophilia screening comprised of testing for factor V Leiden G1691A, prothrombin G20210A, the thermolabile variant (C677T) of the methylene tetrahydrofolate reductase gene, protein C, protein S, factor VIII and homocysteine plasmatic levels, antithrombin III activity, and acquired activated protein C resistance. We investigated prospectively 72 white Italian healthy donors, 39 men and 33 women, with a median age of 42 years (range, 18-65). Five donors (6.9%) were heterozygous carriers of Factor V Leiden G1691A; two healthy donors had the heterozygous prothrombin G20210A gene mutation; C677T mutation in the methylene tetrahydrofolate reductase gene was present in 34 (47.2%) donors in heterozygous and in 7 donors (9.7%) in homozygous. Acquired activated protein C resistance was revealed in 8 donors of the study (11.1%). The protein C plasmatic level was decreased in 3 donors (4.2%); the protein S level was decreased in 7 donors (9.7%). An elevated factor VIII dosage was shown in 10 donors (13.9%) and hyperhomocysteinemia in 9 donors (12.5%). Concentration of antithrombin III was in the normal range for all study group donors. The factor V Leiden mutation was combined with the heterozygous prothrombin G20210A in 2 cases and with protein S deficiency in one case; 2 healthy donors presented an associated deficiency of protein C and protein S. Although none of these healthy subjects had a previous history of thrombosis, low-molecular-weight heparin was administered to all donors during granulocyte colony-stimulating factor administration to prevent thrombotic events. No donor experienced short or long-term thrombotic diseases after a median follow-up of 29.2 months. Our data do not

  15. Complementation of Cobalamin Auxotrophy in Synechococcus sp. Strain PCC 7002 and Validation of a Putative Cobalamin Riboswitch In Vivo

    PubMed Central

    Pérez, Adam A.; Liu, Zhenfeng; Rodionov, Dmitry A.; Li, Zhongkui

    2016-01-01

    ABSTRACT The euryhaline cyanobacterium Synechococcus sp. strain PCC 7002 has an obligate requirement for exogenous vitamin B12 (cobalamin), but little is known about the roles of this compound in cyanobacteria. Bioinformatic analyses suggest that only the terminal enzyme in methionine biosynthesis, methionine synthase, requires cobalamin as a coenzyme in Synechococcus sp. strain PCC 7002. Methionine synthase (MetH) catalyzes the transfer of a methyl group from N5-methyl-5,6,7,8-tetrahydrofolate to l-homocysteine during l-methionine synthesis and uses methylcobalamin as an intermediate methyl donor. Numerous bacteria and plants alternatively employ a cobalamin-independent methionine synthase isozyme, MetE, that catalyzes the same methyl transfer reaction as MetH but uses N5-methyl-5,6,7,8-tetrahydrofolate directly as the methyl donor. The cobalamin auxotrophy of Synechococcus sp. strain PCC 7002 was complemented by using the metE gene from the closely related cyanobacterium Synechococcus sp. strain PCC 73109, which possesses genes for both methionine synthases. This result suggests that methionine biosynthesis is probably the sole use of cobalamin in Synechococcus sp. strain PCC 7002. Furthermore, a cobalamin-repressible gene expression system was developed in Synechococcus sp. strain PCC 7002 that was used to validate the presence of a cobalamin riboswitch in the promoter region of metE from Synechococcus sp. strain PCC 73109. This riboswitch acts as a cobalamin-dependent transcriptional attenuator for metE in that organism. IMPORTANCE Synechococcus sp. strain PCC 7002 is a cobalamin auxotroph because, like eukaryotic marine algae, it uses a cobalamin-dependent methionine synthase (MetH) for the final step of l-methionine biosynthesis but cannot synthesize cobalamin de novo. Heterologous expression of metE, encoding cobalamin-independent methionine synthase, from Synechococcus sp. strain PCC 73109, relieved this auxotrophy and enabled the construction of a truly

  16. Distinct biochemical properties of human serine hydroxymethyltransferase compared with the Plasmodium enzyme: implications for selective inhibition.

    PubMed

    Pinthong, Chatchadaporn; Maenpuen, Somchart; Amornwatcharapong, Watcharee; Yuthavong, Yongyuth; Leartsakulpanich, Ubolsree; Chaiyen, Pimchai

    2014-06-01

    Serine hydroxymethyltransferase (SHMT) catalyzes the transfer of a hydroxymethyl group from l-serine to tetrahydrofolate to yield glycine and 5,10-methylenetetrahydrofolate. Our previous investigations have shown that SHMTs from Plasmodium spp. (P. falciparum, Pf; P. vivax, Pv) are different from the enzyme from rabbit liver in that Plasmodium SHMT can use d-serine as a substrate. In this report, the biochemical and biophysical properties of the Plasmodium and the human cytosolic form (hcSHMT) enzymes including ligand binding and kinetics were investigated. The data indicate that, similar to Plasmodium enzymes, hcSHMT can use d-serine as a substrate. However, hcSHMT displays many properties that are different from those of the Plasmodium enzymes. The molar absorption coefficient of hcSHMT-bound pyridoxal-5'-phosphate (PLP) is much greater than PvSHMT-bound or PfSHMT-bound PLP. The binding interactions of hcSHMT and Plasmodium SHMT with d-serine are different, as only the Plasmodium enzyme undergoes formation of a quinonoid-like species upon binding to d-serine. Furthermore, it has been noted that hcSHMT displays strong substrate inhibition by tetrahydrofolate (THF) (at THF > 40 μm), compared with SHMTs from Plasmodium and other species. The pH-activity profile of hcSHMT shows higher activities at lower pH values corresponding to a pKa value of 7.8 ± 0.1. Thiosemicarbazide reacts with hcSHMT following a one-step model [k1 of 12 ± 0.6 m(-1) ·s(-1) and k-1 of (1.0 ± 0.6) × 10(-3) s(-1) ], while the same reaction with PfSHMT involves at least three steps. All data indicated that the ligand binding environment of SHMT from human and Plasmodium are different, indicating that it should be possible to develop species-selective inhibitors in future studies. serine hydroxymethyltransferase, EC 2.1.2.1; 5,10-methylenetetrahydrofolate dehydrogenase, EC 1.5.1.5. © 2014 FEBS.

  17. Fetal anticonvulsant syndromes and polymorphisms in MTHFR, MTR, and MTRR.

    PubMed

    Dean, John; Robertson, Zoe; Reid, V; Wang, Q Diana; Hailey, Hazel; Moore, Sue; Rasalam, A Dee; Turnpenny, Peter; Lloyd, David; Cardy, Amanda; Shaw, Duncan; Little, Julian

    2007-10-01

    The malformations found in fetal anticonvulsant syndromes (FACS) are associated with folic acid deficiency and methylene-tetrahydrofolate reductase (MTHFR) polymorphisms in the general population. To investigate a possible association between FACS and MTHFR genotype, we recruited 200 mothers who had taken anti-epileptic drugs in pregnancy, and delivered at Aberdeen Maternity Hospital over a 26-year period. Clinical findings in the mothers and their 337 children were documented. A clinical algorithm was devised to diagnose FACS objectively. Case-parent triads were genotyped for polymorphisms in MTHFR, serine hydroxymethyl transferase (SHMT1), methionine synthase (MTR), and methionine synthase reductase (MTRR), and analyzed by log-linear regression. No effect of the child's genotype on congenital malformation, neurodevelopmental disorder or FACS was detected using this method. The risk of having a child with congenital malformation or FACS was three to four times higher for mothers who were MTHFR 677TT homozygotes compared with MTHFR 677CC homozygotes. MTR 2756A > G and MTRR 66A > G genotype frequencies in children with FACS and neurodevelopmental disorder were different from those in healthy blood donor controls. 2007 Wiley-Liss, Inc

  18. Kinetic analysis of site-directed mutants of methionine synthase from Candida albicans

    SciTech Connect

    Prasannan, Priya; Suliman, Huda S.; Robertus, Jon D.

    2009-05-15

    Fungal methionine synthase catalyzes the transfer of a methyl group from 5-methyl-tetrahydrofolate to homocysteine to create methionine. The enzyme, called Met6p in fungi, is required for the growth of the pathogen Candida albicans, and is consequently a reasonable target for antifungal drug design. In order to understand the mechanism of this class of enzyme, we created a three-dimensional model of the C. albicans enzyme based on the known structure of the homologous enzyme from Arabidopsis thaliana. A fusion protein was created and shown to have enzyme activity similar to the wild-type Met6p. Fusion proteins containing mutations at eight key sites were expressed and assayed in this background. The D614 carboxylate appears to ion pair with the amino group of homocysteine and is essential for activity. Similarly, D504 appears to bind to the polar edge of the folate and is also required for activity. Other groups tested have lesser roles in substrate binding and catalysis.

  19. Homocysteine Metabolism, Atherosclerosis, and Diseases of Aging.

    PubMed

    McCully, Kilmer S

    2015-12-15

    The importance of homocysteine in vascular function and arteriosclerosis was discovered by demonstration of arteriosclerotic plaques in children with homocystinuria caused by inherited enzymatic deficiencies of cystathionine synthase, methionine synthase, or methylene-tetrahydrofolate reductase. According to the homocysteine theory of arteriosclerosis, an elevated blood homocysteine level is an important risk factor for atherosclerosis in subjects without these rare enzymatic abnormalities. The homocysteine theory is supported by demonstration of arterial plaques in experimental animals with hyperhomocysteinemia, by discovery of a pathway for conversion of homocysteine thiolactone to sulfate in cell cultures from children with homocystinuria, and by demonstration of growth promotion by homocysteic acid in normal and hypophysectomized animals. Studies with cultured malignant cells revealed abnormal homocysteine thiolactone metabolism, resulting in homocysteinylation of proteins, nucleic acids, and glycosaminoglycans, explaining the abnormal oxidative metabolism, abnormalities of cellular membranes, and altered genetic expression observed in malignancy. Abnormal homocysteine metabolism in malignant cells is attributed to deficiency of thioretinamide, the amide synthesized from retinoic acid and homocysteine thiolactone. Two molecules of thioretinamide combine with cobalamin to form thioretinaco. Based on the molecular structure of thioretinaco, a theory of oxidative phosphorylation was proposed, involving oxidation to a disulfonium derivative by ozone, and binding of oxygen, nicotinamide adenine dinucleotide and phosphate as the active site of adenosine triphosphate synthesis in mitochondria. Obstruction of vasa vasorum by aggregates of microorganisms with homocysteinylated low-density lipoproteins is proposed to cause ischemia of arterial wall and a microabscess of the intima, the vulnerable atherosclerotic plaque.

  20. Nuclear receptor-mediated alleviation of alcoholic fatty liver by polyphenols contained in alcoholic beverages.

    PubMed

    Yao, Ruiqing; Yasuoka, Akihito; Kamei, Asuka; Ushiama, Shota; Kitagawa, Yoshinori; Rogi, Tomohiro; Shibata, Hiroshi; Abe, Keiko; Misaka, Takumi

    2014-01-01

    To elucidate the effect of the polyphenols contained in alcoholic beverages on the metabolic stress induced by ethanol consumption, four groups of mice were fed for five weeks on Lieber's diet with or without ethanol, with ethanol plus ellagic acid, and with ethanol plus trans-resveratrol. Alcoholic fatty liver was observed in the group fed the ethanol diet but not in those fed the ethanol plus polyphenol diets. Liver transcriptome analysis revealed that the addition of the polyphenols suppressed the expression of the genes related to cell stress that were up-regulated by ethanol alone. Conversely, the polyphenols up-regulated the genes involved in bile acid synthesis, unsaturated fatty acid elongation, and tetrahydrofolate synthesis that were down-regulated by ethanol alone. Because parts of these genes were known to be regulated by the constitutive androstane receptor (CAR), we performed the same experiment in the CAR-deficient mice. As a result, fatty liver was observed not only in the ethanol group but also with the ethanol plus polyphenol groups. In addition, there was no segregation of the gene expression profiles among these groups. These results provide a molecular basis for the prevention of alcohol-induced stress by the polyphenols in alcoholic beverages.

  1. Vibrational structure of dihydrofolate bound to R67 dihydrofolate reductase.

    PubMed

    Deng, H; Callender, R; Howell, E

    2001-12-28

    R67 is a Type II dihydrofolate reductase (DHFR) that catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate by facilitating the addition of a proton to N5 of DHF and the transfer of a hydride ion from NADPH to C6. Because this enzyme is a plasmid-encoded DHFR from trimethoprim-resistant bacteria, extensive studies on R67 with various methods have been performed to elucidate its reaction mechanism. Here, Raman difference measurements, conducted on the ternary complex of R67.NADP(+).DHF believed to be an accurate mimic of the productive DHFR.NADPH.DHF complex, show that the pK(a) of N5 in the complex is less than 4. This is in clear contrast to the behavior observed in Escherichia coli DHFR, a substantially more efficient enzyme, where the pK(a) of bound DHF at N5 is increased to 6.5 compared with its solution value of 2.6. A comparison of the ternary complexes in R67 and E. coli DHFRs suggests that enzymic raising of the pK(a) at N5 can significantly increase the catalytic efficiency of the hydride transfer step. However, R67 shows that even without such a strategy an effective DHFR can still be designed.

  2. Homocysteine and B vitamins.

    PubMed

    Cook, S; Hess, O M

    2005-01-01

    Homocysteine (tHcy) is an intermediate sulfur-containing amino acid which acts as a methyl group donor for methionine metabolism. Increased serum concentrations (=hyperhomocysteinemia, >10 micromol/l) have been associated with an increased cardiovascular risk. Homocystinuria, an infrequent genetic disease usually due to lack of cystathione beta-synthase, has been found with severely elevated serum homocysteine values (>150 micromol/l). Functional gene polymorphisms of key enzymes (e.g., N5,N10-methylene-tetrahydrofolate reductase) and dietary B-vitamin deficiencies in the elderly are, however, frequent in the 'Western' population. Hyperhomocysteinemia has been associated with other vascular effects such as atherothrombosis and endothelial dysfunction due to its auto-oxidative potential, thereby increasing the production of reactive oxygen species. Other effects may involve neurodegenerative diseases such as Alzheimer or dementia praecox of the elderly. Therapeutic interventions lowering tHcy may therefore offer novel tools for the prevention and treatment of atherosclerosis. B-vitamin supplementation (folic acid=vitamin B9, vitamin B6 and vitamin B12) is an efficient and safe tHcy-lowering therapy, decreases tHcy by 30%-50% and has been shown to lower cardiovascular morbidity and mortality. Furthermore, folic acid supplementation has been shown to reduce or even almost eliminate neurotubular birth defects (spina bifida) and to markedly decrease the rate of megaloblastic anemia. Thus, fortification of flour with folic acid in the USA was advocated several years ago in order to prevent these entities.

  3. Experimental and Metabolic Modeling Evidence for a Folate-Cleaving Side-Activity of Ketopantoate Hydroxymethyltransferase (PanB)

    PubMed Central

    Thiaville, Jennifer J.; Frelin, Océane; García-Salinas, Carolina; Harrison, Katherine; Hasnain, Ghulam; Horenstein, Nicole A.; Díaz de la Garza, Rocio I.; Henry, Christopher S.; Hanson, Andrew D.; de Crécy-Lagard, Valérie

    2016-01-01

    Tetrahydrofolate (THF) and its one-carbon derivatives, collectively termed folates, are essential cofactors, but are inherently unstable. While it is clear that chemical oxidation can cleave folates or damage their pterin precursors, very little is known about enzymatic damage to these molecules or about whether the folate biosynthesis pathway responds adaptively to damage to its end-products. The presence of a duplication of the gene encoding the folate biosynthesis enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (FolK) in many sequenced bacterial genomes combined with a strong chromosomal clustering of the folK gene with panB, encoding the 5,10-methylene-THF-dependent enzyme ketopantoate hydroxymethyltransferase, led us to infer that PanB has a side activity that cleaves 5,10-methylene-THF, yielding a pterin product that is recycled by FolK. Genetic and metabolic analyses of Escherichia coli strains showed that overexpression of PanB leads to accumulation of the likely folate cleavage product 6-hydroxymethylpterin and other pterins in cells and medium, and—unexpectedly—to a 46% increase in total folate content. In silico modeling of the folate biosynthesis pathway showed that these observations are consistent with the in vivo cleavage of 5,10-methylene-THF by a side-activity of PanB, with FolK-mediated recycling of the pterin cleavage product, and with regulation of folate biosynthesis by folates or their damage products. PMID:27065985

  4. Formyltetrahydrofolate synthetase gene diversity in the guts of higher termites with different diets and lifestyles.

    PubMed

    Ottesen, Elizabeth A; Leadbetter, Jared R

    2011-05-01

    In this study, we examine gene diversity for formyl-tetrahydrofolate synthetase (FTHFS), a key enzyme in homoacetogenesis, recovered from the gut microbiota of six species of higher termites. The "higher" termites (family Termitidae), which represent the majority of extant termite species and genera, engage in a broader diversity of feeding and nesting styles than the "lower" termites. Previous studies of termite gut homoacetogenesis have focused on wood-feeding lower termites, from which the preponderance of FTHFS sequences recovered were related to those from acetogenic treponemes. While sequences belonging to this group were present in the guts of all six higher termites examined, treponeme-like FTHFS sequences represented the majority of recovered sequences in only two species (a wood-feeding Nasutitermes sp. and a palm-feeding Microcerotermes sp.). The remaining four termite species analyzed (a Gnathamitermes sp. and two Amitermes spp. that were recovered from subterranean nests with indeterminate feeding strategies and a litter-feeding Rhynchotermes sp.) yielded novel FTHFS clades not observed in lower termites. These termites yielded two distinct clusters of probable purinolytic Firmicutes and a large group of potential homoacetogens related to sequences previously recovered from the guts of omnivorous cockroaches. These findings suggest that the gut environments of different higher termite species may select for different groups of homoacetogens, with some species hosting treponeme-dominated homoacetogen populations similar to those of wood-feeding, lower termites while others host Firmicutes-dominated communities more similar to those of omnivorous cockroaches.

  5. An oxidative N-demethylase reveals PAS transition from ubiquitous sensor to enzyme.

    PubMed

    Ortmayer, Mary; Lafite, Pierre; Menon, Binuraj R K; Tralau, Tewes; Fisher, Karl; Denkhaus, Lukas; Scrutton, Nigel S; Rigby, Stephen E J; Munro, Andrew W; Hay, Sam; Leys, David

    2016-11-24

    The universal Per-ARNT-Sim (PAS) domain functions as a signal transduction module involved in sensing diverse stimuli such as small molecules, light, redox state and gases. The highly evolvable PAS scaffold can bind a broad range of ligands, including haem, flavins and metal ions. However, although these ligands can support catalytic activity, to our knowledge no enzymatic PAS domain has been found. Here we report characterization of the first PAS enzyme: a haem-dependent oxidative N-demethylase. Unrelated to other amine oxidases, this enzyme contains haem, flavin mononucleotide, 2Fe-2S and tetrahydrofolic acid cofactors, and specifically catalyses the NADPH-dependent oxidation of dimethylamine. The structure of the α subunit reveals that it is a haem-binding PAS domain, similar in structure to PAS gas sensors. The dimethylamine substrate forms part of a highly polarized oxygen-binding site, and directly assists oxygen activation by acting as both an electron and proton donor. Our data reveal that the ubiquitous PAS domain can make the transition from sensor to enzyme, suggesting that the PAS scaffold can support the development of artificial enzymes.

  6. Computer simulation of protein systems

    NASA Technical Reports Server (NTRS)

    Osguthorpe, D. J.; Dauber-Osguthorpe, P.; Wolff, J.; Kitson, D. H.; Hagler, A. T.

    1984-01-01

    Ligand binding to dihydrofolate reductase (DHFR) is discussed. This is an extremely important enzyme, as it is the target of several drugs (inhibitors) which are used clinically as antibacterials, antiprotozoals and in cancer chemotherapy. DHFR catalyzes the NADPH (reduced nicotinamide adenine dinucleotide phosphate) dependent reduction of dihydrofolate to tetrahydrofolate, which is used in several pathways of purine and pyrimidine iosynthesis, including that of thymidylate. Since DNA synthesis is dependent on a continuing supply of thymidylate, a blockade of DHFR resulting in a depletion of thymidylate can lead to the cessation of growth of a rapidly proliferating cell line. DHFR exhibits a significant species to species variability in its sensitivity to various inhibitors. For example, trimethoprim, an inhibitor of DHFR, binds to bacterial DHFR's 5 orders of magnitude greater than to vertebrate DHFR's. The structural mechanics, dynamics and energetics of a family of dihydrofolate reductases are studied to rationalize the basis for the inhibitor of these enyzmes and to understand the molecular basis of the difference in the binding constants between the species. This involves investigating the conformational changes induced in the protein on binding the ligand, the internal strain imposed by the enzyme on the ligand, the restriction of fluctuations in atom positions due to binding and the consequent change in entropy.

  7. The pugilistDominant Mutation of Drosophila melanogaster: A Simple-Sequence Repeat Disorder Reveals Localized Transport in the Eye.

    PubMed

    Rong, Yikang S; Golic, Mary M; Golic, Kent G

    2016-01-01

    The pugilist-Dominant mutation results from fusion of a portion of the gene encoding the tri-functional Methylene Tetrahydrofolate Dehydrogenase (E.C.1.5.1.5, E.C.3.5.4.9, E.C.6.3.4.3) to approximately one kb of a heterochromatic satellite repeat. Expression of this fusion gene results in an unusual ring pattern of pigmentation around the eye. We carried out experiments to determine the mechanism for this pattern. By using FLP-mediated DNA mobilization to place different pugD transgenes at pre-selected sites we found that variation in repeat length makes a strong contribution to variability of the pug phenotype. This variation is manifest primarily as differences in the thickness of the pigmented ring. We show that similar phenotypic variation can also be achieved by changing gene copy number. We found that the pugD pattern is not controlled by wingless, which is normally expressed in a similar ring pattern. Finally, we found that physical injury to a pugD eye can lead to pigment deposition in parts of the eye that would not have been pigmented in the absence of injury. Our results are consistent with a model in which a metabolite vital for pigment formation is imported from the periphery of the eye, and pugD limits the extent of its transport towards the center of the eye, thus revealing the existence of a hitherto unknown mechanism of localized transport in the eye.

  8. Regulation of the glycine cleavage system in rat liver

    SciTech Connect

    Hampson, R.K.

    1984-01-01

    Catabolism of glycine, via the glycine cleavage system was investigated in isolated, fully functional, rat liver mitochondria, and the isolated perfused rat liver. Metabolic flux through the glycine cleavage system, which catalyzes the tetrahydrofolate-dependent cleavage of glycine yielding carbon dioxide, ammonia, N/sup 5/,N/sup 10/-methylenetetrahydrofolate, and NADH + H/sup +/, was monitored by measuring the production of /sup 14/CO/sub 2/ from (1-/sup 14/C)glycine. The glycine cleavage system was demonstrated to be responsible for nearly all /sup 14/CO/sub 2/ production from (1-/sup 14/C)glycine in both isolated mitochondria and the perfused rat liver. Glycine decarboxylation by rat liver mitochondria was highly sensitive to the metabolic state in which the mitochondria were maintained. Production of /sup 14/CO/sub 2/ from (1-/sup 14/C)glycine was stimulated in State 3 over State 4 and was maximal in the uncoupled state. Alternatively, respiratory inhibitors, such as rotenone, and reducing substrates, inhibited mitochondrial glycine decarboxylation strongly. Propionate stimulated glycine decarboxylation by rat liver mitochondria with a concomitant decrease in the measured intramitochondrial NADPH content. Incubation of mitochondria with propionate evoked a large decrease in the measured intramitochondrial ATP content and a large increase in AMP content. Manipulation of the intramitochondrial adenine nucleotide profile demonstrated that no direct correlation existed between rates of mitochondrial glycine decarboxylation and the intramitochondrial content of either ATP, ADP, or AMP.

  9. Structure of Candida albicans methionine synthase determined by employing surface residue mutagenesis.

    PubMed

    Ubhi, Devinder; Kavanagh, Kathryn L; Monzingo, Arthur F; Robertus, Jon D

    2011-09-01

    Fungal methionine synthase, Met6p, transfers a methyl group from 5-methyl-tetrahydrofolate to homocysteine to generate methionine. The enzyme is essential to fungal growth and is a potential anti-fungal drug design target. We have characterized the enzyme from the pathogen Candida albicans but were unable to crystallize it in native form. We converted Lys103, Lys104, and Glu107 all to Tyr (Met6pY), Thr (Met6pT) and Ala (Met6pA). All variants showed wild-type kinetic activity and formed useful crystals, each with unique crystal packing. In each case the mutated residues participated in beneficial crystal contacts. We have solved the three structures at 2.0-2.8Å resolution and analyzed crystal packing, active-site residues, and similarity to other known methionine synthase structures. C. albicans Met6p has a two domain structure with each of the domains having a (βα)(8)-barrel fold. The barrels are arranged face-to-face and the active site is located in a cleft between the two domains. Met6p utilizes a zinc ion for catalysis that is bound in the C-terminal domain and ligated by four conserved residues: His657, Cys659, Glu679 and Cys739. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Influence of Active Site Conformations on the Hydride Transfer step of the Thymidylate Synthase Reaction Mechanism

    PubMed Central

    Świderek, Katarzyna; Kohen, Amnon; Moliner, Vicent

    2015-01-01

    The hydride transfer from C6 of tetrahydrofolate to the reaction’s exocyclic methylene-dUMP intermediate is the rate limiting step in thymidylate synthase (TSase) catalysis. This step has been studied by means of QM/MM Molecular Dynamics simulations to generate the corresponding free energy surfaces. The use of two different initial X-ray structures has allowed exploring different conformational spaces and exploring the existence of chemical paths with not only different reactivities, but also different reaction mechanisms. The results confirm that this chemical conversion takes place preferentially via a concerted mechanism where the hydride transfer is conjugated to thiol-elimination from the product. The findings also confirm the labile character of the substrate-enzyme covalent bond established between the C6 of the nucleotide substrate and a conserved cysteine residue. The calculations also reproduce and rationalize a normal H/T 2° kinetic isotope effect measured for that step. From a computational point of view, the results demonstrate that the use of an incomplete number of coordinates to describe the real reaction coordinate can render biased results. PMID:25868526

  11. Structure of the cobalamin-binding protein of a putative O-demethylase from Desulfitobacterium hafniense DCB-2

    SciTech Connect

    Sjuts, Hanno; Dunstan, Mark S.; Fisher, Karl; Leys, David

    2013-08-01

    The first crystal structure of the vitamin B12-binding protein from a three-component O-demethylase enzyme system is reported. During O-demethylation methyl groups are transferred from phenyl methyl ethers to tetrahydrofolate via methyl-B12 intermediates. This study describes the identification and the structural and spectroscopic analysis of a cobalamin-binding protein (termed CobDH) implicated in O-demethylation by the organohalide-respiring bacterium Desulfitobacterium hafniense DCB-2. The 1.5 Å resolution crystal structure of CobDH is presented in the cobalamin-bound state and reveals that the protein is composed of an N-terminal helix-bundle domain and a C-terminal Rossmann-fold domain, with the cobalamin coordinated in the base-off/His-on conformation similar to other cobalamin-binding domains that catalyse methyl-transfer reactions. EPR spectroscopy of CobDH confirms cobalamin binding and reveals the presence of a cob(III)alamin superoxide, indicating binding of oxygen to the fully oxidized cofactor. These data provide the first structural insights into the methyltransferase reactions that occur during O-demethylation by D. hafniense.

  12. Optical observation of correlated motions in dihydrofolate reductase

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea

    2015-03-01

    Enzyme function relies on its structural flexibility to make conformational changes for substrate binding and product release. An example of a metabolic enzyme where such structural changes are vital is dihydrofolate reductase (DHFR). DHFR is essential in both prokaryotes and eukaryotes for the nucleotide biosynthesis by catalyzing the reduction of dihydrofolate to tetrahydrofolate. NMR dynamical measurements found large amplitude fast dynamics that could indicate rigid-body, twisting-hinge motion for ecDHFR that may mediate flux. The role of such long-range correlated motions in function was suggested by the observed sharp decrease in enzyme activity for the single point mutation G121V, which is remote from active sites. This decrease in activity may be caused by the mutation interfering with the long-range intramolecular vibrations necessary for rapid access to functional configurations. We use our new technique of crystal anisotropy terahertz microscopy (CATM), to observe correlated motions in ecDHFR crystals with the bonding of NADPH and methotrexate. We compare the measured intramolecular vibrational spectrum with calculations using normal mode analysis.

  13. Sulfur amino acid metabolism in Zucker diabetic fatty rats.

    PubMed

    Kwak, Hui Chan; Kim, Young-Mi; Oh, Soo Jin; Kim, Sang Kyum

    2015-08-01

    The present study was aimed to investigate the metabolomics of sulfur amino acids in Zucker diabetic fatty (ZDF) rats, an obese type 2 diabetic animal model. Plasma levels of total cysteine, homocysteine and methionine, but not glutathione (GSH) were markedly decreased in ZDF rats. Hepatic methionine, homocysteine, cysteine, betaine, taurine, spermidine and spermine were also decreased. There are no significant difference in hepatic S-adenosylmethionine, S-adenosylhomocysteine, GSH, GSH disulfide, hypotaurine and putrescine between control and ZDF rats. Hepatic SAH hydrolase, betaine-homocysteine methyltransferase and methylene tetrahydrofolate reductase were up-regulated while activities of gamma-glutamylcysteine ligase and methionine synthase were decreased. The area under the curve (AUC) of methionine and methionine-d4 was not significantly different in control and ZDF rats treated with a mixture of methionine (60mg/kg) and methionine-d4 (20mg/kg). Moreover, the AUC of the increase in plasma total homocysteine was comparable between two groups, although the homocysteine concentration curve was shifted leftward in ZDF rats, suggesting that the plasma total homocysteine after the methionine loading was rapidly increased and normalized in ZDF rats. These results show that the AUC of plasma homocysteine is not responsive to the up-regulation of hepatic BHMT in ZDF rats. The present study suggests that the decrease in hepatic methionine may be responsible for the decreases in its metabolites, such as homocysteine, cysteine, and taurine in liver and consequently decreased plasma homocysteine levels.

  14. Persuasive evidence that formocresol use in pediatric dentistry is safe.

    PubMed

    Milnes, Alan R

    2006-04-01

    Concern has been expressed about the safety of formocresol use in pediatric dentistry. Formaldehyde, a primary component in formocresol, is a hazardous substance and is considered a probable human carcinogen by Health Canada. However, humans inhale and ingest formaldehyde daily and also produce this compound as part of normal cellular metabolism. The human body is physiologically equipped to handle this exposure through multiple pathways for oxidation of formaldehyde to formate and incorporation into biological macromolecules via tetrahydrofolate-dependent one-carbon biosynthetic pathways. Recent re-evaluation of earlier research that examined potential health risks associated with formaldehyde exposure has shown that the research was based on flawed assumptions, which resulted in erroneous conclusions. This review examines more recent research about formaldehyde metabolism, pharmacokinetics and carcinogenicity, the results of which indicate that formaldehyde is probably not a potent human carcinogen under conditions of low exposure. Extrapolation of these research results to pediatric dentistry suggests an inconsequential risk of carcinogenesis associated with formaldehyde use in pediatric pulp therapy. Areas for further investigation are suggested.

  15. New tissue schizontocidal antimalarial drugs

    PubMed Central

    Davidson, David E.; Ager, Arba L.; Brown, John L.; Chapple, Frank E.; Whitmire, Richard E.; Rossan, Richard N.

    1981-01-01

    Over 700 causal prophylactic and radical curative antimalarial drugs have been discovered during the screening of approximately 4000 chemical compounds in rodent and simian malaria models. Causal prophylactic activity in the Plasmodium berghei—rodent model was demonstrated by 10 distinct groups of chemicals: 1) tetrahydrofolate dehydrogenase inhibitors, 2) naphthoquinones, 3) dihydroacridinediones, 4) tetrahydrofurans, 5) guanylhydrazones, 6) analogues of clopidol, 7) quinoline esters, 8) dibenzyltetrahydro-pyrimidines, 9) 6-aminoquinolines, 10) 8-aminoquinolines. Of the causal prophylactic compounds, only the 6- and 8-aminoquinolines were capable of curing persistent exoerythrocytic infections of P. cynomolgi in rhesus monkeys. The 6-aminoquinolines were substantially less active than primaquine. This report describes a series of 4-methyl-5-phenoxy-6-methoxy-8-aminoquinolines, which are potent blood schizontocides and radical curative drugs. The most active member of this series, 4-methyl-5-(3-trifluoromethylphenoxy)-6-methoxy-8-[(4-amino-1-methylbutyl)| amino]quinoline succinate (WR 225448), was 5 times more active than primaquine in curing persistent exoerythrocytic infections of P. cynomolgi in rhesus monkeys. As a blood schizontocide, WR 225448 was effective in animal models against P. berghei, P. cynomolgi, P. vivax, and both drug-sensitive and drug-resistant strains of P. falciparum. WR 225448 was also more toxic than primaquine in rats on subacute (28-day) administration. PMID:6976854

  16. Metabolism of one-carbon compounds by the ruminal acetogan syntrophococcus sucromutans

    SciTech Connect

    Dore, J.; Bryant, M.P. )

    1990-04-01

    Syntrophococcus sucromutans is the predominant species capable of O demethylation of methoxylated lignin monoaromatic derivatives in the rumen. The enzymatic characterization of this acetogen indicated that it uses the acetyl coenzyme A (Woods) pathway. Cell extracts possess all the enzymes of the tetrahydrofolate pathway, as well as carbon monoxide dehydrogenase, at levels similar to those of other acetogens using this pathway. However, formate dehydrogenase could not be detected in cell extracts, whether formate or a methoxyaromatic was used as electron acceptor for growth of the cells on cellobiose. Labeled bicarbonate, formate, (1-{sup 14}C) pyruvate, and chemically synthesized O-(methyl-{sup 14}C) vanillate were used to further investigate the catabolism of one-carbon (C{sub 1}) compounds by using washed-cell preparations. The results were consistent with little or no contribution of formate dehydrogenase and pointed out some unique features. Conversion of formate to CO{sub 2} was detected, but labeled formate predominantly labeled the methyl group of acetate. Labeled CO{sub 2} readily exchanged with the carboxyl group of pyruvate but not with formate, and both labeled CO{sub 2} and pyruvate predominantly labeled the carboxyl group acetate. No CO{sub 2} was formed from O demethylation of vanillate, and the acetate produced was position labeled in the methyl group. The fermentation pattern and specific activities of products indicated a complete synthesis of acetate from pyruvate and the methoxyl group of vanillate.

  17. Targeting intracellular p-aminobenzoic acid production potentiates the anti-tubercular action of antifolates

    PubMed Central

    Thiede, Joshua M.; Kordus, Shannon L.; Turman, Breanna J.; Buonomo, Joseph A.; Aldrich, Courtney C.; Minato, Yusuke; Baughn, Anthony D.

    2016-01-01

    The ability to revitalize and re-purpose existing drugs offers a powerful approach for novel treatment options against Mycobacterium tuberculosis and other infectious agents. Antifolates are an underutilized drug class in tuberculosis (TB) therapy, capable of disrupting the biosynthesis of tetrahydrofolate, an essential cellular cofactor. Based on the observation that exogenously supplied p-aminobenzoic acid (PABA) can antagonize the action of antifolates that interact with dihydropteroate synthase (DHPS), such as sulfonamides and p-aminosalicylic acid (PAS), we hypothesized that bacterial PABA biosynthesis contributes to intrinsic antifolate resistance. Herein, we demonstrate that disruption of PABA biosynthesis potentiates the anti-tubercular action of DHPS inhibitors and PAS by up to 1000 fold. Disruption of PABA biosynthesis is also demonstrated to lead to loss of viability over time. Further, we demonstrate that this strategy restores the wild type level of PAS susceptibility in a previously characterized PAS resistant strain of M. tuberculosis. Finally, we demonstrate selective inhibition of PABA biosynthesis in M. tuberculosis using the small molecule MAC173979. This study reveals that the M. tuberculosis PABA biosynthetic pathway is responsible for intrinsic resistance to various antifolates and this pathway is a chemically vulnerable target whose disruption could potentiate the tuberculocidal activity of an underutilized class of antimicrobial agents. PMID:27905500

  18. Nonconserved Residues Ala287 and Ser290 of the Cryptosporidium hominis Thymidylate Synthase Domain Facilitate Its Rapid Rate of Catalysis

    SciTech Connect

    Doan,L.; Martucci, W.; Vargo, M.; Atreya, C.; Anderson, K.

    2007-01-01

    Cryptosporidium hominis TS-DHFR exhibits an unusually high rate of catalysis at the TS domain, at least 10-fold greater than those of other TS enzymes. Using site-directed mutagenesis, we have mutated residues Ala287 and Ser290 in the folate-binding helix to phenylalanine and glycine, respectively, the corresponding residues in human and most other TS enzymes. Our results show that the mutant A287F, the mutant S290G, and the double mutant all have reduced affinities for methylene tetrahydrofolate and reduced rates of reaction at the TS domain. Interestingly, the S290G mutant enzyme had the lowest TS activity, with a catalytic efficiency {approx}200-fold lower than that of the wild type (WT). The rate of conformational change of the S290G mutant is {approx}80 times slower than that of WT, resulting in a change in the rate-limiting step from hydride transfer to covalent ternary complex formation. We have determined the crystal structure of ligand-bound S290G mutant enzyme, which shows that the primary effect of the mutation is an increase in the distance between the TS ligands. The kinetic and crystal structure data presented here provide the first evidence explaining the unusually fast TS rate in C. hominis.

  19. Unmetabolized Folic Acid in Prediagnostic Plasma and the Risk of Colorectal Cancer.

    PubMed

    Cho, Eunyoung; Zhang, Xuehong; Townsend, Mary K; Selhub, Jacob; Paul, Ligi; Rosner, Bernard; Fuchs, Charles S; Willett, Walter C; Giovannucci, Edward L

    2015-12-01

    Higher folate has been associated with a reduced colorectal cancer (CRC) risk, but excessive folate may promote tumor progression. The role of unmetabolized folic acid (UFA) from high folic acid consumption in carcinogenesis is largely unexplored. We evaluated prediagnostic plasma levels of UFA in relation to CRC risk in nested case-control studies (618 CRC case patients and 1207 matched control) with blood samples collected prior to folic acid fortification. UFA was detected in 21.4% of control UFA levels were not associated with CRC risk. Compared with undetectable levels, the multivariable relative risks (RRs) of CRC were 1.03 (95% confidence interval [CI] = 0.73 to 1.46) for less than 0.5 nmol/L and 1.12 (95% CI = 0.81 to 1.55) for 0.5 nmol/L or more (Ptrend = .32). A positive association between UFA levels and CRC risk was observed among men (RR = 1.57, 95% CI = 0.99 to 2.49 for ≥0.5 nmol/L vs undetectable, Pinteraction = .04), and a positive association was also observed among those with the methylene-tetrahydrofolate reductase (MTHFR) CT/TT genotype (RR = 2.20, 95% CI = 1.22 to 3.94 for ≥0.5 nmol/L vs undetectable, Pinteraction=0.02). In conclusion, prediagnostic plasma levels of UFA from the prefortification period were not associated with risk of CRC.

  20. Traditional and novel tools to probe the mitochondrial metabolism in health and disease.

    PubMed

    Zhang, Yanfei; Avalos, José L

    2017-03-01

    Mitochondrial metabolism links energy production to other essential cellular processes such as signaling, cellular differentiation, and apoptosis. In addition to producing adenosine triphosphate (ATP) as an energy source, mitochondria are responsible for the synthesis of a myriad of important metabolites and cofactors such as tetrahydrofolate, α-ketoacids, steroids, aminolevulinic acid, biotin, lipoic acid, acetyl-CoA, iron-sulfur clusters, heme, and ubiquinone. Furthermore, mitochondria and their metabolism have been implicated in aging and several human diseases, including inherited mitochondrial disorders, cardiac dysfunction, heart failure, neurodegenerative diseases, diabetes, and cancer. Therefore, there is great interest in understanding mitochondrial metabolism and the complex relationship it has with other cellular processes. A large number of studies on mitochondrial metabolism have been conducted in the last 50 years, taking a broad range of approaches. In this review, we summarize and discuss the most commonly used tools that have been used to study different aspects of the metabolism of mitochondria: ranging from dyes that monitor changes in the mitochondrial membrane potential and pharmacological tools to study respiration or ATP synthesis, to more modern tools such as genetically encoded biosensors and trans-omic approaches enabled by recent advances in mass spectrometry, computation, and other technologies. These tools have allowed the large number of studies that have shaped our current understanding of mitochondrial metabolism. WIREs Syst Biol Med 2017, 9:e1373. doi: 10.1002/wsbm.1373 For further resources related to this article, please visit the WIREs website.

  1. Methionine synthase: high-resolution mapping of the human gene and evaluation as a candidate locus for neural tube defects.

    PubMed

    Brody, L C; Baker, P J; Chines, P S; Musick, A; Molloy, A M; Swanson, D A; Kirke, P N; Ghosh, S; Scott, J M; Mills, J L

    1999-08-01

    Periconceptual folate supplementation has been found to prevent the occurrence of many neural tube defects (NTDs). Consequently, genetic variation in folate metabolism genes is expected to contribute to the risk for neural tube defects. Methionine synthase catalyzes the vitamin B(12)-dependent conversion of homocysteine and 5-methyltetrahydrofolate to methionine and tetrahydrofolate. The observation that homocysteine and vitamin B(12) levels are independent predictors of NTD risk suggested that methionine synthase could be a candidate gene for NTDs. To assess the role of the MS gene in NTDs, we performed high-resolution physical mapping of the MS locus, isolated highly polymorphic markers linked to the MS gene, and tested for an association between specific MS alleles and NTDs. We mapped the MS gene to a position between 909 and 913 cR(10000) on chromosome 1 by radiation hybrid mapping. Polymorphic markers D1S1567 and D1S1568 map to locations no more than 900 and 194 kb from the MS gene, respectively. The segregation of these polymorphic markers was measured in 85 Irish NTD families. No allele of either marker showed a significant association with NTDs using the transmission disequilibrium test. A lack of association was also observed for the D1919G missense mutation within the gene. Our results suggest that inherited variation in the MS gene does not contribute to NTD risk in this population.

  2. Formyltetrahydrofolate Synthetase Gene Diversity in the Guts of Higher Termites with Different Diets and Lifestyles ▿ †

    PubMed Central

    Ottesen, Elizabeth A.; Leadbetter, Jared R.

    2011-01-01

    In this study, we examine gene diversity for formyl-tetrahydrofolate synthetase (FTHFS), a key enzyme in homoacetogenesis, recovered from the gut microbiota of six species of higher termites. The “higher” termites (family Termitidae), which represent the majority of extant termite species and genera, engage in a broader diversity of feeding and nesting styles than the “lower” termites. Previous studies of termite gut homoacetogenesis have focused on wood-feeding lower termites, from which the preponderance of FTHFS sequences recovered were related to those from acetogenic treponemes. While sequences belonging to this group were present in the guts of all six higher termites examined, treponeme-like FTHFS sequences represented the majority of recovered sequences in only two species (a wood-feeding Nasutitermes sp. and a palm-feeding Microcerotermes sp.). The remaining four termite species analyzed (a Gnathamitermes sp. and two Amitermes spp. that were recovered from subterranean nests with indeterminate feeding strategies and a litter-feeding Rhynchotermes sp.) yielded novel FTHFS clades not observed in lower termites. These termites yielded two distinct clusters of probable purinolytic Firmicutes and a large group of potential homoacetogens related to sequences previously recovered from the guts of omnivorous cockroaches. These findings suggest that the gut environments of different higher termite species may select for different groups of homoacetogens, with some species hosting treponeme-dominated homoacetogen populations similar to those of wood-feeding, lower termites while others host Firmicutes-dominated communities more similar to those of omnivorous cockroaches. PMID:21441328

  3. Common origin of methylenedioxy ring degradation and demethylation in bacteria.

    PubMed

    Takeda, Hisashi; Ishikawa, Kazuki; Yoshida, Hinaka; Kasai, Daisuke; Wakana, Daigo; Fukuda, Masao; Sato, Fumihiko; Hosoe, Tomoo

    2017-08-07

    Plants produce many specific secondary metabolites as a response to environmental stress, especially biological stress. These compounds show strong biological activities and high stability against degradation by microbes and animals. Berberine, a benzylisoquinoline alkaloid, is found in many plant species and has strong antimicrobial activity, and is often included in traditional herbal medicines. We previously investigated how berberine is degraded in nature and we isolated two berberine-utilizing bacteria. In this study, we characterized the gene encoding the enzyme that degrades the 2,3-methylenedioxy ring of berberine; this ring is important for its activity and stability. Further characterization of several other berberine-utilizing bacteria and the genes encoding key demethylenation enzymes revealed that these enzymes are tetrahydrofolate dependent and similar to demethylation enzymes such as GcvT. Because the degradation of O-methyl groups or the methylenedioxy ring in phenolic compounds such as lignin, lignan and many other natural products, including berberine, is the key step for the catabolism of these compounds, our discovery reveals the common origin of the catabolism of these stable chemicals in bacteria.

  4. [Vascular diseases, spina bifida and schizophrenia in a single family associated with the heterozygote mutation of the heat-sensitive variant of methylenetetrahydrofolate reductase].

    PubMed

    Horváth, A; Morava, E; Tóth, G; Czakó, M; Melegh, B; Kosztolányi, G

    2001-07-08

    Homozygous mutation of the thermolabile variant of methylene tetrahydrofolate reductase (MTHFR) may result in hyperhomocystinemia, leading to an increased risk for early cardiovascular disease, neural tube defects, and possibly major depression, schizophrenia. According to recent studies heterozygosity for the thermolabile variant of the MTHFR gene mutation is also more frequent in patients with thrombotic disease compared to that in the average population. We report on a family with different types of early vascular disease. In four consecutive generations MTHFR heterozygosity was detected: in the proband and in her mother, grandfather and daughter. Further conditions of the family members, possibly due to carrying the mutation, came to light by the pedigree analysis and examinations. The patient had pulmonary emboli at young age, her aunt died of spina bifida shortly after birth. The patient's mother suffers from schizophrenia and depression. The grandfather had pulmonary emboli, her sister with spina bifida occulta also carries the same mutation, as does her daughter who is sofar asymptomatic. In other asymptomatic members of the family no mutations were found. Unexpectedly, hyperhomocystinemia was detected in all heterozygote individuals. Our study demonstrates the necessity for folic acid therapy in mutation carriers to prevent early vascular events, depression and schizophrenia, and also to reduce the risk for neural tube defects in a preconception setting.

  5. Expression of genes encoding enzymes involved in the one carbon cycle in rat placenta is determined by maternal micronutrients (folic acid, vitamin B12) and omega-3 fatty acids.

    PubMed

    Khot, Vinita; Kale, Anvita; Joshi, Asmita; Chavan-Gautam, Preeti; Joshi, Sadhana

    2014-01-01

    We have reported that folic acid, vitamin B12, and omega-3 fatty acids are interlinked in the one carbon cycle and have implications for fetal programming. Our earlier studies demonstrate that an imbalance in maternal micronutrients influence long chain polyunsaturated fatty acid metabolism and global methylation in rat placenta. We hypothesize that these changes are mediated through micronutrient dependent regulation of enzymes in one carbon cycle. Pregnant dams were assigned to six dietary groups with varying folic acid and vitamin B12 levels. Vitamin B12 deficient groups were supplemented with omega-3 fatty acid. Placental mRNA levels of enzymes, levels of phospholipids, and glutathione were determined. Results suggest that maternal micronutrient imbalance (excess folic acid with vitamin B12 deficiency) leads to lower mRNA levels of methylene tetrahydrofolate reductase (MTHFR) and methionine synthase , but higher cystathionine b-synthase (CBS) and Phosphatidylethanolamine-N-methyltransferase (PEMT) as compared to control. Omega-3 supplementation normalized CBS and MTHFR mRNA levels. Increased placental phosphatidylethanolamine (PE), phosphatidylcholine (PC), in the same group was also observed. Our data suggests that adverse effects of a maternal micronutrient imbalanced diet may be due to differential regulation of key genes encoding enzymes in one carbon cycle and omega-3 supplementation may ameliorate most of these changes.

  6. Co-Consumption of Methanol and Succinate by Methylobacterium extorquens AM1

    PubMed Central

    Peyraud, Rémi; Kiefer, Patrick; Christen, Philipp; Portais, Jean-Charles; Vorholt, Julia A.

    2012-01-01

    Methylobacterium extorquens AM1 is a facultative methylotrophic Alphaproteobacterium and has been subject to intense study under pure methylotrophic as well as pure heterotrophic growth conditions in the past. Here, we investigated the metabolism of M. extorquens AM1 under mixed substrate conditions, i.e., in the presence of methanol plus succinate. We found that both substrates were co-consumed, and the carbon conversion was two-thirds from succinate and one-third from methanol relative to mol carbon. 13C-methanol labeling and liquid chromatography mass spectrometry analyses revealed the different fates of the carbon from the two substrates. Methanol was primarily oxidized to CO2 for energy generation. However, a portion of the methanol entered biosynthetic reactions via reactions specific to the one-carbon carrier tetrahydrofolate. In contrast, succinate was primarily used to provide precursor metabolites for bulk biomass production. This work opens new perspectives on the role of methylotrophy when substrates are simultaneously available, a situation prevailing under environmental conditions. PMID:23133625

  7. Immunoassay of 5-methyltetrahydrofolate: use of /sup 125/I-labeled protein A as the tracer molecule for specific antibody

    SciTech Connect

    Langone, J.J.

    1980-05-15

    A sensitive and specific solid-phase radioimmunoassay for 5-methyltetrahydrofolate (5-MTHFA) has been developed. /sup 125/I-Labeled staphylococcal Protein A (/sup 125/I-PA) was used as the tracer molecule for rabbit IgG antibodies bound to 5-MTHFA immobilized on polyacrylamide beads. The dose-dependent inhibition of antibody binding by fluid-phase drug was reflected in decreased binding of /sup 125/I-PA. This inhibition, determined in the presence of known amounts of 5-MTHFA, served as the basis for quantification of 5-MTHFA in test samples. An early bleeding was relatively specific; 4.5 ng 5-MTHFA inhibited immune binding by 50% compared to 7700 ng folinic acid or 1200 ng tetrahydrofolate. Other folic acid analogs, including methotrexate, failed to inhibit significantly. The assay using a later bleeding was more sensitive since 1.6 ng 5-MTHFA gave 50% inhibition (detection limit 0.2 ng), but folinic acid cross-reacted significantly. Absorption with immobilized folinic acid markedly enhanced the specificity of this antiserum and resulted in a 15 to 20% increase in maximum inhibition by 5-MTHFA. The assay could be carried out in the presence of 0.025 ml human serum or urine without affecting the standard curve, and was used to determine levels of 5-MTHFA in serum of drug-treated rabbits.

  8. Characterization of a folate-induced hypermotility response after bilateral injection into the rat nucleus accumbens

    SciTech Connect

    Stephens, R.L. Jr.

    1986-01-01

    The objective of these studies was to pharmacologically characterize the mechanism responsible for a folate-induced stimulation of locomotor activity in rats after bilateral injection into the nucleus accumbens region of the brain. Folic acid (FA) and 5-formyltetrahydrofolic acid (FTHF) produced this hypermotility response after intra-accumbens injection, while other reduced folic acid derivatives dihydrofolic acid, tetrahydrofolic acid, and 5-methyltetrahydrofolic acid were ineffective. Studies were designed to determine the role of catecholamines in the nucleus accumbens in the folate-induced hypermotility response. The findings suggest that the folate-induced response is dependent on intact neuronal dopamine stores, and is mediated by stimulation of dopamine receptors of the nucleus accumbens. However the folates do not appear to enhance dopaminergic neutransmission. Thus, FA and FTHF were inefficient at 1 mM concentrations in stimulating /sup 3/H-dopamine release from /sup 3/H-dopamine preloaded nucleus accumbens slices or dopamine from endogenous stores. Pteroic acid, the chemical precursor of folic acid which lacks the glutamate moiety, was ineffective in producing a stimulation of locomotor activity after intra-accumbens injection. Since glutamate is an excitatory amino acid (EAA), compounds characterized as EAA receptor antagonists were utilized to determine if the folate-induced hypermotility response is mediated by activation of EAA receptors in the nucleus accumbens. These results suggest that activation of quisqualate receptors of the nucleus accumbens may mediate the folate-induced hypermotility response.

  9. Pediococcus cerevisiae mutant with altered transport of folates.

    PubMed

    Mandelbaum-Shavit, F; Grossowicz, N

    1975-08-01

    A Pediococcus cerevisiae mutant that actively accumulated folate (PteGlu), in contrast to the wild-type, was also found to exhibit changes in the pattern of uptake of 5-methyl-tetrahydrofolate (5-CH3-H4PteGlu) and amethopterin. Most of the 5-CH3-H4PteGlue accumulated through a glucose- and temperature-dependent process, and a concentrative uptake was also found in gluocse-starved cells and in cells incubated at OC. About 75% of the accumulated 5-CH3-H4PteGlu exchanged with amethopterin. In contrast to the wild type, the mutant accumulated both diastereoisomers of 5-CH3-H4PteGlue by glucose-dependent and glucose-independent processes. Amethopterin and PteGlue competitively inhibited the uptake in both processes, with an apparent lower affinity of the carrier for PteGlu than for the analogue. p-Chloromercuribenzoate strongly inhibited the uptake (75%). The p-chloromercuribenzoate-nonsusceptible and temperature-independent uptake was also competed by amethopterin. Metabolic poisons like sodium azide, potassium fluoride, iodoacetate, and 2,4-dimitrophenol inhibited the glucose-dependent process. Uptake, in the absence of glucose, was enhanced by sodium azide and potassium fluoride.

  10. Carrier-mediated transport of folate in a mutant of Pediococcus cerevisiae.

    PubMed

    Mandelbaum-Shavit, F; Grossowicz, N

    1973-05-01

    A mutant strain of Pediococcus cerevisiae (P. cerevisiae/PteGlu) was isolated which grows on low-folate (PteGlu) concentrations (200 pg/ml). The growth response of the parent and mutant strains to folinate (5-CHO-H(4)PteGlu) was the same. The transport of (14)C-PteGlu by P. cerevisiae/PteGlu was temperature-dependent (Q(10) between 27 C and 37 C was about 2), energy-dependent, and pH-dependent and was inhibited by iodoacetate, 2,4-dinitrophenol, potassium fluoride, and sodium azide. The uptake obeyed saturation kinetics with an apparent K(m) of 6.6 x 10(-6) M and V(max) of 4.0 x 10(-10) mol per min per mg (dry weight). At the steady state the intracellular concentration of PteGlu was 120-fold higher from that of the medium. Reduced folates like 5-CHO-H(4)PteGlu and methyl-tetrahydrofolate (5-CH(3)-H(4)PteGlu) as well as 2,4-diaminoanalogues (amethopterin and aminopterin) were shown to compete for the PteGlue-carrier.

  11. In Vivo Analysis of Folate Coenzymes and Their Compartmentation in Saccharomyces Cerevisiae

    PubMed Central

    McNeil, J. B.; Bognar, A. L.; Pearlman, R. E.

    1996-01-01

    In eukaryotes, enzymes responsible for the interconversion of one-carbon units exist in parallel in both mitochondria and the cytoplasm. Strains of Saccharomyces cerevisiae were constructed that possess combinations of gene disruptions at the SHM1 [mitochondrial serine hydroxymethyltransferase (SHMTm)], SHM2 [cytoplasmic SHMT (SHMTc)], MIS1 [mitochondrial C(1)-tetrahydrofolate synthase (C(1)-THFSm)], ADE3 [cytoplasmic C(1)-THF synthase (C(1)-THFSc)], GCV1 [glycine cleavage system (GCV) protein T], and the GLY1 (involved in glycine synthesis) loci. Analysis of the in vivo growth characteristics and phenotypes was used to determine the contribution to cytoplasmic nucleic acid and amino acid anabolism by the mitochondrial enzymes involved in the interconversion of folate coenzymes. The data indicate that mitochondria transport formate to the cytoplasmic compartment and mitochondrial synthesis of formate appears to rely primarily on SHMTm rather than the glycine cleavage system. The glycine cleavage system and SHMTm cooperate to specifically synthesize serine. With the inactivation of SHM1, however, the glycine cleavage system can make an observable contribution to the level of mitochondrial formate. Inactivation of SHM1, SHM2 and ADE3 is required to render yeast auxotrophic for TMP and methionine, suggesting that TMP synthesized in mitochondria may be available to the cytoplasmic compartment. PMID:8852837

  12. Crystallization and preliminary X-ray diffraction analysis of recombinant hydrolase domain of 10-formyltetrahydrofolate dehydrogenase.

    PubMed

    Chumanevich, Alexander A; Davies, Christopher; Krupenko, Sergey A

    2002-10-01

    10-Formyltetrahydrofolate dehydrogenase (FDH) is an abundant enzyme in liver cytosol. It is important for the regulation of 10-formyltetrahydrofolate/tetrahydrofolate pools, for de novo purine biosynthesis and for the removal of formate in the form of CO(2). The enzyme is a natural fusion of two unrelated genes and consists of two functional catalytic domains. Here, the crystallization of the N-terminal domain of FDH is reported. This domain binds folate and functions as a 10-formyltetrahydrofolate hydrolase. The crystals grow as either spear-shaped needles or large plates, with the largest crystals reaching dimensions of 1.2 x 0.2 x 0.05 mm. Diffraction analysis revealed the space group to be P2(1)2(1)2, with unit-cell parameters a = 100.00, b = 64.63, c = 64.59 A. Based on the estimated solvent content, there is one 34 kDa molecule in the asymmetric unit. A native data set extending to 2.3 A resolution has been collected with good merging statistics.

  13. Folate content in sea buckthorn berries and related products (Hippophaë rhamnoides L. ssp. rhamnoides): LC-MS/MS determination of folate vitamer stability influenced by processing and storage assessed by stable isotope dilution assay.

    PubMed

    Gutzeit, Derek; Mönch, Sabine; Jerz, Gerold; Winterhalter, Peter; Rychlik, Michael

    2008-05-01

    A stable isotope dilution assay was adopted for quantitation of folate vitamers in sea buckthorn berries, juice, and concentrate using fourfold labeled folate isotopologues of the folate derivatives as the internal standards and reversed-phase liquid chromatography-tandem mass spectrometry with electrospray ionization (LC-ESI-MS/MS). Processing effects and storage stability were investigated during juice and concentrate production from sea buckthorn berries (Hippophaë rhamnoides). The technological processing of the berries caused a total degradation of tetrahydrofolate and 5-formyltetrahydrofolate in the generated juice. The content of the main folate vitamer 5-methyltetrahydrofolate remained approximately unchanged during the whole processing from the berries to the concentrate. Sea buckthorn juice was stored under two household storage conditions (6 degrees C, 25 degrees C), and also under accelerated aging conditions (40 degrees C) for up to 7 days to determine the effects of storage temperature on the stability of 5-methyltetrahydrofolate. The content of 5-methyltetrahydrofolate was nearly unchanged during the storage at 6 degrees C after 7 days. The juice showed almost identical degradation of 5-methyltetrahydrofolate of about 17-20% at 25 degrees C and 40 degrees C after 7 days of storage. [figure: see text

  14. Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes.

    PubMed

    Bar-Even, Arren; Noor, Elad; Flamholz, Avi; Milo, Ron

    2013-01-01

    Electrosynthesis is a promising approach that enables the biological production of commodities, like fuels and fine chemicals, using renewably produced electricity. Several techniques have been proposed to mediate the transfer of electrons from the cathode to living cells. Of these, the electroproduction of formate as a mediator seems especially promising: formate is readily soluble, of low toxicity and can be produced at relatively high efficiency and at reasonable current density. While organisms that are capable of formatotrophic growth, i.e. growth on formate, exist naturally, they are generally less suitable for bulk cultivation and industrial needs. Hence, it may be helpful to engineer a model organism of industrial relevance, such as E. coli, for growth on formate. There are numerous metabolic pathways that can potentially support formatotrophic growth. Here we analyze these diverse pathways according to various criteria including biomass yield, thermodynamic favorability, chemical motive force, kinetics and the practical challenges posed by their expression. We find that the reductive glycine pathway, composed of the tetrahydrofolate system, the glycine cleavage system, serine hydroxymethyltransferase and serine deaminase, is a promising candidate to support electrosynthesis in E. coli. The approach presented here exemplifies how combining different computational approaches into a systematic analysis methodology provides assistance in redesigning metabolism. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. The analysis of the relationship between A1298C and C677T polymorphisms of the MTHFR gene with prostate cancer in Eskisehir population.

    PubMed

    Muslumanoglu, Muhammed H; Tepeli, Emre; Demir, Selma; Uludag, Ahmet; Uzun, Derya; Atli, Engin; Canturk, Kemal M; Ozdemir, Muhsin; Turgut, Mehmet

    2009-10-01

    Prostate cancer is the most common cause of cancer deaths in men and is a major health problem worldwide. Methylene tetrahydrofolate reductase (MTHFR) plays an important role for folate metabolism and is also an important source for DNA methylation and DNA synthesis (nucleotide synthesis). The objective of this study was to investigate the relationship between the A1298C and C677T polymorphisms of the MTHFR gene and prostate cancer in the Turkish population. In our study, 93 prostate cancer patients between the ages of 50-89 and a control group of 166 benign prostate hyperplasia patients were evaluated. C677T and A1298C polymorphism ratios were compared among these two groups, and an analysis was made to see if there is a statistically meaningful difference. In this study, it has been observed that C677T polymorphism of the MTHFR gene produces no statistically significant difference for T allele frequency and the genotype frequency in prostate cancer patients and male controls with benign prostate hyperplasia not having prostate cancer, whereas it has been observed that A1298C polymorphism produces a statistically significant difference for C allele frequency in prostate cancer patients and controls and that it also produces a statistically marginal significance for genotype frequencies.

  16. Genetic predictors of response to treatment with citalopram in depression secondary to traumatic brain injury

    PubMed Central

    LANCTÔT, KRISTA L.; RAPOPORT, MARK J.; CHAN, FLORANCE; RAJARAM, RYAN D.; STRAUSS, JOHN; SICARD, TRICIA; MCCULLAGH, SCOTT; FEINSTEIN, ANTHONY; KISS, ALEX; KENNEDY, JAMES L.; BASSETT, ANNE S.; HERRMANN, NATHAN

    2011-01-01

    Objectives To determine which serotonergic system-related single nucleotide polymorphisms (SNPs) predicted variation in treatment response to citalopram in depression following a traumatic brain injury (TBI). Methods Ninety (50 M/40 F, aged 39.9, SD = 18.0 years) post-TBI patients with a major depressive episode (MDE) were recruited into a 6-week open-label study of citalopram (20 mg/day). Six functional SNPs in genes related to the serotonergic system were examined: serotonin transporter (5HTTLPR including rs25531), 5HT1A C-(1019)G and 5HT2A T-(102)C, methylene tetrahydrofolate reductase (MTHFR) C-(677)T, brain-derived neurotrophic factor (BDNF) val66met and tryptophan hydroxylase-2 (TPH2) G-(703)T. Regression analyses were performed using the six SNPs as independent variables: Model 1 with response (percentage Hamilton Depression (HAMD) change from baseline to endpoint) as the dependent variable and Model 2 with adverse event index as the dependent variable (Bonferroni corrected p-value <0.025). Results MTHFR and BDNF SNPs predicted greater treatment response (R2= 0.098, F = 4.65, p = 0.013). The 5HTTLPR predicted greater occurrence of adverse events (R2= 0.069, F = 5.72, p = 0.020). Conclusion Results suggest that polymorphisms in genes related to the serotonergic system may help predict short-term response to citalopram and tolerability to the medication in patients with MDE following a TBI. PMID:20515362

  17. Interrelations between Glycine Betaine Catabolism and Methionine Biosynthesis in Sinorhizobium meliloti Strain 102F34

    PubMed Central

    Barra, Lise; Fontenelle, Catherine; Ermel, Gwennola; Trautwetter, Annie; Walker, Graham C.; Blanco, Carlos

    2006-01-01

    Methionine is produced by methylation of homocysteine. Sinorhizobium meliloti 102F34 possesses only one methionine synthase, which catalyzes the transfer of a methyl group from methyl tetrahydrofolate to homocysteine. This vitamin B12-dependent enzyme is encoded by the metH gene. Glycine betaine can also serve as an alternative methyl donor for homocysteine. This reaction is catalyzed by betaine-homocysteine methyl transferase (BHMT), an enzyme that has been characterized in humans and rats. An S. meliloti gene whose product is related to the human BHMT enzyme has been identified and named bmt. This enzyme is closely related to mammalian BHMTs but has no homology with previously described bacterial betaine methyl transferases. Glycine betaine inhibits the growth of an S. meliloti bmt mutant in low- and high-osmotic strength media, an effect that correlates with a decrease in the catabolism of glycine betaine. This inhibition was not observed with other betaines, like homobetaine, dimethylsulfoniopropionate, and trigonelline. The addition of methionine to the growth medium allowed a bmt mutant to recover growth despite the presence of glycine betaine. Methionine also stimulated glycine betaine catabolism in a bmt strain, suggesting the existence of another catabolic pathway. Inactivation of metH or bmt did not affect the nodulation efficiency of the mutants in the 102F34 strain background. Nevertheless, a metH strain was severely defective in competing with the wild-type strain in a coinoculation experiment. PMID:17015658

  18. In situ enrichment of folate by microorganisms in beta-glucan rich oat and barley matrices.

    PubMed

    Kariluoto, Susanna; Edelmann, Minnamari; Nyström, Laura; Sontag-Strohm, Tuula; Salovaara, Hannu; Kivelä, Reetta; Herranen, Mirkka; Korhola, Matti; Piironen, Vieno

    2014-04-17

    The objective was to study folate production of yeast strains, bacteria isolated from oat bran, and selected lactic acid bacteria as well as one propionibacterium in oat and barley based models. Simultaneously, we aimed at sustaining the stability of viscosity, representing the physicochemical state of beta-glucan. Total folate contents were determined microbiologically and vitamers for selected samples by UHPLC. Folate in yeast cells comprised mainly 5-methyltetrahydrofolate and tetrahydrofolate. Folate production by microbes in YPD medium was different to that in cereal fermentations where vitamers included 5-methyltetrahydrofolate, 5,10-methenyltetrahydrofolate and formylated derivatives. Microbes producing significant amounts of folate without affecting viscosity were Saccharomyces cerevisiae ALKO743 and Candida milleri ABM4949 among yeasts and Pseudomonas sp. ON8 and Janthinobacterium sp. RB4 among bacteria. Net folate production was up to 120 ng/g after 24 h fermentation and could increase during 2-week storage. Glucose addition increased the proportion of 5-methyltetrahydrofolate. Streptococcus thermophilus ABM5097, Lactobacillus reuteri, and Propionibacterium sp. ABM5378 produced folate but in lower concentrations. Both endogenous and added microbes contribute to folate enhancement. Selection of microbes with folate producing capability and limited hydrolytic activity will enable the development of products rich in folate and beta-glucan. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Genetic defects in folate and cobalamin pathways affecting the brain.

    PubMed

    Kirsch, Susanne H; Herrmann, Wolfgang; Obeid, Rima

    2013-01-01

    Folate and cobalamin are necessary for early brain development and function. Deficiency of folate or cobalamin during pregnancy can cause severe malformation in the central nervous system such as neural tube defects. After birth, folate and cobalamin deficiency can cause anemia, failure to thrive, recurrent infections, psychiatric and neurological symptoms. The folate and the homocysteine metabolic pathways interact at a central step where 5-methyltetrahydrofolate donates its methyl group to homocysteine to produce methionine and tetrahydrofolate. Methyl cobalamin and folate interact at this critical step. Both nutrients have a crucial role in DNA synthesis and in delivering S-adenosylmethionine, the universal methyl donor. Severe and mild inherited disorders in folate and cobalamin pathways have been described. The two groups of disorders share some similarities, but differ in the molecular mechanism, metabolic dysregulation, and disease management. This review summarizes selected disorders, including rare and common mutations that affect folate and cobalamin absorption, transport, or dependent enzymes. When the mutations are discovered early enough, many of the described disorders are easily treatable by B vitamin supplementation, which often prevents or reverses the manifestation of the disease. Therefore, the screening for mutations is recommended and should be carried out as early as possible: after occurrence of the first symptoms or when a certain constellations of the folate and cobalamin related markers are measured, such as elevated homocysteine and/or methylmalonic acid.

  20. Nuclear Receptor-Mediated Alleviation of Alcoholic Fatty Liver by Polyphenols Contained in Alcoholic Beverages

    PubMed Central

    Yao, Ruiqing; Yasuoka, Akihito; Kamei, Asuka; Ushiama, Shota; Kitagawa, Yoshinori; Rogi, Tomohiro; Shibata, Hiroshi; Abe, Keiko; Misaka, Takumi

    2014-01-01

    To elucidate the effect of the polyphenols contained in alcoholic beverages on the metabolic stress induced by ethanol consumption, four groups of mice were fed for five weeks on Lieber's diet with or without ethanol, with ethanol plus ellagic acid, and with ethanol plus trans-resveratrol. Alcoholic fatty liver was observed in the group fed the ethanol diet but not in those fed the ethanol plus polyphenol diets. Liver transcriptome analysis revealed that the addition of the polyphenols suppressed the expression of the genes related to cell stress that were up-regulated by ethanol alone. Conversely, the polyphenols up-regulated the genes involved in bile acid synthesis, unsaturated fatty acid elongation, and tetrahydrofolate synthesis that were down-regulated by ethanol alone. Because parts of these genes were known to be regulated by the constitutive androstane receptor (CAR), we performed the same experiment in the CAR-deficient mice. As a result, fatty liver was observed not only in the ethanol group but also with the ethanol plus polyphenol groups. In addition, there was no segregation of the gene expression profiles among these groups. These results provide a molecular basis for the prevention of alcohol-induced stress by the polyphenols in alcoholic beverages. PMID:24498295

  1. Sulfa and trimethoprim-like drugs - antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors.

    PubMed

    Capasso, Clemente; Supuran, Claudiu T

    2014-06-01

    Recent advances in microbial genomics, synthetic organic chemistry and X-ray crystallography provided opportunities to identify novel antibacterial targets for the development of new classes of antibiotics and to design more potent antimicrobial compounds derived from existing antibiotics in clinical use for decades. The antimetabolites, sulfa drugs and trimethoprim (TMP)-like agents, are inhibitors of three families of enzymes. One family belongs to the carbonic anhydrases, which catalyze a simple but physiologically relevant reaction in all life kingdoms, carbon dioxide hydration to bicarbonate and protons. The other two enzyme families are involved in the synthesis of tetrahydrofolate (THF), i.e. dihydropteroate synthase (DHPS) and dihydrofolate reductase. The antibacterial agents belonging to the THF and DHPS inhibitors were developed decades ago and present significant bacterial resistance problems. However, the molecular mechanisms of drug resistance both to sulfa drugs and TMP-like inhibitors were understood in detail only recently, when several X-ray crystal structures of such enzymes in complex with their inhibitors were reported. Here, we revue the state of the art in the field of antibacterials based on inhibitors of these three enzyme families.

  2. Successful Living-Related Renal Allograft in a Recipient With Factor V Leiden Deficiency: A Case Report.

    PubMed

    Florou, Evangelia; Koukoulaki, Maria; Theodoros, Theodoridis; Kalatzis, Vasileios; Vougas, Vasileios; Stamataki, Elissavet; Kokkinou, Vasiliki Christopoulou; Kostakis, Alkiviadis; Drakopoulos, Spiros

    2017-02-01

    Thrombophilia due to activated protein C resistance (Leiden mutation) is the most common inherited thrombophilic disorder with 5% incidence in whites. Renal transplant of these patients entails a risk of vascular thrombosis soon after the transplant; and acute rejection episodes and graft loss within the first year. We present a case of a successful living-related renal transplant in man with a recent history of repeat episodes of vascular access thrombosis attributed to inherited thrombophilia (heterozygosity for factor V mutation Q506 and homozygosity for mutation T677 for methylene-tetrahydrofolate reductase). Transplant recipient was administered anticoagulation therapy with low molecular weight heparin pre- and postoperatively. No thrombotic or hemorrhagic events occurred posttransplant. A high suspicion of thrombophilic disorders in patients with end-stage renal disease with vascular access thrombotic events should be screened further to prevent failure of a subsequent renal transplant. Inherited thrombophilic disorders may not exclude living-related kidney transplant provided that anticoagulation therapy is admin-istered perioperatively.

  3. Association of factor V Leiden, Janus kinase 2, prothrombin, and MTHFR mutations with primary Budd-Chiari syndrome in Egyptian patients.

    PubMed

    El Sebay, Hatem M; Safan, Manal A; Daoud, Ashraf A; Tayel, Safaa I; Nouh, Mohamed A; El Shafie, Shymaa

    2016-01-01

    Budd-Chiari syndrome (BCS) is defined as obstruction of hepatic venous outflow anywhere from the small hepatic veins to the suprahepatic inferior vena cava. The pathogenesis of BCS is still not fully understood. This study aimed to evaluate the association of factor V Leiden (FVL), Janus kinase 2 (JAK2), prothrombin, and methylene tetrahydrofolate reductase (MTHFR) mutations with primary BCS. The study was carried out on 35 patients with primary BCS and 15 age and gender matched healthy individuals as a control group. Genotyping of FVL, prothrombin, and MTHFR mutations was determined by GENEQUALITY AB-THROMBO TYPE kit based on the reverse hybridization principle. JAK2 mutation was determined by polymerase chain reaction-restriction fragment length polymorphism. There was a statistically significant difference between patients and controls regarding FVL, MTHFR C677T, and MTHFR A1298C mutations with odds ratio of 1.83, 2.0, and 1.79, respectively. Hetero MTHFR C677T, hetero FVL, and hetero MTHFR A1298C were the most common etiological factors being responsible for 57.1, 42.9, and 42.9% of primary BCS cases, respectively. It could be concluded that BCS is a multifactorial disease; in the current study, MTHFR C677T mutation was the most common cause of disease. Identification of one cause of BCS should not eliminate investigations for detection of other etiological factors. © 2015 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  4. Rho-dependent Termination of ssrS (6S RNA) Transcription in Escherichia coli

    PubMed Central

    Chae, Huiseok; Han, Kook; Kim, Kwang-sun; Park, Hongmarn; Lee, Jungmin; Lee, Younghoon

    2011-01-01

    It is well known that 6S RNA, a global regulatory noncoding RNA that modulates gene expression in response to the cellular stresses in Escherichia coli, is generated by processing from primary ssrS (6S RNA) transcripts derived from two different promoters. The 5′ processing of 6S RNA from primary transcripts has been well studied; however, it remains unclear how the 3′-end of this RNA is generated although previous studies have suggested that exoribonucleolytic trimming is necessary for 3′ processing. Here, we describe several Rho-dependent termination sites located ∼90 bases downstream of the mature 3′-end of 6S RNA. Our data suggest that the 3′-end of 6S RNA is generated via exoribonucleolytic trimming, rather than endoribonucleolytic cleavage, following the transcription termination events. The termination sites identified in this study are within the open reading frame of the downstream ygfA (putative 5-formyl-tetrahydrofolate cyclo-ligase) gene, a part of the highly conserved bacterial operon ssrS-ygfA, which is up-regulated during the biofilm formation. Our findings reveal that ygfA expression, which also aids the formation of multidrug-tolerant persister cells, could be regulated by Rho-dependent termination activity in the cell. PMID:21036909

  5. Dietary folate is associated with p16(INK4A) methylation in head and neck squamous cell carcinoma.

    PubMed

    Kraunz, Kim S; Hsiung, Debra; McClean, Michael D; Liu, Mei; Osanyingbemi, Joyce; Nelson, Heather H; Kelsey, Karl T

    2006-10-01

    Inactivation of the p16(INK4A) (CDKN2A) gene in the Rb pathway is among the most common somatic alterations observed in tobacco-related solid tumors, including head and neck squamous cell carcinoma (HNSCC). In addition, a low folate diet is an important risk factor for HNSCC. Decreased dietary folate in an animal model of hepatocellular carcinoma has been associated with the induction of epigenetic silencing of the p16(INK4A) gene. In an ongoing population-based study of HNSCC, we sought to extend this observation to human disease testing the hypothesis that p16(INK4A) methylation is associated with decreased dietary folate. We also investigated the association of methylation silencing with functional polymorphisms in the folate metabolism enzyme methylene tetrahydrofolate reductase (MTHFR). In 169 HNSCCs, the odds ratio for p16(INK4A) methylation among those with low dietary folate intake was 2.3 (95% CI = 1.1-4.8) when compared with those with high folate intake. Furthermore, this increased risk for epigenetic silencing at p16(INK4A) was modified by the MTHFR alleles previously associated with diminished serum folate levels. Hence, in HNSCC low dietary intake of folate is associated with p16(INK4A) methylation, and this relationship is modified by the MTHFR genotype. Our data provides important evidence for a mechanism of action of folate deficiency in cancer. Copyright 2006 Wiley-Liss, Inc.

  6. Acute methanol toxicity in minipigs

    SciTech Connect

    Dorman, D.C.; Dye, J.A.; Nassise, M.P.; Ekuta, J.; Bolon, B.

    1993-01-01

    The pig has been proposed as a potential animal model for methanol-induced neuro-ocular toxicosis in humans because of its low liver tetrahydrofolate levels and slower rate of formate metabolism compared to those of humans. To examine the validity of this animal model, 12 4-month-old female minipigs (minipig YU) were given a single oral dose of water or methanol at 1.0, 2.5, or 5.0 g/kg body wt by gavage (n = 3 pigs/dose). Dose-dependent signs of acute methanol intoxication, which included mild CNS depression, tremors, ataxia, and recumbency, developed within 0.5 to 2.0 hr, and resolved by 52 hr. Methanol- and formate-dosed pigs did not develop optic nerve lesions, toxicologically significant formate accumulation, or metabolic acidosis. Based on results following a single dose, female minipigs do not appear to be overtly sensitive to methanol and thus may not be a suitable animal model for acute methanol-induced neuroocular toxicosis.

  7. Genetic and metabolic determinants of human epigenetic variation.

    PubMed

    Haggarty, Paul

    2015-07-01

    Epigenetics has emerged in recent years as one of the most important biological mechanisms linking exposures across the life course to long-term health. This article reviews recent developments in our understanding of the metabolic and genetic determinants of epigenetic variation in human populations. Epigenetic status is influenced by a range of environmental exposures, including diet and nutrition, social status, the early emotional environment, and infertility and its treatment. The period around conception is particularly sensitive to environmental exposures with evidence for effects on epigenetic imprinting within the offspring. Epigenetic status is also influenced by genotype, and genetic variation in methylene tetrahydrofolate reductase, and the DNA methytransferase and ten-eleven translocation methylcytosine dioxygenase proteins has been linked to the epigenetic status, biological function and disease. Epigenetics is at the heart of a series of feedback loops linking the environment to the human genome in a way that allows crosstalk between the genome and the environment it exists within. It offers the potential for modification of adverse epigenetic states resulting from events/exposures at earlier life stages. We need to better understand the nutritional programming of epigenetic states, the persistence of these marks in time and their effect on biological function and health in current and future generations.

  8. Role of folic acid in nitric oxide bioavailability and vascular endothelial function.

    PubMed

    Stanhewicz, Anna E; Kenney, W Larry

    2017-01-01

    Folic acid is a member of the B-vitamin family and is essential for amino acid metabolism. Adequate intake of folic acid is vital for metabolism, cellular homeostasis, and DNA synthesis. Since the initial discovery of folic acid in the 1940s, folate deficiency has been implicated in numerous disease states, primarily those associated with neural tube defects in utero and neurological degeneration later in life. However, in the past decade, epidemiological studies have identified an inverse relation between both folic acid intake and blood folate concentration and cardiovascular health. This association inspired a number of clinical studies that suggested that folic acid supplementation could reverse endothelial dysfunction in patients with cardiovascular disease (CVD). Recently, in vitro and in vivo studies have begun to elucidate the mechanism(s) through which folic acid improves vascular endothelial function. These studies, which are the focus of this review, suggest that folic acid and its active metabolite 5-methyl tetrahydrofolate improve nitric oxide (NO) bioavailability by increasing endothelial NO synthase coupling and NO production as well as by directly scavenging superoxide radicals. By improving NO bioavailability, folic acid may protect or improve endothelial function, thereby preventing or reversing the progression of CVD in those with overt disease or elevated CVD risk. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Subinhibitory Concentrations of Trimethoprim and Sulfamethoxazole Prevent Biofilm Formation by Acinetobacter baumannii through Inhibition of Csu Pilus Expression.

    PubMed

    Moon, Ki Hwan; Weber, Brent S; Feldman, Mario F

    2017-09-01

    Acinetobacter baumannii is emerging as a multidrug-resistant nosocomial pathogen of increasing threat to human health worldwide. Pili are important bacterial virulence factors, playing a role in attachment to host cells and biofilm formation. The Csu pilus, which is assembled via the chaperone-usher secretion system, has been studied in A. baumannii ATCC 19606. Here we show that, in opposition to previous reports, the common laboratory strain ATCC 17978 produces Csu pili. We found that, although ATCC 17978 was resistant to sulfamethoxazole (Smx) and trimethoprim (Tmp), subinhibitory concentrations of these antibiotics abolished the expression of Csu and consequently produced a dramatic reduction in biofilm formation by ATCC 17978. Smx and Tmp acted synergistically to inhibit the enzymatic systems involved in the bacterial synthesis of tetrahydrofolate (THF), which is required for the synthesis of nucleotides. The effects of these antibiotics were partially relieved by exogenous THF addition, indicating that Smx and Tmp turn off Csu assembly by inducing folate stress. We propose that, for Acinetobacter, nanomolar concentrations of Smx and Tmp represent a "danger signal." In response to this signal, Csu expression is repressed, allowing biofilm dispersal and escape from potentially inhibitory concentrations of antibiotics. The roles of antibiotics as signaling molecules are being increasingly acknowledged, with clear implications for both the treatment of bacterial diseases and the understanding of complex microbial interactions in the environment. Copyright © 2017 American Society for Microbiology.

  10. Escherichia coli dihydrofolate reductase catalyzed proton and hydride transfers: Temporal order and the roles of Asp27 and Tyr100

    PubMed Central

    Liu, C. Tony; Francis, Kevin; Layfield, Joshua P.; Huang, Xinyi; Hammes-Schiffer, Sharon; Kohen, Amnon; Benkovic, Stephen J.

    2014-01-01

    The reaction catalyzed by Escherichia coli dihydrofolate reductase (ecDHFR) has become a model for understanding enzyme catalysis, and yet several details of its mechanism are still unresolved. Specifically, the mechanism of the chemical step, the hydride transfer reaction, is not fully resolved. We found, unexpectedly, the presence of two reactive ternary complexes [enzyme:NADPH:7,8-dihydrofolate (E:NADPH:DHF)] separated by one ionization event. Furthermore, multiple kinetic isotope effect (KIE) studies revealed a stepwise mechanism in which protonation of the DHF precedes the hydride transfer from the nicotinamide cofactor (NADPH) for both reactive ternary complexes of the WT enzyme. This mechanism was supported by the pH- and temperature-independent intrinsic KIEs for the C-H→C hydride transfer between NADPH and the preprotonated DHF. Moreover, we showed that active site residues D27 and Y100 play a synergistic role in facilitating both the proton transfer and subsequent hydride transfer steps. Although D27 appears to have a greater effect on the overall rate of conversion of DHF to tetrahydrofolate, Y100 plays an important electrostatic role in modulating the pKa of the N5 of DHF to enable the preprotonation of DHF by an active site water molecule. PMID:25453098

  11. The Folylpolyglutamate Synthetase Plastidial Isoform Is Required for Postembryonic Root Development in Arabidopsis1[W][OA

    PubMed Central

    Srivastava, Avinash C.; Ramos-Parra, Perla A.; Bedair, Mohamed; Robledo-Hernández, Ana L.; Tang, Yuhong; Sumner, Lloyd W.; Díaz de la Garza, Rocío I.; Blancaflor, Elison B.

    2011-01-01

    A recessive Arabidopsis (Arabidopsis thaliana) mutant with short primary roots and root hairs was identified from a forward genetic screen. The disrupted gene in the mutant encoded the plastidial isoform of folylpolyglutamate synthetase (FPGS), previously designated as AtDFB, an enzyme that catalyzes the addition of glutamate residues to the folate molecule to form folylpolyglutamates. The short primary root of atdfb was associated with a disorganized quiescent center, dissipated auxin gradient in the root cap, bundled actin cytoskeleton, and reduced cell division and expansion. The accumulation of monoglutamylated forms of some folate classes in atdfb was consistent with impaired FPGS function. The observed cellular defects in roots of atdfb underscore the essential role of folylpolyglutamates in the highly compartmentalized one-carbon transfer reactions (C1 metabolism) that lead to the biosynthesis of compounds required for metabolically active cells found in the growing root apex. Indeed, metabolic profiling uncovered a depletion of several amino acids and nucleotides in atdfb indicative of broad alterations in metabolism. Methionine and purines, which are synthesized de novo in plastids via C1 enzymatic reactions, were particularly depleted. The root growth and quiescent center defects of atdfb were rescued by exogenous application of 5-formyl-tetrahydrofolate, a stable folate that was readily converted to metabolically active folates. Collectively, our results indicate that AtDFB is the predominant FPGS isoform that generates polyglutamylated folate cofactors to support C1 metabolism required for meristem maintenance and cell expansion during postembryonic root development in Arabidopsis. PMID:21233333

  12. Sign epistasis limits evolutionary trade-offs at the confluence of single- and multi-carbon metabolism in Methylobacterium extorquens AM1.

    PubMed

    Carroll, Sean Michael; Lee, Ming-Chun; Marx, Christopher J

    2014-03-01

    Adaptation of one set of traits is often accompanied by attenuation of traits important in other selective environments, leading to fitness trade-offs. The mechanisms that either promote or prevent the emergence of trade-offs remain largely unknown, and are difficult to discern in most systems. Here, we investigate the basis of trade-offs that emerged during experimental evolution of Methylobacterium extorquens AM1 to distinct growth substrates. After 1500 generations of adaptation to a multi-carbon substrate, succinate (S), many lineages had lost the ability to use one-carbon compounds such as methanol (M), generating a mixture of M(+) and M(-) evolved phenotypes. We show that trade-offs in M(-) strains consistently arise via antagonistic pleiotropy through recurrent selection for loss-of-function mutations to ftfL (formate-tetrahydrofolate ligase), which improved growth on S while simultaneously eliminating growth on M. But if loss of FtfL was beneficial, why were M trade-offs not found in all populations? We discovered that eliminating FtfL was not universally beneficial on S, as it was neutral or even deleterious in certain evolved lineages that remained M(+) . This suggests that sign epistasis with earlier arising mutations prevented the emergence of mutations that drove trade-offs through antagonistic pleiotropy, limiting the evolution of metabolic specialists in some populations. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  13. Evolutionarily conserved proteins MnmE and GidA catalyze the formation of two methyluridine derivatives at tRNA wobble positions

    PubMed Central

    Moukadiri, Ismaïl; Prado, Silvia; Piera, Julio; Velázquez-Campoy, Adrián; Björk, Glenn R.; Armengod, M.-Eugenia

    2009-01-01

    The wobble uridine of certain bacterial and mitochondrial tRNAs is modified, at position 5, through an unknown reaction pathway that utilizes the evolutionarily conserved MnmE and GidA proteins. The resulting modification (a methyluridine derivative) plays a critical role in decoding NNG/A codons and reading frame maintenance during mRNA translation. The lack of this tRNA modification produces a pleiotropic phenotype in bacteria and has been associated with mitochondrial encephalomyopathies in humans. In this work, we use in vitro and in vivo approaches to characterize the enzymatic pathway controlled by the Escherichia coli MnmE•GidA complex. Surprisingly, this complex catalyzes two different GTP- and FAD-dependent reactions, which produce 5-aminomethyluridine and 5-carboxymethylamino-methyluridine using ammonium and glycine, respectively, as substrates. In both reactions, methylene-tetrahydrofolate is the most probable source to form the C5-methylene moiety, whereas NADH is dispensable in vitro unless FAD levels are limiting. Our results allow us to reformulate the bacterial MnmE•GidA dependent pathway and propose a novel mechanism for the modification reactions performed by the MnmE and GidA family proteins. PMID:19767610

  14. The influence of fluorouracil outcome parameters on tolerance and efficacy in patients with advanced colorectal cancer.

    PubMed

    Capitain, O; Boisdron-Celle, M; Poirier, A-L; Abadie-Lacourtoisie, S; Morel, A; Gamelin, E

    2008-08-01

    The purpose of this study was to determine simple genetic factors helpful to tailor 5-FU administration and determine strategy in first-line chemotherapy of advanced colorectal cancer. In 76 patients initially treated by 5-FU, thymidylate synthase, dihydropyrimidine dehydrogenase and methylene tetrahydrofolate reductase germinal polymorphisms, dihydrouracil/uracil plasma ratio and 5-FU plasma clearance were investigated and correlated for tolerance (10.5% grade 3 and 4 toxicity) and efficacy (32.9% objective response rate and 20 months median overall survival time). Toxicity was linked to performance status >2 (P=0.004), low UH2/U ratio, 2846 A>T, IVS 14+1G>A for DPD (P=0.031), and homozygoty C/C for MTHFR 1298 A>C (P=0.0018). The overall survival of the patients with a 3R/3R TS genotype associated with C/C for 677 C>T or A/A for 1298 A>C was statistically shorter (log-rank test P=0.0065). Genetic factors permit the tailoring of 5-FU treatment. They should occupy center stage in future clinical trials for specifically designing treatment for patients with a given biologic feature.

  15. The mitochondrial folylpolyglutamate synthetase gene is required for nitrogen utilization during early seedling development in arabidopsis.

    PubMed

    Jiang, Ling; Liu, Yanyan; Sun, Hong; Han, Yueting; Li, Jinglai; Li, Changkun; Guo, Wenzhu; Meng, Hongyan; Li, Sha; Fan, Yunliu; Zhang, Chunyi

    2013-02-01

    Investigations into the biochemical processes and regulatory mechanisms of nitrogen (N) utilization can aid in understanding how N is used efficiently in plants. This report describes a deficiency in N utilization in an Arabidopsis (Arabidopsis thaliana) transfer DNA insertion mutant of the mitochondrial folylpolyglutamate synthetase gene DFC, which catalyzes the conjugation of glutamate residues to the tetrahydrofolate during folate synthesis. The mutant seedlings displayed several metabolic changes that are typical of plant responses to low-N stress, including increased levels of starch and anthocyanin synthesis as well as decreased levels of soluble protein and free amino acid, as compared with those in wild-type seedlings when external N was sufficient. More striking changes were observed when dfc seedlings were grown under N-limited conditions, including shorter primary roots, fewer lateral roots, higher levels of glycine and carbon-N ratios, and lower N content than those in wild-type seedlings. Gene expression studies in mutant seedlings revealed altered transcript levels of several genes involved in folate biosynthesis and N metabolism. The biochemical and metabolic changes also suggested that N assimilation is drastically perturbed due to a loss of DFC function. The observation that elevated CO(2) partly rescued the dfc phenotypes suggests that the alterations in N metabolism in dfc may be mainly due to a defect in photorespiration. These results indicate that DFC is required for N utilization in Arabidopsis and provide new insight into a potential interaction between folate and N metabolism.

  16. Unmetabolized Folic Acid in Prediagnostic Plasma and the Risk for Colorectal Cancer

    PubMed Central

    Zhang, Xuehong; Townsend, Mary K.; Selhub, Jacob; Paul, Ligi; Rosner, Bernard; Fuchs, Charles S.; Willett, Walter C.; Giovannucci, Edward L.

    2015-01-01

    Higher folate has been associated with a reduced colorectal cancer (CRC) risk, but excessive folate may promote tumor progression. The role of unmetabolized folic acid (UFA) from high folic acid consumption in carcinogenesis is largely unexplored. We evaluated prediagnostic plasma levels of UFA in relation to CRC risk in nested case-control studies (618 CRC case patients and 1207 matched control) with blood samples collected prior to folic acid fortification. UFA was detected in 21.4% of control UFA levels were not associated with CRC risk. Compared with undetectable levels, the multivariable relative risks (RRs) of CRC were 1.03 (95% confidence interval [CI] = 0.73 to 1.46) for less than 0.5 nmol/L and 1.12 (95% CI = 0.81 to 1.55) for 0.5 nmol/L or more (P trend = .32). A positive association between UFA levels and CRC risk was observed among men (RR = 1.57, 95% CI = 0.99 to 2.49 for ≥0.5 nmol/L vs undetectable, P interaction = .04), and a positive association was also observed among those with the methylene-tetrahydrofolate reductase (MTHFR) CT/TT genotype (RR = 2.20, 95% CI = 1.22 to 3.94 for ≥0.5 nmol/L vs undetectable, P interaction=0.02). In conclusion, prediagnostic plasma levels of UFA from the prefortification period were not associated with risk of CRC. PMID:26376686

  17. The hydroxylation of p-coumaric acid by an enzyme from leaves of spinach beet (Beta vulgaris L.)

    PubMed Central

    Vaughan, P. F. T.; Butt, V. S.

    1969-01-01

    1. An enzyme from the leaves of spinach beet (Beta vulgaris L.) that catalyses the hydroxylation of p-coumaric acid to caffeic acid in the presence of ascorbate has been purified about 1000-fold on a protein basis. 2. It is activated by high concentrations of ammonium sulphate and sodium chloride. 3. The preparation shows both hydroxylase and catechol oxidase activities, in a constant ratio throughout the purification procedure; they are similarly activated by salts. 4. Ascorbate acts as a reductant in quantities equivalent to the caffeic acid produced by hydroxylation. 5. Ascorbate can be replaced by tetrahydrofolic acid, NADH, NADPH or 2-amino-4-hydroxy-6,7-dimethyl-5,6,7,8-tetrahydropteridine, but not by caffeic acid. Among these, the pteridine is the most effective, but the reaction is not inhibited by aminopterin. In experiments with saturating concentrations of NADH and the pteridine, these reductants compete in the reaction and are equivalent on a molar basis. 6. No cofactor has been separated from the enzyme by prolonged dialysis. 7. The relation of the enzyme to other hydroxylases and phenolases is discussed. PMID:4389984

  18. Cytosolic hydroxymethyldihydropterin pyrophosphokinase/dihydropteroate synthase from Arabidopsis thaliana: a specific role in early development and stress response.

    PubMed

    Storozhenko, Sergei; Navarrete, Oscar; Ravanel, Stéphane; De Brouwer, Veerle; Chaerle, Peter; Zhang, Guo-Fang; Bastien, Olivier; Lambert, Willy; Rébeillé, Fabrice; Van Der Straeten, Dominique

    2007-04-06

    In plants, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase (mitHPPK/DHPS) is a bifunctional mitochondrial enzyme, which catalyzes the first two consecutive steps of tetrahydrofolate biosynthesis. Mining the Arabidopsis genome data base has revealed a second gene encoding a protein that lacks a potential transit peptide, suggesting a cytosolic localization of the isoenzyme (cytHPPK/DHPS). When the N-terminal part of the cytHPPK/DHPS was fused to green fluorescent protein, the fusion protein appeared only in the cytosol, confirming the above prediction. Functionality of cytHPPK/DHPS was addressed by two parallel approaches: first, the cytHPPK/DHPS was able to rescue yeast mutants lacking corresponding activities; second, recombinant cytHPPK/DHPS expressed and purified from Escherichia coli displayed both HPPK and DHPS activities in vitro. In contrast to mitHPPK/DHPS, which was ubiquitously expressed, the cytHPPK/DHPS gene was exclusively expressed in reproductive tissue, more precisely in developing seeds as revealed by histochemical analysis of a transgenic cytHPPK/DHPS promoter-GUS line. In addition, it was observed that expression of cytHPPK/DHPS mRNA was induced by salt stress, suggesting a potential role of the enzyme in stress response. This was supported by the phenotype of a T-DNA insertion mutant in the cytHPPK/DHPS gene, resulting in lower germination rates as compared with the wild-type upon application of oxidative and osmotic stress.

  19. Reduced Folate Supply as a Key to Enhanced l-Serine Production by Corynebacterium glutamicum▿

    PubMed Central

    Stolz, Michael; Peters-Wendisch, Petra; Etterich, Helga; Gerharz, Tanja; Faurie, Robert; Sahm, Hermann; Fersterra, Holger; Eggeling, Lothar

    2007-01-01

    The amino acid l-serine is required for pharmaceutical purposes, and the availability of a sugar-based microbial process for its production is desirable. However, a number of intracellular utilization routes prevent overproduction of l-serine, with the essential serine hydroxymethyltransferase (SHMT) (glyA) probably occupying a key position. We found that constructs of Corynebacterium glutamicum strains where chromosomal glyA expression is dependent on Ptac and lacIQ are unstable, acquiring mutations in lacIQ, for instance. To overcome the inconvenient glyA expression control, we instead considered controlling SHMT activity by the availability of 5,6,7,8-tetrahydrofolate (THF). The pabAB and pabC genes of THF synthesis were identified and deleted in C. glutamicum, and the resulting strains were shown to require folate or 4-aminobenzoate for growth. Whereas the C. glutamicum ΔsdaA strain (pserACB) accumulates only traces of l-serine, with the C. glutamicum ΔpabABCΔsdaA strain (pserACB), l-serine accumulation and growth responded in a dose-dependent manner to an external folate supply. At 0.1 mM folate, 81 mM l-serine accumulated. In a 20-liter controlled fed-batch culture, a 345 mM l-serine accumulation was achieved. Thus, an efficient and highly competitive process for microbial l-serine production is available. PMID:17142381

  20. Hydrogen consumption in microbial electrochemical systems (MXCs): the role of homo-acetogenic bacteria.

    PubMed

    Parameswaran, Prathap; Torres, César I; Lee, Hyung-Sool; Rittmann, Bruce E; Krajmalnik-Brown, Rosa

    2011-01-01

    Homo-acetogens in the anode of a microbial electrolysis cell (MEC) fed with H(2) as sole electron donor allowed current densities similar to acetate-fed biofilm anodes (∼10 A/m(2)). Evidence for homo-acetogens included accumulation of acetate at high concentrations (up to 18 mM) in the anode compartment; detection of formate, a known intermediate during reductive acetogenesis by the acetyl-CoA pathway; and detection of formyl tetrahydrofolate synthetase (FTHFS) genes by quantitative real-time PCR. Current production and acetate accumulation increased in parallel in batch and continuous mode, while both values decreased simultaneously at short hydraulic retention times (1h) in the anode compartment, which limited suspended homo-acetogens. Acetate produced by homo-acetogens accounted for about 88% of the current density of 10A/m(2), but the current density was sustained at 4A/m(2) at short hydraulic retention time because of a robust partnership of homo-acetogens and anode respiring bacteria (ARB) in the biofilm anode.

  1. Determination of reduced folates in tumor and adjacent mucosa of colorectal cancer patients using LC-MS/MS.

    PubMed

    Odin, Elisabeth; Wettergren, Yvonne; Carlsson, Göran; Gustavsson, Bengt

    2013-04-01

    A liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS) method has been developed for the determination of 5,10-methylenetetrahydrofolate (methyleneTHF), tetrahydrofolate (THF) and 5-methyltetrahydrofolate (methylTHF) in colorectal mucosa and tumor tissues. The folate extraction method includes homogenization, heat and folate conjugase treatment to hydrolyze polyglutamyl folate to monoglutamyl folate. Before analysis on LC-MS/MS, simple and fast sample purification with ultrafiltration (molecular weight cut-off membrane, 10 kDa) was performed. Folates were detected and quantified using positive electrospray. The method described in the present paper was successfully applied to determine the level of three folate monoglutamates in mucosa and tumor samples from 77 colorectal cancer patients, starting from a limited amount of tissue. The results showed that the LC-MS/MS method has a great advantage over other previously used methods because of its high sensitivity and selectivity. Significantly higher levels of methyleneTHF and THF were found in tumor compared with matched mucosa tissues. Folate levels in adjacent mucosa were associated with tumor location, age and gender. The correlation between folate levels and tumor site further strengthens the fact that development of right- and left-sided tumors follows different pathways. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Core pathways operating during methylotrophy of Bacillus methanolicus MGA3 and induction of a bacillithiol-dependent detoxification pathway upon formaldehyde stress.

    PubMed

    Müller, Jonas E N; Meyer, Fabian; Litsanov, Boris; Kiefer, Patrick; Vorholt, Julia A

    2015-12-01

    Bacillus methanolicus MGA3 is a model facultative methylotroph of interest for fundamental research and biotechnological applications. Previous research uncovered a number of pathways potentially involved in one-carbon substrate utilization. Here, we applied dynamic (13) C labeling to elucidate which of these pathways operate during growth on methanol and to uncover potentially new ones. B. methanolicus MGA3 uses the assimilatory and dissimilatory ribulose monophosphate (RuMP) cycles for conversion of the central but toxic intermediate formaldehyde. Additionally, the operation of two cofactor-dependent formaldehyde oxidation pathways with distinct roles was revealed. One is dependent on tri- and tetraglutamylated tetrahydrofolate (THF) and is involved in formaldehyde oxidation during growth on methanol. A second pathway was discovered that is dependent on bacillithiol, a thiol cofactor present also in other Bacilli where it is known to function in redox-homeostasis. We show that bacillithiol-dependent formaldehyde oxidation is activated upon an upshift in formaldehyde induced by a substrate switch from mannitol to methanol. The genes and the corresponding enzymes involved in the biosynthesis of bacillithiol were identified by heterologous production of bacillithiol in Escherichia coli. The presented results indicate metabolic plasticity of the methylotroph allowing acclimation to fluctuating intracellular formaldehyde concentrations. © 2015 John Wiley & Sons Ltd.

  3. Mammalian folylpoly-. gamma. -glutamate synthetase. 4. In vitro and in vivo metabolism of folates and analogues and regulation of folate homeostasis

    SciTech Connect

    Cook, J.D.; Cichowicz, D.J.; George, S.; Lawler, Ann; Shane, B.

    1987-01-27

    The regulation of folate and folate analogue metabolism was studied in vitro by using purified hog liver folylpolyglutamate synthetase as a model system and in vivo in cultured mammalian cells. The types of folylpolyglutamates that accumulate in vivo in hog liver, and changes in cellular folate levels and folylpolyglutamate distributions caused by physiological and nutritional factors such as changes in growth rates and methionine, folate, and vitamin B/sub 12/ status, can be mimicked in vitro by using purified enzyme. (/sup 3/H)Folylpolyglutamate distributions can be explained solely in terms of the substrate specificity of folylpolyglutamate synthetase and can be modeled by using kinetic parameters obtained with purified enzyme. Low levels of folylpolyglutamate synthetase activity are normally required for the cellular metabolism of folates to retainable polyglutamate forms, and consequently folate retention and concentration, while higher levels of activity are required for the synthesis of the long chain length derivatives that are found in mammalian tissues. The synthesis of very long chain derivatives, which requires tetrahydrofolate polyglutamates as substrates, is a very slow process in vivo. The slow metabolism of 5-methyltetrahydrofolate to retainable polyglutamate forms causes the decreased tissue retention of folate in B/sub 12/ deficiency. Although cellular folylpolyglutamate distributions change in response to nutritional and physiological modulations, it is unlikely that these changes play a regulatory role in one-carbon metabolism as folate distributions respond only slowly.

  4. Anaerobic O-demethylations of methoxynaphthols, methoxyfuran, and fluoroanisols by Sporomusa ovata.

    PubMed

    Stupperich, E; Konle, R; Eckerskorn, C

    1996-06-25

    In vitro experiments with 3,4-dimethoxybenzoate-induced Sporomusa enzymes a broad O-methyl ether cleavage capacity. The O-demethylase activity hydrolized the methyl-oxygen linkages of methoxynaphtholes of the heterocycles 2-methoxyfuran or 2-methoxythiophene as well as of several dimethoxy and monomethoxy aryls under anaerobic conditions. Also, fluoro and chloro substituents of anisoles enhanced the O-demethylation rate, indicating that an electron delocalized aromatic structure supported the methyl ether activation mechanism. Monomethoxy aromatics with additional chargeable groups, however, were less effectively transformed by the O-demethylase activity. No transformations into hydroxylated products occurred with 4-(trifluoromethoxy)benzyl alcohol, 4-(trifluoromethoxy)fluorobenzene, 2,5-dimethoxytetrahydrofuran, or alkyl-O-methyl ethers. The inert ethers did not affect the 3,4-dimethoxybenzoate metabolism. Ether activation or the following methyl transfer to the methyl acceptor tetrahydrofolate involved a prominent 31 kDa peptide from the cytoplasmic cell fraction, because this particular peptide was lacking in cells grown with methanol, betaine or fructose.

  5. [Folic acid in physiology and pathology].

    PubMed

    Czeczot, Hanna

    2008-08-13

    This paper presents current knowledge of the biological functions of folic acid, the effects of its deficiency in the organism, as well as the possibilities of its therapeutic use. Folic acid (folate, B9) is a vitamin of special importance in normal cellular functions. Tetrahydrofolate (TH4-folate) is the biologically active form of folic acid. The main role of folic acid in biochemistry is the single-carbon transfer reaction (e.g. transfer of a methyl, methylene, or formyl group). Folic acid is involved in the transformation of certain amino acids as well as in the synthesis of purines and dTMP (2'-deoxythymidine-5'-phosphate) needed for the synthesis of nucleic acid (DNA), required by all rapidly growing cells. In humans, folate deficiency results in serious pathologies, the most important of which are neural tube defects, megablastic anemia, acceleration of the arteriosclerotic process, changes in the central nervous system, and the development of certain types of cancer. To increase the intake of folic acid, preventive actions include dietary education, the main objectives of which are to increase the intake of natural folate in the daily diet, add folic acid to selected dietary products (e.g. fl our, pasta, rice), and encourage supplementation with folic acid-containing pharmaceuticals.

  6. An omics approach to rational feed: Enhancing growth in CHO cultures with NMR metabolomics and 2D-DIGE proteomics.

    PubMed

    Blondeel, Eric J M; Ho, Raymond; Schulze, Steffen; Sokolenko, Stanislav; Guillemette, Simon R; Slivac, Igor; Durocher, Yves; Guillemette, J Guy; McConkey, Brendan J; Chang, David; Aucoin, Marc G

    2016-09-20

    Expression of recombinant proteins exerts stress on cell culture systems, affecting the expression of endogenous proteins, and contributing to the depletion of nutrients and accumulation of waste metabolites. In this work, 2D-DIGE proteomics was employed to analyze differential expression of proteins following stable transfection of a Chinese Hamster Ovary (CHO) cell line to constitutively express a heavy-chain monoclonal antibody. Thirty-four proteins of significant differential expression were identified and cross-referenced with cellular functions and metabolic pathways to identify points of cell stress. Subsequently, 1D-(1)H NMR metabolomics experiments analyzed cultures to observe nutrient depletion and waste metabolite accumulations to further examine these cell stresses and pathways. From among fifty metabolites tracked in time-course, eight were observed to be completely depleted from the production media, including: glucose, glutamine, proline, serine, cystine, asparagine, choline, and hypoxanthine, while twenty-three excreted metabolites were also observed to accumulate. The differentially expressed proteins, as well as the nutrient depletion and accumulation of these metabolites corresponded with upregulated pathways and cell systems related to anaplerotic TCA-replenishment, NADH/NADPH replenishment, tetrahydrofolate cycle C1 cofactor conversions, limitations to lipid synthesis, and redox modulation. A nutrient cocktail was assembled to improve the growth medium and alleviate these cell stresses to achieve a ∼75% improvement to peak cell densities. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Correlated Protein Motion Measurements of Dihydrofolate Reductase Crystals

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea

    2014-03-01

    We report the first direct measurements of the long range structural vibrational modes in dihydrofolate reductase (DHFR). DHFR is a universal housekeeping enzyme that catalyzes the reduction of 7,8-dihydrofolate to 5,6,7,8-tetra-hydrofolate, with the aid of coenzyme nicotinamide adenine dinucleotide phosphate (NADPH). This crucial enzymatic role as the target for anti-cancer [methotrexate (MTX)], and other clinically useful drugs, has made DHFR a long-standing target of enzymological studies. The terahertz (THz) frequency range (5-100 cm-1), corresponds to global correlated protein motions. In our lab we have developed Crystal Anisotropy Terahertz Microscopy (CATM), which directly measures these large scale intra-molecular protein vibrations, by removing the relaxational background of the solvent and residue side chain librational motions. We demonstrate narrowband features in the anisotropic absorbance for mouse DHFR with the ligand binding of NADPH and MTX single crystals as well as Escherichia coli DHFR with the ligand binding of NADPH and MTX single crystals. This work is supported by NSF grant MRI2 grant DBI2959989.

  8. Four Components of the Conjugated Redox System in Organisms: Carbon, Nitrogen, Sulfur, Oxygen.

    PubMed

    Tereshina, E V; Laskavy, V N; Ivanenko, S I

    2015-09-01

    C1 compounds participate in various metabolic processes and regulations including DNA methylation. Formaldehyde (FA), a product of methyl group oxidation, is highly cytotoxic. In the cell, there are two pathways of its utilization: assimilation and oxidation. Formaldehyde displays cytotoxicity, and therefore its oxidation is considered as detoxification. The sensitivity to the threshold concentration of FA we regard as an indication of its major role in biosystem functioning. A model of a three-component conjugated redox system is proposed in which the methyl group oxidation pathway is an archaic and conservative donor of protons and electrons, the reduction of O2 serves as an acceptor, and the arginine amino group is used for production of both urea and nitric oxide (the donor and acceptor, respectively). The fourth component of the redox system is glutathione, which maintains redox balance. The three-level system of proton donors includes the oxidation of a methyl group (first level), the oxidation of acetate in mitochondria (second level), and glucose catabolism in the pentose phosphate pathway (third level). The whole redox system is united by the sulfhydryl groups of cysteines, glutathione, thioredoxin, and α-lipoic acid. The central regulatory role in this redox system belongs to glutathione-dependent formaldehyde dehydrogenase, which controls FA binding with tetrahydrofolic acid, arginine methylation, and denitrosation of sulfhydryl groups. The conjugated redox system was formed during evolution as a union of separate redox cycles of carbon, nitrogen, sulfur, and oxygen.

  9. Treatment of Acute Lymphoblastic Leukemia from Traditional Chinese Medicine

    PubMed Central

    Huang, Hung-Jin; Kuo, Chia-Chen; Chen, Calvin Yu-Chian

    2014-01-01

    Acute lymphoblastic leukemia (ALL) is a cancer that immature white blood cells continuously overproduce in the bone marrow. These cells crowd out normal cells in the bone marrow bringing damage and death. Methotrexate (MTX) is a drug used in the treatment of various cancer and autoimmune diseases. In particular, for the treatment of childhood acute lymphoblastic leukemia, it had significant effect. MTX competitively inhibits dihydrofolate reductase (DHFR), an enzyme that participates in the tetrahydrofolate synthesis so as to inhibit purine synthesis. In addition, its downstream metabolite methotrexate polyglutamates (MTX-PGs) inhibit the thymidylate synthase (TS). Therefore, MTX can inhibit the synthesis of DNA. However, MTX has cytotoxicity and neurotoxin may cause multiple organ injury and is potentially lethal. Thus, the lower toxicity drugs are necessary to be developed. Recently, diseases treatments with Traditional Chinese Medicine (TCM) as complements are getting more and more attention. In this study, we attempted to discover the compounds with drug-like potential for ALL treatment from the components in TCM. We applied virtual screen and QSAR models based on structure-based and ligand-based studies to identify the potential TCM component compounds. Our results show that the TCM compounds adenosine triphosphate, manninotriose, raffinose, and stachyose could have potential to improve the side effects of MTX for ALL treatment. PMID:25136372

  10. [Justifying genetic and immune markers of efficiency and sensitivity under combined exposure to risk factors in mining industry workers].

    PubMed

    Dolgikh, O V; Zaitseva, N V; Krivtsov, A V; Gorshkova, K G; Lanin, D V; Bubnova, O A; Dianova, D G; Lykhina, T S; Vdovina, N A

    2014-01-01

    The authors evaluated and justified immunologic and genetic markers under combined exposure to risk factors in mining industry workers. Analysis covered polymorphism features of 29 genes with variant alleles possibly participating in occupationally conditioned diseases formation and serving as sensitivity markers of these diseases risk. The genes association selected demonstrates reliably changed polymorphism vs. the reference group (SOD2 superoxidedismutase gene, ANKK1 dophamine receptor gene, SULT1A1 sulphtransaminase gene, MTHFR methylene tetrahydrofolate reductase gene, VEGF endothelial growth factor gene, TNF-alpha tumor necrosis factor gene). Under combined exposure to occupational hazards (sylvinite dust, noise) in mining industry, this association can serve as adequate marking complex of sensitivity to development of occupationally conditioned diseases. Increased-production of immune cytokine regulation markers: tumor necrosis factor and vascular endothelial growth factor. Genes SOD2, ANKK1, SULT1A1, VEGF, TNFalpha are recommended as sensitivity markers, and the coded cytokines (tumor necrosis factor and endothelial growth factor) are proposed as effect markers in evaluation of health risk for workers in mining industry.

  11. Folate cycle enzyme MTHFD1L confers metabolic advantages in hepatocellular carcinoma.

    PubMed

    Lee, Derek; Xu, Iris Ming-Jing; Chiu, David Kung-Chun; Lai, Robin Kit-Ho; Tse, Aki Pui-Wah; Lan Li, Lynna; Law, Cheuk-Ting; Tsang, Felice Ho-Ching; Wei, Larry Lai; Chan, Cerise Yuen-Ki; Wong, Chun-Ming; Ng, Irene Oi-Lin; Wong, Carmen Chak-Lui

    2017-04-10

    Cancer cells preferentially utilize glucose and glutamine, which provide macromolecules and antioxidants that sustain rapid cell division. Metabolic reprogramming in cancer drives an increased glycolytic rate that supports maximal production of these nutrients. The folate cycle, through transfer of a carbon unit between tetrahydrofolate and its derivatives in the cytoplasmic and mitochondrial compartments, produces other metabolites that are essential for cell growth, including nucleotides, methionine, and the antioxidant NADPH. Here, using hepatocellular carcinoma (HCC) as a cancer model, we have observed a reduction in growth rate upon withdrawal of folate. We found that an enzyme in the folate cycle, methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L), plays an essential role in support of cancer growth. We determined that MTHFD1L is transcriptionally activated by NRF2, a master regulator of redox homeostasis. Our observations further suggest that MTHFD1L contributes to the production and accumulation of NADPH to levels that are sufficient to combat oxidative stress in cancer cells. The elevation of oxidative stress through MTHFD1L knockdown or the use of methotrexate, an antifolate drug, sensitizes cancer cells to sorafenib, a targeted therapy for HCC. Taken together, our study identifies MTHFD1L in the folate cycle as an important metabolic pathway in cancer cells with the potential for therapeutic targeting.

  12. Folic acid fortification: why not vitamin B12 also?

    PubMed

    Selhub, Jacob; Paul, Ligi

    2011-01-01

    Folic acid fortification of cereal grains was introduced in many countries to prevent neural tube defect occurrence. The metabolism of folic acid and vitamin B12 intersect during the transfer of the methyl group from 5-methyltetrahydrofolate to homocysteine catalyzed by B12-dependent methioine synthase. Regeneration of tetrahydrofolate via this reaction makes it available for synthesis of nucleotide precursors. Thus either folate or vitamin B12 deficiency can result in impaired cell division and anemia. Exposure to extra folic acid through fortification may be detrimental to those with vitamin B12 deficiency. Among participants of National Health And Nutrition Examination Survey with low vitamin B12 status, high serum folate (>59 nmol/L) was associated with higher prevalence of anemia and cognitive impairment when compared with normal serum folate. We also observed an increase in the plasma concentrations of total homocysteine and methylmalonic acid (MMA), two functional indicators of vitamin B12 status, with increase in plasma folate under low vitamin B12 status. These data strongly imply that high plasma folate is associated with the exacerbation of both the biochemical and clinical status of vitamin B12 deficiency. Hence any food fortification policy that includes folic acid should also include vitamin B12.

  13. Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism.

    PubMed

    Yurimoto, Hiroya; Kato, Nobuo; Sakai, Yasuyoshi

    2005-01-01

    Methanol is a valuable raw material used in the manufacture of useful chemicals as well as a potential source of energy to replace coal and petroleum. Biotechnological interest in the microbial utilization of methanol has increased because it is an ideal carbon source and can be produced from renewable biomass. Formaldehyde, a cytotoxic compound, is a central metabolic intermediate in methanol metabolism. Therefore, microorganisms utilizing methanol have adopted several metabolic strategies to cope with the toxicity of formaldehyde. Formaldehyde is initially detoxified through trapping by some cofactors, such as glutathione, mycothiol, tetrahydrofolate, and tetrahydromethanopterin, before being oxidized to CO2. Alternatively, free formaldehyde can be trapped by sugar phosphates as the first reaction in the C1 assimilation pathways: the xylulose monophosphate pathway for yeasts and the ribulose monophosphate (RuMP) pathway for bacteria. In yeasts, although formaldehyde generation and consumption takes place in the peroxisome, the cytosolic formaldehyde oxidation pathway also plays a role in formaldehyde detoxification as well as energy formation. The key enzymes of the RuMP pathway are found in a variety of microorganisms including bacteria and archaea. Regulation of the genes encoding these enzymes and their catalytic mechanisms depend on the physiological traits of these organisms during evolution.

  14. Computational identification of obligatorily autocatalytic replicators embedded in metabolic networks

    PubMed Central

    Kun, Ádám; Papp, Balázs; Szathmáry, Eörs

    2008-01-01

    Background If chemical A is necessary for the synthesis of more chemical A, then A has the power of replication (such systems are known as autocatalytic systems). We provide the first systems-level analysis searching for small-molecular autocatalytic components in the metabolisms of diverse organisms, including an inferred minimal metabolism. Results We find that intermediary metabolism is invariably autocatalytic for ATP. Furthermore, we provide evidence for the existence of additional, organism-specific autocatalytic metabolites in the forms of coenzymes (NAD+, coenzyme A, tetrahydrofolate, quinones) and sugars. Although the enzymatic reactions of a number of autocatalytic cycles are present in most of the studied organisms, they display obligatorily autocatalytic behavior in a few networks only, hence demonstrating the need for a systems-level approach to identify metabolic replicators embedded in large networks. Conclusion Metabolic replicators are apparently common and potentially both universal and ancestral: without their presence, kick-starting metabolic networks is impossible, even if all enzymes and genes are present in the same cell. Identification of metabolic replicators is also important for attempts to create synthetic cells, as some of these autocatalytic molecules will presumably be needed to be added to the system as, by definition, the system cannot synthesize them without their initial presence. PMID:18331628

  15. Effects of testosterone on the metabolism of folate coenzymes in the rat

    PubMed Central

    Rovinetti, C.; Bovina, C.; Tolomelli, B.; Marchetti, M.

    1972-01-01

    1. The effects of castration and testosterone treatment on enzymic activities involved in folate coenzyme metabolism in the liver and in accessory sex organs of male adult rats were studied. 2. In the liver of castrated rats the concentration of 10-formyltetrahydrofolate (10-HCO-H4folate) synthetase and tetrahydrofolate (H4folate) dehydrogenase were significantly decreased whereas that of 5,10-methylenetetrahydrofolate dehydrogenase increased; the treatment with five doses of testosterone caused a return to normal values of these activities. 3. In the prostate of castrated rats a pronounced decrease in H4folate dehydrogenase, serine hydroxymethyltransferase and 10-HCO-H4folate synthetase activities was observed. The administration of testosterone restored the enzymic activities to normal values. 4. In the seminal vesicles of castrated rats only 10-HCO-H4folate synthetase was markedly depressed; testosterone treatment not only restored activity to normal values but raised it to higher than normal values. The slight changes observed in other enzymic activities also returned to normal values with the hormone treatment. 5. These results are discussed in relation to a possible control mechanism of folate metabolism by testosterone. PMID:5071175

  16. The human flavoproteome

    PubMed Central

    Lienhart, Wolf-Dieter; Gudipati, Venugopal; Macheroux, Peter

    2013-01-01

    Vitamin B2 (riboflavin) is an essential dietary compound used for the enzymatic biosynthesis of FMN and FAD. The human genome contains 90 genes encoding for flavin-dependent proteins, six for riboflavin uptake and transformation into the active coenzymes FMN and FAD as well as two for the reduction to the dihydroflavin form. Flavoproteins utilize either FMN (16%) or FAD (84%) while five human flavoenzymes have a requirement for both FMN and FAD. The majority of flavin-dependent enzymes catalyze oxidation–reduction processes in primary metabolic pathways such as the citric acid cycle, β-oxidation and degradation of amino acids. Ten flavoproteins occur as isozymes and assume special functions in the human organism. Two thirds of flavin-dependent proteins are associated with disorders caused by allelic variants affecting protein function. Flavin-dependent proteins also play an important role in the biosynthesis of other essential cofactors and hormones such as coenzyme A, coenzyme Q, heme, pyridoxal 5′-phosphate, steroids and thyroxine. Moreover, they are important for the regulation of folate metabolites by using tetrahydrofolate as cosubstrate in choline degradation, reduction of N-5.10-methylenetetrahydrofolate to N-5-methyltetrahydrofolate and maintenance of the catalytically competent form of methionine synthase. These flavoenzymes are discussed in detail to highlight their role in health and disease. PMID:23500531

  17. Type III mixed cryoglobulinemia and antiphospholipid syndrome in a patient with partial DiGeorge syndrome.

    PubMed

    Chang, Alice D; Tachdjian, Raffi; Gallagher, Kerry; McCurdy, Deborah K; Lassman, Charles; Stiehm, E Richard; Yadin, Ora

    2006-01-01

    We studied a 14 year-old boy with partial DiGeorge syndrome (DGS), status post complete repair of Tetralogy of Fallot, who developed antiphospholipid syndrome (APS) and type III mixed cryoglobulinemia. He presented with recurrent fever and dyspnea upon exertion secondary to right pulmonary embolus on chest computed tomography (CT). Coagulation studies revealed homozygous methylene tetrahydrofolate reductase 677TT mutations, elevated cardiolipin IgM antibodies, and elevated beta(2)-glycoprotein I IgM antibodies. Infectious work-up revealed only positive anti-streptolysin O (ASO) and anti-DNAse B titers. Autoimmune studies showed strongly positive anti-platelet IgM, elevated rheumatoid factor (RF), and positive cryocrit. Renal biopsy for evaluation of proteinuria and hematuria showed diffuse proliferative glomerulonephritis (DPGN) with membranoproliferative features consistent with cryoglobulinemia. Immunofixation showed polyclonal bands. Our patient was treated successfully with antibiotics, prednisone, and mycophenolate mofetil (MMF). This is the first report of a patient with partial DGS presenting with APS and type III mixed cryoglobulinemia possibly due to Streptococcal infection.

  18. Type III Mixed Cryoglobulinemia and Antiphospholipid Syndrome in a Patient With Partial DiGeorge Syndrome

    PubMed Central

    Chang, Alice D.; Tachdjian, Raffi; Gallagher, Kerry; McCurdy, Deborah K.; Lassman, Charles; Stiehm, E. Richard; Yadin, Ora

    2006-01-01

    We studied a 14 year-old boy with partial DiGeorge syndrome (DGS), status post complete repair of Tetralogy of Fallot, who developed antiphospholipid syndrome (APS) and type III mixed cryoglobulinemia. He presented with recurrent fever and dyspnea upon exertion secondary to right pulmonary embolus on chest computed tomography (CT). Coagulation studies revealed homozygous methylene tetrahydrofolate reductase 677TT mutations, elevated cardiolipin IgM antibodies, and elevated β2-glycoprotein I IgM antibodies. Infectious work-up revealed only positive anti-streptolysin O (ASO) and anti-DNAse B titers. Autoimmune studies showed strongly positive anti-platelet IgM, elevated rheumatoid factor (RF), and positive cryocrit. Renal biopsy for evaluation of proteinuria and hematuria showed diffuse proliferative glomerulonephritis (DPGN) with membranoproliferative features consistent with cryoglobulinemia. Immunofixation showed polyclonal bands. Our patient was treated successfully with antibiotics, prednisone, and mycophenolate mofetil (MMF). This is the first report of a patient with partial DGS presenting with APS and type III mixed cryoglobulinemia possibly due to Streptococcal infection. PMID:17162366

  19. Dihydrofolate Reductase Gene Variations in Susceptibility to Disease and Treatment Outcomes

    PubMed Central

    Askari, Bahram S.; Krajinovic, Maja

    2010-01-01

    Dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate to tetrahydrofolate (THF). THF is needed for the action of folate-dependent enzymes and is thus essential for DNA synthesis and methylation. The importance of this reaction is demonstrated by the effectiveness of antifolate medications used to treat cancer by inhibiting DHFR, thereby depleting THF and slowing DNA synthesis and cell proliferation. Due to the pivotal role that DHFR plays in folate metabolism and cancer treatment, changes in the level of DHFR expression can affect susceptibility to a variety of diseases dependent on folate status such as spina bifida and cancer. Likewise, variability in DHFR expression can affect sensitivity to anti-cancer drugs such as the folate antagonist methotrexate. Alterations in DHFR expression can be due to polymorphisms in the DHFR gene. Several variations have recently been described in DHFR, including promoter polymorphisms, the 19-bp deletion allele and variations in 3’UTR. These polymorphisms seem to be functional, affecting mRNA levels through various interesting mechanisms, including regulation through RNA interference. Several groups have assessed the association of these polymorphisms with folate levels, risk of cancer and spina bifida as well as the outcome of diseases treated with MTX. The latter may lead to different treatment schedules, improving treatment efficacy and/or allowing for a reduction in drug side effects. This review will summarize present knowledge regarding the predictive potential of DHFR polymorphisms in disease and treatment. PMID:21629435

  20. Dihydrofolate reductase gene variations in susceptibility to disease and treatment outcomes.

    PubMed

    Askari, Bahram S; Krajinovic, Maja

    2010-12-01

    Dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate to tetrahydrofolate (THF). THF is needed for the action of folate-dependent enzymes and is thus essential for DNA synthesis and methylation. The importance of this reaction is demonstrated by the effectiveness of antifolate medications used to treat cancer by inhibiting DHFR, thereby depleting THF and slowing DNA synthesis and cell proliferation. Due to the pivotal role that DHFR plays in folate metabolism and cancer treatment, changes in the level of DHFR expression can affect susceptibility to a variety of diseases dependent on folate status such as spina bifida and cancer. Likewise, variability in DHFR expression can affect sensitivity to anti-cancer drugs such as the folate antagonist methotrexate. Alterations in DHFR expression can be due to polymorphisms in the DHFR gene. Several variations have recently been described in DHFR, including promoter polymorphisms, the 19-bp deletion allele and variations in 3'UTR. These polymorphisms seem to be functional, affecting mRNA levels through various interesting mechanisms, including regulation through RNA interference. Several groups have assessed the association of these polymorphisms with folate levels, risk of cancer and spina bifida as well as the outcome of diseases treated with MTX. The latter may lead to different treatment schedules, improving treatment efficacy and/or allowing for a reduction in drug side effects. This review will summarize present knowledge regarding the predictive potential of DHFR polymorphisms in disease and treatment.

  1. Alteration of the alkaloid profile in genetically modified tobacco reveals a role of methylenetetrahydrofolate reductase in nicotine N-demethylation.

    PubMed

    Hung, Chiu-Yueh; Fan, Longjiang; Kittur, Farooqahmed S; Sun, Kehan; Qiu, Jie; Tang, She; Holliday, Bronwyn M; Xiao, Bingguang; Burkey, Kent O; Bush, Lowell P; Conkling, Mark A; Roje, Sanja; Xie, Jiahua

    2013-02-01

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes the reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine, forming methionine, which is then used for the synthesis of S-adenosyl-methionine, a universal methyl donor for numerous methylation reactions, to produce primary and secondary metabolites. Here, we demonstrate that manipulating tobacco (Nicotiana tabacum) MTHFR gene (NtMTHFR1) expression dramatically alters the alkaloid profile in transgenic tobacco plants by negatively regulating the expression of a secondary metabolic pathway nicotine N-demethylase gene, CYP82E4. Quantitative real-time polymerase chain reaction and alkaloid analyses revealed that reducing NtMTHFR expression by RNA interference dramatically induced CYP82E4 expression, resulting in higher nicotine-to-nornicotine conversion rates. Conversely, overexpressing NtMTHFR1 suppressed CYP82E4 expression, leading to lower nicotine-to-nornicotine conversion rates. However, the reduced expression of NtMTHFR did not affect the methionine and S-adenosyl-methionine levels in the knockdown lines. Our finding reveals a new regulatory role of NtMTHFR1 in nicotine N-demethylation and suggests that the negative regulation of CYP82E4 expression may serve to recruit methyl groups from nicotine into the C1 pool under C1-deficient conditions.

  2. Alteration of the Alkaloid Profile in Genetically Modified Tobacco Reveals a Role of Methylenetetrahydrofolate Reductase in Nicotine N-Demethylation1[C][W][OA

    PubMed Central

    Hung, Chiu-Yueh; Fan, Longjiang; Kittur, Farooqahmed S.; Sun, Kehan; Qiu, Jie; Tang, She; Holliday, Bronwyn M.; Xiao, Bingguang; Burkey, Kent O.; Bush, Lowell P.; Conkling, Mark A.; Roje, Sanja; Xie, Jiahua

    2013-01-01

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes the reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine, forming methionine, which is then used for the synthesis of S-adenosyl-methionine, a universal methyl donor for numerous methylation reactions, to produce primary and secondary metabolites. Here, we demonstrate that manipulating tobacco (Nicotiana tabacum) MTHFR gene (NtMTHFR1) expression dramatically alters the alkaloid profile in transgenic tobacco plants by negatively regulating the expression of a secondary metabolic pathway nicotine N-demethylase gene, CYP82E4. Quantitative real-time polymerase chain reaction and alkaloid analyses revealed that reducing NtMTHFR expression by RNA interference dramatically induced CYP82E4 expression, resulting in higher nicotine-to-nornicotine conversion rates. Conversely, overexpressing NtMTHFR1 suppressed CYP82E4 expression, leading to lower nicotine-to-nornicotine conversion rates. However, the reduced expression of NtMTHFR did not affect the methionine and S-adenosyl-methionine levels in the knockdown lines. Our finding reveals a new regulatory role of NtMTHFR1 in nicotine N-demethylation and suggests that the negative regulation of CYP82E4 expression may serve to recruit methyl groups from nicotine into the C1 pool under C1-deficient conditions. PMID:23221678

  3. Folate levels and polyglutamylation profiles of papaya (Carica papaya cv. Maradol) during fruit development and ripening.

    PubMed

    Ramos-Parra, Perla A; García-Salinas, Carolina; Hernández-Brenes, Carmen; de la Garza, Rocío I Díaz

    2013-04-24

    Folates are essential micronutrients for humans, and their deficiency causes several detrimental effects on human health. Papaya fruit is an important natural source of some micronutrients. This paper presents a first complete characterization of folate derivatives accumulated in cv. Maradol papaya during fruit development and ripening processes. During postharvest ripening, the fruit accumulated up to 24.5% of the daily folate recommended dietary allowance (RDA) for an adult in a 1 cup (145 g) portion. Tetrahydrofolate (THF) and 5-methyl-THF were the predominant folate classes observed. Surprisingly, an unusually long polyglutamylation profile of tentatively up to 17 glutamates linked to 5-methyl-THF was detected; to the authors' knowledge, this very long polyglutamyl tail has not been reported for any organism, and it is probably characteristic of this plant species. This polyglutamylation degree changed throughout fruit development and ripening, showing the largest differences at the onset of ripening. This work raises questions about the functional role of folate derivatives in fruit development.

  4. Saccharomyces cerevisiae and metabolic activators: HXT3 gene expression and fructose/glucose discrepancy in sluggish fermentation conditions.

    PubMed

    Díaz-Hellín, Patricia; Naranjo, Victoria; Úbeda, Juan; Briones, Ana

    2016-12-01

    When exposed to mixtures of glucose and fructose, as occurs during the fermentation of grape juice into wine, Saccharomyces cerevisiae uses these sugars at different rates. Moreover, glucose and fructose are transported by the same hexose transporters (HXT), which present a greater affinity for glucose, so that late in fermentation, fructose becomes the predominant sugar. Only a few commercial fermentation activators are available to optimally solve the problems this entails. The aim of this study was to investigate the relation between HXT3 gene expression and fructose/glucose discrepancy in two different media inoculated with a commercial wine strain of S. cerevisiae in the presence of three metabolic activators. Fermentation kinetics, vitality and major metabolites were also measured. Rehydration with ergosterol improved the area under the curve and the growth rate (µ max ) in both studied media. Also, the fructose/glucose discrepancy values were improved with all activator treatments, highlighting rehydration in the presence of ascorbic acid. The yeast rehydration process was demonstrated to influence HXT3 expression under the studied conditions. Tetrahydrofolic acid treatment greatly influenced HXT3 gene expression, especially on the 12th day of the fermentation process. To a lesser extent, ergosterol and ascorbic acid also improved this parameter.

  5. Purification and gene cloning of alpha-methylserine aldolase from Ralstonia sp. strain AJ110405 and application of the enzyme in the synthesis of alpha-methyl-L-serine.

    PubMed

    Nozaki, Hiroyuki; Kuroda, Shinji; Watanabe, Kunihiko; Yokozeki, Kenzo

    2008-12-01

    By screening microorganisms that are capable of assimilating alpha-methyl-DL-serine, we detected alpha-methylserine aldolase in Ralstonia sp. strain AJ110405, Variovorax paradoxus AJ110406, and Bosea sp. strain AJ110407. A homogeneous form of this enzyme was purified from Ralstonia sp. strain AJ110405, and the gene encoding the enzyme was cloned and expressed in Escherichia coli. The enzyme appeared to be a homodimer consisting of identical subunits, and its molecular mass was found to be 47 kDa. It contained 0.7 to 0.8 mol of pyridoxal 5'-phosphate per mol of subunit and could catalyze the interconversion of alpha-methyl-L-serine to L-alanine and formaldehyde in the absence of tetrahydrofolate. Formaldehyde was generated from alpha-methyl-L-serine but not from alpha-methyl-D-serine, L-serine, or D-serine. Alpha-methyl-L-serine synthesis activity was detected when L-alanine was used as the substrate. In contrast, no activity was detected when D-alanine was used as the substrate. In the alpha-methyl-L-serine synthesis reaction, the enzymatic activity was inhibited by an excess amount of formaldehyde, which was one of the substrates. We used cells of E. coli as a whole-cell catalyst to express the gene encoding alpha-methylserine aldolase and effectively obtained a high yield of optically pure alpha-methyl-L-serine using L-alanine and formaldehyde.

  6. MTHFD1 controls DNA methylation in Arabidopsis

    PubMed Central

    Groth, Martin; Moissiard, Guillaume; Wirtz, Markus; Wang, Haifeng; Garcia-Salinas, Carolina; Ramos-Parra, Perla A.; Bischof, Sylvain; Feng, Suhua; Cokus, Shawn J.; John, Amala; Smith, Danielle C.; Zhai, Jixian; Hale, Christopher J.; Long, Jeff A.; Hell, Ruediger; Díaz de la Garza, Rocío I.; Jacobsen, Steven E.

    2016-01-01

    DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases. PMID:27291711

  7. Differentially expressed cytosolic proteins in human leukemia and lymphoma cell lines correlate with lineages and functions.

    PubMed

    Gez, Swetlana; Crossett, Ben; Christopherson, Richard I

    2007-09-01

    Identification of cytosolic proteins differentially expressed between types of leukemia and lymphoma may provide a molecular basis for classification and understanding their cellular properties. Two-dimensional fluorescence difference gel electrophoresis (DIGE) and mass spectrometry have been used to identify proteins that are differentially expressed in cytosolic extracts from four human leukemia and lymphoma cell lines: HL-60 (acute promyelocytic leukemia), MEC1 (B-cell chronic lymphocytic leukemia), CCRF-CEM (T-cell acute lymphoblastic leukemia) and Raji (B-cell Burkitt's lymphoma). A total of 247 differentially expressed proteins were identified between the four cell lines. Analysis of the data by principal component analysis identified 22 protein spots (17 different protein species) differentially expressed at more than a 95% variance level between these cell lines. Several of these proteins were differentially expressed in only one cell line: HL-60 (myeloperoxidase, phosphoprotein 32 family member A, ras related protein Rab-11B, protein disulfide-isomerase, ran-specific GTPase-activating protein, nucleophosmin and S-100 calcium binding protein A4), and Raji (ezrin). Several of these proteins were differentially expressed in two cell lines: Raji and MEC1 (C-1-tetrahydrofolate synthase, elongation factor 2, alpha- and beta-tubulin, transgelin-2 and stathmin). MEC1 and CCRF-CEM (gamma-enolase), HL-60 and CCRF-CEM (ubiquitin-conjugating enzyme E2 N). The differentially expressed proteins identified in these four cell lines correlate with cellular properties and provide insights into the molecular basis of these malignancies.

  8. Folate content in tomato ( Lycopersicon esculentum ). influence of cultivar, ripeness, year of harvest, and pasteurization and storage temperatures.

    PubMed

    Iniesta, M Dolores; Pérez-Conesa, Darío; García-Alonso, Javier; Ros, Gaspar; Periago, M Jesús

    2009-06-10

    The effects of cultivar, on-vine ripening, and year of harvest on the folate content of raw tomatoes were studied. Folate content in hot-break tomato puree (HTP) subjected to pasteurization at different temperatures and its evolution during the shelf life of tomato juice were also investigated. 5-Methyltetrahydrofolate (5-CH(3)-H(4)-folate) was the only folate compound identified in raw tomatoes and HTP, but tetrahydrofolate (H(4)-folate) was 10% of the folate detected in tomato juice. The content of folates in raw tomatoes ranged from 4.1 to 35.3 microg/100 g of fresh weight and was highly influenced by all of the factors studied. No clear trend of folate content with ripening stage was observed. The extractability of 5-CH(3)-H(4)-folate from HTP increased significantly after pasteurization at 98 degrees C for 40 s, but higher temperatures decreased its content. Tomato juice showed folate losses during storage independent of the storage temperature. Folate losses were higher when tomato juice was packed in glass bottles than in Tetra Pak.

  9. Conversion of acetic acid to methane: thermophilic bacteria and their symbiotic interactions

    SciTech Connect

    Lee, M.J.

    1987-01-01

    A thermophilic (60/sup 0/C), anaerobic coculture conspired of an acetate-oxidizing eubacterial rod (AOR) and a H/sub 2/-using methanogen, Methanobacterium sp. strain THF, was studied. The AOR was isolated from the coculture by dilution into medium, with ethylene glycol. It grew on ethylene glycol, 1,2 propanediol, formate, pyruvate, glycinebetaine, and H/sub 2/-CO/sub 2/, usually forming acetate as the main product. Evidence was obtained consistent with the hypothesis that the AOR oxidized acetate via a series of reactions resembling the reversal of the acetyl CoA acetogenesis pathway. Two key enzymes were present in high activity; carbon monoxide dehydrogenase (CODH) and formate dehydrogenase (FDH), although formyltetrahydrofolate synthetase was not detectable. Tetrahydrofolate, an important C/sub 1/ carrier in acetogens, was not detectable indirectly via enzyme assays, inhibitor studies, or fluorescence spectra, suggesting an alternate carries in the AOR. Anaerobic activity stains for CODH in native polyacrylamide gels showed a novel major band in the coculture not detected in the component organisms, suggesting regulation of this enzyme and the reversal of the pathway. Enzyme assays also indicated regulate of CODH and FDH in Methanobacterium. THF.

  10. Commutability of NIST SRM 1955 Homocysteine and Folate in Frozen Human Serum with selected total homocysteine immunoassays and enzymatic assays.

    PubMed

    Nelson, Bryant C; Pfeiffer, Christine M; Zhang, Ming; Duewer, David L; Sharpless, Katherine E; Lippa, Katrice A

    2008-09-01

    The National Institute of Standards and Technology (NIST) has recently developed Standard Reference Material (SRM) 1955 Homocysteine and Folate in Frozen Human Serum with certified values for total homocysteine (tHcy) and 5-methyl-tetrahydrofolic acid. NIST has performed an international, interlaboratory assessment of SRM 1955 commutability; results are reported for tHcy only. Total Hcy was measured in 20 patient sera and in 3 levels of SRM 1955 using 14 immunoassays and/or enzymatic assays. Liquid chromatography/tandem mass spectrometry was utilized as the reference assay. An "errors-in-variables" statistical model was utilized to assess the commutability of SRM 1955. Normalized residuals ranged from -2.65 to 2.19 for SRM 1955. The median interlaboratory/interassay imprecision (CV) was approximately 4% for patient specimens and ranged from approximately 3% to approximately 7% for SRM 1955. The median intra-assay imprecision ranged from approximately 1% to approximately 13%. Orthogonal residuals, as a descriptor of assay accuracy, ranged from 0.29 to 7.71 and from 0.20 to 2.22 for patient specimens and SRM 1955 samples, respectively. The current study suggests that SRM 1955 is commutable with the investigated tHcy assays; however, a broader specimen set needs to be evaluated to completely substantiate this conclusion.

  11. Structure of a nitric oxide synthase heme protein from Bacillus subtilis.

    PubMed

    Pant, Kartikeya; Bilwes, Alexandrine M; Adak, Subrata; Stuehr, Dennis J; Crane, Brian R

    2002-09-17

    Eukaryotic nitric oxide synthases (NOSs) produce nitric oxide to mediate intercellular signaling and protect against pathogens. Recently, proteins homologous to mammalian NOS oxygenase domains have been found in prokaryotes and one from Bacillus subtilis (bsNOS) has been demonstrated to produce nitric oxide [Adak, S., Aulak, K. S., and Stuehr, D. J. (2002) J. Biol. Chem. 277, 16167-16171]. We present structures of bsNOS complexed with the active cofactor tetrahydrofolate and the substrate L-arginine (L-Arg) or the intermediate N(omega)-hydroxy-L-arginine (NHA) to 1.9 or 2.2 A resolution, respectively. The bsNOS structure is similar to those of the mammalian NOS oxygenase domains (mNOS(ox)) except for the absence of an N-terminal beta-hairpin hook and zinc-binding region that interact with pterin and stabilize the mNOS(ox) dimer. Changes in patterns of residue conservation between bacterial and mammalian NOSs correlate to different binding modes for pterin side chains. Residue conservation on a surface patch surrounding an exposed heme edge indicates a likely interaction site for reductase proteins in all NOSs. The heme pockets of bsNOS and mNOS(ox) recognize L-Arg and NHA similarly, although a change from Val to Ile beside the substrate guanidinium may explain the 10-20-fold slower dissociation of product NO from the bacterial enzyme. Overall, these structures suggest that bsNOS functions naturally to produce nitrogen oxides from L-Arg and NHA in a pterin-dependent manner, but that the regulation and purpose of NO production by NOS may be quite different in B. subtilis than in mammals.

  12. Non-Growth-Associated Demethylation of Dimethylsulfoniopropionate by (Homo)acetogenic Bacteria

    PubMed Central

    Jansen, Michael; Hansen, Theo A.

    2001-01-01

    The demethylation of the algal osmolyte dimethylsulfoniopropionate (DMSP) to methylthiopropionate (MTPA) by (homo)acetogenic bacteria was studied. Five Eubacterium limosum strains (including the type strain), Sporomusa ovata DSM 2662T, Sporomusa sphaeroides DSM 2875T, and Acetobacterium woodii DSM 1030T were shown to demethylate DMSP stoichiometrically to MTPA. The (homo)acetogenic fermentation based on this demethylation did not result in any significant increase in biomass. The analogous demethylation of glycine betaine to dimethylglycine does support growth of acetogens. In batch cultures of E. limosum PM31 DMSP and glycine betaine were demethylated simultaneously. In mixed substrates experiments with fructose-DMSP or methanol-DMSP, DMSP was used rapidly but only after exhaustion of the fructose or the methanol. In steady-state fructose-limited chemostat cultures (at a dilution rate of 0.03 h−1) with DMSP as a second reservoir substrate, DMSP was biotransformed to MTPA but this did not result in higher biomass values than in cultures without DMSP; cells from such cultures demethylated DMSP at rates of approximately 50 nmol min−1 mg of protein−1, both after growth in the presence of DMSP and after growth in its absence. In cell extracts of glycine betaine-grown strain PM31, DMSP demethylation activities of 21 to 24 nmol min−1 mg of protein−1 were detected with tetrahydrofolate as a methyl acceptor; the activities seen with glycine betaine were approximately 10-fold lower. A speculative explanation for the demethylation of DMSP without an obvious benefit for the organism is that the DMSP-demethylating activity is catalyzed by the glycine betaine-demethylating enzyme and that a transport-related factor, in particular a higher energy demand for DMSP transport across the cytoplasmic membrane than for glycine betaine transport, may reduce the overall ATP yield of the fermentation to virtually zero. PMID:11133459

  13. Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography [Neutron and ultrahigh resolution X-ray crystallography reveals water as the proton donor in the catalytic mechanism of dihydrofolate reductase

    SciTech Connect

    Wan, Qun; Bennett, Brad C.; Wilson, Mark A.; Kovalevsky, Andrey; Langan, Paul; Howell, Elizabeth E.; Dealwis, Chris

    2014-12-01

    Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to the lack of consensus on a catalytic mechanism. To resolve this ambiguity, we conducted neutron and ultrahigh resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of DHFR with folate and NADP+ from E. coli. The neutron data were collected to 2.0 Å resolution using a 3.6 mm3 crystal with the quasi-Laue technique, and the structure reveals that the N3 atom of folate is protonated while Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer due to protonation of the N3 atom, suggesting tautomerization is unnecessary for catalysis. In the 1.05 Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pKa of the N5 atom of DHF by Asp27, and protonation of N5 by water whose access to the active site is gated by fluctuation of the Met20 side chain even though the Met-20 loop is closed.

  14. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization

    PubMed Central

    Varman, Arul M.; He, Lian; Follenfant, Rhiannon; Wu, Weihua; Wemmer, Sarah; Wrobel, Steven A.; Tang, Yinjie J.; Singh, Seema

    2016-01-01

    Sphingobium sp. SYK-6 is a soil bacterium boasting a well-studied ligninolytic pathway and the potential for development into a microbial chassis for lignin valorization. An improved understanding of its metabolism will help researchers in the engineering of SYK-6 for the production of value-added chemicals through lignin valorization. We used 13C-fingerprinting, 13C metabolic flux analysis (13C-MFA), and RNA-sequencing differential expression analysis to uncover the following metabolic traits: (i) SYK-6 prefers alkaline conditions, making it an efficient host for the consolidated bioprocessing of lignin, and it also lacks the ability to metabolize sugars or organic acids; (ii) the CO2 release (i.e., carbon loss) from the ligninolysis-based metabolism of SYK-6 is significantly greater than the CO2 release from the sugar-based metabolism of Escherichia coli; (iii) the vanillin catabolic pathway (which is the converging point of majority of the lignin catabolic pathways) is coupled with the tetrahydrofolate-dependent C1 pathway that is essential for the biosynthesis of serine, histidine, and methionine; (iv) catabolic end products of lignin (pyruvate and oxaloacetate) must enter the tricarboxylic acid (TCA) cycle first and then use phosphoenolpyruvate carboxykinase to initiate gluconeogenesis; and (v) 13C-MFA together with RNA-sequencing differential expression analysis establishes the vanillin catabolic pathway as the major contributor of NAD(P)H synthesis. Therefore, the vanillin catabolic pathway is essential for SYK-6 to obtain sufficient reducing equivalents for its healthy growth; cosubstrate experiments support this finding. This unique energy feature of SYK-6 is particularly interesting because most heterotrophs rely on the transhydrogenase, the TCA cycle, and the oxidative pentose phosphate pathway to obtain NADPH. PMID:27634497

  15. Low-dose methotrexate enhances cycling of highly anaplastic cancer cells

    PubMed Central

    Marzi, Ilaria; Olivotto, Massimo

    2017-01-01

    ABSTRACT We previously showed that cellular RedOx state governs the G1-S transition of AH130 hepatoma, a tumor spontaneously reprogrammed to the embryonic stem cell stage. This transition is impaired when the mithocondrial electron transport system is blocked by specific inhibitors (antimycin A) or the respiratory chain is saturated by adding to the cells high concentrations of pyruvate. The antimycin A or pyruvate block is removed by the addition of adequate concentrations of folate (F). This suggests that the G1-S transition of AH130 cells depends on a respiration-linked step of DNA synthesis related to folate metabolism. In the study reported here, we characterized the effects of methotrexate (MTX), an inhibitor of dihydofolate-reductase, on the G1-S transition of hepatoma cells, in the absence or the presence of exogenously added F, dihydrofolate (FH2) or tetrahydrofolate (FH4). MTX, at 1 μM or higher concentrations, inhibited G1-S transition. This inhibition was completely removed by exogenous folates. Surprisingly, 10 nM MTX stimulated G1-S transition. The addition of F, but not FH2 or FH4, significantly increased this effect. Furthermore, 10 nM MTX removed the block of the G1-S transition operated by antimycin A or pyruvate, an effect which was enhanced in the presence of F. Finally, the stimulatory effect of 10 nM MTX was inhibited in the presence of serine. Our findings indicated that, under certain conditions, MTX may stimulate, rather than inhibiting, the cycling of cancer cells exhibiting a stem cell-like phenotype, such as AH130 cells. This may impact the therapeutic use of MTX and of folates as supportive care. PMID:27841718

  16. Stable Isotope Dilution Assays for Clinical Analyses of Folates and Other One-Carbon Metabolites: Application to Folate-Deficiency Studies.

    PubMed

    Kopp, Markus; Morisset, Rosalie; Koehler, Peter; Rychlik, Michael

    2016-01-01

    Folate deficiency is generally accepted as a potential direct or indirect risk factor for diseases including spina bifida, coronary heart diseases, malfunctions of the central nervous system, and cancer. The direct inclusion of folates in the methylation cycle, including the remethylation of homocysteine and regeneration of S-adenosylmethionine, underlines the importance of these vitamins and other components of one-carbon metabolism. Therefore, the aim of the present study was to develop a multiple stable isotope dilution assay (SIDA) for the respective analytes in plasma and tissue samples to allow for a closer look at the interaction between a severe folate deficiency and local folate status, as well as further interactions with circulating S-adenosylmethionine, S-adenosylhomocysteine, and homocysteine. The analytical methods were based on SIDAs coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis using the deuterated folates [2H4]-5-methyltetrahydrofolic acid, [2H4]-5-formyltetrahydrofolic acid, [2H4]-tetrahydrofolic acid, [2H4]-10-formylfolic acid, and [2H4]-folic acid and the deuterated one-carbon metabolites [2H4]-homocysteine, [2H4]-S-adenosylhomocysteine, and [2H3]-S-adenosylmethionine as internal standards. Three analytical methods have been developed for the analysis of homocysteine, S-adenosylmethionine, S-adenosylhomocysteine, and six folate vitamers. Validation data for the analysis of C1-metabolites in plasma and tissue samples or folate analysis in tissue samples revealed excellent sensitivity, precision, and recovery for all analytes studied. The miniaturized methods using sample volumes as low as 50 μL and weighed portions of 5-25 mg will allow the assessment of the status of folates and additional biomarkers of impaired one-carbon metabolism during folate deficiency.

  17. Kinetic and Structural Characterization of Dihydrofolate Reductase from Streptococcus pneumoniae

    PubMed Central

    Lee, Jeeyeon; Yennawar, Neela H.; Gam, Jongsik; Benkovic, Stephen J.

    2013-01-01

    Drug resistance associated with dihydrofolate reductase (DHFR) has emerged as a critical issue in the treatment of bacterial infections. In our efforts to understand the mechanism of a drug-resistant dihydrofolate reductase (DHFR) from a pathogenic bacterial source, we report the first kinetic characterization of Streptococcus pneumoniae DHFR (spDHFR) along with its X-ray structure. This study revealed that the kinetic properties of spDHFR were significantly different from E. coli DHFR. The product (tetrahydrofolate) dissociation step that is the rate limiting step in the E. coli DHFR is significantly accelerated in spDHFR so that hydride transfer or a preceding step is rate limiting. Comparison of the binding parameters of this enzyme to a mutant spDHFR (Sp9) confirmed that the Leu100 residue in spDHFR is the critical element for the trimethoprim (TMP) resistance. Steady-state kinetics exhibited a pH dependence in kcat, which prompted us to elucidate the role of the new catalytic residue (His33) in the active site of spDHFR. Structural data of the Sp9 mutant in complex with NADPH and methotrexate confirmed the participation of His33 in a hydrogen bonding network involving a water molecule, the hydroxyl group of Thr119, and carboxylate ion of Glu30. Sequence analysis of the DHFR superfamily revealed that the His residue is the major amino acid component at this position and is found mostly in pathogenic bacterial DHFRs. A mutation of Val100 to Leu demonstrated a steric clash of the leucine side chain with the side chains of Ile8 and Phe34, rationalizing weaker binding of trimethoprim to Leu100 DHFR. Understanding the role of specific amino acids in the active site coupled with detailed structural analysis will inform us on how to better design inhibitors targeting drug resistant pathogenic bacterial DHFRs. PMID:19950924

  18. Analysis of MTHFR, CBS, Glutathione, Taurine, and Hydrogen Sulfide Levels in Retinas of Hyperhomocysteinemic Mice.

    PubMed

    Cui, Xuezhi; Navneet, Soumya; Wang, Jing; Roon, Penny; Chen, Wei; Xian, Ming; Smith, Sylvia B

    2017-04-01

    Hyperhomocysteinemia (Hhcy) is implicated in certain retinal neurovascular diseases, although whether it is causative remains uncertain. In isolated ganglion cells (GCs), mild Hhcy induces profound death, whereas retinal phenotypes in Hhcy mice caused by mutations in remethylation (methylene tetrahydrofolatereductase [Mthfr+/-]) or transsulfuration pathways (cystathionine β-synthase [Cbs+/-]) demonstrate mild GC loss and mild vasculopathy. The current work investigated compensation in vivo of one pathway for the other, and, because the transsulfuration pathway yields cysteine necessary for formation of glutathione (GSH), taurine, and hydrogen sulfide (H2S), they were analyzed also. Retinas isolated from wild-type (WT), Mthfr+/-, and Cbs+/- mice (12 and 22 weeks) were analyzed for methylene tetrahydrofolate reductase (MTHFR), cystathionine-β-synthase (CBS), and cystathionase (CTH) RNA/protein levels. Retinas were evaluated for levels of reduced:oxidized GSH (GSH:GSSG), Slc7a11 (xCT), taurine, taurine transporter (TAUT), and H2S. Aside from decreased CBS RNA/protein levels in Cbs+/- retinas, there were minimal alterations in remethylation/transsulfuration pathways in the two mutant mice strains. Glutathione and taurine levels in Mthfr+/- and Cbs+/- retinas were similar to WT, which may be due to robust levels of xCT and TAUT in mutant retinas. Interestingly, levels of H2S were markedly increased in retinas of Mthfr+/- and Cbs+/- mice compared with WT. Ganglion cell loss and vasculopathy observed in Mthfr+/- and Cbs+/- mouse retinas may be milder than expected, not because of compensatory increases of enzymes in remethylation/transsulfuration pathways, but because downstream transsulfuration pathway products GSH, taurine, and H2S are maintained at robust levels. Elevation of H2S is particularly intriguing owing to neuroprotective properties reported for this gasotransmitter.

  19. Targeted metabolomics and mathematical modeling demonstrate that vitamin B-6 restriction alters one-carbon metabolism in cultured HepG2 cells.

    PubMed

    da Silva, Vanessa R; Ralat, Maria A; Quinlivan, Eoin P; DeRatt, Barbara N; Garrett, Timothy J; Chi, Yueh-Yun; Frederik Nijhout, H; Reed, Michael C; Gregory, Jesse F

    2014-07-01

    Low vitamin B-6 nutritional status is associated with increased risk for cardiovascular disease and certain cancers. Pyridoxal 5'-phosphate (PLP) serves as a coenzyme in many cellular processes, including several reactions in one-carbon (1C) metabolism and the transsulfuration pathway of homocysteine catabolism. To assess the effect of vitamin B-6 deficiency on these processes and associated pathways, we conducted quantitative analysis of 1C metabolites including tetrahydrofolate species in HepG2 cells cultured in various concentrations of pyridoxal. These results were compared with predictions of a mathematical model of 1C metabolism simulating effects of vitamin B-6 deficiency. In cells cultured in vitamin B-6-deficient medium (25 or 35 nmol/l pyridoxal), we observed >200% higher concentrations of betaine (P < 0.05) and creatinine (P < 0.05) and >60% lower concentrations of creatine (P < 0.05) and 5,10-methenyltetrahydrofolate (P < 0.05) compared with cells cultured in medium containing intermediate (65 nmol/l) or the supraphysiological 2,015 nmol/l pyridoxal. Cystathionine, cysteine, glutathione, and cysteinylglycine, which are components of the transsulfuration pathway and subsequent reactions, exhibited greater concentrations at the two lower vitamin B-6 concentrations. Partial least squares discriminant analysis showed differences in overall profiles between cells cultured in 25 and 35 nmol/l pyridoxal vs. those in 65 and 2,015 nmol/l pyridoxal. Mathematical model predictions aligned with analytically derived results. These data reveal pronounced effects of vitamin B-6 deficiency on 1C-related metabolites, including previously unexpected secondary effects on creatine. These results complement metabolomic studies in humans demonstrating extended metabolic effects of vitamin B-6 insufficiency. Copyright © 2014 the American Physiological Society.

  20. Pyruvate Formate Lyase Acts as a Formate Supplier for Metabolic Processes during Anaerobiosis in Staphylococcus aureus▿

    PubMed Central

    Leibig, Martina; Liebeke, Manuel; Mader, Diana; Lalk, Michael; Peschel, Andreas; Götz, Friedrich

    2011-01-01

    Previous studies demonstrated an upregulation of pyruvate formate lyase (Pfl) and NAD-dependent formate dehydrogenase (Fdh) in Staphylococcus aureus biofilms. To investigate their physiological role, we constructed fdh and pfl deletion mutants (Δfdh and Δpfl). Although formate dehydrogenase activity in the fdh mutant was lost, it showed little phenotypic alterations under oxygen-limited conditions. In contrast, the pfl mutant displayed pleiotropic effects and revealed the importance of formate production for anabolic metabolism. In the pfl mutant, no formate was produced, glucose consumption was delayed, and ethanol production was decreased, whereas acetate and lactate production were unaffected. All metabolic alterations could be restored by addition of formate or complementation of the Δpfl mutant. In compensation reactions, serine and threonine were consumed better by the Δpfl mutant than by the wild type, suggesting that their catabolism contributes to the refilling of formyl-tetrahydrofolate, which acts as a donor of formyl groups in, e.g., purine and protein biosynthesis. This notion was supported by reduced production of formylated peptides by the Δpfl mutant compared to that of the parental strain, as demonstrated by weaker formyl-peptide receptor 1 (FPR1)-mediated activation of leukocytes with the mutant. FPR1 stimulation could also be restored either by addition of formate or by complementation of the mutation. Furthermore, arginine consumption and arc operon transcription were increased in the Δpfl mutant. Unlike what occurred with the investigated anaerobic conditions, a biofilm is distinguished by nutrient, oxygen, and pH gradients, and we thus assume that Pfl plays a significant role in the anaerobic layer of a biofilm. Fdh might be critical in (micro)aerobic layers, as formate oxidation is correlated with the generation of NADH/H+, whose regeneration requires respiration. PMID:21169491

  1. The In Vitro Redundant Enzymes PurN and PurT Are Both Essential for Systemic Infection of Mice in Salmonella enterica Serovar Typhimurium

    PubMed Central

    Jelsbak, Lotte; Mortensen, Mie I. B.; Kilstrup, Mogens

    2016-01-01

    Metabolic enzymes show a high degree of redundancy, and for that reason they are generally ignored in searches for novel targets for anti-infective substances. The enzymes PurN and PurT are redundant in vitro in Salmonella enterica serovar Typhimurium, in which they perform the third step of purine synthesis. Surprisingly, the results of the current study demonstrated that single-gene deletions of each of the genes encoding these enzymes caused attenuation (competitive infection indexes [CI] of <0.03) in mouse infections. While the ΔpurT mutant multiplied as fast as the wild-type strain in cultured J774A.1 macrophages, net multiplication of the ΔpurN mutant was reduced approximately 50% in 20 h. The attenuation of the ΔpurT mutant was abolished by simultaneous removal of the enzyme PurU, responsible for the formation of formate, indicating that the attenuation was related to formate accumulation or wasteful consumption of formyl tetrahydrofolate by PurU. In the process of further characterization, we disclosed that the glycine cleavage system (GCV) was the most important for formation of C1 units in vivo (CI = 0.03 ± 0.03). In contrast, GlyA was the only important enzyme for the formation of C1 units in vitro. The results with the ΔgcvT mutant further revealed that formation of serine by SerA and further conversion of serine into C1 units and glycine by GlyA were not sufficient to ensure C1 formation in S. Typhimurium in vivo. The results of the present study call for reinvestigations of the concept of metabolic redundancy in S. Typhimurium in vivo. PMID:27113361

  2. Folate metabolic pathways in Leishmania

    PubMed Central

    Vickers, Tim J.; Beverley, Stephen M.

    2012-01-01

    Trypanosomatid parasitic protozoans of the genus Leishmania are autotrophic for both folate and unconjugated pteridines. Leishmania salvage these metabolites from their mammalian hosts and insect vectors through multiple transporters. Within the parasite, folates are reduced by a bifunctional DHFR (dihydrofolate reductase)-TS (thymidylate synthase) and by a novel PTR1 (pteridine reductase 1), which reduces both folates and unconjugated pteridines. PTR1 can act as a metabolic bypass of DHFR inhibition, reducing the effectiveness of existing antifolate drugs. Leishmania possess a reduced set of folate-dependent metabolic reactions and can salvage many of the key products of folate metabolism from their hosts. For example, they lack purine synthesis, which normally requires 10-formyltetrahydrofolate, and instead rely on a network of purine salvage enzymes. Leishmania elaborate at least three pathways for the synthesis of the key metabolite 5,10-methylene-tetrahydrofolate, required for the synthesis of thymidylate, and for 10-formyltetrahydrofolate, whose presumptive function is for methionyl-tRNAMet formylation required for mitochondrial protein synthesis. Genetic studies have shown that the synthesis of methionine using 5-methyltetrahydrofolate is dispensable, as is the activity of the glycine cleavage complex, probably due to redundancy with serine hydroxymethyltransferase. Although not always essential, the loss of several folate metabolic enzymes results in attenuation or loss of virulence in animal models, and a null DHFR-TS mutant has been used to induce protective immunity. The folate metabolic pathway provides numerous opportunities for targeted chemotherapy, with strong potential for ‘repurposing’ of compounds developed originally for treatment of human cancers or other infectious agents. PMID:22023442

  3. Nutrigenetics and nutraceuticals: the next wave riding on personalized medicine.

    PubMed

    Subbiah, M T Ravi

    2007-02-01

    The Human Genome Project and subsequent identification of single nucleotide polymorphisms (SNPs) within populations has played a major role in predicting individual response to drugs (pharmacogenetics) leading to the concept of "personalized medicine." Nutritional genomics is a recent off-shoot of this genetic revolution that includes (1) nutrigenomics: the study of interaction of dietary components with the genome and the resulting proteonomic and metabolomic changes; and (2) nutrigenetics: understanding the gene-based differences in response to dietary components and developing nutraceuticals that are most compatible with health based on individual genetic makeup. Despite the extensive data on genetic polymorphisms in humans, its translation into medical practice has been slow because of the time required to accumulate population data on SNP incidence, understand the significance of a given SNP in disease, and develop suitable diagnostic tests. Nutrigenomics revitalized the field by showing that nutrients and botanicals can interact with the genome and modify subsequent gene expression, which has provided a great impetus for nutrigenetic research and nutraceutical development based on nutrigenetics. Polymorphisms in methlyene tetrahydrofolate reductase (MTHFR) (involved in folate metabolism), apolipoprotein E (Apo E) and ApoA1 (in cardiovascular disease), and leptin/leptin receptor (obesity) genes are some good examples for understanding basic nutrigenetics. Developing nutraceuticals to prevent and manage thrombosis risk in women with thrombophilic gene mutations are discussed in the context of the opportunities that exist at the nutrigenetic/pharmacogenetic interphase leading to "personalized nutrition." Further research on individual differences in genetic profiles and nutrient requirements will help establish nutrigenetics as an essential discipline for nutrition and dietetics practice.

  4. Customized nutritional enhancement for pregnant women appears to lower incidence of certain common maternal and neonatal complications: an observational study.

    PubMed

    Stone, Leslie P; Stone, P Michael; Rydbom, Emily A; Stone, Lucas A; Stone, T Elliot; Wilkens, Lindsey E; Reynolds, Kathryn

    2014-11-01

    A retrospective chart review analyzed the effect of customized nutrition on the incidence of pregnancy-induced hypertension (PIH), gestational diabetes (GDM), and small- and large-for-gestational-age (SGA, LGA) neonates, examining consecutive deliveries between January 1, 2011, and Decem ber 31, 2012, at a low-risk community hospital. The population was divided into 3 groups: (1) study group (SG), (2) private practice (PP), and (3) community healthcare clinic (CHCC). All groups received standard perinatal management, but additionally the study group was analyzed for serum zinc, carnitine, total 25-hydroxy cholecalciferol (25 OH-D), methylene tetrahydrofolate reductase, and catechol-O-methyl transferase polymorphisms in the first trimester prior to intervention, with subsequent second trimester and postpartum assessment of zinc, carnitine, and 25 OH-D after intervention. Intervention consisted of trimesterby-trimester nutrition and lifestyle education, supplementation of L-methyl folate, magnesium, essential fatty acids, and probiotics for all SG patients, with targeted supplementation of zinc, carnitine, and 25 OH-D. Because of small case occurrence rates of individual conditions in the study group, unreportable reductions were found, except GDM (SG vs CHCC, P value .046 with 95.38% confidence interval [CI]), and PIH (SG vs PP, P value .0505 with 94.95% CIl). The aggregated occurrence rate of the four conditions, however, was significantly lower in the study population than in either comparison population (PP P value .0154 with 98.46% CI, and CHCC P value .0265 with 97.35% CI). Customized nutritional intervention appears to have significantly reduced adverse perinatal outcomes. Prospective study within larger, at-risk populations is needed to determine whether customized nutrition improves conditions individually.

  5. Supplementation with B vitamins or n-3 fatty acids and depressive symptoms in cardiovascular disease survivors: ancillary findings from the SUpplementation with FOLate, vitamins B-6 and B-12 and/or OMega-3 fatty acids (SU.FOL.OM3) randomized trial.

    PubMed

    Andreeva, Valentina A; Galan, Pilar; Torrès, Marion; Julia, Chantal; Hercberg, Serge; Kesse-Guyot, Emmanuelle

    2012-07-01

    Dietary factors might affect depressive symptoms. In secondary data analyses, we examined effects of supplementation with B vitamins or n-3 (omega-3) fatty acids on depressive symptoms in cardiovascular disease survivors. The SUpplementation with FOLate, vitamins B-6 and B-12 and/or OMega-3 fatty acids (SU.FOL.OM3) trial was a secondary prevention trial (2003-2009; n = 2501) in which individuals aged 45-80 y were randomly assigned, by using a 2 × 2 factorial design, to receive 0.56 mg 5-methyl-tetrahydrofolate and vitamins B-6 (3 mg) and B-12 (0.02 mg); EPA and DHA (600 mg) in a 2:1 ratio; B vitamins and n-3 fatty acids; or a placebo. Depressive symptoms were evaluated at years 3 and 5 with the 30-item Geriatric Depression Scale (GDS). Overall and sex-specific ORs and 95% CIs were estimated in 2000 participants by using factorial logistic regression. After a median of 4.7 y of supplementation, there was no association between allocation to receive B vitamins and depressive symptoms. However, the allocation to receive n-3 fatty acids was positively associated with depressive symptoms (GDS >10) in men (adjusted OR: 1.28; 95% CI: 1.03, 1.61) but not in women. We showed no beneficial effects of a long-term, low-dose supplementation with B vitamins or n-3 fatty acids on depressive symptoms in cardiovascular disease survivors. The adverse effects of n-3 fatty acids in men merit confirmation.

  6. Structures of dimethylsulfoniopropionate-dependent demethylase from the marine organism Pelagabacter ubique

    SciTech Connect

    Schuller, David J.; Reisch, Chris R.; Moran, Mary Ann; Whitman, William B.; Lanzilotta, William N.

    2012-01-20

    Dimethylsulfoniopropionate (DMSP) is a ubiquitous algal metabolite and common carbon and sulfur source for marine bacteria. DMSP is a precursor for the climatically active gas dimethylsulfide that is readily oxidized to sulfate, sulfur dioxide, methanesulfonic acid, and other products that act as cloud condensation nuclei. Although the environmental importance of DMSP metabolism has been known for some time, the enzyme responsible for DMSP demethylation by marine bacterioplankton, dimethylsufoniopropionate-dependent demethylase A (DmdA, EC 2.1.1.B5), has only recently been identified and biochemically characterized. In this work, we report the structure for the apoenzyme DmdA from Pelagibacter ubique (2.1 {angstrom}), as well as for DmdA co-crystals soaked with substrate DMSP (1.6 {angstrom}) or the cofactor tetrahydrofolate (THF) (1.6 {angstrom}). Surprisingly, the overall fold of the DmdA is not similar to other enzymes that typically utilize the reduced form of THF and in fact is a triple domain structure similar to what has been observed for the glycine cleavage T protein or sarcosine oxidase. Specifically, while the THF binding fold appears conserved, previous biochemical studies have shown that all enzymes with a similar fold produce 5,10-methylene-THF, while DmdA catalyzes a redox-neutral methyl transfer reaction to produce 5-methyl-THF. On the basis of the findings presented herein and the available biochemical data, we outline a mechanism for a redox-neutral methyl transfer reaction that is novel to this conserved THF binding domain.

  7. Riboflavin supplementation to patients with multiple sclerosis does not improve disability status nor is riboflavin supplementation correlated to homocysteine.

    PubMed

    Naghashpour, Mahshid; Majdinasab, Nastaran; Shakerinejad, Ghodratollah; Kouchak, Maryam; Haghighizadeh, Mohammad H; Jarvandi, Farzaneh; Hajinajaf, Saideh

    2013-01-01

    Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system. Riboflavin is involved in myelin formation in nerve cells. Riboflavin is a precursor of flavin adenine D-nucleotide (FAD), which is a coenzyme of methylene tetrahydrofolate reductase (MTHFR), which is an important enzyme for remethylation of homocysteine. Riboflavin supplementation has been shown to affect the serum levels of homocysteine in healthy volunteers. The aim of the present study was to test the effect of riboflavin supplementation on the status and disability of patients with MS and whether this effect could be mediated by serum homocysteine levels. This was a randomized, double-blind, controlled trial in which 29 MS patients with a mean age of 33 were tested with riboflavin, and the placebo group, with a mean age of 31, received either riboflavin supplementation (10 mg) or the placebo daily for six months. Disability, measured by the Expanded Disability Status Scale (EDSS) scores, erythrocyte glutathione reductase activity coefficient (EGRAC), and serum homocysteine levels were measured before and after the study. The mean ± SD of EDSS score was significantly decreased in both groups over the six months of the study (2.3 ± 0.7 vs. 1.6 ± 0.6 for the riboflavin group and 2.8 ± 1.1 vs. 2.3 ± 1.3 for the placebo groups. The comparison across both groups yielded a non-significant change (P = 0.001 and 0.02, respectively). No significant differences were observed between the two groups in terms of EGRAC, riboflavin deficiency levels by EGRAC category, and serum homocysteine levels before and after the study. Riboflavin supplementation (10 mg/day) to patients with MS does not improve disability status. It appears that this effect is not related to serum homocysteine levels.

  8. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization.

    PubMed

    Varman, Arul M; He, Lian; Follenfant, Rhiannon; Wu, Weihua; Wemmer, Sarah; Wrobel, Steven A; Tang, Yinjie J; Singh, Seema

    2016-10-04

    Sphingobium sp. SYK-6 is a soil bacterium boasting a well-studied ligninolytic pathway and the potential for development into a microbial chassis for lignin valorization. An improved understanding of its metabolism will help researchers in the engineering of SYK-6 for the production of value-added chemicals through lignin valorization. We used (13)C-fingerprinting, (13)C metabolic flux analysis ((13)C-MFA), and RNA-sequencing differential expression analysis to uncover the following metabolic traits: (i) SYK-6 prefers alkaline conditions, making it an efficient host for the consolidated bioprocessing of lignin, and it also lacks the ability to metabolize sugars or organic acids; (ii) the CO2 release (i.e., carbon loss) from the ligninolysis-based metabolism of SYK-6 is significantly greater than the CO2 release from the sugar-based metabolism of Escherichia coli; (iii) the vanillin catabolic pathway (which is the converging point of majority of the lignin catabolic pathways) is coupled with the tetrahydrofolate-dependent C1 pathway that is essential for the biosynthesis of serine, histidine, and methionine; (iv) catabolic end products of lignin (pyruvate and oxaloacetate) must enter the tricarboxylic acid (TCA) cycle first and then use phosphoenolpyruvate carboxykinase to initiate gluconeogenesis; and (v) (13)C-MFA together with RNA-sequencing differential expression analysis establishes the vanillin catabolic pathway as the major contributor of NAD(P)H synthesis. Therefore, the vanillin catabolic pathway is essential for SYK-6 to obtain sufficient reducing equivalents for its healthy growth; cosubstrate experiments support this finding. This unique energy feature of SYK-6 is particularly interesting because most heterotrophs rely on the transhydrogenase, the TCA cycle, and the oxidative pentose phosphate pathway to obtain NADPH.

  9. A deep vein thrombosis caused by 20209C>T mutation in homozygosis of the prothrombin gene in a Caucasian patient

    PubMed Central

    Álvarez, Silvia Izquierdo; Ollero, Eva Barrio; Llinares Sanjuan, Francisco Miguel; Martínez, Fabiola Lorente; Calvo Martín, María Teresa

    2014-01-01

    Introduction: Additional nucleotide substitutions in the 3′-untranslated region of prothrombin gene could explain some thrombotic events and also adverse pregnancy outcomes. We describe the first case of a homozygous 20209C>T mutation as the cause of deep vein thrombosis in a Spanish patient. Case and methods: The 56-year-old male patient with a partial tear of the Achilles tendon developed calf (tibial) deep vein thrombosis after immobilization and was treated with an anticoagulant. To determine if the deep vein thrombosis was of genetic origin, a peripheral blood DNA sample was analysed for the presence of the three most frequent mutations associated with thrombotic events: factor V Leiden (1691G>A), prothrombin (20210G>A) and methylene tetrahydrofolate reductase (677C>T). The presence or absence of the normal allele of prothrombin could not be determined using the PTH-FV-MTHFR StripAssay (Vienna Lab). Results: Comprehensive analysis showed that the patient had a variant interfering with the polymerase chain reaction product, we sequenced the entire prothrombin gene and found that the patient had a homozygous C>T mutation at position 20209; this interfered with the polymerase chain reaction product, which needs a C at this position to be able to bind to the wild-type probe present in the test strip. Conclusion: The homozygous 20209C>T mutation and the presence of the mutation 677C>T in heterozygosity explained the patient’s deep vein thrombosis because the combination of mutations would increase the risk of thrombosis. Suitable genetic counselling should be provided to the patient and first-degree relatives as it important to detect prothrombin gene variants that could increase risk for thrombotic events. PMID:24627725

  10. The structure of Plasmodium falciparum serine hydroxymethyltransferase reveals a novel redox switch that regulates its activities

    SciTech Connect

    Chitnumsub, Penchit Ittarat, Wanwipa; Jaruwat, Aritsara; Noytanom, Krittikar; Amornwatcharapong, Watcharee; Pornthanakasem, Wichai; Chaiyen, Pimchai; Yuthavong, Yongyuth; Leartsakulpanich, Ubolsree

    2014-06-01

    The crystal structure of P. falciparum SHMT revealed snapshots of an intriguing disulfide/sulfhydryl switch controlling the functional activity. Plasmodium falciparum serine hydroxymethyltransferase (PfSHMT), an enzyme in the dTMP synthesis cycle, is an antimalarial target because inhibition of its expression or function has been shown to be lethal to the parasite. As the wild-type enzyme could not be crystallized, protein engineering of residues on the surface was carried out. The surface-engineered mutant PfSHMT-F292E was successfully crystallized and its structure was determined at 3 Å resolution. The PfSHMT-F292E structure is a good representation of PfSHMT as this variant revealed biochemical properties similar to those of the wild type. Although the overall structure of PfSHMT is similar to those of other SHMTs, unique features including the presence of two loops and a distinctive cysteine pair formed by Cys125 and Cys364 in the tetrahydrofolate (THF) substrate binding pocket were identified. These structural characteristics have never been reported in other SHMTs. Biochemical characterization and mutation analysis of these two residues confirm that they act as a disulfide/sulfhydryl switch to regulate the THF-dependent catalytic function of the enzyme. This redox switch is not present in the human enzyme, in which the cysteine pair is absent. The data reported here can be further exploited as a new strategy to specifically disrupt the activity of the parasite enzyme without interfering with the function of the human enzyme.

  11. Methanol Assimilation in Methylobacterium extorquens AM1: Demonstration of All Enzymes and Their Regulation

    PubMed Central

    Šmejkalová, Hana; Erb, Tobias J.; Fuchs, Georg

    2010-01-01

    Background Methylobacterium extorquens AM1 is an aerobic facultative methylotrophic α-proteobacterium that can use reduced one-carbon compounds such as methanol, but also multi-carbon substrates like acetate (C2) or succinate (C4) as sole carbon and energy source. The organism has gained interest as future biotechnological production platform based on methanol as feedstock. Methodology/Principal Findings We present a comprehensive study of all postulated enzymes for the assimilation of methanol and their regulation in response to the carbon source. Formaldehyde, which is derived from methanol oxidation, is assimilated via the serine cycle, which starts with glyoxylate and forms acetyl-CoA. Acetyl-CoA is assimilated via the proposed ethylmalonyl-CoA pathway, which thereby regenerates glyoxylate. To further the understanding of the central carbon metabolism we identified and quantified all enzymes of the pathways involved in methanol assimilation. We observed a strict differential regulation of their activity level depending on whether C1, C2 or C4 compounds are used. The enzymes, which are specifically required for the utilization of the individual substrates, were several-fold up-regulated and those not required were down-regulated. The enzymes of the ethylmalonyl-CoA pathway showed specific activities, which were higher than the calculated minimal values that can account for the observed growth rate. Yet, some enzymes of the serine cycle, notably its first and last enzymes serine hydroxymethyl transferase and malate thiokinase, exhibit much lower values and probably are rate limiting during methylotrophic growth. We identified the natural C1 carrying coenzyme as tetrahydropteroyl-tetraglutamate rather than tetrahydrofolate. Conclusion/Significance This study provides the first complete picture of the enzymes required for methanol assimilation, the regulation of their activity levels in response to the growth substrate, and the identification of potential growth

  12. Methyl Vitamin B12 but not methylfolate rescues a motor neuron-like cell line from homocysteine-mediated cell death

    SciTech Connect

    Hemendinger, Richelle A. Armstrong, Edward J.; Brooks, Benjamin Rix

    2011-03-15

    Homocysteine is an excitatory amino acid implicated in multiple diseases including amyotrophic lateral sclerosis (ALS). Information on the toxicity of homocysteine in motor neurons is limited and few studies have examined how this toxicity can be modulated. In NSC-34D cells (a hybrid cell line derived from motor neuron-neuroblastoma), homocysteine induces apoptotic cell death in the millimolar range with a TC{sub 50} (toxic concentration at which 50% of maximal cell death is achieved) of 2.2 mM, confirmed by activation of caspase 3/7. Induction of apoptosis was independent of short-term reactive oxygen species (ROS) generation. Methyl Vitamin B12 (MeCbl) and methyl tetrahydrofolate (MTHF), used clinically to treat elevated homocysteine levels, were tested for their ability to reverse homocysteine-mediated motor neuron cell death. MeCbl in the micromolar range was able to provide neuroprotection (2 h pretreatment prior to homocysteine) and neurorescue (simultaneous exposure with homocysteine) against millimolar homocysteine with an IC{sub 50} (concentration at which 50% of maximal cell death is inhibited) of 0.6 {mu}M and 0.4 {mu}M, respectively. In contrast, MTHF (up to 10 {mu}M) had no effect on homocysteine-mediated cell death. MeCbl inhibited caspase 3/7 activation by homocysteine in a time- and dose-dependent manner, whereas MTHF had no effect. We conclude that MeCbl is effective against homocysteine-induced cell death in motor neurons in a ROS-independent manner, via a reduction in caspase activation and apoptosis. MeCbl decreases Hcy induced motor neuron death in vitro in a hybrid cell line derived from motor neuron-neuroblastoma and may play a role in the treatment of late stage ALS where HCy levels are increased in animal models of ALS.

  13. Cloning, expression, and characterization of a four-component O-demethylase from human intestinal bacterium Eubacterium limosum ZL-II.

    PubMed

    Chen, Jia-Xing; Deng, Chao-Yin; Zhang, Ying-Tao; Liu, Zhen-Ming; Wang, Ping-Zhang; Liu, Shu-Lin; Qian, Wei; Yang, Dong-Hui

    2016-11-01

    Eubacterium limosum ZL-II was described to convert secoisolariciresinol (SECO) to its demethylating product 4,4'-dihydroxyenterodiol (DHEND) under anoxic conditions. However, the reaction cascade remains unclear. Here, the O-demethylase being responsible for the conversion was identified and characterized. Nine genes encoding two methyltransferase-Is (MT-I), two corrinoid proteins (CP), two methyltransferase-IIs (MT-II), and three activating enzymes (AE) were screened, cloned, and expressed in Escherichia coli. Four of the nine predicted enzymes, including ELI_2003 (MT-I), ELI_2004 (CP), ELI_2005 (MT-II), and ELI_0370 (AE), were confirmed to constitute the O-demethylase in E. limosum ZL-II. The complete O-demethylase (combining the four components) reaction system was reconstructed in vitro. As expected, the demethylating products 3-demethyl-SECO and DHEND were both produced. During the reaction process, ELI_2003 (MT-I) initially catalyzed the transfer of methyl group from SECO to the corrinoid of ELI_2004 ([Co(I)]-CP), yielding demethylating products and [CH3-Co(III)]-CP; then ELI_2005 (MT-II) mediated the transfer of methyl group from [CH3-Co(III)]-CP to tetrahydrofolate, forming methyltetrahydrofolate and [Co(I)]-CP. Due to the low redox potential of [Co(II)]/[Co(I)], [Co(I)]-CP was oxidized to [Co(II)]-CP immediately in vitro, and ELI_0370 (AE) was responsible for catalyzing the reduction of [Co(II)]-CP to its active form [Co(I)]-CP. The active-site residues in ELI_2003, ELI_2005, and ELI_0370 were subsequently determined using molecular modeling combined with site-directed mutagenesis. To our knowledge, this is the first study on the identification and characterization of a four-component O-demethylase from E. limosum ZL-II, which will facilitate the development of method to artificial synthesis of related bioactive chemicals.

  14. Pivotal role of dihydrofolate reductase knockdown in the anticancer activity of 2-hydroxyoleic acid

    PubMed Central

    Lladó, Victoria; Terés, Silvia; Higuera, Mónica; Álvarez, Rafael; Noguera-Salva, Maria Antònia; Halver, John E.; Escribá, Pablo V.; Busquets, Xavier

    2009-01-01

    α-Hydroxy-9-cis-octadecenoic acid, a synthetic fatty acid that modifies the composition and structure of lipid membranes. 2-Hydroxyoleic acid (HOA) generated interest due to its potent, yet nontoxic, anticancer activity. It induces cell cycle arrest in human lung cancer (A549) cells and apoptosis in human leukemia (Jurkat) cells. These two pathways may explain how HOA induces regression of a variety of cancers. We showed that HOA repressed the expression of dihydrofolate reductase (DHFR), the enzyme responsible for tetrahydrofolate (THF) synthesis. Folinic acid, which readily produces THF without the participation of DHFR, reverses the antitumor effects of HOA in A549 and Jurkat cells, as well as the inhibitory influence on cyclin D and cdk2 in A549 cells, and on DNA and PARP degradation in Jurkat cells. This effect was very specific, because either elaidic acid (an analog of HOA) or other lipids, failed to alter A549 or Jurkat cell growth. THF is a cofactor necessary for DNA synthesis. Thus, impairment of DNA synthesis appears to be a common mechanism involved in the different responses elicited by cancer cells following treatment with HOA, namely cell cycle arrest or apoptosis. Compared with other antifolates, such as methotrexate, HOA did not directly inhibit DHFR but rather, it repressed its expression, a mode of action that offers certain therapeutic advantages. These results not only demonstrate the effect of a fatty acid on the expression of DHFR, but also emphasize the potential of HOA to be used as a wide-spectrum drug against cancer. PMID:19666584

  15. APC gene methylation is inversely correlated with features of the CpG island methylator phenotype in colorectal cancer.

    PubMed

    Iacopetta, Barry; Grieu, Fabienne; Li, Wei; Ruszkiewicz, Andrew; Caruso, Maria; Moore, James; Watanabe, Goh; Kawakami, Kazuyuki

    2006-11-15

    The notion of a CpG island methylator phenotype (CIMP) was proposed to describe a subset of colorectal cancers (CRC) displaying frequent and concordant methylation of CpG islands located within gene promoter regions. Some workers have failed to observe associations between CIMP and specific clinicopathological features of CRC, possibly because of the choice of genes used to define this phenotype. The aim of the current study was to determine whether the aberrant methylation of 6 genes implicated in CRC development was associated with the same phenotypic features of this tumour type. The MethyLight assay was used to provide quantitative estimates of MLH1, P16, TIMP3, P14, DAPK and APC methylation levels in 199 unselected colorectal tumours. The methylation of MLH1, P16, TIMP3 and P14 was highly concordant (p < 0.0001 for each pair) but that of DAPK and APC was not. An inverse association was observed between the methylation of APC and TIMP3 (p = 0.004). Methylation of the MLH1, P16, TIMP3 and P14 genes was associated with tumour infiltrating lymphocytes (p < 0.05), microsatellite instability (p < 0.001), BRAF mutation (p < 0.0001) and elevated concentrations of the methyl group carriers tetrahydrofolate (THF) and 5,10-methylene THF (p < 0.05). In contrast, APC methylation was associated with wildtype BRAF (p = 0.003) and with lower concentrations of methyl group carriers (p < 0.05). These findings highlight the importance of gene selection in studies that aim to characterize the biological features and clinical behaviour of CIMP+ tumours.

  16. Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum

    PubMed Central

    2012-01-01

    Background Thermacetogenium phaeum is a thermophilic strictly anaerobic bacterium oxidizing acetate to CO2 in syntrophic association with a methanogenic partner. It can also grow in pure culture, e.g., by fermentation of methanol to acetate. The key enzymes of homoacetate fermentation (Wood-Ljungdahl pathway) are used both in acetate oxidation and acetate formation. The obvious reversibility of this pathway in this organism is of specific interest since syntrophic acetate oxidation operates close to the energetic limitations of microbial life. Results The genome of Th. phaeum is organized on a single circular chromosome and has a total size of 2,939,057 bp. It comprises 3.215 open reading frames of which 75% could be assigned to a gene function. The G+C content is 53.88 mol%. Many CRISPR sequences were found, indicating heavy phage attack in the past. A complete gene set for a phage was found in the genome, and indications of phage action could also be observed in culture. The genome contained all genes required for CO2 reduction through the Wood-Ljungdahl pathway, including two formyl tetrahydrofolate ligases, three carbon monoxide dehydrogenases, one formate hydrogenlyase complex, three further formate dehydrogenases, and three further hydrogenases. The bacterium contains a menaquinone MQ-7. No indications of cytochromes or Rnf complexes could be found in the genome. Conclusions The information obtained from the genome sequence indicates that Th. phaeum differs basically from the three homoacetogenic bacteria sequenced so far, i.e., the sodium ion-dependent Acetobacterium woodii, the ethanol-producing Clostridium ljungdahlii, and the cytochrome-containing Moorella thermoacetica. The specific enzyme outfit of Th. phaeum obviously allows ATP formation both in acetate formation and acetate oxidation. PMID:23259483

  17. Enzymes of serine and glycine metabolism in leaves and non-photosynthetic tissues of Pisum sativum L.

    PubMed

    Walton, N J; Woolhouse, H W

    1986-01-01

    A comparative study is presented of the activities of enzymes of glycine and serine metabolism in leaves, germinated cotyledons and root apices of pea (Pisum sativum L.). Data are given for aminotransferase activities with glyoxylate, hydroxypyruvate and pyruvate, for enzymes associated with serine synthesis from 3-phosphoglycerate and for glycine decarboxylase and serine hydroxymethyltransferase. Aminotransferase activities differ between the tissues in that, firstly, appreciable transamination of serine, hydroxypyruvate and asparagine occurs only in leaf extracts and, secondly, glyoxylate is transaminated more actively than pyruvate in leaf extracts, whereas the converse is true of extracts of cotyledons and root apices. Alanine is the most active amino-group donor to both glyoxylate and hydroxypyruvate. 3-Phosphoglycerate dehydrogenase and glutamate: O-phosphohydroxypyruvate aminotransferase have comparable activities in all three tissues, except germinated cotyledons, in which the aminotransferase appears to be undetectable. Glycollate oxidase is virtually undetectable in the non-photosynthetic tissues and in these tissues the activity of glycerate dehydrogenase is much lower than that of 3-phosphoglycerate dehydrogenase. Glycine decarboxylase activity in leaves, measured in the presence of oxaloacetate, is equal to about 30-40% of the measured rate of CO2 fixation and is therefore adequate to account for the expected rate of photorespiration. The activity of glycine decarboxylase in the non-photosynthetic tissues is calculated to be about 2-5% of the activity in leaves and has the characteristics of a pyridoxal-and tetrahydrofolate-dependent mitochondrial reaction; it is stimulated by oxaloacetate, although not by ADP. In leaves, the measured activity of serine hydroxymethyltransferase is somewhat lower than that of glycine decarboxylase, whereas in root apices it is substantially higher. Differential centrifugation of extracts of root apices suggests that an

  18. Arabidopsis Plastidial Folylpolyglutamate Synthetase Is Required for Seed Reserve Accumulation and Seedling Establishment in Darkness

    PubMed Central

    Meng, Hongyan; Jiang, Ling; Xu, Bosi; Guo, Wenzhu; Li, Jinglai; Zhu, Xiuqing; Qi, Xiaoquan; Duan, Lixin; Meng, Xianbin; Fan, Yunliu; Zhang, Chunyi

    2014-01-01

    Interactions among metabolic pathways are important in plant biology. At present, not much is known about how folate metabolism affects other metabolic pathways in plants. Here we report a T-DNA insertion mutant (atdfb-3) of the plastidial folylpolyglutamate synthetase gene (AtDFB) was defective in seed reserves and skotomorphogenesis. Lower carbon (C) and higher nitrogen (N) content in the mutant seeds than that of the wild type were indicative of an altered C and N partitioning capacity. Higher levels of organic acids and sugars were detected in the mutant seeds compared with the wild type. Further analysis revealed that atdfb-3 seeds contained less total amino acids and individual Asn and Glu as well as NO3−. These results indicate significant changes in seed storage in the mutant. Defects in hypocotyl elongation were observed in atdfb-3 in darkness under sufficient NO3− conditions, and further enhanced under NO3− limited conditions. The strong expression of AtDFB in cotyledons and hypocotyl during early developmental stage was consistent with the mutant sensitivity to limited NO3− during a narrow developmental window. Exogenous 5-formyl-tetrahydrofolate completely restored the hypocotyl length in atdfb-3 seedlings with NO3− as the sole N source. Further study demonstrated that folate profiling and N metabolism were perturbed in atdfb-3 etiolated seedlings. The activity of enzymes involved in N reduction and assimilation was altered in atdfb-3. Taken together, these results indicate that AtDFB is required for seed reserves, hypocotyl elongation and N metabolism in darkness, providing novel insights into potential associations of folate metabolism with seed reserve accumulation, N metabolism and hypocotyl development in Arabidopsis. PMID:25000295

  19. Arabidopsis plastidial folylpolyglutamate synthetase is required for seed reserve accumulation and seedling establishment in darkness.

    PubMed

    Meng, Hongyan; Jiang, Ling; Xu, Bosi; Guo, Wenzhu; Li, Jinglai; Zhu, Xiuqing; Qi, Xiaoquan; Duan, Lixin; Meng, Xianbin; Fan, Yunliu; Zhang, Chunyi

    2014-01-01

    Interactions among metabolic pathways are important in plant biology. At present, not much is known about how folate metabolism affects other metabolic pathways in plants. Here we report a T-DNA insertion mutant (atdfb-3) of the plastidial folylpolyglutamate synthetase gene (AtDFB) was defective in seed reserves and skotomorphogenesis. Lower carbon (C) and higher nitrogen (N) content in the mutant seeds than that of the wild type were indicative of an altered C and N partitioning capacity. Higher levels of organic acids and sugars were detected in the mutant seeds compared with the wild type. Further analysis revealed that atdfb-3 seeds contained less total amino acids and individual Asn and Glu as well as NO3-. These results indicate significant changes in seed storage in the mutant. Defects in hypocotyl elongation were observed in atdfb-3 in darkness under sufficient NO3- conditions, and further enhanced under NO3- limited conditions. The strong expression of AtDFB in cotyledons and hypocotyl during early developmental stage was consistent with the mutant sensitivity to limited NO3- during a narrow developmental window. Exogenous 5-formyl-tetrahydrofolate completely restored the hypocotyl length in atdfb-3 seedlings with NO3- as the sole N source. Further study demonstrated that folate profiling and N metabolism were perturbed in atdfb-3 etiolated seedlings. The activity of enzymes involved in N reduction and assimilation was altered in atdfb-3. Taken together, these results indicate that AtDFB is required for seed reserves, hypocotyl elongation and N metabolism in darkness, providing novel insights into potential associations of folate metabolism with seed reserve accumulation, N metabolism and hypocotyl development in Arabidopsis.

  20. Effects on growth, antioxidant enzyme activity and levels of extracellular proteins in the green alga Chlorella vulgaris exposed to crude cyanobacterial extracts and pure microcystin and cylindrospermopsin.

    PubMed

    Campos, Alexandre; Araújo, Pedro; Pinheiro, Carlos; Azevedo, Joana; Osório, Hugo; Vasconcelos, Vitor

    2013-08-01

    Toxic cyanobacteria and cyanotoxins have been pointed as important players in the control of phytoplankton diversity and species abundance, causing ecological unbalances and contamination of the environment. In vitro experiments have been undertaken to address the impact of toxic cyanobacteria in green algae. In this regard the aim of this work was to compare the toxicity of two cyanobacteria species, Aphanizomenon ovalisporum and Microcystis aeruginosa, to the green alga Chlorella vulgaris by assessing culture growth when exposed for three and seven days to (I) cyanobacterial cell extracts and (II) pure toxins microcystin-LR (MC-LR) and cylindrospermopsin (CYN). The biochemical response of the green alga to pure toxins was also characterized, through the activity of the antioxidant markers glutathione S-transferase (GST) and glutathione peroxidase (GPx) and the expressed extracellular proteins in seven-day exposed cultures. A. ovalisporum crude extracts were toxic to C. vulgaris. Pure toxins up to 179.0 µg/L, on the other hand, stimulated the green alga growth. Growth results suggest that the toxicity of A. ovalisporum extracts is likely due to a synergistic action of CYN and other metabolites produced by the cyanobacterium. Regarding the green alga antioxidant defense mechanism, CYN at 18.4 and 179.0 µg/L increased the activity of GPx and GST while MC-LR inhibited the enzymes' activity at a concentration of 179.0 µg/L demonstrating a contrasting mode of action. Moreover the identification of F-ATPase subunit, adenylate cyclase, sulfate ABC transporter, putative porin, aspartate aminotransferase, methylene-tetrahydrofolate dehydrogenase and chlorophyll a binding proteins in the culture medium of C. vulgaris indicates that biochemical processes involved in the transport of metabolites, photosynthesis and amino acid metabolism are affected by cyanobacterial toxins and may contribute to the regulation of green alga growth. Copyright © 2013 Elsevier Inc. All

  1. Physiology and nutrition of Treponema primitia, an H2/CO2-acetogenic spirochete from termite hindguts.

    PubMed

    Graber, Joseph R; Breznak, John A

    2004-03-01

    Treponema primitia strains ZAS-1 and ZAS-2, the first spirochetes to be isolated from termite hindguts (J. R. Leadbetter, T. M. Schmidt, J. R. Graber, and J. A. Breznak, Science 283:686-689, 1999), were examined for nutritional, physiological, and biochemical properties relevant to growth and survival in their natural habitat. In addition to using H(2) plus CO(2) as substrates, these strains were capable of homoacetogenic growth on mono- and disaccharides and (in the case of ZAS-2) methoxylated benzenoids. Cells were also capable of mixotrophic growth (i.e., simultaneous utilization of H(2) and organic substrates). Cell extracts of T. primitia possessed enzyme activities of the Wood/Ljungdahl (acetyl coenzyme A) pathway of acetogenesis, including tetrahydrofolate-dependent enzymes of the methyl group-forming branch. However, a folate compound was required in the medium for growth. ZAS-1 and ZAS-2 growing on H(2) plus CO(2) displayed H(2) thresholds of 650 and 490 ppmv, respectively. Anoxic cultures of ZAS-1 and ZAS-2 maintained growth after the addition of as much as 0.5% (vol/vol) O(2) to the headspace atmosphere. Cell extracts exhibited NADH and NADPH peroxidase and NADH oxidase activities but neither catalase nor superoxide dismutase activity. Results indicate that (i) T. primitia is able to exploit a variety of substrates derived from the food of its termite hosts and in so doing contributes to termite nutrition via acetogenesis, (ii) in situ growth of T. primitia is likely dependent on secretion of a folate compound(s) by other members of the gut microbiota, and (iii) cells possess enzymatic adaptations to oxidative stress, which is likely to be encountered in peripheral regions of the termite hindgut.

  2. Proteome Analysis of Streptococcus thermophilus Grown in Milk Reveals Pyruvate Formate-Lyase as the Major Upregulated Protein

    PubMed Central

    Derzelle, Sylviane; Bolotin, Alexander; Mistou, Michel-Yves; Rul, Françoise

    2005-01-01

    We investigated the adaptation to milk of Streptococcus thermophilus LMG18311 using a proteomic approach. Two-dimensional electrophoresis of cytosolic proteins were performed after growth in M17 medium or in milk. A major modification of the proteome concerned proteins involved in the supply of amino acids, like the peptidase PepX, and several enzymes involved in amino acid biosynthesis. In parallel, we observed the upregulation of the synthesis of seven enzymes directly involved in the synthesis of purines, as well as formyl-tetrahydrofolate (THF) synthetase and serine hydroxy-methyl transferase, two enzymes responsible for the synthesis of compounds (THF and glycine, respectively) feeding the purine biosynthetic pathway. The analysis also revealed a massive increase in the synthesis of pyruvate formate-lyase (PFL), the enzyme which converts pyruvate into acetyl coenzyme A and formate. PFL has been essentially studied for its role in mixed-acid product formation in lactic acid bacteria during anaerobic fermentation. However, formate is an important methyl group donor for anabolic pathway through the formation of folate derivates. We hypothesized that PFL was involved in purine biosynthesis during growth in milk. We showed that PFL expression was regulated at the transcriptional level and that pfl transcription occurred during the exponential growth phase in milk. The complementation of milk with formate or purine bases was shown to reduce pfl expression, to suppress PFL synthesis, and to stimulate growth of S. thermophilus. These results show a novel regulatory mechanism controlling the synthesis of PFL and suggest an unrecognized physiological role for PFL as a formate supplier for anabolic purposes. PMID:16332852

  3. The In Vitro Redundant Enzymes PurN and PurT Are Both Essential for Systemic Infection of Mice in Salmonella enterica Serovar Typhimurium.

    PubMed

    Jelsbak, Lotte; Mortensen, Mie I B; Kilstrup, Mogens; Olsen, John E

    2016-07-01

    Metabolic enzymes show a high degree of redundancy, and for that reason they are generally ignored in searches for novel targets for anti-infective substances. The enzymes PurN and PurT are redundant in vitro in Salmonella enterica serovar Typhimurium, in which they perform the third step of purine synthesis. Surprisingly, the results of the current study demonstrated that single-gene deletions of each of the genes encoding these enzymes caused attenuation (competitive infection indexes [CI] of <0.03) in mouse infections. While the ΔpurT mutant multiplied as fast as the wild-type strain in cultured J774A.1 macrophages, net multiplication of the ΔpurN mutant was reduced approximately 50% in 20 h. The attenuation of the ΔpurT mutant was abolished by simultaneous removal of the enzyme PurU, responsible for the formation of formate, indicating that the attenuation was related to formate accumulation or wasteful consumption of formyl tetrahydrofolate by PurU. In the process of further characterization, we disclosed that the glycine cleavage system (GCV) was the most important for formation of C1 units in vivo (CI = 0.03 ± 0.03). In contrast, GlyA was the only important enzyme for the formation of C1 units in vitro The results with the ΔgcvT mutant further revealed that formation of serine by SerA and further conversion of serine into C1 units and glycine by GlyA were not sufficient to ensure C1 formation in S Typhimurium in vivo The results of the present study call for reinvestigations of the concept of metabolic redundancy in S Typhimurium in vivo.

  4. Methyl Vitamin B12 but not methylfolate rescues a motor neuron-like cell line from homocysteine-mediated cell death.

    PubMed

    Hemendinger, Richelle A; Armstrong, Edward J; Brooks, Benjamin Rix

    2011-03-15

    Homocysteine is an excitatory amino acid implicated in multiple diseases including amyotrophic lateral sclerosis (ALS). Information on the toxicity of homocysteine in motor neurons is limited and few studies have examined how this toxicity can be modulated. In NSC-34D cells (a hybrid cell line derived from motor neuron-neuroblastoma), homocysteine induces apoptotic cell death in the millimolar range with a TC₅₀ (toxic concentration at which 50% of maximal cell death is achieved) of 2.2 mM, confirmed by activation of caspase 3/7. Induction of apoptosis was independent of short-term reactive oxygen species (ROS) generation. Methyl Vitamin B12 (MeCbl) and methyl tetrahydrofolate (MTHF), used clinically to treat elevated homocysteine levels, were tested for their ability to reverse homocysteine-mediated motor neuron cell death. MeCbl in the micromolar range was able to provide neuroprotection (2 h pretreatment prior to homocysteine) and neurorescue (simultaneous exposure with homocysteine) against millimolar homocysteine with an IC₅₀ (concentration at which 50% of maximal cell death is inhibited) of 0.6 μM and 0.4 μM, respectively. In contrast, MTHF (up to 10 μM) had no effect on homocysteine-mediated cell death. MeCbl inhibited caspase 3/7 activation by homocysteine in a time- and dose-dependent manner, whereas MTHF had no effect. We conclude that MeCbl is effective against homocysteine-induced cell death in motor neurons in a ROS-independent manner, via a reduction in caspase activation and apoptosis. MeCbl decreases Hcy induced motor neuron death in vitro in a hybrid cell line derived from motor neuron-neuroblastoma and may play a role in the treatment of late stage ALS where HCy levels are increased in animal models of ALS.

  5. Prevalence and Associated Factors of Diabetes and Impaired Fasting Glucose in Chinese Hypertensive Adults Aged 45 to 75 Years

    PubMed Central

    Zhang, Yan; Ma, Wei; Fan, Fangfang; Wang, Binyan; Xing, Houxun; Tang, Genfu; Wang, Xiaobin; Xu, Xin; Xu, Xiping; Huo, Yong

    2012-01-01

    Objective This study examined the prevalence of impaired fasting glucose (IFG) and diabetes and their associated factors in 17,184 Chinese hypertensive adults aged 45–75 years. Methods A cross-sectional investigation was carried out in a rural area of Lianyungang, China. Previously undiagnosed diabetes [fasting plasma glucose (FPG) ≥7.0mmol/l] and IFG (6.1–6.9mmol/l) were defined based on FPG concentration. Previously diagnosed diabetes was determined on the basis of self-report. Total diabetes included both previously diagnosed diabetes and previously undiagnosed diabetes. Results The prevalence of previously diagnosed diabetes, undiagnosed diabetes, and IFG were 3.4%, 9.8%, and 14.1%, respectively. About 74.2% of the participants with diabetes had not previously been diagnosed. In the multivariable logistic-regression model, older age, men, antihypertensive treatment, obesity (BMI ≥25kg/m2), abdominal obesity (waist circumference ≥90cm for men and ≥80cm for women), non-current smoking, a family history of diabetes, higher heart rate, lower physical activity levels, and inland residence (versus coastal) were significantly associated with both total diabetes and previously undiagnosed diabetes. Furthermore, methylene- tetrahydrofolate reductase (MTHFR) 677 TT genotype was an independent associated factor for total diabetes, and current alcohol drinking was an independent associated factor for previously undiagnosed diabetes. At the same time, older age, men, abdominal obesity, non-current smoking, current alcohol drinking, a family history of diabetes, higher heart rate, and inland residence (versus coastal) were important independent associated factors for IFG. Conclusion In conclusion, we found a high prevalence of diabetes in Chinese hypertensive adults. Furthermore, about three out of every four diabetic adults were undiagnosed. Our results suggest that population-level measures aimed at the prevention, identification (even if only based on the FPG

  6. Association of Aberrations in One Carbon Metabolism with Intimal Medial Thickening in Patients with Type 2 Diabetes Mellitus.

    PubMed

    Dhananjayan, R; Malati, T; Rupasree, Y; Kutala, Vijay Kumar

    2015-07-01

    The present work was aimed to study the association of one carbon genetic variants, hyperhomocysteinemia and oxidative stress markers, i.e., serum nitrite, plasma malondialdehyde (MDA) and glutathione (GSH) on intimal medial thickening (IMT) in patients with type 2 diabetes mellitus (T2D). A total number of 76 subjects from ACS Medical College and Hospital, Chennai, India were included in the study, i.e., Group I (n = 42) of T2D and Group II (n = 34) of age- and sex matched healthy controls. The glycated haemoglobin was measured by ion-exchange resin method; plasma homocysteine by Enzyme Linked Immunosorbant Assay method; serum nitrite (nitric oxide, NO), plasma MDA and GSH by spectrophotometric methods; the IMT by high frequency ultrasound. The polymorphisms of one carbon genetic variants were genotyped using polymerase chain reaction-restriction fragment length polymorphism and amplified fragment length polymorphism methods. Results indicate that methyltetrahydrofolate homocysteine methyl transferase (MTR) A2756G allele was found to be protective in T2D and the other variants were not significantly associated with T2D. Glutamate carboxypeptidase II (GCP II) C1561T (r = 0.34; p = 0.05) and methylene tetrahydrofolate reductase (MTHFR) C677T (r = 0.35; 0.04) showed positive correlation with plasma homocysteine in T2D cases. In this study, MTR A2756G allele was found to be protective in T2D; GCP II C1561T and MTHFR C677T showed positive association with plasma homocysteine in T2D cases. Among all the genetic variants, MTR A2756G was found influence IMT. RFC 1 G80A and TYMS 5'-UTR 2R3R showed synergistically interact with MTR A2756G in influencing increase in IMT.

  7. Prevalence of MTHFR C677T and MS A2756G polymorphisms in major depressive disorder, and their impact on response to fluoxetine treatment

    PubMed Central

    Mischoulon, David; Lamon-Fava, Stefania; Selhub, Jacob; Katz, Judith; Papakostas, George I.; Iosifescu, Dan V.; Yeung, Albert S.; Dording, Christina M.; Farabaugh, Amy H.; Clain, Alisabet J.; Baer, Lee; Alpert, Jonathan E.; Nierenberg, Andrew A.; Fava, Maurizio

    2014-01-01

    Objective To examine the prevalence of the C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene and the A2756G polymorphism of methionine synthase (MS), and their impact on antidepressant response. Methods We screened 224 subjects (52% female, mean age 39 ± 11 years) with SCID-diagnosed major depressive disorder (MDD), and obtained 194 genetic samples. 49 subjects (49% female, mean age 36 ± 11 years) participated in a 12-week open clinical trial of fluoxetine 20–60 mg/day. Association between clinical response and C677T and A2756G polymorphisms, folate, B12, and homocysteine was examined. Results Prevalence of the C677T and A2756G polymorphisms was consistent with previous reports (C/C=41%, C/T=47%, T/T=11%, A/A=66%, A/G=29%, G/G=4%). In the fluoxetine-treated subsample (n=49), intent-to-treat (ITT) response rates were 47% for C/C subjects and 46% for pooled C/T and T/T subjects (nonsignificant). ITT response rates were 38% for A/A subjects and 60% for A/G subjects (nonsignificant), with no subjects exhibiting the G/G homozygote. Mean baseline plasma B12 was significantly lower in A/G subjects compared to A/A, but folate and homocysteine levels were not affected by genetic status. Plasma folate was negatively associated with treatment response. Conclusion The C677T and A2756G polymorphisms did not significantly affect antidepressant response. These preliminary findings require replication in larger samples. PMID:22789065

  8. The C677T variant in MTHFR modulates associations between blood-based and cerebrospinal fluid biomarkers of neurodegeneration

    PubMed Central

    Roussotte, Florence F.; Narr, Katherine L.; Small, Gary W.

    2016-01-01

    The C677T functional variant in the methylene-tetrahydrofolate reductase (MTHFR) gene results in reduced enzymatic activity and elevated blood levels of homocysteine. Plasma levels of apolipoprotein E (ApoE) are negatively correlated with cerebral amyloid burden, but plasma homocysteine concentrations are associated with increased amyloid-β (Aβ) deposition in the brain. Here, we sought to determine whether associations between low plasma ApoE levels and elevated in-vivo amyloid burden were modulated by carrying the C677T variant. We tested this hypothesis in a large sample of elderly participants from the Alzheimer’s Disease Neuroimaging Initiative. We used general linear models to examine associations between plasma homocysteine concentrations, circulating ApoE levels, cerebrospinal fluid concentrations of Aβ, and their modulation by MTHFR and ApoE genotype. Age, sex, and dementia status were included as covariates in all analyses. Higher circulating levels of ApoE predicted increased cerebrospinal fluid concentrations of Aβ, indicating lower in-vivo burden, in C-allele carriers, but not in homozygotes at the C677T variant, who showed significant elevations in plasma homocysteine levels. This modulation by the MTHFR genotype did not remain significant after controlling for ApoE genotype. In T-homozygotes who do not carry the ApoE-ε4 allele, the relationship between low plasma ApoE levels and an increased risk of dementia is likely obscured by the presence of elevated plasma homocysteine. This report suggests the value of genotyping patients at the C677T functional variant when using plasma ApoE levels as a preclinical biomarker for Alzheimer’s disease. PMID:27380243

  9. Adaptation of Porphyromonas gingivalis to microaerophilic conditions involves increased consumption of formate and reduced utilization of lactate

    PubMed Central

    Lewis, Janina P.; Iyer, Divya; Anaya-Bergman, Cecilia

    2009-01-01

    Porphyromonas gingivalis, previously classified as a strict anaerobe, can grow in the presence of low concentrations of oxygen. Microarray analysis revealed alteration in gene expression in the presence of 6 % oxygen. During the exponential growth phase, 96 genes were upregulated and 79 genes were downregulated 1.4-fold. Genes encoding proteins that play a role in oxidative stress protection were upregulated, including alkyl hydroperoxide reductase (ahpCF), superoxide dismutase (sod) and thiol peroxidase (tpx). Significant changes in gene expression of proteins that mediate oxidative metabolism, such as cytochrome d ubiquinol oxidase-encoding genes, cydA and cydB, were detected. The expression of genes encoding formate uptake transporter (PG0209) and formate tetrahydrofolate ligase (fhs) was drastically elevated, which indicates that formate metabolism plays a major role under aerobic conditions. The concomitant reduction of expression of a gene encoding the lactate transporter PG1340 suggests decreased utilization of this nutrient. The concentrations of both formate and lactate were assessed in culture supernatants and cells, and they were in agreement with the results obtained at the transcriptional level. Also, genes encoding gingipain protease secretion/maturation regulator (porR) and protease transporter (porT) had reduced expression in the presence of oxygen, which also correlated with reduced protease activities under aerobic conditions. In addition, metal transport was affected, and while iron-uptake genes such as the genes encoding the haemin uptake locus (hmu) were downregulated, expression of manganese transporter genes, such as feoB2, was elevated in the presence of oxygen. Finally, genes encoding putative regulatory proteins such as extracellular function (ECF) sigma factors as well as small proteins had elevated expression levels in the presence of oxygen. As P. gingivalis is distantly related to the well-studied model organism Escherichia coli

  10. Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production.

    PubMed

    Mao, Longfei; Verwoerd, Wynand S

    2013-01-01

    Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production.

  11. Feeding Low or Pharmacological Concentrations of Zinc Oxide Changes the Hepatic Proteome Profiles in Weaned Piglets

    PubMed Central

    Bondzio, Angelika; Pieper, Robert; Gabler, Christoph; Weise, Christoph; Schulze, Petra; Zentek, Juergen; Einspanier, Ralf

    2013-01-01

    Pharmacological levels of zinc oxide can promote growth and health of weaning piglets, but the underlying molecular mechanisms are yet not fully understood. The aim of this study was to determine changes in the global hepatic protein expression in response to dietary zinc oxide in weaned piglets. Nine half-sib piglets were allocated to three dietary zinc treatment groups (50, 150, 2500 mg/kg dry matter). After 14 d, pigs were euthanized and liver samples taken. The increase in hepatic zinc concentration following dietary supplementation of zinc was accompanied by up-regulation of metallothionein mRNA and protein expression. Global hepatic protein profiles were obtained by two-dimensional difference gel electrophoresis following matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. A total of 15 proteins were differentially (P<0.05) expressed between groups receiving control (150 mg/kg) or pharmacological levels of zinc (2500 mg/kg) with 7 down- (e.g. arginase1, thiosulfate sulfurtransferase, HSP70) and 8 up-regulated (e.g. apolipoprotein AI, transferrin, C1-tetrahydrofolate synthase) proteins. Additionally, three proteins were differentially expressed with low zinc supply (50 mg/kg Zn) in comparison to the control diet. The identified proteins were mainly associated with functions related to cellular stress, transport, metabolism, and signal transduction. The differential regulation was evaluated at the mRNA level and a subset of three proteins of different functional groups was selected for confirmation by western blotting. The results of this proteomic study suggest that zinc affects important liver functions such as blood protein secretion, protein metabolism, detoxification and redox homeostasis, thus supporting the hypothesis of intermediary effects of pharmacological levels of zinc oxide fed to pigs. PMID:24282572

  12. Isolation and characterization of two new homoacetogenic hydrogen-utilizing bacteria from the human intestinal tract that are closely related to Clostridium coccoides.

    PubMed Central

    Kamlage, B; Gruhl, B; Blaut, M

    1997-01-01

    Two gram-positive, strictly anoxic, coccoid- to rod-shaped strains of bacteria, Clostridium coccoides 1410 and C. coccoides 3110, were isolated from human feces on the typical homoacetogenic substrates formate plus H2 plus CO2 (strain 1410) and vanillate plus H2 plus CO2 (strain 3110) in the presence of 2-bromoethanesulfonate to inhibit methanogenesis. On the basis of 16S rRNA sequencing, DNA-DNA hybridization, and physiological and morphological parameters, both isolates are closely related to C. coccoides DSM 935T. The G+C contents of the DNA were 46.1 and 46.2 mol% for C. coccoides 1410 and C. coccoides 3110, respectively. Cytochromes could not be detected. Formate was degraded exclusively to acetate, whereas vanillate was O-demethylated, resulting in acetate and 3,4-dihydroxybenzoate, the latter being further decarboxylated to catechol. In the presence of organic substrates, H2 was cometabolized to acetate, but both strains failed to grow autotrophically. Lactose, lactulose, sorbitol, glucose, and various other carbohydrates supported growth as well. Untypical of homoacetogens, glucose and sorbitol were fermented not exclusively to acetate; instead, considerable amounts of succinate and D-lactate were produced. H2 was evolved from carbohydrates only in negligible traces. Acetogenesis from formate plus H2 plus CO2 or vanillate plus H2 plus CO2 was constitutive, whereas utilization of carbohydrates was inducible. Hydrogenase, CO dehydrogenase, formate dehydrogenase, and all of the tetrahydrofolic acid-dependent, C1 compound-converting enzymes of the acetyl-coenzyme A pathway of homoacetogenesis were present in cell extracts. PMID:9143110

  13. Purine biosynthesis in L1210 leukemia cells is inhibited by 7-hydroxymethotrexate (7-OH-MTX) polyglutamates (PGS)

    SciTech Connect

    Seither, R.L.; Matherly, L.H.; Goldman, I.D.

    1986-05-01

    The biochemical basis for 7-OH-MTX cytotoxicity was examined in L1210 tumor cells. Cells were exposed to 100 ..mu..M 7-OH-MTX (approx. 50% growth inhibition) or 10 ..mu..M methotrexate (MTX) (approx. 95% growth inhibition) for 6 hrs to allow high levels of PGS to accumulate. Dihydrofolate reductase (DHFR) activity was assessed by dihydrofolate (FH/sub 2/) pools labeled with 5-formyl-(/sup 3/H)-tetrahydrofolate (5..mu..M) or /sup 3/H-folic acid (1 ..mu..M). FH/sub 2/ was not elevated above control levels in 7-OH-MTX treated cells, in contrast to MTX treated cells in which FH/sub 2/ increased 4- to 7-fold. /sup 3/H-Deoxyuridine incorporation into DNA was not inhibited in cells containing high levels (11.5 nmol/g dry wt.) of 7-OH-MTX tetraglutamate (7-OH-4-NH/sub 2/-10-CH/sub 3/-PteGlu/sub 4/), well in excess of the DHFR-binding capacity (7.3 +/- 0.9 nmol/g), indicating a normal rate of thymidylate synthesis. Although small amounts of 7-OH-MTX and its PGS were bound to DHFR in L1210 cells, as assessed by gel filtration, there was evidence for the preferential binding of 7-OH-MTX tetraglutamate. In all cases this was well below the DHFR binding capacity, consistent with normal rates of deoxyuridine metabolism and FH/sub 2/ levels in the cell. Incorporation of /sup 14/C-formate (60 min) into thymidylate and amino acids was unaffected by 7-OH-MTX, yet incorporation into purines was inhibited over 50%, supporting a block(s) in de novo purine biosynthesis.

  14. Folate-dependent enzymes in cultured Chinese hamster ovary cells: impaired mitochondrial serine hydroxymethyltransferase activity in two additional glycine-auxotroph complementation classes

    SciTech Connect

    Taylor, R.T.; Hanna, M.L.

    1982-09-01

    Two glycine-requiring Chinese hamster ovary (CHO) auxotrophs (GLYB and AUXB2) representative of the Gly/sup -/ mutant classes B and C are shown to have defects in folate metabolism. These defects result in 10-fold lower rates of whole cell L-(U-/sup 14/C)serine-to-(/sup 14/C)glycine conversion relative to the parental CHO lines (2 vs 20 nmol/h/10/sup 6/ cells). This restriction in serine hydroxymethyltransferase (SHMT) activity is localized in the mitochondria. Intact mitochondria from GLYB and AUXB2 convert labeled serine to glycine at 1-4% the rate and with only 1-3% of the total capacity of parental CHO mitochondria. Yet, GLYB and AUXB2 contain parental cell amounts of cytosolic and mitochondrial SHMT, the latter displaying normal substrate K/sub m/ values. The whole cell and mitochondrial impairments in glycine formation are corrected in GLYB (but not AUXB2) by a prior growth with 100 ..mu..M dl-folinate. They are also partially restored in spontaneous or chemically induced Gly/sup +/ revertants of GLYB and AUXB2. Subcellular fractionation experiments suggest that a low content (one-fifth parental) of mitochondrial folylpolyglutamates contributes to the auxotrophy of GLYB. These studies demonstrate that mitochondrial SHMT is potentially functional in the Gly/sup -/ mutant classes B (GLYB) and C (AUXB2). The impaired SHMT activity in vivo and in isolated mitochondria may result from a deficiency in mitochondrial recycling of 5,10-methylenetetrahydrofolate back to tetrahydrofolate.

  15. Uracil salvage pathway in Lactobacillus plantarum: Transcription and genetic studies.

    PubMed

    Arsène-Ploetze, Florence; Nicoloff, Hervé; Kammerer, Benoît; Martinussen, Jan; Bringel, Françoise

    2006-07-01

    The uracil salvage pathway in Lactobacillus plantarum was demonstrated to be dependent on the upp-pyrP gene cluster. PyrP was the only high-affinity uracil transporter since a pyrP mutant no longer incorporated low concentrations of radioactively labeled uracil and had increased resistance to the toxic uracil analogue 5-fluorouracil. The upp gene encoded a uracil phosphoribosyltransferase (UPRT) enzyme catalyzing the conversion of uracil and 5-phosphoribosyl-alpha-1-pyrophosphate to UMP and pyrophosphate. Analysis of mutants revealed that UPRT is a major cell supplier of UMP synthesized from uracil provided by preformed nucleic acid degradation. In a mutant selection study, seven independent upp mutants were isolated and all were found to excrete low amounts of pyrimidines to the growth medium. Pyrimidine-dependent transcription regulation of the biosynthetic pyrimidine pyrR1-B-C-Aa1-Ab1-D-F-E operon was impaired in the upp mutants. Despite the fact that upp and pyrP are positioned next to each other on the chromosome, they are not cotranscribed. Whereas pyrP is expressed as a monocistronic message, the upp gene is part of the lp_2376-glyA-upp operon. The lp_2376 gene encodes a putative protein that belongs to the conserved protein family of translation modulators such as Sua5, YciO, and YrdC. The glyA gene encodes a putative hydroxymethyltransferase involved in C1 unit charging of tetrahydrofolate, which is required in the biosynthesis of thymidylate, pantothenate, and purines. Unlike upp transcription, pyrP transcription is regulated by exogenous pyrimidine availability, most likely by the same mechanism of transcription attenuation as that of the pyr operon.

  16. Stable Isotope Dilution Assays for Clinical Analyses of Folates and Other One-Carbon Metabolites: Application to Folate-Deficiency Studies

    PubMed Central

    Kopp, Markus; Morisset, Rosalie; Koehler, Peter

    2016-01-01

    Folate deficiency is generally accepted as a potential direct or indirect risk factor for diseases including spina bifida, coronary heart diseases, malfunctions of the central nervous system, and cancer. The direct inclusion of folates in the methylation cycle, including the remethylation of homocysteine and regeneration of S-adenosylmethionine, underlines the importance of these vitamins and other components of one-carbon metabolism. Therefore, the aim of the present study was to develop a multiple stable isotope dilution assay (SIDA) for the respective analytes in plasma and tissue samples to allow for a closer look at the interaction between a severe folate deficiency and local folate status, as well as further interactions with circulating S-adenosylmethionine, S-adenosylhomocysteine, and homocysteine. The analytical methods were based on SIDAs coupled with liquid chromatography—tandem mass spectrometry (LC-MS/MS) analysis using the deuterated folates [2H4]-5-methyltetrahydrofolic acid, [2H4]-5-formyltetrahydrofolic acid, [2H4]-tetrahydrofolic acid, [2H4]-10-formylfolic acid, and [2H4]-folic acid and the deuterated one-carbon metabolites [2H4]-homocysteine, [2H4]-S-adenosylhomocysteine, and [2H3]-S-adenosylmethionine as internal standards. Three analytical methods have been developed for the analysis of homocysteine, S-adenosylmethionine, S-adenosylhomocysteine, and six folate vitamers. Validation data for the analysis of C1-metabolites in plasma and tissue samples or folate analysis in tissue samples revealed excellent sensitivity, precision, and recovery for all analytes studied. The miniaturized methods using sample volumes as low as 50 μL and weighed portions of 5–25 mg will allow the assessment of the status of folates and additional biomarkers of impaired one-carbon metabolism during folate deficiency. PMID:27276031

  17. Countervailing vascular effects of rosiglitazone in high cardiovascular risk mice: role of oxidative stress and PRMT-1.

    PubMed

    Savoia, Carmine; Ebrahimian, Talin; Lemarié, Catherine A; Paradis, Pierre; Iglarz, Marc; Amiri, Farhad; Javeshgani, Danesh; Schiffrin, Ernesto L

    2010-02-09

    In the present study, we tested the hypothesis that the PPARgamma (peroxisome-proliferator-activated receptor gamma) activator rosiglitazone improves vascular structure and function in aged hyperhomocysteinaemic MTHFR (methylene tetrahydrofolate reductase) gene heterozygous knockout (mthfr+/-) mice fed a HCD (high-cholesterol diet), a model of high cardiovascular risk. One-year-old mthfr+/- mice were fed or not HCD (6 mg x kg-1 of body weight x day-1) and treated or not with rosiglitazone (20 mg x kg-1 of body weight x day-1) for 90 days and compared with wild-type mice. Endothelium-dependent relaxation of carotid arteries was significantly impaired (-40%) only in rosiglitazone-treated HCD-fed mthfr+/- mice. Carotid M/L (media-to-lumen ratio) and CSA (cross-sectional area) were increased (2-fold) in mthfr+/- mice fed or not HCD compared with wild-type mice (P<0.05). Rosiglitazone reduced M/L and CSA only in mthfr+/- mice fed a normal diet. Superoxide production was increased in mthfr+/- mice fed HCD treated or not with rosiglitazone, whereas plasma nitrite was decreased by rosiglitazone in mice fed or not HCD. PRMT-1 (protein arginine methyltransferase-1), involved in synthesis of the NO (nitric oxide) synthase inhibitor ADMA (asymmetric omega-NG,NG-dimethylarginine), and ADMA were increased only in rosiglitazone-treated HCD-fed mthfr+/- mice. Rosiglitazone had both beneficial and deleterious vascular effects in this animal model of high cardiovascular risk: it prevented carotid remodelling, but impaired endothelial function in part through enhanced oxidative stress and increased ADMA production in mice at high cardiovascular risk.

  18. Insights into the reactivation of cobalamin-dependent methionine synthase

    SciTech Connect

    Koutmos, Markos; Datta, Supratim; Pattridge, Katherine A.; Smith, Janet L.; Matthews, Rowena G.

    2009-12-10

    Cobalamin-dependent methionine synthase (MetH) is a modular protein that catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine to produce methionine and tetrahydrofolate. The cobalamin cofactor, which serves as both acceptor and donor of the methyl group, is oxidized once every {approx}2,000 catalytic cycles and must be reactivated by the uptake of an electron from reduced flavodoxin and a methyl group from S-adenosyl-L-methionine (AdoMet). Previous structures of a C-terminal fragment of MetH (MetH{sup CT}) revealed a reactivation conformation that juxtaposes the cobalamin- and AdoMet-binding domains. Here we describe 2 structures of a disulfide stabilized MetH{sup CT} ({sub s-s}MetH{sup CT}) that offer further insight into the reactivation of MetH. The structure of {sub s-s}MetH{sup CT} with cob(II)alamin and S-adenosyl-L-homocysteine represents the enzyme in the reactivation step preceding electron transfer from flavodoxin. The structure supports earlier suggestions that the enzyme acts to lower the reduction potential of the Co(II)/Co(I) couple by elongating the bond between the cobalt and its upper axial water ligand, effectively making the cobalt 4-coordinate, and illuminates the role of Tyr-1139 in the stabilization of this 4-coordinate state. The structure of {sub s-s}MetH{sub CT} with aquocobalamin may represent a transient state at the end of reactivation as the newly remethylated 5-coordinate methylcobalamin returns to the 6-coordinate state, triggering the rearrangement to a catalytic conformation.

  19. Metabolic Interfaces of Mercury Methylation Proteins in Desulfovibrio sp. ND132

    NASA Astrophysics Data System (ADS)

    Wall, J. D.; Bridou, R.; Smith, S. D.; Mok, K.; Widner, F.; Johs, A.; Parks, J.; Pierce, E. M.; Elias, D. A.; Gilmour, C. C.; Taga, M.

    2015-12-01

    Two genes necessary for microbial production of the neurotoxin methylmercury have been identified; hgcA encoding a corrinoid methyltransferase and hgcB, a ferredoxin-like protein. To date, all microbes possessing orthologs of these genes that have been tested are capable of methylating mercury; whereas, organisms lacking hgcA and hgcB are not. Also of interest is the observation that confirmed mercury-methylating microbes are all considered anaerobes although not members of a specific phylogenetic group. They are found scattered in the genomes of methanogens, Firmicutes, and Deltaproteobacteria. Methylation has not been demonstrated to provide protection of the microbes to mercury exposure. To determine the source of evolutionary pressure for acquisition and maintenance of these genes, we are seeking to understand whether there is a second function of the proteins. We are seeking evidence for the metabolic source(s) of the methyl group and for competing reactions. We have found that deletion of the metH gene encoding a tetrahydrofolate methyltransferase in Desulfovibrio sp. ND132 decreases the mercury methylation capacity by ca. 95%, consistent with an interpretation that this enzyme is involved in the pathway for the methyl group for HgcA. In addition, the corrinoid present in HgcA and the MetH of ND132 is strictly dependent on nicotinate nucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase encoded by the cobT gene, linking methionine biosynthesis with mercury methylation at a second level. Additional methyl transferases have not been found to be necessary for this function. While earlier evidence was provided for an involvement of the CO dehydrogenase/acetylCoA synthase, this enzyme is not universally present in methylating strains unlike the pathway for methionine synthesis.

  20. Attenuation of 2-methoxyethanol-induced testicular toxicity in the rat by simple physiological compounds.

    PubMed

    Mebus, C A; Welsch, F; Working, P K

    1989-06-01

    2-Methoxyethanol (2-ME) is an industrial solvent which is toxic to both male and female reproductive systems of laboratory animals. Earlier data have demonstrated that the developmental toxicity of 2-ME can be attenuated by simple physiological compounds such as serine, acetate, sarcosine, glycine, and D-glucose. The present experiments were designed to evaluate the same compounds for their ability to ameliorate the testicular toxicity that occurs in rats after 2-ME exposure. The extent of testicular damage was assessed by quantitating daily sperm production (DSP) on Day 24 following a single dose of 2-ME (6.6 mmol/kg, 500 mg/kg). Serine completely eliminated 2-ME-induced decreases in DSP, while glucose was without effect. Acetate, sarcosine, and glycine were of similar efficacy resulting in DSP that was significantly greater than that observed in rats which received 2-ME alone. Histopathological studies revealed that 2-ME treatment resulted in stage-specific degeneration of late stage pachytene spermatocytes 24 hr after treatment. No apparent degenerative changes occurred after concurrent treatment with serine. Similarly, serine also prevented the decreased number of spermatids in the lumina of the seminiferous tubules on Day 24 after 2-ME exposure alone. All of the compounds utilized in this study are linked to oxidation pathways involving tetrahydrofolic acid as a catalyst for one-carbon moiety transfer into purine and pyrimidine bases which are necessary precursors for DNA and RNA synthesis. The ability of these compounds to attenuate the testicular toxicity of 2-ME may result from their ability to donate one-carbon units which can be used in purine base biosynthesis. Reduced availability of bases would be expected to affect late stage pachytene spermatocytes which are known to be undergoing rapid RNA synthesis.

  1. Chloromethane Utilization Gene Cluster from Hyphomicrobium chloromethanicum Strain CM2T and Development of Functional Gene Probes To Detect Halomethane-Degrading Bacteria

    PubMed Central

    McAnulla, Craig; Woodall, Claire A.; McDonald, Ian R.; Studer, Alex; Vuilleumier, Stephane; Leisinger, Thomas; Murrell, J. Colin

    2001-01-01

    Hyphomicrobium chloromethanicum CM2T, an aerobic methylotrophic member of the α subclass of the class proteobacteria, can grow with chloromethane as the sole carbon and energy source. H. chloromethanicum possesses an inducible enzyme system for utilization of chloromethane, in which two polypeptides (67-kDa CmuA and 35-kDa CmuB) are expressed. Previously, four genes, cmuA, cmuB, cmuC, and purU, were shown to be essential for growth of Methylobacterium chloromethanicum on chloromethane. The cmuA and cmuB genes were used as probes to identify homologs in H. chloromethanicum. A cmu gene cluster (9.5 kb) in H. chloromethanicum contained 10 open reading frames: folD (partial), pduX, orf153, orf207, orf225, cmuB, cmuC, cmuA, fmdB, and paaE (partial). CmuA from H. chloromethanicum (67 kDa) showed high identity to CmuA from M. chloromethanicum and contains an N-terminal methyltransferase domain and a C-terminal corrinoid-binding domain. CmuB from H. chloromethanicum is related to a family of methyl transfer proteins and to the CmuB methyltransferase from M. chloromethanicum. CmuC from H. chloromethanicum shows identity to CmuC from M. chloromethanicum and is a putative methyltransferase. folD codes for a methylene-tetrahydrofolate cyclohydrolase, which may be involved in the C1 transfer pathway for carbon assimilation and CO2 production, and paaE codes for a putative redox active protein. Molecular analyses and some preliminary biochemical data indicated that the chloromethane utilization pathway in H. chloromethanicum is similar to the corrinoid-dependent methyl transfer system in M. chloromethanicum. PCR primers were developed for successful amplification of cmuA genes from newly isolated chloromethane utilizers and enrichment cultures. PMID:11133460

  2. Insights into the reactivation of cobalamin-dependent methionine synthase

    PubMed Central

    Koutmos, Markos; Datta, Supratim; Pattridge, Katherine A.; Smith, Janet L.; Matthews, Rowena G.

    2009-01-01

    Cobalamin-dependent methionine synthase (MetH) is a modular protein that catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine to produce methionine and tetrahydrofolate. The cobalamin cofactor, which serves as both acceptor and donor of the methyl group, is oxidized once every ≈2,000 catalytic cycles and must be reactivated by the uptake of an electron from reduced flavodoxin and a methyl group from S-adenosyl-L-methionine (AdoMet). Previous structures of a C-terminal fragment of MetH (MetHCT) revealed a reactivation conformation that juxtaposes the cobalamin- and AdoMet-binding domains. Here we describe 2 structures of a disulfide stabilized MetHCT (s-sMetHCT) that offer further insight into the reactivation of MetH. The structure of s-sMetHCT with cob(II)alamin and S-adenosyl-L-homocysteine represents the enzyme in the reactivation step preceding electron transfer from flavodoxin. The structure supports earlier suggestions that the enzyme acts to lower the reduction potential of the Co(II)/Co(I) couple by elongating the bond between the cobalt and its upper axial water ligand, effectively making the cobalt 4-coordinate, and illuminates the role of Tyr-1139 in the stabilization of this 4-coordinate state. The structure of s-sMetHCT with aquocobalamin may represent a transient state at the end of reactivation as the newly remethylated 5-coordinate methylcobalamin returns to the 6-coordinate state, triggering the rearrangement to a catalytic conformation. PMID:19846791

  3. Determination of folates by HPLC-chemiluminescence using a ruthenium(II)-cerium(IV) system, and its application to pharmaceutical preparations and supplements.

    PubMed

    Ikeda, Rie; Ichiyama, Kosuke; Tabuchi, Naoto; Wada, Mitsuhiro; Kuroda, Naotaka; Nakashima, Kenichiro

    2014-11-01

    A chemiluminescence (CL) reaction of folic acid (FA) with ruthenium (II) and cerium (IV) was applied to quantify FA-related compounds such as FA, dihydrofolic acid, tetrahydrofolic acid, 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid and methotrexate (MTX). Among the FAs, 5-methyltetrahydrofolic acid provided the highest CL intensity. HPLC-CL detection of FA was applied to quantify FA in pharmaceutical preparations and supplements. Analytical samples were separated on a semi-micro ODS column with a mixture of 20 mM phosphate buffer (pH 5.7) and acetonitrile (94 : 6, v/v %). The separated samples were mixed with a post-column CL reagent consisting of 1.5 mM Ru(bipy)3 (2+) and 1.0 mM Ce(SO4)2 , then the generated CL was monitored. The calibration range for FA was 10-100 μM and the limit of detection was 1.34 μM (signal-to-noise ratio of 3). Repeatabilities were 4.2, 4.6 and 5.0 RSD% (10, 25, 50 μM), and the recoveries for FA supplement, vitamin B complex supplement and FA-containing medication (tablet) were 102.4 ± 10.5, 103.3 ± 13.3 and 100.3 ± 8.5%, respectively. The described method is robust against changes in the chromatographic parameters of ± 3.3 or ± 1.5%. The measured FA content corresponded well to the labeled content of FA-containing products (100.6-104.9%), demonstrating the precision and accuracy of this method for the evaluation of FA pharmaceutical preparations.

  4. Is 5-methyltetrahydrofolate an alternative to folic acid for the prevention of neural tube defects?

    PubMed

    Obeid, Rima; Holzgreve, Wolfgang; Pietrzik, Klaus

    2013-09-01

    Women have higher requirements for folate during pregnancy. An optimal folate status must be achieved before conception and in the first trimester when the neural tube closes. Low maternal folate status is causally related to neural tube defects (NTDs). Many NTDs can be prevented by increasing maternal folate intake in the preconceptional period. Dietary folate is protective, but recommending increasing folate intake is ineffective on a population level particularly during periods of high demands. This is because the recommendations are often not followed or because the bioavailability of food folate is variable. Supplemental folate [folic acid (FA) or 5-methyltetrahydrofolate (5-methylTHF)] can effectively increase folate concentrations to the level that is considered to be protective. FA is a synthetic compound that has no biological functions unless it is reduced to dihydrofolate and tetrahydrofolate. Unmetabolized FA appears in the circulation at doses of >200 μg. Individuals show wide variations in their ability to reduce FA. Carriers of certain polymorphisms in genes related to folate metabolism or absorption can better benefit from 5-methylTHF instead of FA. 5-MethylTHF [also known as (6S)-5-methylTHF] is the predominant natural form that is readily available for transport and metabolism. In contrast to FA, 5-methylTHF has no tolerable upper intake level and does not mask vitamin B12 deficiency. Supplementation of the natural form, 5-methylTHF, is a better alternative to supplementation of FA, especially in countries not applying a fortification program. Supplemental 5-methylTHF can effectively improve folate biomarkers in young women in early pregnancy in order to prevent NTDs.

  5. A 19-base pair deletion polymorphism in dihydrofolate reductase is associated with increased unmetabolized folic acid in plasma and decreased red blood cell folate.

    PubMed

    Kalmbach, Renee D; Choumenkovitch, Silvina F; Troen, Aron P; Jacques, Paul F; D'Agostino, Ralph; Selhub, Jacob

    2008-12-01

    Dihydrofolate reductase (DHFR) catalyzes the reduction of folic acid to tetrahydrofolate (THF). A 19-bp noncoding deletion allele maps to intron 1, beginning 60 bases from the splice donor site, and has been implicated in neural tube defects and cancer, presumably by influencing folate metabolism. The functional impact of this polymorphism has not yet been demonstrated. The objective of this research was to determine the effects of the DHFR mutation with respect to folate status and assess influence of folic acid intake on these relations. The relationship between DHFR genotype and plasma concentrations of circulating folic acid, total folate, total homocysteine, and concentrations of RBC folate was determined in 1215 subjects from the Framingham Offspring Study. There was a significant interaction between DHFR genotype and folic acid intake with respect to the prevalence of high circulating unmetabolized folic acid (defined as >85th percentile). Folic acid intake of >or=500 microg/d increased the prevalence of high circulating unmetabolized folic acid in subjects with the deletion (del/del genotype (47.0%) compared with the wild type (WT)/del (21.4%) and wild type (WT)/WT genotypes (24.4%) (P for interaction = 0.03). Interaction between the DHFR polymorphism and folic acid intake was also seen with respect to RBC folate (P for interaction = 0.01). When folic acid intake was <250 microg/d, the del/del genotype was associated with significantly lower RBC folate (732.3 nmol/L) compared with the WT/WT genotype (844.4 nmol/L). Our results suggest the del/del polymorphism in DHFR is a functional polymorphism, because it limits assimilation of folic acid into cellular folate stores at high and low folic acid intakes.

  6. Effects of methotrexate on intraperiplasmic and axenic growth of Bdellovibrio bacteriovorus.

    PubMed Central

    Pritchard, M A; Langley, D; Rittenberg, S

    1975-01-01

    The intraperiplasmic growth rate and cell yield of wild-type Bdellovibrio bacteriovorus 109J, growing on Escherichia coli of normal composition as the substrate, were not markedly inhibited by 10-3 M methotrexate (4-amino-N10-methylpteroylglutamic acid). In contrast, the growth rate and cell yield of the mutant 109Ja, growing axenically in 0.5% yeast extract +0.15% peptone, were strongly inhibited by 10-4 and 10-3 M methotrexate. Thymine, thymidine, and thymidine-5'-monophosphate, in increasing order of effectiveness, partially or completely reversed the inhibition. E. coli depleted of tetrahydrofolate and having an abnormally high protein/deoxyribonucleic acid (DNA) ratio was obtained by growing it in the presence of methotrexate. B. bacteriovourus grew at a normal rate on these depleted E. coli cells but with somewhat reduced cell yield. Mexthotrexate (10-3 M) inhibited intraperiplasmic growth of bdellovibrio on the depleted E. coli somewhat more than it inhibited growth on normal E. coli, but the effects were small compared with inhibition of axenic growth of the mutant. Total bdellovibrio DNA after growth on the depleted E. coli in the presence or absence of methotrexate exceeded the initial quanity of E. coli DNA present. Thymidine-5'-monophosphate (10-3 M) largely reversed the inhibition and increased the amount of net synthesis of DNA. The data are consistent with the prediction that intraperiplasmic growth of B. bacteriovorus should be insensitive to all metabolic inhibitors that act by specifically preventing synthesis of essential monomers. The data also indicate that B. bacteriovorus possesses thymidylate synthetase, thymidine phosphorylase, and thymidine kinase, and has the potential to carry out de novo DNA synthesis from non-DNA precursors during intraperiplasmic growth. The results also suggest that methionyl tRNAfMet is not required for initiation of protein synthesis by B. bacteriovorus. PMID:1090593

  7. Discovery of a sesamin-metabolizing microorganism and a new enzyme.

    PubMed

    Kumano, Takuto; Fujiki, Etsuko; Hashimoto, Yoshiteru; Kobayashi, Michihiko

    2016-08-09

    Sesamin is one of the major lignans found in sesame oil. Although some microbial metabolites of sesamin have been identified, sesamin-metabolic pathways remain uncharacterized at both the enzyme and gene levels. Here, we isolated microorganisms growing on sesamin as a sole-carbon source. One microorganism showing significant sesamin-degrading activity was identified as Sinomonas sp. no. 22. A sesamin-metabolizing enzyme named SesA was purified from this strain and characterized. SesA catalyzed methylene group transfer from sesamin or sesamin monocatechol to tetrahydrofolate (THF) with ring cleavage, yielding sesamin mono- or di-catechol and 5,10-methylenetetrahydrofolate. The kinetic parameters of SesA were determined to be as follows: Km for sesamin = 0.032 ± 0.005 mM, Vmax = 9.3 ± 0.4 (μmol⋅min(-1)⋅mg(-1)), and kcat = 7.9 ± 0.3 s(-1) Next, we investigated the substrate specificity. SesA also showed enzymatic activity toward (+)-episesamin, (-)-asarinin, sesaminol, (+)-sesamolin, and piperine. Growth studies with strain no. 22, and Western blot analysis revealed that SesA formation is inducible by sesamin. The deduced amino acid sequence of sesA exhibited weak overall sequence similarity to that of the protein family of glycine cleavage T-proteins (GcvTs), which catalyze glycine degradation in most bacteria, archaea, and all eukaryotes. Only SesA catalyzes C1 transfer to THF with ring cleavage reaction among GcvT family proteins. Moreover, SesA homolog genes are found in both Gram-positive and Gram-negative bacteria. Our findings provide new insights into microbial sesamin metabolism and the function of GcvT family proteins.

  8. Kinetic Mechanism and the Rate-limiting Step of Plasmodium vivax Serine Hydroxymethyltransferase*

    PubMed Central

    Maenpuen, Somchart; Amornwatcharapong, Watcharee; Krasatong, Pasupat; Sucharitakul, Jeerus; Palfey, Bruce A.; Yuthavong, Yongyuth; Chitnumsub, Penchit; Leartsakulpanich, Ubolsree; Chaiyen, Pimchai

    2015-01-01

    Serine hydroxymethyltransferase (SHMT) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes a hydroxymethyl group transfer from l-serine to tetrahydrofolate (H4folate) to yield glycine and 5,10-methylenetetrahydrofolate (CH2-H4folate). SHMT is crucial for deoxythymidylate biosynthesis and a target for antimalarial drug development. Our previous studies indicate that PvSHMT catalyzes the reaction via a ternary complex mechanism. To define the kinetic mechanism of this catalysis, we explored the PvSHMT reaction by employing various methodologies including ligand binding, transient, and steady-state kinetics as well as product analysis by rapid-quench and HPLC/MS techniques. The results indicate that PvSHMT can bind first to either l-serine or H4folate. The dissociation constants for the enzyme·l-serine and enzyme·H4folate complexes were determined as 0.18 ± 0.08 and 0.35 ± 0.06 mm, respectively. The amounts of glycine formed after single turnovers of different preformed binary complexes were similar, indicating that the reaction proceeds via a random-order binding mechanism. In addition, the rate constant of glycine formation measured by rapid-quench and HPLC/MS analysis is similar to the kcat value (1.09 ± 0.05 s−1) obtained from the steady-state kinetics, indicating that glycine formation is the rate-limiting step of SHMT catalysis. This information will serve as a basis for future investigation on species-specific inhibition of SHMT for antimalarial drug development. PMID:25678710

  9. Genetic polymorphisms in one-carbon metabolism: associations with CpG island methylator phenotype (CIMP) in colon cancer and the modifying effects of diet

    PubMed Central

    Curtin, Karen; Slattery, Martha L.; Ulrich, Cornelia M.; Bigler, Jeannette; Levin, Theodore R.; Wolff, Roger K.; Albertsen, Hans; Potter, John D.; Samowitz, Wade S.

    2008-01-01

    This study investigated associations between CpG island methylator phenotype (CIMP) colon cancer and genetic polymorphisms relevant to one-carbon metabolism and thus, potentially the provision of methyl groups and risk of colon cancer. Data from a large, population-based case–control study (916 incident colon cancer cases and 1972 matched controls) were used. Candidate polymorphisms in methylenetetrahydrofolate reductase (MTHFR), thymidylate synthase (TS), transcobalamin II (TCNII), methionine synthase (MTR), reduced folate carrier (RFC), methylene-tetrahydrofolate dehydrogenase 1 (MTHFD1), dihydrofolate reductase (DHFR) and alcohol dehydrogenase 3 (ADH3) were evaluated. CIMP− or CIMP+ phenotype was based on five CpG island markers: MINT1, MINT2, MINT31, p16 and MLH1. The influence of specific dietary factors (folate, methionine, vitamin B12 and alcohol) on these associations was also analyzed. We hypothesized that polymorphisms involved in the provision of methyl groups would be associated with CIMP+ tumors (two or more of five markers methylated), potentially modified by diet. Few associations specific to CIMP+ tumors were observed overall, which does not support the hypothesis that the provision of methyl groups is important in defining a methylator phenotype. However, our data suggest that genetic polymorphisms in MTHFR 1298A > C, interacting with diet, may be involved in the development of highly CpG-methylated colon cancers. AC and CC genotypes in conjunction with a high-risk dietary pattern (low folate and methionine intake and high alcohol use) were associated with CIMP+ (OR = 2.1, 95% CI = 1.3–3.4 versus AA/high risk; P-interaction = 0.03). These results provide only limited support for a role of polymorphisms in one-carbon metabolism in the etiology of CIMP colon cancer. PMID:17449906

  10. Role of an invariant lysine residue in folate binding on Escherichia coli thymidylate synthase: calorimetric and crystallographic analysis of the K48Q mutant.

    PubMed

    Arvizu-Flores, Aldo A; Sugich-Miranda, Rocio; Arreola, Rodrigo; Garcia-Orozco, Karina D; Velazquez-Contreras, Enrique F; Montfort, William R; Maley, Frank; Sotelo-Mundo, Rogerio R

    2008-01-01

    Thymidylate synthase (TS) catalyzes the reductive methylation of deoxyuridine monophosphate (dUMP) using methylene tetrahydrofolate (CH(2)THF) as cofactor, the glutamate tail of which forms a water-mediated hydrogen bond with an invariant lysine residue of this enzyme. To understand the role of this interaction, we studied the K48Q mutant of Escherichia coli TS using structural and biophysical methods. The k(cat) of the K48Q mutant was 430-fold lower than wild-type TS in activity, while the K(m) for the (R)-stereoisomer of CH(2)THF was 300 microM, about 30-fold larger than K(m) from the wild-type TS. Affinity constants were determined using isothermal titration calorimetry, which showed that binding was reduced by one order of magnitude for folate-like TS inhibitors, such as propargyl-dideazafolate (PDDF) or compounds that distort the TS active site like BW1843U89 (U89). The crystal structure of the K48Q-dUMP complex revealed that dUMP binding is not impaired in the mutant, and that U89 in a ternary complex of K48Q-nucleotide-U89 was bound in the active site with subtle differences relative to comparable wild-type complexes. PDDF failed to form ternary complexes with K48Q and dUMP. Thermodynamic data correlated with the structural determinations, since PDDF binding was dominated by enthalpic effects while U89 had an important entropic component. In conclusion, K48 is critical for catalysis since it leads to a productive CH(2)THF binding, while mutation at this residue does not affect much the binding of inhibitors that do not make contact with this group.

  11. The Ether-Cleaving Methyltransferase System of the Strict Anaerobe Acetobacterium dehalogenans: Analysis and Expression of the Encoding Genes▿

    PubMed Central

    Schilhabel, Anke; Studenik, Sandra; Vödisch, Martin; Kreher, Sandra; Schlott, Bernhard; Pierik, Antonio Y.; Diekert, Gabriele

    2009-01-01

    Anaerobic O-demethylases are inducible multicomponent enzymes which mediate the cleavage of the ether bond of phenyl methyl ethers and the transfer of the methyl group to tetrahydrofolate. The genes of all components (methyltransferases I and II, CP, and activating enzyme [AE]) of the vanillate- and veratrol-O-demethylases of Acetobacterium dehalogenans were sequenced and analyzed. In A. dehalogenans, the genes for methyltransferase I, CP, and methyltransferase II of both O-demethylases are clustered. The single-copy gene for AE is not included in the O-demethylase gene clusters. It was found that AE grouped with COG3894 proteins, the function of which was unknown so far. Genes encoding COG3894 proteins with 20 to 41% amino acid sequence identity with AE are present in numerous genomes of anaerobic microorganisms. Inspection of the domain structure and genetic context of these orthologs predicts that these are also reductive activases for corrinoid enzymes (RACEs), such as carbon monoxide dehydrogenase/acetyl coenzyme A synthases or anaerobic methyltransferases. The genes encoding the O-demethylase components were heterologously expressed with a C-terminal Strep-tag in Escherichia coli, and the recombinant proteins methyltransferase I, CP, and AE were characterized. Gel shift experiments showed that the AE comigrated with the CP. The formation of other protein complexes with the O-demethylase components was not observed under the conditions used. The results point to a strong interaction of the AE with the CP. This is the first report on the functional heterologous expression of acetogenic phenyl methyl ether-cleaving O-demethylases. PMID:19011025

  12. Characterization of an O-Demethylase of Desulfitobacterium hafniense DCB-2

    PubMed Central

    Studenik, Sandra; Vogel, Michaela

    2012-01-01

    Besides acetogenic bacteria, only Desulfitobacterium has been described to utilize and cleave phenyl methyl ethers under anoxic conditions; however, no ether-cleaving O-demethylases from the latter organisms have been identified and investigated so far. In this study, genes of an operon encoding O-demethylase components of Desulfitobacterium hafniense strain DCB-2 were cloned and heterologously expressed in Escherichia coli. Methyltransferases I and II were characterized. Methyltransferase I mediated the ether cleavage and the transfer of the methyl group to the superreduced corrinoid of a corrinoid protein. Desulfitobacterium methyltransferase I had 66% identity (80% similarity) to that of the vanillate-demethylating methyltransferase I (OdmB) of Acetobacterium dehalogenans. The substrate spectrum was also similar to that of the latter enzyme; however, Desulfitobacterium methyltransferase I showed a higher level of activity for guaiacol and used methyl chloride as a substrate. Methyltransferase II catalyzed the transfer of the methyl group from the methylated corrinoid protein to tetrahydrofolate. It also showed a high identity (∼70%) to methyltransferases II of A. dehalogenans. The corrinoid protein was produced in E. coli as cofactor-free apoprotein that could be reconstituted with hydroxocobalamin or methylcobalamin to function in the methyltransferase I and II assays. Six COG3894 proteins, which were assumed to function as activating enzymes mediating the reduction of the corrinoid protein after an inadvertent oxidation of the corrinoid cofactor, were studied with respect to their abilities to reduce the recombinant reconstituted corrinoid protein. Of these six proteins, only one was found to catalyze the reduction of the corrinoid protein. PMID:22522902

  13. Environmental significance of O-demethylation of chloroanisoles by soil bacterial isolates as a mechanism that improves the overall biodegradation of chlorophenols.

    PubMed

    Goswami, Mandira; Recio, Eliseo; Campoy, Sonia; Martín, Juan Francisco; Coque, Juan-José R

    2007-10-01

    The biodegradation rate of chlorophenols in the environment seems to be limited by a competitive mechanism of O-methylation which produces chloroanisoles with a high potential of being bioconcentrated in living organisms. In this work we report for the first time the isolation of three soil bacterial strains able to efficiently degrade 2,4,6-trichloroanisole (2,4,6-TCA). These strains were identified as Xanthomonas retroflexus INBB4, Pseudomonas putida INBP1 and Acinetobacter radioresistens INBS1. In these isolates 2,4,6-TCA was efficiently metabolized in a minimal medium containing methanol and 2,4,6-TCA as the only carbon sources, with a concomitant release of 3 mol of chloride ion from 1 mol of 2,4,6-TCA, indicating complete dehalogenation of 2,4,6-TCA. 2,4,6-trichlorophenol (2,4,6-TCP) was identified as a degradative intermediate, indicating that 2,4,6-TCA underwent O-demethylation as the first step in the biodegradation process. 2,4,6-TCP was further transformed into 2,6-dichloro-para-hydroquinone (2,6-DCHQ) and subsequently mineralized. The degradation of chloroanisoles could improve the overall biodegradation of chlorophenols in the environment, because those chlorophenols previously biomethylated might also be later biodegraded. Xanthomonas retroflexus INBB4 has two O-demethylation systems: one is an oxygenase-type demethylase, and the other is a tetrahydrofolate (THF)-dependent O-demethylase. On the contrary O-demethylation of 2,4,6-TCA in P. putida INBP1 is just catalysed by an oxygenase-type NADH/NADPH-dependent O-demethylase, whereas in A. radioresistens INBS1 a THF-dependent O-demethylase activity was detected.

  14. Risk of colorectal cancer associated with the C677T polymorphism in 5,10-methylenetetrahydrofolate reductase in Portuguese patients depends on the intake of methyl-donor nutrients.

    PubMed

    Guerreiro, Catarina Sousa; Carmona, Bruno; Gonçalves, Susana; Carolino, Elisabete; Fidalgo, Paulo; Brito, Miguel; Leitão, Carlos Nobre; Cravo, Marília

    2008-11-01

    Polymorphisms located in genes involved in the metabolism of folate and some methyl-related nutrients are implicated in colorectal cancer (CRC). We evaluated the association of 3 genetic polymorphisms [C677T MTHFR (methylene tetrahydrofolate reductase), A2756G MTR (methionine synthase), and C1420T SHMT (serine hydroxymethyltransferase)] with the intake of methyl-donor nutrients in CRC risk. Patients with CRC (n = 196) and healthy controls (n = 200) matched for age and sex were evaluated for intake of methyl-donor nutrients and the 3 polymorphisms. Except for folate intake, which was significantly lower in patients (P = 0.02), no differences were observed in the dietary intake of other methyl-donor nutrients between groups. High intake of folate (>406.7 microg/d) was associated with a significantly lower risk of CRC (odds ratio: 0.67; 95% CI: 0.45, 0.99). The A2756G MTR polymorphism was not associated with the risk of developing CRC. In contrast, homozygosity for the C677T MTHFR variant (TT) presented a 3.0-fold increased risk of CRC (95% CI: 1.3, 6.7). Similarly, homozygosity for the C1420T SHMT polymorphism also had a 2.6-fold increased risk (95% CI: 1.1, 5.9) of developing CRC. When interactions between variables were studied, low intake of all methyl-donor nutrients was associated with an increased risk of CRC in homozygous participants for the C677T MTHFR polymorphism, but a statistically significant interaction was only observed for folate (odds ratio: 14.0; 95% CI: 1.8, 108.5). No significant associations were seen for MTR or SHMT polymorphisms. These results show an association between the C677T MTHFR variant and different folate intakes on risk of CRC.

  15. Diet and Headache: Part 2.

    PubMed

    Martin, Vincent T; Vij, Brinder

    2016-10-01

    Comprehensive diets do not require the exclusion of a specific provocative food or ingredient, but regulate the quantities of core components of foods such as vitamins, ions, proteins, carbohydrates, and fats. To review the evidence supporting the use of comprehensive diets in the prevention of migraine and other headache disorders and to discuss the mechanisms through which food, and ingredients within foods and beverages might trigger attacks of headache METHODS: This represents Part 2 of a narrative review of the role of diet in the prevention of migraine and other headache disorders. A PubMed search was performed with the following search terms: "folate," "vitamin D," "low fat diet," "omega-3 and omega-6 fatty acid diet," "ketogenic diet," "Atkins diet," and "sodium." Each of these search terms was then crossreferenced with "headache" and "migraine" to identify relevant studies. Only studies that were written in English were included in this review. Low fat and high omega-3/low omega-6 fatty diets decrease the frequency of attacks of migraine and/or other headache disorders as demonstrated in two separate randomized controlled trials. A ketogenic diet was more effective than a standard diet in reducing the frequency of migraine in a single nonrandomized clinical study. An observation study found that dietary consumption of folate was inversely associated with the frequency of migraine attacks in persons with migraine with aura that have the C variant of the methylene tetrahydrofolate reductase gene. The mechanisms though which diets may precipitate headache include their effects on neuropeptides, neuro-receptors and ion channels, inflammation, sympathetic nervous system, release of nitric oxide, vasodilation, and cerebral glucose metabolism. Evidence exists to support the use of comprehensive diets in the prevention of migraine and other headache disorders. However, the results of these studies should be considered preliminary until replicated in larger

  16. Discovery of a sesamin-metabolizing microorganism and a new enzyme

    PubMed Central

    Kumano, Takuto; Fujiki, Etsuko; Hashimoto, Yoshiteru; Kobayashi, Michihiko

    2016-01-01

    Sesamin is one of the major lignans found in sesame oil. Although some microbial metabolites of sesamin have been identified, sesamin-metabolic pathways remain uncharacterized at both the enzyme and gene levels. Here, we isolated microorganisms growing on sesamin as a sole-carbon source. One microorganism showing significant sesamin-degrading activity was identified as Sinomonas sp. no. 22. A sesamin-metabolizing enzyme named SesA was purified from this strain and characterized. SesA catalyzed methylene group transfer from sesamin or sesamin monocatechol to tetrahydrofolate (THF) with ring cleavage, yielding sesamin mono- or di-catechol and 5,10-methylenetetrahydrofolate. The kinetic parameters of SesA were determined to be as follows: Km for sesamin = 0.032 ± 0.005 mM, Vmax = 9.3 ± 0.4 (μmol⋅min−1⋅mg−1), and kcat = 7.9 ± 0.3 s−1. Next, we investigated the substrate specificity. SesA also showed enzymatic activity toward (+)-episesamin, (−)-asarinin, sesaminol, (+)-sesamolin, and piperine. Growth studies with strain no. 22, and Western blot analysis revealed that SesA formation is inducible by sesamin. The deduced amino acid sequence of sesA exhibited weak overall sequence similarity to that of the protein family of glycine cleavage T-proteins (GcvTs), which catalyze glycine degradation in most bacteria, archaea, and all eukaryotes. Only SesA catalyzes C1 transfer to THF with ring cleavage reaction among GcvT family proteins. Moreover, SesA homolog genes are found in both Gram-positive and Gram-negative bacteria. Our findings provide new insights into microbial sesamin metabolism and the function of GcvT family proteins. PMID:27444012

  17. Comparison of the frequency of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism in depressed versus nondepressed patients.

    PubMed

    Lizer, Mitsi H; Bogdan, Renee L; Kidd, Robert S

    2011-11-01

    Numerous studies have found an association between low serum folate levels and incidence of depression. Folic acid supplementation has been successfully used as an adjunct to treat depression in these patients. However, some individuals have a genetic deficiency in the methylene tetrahydrofolate reductase (MTHFR) gene that limits conversion of folic acid to its biologically active form, L-methylfolate. Several studies have identified a higher frequency of genetic variations in the MTHFR gene in depressed patients than in nondepressed controls. This study evaluated the frequency of the most common genetic variation MTHFR C667T in a group of depressed U.S. Caucasians and compared results with those of a control group of nondepressed U.S. Caucasians. Subjects were recruited from a psychiatric practice, an ambulatory care clinic, and the community. Informed consent and a cheek swab sample were obtained from each subject for analysis using real-time polymerase chain reaction (PCR). Allele and genotype frequencies were compared using Pearson X2 analysis. Complete data were obtained for 156 subjects. No significant differences were found in frequency of the MTHFR C667T T allele (0.415 vs 0.365; p=0.408) or the MTHFR C667T TT genotype (20.7% vs 17.6%; p=0.619) between the depressed and non-depressed controls, respectively. Therefore, use of L-methylfolate without an additional indication of need does not appear to be warranted in this group of U.S. Caucasians. Some patients may benefit from L-methylfolate, but an evidence-based approach, such as MTHFR genotyping, should be used to identify these specific patients. Additional research is also needed to confirm the benefit of L-methylfolate in specific patient populations (e.g., MTHFR TT genotype).

  18. Yeast AEP3p Is an Accessory Factor in Initiation of Mitochondrial Translation*

    PubMed Central

    Lee, Changkeun; Tibbetts, Anne S.; Kramer, Gisela; Appling, Dean R.

    2009-01-01

    Initiation of protein synthesis in mitochondria and chloroplasts normally uses a formylated initiator methionyl-tRNA (fMet-tRNAfMet). However, mitochondrial protein synthesis in Saccharomyces cerevisiae can initiate with nonformylated Met-tRNAfMet, as demonstrated in yeast mutants in which the nuclear gene encoding mitochondrial methionyl-tRNA formyltransferase (FMT1) has been deleted. The role of formylation of the initiator tRNA is not known, but in vitro formylation increases binding of Met-tRNAfMet to translation initiation factor 2 (IF2). We hypothesize the existence of an accessory factor that assists mitochondrial IF2 (mIF2) in utilizing unformylated Met-tRNAfMet. This accessory factor might be unnecessary when formylated Met-tRNAfMet is present but becomes essential when only the unformylated species are available. Using a synthetic petite genetic screen in yeast, we identified a mutation in the AEP3 gene that caused a synthetic respiratory-defective phenotype together with Δfmt1. The same aep3 mutation also caused a synthetic respiratory defect in cells lacking formylated Met-tRNAfMet due to loss of the MIS1 gene that encodes the mitochondrial C1-tetrahydrofolate synthase. The AEP3 gene encodes a peripheral mitochondrial inner membrane protein that stabilizes mitochondrially encoded ATP6/8 mRNA. Here we show that the AEP3 protein (Aep3p) physically interacts with yeast mIF2 both in vitro and in vivo and promotes the binding of unformylated initiator tRNA to yeast mIF2. We propose that Aep3p functions as an accessory initiation factor in mitochondrial protein synthesis. PMID:19843529

  19. Yeast AEP3p is an accessory factor in initiation of mitochondrial translation.

    PubMed

    Lee, Changkeun; Tibbetts, Anne S; Kramer, Gisela; Appling, Dean R

    2009-12-04

    Initiation of protein synthesis in mitochondria and chloroplasts normally uses a formylated initiator methionyl-tRNA (fMet-tRNA(f)(Met)). However, mitochondrial protein synthesis in Saccharomyces cerevisiae can initiate with nonformylated Met-tRNA(f)(Met), as demonstrated in yeast mutants in which the nuclear gene encoding mitochondrial methionyl-tRNA formyltransferase (FMT1) has been deleted. The role of formylation of the initiator tRNA is not known, but in vitro formylation increases binding of Met-tRNA(f)(Met) to translation initiation factor 2 (IF2). We hypothesize the existence of an accessory factor that assists mitochondrial IF2 (mIF2) in utilizing unformylated Met-tRNA(f)(Met). This accessory factor might be unnecessary when formylated Met-tRNA(f)(Met) is present but becomes essential when only the unformylated species are available. Using a synthetic petite genetic screen in yeast, we identified a mutation in the AEP3 gene that caused a synthetic respiratory-defective phenotype together with Delta fmt1. The same aep3 mutation also caused a synthetic respiratory defect in cells lacking formylated Met-tRNA(f)(Met) due to loss of the MIS1 gene that encodes the mitochondrial C(1)-tetrahydrofolate synthase. The AEP3 gene encodes a peripheral mitochondrial inner membrane protein that stabilizes mitochondrially encoded ATP6/8 mRNA. Here we show that the AEP3 protein (Aep3p) physically interacts with yeast mIF2 both in vitro and in vivo and promotes the binding of unformylated initiator tRNA to yeast mIF2. We propose that Aep3p functions as an accessory initiation factor in mitochondrial protein synthesis.

  20. Osmolyte induced enhancement of expression and solubility of human dihydrofolate reductase: An in vivo study.

    PubMed

    Rashid, Naira; Thapliyal, Charu; Chaudhuri Chattopadhyay, Pratima

    2017-10-01

    The process of recombinant protein production in E. coli system is often hampered by the formation of insoluble aggregates. Human Dihydrofolate reductase (hDHFR), an enzyme involved in the synthesis of purine, thymidilate and several other amino acids like glycine, methionine and serine is highly aggregation prone. It catalyzes the reduction of dihydrofolate (H2F) in order to regenerate tetrahydrofolate (H4F) utilizing NADPH as a cofactor. We have attempted to ameliorate the production of soluble and functional protein by growing and inducing the cells under osmotic stress condition, in the presence of various osmolytes like glycerol, sorbitol, TMAO, proline and glycine at 37°C. The expression and yield of functional hDHFR protein were highly enhanced in the presence of these osmolytes. The specific activity of the purified recombinant hDHFR protein has also been increased to a cogent level in the presence of osmolytes. We also observed that protein expressed in presence of the osmolytes was stable in the denaturing conditions as compared to the protein expressed in absence of an osmolyte. We also observed using the intrinsic fluorescence spectroscopy that the osmolytes didn't interfere with the structure of the protein and in denaturing conditions the protein expressed in presence of osmolytes had more stability. Our study is consequential in increasing the production of functional and soluble protein in the cell extract and will also be appropriate to find a therapeutic agent against many neurodegenerative diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Determination of folate in infant formula and adult/pediatric nutritional formula by ultra-high performance liquid chromatography-tandem mass spectrometry: First Action 2013.13.

    PubMed

    Meisser-Redeuil, Karine; Bénet, Sylvie; Gimenez, Catherine; Campos-Giménez, Esther; Maria, Nelson

    2014-01-01

    A UHPLC-MS/MS method for the determination of folate (vitamin B9) in infant formula and adult/pediatric nutritional formula was assessed for compliance with standard method performance requirements set forth by the AOAC INTERNATIONAL Stakeholder Panel for Infant Formula and Adult Nutritionals (SPIFAN). A single-laboratory validation (SLV) study was conducted as the first step in the process to validate the method. In the study, 12 matrixes, representing the range of infant and adult nutritional products, were evaluated for folate [the sum of supplemental folic acid plus 5-methyl tetrahydrofolic acid (5-Me THF)]. Method response was linear in the range of 1.0-900 ng/mL, corresponding to 0.33-300 microg/l100 g in reconstituted sample. LOD for folic acid and 5-Me THF, expressed in reconstituted product, were 0.10 microg/100 g and 0.05 microg/100 g, respectively, and LOQ were 0.33 microg/100 g and 0.10 microg/100 g, respectively. Repeatability was <5.3% and intermediate precision was <5.5%. Recovery rates of spiking at 50 and 100% of target values in nonfortified products were within 90-110%. Evaluation of trueness was performed on Certified Reference Material (SRM 1849 Infant/Adult Nutritional Formula) and gave 96.4% of theoretical value. Based on the results of the SLV, the method meets the SPIFAN requirements for AOAC First Action status for the determination of folates in infant formula and adult/pediatric nutritional formula.

  2. Polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene, intakes of folate and related B vitamins and colorectal cancer: a case-control study in a population with relatively low folate intake.

    PubMed

    Sharp, Linda; Little, Julian; Brockton, Nigel T; Cotton, Seonaidh C; Masson, Lindsey F; Haites, Neva E; Cassidy, Jim

    2008-02-01

    Folate is key in one-carbon metabolism, disruption of which can interfere with DNA synthesis, repair, and methylation. Efficient one-carbon metabolism requires other B vitamins and the optimal activity of enzymes including 5,10-methylenetetrahydrofolate reductase (MTHFR). We report a population-based case-control study of folate intake, related dietary factors and MTHFR polymorphisms (C677T, A1298C) and colorectal cancer in a population with relatively high colorectal cancer incidence and relatively low folate intake. A total of 264 cases with histologically confirmed incident colorectal cancer and 408 controls participated. There was no clear trend in risk with reported intakes of total, or dietary, folate, riboflavin, vitamin B12 or vitamin B6, nor were there interactions between folate intake and the other B vitamins or alcohol. For C677T, risk decreased with increasing variant alleles (multivariate OR for CT v. CC = 0.77 (95 % CI 0.52, 1.16); OR for TT v. CC = 0.62 (95 % CI 0.31, 1.24)), which, although not statistically significant, was consistent with previous studies. For A1298C, compared with AA subjects, CC subjects had modest, non-significant, reduced risk (multivariate OR = 0.81 (95 % CI 0.45, 1.49)). There were significant interactions between total folate and C677T (P = 0.029) and A1298C (P = 0.025), and total vitamin B6 and both polymorphisms (C677T, P = 0.016; A1298C, P = 0.033), although the patterns observed differed from previous studies. Seen against the setting of low folate intake, the results suggest that the role of folate metabolism in colorectal cancer aetiology may be more complex than previously thought. Investigation of particular folate vitamers (for example, tetrahydrofolate, 5,10-methylenetetrahydrofolate) may help clarify carcinogenesis pathways.

  3. Customized Nutritional Enhancement for Pregnant Women Appears to Lower Incidence of Certain Common Maternal and Neonatal Complications: An Observational Study

    PubMed Central

    Stone, P. Michael; Rydbom, Emily A.; Stone, Lucas A.; Stone, T. Elliot; Wilkens, Lindsey E.; Reynolds, Kathryn

    2014-01-01

    A retrospective chart review analyzed the effect of customized nutrition on the incidence of pregnancy-induced hypertension (PIH), gestational diabetes (GDM), and small- and large-for-gestational-age (SGA, LGA) neonates, examining consecutive deliveries between January 1, 2011, and Decem ber 31, 2012, at a low-risk community hospital. The population was divided into 3 groups: (1) study group (SG), (2) private practice (PP), and (3) community healthcare clinic (CHCC). All groups received standard perinatal management, but additionally the study group was analyzed for serum zinc, carnitine, total 25-hydroxy cholecalciferol (25 OH-D), methylene tetrahydrofolate reductase, and catechol-O-methyl transferase polymorphisms in the first trimester prior to intervention, with subsequent second trimester and postpartum assessment of zinc, carnitine, and 25 OH-D after intervention. Intervention consisted of trimesterby-trimester nutrition and lifestyle education, supplementation of L-methyl folate, magnesium, essential fatty acids, and probiotics for all SG patients, with targeted supplementation of zinc, carnitine, and 25 OH-D. Because of small case occurrence rates of individual conditions in the study group, unreportable reductions were found, except GDM (SG vs CHCC, P value .046 with 95.38% confidence interval [CI]), and PIH (SG vs PP, P value .0505 with 94.95% CIl). The aggregated occurrence rate of the four conditions, however, was significantly lower in the study population than in either comparison population (PP P value .0154 with 98.46% CI, and CHCC P value .0265 with 97.35% CI). Customized nutritional intervention appears to have significantly reduced adverse perinatal outcomes. Prospective study within larger, at-risk populations is needed to determine whether customized nutrition improves conditions individually. PMID:25568832

  4. Evidence for a singlet intermediate in catalysis by Escherichia coli DNA photolyase and evaluation of substrate binding determinants

    SciTech Connect

    Jordan, S.P.; Jorns, M.S.

    1988-12-13

    Escherichia coli DNA photolyase contains 1,5-dihydro-FAD (FADH2) plus 5,10-methenyl-tetrahydrofolate (5,10-CH+-H4folate). Both chromophores are fluorescent, and either can function as a sensitizer in catalysis. At 77 K separate fluorescence emission bands are observed for FADH2 (lambda max = 505 nm, shoulder at 540 nm) and 5,10-CH+-H4folate (lambda max = 465, 440 nm) whereas at 5 degrees C only a shoulder at 505 nm is attributable to FADH2. Formation of an enzyme-substrate complex with various dimer-containing oligothymidylates (UV-oligo(dT)n) quenches the fluorescence due to FADH2 at 5 degrees C or 77 K and also stabilizes FADH2 against air oxidation. The fluorescence of 5,10-CH+-H4folate is unaffected by substrate. Reduction of the pterin chromophore eliminates the chromophore's fluorescence but does not affect catalytic activity or the ability of substrate to quench FADH2 fluorescence. Quenching of FADH2 fluorescence is fully reversible upon dimer repair. The results are consistent with the proposal that the singlet state of FADH2 functions as an intermediate in catalysis. Fluorometric titrations indicate that the enzyme has a similar affinity for dimers in UV-oligo(dT)4 (KD = 2.5 X 10(-7) M, delta G = 8.4 kcal/mol at 5 degrees C) or UV-oligo(dT)6, except for dimers located at the unphosphorylated 3' end of the oligomers where binding is considerably weaker.

  5. Uracil Salvage Pathway in Lactobacillus plantarum: Transcription and Genetic Studies

    PubMed Central

    Arsène-Ploetze, Florence; Nicoloff, Hervé; Kammerer, Benoît; Martinussen, Jan; Bringel, Françoise

    2006-01-01

    The uracil salvage pathway in Lactobacillus plantarum was demonstrated to be dependent on the upp-pyrP gene cluster. PyrP was the only high-affinity uracil transporter since a pyrP mutant no longer incorporated low concentrations of radioactively labeled uracil and had increased resistance to the toxic uracil analogue 5-fluorouracil. The upp gene encoded a uracil phosphoribosyltransferase (UPRT) enzyme catalyzing the conversion of uracil and 5-phosphoribosyl-α-1-pyrophosphate to UMP and pyrophosphate. Analysis of mutants revealed that UPRT is a major cell supplier of UMP synthesized from uracil provided by preformed nucleic acid degradation. In a mutant selection study, seven independent upp mutants were isolated and all were found to excrete low amounts of pyrimidines to the growth medium. Pyrimidine-dependent transcription regulation of the biosynthetic pyrimidine pyrR1-B-C-Aa1-Ab1-D-F-E operon was impaired in the upp mutants. Despite the fact that upp and pyrP are positioned next to each other on the chromosome, they are not cotranscribed. Whereas pyrP is expressed as a monocistronic message, the upp gene is part of the lp_2376-glyA-upp operon. The lp_2376 gene encodes a putative protein that belongs to the conserved protein family of translation modulators such as Sua5, YciO, and YrdC. The glyA gene encodes a putative hydroxymethyltransferase involved in C1 unit charging of tetrahydrofolate, which is required in the biosynthesis of thymidylate, pantothenate, and purines. Unlike upp transcription, pyrP transcription is regulated by exogenous pyrimidine availability, most likely by the same mechanism of transcription attenuation as that of the pyr operon. PMID:16788187

  6. Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography [Neutron and ultrahigh resolution X-ray crystallography reveals water as the proton donor in the catalytic mechanism of dihydrofolate reductase

    DOE PAGES

    Wan, Qun; Bennett, Brad C.; Wilson, Mark A.; ...

    2014-12-01

    Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to the lack of consensus on a catalytic mechanism. To resolve this ambiguity, we conducted neutron and ultrahigh resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of DHFR with folate and NADP+ from E. coli. The neutron data were collected to 2.0 Å resolution using a 3.6 mm3 crystal with the quasi-Laue technique, and the structuremore » reveals that the N3 atom of folate is protonated while Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer due to protonation of the N3 atom, suggesting tautomerization is unnecessary for catalysis. In the 1.05 Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pKa of the N5 atom of DHF by Asp27, and protonation of N5 by water whose access to the active site is gated by fluctuation of the Met20 side chain even though the Met-20 loop is closed.« less

  7. Pyruvate formate lyase acts as a formate supplier for metabolic processes during anaerobiosis in Staphylococcus aureus.

    PubMed

    Leibig, Martina; Liebeke, Manuel; Mader, Diana; Lalk, Michael; Peschel, Andreas; Götz, Friedrich

    2011-02-01

    Previous studies demonstrated an upregulation of pyruvate formate lyase (Pfl) and NAD-dependent formate dehydrogenase (Fdh) in Staphylococcus aureus biofilms. To investigate their physiological role, we constructed fdh and pfl deletion mutants (Δfdh and Δpfl). Although formate dehydrogenase activity in the fdh mutant was lost, it showed little phenotypic alterations under oxygen-limited conditions. In contrast, the pfl mutant displayed pleiotropic effects and revealed the importance of formate production for anabolic metabolism. In the pfl mutant, no formate was produced, glucose consumption was delayed, and ethanol production was decreased, whereas acetate and lactate production were unaffected. All metabolic alterations could be restored by addition of formate or complementation of the Δpfl mutant. In compensation reactions, serine and threonine were consumed better by the Δpfl mutant than by the wild type, suggesting that their catabolism contributes to the refilling of formyl-tetrahydrofolate, which acts as a donor of formyl groups in, e.g., purine and protein biosynthesis. This notion was supported by reduced production of formylated peptides by the Δpfl mutant compared to that of the parental strain, as demonstrated by weaker formyl-peptide receptor 1 (FPR1)-mediated activation of leukocytes with the mutant. FPR1 stimulation could also be restored either by addition of formate or by complementation of the mutation. Furthermore, arginine consumption and arc operon transcription were increased in the Δpfl mutant. Unlike what occurred with the investigated anaerobic conditions, a biofilm is distinguished by nutrient, oxygen, and pH gradients, and we thus assume that Pfl plays a significant role in the anaerobic layer of a biofilm. Fdh might be critical in (micro)aerobic layers, as formate oxidation is correlated with the generation of NADH/H(+), whose regeneration requires respiration.

  8. Isolation and characterization of two new homoacetogenic hydrogen-utilizing bacteria from the human intestinal tract that are closely related to Clostridium coccoides.

    PubMed

    Kamlage, B; Gruhl, B; Blaut, M

    1997-05-01

    Two gram-positive, strictly anoxic, coccoid- to rod-shaped strains of bacteria, Clostridium coccoides 1410 and C. coccoides 3110, were isolated from human feces on the typical homoacetogenic substrates formate plus H2 plus CO2 (strain 1410) and vanillate plus H2 plus CO2 (strain 3110) in the presence of 2-bromoethanesulfonate to inhibit methanogenesis. On the basis of 16S rRNA sequencing, DNA-DNA hybridization, and physiological and morphological parameters, both isolates are closely related to C. coccoides DSM 935T. The G+C contents of the DNA were 46.1 and 46.2 mol% for C. coccoides 1410 and C. coccoides 3110, respectively. Cytochromes could not be detected. Formate was degraded exclusively to acetate, whereas vanillate was O-demethylated, resulting in acetate and 3,4-dihydroxybenzoate, the latter being further decarboxylated to catechol. In the presence of organic substrates, H2 was cometabolized to acetate, but both strains failed to grow autotrophically. Lactose, lactulose, sorbitol, glucose, and various other carbohydrates supported growth as well. Untypical of homoacetogens, glucose and sorbitol were fermented not exclusively to acetate; instead, considerable amounts of succinate and D-lactate were produced. H2 was evolved from carbohydrates only in negligible traces. Acetogenesis from formate plus H2 plus CO2 or vanillate plus H2 plus CO2 was constitutive, whereas utilization of carbohydrates was inducible. Hydrogenase, CO dehydrogenase, formate dehydrogenase, and all of the tetrahydrofolic acid-dependent, C1 compound-converting enzymes of the acetyl-coenzyme A pathway of homoacetogenesis were present in cell extracts.

  9. Fluorescent Biphenyl Derivatives of Phenylalanine Suitable for Protein Modification

    PubMed Central

    Chen, Shengxi; Fahmi, Nour Eddine; Bhattacharya, Chandrabali; Wang, Lin; Jin, Yuguang; Benkovic, Stephen J.; Hecht, Sidney M.

    2013-01-01

    In a recent study, we demonstrated that structurally compact fluorophores incorporated into the side chains of amino acids could be introduced into dihydrofolate reductase from E. coli (ecDHFR) with minimal disruption of protein structure or function, even where the site of incorporation was within a folded region of the protein. The modified proteins could be employed for FRET measurements, providing sensitive monitors of changes in protein conformation. The very favorable results achieved in that study encouraged us to prepare additional fluorescent amino acids of potential utility for studying protein dynamics. Presently, we describe the synthesis and photophysical characterization of four positional isomers of biphenyl-phenylalanine, all of which were found to exhibit potentially useful fluorescent properties. All four phenylalanine derivatives were used to activate suppressor tRNA transcripts, and incorporated into multiple positions of ecDHFR. All phenylalanine derivatives were incorporated with good efficiency into position 16 of ecDHFR, and afforded modified proteins which consumed NADPH at rates up to about twice the rate measured for wild type. This phenomenon has been noted on a number of occasions previously and shown to be due to an increase in the off-rate of tetrahydrofolate from the enzyme, altering a step that is normally rate limiting. When introduced into sterically accessible position 49, the four phenylalanine derivatives afforded DHFRs having catalytic function comparable to wild type. The four phenylalanine derivatives were also introduced into position 115 of ecDHFR, which is known to be a folded region of the protein less tolerant of structural alteration. As anticipated, significant differences were noted in the catalytic efficiencies of the derived proteins. The ability of two of the sizeable biphenyl-phenylalanine derivatives to be accommodated at position 115 with minimal perturbation of DHFR function is attributed to rotational

  10. Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production

    PubMed Central

    Mao, Longfei; Verwoerd, Wynand S

    2013-01-01

    Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production. PMID:23969939

  11. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim

    SciTech Connect

    Heaslet, Holly; Harris, Melissa; Fahnoe, Kelly; Sarver, Ronald; Putz, Henry; Chang, Jeanne; Subramanyam, Chakrapani; Barreiro, Gabriela; Miller, J. Richard; Pfizer

    2010-09-02

    Dihydrofolate reductase (DHFR) is the enzyme responsible for the NADPH-dependent reduction of 5,6-dihydrofolate to 5,6,7,8-tetrahydrofolate, an essential cofactor in the synthesis of purines, thymidylate, methionine, and other key metabolites. Because of its importance in multiple cellular functions, DHFR has been the subject of much research targeting the enzyme with anticancer, antibacterial, and antimicrobial agents. Clinically used compounds targeting DHFR include methotrexate for the treatment of cancer and diaminopyrimidines (DAPs) such as trimethoprim (TMP) for the treatment of bacterial infections. DAP inhibitors of DHFR have been used clinically for >30 years and resistance to these agents has become widespread. Methicillin-resistant Staphylococcus aureus (MRSA), the causative agent of many serious nosocomial and community acquired infections, and other gram-positive organisms can show resistance to DAPs through mutation of the chromosomal gene or acquisition of an alternative DHFR termed 'S1 DHFR.' To develop new therapies for health threats such as MRSA, it is important to understand the molecular basis of DAP resistance. Here, we report the crystal structure of the wild-type chromosomal DHFR from S. aureus in complex with NADPH and TMP. We have also solved the structure of the exogenous, TMP resistant S1 DHFR, apo and in complex with TMP. The structural and thermodynamic data point to important molecular differences between the two enzymes that lead to dramatically reduced affinity of DAPs to S1 DHFR. These differences in enzyme binding affinity translate into reduced antibacterial activity against strains of S. aureus that express S1 DHFR.

  12. Ethanol Lowers Glutathione in Rat Liver and Brain and Inhibits Methionine Synthase in a Cobalamin-dependent Manner

    PubMed Central

    Waly, Mostafa I.; Kharbanda, Kusum K.; Deth, Richard C.

    2010-01-01

    Background Methionine synthase (MS) is a ubiquitous enzyme that requires vitamin B12 (cobalamin) and 5-methyl-tetrahydrofolate for methylation of homocysteine to methionine. Previous studies have shown that acute or chronic ethanol (ETOH) administration results in inhibition of MS and depletion of glutathione (GSH), and it has been proposed that GSH is required for synthesis of methylcobalamin (MeCbl). Methods We measured GSH levels and investigated the ability of different cobalamin cofactors (cyano- (CNCbl), glutathionyl- (GSCbl), hydroxo- (OHCbl), and MeCbl) to support MS activity in liver and brain cortex from control and ETOH-treated rats. Results In control animals, MS activity was higher in liver than cortex for all cobalamins and MeCbl-based activity was higher than for other cofactors. S-Adenosylmethionine (SAM) was required for OHCbl, CNCbl, and GSCbl-based activity, but not for MeCbl. Feeding an ETOH-containing diet for four weeks caused a significant decrease in liver MS activity, in a cobalamin-dependent manner (OHCbl ≥ CNCbl > GSCbl > MeCbl). In brain cortex, OHCbl, CNCbl and GSCbl-based activity was reduced by ETOH treatment, but MeCbl-based activity was unaffected. GSH levels were reduced by ETOH treatment in both liver and cortex homogenates, and addition of GSH restored OHCbl-based MS activity to control levels. Betaine administration had no significant effect on GSH levels or MS activity in either control or ETOH-fed groups. Conclusions The ETOH-induced decrease in OHCbl-based MS activity is secondary to decreased GSH levels and a decreased ability to synthsize MeCbl. The ability of MeCbl to completely offset ETOH inhibition in brain cortex, but not liver, suggests tissue-specific differences in the GSH-dependent regulation of MS activity. PMID:21121936

  13. In vivo mutations of thymidylate synthase (encoded by thyA) are responsible for thymidine dependency in clinical small-colony variants of Staphylococcus aureus.

    PubMed

    Chatterjee, Indranil; Kriegeskorte, Andre; Fischer, Andreas; Deiwick, Susanne; Theimann, Nadine; Proctor, Richard A; Peters, Georg; Herrmann, Mathias; Kahl, Barbara C

    2008-02-01

    Trimethoprim-sulfamethoxazole (SXT)-resistant Staphylococcus aureus thymidine-dependent small-colony variants (TD-SCVs) are frequently isolated from the airways of cystic fibrosis (CF) patients, often in combination with isogenic normal strains if patients were treated with SXT for extended periods. As SXT inhibits the synthesis of tetrahydrofolic acid, which acts as a cofactor for thymidylate synthase (thyA), the survival of TD-SCVs depends exclusively on the availability of external thymidine. Since the underlying mechanism for thymidine dependency is unknown, we investigated if alterations in the thyA nucleotide sequences were responsible for this phenomenon. Sequence analysis of several clinical TD-SCVs and their isogenic normal strains with reference to previously published S. aureus thyA nucleotide sequences was performed. Three clinical TD-SCVs were complemented by transforming TD-SCVs with the vector pCX19 expressing ThyA from S. aureus 8325-4. Transcriptional analysis of metabolic and virulence genes and regulators (agr, hla, spa, citB, thyA, and nupC) was performed by quantitative reverse transcription-PCR. The previously published sequences of thyA and two normal clinical strains were highly conserved, while thyA of four normal strains and four SCVs had nonsynonymous point mutations. In 8/10 SCVs, deletions occurred, resulting in stop codons which were located in 4/10 SCVs close to or within the active site of the protein (dUMP binding). Complementation of TD-SCVs with thyA almost fully reversed the phenotype, growth characteristics, and transcription patterns. In conclusion, we demonstrated that mutations of the thyA gene were responsible for the phenotype of TD-SCVs. Complementation of TD-SCVs with thyA revealed that a functional ThyA protein is necessary and sufficient to change the SCV phenotype and behavior back to normal.

  14. Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography

    PubMed Central

    Wan, Qun; Bennett, Brad C.; Wilson, Mark A.; Kovalevsky, Andrey; Langan, Paul; Howell, Elizabeth E.; Dealwis, Chris

    2014-01-01

    Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to a lack of consensus regarding the catalytic mechanism involved. To resolve this ambiguity, we conducted neutron and ultrahigh-resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of Escherichia coli DHFR with folate and NADP+. The neutron data were collected to 2.0-Å resolution using a 3.6-mm3 crystal with the quasi-Laue technique. The structure reveals that the N3 atom of folate is protonated, whereas Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer owing to protonation of the N3 atom, suggesting that tautomerization is unnecessary for catalysis. In the 1.05-Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pKa value of the N5 atom of DHF by Asp27, and protonation of N5 by water that gains access to the active site through fluctuation of the Met20 side chain even though the Met20 loop is closed. PMID:25453083

  15. Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria.

    PubMed

    Vorholt, Julia A

    2002-10-01

    Methylotrophic bacteria can grow on a number of substrates as energy source with only one carbon atom, such as methanol, methane, methylamine, and dichloromethane. These compounds are metabolized via the cytotoxin formaldehyde. The formaldehyde consumption pathways, especially the pathways for the oxidation of formaldehyde to CO(2) for energy metabolism, are a central and critical part of the metabolism of these aerobic bacteria. Principally, two main types of pathways for the conversion of formaldehyde to CO(2) have been described: (1) a cyclic pathway initiated by the condensation of formaldehyde with ribulose monophosphate, and (2) distinct linear pathways that involve a dye-linked formaldehyde dehydrogenase or C(1) unit conversion bound to the cofactors tetrahydrofolate (H(4)F), tetrahydromethanopterin (H(4)MPT), glutathione (GSH), or mycothiol (MySH). The pathways involving the four cofactors have in common the following sequence of events: the spontaneous or enzyme-catalyzed condensation of formaldehyde and the respective C(1) carrier, the oxidation of the cofactor-bound C(1) unit and its conversion to formate, and the oxidation of formate to CO(2). However, the H(4)MPT pathway is more complex and involves intermediates that were previously known solely from the energy metabolism of methanogenic archaea. The occurrence of the different formaldehyde oxidation pathways is not uniform among different methylotrophic bacteria. The pathways are in part also used by other organisms to provide C(1) units for biosynthetic reactions (e.g., H(4)F-dependent enzymes) or detoxification of formaldehyde (e.g., GSH-dependent enzymes).

  16. Expression and clinical significance of methylenetetrahydrofolate reductase in patients with colorectal cancer.

    PubMed

    Odin, Elisabeth; Wettergren, Yvonne; Carlsson, Göran; Danenberg, Peter V; Termini, Angelo; Willén, Roger; Gustavsson, Bengt

    2006-01-01

    The aim of the study was to investigate the influence of methylenetetrahydrofolate reductase (MTHFR) gene expression levels and MTHFR polymorphism C677T on the outcome of patients with colorectal cancer (CRC). Furthermore, we wanted to evaluate the interaction between MTHFR and thymidylate synthase (TS) and folylpolyglutamate synthase (FPGS) and to investigate the impact of folate concentration on patients with CRC with different MTHFR genotypes. The frequency of MTHFR polymorphism C677T was determined (n = 147), and gene expression levels of MTHFR, TS, and FPGS were quantified with real-time polymerase chain reaction (n = 157). Reduced folates in tissue were measured with a binding assay (n = 40). We observed a significantly lower concentration of tetrahydrofolate (THF) in patients with CT or TT genotypes compared with patients having the CC genotype. Twenty-six patients with Dukes A to C tumors who had not been subjected to chemotherapy relapsed. Out of these, 18 had CT or TT genotypes, and only 8 had the CC genotype (P = 0.045). Furthermore, 75 patients did not relapse, and out of these, 35 had CT or TT genotypes, and 40 had the CC genotype. The relative gene expression level of MTHFR in patients subgrouped by CC and CT or TT genotypes was significantly lower in carcinomas compared with adjacent mucosa (P < 0.0001 and P < 0.0001, respectively). A significant difference in MTHFR expression level was also observed according to MTHFR genotype in the tumor but not in adjacent mucosa. The MTHFR gene expression level in mucosa was a prognostic parameter independent of the clinicopathologic factors with regard to survival for patients with MTHFR C677T mutation. Our results showed that it is possible to identify patients with CRC with a higher risk for relapse. Furthermore, patients with a mutant genotype in combination with low MTHFR expression have a poor clinical outcome.

  17. Reduced folate and serum vitamin metabolites in patients with rectal carcinoma: an open-label feasibility study of pemetrexed with folic acid and vitamin B12 supplementation

    PubMed Central

    Odin, Elisabeth A.; Carlsson, Göran U.; Kurlberg, Göran K.; Björkqvist, Hillevi G.; Tångefjord, Maria T.; Gustavsson, Bengt G.

    2016-01-01

    The objectives of this single-center, open-label, phase II study were to evaluate (a) the feasibility and safety of neoadjuvant administration of pemetrexed with oral folic acid and vitamin B12 (FA/B12) in newly diagnosed patients with resectable rectal cancer and (b) intracellular and systemic vitamin metabolism. Patients were treated with three cycles of pemetrexed (500 mg/m2, every 3 weeks) and FA/B12 before surgery. The reduced folates tetrahydrofolate, 5-methyltetrahydrofolate, and 5,10-methylenetetrahydrofolate were evaluated from biopsies in tumor tissue and in adjacent mucosa. Serum levels of homocysteine, cystathionine, and methylmalonic acid were also measured. All 37 patients received three cycles of pemetrexed; 89.2% completed their planned dosage within a 9-week feasibility time frame. Neither dose reductions nor study drug-related serious adverse events were reported. Reduced folate levels were significantly higher in tumor tissue compared with adjacent mucosa at baseline. After FA/B12 administration, tissue levels of reduced folates increased significantly and remained high during treatment in both tumor and mucosa until surgery. Serum levels of cystathionine increased significantly compared with baseline after FA/B12 administration, but then decreased, fluctuating cyclically during pemetrexed therapy. Homocysteine and methylmalonic acid levels decreased significantly after FA/B12 administration, and remained below baseline levels during the study. These results indicate that administration of three neoadjuvant cycles of single-agent pemetrexed, every 3 weeks, with FA/B12 in patients with resectable rectal cancer is feasible and tolerable. Tissue and serum vitamin metabolism results demonstrate the influence of pemetrexed and FA/B12 on vitamin metabolism and warrant further study. PMID:26825869

  18. Reduced folate and serum vitamin metabolites in patients with rectal carcinoma: an open-label feasibility study of pemetrexed with folic acid and vitamin B12 supplementation.

    PubMed

    Stoffregen, Clemens C; Odin, Elisabeth A; Carlsson, Göran U; Kurlberg, Göran K; Björkqvist, Hillevi G; Tångefjord, Maria T; Gustavsson, Bengt G

    2016-06-01

    The objectives of this single-center, open-label, phase II study were to evaluate (a) the feasibility and safety of neoadjuvant administration of pemetrexed with oral folic acid and vitamin B12 (FA/B12) in newly diagnosed patients with resectable rectal cancer and (b) intracellular and systemic vitamin metabolism. Patients were treated with three cycles of pemetrexed (500 mg/m, every 3 weeks) and FA/B12 before surgery. The reduced folates tetrahydrofolate, 5-methyltetrahydrofolate, and 5,10-methylenetetrahydrofolate were evaluated from biopsies in tumor tissue and in adjacent mucosa. Serum levels of homocysteine, cystathionine, and methylmalonic acid were also measured. All 37 patients received three cycles of pemetrexed; 89.2% completed their planned dosage within a 9-week feasibility time frame. Neither dose reductions nor study drug-related serious adverse events were reported. Reduced folate levels were significantly higher in tumor tissue compared with adjacent mucosa at baseline. After FA/B12 administration, tissue levels of reduced folates increased significantly and remained high during treatment in both tumor and mucosa until surgery. Serum levels of cystathionine increased significantly compared with baseline after FA/B12 administration, but then decreased, fluctuating cyclically during pemetrexed therapy. Homocysteine and methylmalonic acid levels decreased significantly after FA/B12 administration, and remained below baseline levels during the study. These results indicate that administration of three neoadjuvant cycles of single-agent pemetrexed, every 3 weeks, with FA/B12 in patients with resectable rectal cancer is feasible and tolerable. Tissue and serum vitamin metabolism results demonstrate the influence of pemetrexed and FA/B12 on vitamin metabolism and warrant further study.

  19. Biosynthesis of 2'-deoxycoformycin by Streptomyces antibioticus

    SciTech Connect

    Hanvey, J.C.

    1986-01-01

    The biosynthesis of 2'-deoxycoformycin by Streptomyces antibioticus has been investigated. Previous studies indicated that a purine nycleoside is the precursor for ten of the eleven carbons of deoxycoformycin. It was proposed that carbon-7 of the seven-membered, 1,3-diazepine-ring of deoxycoformycin is not derived from the purine ring but by an insertion of a one-carbon unit between N-1 and C-6 of the purine ring. Carbon-1 of D-ribose has now been identified as the precursor for carbon 7 (and 1') of deoxycoformycin. Although the tetrahydrofolate/one-carbon pool contributes one carbon units to carbons-2 and 8 of the purine ring, which become carbons-5 and 2 of deoxycoformycin, it is not involved in the formation of carbon-7. The retention of the tritium on carbon-2 of (2,8-/sup 3/H)-adenosine in deoxycoformycin indicates that guanosine is not the nucleoside precursor of deoxycoformycin. The failure to detect the incorporation of /sup 18/O from (6-/sup 18/O)-inosine in deoxycoformycin suggests that inosine is not the purine nucleoside precursor of deoxycoformycin. Therefore, it is proposed that adenosine and carbon-1 and d-ribose are the carbon-nitrogen precursors of deoxycoformycin. A mechanism for the insertion of carbon-1 of d-ribose into the pyrimidine portion of the purine ring has been proposed. Using cell-free extracts of S. antibioticus, 8-ketodeoxycoformycin and 8-ketocoformycin can be converted to deoxycoformycin and coformycin, respectively. The enzyme which reduces the 8-keto groups has been characterized and partially purified.

  20. Increase in Furfural Tolerance in Ethanologenic Escherichia coli LY180 by Plasmid-Based Expression of thyA

    PubMed Central

    Zheng, Huabao; Wang, Xuan; Yomano, Lorraine P.; Shanmugam, Keelnatham T.

    2012-01-01

    Furfural is an inhibitory side product formed during the depolymerization of hemicellulose by mineral acids. Genomic libraries from three different bacteria (Bacillus subtilis YB886, Escherichia coli NC3, and Zymomonas mobilis CP4) were screened for genes that conferred furfural resistance on plates. Beneficial plasmids containing the thyA gene (coding for thymidylate synthase) were recovered from all three organisms. Expression of this key gene in the de novo pathway for dTMP biosynthesis improved furfural resistance on plates and during fermentation. A similar benefit was observed by supplementation with thymine, thymidine, or the combination of tetrahydrofolate and serine (precursors for 5,10-methylenetetrahydrofolate, the methyl donor for ThyA). Supplementation with deoxyuridine provided a small benefit, and deoxyribose was of no benefit for furfural tolerance. A combination of thymidine and plasmid expression of thyA was no more effective than either alone. Together, these results demonstrate that furfural tolerance is increased by approaches that increase the supply of pyrimidine deoxyribonucleotides. However, ThyA activity was not directly affected by the addition of furfural. Furfural has been previously shown to damage DNA in E. coli and to activate a cellular response to oxidative damage in yeast. The added burden of repairing furfural-damaged DNA in E. coli would be expected to increase the cellular requirement for dTMP. Increased expression of thyA (E. coli, B. subtilis, or Z. mobilis), supplementation of cultures with thymidine, and supplementation with precursors for 5,10-methylenetetrahydrofolate (methyl donor) are each proposed to increase furfural tolerance by increasing the availability of dTMP for DNA repair. PMID:22504824

  1. Increase in furfural tolerance in ethanologenic Escherichia coli LY180 by plasmid-based expression of thyA.

    PubMed

    Zheng, Huabao; Wang, Xuan; Yomano, Lorraine P; Shanmugam, Keelnatham T; Ingram, Lonnie O

    2012-06-01

    Furfural is an inhibitory side product formed during the depolymerization of hemicellulose by mineral acids. Genomic libraries from three different bacteria (Bacillus subtilis YB886, Escherichia coli NC3, and Zymomonas mobilis CP4) were screened for genes that conferred furfural resistance on plates. Beneficial plasmids containing the thyA gene (coding for thymidylate synthase) were recovered from all three organisms. Expression of this key gene in the de novo pathway for dTMP biosynthesis improved furfural resistance on plates and during fermentation. A similar benefit was observed by supplementation with thymine, thymidine, or the combination of tetrahydrofolate and serine (precursors for 5,10-methylenetetrahydrofolate, the methyl donor for ThyA). Supplementation with deoxyuridine provided a small benefit, and deoxyribose was of no benefit for furfural tolerance. A combination of thymidine and plasmid expression of thyA was no more effective than either alone. Together, these results demonstrate that furfural tolerance is increased by approaches that increase the supply of pyrimidine deoxyribonucleotides. However, ThyA activity was not directly affected by the addition of furfural. Furfural has been previously shown to damage DNA in E. coli and to activate a cellular response to oxidative damage in yeast. The added burden of repairing furfural-damaged DNA in E. coli would be expected to increase the cellular requirement for dTMP. Increased expression of thyA (E. coli, B. subtilis, or Z. mobilis), supplementation of cultures with thymidine, and supplementation with precursors for 5,10-methylenetetrahydrofolate (methyl donor) are each proposed to increase furfural tolerance by increasing the availability of dTMP for DNA repair.

  2. Non-growth-associated demethylation of dimethylsulfoniopropionate by (homo)acetogenic bacteria.

    PubMed

    Jansen, M; Hansen, T A

    2001-01-01

    The demethylation of the algal osmolyte dimethylsulfoniopropionate (DMSP) to methylthiopropionate (MTPA) by (homo)acetogenic bacteria was studied. Five Eubacterium limosum strains (including the type strain), Sporomusa ovata DSM 2662(T), Sporomusa sphaeroides DSM 2875(T), and Acetobacterium woodii DSM 1030(T) were shown to demethylate DMSP stoichiometrically to MTPA. The (homo)acetogenic fermentation based on this demethylation did not result in any significant increase in biomass. The analogous demethylation of glycine betaine to dimethylglycine does support growth of acetogens. In batch cultures of E. limosum PM31 DMSP and glycine betaine were demethylated simultaneously. In mixed substrates experiments with fructose-DMSP or methanol-DMSP, DMSP was used rapidly but only after exhaustion of the fructose or the methanol. In steady-state fructose-limited chemostat cultures (at a dilution rate of 0.03 h(-1)) with DMSP as a second reservoir substrate, DMSP was biotransformed to MTPA but this did not result in higher biomass values than in cultures without DMSP; cells from such cultures demethylated DMSP at rates of approximately 50 nmol min(-1) mg of protein(-1), both after growth in the presence of DMSP and after growth in its absence. In cell extracts of glycine betaine-grown strain PM31, DMSP demethylation activities of 21 to 24 nmol min(-1) mg of protein(-1) were detected with tetrahydrofolate as a methyl acceptor; the activities seen with glycine betaine were approximately 10-fold lower. A speculative explanation for the demethylation of DMSP without an obvious benefit for the organism is that the DMSP-demethylating activity is catalyzed by the glycine betaine-demethylating enzyme and that a transport-related factor, in particular a higher energy demand for DMSP transport across the cytoplasmic membrane than for glycine betaine transport, may reduce the overall ATP yield of the fermentation to virtually zero.

  3. Oxidative stress in coronary artery disease: epigenetic perspective.

    PubMed

    Lakshmi, Sana Venkata Vijaya; Naushad, Shaik Mohammad; Reddy, Cheruku Apoorva; Saumya, Kankanala; Rao, Damera Seshagiri; Kotamraju, Srigiridhar; Kutala, Vijay Kumar

    2013-02-01

    The association between oxidative stress and coronary artery disease (CAD) is well documented. However, the role of epigenetic factors contributing to oxidative stress is relatively unexplored. In this study, we aimed to explore the impact of DNA methylation profile in BCL2/E1B adenovirus interacting protein 3 (BNIP3), extracellular superoxide dismutase (EC-SOD) and glutathione-S-transferase P1 (GSTP1) on the oxidative stress in CAD. Further, the contribution of folate pathway genetic polymorphisms in regulating epigenome was elucidated. The expression of BNIP3, EC-SOD, and GSTP1 were studied by using Maxima@SYBR-green based real-time qPCR approach in peripheral blood samples. Combined bisulfite restriction analysis and methylation-specific PCR were used to study promoter CpG island methylation. Further, the effect of homocysteine on BNIP3 gene expression was studied in human aortic endothelial cells in vitro. CAD cases exhibited upregulation of BNIP3, downregulation of EC-SOD and GSTP1. Hypomethylation of BNIP3 and hypermethylation of EC-SOD were observed in CAD cases. The expression of BNIP3 was positively correlated with homocysteine, MDA, protein carbonyls, and methylene tetrahydrofolate reductase C677T, while showing inverse association with cytosolic serine hydroxymethyl transferase C1420T. The expressions of EC-SOD and GSTP1 showed positive association with thymidylate synthase (TYMS) 2R3R, while inverse association with MDA, protein carbonyls, and methionine synthase reductase (MTRR) A66G. In vitro analysis showed homocysteine-dependent upregulation of BNIP3. The results of this study suggest that the aberrations in one-carbon metabolism appear to induce altered gene expression of EC-SOD, GSTP1, and BNIP3, and thus contribute to the increased oxidative stress and increased susceptibility to CAD.

  4. Prebiotic chirality

    NASA Astrophysics Data System (ADS)

    Mekki-Berrada, Ali

    Bringing closer phospholipids each other on a bilayer of liposome, causes their rotation around their fatty acids axis, generating a force which brings closer the two sheets of the bilayer. In this theoretical study I show that for getting the greater cohesion of the liposome, by these forces, the serine in the hydrophilic head must have a L chirality. In the case where the hydrophilic head is absent amino acids with L chirality could contribute to this cohesion by taking the place of L-serine. Some coenzymes having a configuration similar to ethanolamine may also contribute. This is the case of pyridoxamine, thiamine and tetrahydrofolic acid. The grouping of amino acids of L chirality and pyridoxamine on the wall could initialize the prebiotic metabolism of these L amino acids only. This would explain the origin of the homo-chirality of amino acids in living world. Furthermore I show that in the hydrophilic head, the esterification of glycerol-phosphate by two fatty acids go through the positioning of dihydroxyacetone-phosphate and L-glyceraldehyde-3-phosphate, but not of D-glyceraldehyde-3-phosphate, prior their hydrogenation to glycerol-3- phosphate. The accumulation of D-glyceraldehyde-3-phosphate in the cytoplasm displace the thermodynamic equilibria towards the synthesis of D-dATP from D-glyceraldehyde-3-phosphate, acetaldehyde and prebiotic adenine, a reaction which does not require a coenzyme in the biotic metabolism. D-dATP and thiamine, more prebiotic metabolism of L-amino acids on the wall, would initialize D-pentoses phosphate and D-nucleotides pathways from the reaction of D-glyceraldehyde-3-phosphate + dihydroxyacetone-phosphate + prebiotic nucleic bases. The exhaustion of the prebiotic glyceraldehyde (racemic) and the nascent biotic metabolism dominated by D-glyceraldehyde-3-phosphate, would explain the origin of homo-chirality of sugars in living world. References: http://en.wikiversity.org/wiki/Prebiotic_chirality

  5. Fluorescent biphenyl derivatives of phenylalanine suitable for protein modification.

    PubMed

    Chen, Shengxi; Fahmi, Nour Eddine; Bhattacharya, Chandrabali; Wang, Lin; Jin, Yuguang; Benkovic, Stephen J; Hecht, Sidney M

    2013-11-26

    In a recent study, we demonstrated that structurally compact fluorophores incorporated into the side chains of amino acids could be introduced into dihydrofolate reductase from Escherichia coli (ecDHFR) with minimal disruption of protein structure or function, even when the site of incorporation was within a folded region of the protein. The modified proteins could be employed for FRET measurements, providing sensitive monitors of changes in protein conformation. The very favorable results achieved in that study encouraged us to prepare additional fluorescent amino acids of potential utility for studying protein dynamics. Presently, we describe the synthesis and photophysical characterization of four positional isomers of biphenyl-phenylalanine, all of which were found to exhibit potentially useful fluorescent properties. All four phenylalanine derivatives were used to activate suppressor tRNA transcripts and incorporated into multiple positions of ecDHFR. All phenylalanine derivatives were incorporated with good efficiency into position 16 of ecDHFR and afforded modified proteins that consumed NADPH at rates up to about twice the rate measured for wild type. This phenomenon has been noted on a number of occasions previously and shown to be due to an increase in the off-rate of tetrahydrofolate from the enzyme, altering a step that is normally rate limiting. When introduced into sterically accessible position 49, the four phenylalanine derivatives afforded DHFRs having catalytic function comparable to wild type. The four phenylalanine derivatives were also introduced into position 115 of ecDHFR, which is known to be a folded region of the protein less tolerant of structural alteration. As anticipated, significant differences were noted in the catalytic efficiencies of the derived proteins. The ability of two of the sizable biphenyl-phenylalanine derivatives to be accommodated at position 115 with minimal perturbation of DHFR function is attributed to rotational

  6. Methionine synthase is localized to the nucleus in Pichia pastoris and Candida albicans and to the cytoplasm in Saccharomyces cerevisiae.

    PubMed

    Sahu, Umakant; Rajendra, Vinod K H; Kapnoor, Shankar S; Bhagavat, Raghu; Chandra, Nagasuma; Rangarajan, Pundi N

    2017-09-08

    Methionine synthase (MS) catalyzes methylation of homocysteine, the last step in the biosynthesis of methionine, which is essential for the regeneration of tetrahydrofolate and biosynthesis of S-adenosylmethionine. Here, we report that MS is localized to the nucleus of Pichia pastoris and Candida albicans but is cytoplasmic in Saccharomyces cerevisiae The P. pastoris strain carrying a deletion of the MET6 gene encoding MS (Ppmet6) exhibits methionine as well as adenine auxotrophy indicating that MS is required for methionine as well as adenine biosynthesis. Nuclear localization of P. pastoris MS (PpMS) was abrogated by the deletion of 107 C-terminal amino acids or the R742A mutation. In silico analysis of the PpMS structure indicated that PpMS may exist in a dimer-like configuration in which Arg-742 of a monomer forms a salt bridge with Asp-113 of another monomer. Biochemical studies indicate that R742A as well as D113R mutations abrogate nuclear localization of PpMS and its ability to reverse methionine auxotrophy of Ppmet6 Thus, association of two PpMS monomers through the interaction of Arg-742 and Asp-113 is essential for catalytic activity and nuclear localization. When PpMS is targeted to the cytoplasm employing a heterologous nuclear export signal, it is expressed at very low levels and is unable to reverse methionine and adenine auxotrophy of Ppmet6 Thus, nuclear localization is essential for the stability and function of MS in P. pastoris. We conclude that nuclear localization of MS is a unique feature of respiratory yeasts such as P. pastoris and C. albicans, and it may have novel moonlighting functions in the nucleus. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells.

    PubMed

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Kye Sook; Kang, Keon Wook; Oh, Soo Jin; Lee, Ki Ho; Kim, Hwan Mook; Ma, Jin Yeul; Kim, Sang Kyum

    2011-08-15

    Although methionine dependency is a phenotypic characteristic of tumor cells, it remains to be determined whether changes in sulfur amino acid metabolism occur in cancer cells resistant to chemotherapeutic medications. We compared expression/activity of sulfur amino acid metabolizing enzymes and cellular levels of sulfur amino acids and their metabolites between normal MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Adr) cells. The S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in MCF-7/Adr cells decreased to ~10% relative to that in MCF-7 cells, which may have resulted from down-regulation of S-adenosylhomocysteine hydrolase. Expression of homocysteine-clearing enzymes, such as cystathionine beta-synthase, methionine synthase/methylene tetrahydrofolate reductase, and betaine homocysteine methyltransferase, was up-regulated in MCF-7/Adr cells, suggesting that acquiring doxorubicin resistance attenuated methionine-dependence and activated transsulfuration from methionine to cysteine. Homocysteine was similar, which is associated with a balance between the increased expressions of homocysteine-clearing enzymes and decreased extracellular homocysteine. Despite an elevation in cysteine, cellular GSH decreased in MCF-7/Adr cells, which was attributed to over-efflux of GSH into the medium and down-regulation of the GSH synthesis enzyme. Consequently, MCF-7/Adr cells were more sensitive to the oxidative stress induced by bleomycin and menadione than MCF-7 cells. In conclusion, our results suggest that regulating sulfur amino acid metabolism may be a possible therapeutic target for chemoresistant cancer cells. These results warrant further investigations to determine the role of sulfur amino acid metabolism in acquiring anticancer drug resistance in cancer cells using chemical and biological regulators involved in sulfur amino acid metabolism. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism.

    PubMed

    Sousa, Filipa L; Martin, William F

    2014-07-01

    The deep dichotomy of archaea and bacteria is evident in many basic traits including ribosomal protein composition, membrane lipid synthesis, cell wall constituents, and flagellar composition. Here we explore that deep dichotomy further by examining the distribution of genes for the synthesis of the central carriers of one carbon units, tetrahydrofolate (H4F) and tetrahydromethanopterin (H4MPT), in bacteria and archaea. The enzymes underlying those distinct biosynthetic routes are broadly unrelated across the bacterial-archaeal divide, indicating that the corresponding pathways arose independently. That deep divergence in one carbon metabolism is mirrored in the structurally unrelated enzymes and different organic cofactors that methanogens (archaea) and acetogens (bacteria) use to perform methyl synthesis in their H4F- and H4MPT-dependent versions, respectively, of the acetyl-CoA pathway. By contrast, acetyl synthesis in the acetyl-CoA pathway - from a methyl group, CO2 and reduced ferredoxin - is simpler, uniform and conserved across acetogens and methanogens, and involves only transition metals as catalysts. The data suggest that the acetyl-CoA pathway, while being the most ancient of known CO2 assimilation pathways, reflects two phases in early evolution: an ancient phase in a geochemically confined and non-free-living universal common ancestor, in which acetyl thioester synthesis proceeded spontaneously with the help of geochemically supplied methyl groups, and a later phase that reflects the primordial divergence of the bacterial and archaeal stem groups, which independently invented genetically-encoded means to synthesize methyl groups via enzymatic reactions. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.

  9. Adenosine kinase-deficient mutant of Saccharomyces cerevisiae accumulates S-adenosylmethionine because of an enhanced methionine biosynthesis pathway.

    PubMed

    Kanai, Muneyoshi; Masuda, Mitsunori; Takaoka, Yasumichi; Ikeda, Hiroko; Masaki, Kazuo; Fujii, Tsutomu; Iefuji, Haruyuki

    2013-02-01

    To isolate an S-adenosylmethionine (SAM)-accumulating yeast strain and to develop a more efficient method of producing SAM, we screened methionine-resistant strains using the yeast deletion library of budding yeast and isolated 123 strains. The SAM content in 81 of the 123 strains was higher than that in the parental strain BY4742. We identified ADO1 encoding adenosine kinase as one of the factors participating in high SAM accumulation. The X∆ado1 strain that was constructed from the X2180-1A strain (MAT a, ATCC 26786) could accumulate approximately 30-fold (18 mg/g dry cell weight) more SAM than the X2180-1A strain in yeast extract peptone dextrose medium. Furthermore, we attempted to identify the molecular basis underlying the differences in SAM accumulation between X∆ado1 and X2180-1A strains. DNA microarray analysis revealed that the genes involved in the methionine biosynthesis pathway, phosphate metabolism, and hexose transport were mainly overexpressed in the X∆ado1 strain compared with the X2180-1A strain. We also determined the levels of various metabolites involved in the methionine biosynthesis pathway and found increased content of SAM, tetrahydrofolate (THF), inorganic phosphate, polyphosphoric acid, and S-adenosylhomocysteine in the X∆ado1 strain. In contrast, the content of 5-methyl-THF, homocysteine, glutathione, and adenosine was decreased. These results indicated that the ∆ado1 strain could accumulate SAM because of preferential activation of the methionine biosynthesis pathway.

  10. Biosynthetic incorporation of telluromethionine into dihydrofolate reductase and crystallographic analysis of the distribution of tellurium atoms in the protein molecule

    SciTech Connect

    Kunkle, M.G.; Lewinski, K.; Boles, J.O.; Dunlap, R.B.; Odom, J.D.; Lebioda, L.

    1994-12-01

    Recent successes in crystallographic studies of proteins with methionine (Met) residues replaced with SeMet, pioneered by Hendrickson and coworkers, inspired us to replace Met with TeMet in Escherichia coli dihydrofolate reductase (DHFR). E. coli DHFR, which catalyzes the NADPH-dependent reduction of dihydrofolate to tetrahydrofolate, consists of 159 residues, 5 of which are Met. TeMet was incorporated into DHFR using the Met auxotroph, E. coli DL41, carrying the expression vector pWT8 with an IPTG inducible promoter and ampicillin resistance gene. The enzyme was purified by successive chromatography on Q-Sepharose and PHenyl Sepharose resins, yielding milligram quantities of homogeneous enzyme with a specific activity of 40 units/mg. TeMet DHFR exhibits kinetic properties similar to those of wt DHFR. Amino acid analysis indicated 3 authentic Met residues in TeMet DHFR, whereas atomic absorption spectroscopy detected 2 Te per protein molecule. Amino acid sequence analysis results suggested that only authentic Met was present in the first three Met positions (1,16,and 20). Crystals of Te-DHFR were grown in the presence of methotrexate from PEG 4000 and were isomorphous with wt-DHFR crystals grown from ethanol. Difference Fourier maps and restrained least-squares refinement show very little, if any, Te in the first three Met positions: Met{sup 1}, Met{sup 16}, and Met{sup 20}, whereas the occupancy of Te in positions 42 and 92 is 0.64. Apparently, the process of folding, subsequent purification, and crystallization select DHFR molecules with Te in Met{sup 42} and Met{sup 92}. Replacing Met with TeMet provides an internal probe that should facilitate structural and mechanistic studies of proteins.

  11. Analysis of MTHFR, CBS, Glutathione, Taurine, and Hydrogen Sulfide Levels in Retinas of Hyperhomocysteinemic Mice

    PubMed Central

    Cui, Xuezhi; Navneet, Soumya; Wang, Jing; Roon, Penny; Chen, Wei; Xian, Ming; Smith, Sylvia B.

    2017-01-01

    Purpose Hyperhomocysteinemia (Hhcy) is implicated in certain retinal neurovascular diseases, although whether it is causative remains uncertain. In isolated ganglion cells (GCs), mild Hhcy induces profound death, whereas retinal phenotypes in Hhcy mice caused by mutations in remethylation (methylene tetrahydrofolatereductase [Mthfr+/−]) or transsulfuration pathways (cystathionine β-synthase [Cbs+/−]) demonstrate mild GC loss and mild vasculopathy. The current work investigated compensation in vivo of one pathway for the other, and, because the transsulfuration pathway yields cysteine necessary for formation of glutathione (GSH), taurine, and hydrogen sulfide (H2S), they were analyzed also. Methods Retinas isolated from wild-type (WT), Mthfr+/−, and Cbs+/− mice (12 and 22 weeks) were analyzed for methylene tetrahydrofolate reductase (MTHFR), cystathionine-β-synthase (CBS), and cystathionase (CTH) RNA/protein levels. Retinas were evaluated for levels of reduced:oxidized GSH (GSH:GSSG), Slc7a11 (xCT), taurine, taurine transporter (TAUT), and H2S. Results Aside from decreased CBS RNA/protein levels in Cbs+/− retinas, there were minimal alterations in remethylation/transsulfuration pathways in the two mutant mice strains. Glutathione and taurine levels in Mthfr+/− and Cbs+/− retinas were similar to WT, which may be due to robust levels of xCT and TAUT in mutant retinas. Interestingly, levels of H2S were markedly increased in retinas of Mthfr+/− and Cbs+/− mice compared with WT. Conclusions Ganglion cell loss and vasculopathy observed in Mthfr+/− and Cbs+/− mouse retinas may be milder than expected, not because of compensatory increases of enzymes in remethylation/transsulfuration pathways, but because downstream transsulfuration pathway products GSH, taurine, and H2S are maintained at robust levels. Elevation of H2S is particularly intriguing owing to neuroprotective properties reported for this gasotransmitter. PMID:28384716

  12. Role of an invariant lysine residue in folate binding on Escherichia coli thymidylate synthase: calorimetric and crystallographic analysis of the K48Q mutant

    PubMed Central

    Arvizu-Flores, Aldo A.; Sugich-Miranda, Rocio; Arreola, Rodrigo; Garcia-Orozco, Karina D.; Velazquez-Contreras, Enrique F.; Montfort, William R.; Maley, Frank; Sotelo-Mundo, Rogerio R.

    2008-01-01

    Thymidylate synthase (TS) catalyzes the reductive methylation of deoxyuridine monophosphate (dUMP) using methylene tetrahydrofolate (CH2THF) as cofactor, the glutamate tail of which forms a water-mediated hydrogen-bond with an invariant lysine residue of this enzyme. To understand the role of this interaction, we studied the K48Q mutant of Escherichia coli TS using structural and biophysical methods. The kcat of the K48Q mutant was 430 fold lower than wild-type TS in activity, while the the Km for the (R)-stereoisomer of CH2THF was 300 µM, about 30 fold larger than Km from the wild-type TS. Affinity constants were determined using isothermal titration calorimetry, which showed that binding was reduced by one order of magnitude for folate-like TS inhibitors, such as propargyl-dideaza folate (PDDF) or compounds that distort the TS active site like BW1843U89 (U89). The crystal structure of the K48Q-dUMP complex revealed that dUMP binding is not impaired in the mutamt, and that U89 in a ternary complex of K48Q-nucleotide-U89 was bound in the active site with subtle differences relative to comparable wild type complexes. PDDF failed to form ternary complexes with K48Q and dUMP. Thermodynamic data correlated with the structural determinations, since PDDF binding was dominated by enthalpic effects while U89 had an important entropic component. In conclusion, K48 is critical for catalysis since it leads to a productive CH2THF binding, while mutation at this residue does not affect much the binding of inhibitors that do not make contact with this group. PMID:18403248

  13. Association of PHB 1630 C>T and MTHFR 677 C>T polymorphisms with breast and ovarian cancer risk in BRCA1/2 mutation carriers: results from a multicenter study

    PubMed Central

    Jakubowska, A; Rozkrut, D; Antoniou, A; Hamann, U; Scott, R J; McGuffog, L; Healy, S; Sinilnikova, O M; Rennert, G; Lejbkowicz, F; Flugelman, A; Andrulis, I L; Glendon, G; Ozcelik, H; Thomassen, M; Paligo, M; Aretini, P; Kantala, J; Aroer, B; von Wachenfeldt, A; Liljegren, A; Loman, N; Herbst, K; Kristoffersson, U; Rosenquist, R; Karlsson, P; Stenmark-Askmalm, M; Melin, B; Nathanson, K L; Domchek, S M; Byrski, T; Huzarski, T; Gronwald, J; Menkiszak, J; Cybulski, C; Serrano, P; Osorio, A; Cajal, T R; Tsitlaidou, M; Benítez, J; Gilbert, M; Rookus, M; Aalfs, C M; Kluijt, I; Boessenkool-Pape, J L; Meijers-Heijboer, H E J; Oosterwijk, J C; van Asperen, C J; Blok, M J; Nelen, M R; van den Ouweland, A M W; Seynaeve, C; van der Luijt, R B; Devilee, P; Easton, D F; Peock, S; Frost, D; Platte, R; Ellis, S D; Fineberg, E; Evans, D G; Lalloo, F; Eeles, R; Jacobs, C; Adlard, J; Davidson, R; Eccles, D; Cole, T; Cook, J; Godwin, A; Bove, B; Stoppa-Lyonnet, D; Caux-Moncoutier, V; Belotti, M; Tirapo, C; Mazoyer, S; Barjhoux, L; Boutry-Kryza, N; Pujol, P; Coupier, I; Peyrat, J-P; Vennin, P; Muller, D; Fricker, J-P; Venat-Bouvet, L; Johannsson, O Th; Isaacs, C; Schmutzler, R; Wappenschmidt, B; Meindl, A; Arnold, N; Varon-Mateeva, R; Niederacher, D; Sutter, C; Deissler, H; Preisler-Adams, S; Simard, J; Soucy, P; Durocher, F; Chenevix-Trench, G; Beesley, J; Chen, X; Rebbeck, T; Couch, F; Wang, X; Lindor, N; Fredericksen, Z; Pankratz, V S; Peterlongo, P; Bonanni, B; Fortuzzi, S; Peissel, B; Szabo, C; Mai, P L; Loud, J T; Lubinski, J

    2012-01-01

    Background: The variable penetrance of breast cancer in BRCA1/2 mutation carriers suggests that other genetic or environmental factors modify breast cancer risk. Two genes of special interest are prohibitin (PHB) and methylene-tetrahydrofolate reductase (MTHFR), both of which are important either directly or indirectly in maintaining genomic integrity. Methods: To evaluate the potential role of genetic variants within PHB and MTHFR in breast and ovarian cancer risk, 4102 BRCA1 and 2093 BRCA2 mutation carriers, and 6211 BRCA1 and 2902 BRCA2 carriers from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA) were genotyped for the PHB 1630 C>T (rs6917) polymorphism and the MTHFR 677 C>T (rs1801133) polymorphism, respectively. Results: There was no evidence of association between the PHB 1630 C>T and MTHFR 677 C>T polymorphisms with either disease for BRCA1 or BRCA2 mutation carriers when breast and ovarian cancer associations were evaluated separately. Analysis that evaluated associations for breast and ovarian cancer simultaneously showed some evidence that BRCA1 mutation carriers who had the rare homozygote genotype (TT) of the PHB 1630 C>T polymorphism were at increased risk of both breast and ovarian cancer (HR 1.50, 95%CI 1.10–2.04 and HR 2.16, 95%CI 1.24–3.76, respectively). However, there was no evidence of association under a multiplicative model for the effect of each minor allele. Conclusion: The PHB 1630TT genotype may modify breast and ovarian cancer risks in BRCA1 mutation carriers. This association need to be evaluated in larger series of BRCA1 mutation carriers. PMID:22669161

  14. Momentum Distribution as a Fingerprint of Quantum Delocalization in Enzymatic Reactions: Open-Chain Path-Integral Simulations of Model Systems and the Hydride Transfer in Dihydrofolate Reductase.

    PubMed

    Engel, Hamutal; Doron, Dvir; Kohen, Amnon; Major, Dan Thomas

    2012-04-10

    The inclusion of nuclear quantum effects such as zero-point energy and tunneling is of great importance in studying condensed phase chemical reactions involving the transfer of protons, hydrogen atoms, and hydride ions. In the current work, we derive an efficient quantum simulation approach for the computation of the momentum distribution in condensed phase chemical reactions. The method is based on a quantum-classical approach wherein quantum and classical simulations are performed separately. The classical simulations use standard sampling techniques, whereas the quantum simulations employ an open polymer chain path integral formulation which is computed using an efficient Monte Carlo staging algorithm. The approach is validated by applying it to a one-dimensional harmonic oscillator and symmetric double-well potential. Subsequently, the method is applied to the dihydrofolate reductase (DHFR) catalyzed reduction of 7,8-dihydrofolate by nicotinamide adenine dinucleotide phosphate hydride (NADPH) to yield S-5,6,7,8-tetrahydrofolate and NADP(+). The key chemical step in the catalytic cycle of DHFR involves a stereospecific hydride transfer. In order to estimate the amount of quantum delocalization, we compute the position and momentum distributions for the transferring hydride ion in the reactant state (RS) and transition state (TS) using a recently developed hybrid semiempirical quantum mechanics-molecular mechanics potential energy surface. Additionally, we examine the effect of compression of the donor-acceptor distance (DAD) in the TS on the momentum distribution. The present results suggest differential quantum delocalization in the RS and TS, as well as reduced tunneling upon DAD compression.

  15. Effects of chronic ethanol ingestion and folate deficiency on the activity of 10-formyltetrahydrofolate dehydrogenase in rat liver.

    PubMed

    Min, Hyesun; Im, Eun-Sun; Seo, Jung-Sook; Mun, Ju Ae; Burri, Betty J

    2005-12-01

    We recently observed that ethanol feeding impairs 10-formyltetrahydrofolate (10-FTHF) dehydrogenase (EC 1.5.1.6.) and 10-FTHF hydrolase activity in rats. In the present study, we explored the effects of folate deficiency or sufficiency combined with alcoholic intake on 10-FTHF and possible mechanisms by which chronic ethanol ingestion produces folate deficiency. Sprague-Dawley rats were fed either folate-sufficient (FS) or folate-deficient (FD) diets; with or without ethanol (E) for four weeks. Hepatic 10-FTHF dehydrogenase and hydrolase activity, plasma folate and homocysteine were measured at baseline and after feeding experimental diets. Liver weight increased slightly with either folate deficiency or ethanol consumption. In rats fed the folate-sufficient diet with ethanol (FSE), plasma folate was decreased slightly (p<0.05) and plasma homocysteine elevated compared to rats fed the FS diet without ethanol. Ethanol did not affect plasma folate and plasma homocysteine in FD rats. Red-blood cell (RBC) folate was increased similarly in rats by ethanol feeding (FSE and FDE>FS and FD). Feeding folate deficient or ethanol (FSE, FD and FDE) diets depressed hepatic activities of 10-FTHF dehydrogenase, which catalyzes the oxidative deformylation of 10-FTHF to tetrahydrofolate (THF) and carbon dioxide. Rats consuming the FDE diet had the lowest enzyme activities of the experimental groups, implying that folate deficiency and ethanol consumption each affect enzyme activity. We confirm that ethanol decreases hepatic 10-FTHF dehydrogenase activity and show that this decrease occurs irrespective of folate status. This shows that modulation of 10-FTHF is one possible mechanism by which ethanol intake decreases folate status and affects one-carbon metabolism.

  16. Folate metabolic pathways in Leishmania.

    PubMed

    Vickers, Tim J; Beverley, Stephen M

    2011-01-01

    Trypanosomatid parasitic protozoans of the genus Leishmania are autotrophic for both folate and unconjugated pteridines. Leishmania salvage these metabolites from their mammalian hosts and insect vectors through multiple transporters. Within the parasite, folates are reduced by a bifunctional DHFR (dihydrofolate reductase)-TS (thymidylate synthase) and by a novel PTR1 (pteridine reductase 1), which reduces both folates and unconjugated pteridines. PTR1 can act as a metabolic bypass of DHFR inhibition, reducing the effectiveness of existing antifolate drugs. Leishmania possess a reduced set of folate-dependent metabolic reactions and can salvage many of the key products of folate metabolism from their hosts. For example, they lack purine synthesis, which normally requires 10-formyltetrahydrofolate, and instead rely on a network of purine salvage enzymes. Leishmania elaborate at least three pathways for the synthesis of the key metabolite 5,10-methylene-tetrahydrofolate, required for the synthesis of thymidylate, and for 10-formyltetrahydrofolate, whose presumptive function is for methionyl-tRNAMet formylation required for mitochondrial protein synthesis. Genetic studies have shown that the synthesis of methionine using 5-methyltetrahydrofolate is dispensable, as is the activity of the glycine cleavage complex, probably due to redundancy with serine hydroxymethyltransferase. Although not always essential, the loss of several folate metabolic enzymes results in attenuation or loss of virulence in animal models, and a null DHFR-TS mutant has been used to induce protective immunity. The folate metabolic pathway provides numerous opportunities for targeted chemotherapy, with strong potential for 'repurposing' of compounds developed originally for treatment of human cancers or other infectious agents.

  17. Computer modelling of antifolate inhibition of folate metabolism using hybrid functional petri nets.

    PubMed

    Assaraf, Yehuda G; Ifergan, Ilan; Kadry, Wisam N; Pinter, Ron Y

    2006-06-21

    Antifolates are used in the treatment of various human malignancies and exert their cytotoxic activity by inhibiting folate-dependent enzymes resulting in disruption of DNA synthesis and cell death. Here we devised a computerized hybrid functional petri nets (HFPN) modelling of folate metabolism under physiological and antifolate inhibitory conditions. This HFPN modelling proved valid as a good agreement was found between the simulated steady-state concentrations of various reduced folates and those published for cell extracts; consistently, the simulation derived total folate pool size (11.3 microM) was identical to that published for cell extracts. In silico experiments were conducted to characterize the inhibitory profile of four distinct antifolates including methotrexate (MTX), tomudex, and LY309887, which inhibit dihydrofolate reductase (DHFR), thymidylate synthase (TS) and glycineamide ribonucleotide transformylase (GARTFase), respectively, as well as pemetrexed which has the capacity to inhibit all three enzymes. In order to assess the inhibitory activity of antifolates on purines and pyrimidines, the biosynthesis rates of IMP (20.53 microM/min) and dTMP (23.8 microM/min) were first simulated. Whereas the biochemical inhibitory profile of MTX was characterized by increased dihydrofolate and decreased tetrahydrofolate (THF) concentrations, the remaining antifolates did not decrease THF levels. Furthermore, MTX was 766- and 10-fold more potent in decreasing the production rates of IMP and dTMP, respectively, than pemetrexed. LY309887 indirectly decreased the rate of dTMP production by reducing the levels of 5-CH2-THF, a folate cofactor for TS. Surprisingly, pemetrexed failed to inhibit DHFR even at high concentrations. This HFPN-based simulation offers an inexpensive, user-friendly, rapid and reliable means of pre-clinical evaluation of the inhibitory profiles of antifolates.

  18. Analysis of thrombophilic genetic mutations in patients with Sheehan's syndrome: is thrombophilia responsible for the pathogenesis of Sheehan's syndrome?

    PubMed

    Gokalp, Deniz; Tuzcu, Alpaslan; Bahceci, Mithat; Ayyildiz, Orhan; Yurt, Murat; Celik, Yusuf; Alpagat, Gulistan

    2011-06-01

    The gene mutations of Factor V R506Q (FV-Leiden), prothrombin (FII G20210A), methylene tetrahydrofolate reductase (MTHFR) C677T and A1298C and PAI-1 4G/5G are well-established risk factors for thrombosis. We aimed to investigate the prevalence of these gene mutations and their possible impact on the development of pathogenesis in patients with Sheehan's syndrome (SS). 40 female patients with SS compared to a control group of 45 healthy women. The presence of FV-Leiden, FII G20210A, MTHFR C677T, MTHFR A1298C and PAI-1 4G/5G gene mutations were assessed by polymerase chain reaction analysis with a light cycler analyzer. An odds ratio of greater than one is considered to increase the risk of SS disease as found in Factor V Leiden, FII G20210A, MTHFR C677T, MTHFR A1298C and PAI-1 4G/5G polymorphism, as follows respectively: 1.13, 1.85, 6.00, 8.14 and 1.45. MTHFR C677T and MTHFR A1298C polymorphism were found significantly higher in SS patients than the control group (P<0.001), however FV-Leiden, FII G20210A and PAI-1 4G/5G polymorphism showed no significant difference (P>0.05). The level of plasma total homocysteine (tHcy) was significantly higher in patients with SS than in the control group (P<0.001). We suggest that the genetic mutations of FV-Leiden, FII G20210A, MTHFR C677T, MTHFR A1298C and PAI-1 4G/5G increase the risk of SS. Also, high plasma tHcy levels may be a risk factor for the development of SS.

  19. Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells

    SciTech Connect

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Kye Sook; Kang, Keon Wook; Oh, Soo Jin; Lee, Ki Ho; Kim, Hwan Mook; Ma, Jin Yeul; Kim, Sang Kyum

    2011-08-15

    Although methionine dependency is a phenotypic characteristic of tumor cells, it remains to be determined whether changes in sulfur amino acid metabolism occur in cancer cells resistant to chemotherapeutic medications. We compared expression/activity of sulfur amino acid metabolizing enzymes and cellular levels of sulfur amino acids and their metabolites between normal MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Adr) cells. The S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in MCF-7/Adr cells decreased to {approx} 10% relative to that in MCF-7 cells, which may have resulted from down-regulation of S-adenosylhomocysteine hydrolase. Expression of homocysteine-clearing enzymes, such as cystathionine beta-synthase, methionine synthase/methylene tetrahydrofolate reductase, and betaine homocysteine methyltransferase, was up-regulated in MCF-7/Adr cells, suggesting that acquiring doxorubicin resistance attenuated methionine-dependence and activated transsulfuration from methionine to cysteine. Homocysteine was similar, which is associated with a balance between the increased expressions of homocysteine-clearing enzymes and decreased extracellular homocysteine. Despite an elevation in cysteine, cellular GSH decreased in MCF-7/Adr cells, which was attributed to over-efflux of GSH into the medium and down-regulation of the GSH synthesis enzyme. Consequently, MCF-7/Adr cells were more sensitive to the oxidative stress induced by bleomycin and menadione than MCF-7 cells. In conclusion, our results suggest that regulating sulfur amino acid metabolism may be a possible therapeutic target for chemoresistant cancer cells. These results warrant further investigations to determine the role of sulfur amino acid metabolism in acquiring anticancer drug resistance in cancer cells using chemical and biological regulators involved in sulfur amino acid metabolism. - Research Highlights: > MCF-7/Adr cells showed decreases in cellular GSH

  20. Fundamental Role of Methylenetetrahydrofolate Reductase 677 C → T Genotype and Flavin Compounds in Biochemical Phenotypes for Schizophrenia and Schizoaffective Psychosis

    PubMed Central

    Fryar-Williams, Stephanie

    2016-01-01

    The Mental Health Biomarker Project (2010–2016) explored variables for psychosis in schizophrenia and schizoaffective disorder. Blood samples from 67, highly characterized symptomatic cases and 67 gender and age matched control participants were analyzed for methyl tetrahydrofolate reductase (MTHFR) 677C → T gene variants and for vitamin B6, B12 and D, folate, unbound copper, zinc cofactors for enzymes in the methylation cycle, and related catecholamine pathways. Urine samples were analyzed for indole-catecholamines, their metabolites, and oxidative-stress marker, hydroxylpyrolline-2-one (HPL). Rating scales were Brief Psychiatric Rating Scale, Positive and Negative Syndrome Scale, Global Assessment of Function scale, Clinical Global Impression (CGI) score, and Social and Occupational Functioning Assessment Scale (SOFAS). Analysis used Spearman’s correlates, receiver operating characteristics and structural equation modeling (SEM). The correlative pattern of variables in the overall participant sample strongly implicated monoamine oxidase (MAO) enzyme inactivity so the significant role of MAO’s cofactor flavin adenine nucleotide and its precursor flavin adenine mononucleotide (FMN) within the biochemical pathways was investigated and confirmed as 71% on SEM of the total sample. Splitting the data sets for MTHFR 677C → T polymorphism variants coding for the MTHFR enzyme, discovered that biochemistry variables relating to the wild-type enzyme differed markedly in pattern from those coded by the homozygous variant and that the hereozygous-variant pattern resembled the wild-type-coded pattern. The MTHFR 677C → T-wild and -heterozygous gene variants have a pattern of depleted vitamin cofactors characteristic of flavin insufficiency with under-methylation and severe oxidative stress. The second homozygous MTHFR 677TT pattern related to elevated copper:zinc ratio and a vitamin pattern related to flavin sufficiency and risk of over-methylation. The

  1. Loss of function of folylpolyglutamate synthetase 1 reduces lignin content and improves cell wall digestibility in Arabidopsis

    SciTech Connect

    Srivastava, Avinash C.; Chen, Fang; Ray, Tui; Pattathil, Sivakumar; Peña, Maria J.; Avci, Utku; Li, Hongjia; Huhman, David V.; Backe, Jason; Urbanowicz, Breeanna; Miller, Jeffrey S.; Bedair, Mohamed; Wyman, Charles E.; Sumner, Lloyd W.; York, William S.; Hahn, Michael G.; Dixon, Richard A.; Blancaflor, Elison B.; Tang, Yuhong

    2015-12-21

    One-carbon (C1) metabolism is important for synthesizing a range of biologically important compounds that are essential for life. In plants, the C1 pathway is crucial for the synthesis of a large number of secondary metabolites, including lignin. Tetrahydrofolate and its derivatives, collectively referred to as folates, are crucial co-factors for C1 metabolic pathway enzymes. Given the link between the C1 and phenylpropanoid pathways, we evaluated whether folylpolyglutamate synthetase (FPGS), an enzyme that catalyzes the addition of a glutamate tail to folates to form folylpolyglutamates, can be a viable target for reducing cell wall recalcitrance in plants. Consistent with its role in lignocellulosic formation, FPGS1 was preferentially expressed in vascular tissues. Total lignin was low in fpgs1 plants leading to higher saccharification efficiency of the mutant. The decrease in total lignin in fpgs1 was mainly due to lower guaiacyl (G) lignin levels. Glycome profiling revealed subtle alterations in the cell walls of fpgs1. Further analyses of hemicellulosic polysaccharides by NMR showed that the degree of methylation of 4-O-methyl glucuronoxylan was reduced in the fpgs1 mutant. Microarray analysis and real-time qRT-PCR revealed that transcripts of a number of genes in the C1 and lignin pathways had altered expression in fpgs1 mutants. Consistent with the transcript changes of C1-related genes, a significant reduction in S-adenosyl-l-methionine content was detected in the fpgs1 mutant. The modified expression of the various methyltransferases and lignin-related genes indicate possible feedback regulation of C1 pathway-mediated lignin biosynthesis. In conclusion, our observations provide genetic and biochemical support for the importance of folylpolyglutamates in the lignocellulosic pathway and reinforces previous observations that targeting a single FPGS isoform for down-regulation leads to reduced lignin in plants. Because fpgs1 mutants had no dramatic defects in

  2. Loss of function of folylpolyglutamate synthetase 1 reduces lignin content and improves cell wall digestibility in Arabidopsis

    DOE PAGES

    Srivastava, Avinash C.; Chen, Fang; Ray, Tui; ...

    2015-12-21

    One-carbon (C1) metabolism is important for synthesizing a range of biologically important compounds that are essential for life. In plants, the C1 pathway is crucial for the synthesis of a large number of secondary metabolites, including lignin. Tetrahydrofolate and its derivatives, collectively referred to as folates, are crucial co-factors for C1 metabolic pathway enzymes. Given the link between the C1 and phenylpropanoid pathways, we evaluated whether folylpolyglutamate synthetase (FPGS), an enzyme that catalyzes the addition of a glutamate tail to folates to form folylpolyglutamates, can be a viable target for reducing cell wall recalcitrance in plants. Consistent with its rolemore » in lignocellulosic formation, FPGS1 was preferentially expressed in vascular tissues. Total lignin was low in fpgs1 plants leading to higher saccharification efficiency of the mutant. The decrease in total lignin in fpgs1 was mainly due to lower guaiacyl (G) lignin levels. Glycome profiling revealed subtle alterations in the cell walls of fpgs1. Further analyses of hemicellulosic polysaccharides by NMR showed that the degree of methylation of 4-O-methyl glucuronoxylan was reduced in the fpgs1 mutant. Microarray analysis and real-time qRT-PCR revealed that transcripts of a number of genes in the C1 and lignin pathways had altered expression in fpgs1 mutants. Consistent with the transcript changes of C1-related genes, a significant reduction in S-adenosyl-l-methionine content was detected in the fpgs1 mutant. The modified expression of the various methyltransferases and lignin-related genes indicate possible feedback regulation of C1 pathway-mediated lignin biosynthesis. In conclusion, our observations provide genetic and biochemical support for the importance of folylpolyglutamates in the lignocellulosic pathway and reinforces previous observations that targeting a single FPGS isoform for down-regulation leads to reduced lignin in plants. Because fpgs1 mutants had no dramatic

  3. Enzymology of tRNA modification in the bacterial MnmEG pathway.

    PubMed

    Armengod, M-Eugenia; Moukadiri, Ismaïl; Prado, Silvia; Ruiz-Partida, Rafael; Benítez-Páez, Alfonso; Villarroya, Magda; Lomas, Rodrigo; Garzón, María J; Martínez-Zamora, Ana; Meseguer, Salvador; Navarro-González, Carmen

    2012-07-01

    Among all RNAs, tRNA exhibits the largest number and the widest variety of post-transcriptional modifications. Modifications within the anticodon stem loop, mainly at the wobble position and purine-37, collectively contribute to stabilize the codon-anticodon pairing, maintain the translational reading frame, facilitate the engagement of the ribosomal decoding site and enable translocation of tRNA from the A-site to the P-site of the ribosome. Modifications at the wobble uridine (U34) of tRNAs reading two degenerate codons ending in purine are complex and result from the activity of two multi-enzyme pathways, the IscS-MnmA and MnmEG pathways, which independently work on positions 2 and 5 of the U34 pyrimidine ring, respectively, and from a third pathway, controlled by TrmL (YibK), that modifies the 2'-hydroxyl group of the ribose. MnmEG is the only common pathway to all the mentioned tRNAs, and involves the GTP- and FAD-dependent activity of the MnmEG complex and, in some cases, the activity of the bifunctional enzyme MnmC. The Escherichia coli MnmEG complex catalyzes the incorporation of an aminomethyl group into the C5 atom of U34 using methylene-tetrahydrofolate and glycine or ammonium as donors. The reaction requires GTP hydrolysis, probably to assemble the active site of the enzyme or to carry out substrate recognition. Inactivation of the evolutionarily conserved MnmEG pathway produces a pleiotropic phenotype in bacteria and mitochondrial dysfunction in human cell lines. While the IscS-MnmA pathway and the MnmA-mediated thiouridylation reaction are relatively well understood, we have limited information on the reactions mediated by the MnmEG, MnmC and TrmL enzymes and on the precise role of proteins MnmE and MnmG in the MnmEG complex activity. This review summarizes the present state of knowledge on these pathways and what we still need to know, with special emphasis on the MnmEG pathway.

  4. A biologically based dynamic model for predicting the disposition of methanol and its metabolites in animals and humans.

    PubMed

    Bouchard, M; Brunet, R C; Droz, P O; Carrier, G

    2001-12-01

    A multicompartment biologically based dynamic model was developed to describe the time evolution of methanol and its metabolites in the whole body and in accessible biological matrices of rats, monkeys, and humans following different exposure scenarios. The dynamic of intercompartment exchanges was described mathematically by a mass balance differential equation system. The model's conceptual and functional representation was the same for rats, monkeys, and humans, but relevant published data specific to the species of interest served to determine the critical parameters of the kinetics. Simulations provided a close approximation to kinetic data available in the published literature. The average pulmonary absorption fraction of methanol was estimated to be 0.60 in rats, 0.69 in monkeys, and 0.58-0.82 in human volunteers. The corresponding average elimination half-life of absorbed methanol through metabolism to formaldehyde was estimated to be 1.3, 0.7-3.2, and 1.7 h. Saturation of methanol metabolism appeared to occur at a lower exposure in rats than in monkeys and humans. Also, the main species difference in the kinetics was attributed to a metabolism rate constant of whole body formaldehyde to formate estimated to be twice as high in rats as in monkeys. Inversely, in monkeys and in humans, a larger fraction of body burden of formaldehyde is rapidly transferred to a long-term component. The latter represents the formaldehyde that (directly or after oxidation to formate) binds to various endogenous molecules or is taken up by the tetrahydrofolic-acid-dependent one-carbon pathway to become the building block of synthetic pathways. This model can be used to quantitatively relate methanol or its metabolites in biological matrices to the absorbed dose and tissue burden at any point in time in rats, monkeys, and humans for different exposures, thus reducing uncertainties in the dose-response relationship, and animal-to-human and exposure scenario comparisons. The model

  5. [Pharmacogenetics and pharmacogenomics].

    PubMed

    Bourel, Michel; Ardaillou, Raymond

    2006-01-01

    Genetic polymorphisms can lead to drug adverse effects because certain allelic variants of genes that encode enzymes, targets or carriers involved in drug metabolism, are associated with an increase or a loss of function. Drug metabolism takes place essentially in the liver and is regulated by phase I enzymes (including several cytochrome P450 isoenzymes), the role of which is to make drug metabolites more polar by hydroxylation, and by phase II enzymes that catalyse conjugation reactions. Cytochromes P450 isoenzymes control 80% of oxidative reactions, owing to their low substrate specificity. The most extensively studied polymorphisms are those of CYP2D6 and CYP2C9, which are frequent and affect the metabolism of many drugs. For example, several CYP2C9 gene variants are associated with lower activity of the corresponding enzyme, potentially leading to drug overdose. Thiopurine methyl transferase and UDP-glucuronyl transferase are phase II enzymes that conjugate respectively 6-mercaptopurine metabolites with a methyl radical and metabolites of irinotecan (an anti-tumour drug) with a glucuronyl radical. Mutations in the corresponding genes can, through a loss of function, lead to excessively high levels of active metabolites, with a risk of bone marrow aplasia. The action of vitamin K antagonists is influenced by polymorphisms of vitamine K epoxyde reductase, the target molecule of vitamin K. A mutation in the methylene tetrahydrofolate reductase gene diminishes the folate pool and thereby increases the effects of methotrexate, a folic acid antagonist. Resistance to the anti-platelet effect of aspirin can be due to polymorphisms that affect other platelet aggregation pathways. Genotyping results must be confirmed by phenotyping, which examines the rate of transformation of a drug into its metabolites and shows whether the increase or decrease in this rate is linked to a specific polymorphism. Somatic mutations in malignant tumours can modify the response to

  6. Folate Levels and Polymorphisms in the Genes MTHFR, MTR, and TS in Colorectal Cancer

    PubMed Central

    Taflin, Helena; Wettergren, Yvonne; Odin, Elisabeth; Carlsson, Göran; Derwinger, Kristoffer

    2014-01-01

    AIM The aim of the study was to explore and describe the effect of polymorphisms in folate-associated genes regarding the levels of different folate forms and their distribution in tumors and mucosa in patients with colorectal cancer. MATERIALS AND METHODS Tumor and mucosa tissues from 53 patients with colorectal cancer were analyzed. The concentrations of tetrahydrofolate (THF), 5-methylTHF, and 5,10-methyleneTHF were measured by liquid chromatography—mass spectrometry. Genotyping of polymorphisms in the folate-associated genes methylenetetrahydrofolate reductase (MTHFR, C677T), methionine synthase (MTR, A2756G), and thymidylate synthase (TS, 5′-TSER 28 bp tandem repeat and 3′-TSUTR 6 bp deletion/insertion), were done by real-time polymerase chain reaction. Folate levels and distributions were determined in the total patient cohort and after subgrouping by genotypes. RESULTS The total folate level, as well as the THF and 5,10-methyleneTHF levels, were significantly higher in the tumor compared with mucosa tissue (P = 0.030, 0.031, and 0.015, respectively). The individual variation in folate levels in both tumor and mucosa were larger than the variation found when the patients were subgrouped by the gene polymorphisms. No significant differences in the mean concentration of any folate in the mucosa or tumor tissue were found in relation to the analyzed polymorphisms. The percentage level of 5,10-methyleneTHF in tumors was highest in patients with the MTHFR 677 CC genotype, and lowest in patients with the TT genotype (P = 0.033). A significantly lower percentage level of the 5,10-methyleneTHF level was found in tumors of patients with the 5′-TSER 3R/3R genotype (P = 0.0031). CONCLUSION A significant difference was found between the percentage level of 5,10-methyleneTHF in tumor tissues in relation to the MTHFR C677T and 5′-TSER 28 bp repeat polymorphisms. However, no differences were found in the actual tissue folate levels, or in their distribution, in

  7. Methanol toxicity and formate oxidation in NEUT2 mice.

    SciTech Connect

    Cook, R. J.; Champion, K. M.; Giometti, C. S.; Biosciences Division; Vanderbilt Univ.

    2001-09-15

    NEUT2 mice are deficient in cytosolic 10-formyltetrahydrofolate dehydrogenase (FDH; EC 1.5.1.6) which catalyzes the oxidation of excess folate-linked one-carbon units in the form of 10-formyltetrahydrofolate to CO{sub 2} and tetrahydrofolate. The absence of FDH should impair the oxidation of formate via the folate-dependent pathway and as a consequence render homozygous NEUT2 mice more susceptible to methanol toxicity. Normal (CB6-F1) and NEUT2 heterozygous and homozygous mice had essentially identical LD50 values for methanol, 6.08, 6.00, and 6.03 g/kg, respectively. Normal mice oxidized low doses of [{sup 14}C]sodium formate (ip 5 mg/kg) to {sup 14}CO{sub 2} at approximately twice the rate of homozygous NEUT2 mice, indicating the presence of another formate-oxidizing system in addition to FDH. Treatment of mice with the catalase inhibitor, 3-aminotriazole (1 g/kg ip) had no effect on the rate of formate oxidation, indicating that at low concentrations formate was not oxidized peroxidatively by catalase. High doses of [{sup 14}C]sodium formate (ip 100 mg/kg) were oxidized to {sup 14}CO{sub 2} at identical rates in normal and NEUT2 homozygous mice. Pretreatment with 3-aminotriazole (1 g/kg ip) in this instance resulted in a 40 and 50% decrease in formate oxidation to CO2 in both normal and homozygous NEUT2 mice, respectively. These results indicate that mice are able to oxidize formate to CO{sub 2} by at least three different routes: (1) folate-dependent via FDH at low levels of formate; (2) peroxidation by catalase at high levels of formate; and (3) by an unknown route(s) which appears to function at both low and high levels of formate. The implications of these observations are discussed in terms of the current hypotheses concerning methanol and formate toxicity in rodents and primates.

  8. Homocysteine and Coronary Heart Disease: Meta-analysis of MTHFR Case-Control Studies, Avoiding Publication Bias

    PubMed Central

    Verhoef, Petra; Dötsch-Klerk, Mariska; Lathrop, Mark; Xu, Peng; Nordestgaard, Børge G.; Holm, Hilma; Hopewell, Jemma C.; Saleheen, Danish; Tanaka, Toshihiro; Anand, Sonia S.; Chambers, John C.; Kleber, Marcus E.; Ouwehand, Willem H.; Yamada, Yoshiji; Elbers, Clara; Peters, Bas; Stewart, Alexandre F. R.; Reilly, Muredach M.; Thorand, Barbara; Yusuf, Salim; Engert, James C.; Assimes, Themistocles L.; Kooner, Jaspal; Danesh, John; Watkins, Hugh; Samani, Nilesh J.

    2012-01-01

    Background Moderately elevated blood levels of homocysteine are weakly correlated with coronary heart disease (CHD) risk, but causality remains uncertain. When folate levels are low, the TT genotype of the common C677T polymorphism (rs1801133) of the methylene tetrahydrofolate reductase gene (MTHFR) appreciably increases homocysteine levels, so “Mendelian randomization” studies using this variant as an instrumental variable could help test causality. Methods and Findings Nineteen unpublished datasets were obtained (total 48,175 CHD cases and 67,961 controls) in which multiple genetic variants had been measured, including MTHFR C677T. These datasets did not include measurements of blood homocysteine, but homocysteine levels would be expected to be about 20% higher with TT than with CC genotype in the populations studied. In meta-analyses of these unpublished datasets, the case-control CHD odds ratio (OR) and 95% CI comparing TT versus CC homozygotes was 1.02 (0.98–1.07; p = 0.28) overall, and 1.01 (0.95–1.07) in unsupplemented low-folate populations. By contrast, in a slightly updated meta-analysis of the 86 published studies (28,617 CHD cases and 41,857 controls), the OR was 1.15 (1.09–1.21), significantly discrepant (p = 0.001) with the OR in the unpublished datasets. Within the meta-analysis of published studies, the OR was 1.12 (1.04–1.21) in the 14 larger studies (those with variance of log OR<0.05; total 13,119 cases) and 1.18 (1.09–1.28) in the 72 smaller ones (total 15,498 cases). Conclusions The CI for the overall result from large unpublished datasets shows lifelong moderate homocysteine elevation has little or no effect on CHD. The discrepant overall result from previously published studies reflects publication bias or methodological problems. Please see later in the article for the Editors' Summary PMID:22363213

  9. Effect of halogen substitutions on dUMP to stability of thymidylate synthase/dUMP/mTHF ternary complex using molecular dynamics simulation.

    PubMed

    Kaiyawet, Nopporn; Rungrotmongkol, Thanyada; Hannongbua, Supot

    2013-06-24

    The stability of the thymidylate synthase (TS)/2-deoxyuridine-5-monophosphate (dUMP)/5,10-methylene-5,6,7,8-tetrahydrofolate (mTHF) ternary complex formation and Michael addition are considered as important steps that are involved in the inhibition mechanism of the anticancer prodrug 5-fluorouracil (5-FU). Here, the effect of three different halogen substitutions on the C-5 position of the dUMP (XdUMPs = FdUMP, CldUMP, and BrdUMP), the normal substrate, on the stability of the TS/dUMP and TS/dUMP/mTHF binary and ternary complexes, respectively, was investigated via molecular dynamics simulation. The simulated results revealed that the stability of all the systems was substantially increased by mTHF binding to the catalytic pocket. In the ternary complex, a much greater stabilization of the dUMP and XdUMPs through electrostatic interactions, including charge-charge and hydrogen bond interactions, was found compared to mTHF. An additional unique hydrogen bond between the substituted fluorine of FdUMP and the hydroxyl group of the TS Y94 residue was observed in both the binary and ternary complexes. The distance between the S(-) atom of the TS C146 residue and the C6 atom of dUMP, at <4 Å in all systems, suggested that a Michael addition with the formation of a S-C6 covalent bond potentially occurred, although the hydrogen atom on C6 of dUMP is substituted by a halogen atom. The MM/PBSA binding free energy revealed the significant role of the bridging waters around the ligands in the increased binding affinity (∼10 kcal/mol) of dUMP/XdUMP, either alone or together with mTHF, toward TS. The order of the averaged binding affinity in the ternary systems was found to be CldUMP ≈ FdUMP > dUMP > BrdUMP, suggesting that CldUMP could be a potent candidate TS inhibitor, the same as FdUMP (the metabolite form of 5-FU).

  10. Relationship of the 1793G-A and 677C-T polymorphisms of the 5,10-methylenetetrahydrofolate reductase gene to coronary artery disease.

    PubMed

    Kebert, Cory B; Eichner, June E; Moore, William E; Schechter, Eliot; Yaoi, Takuro; Vogel, Steve; Allen, Richard A; Dunn, S Terence

    2006-01-01

    Numerous studies have investigated the relationship between polymorphisms, in particular 677C-T and 1298A-C, of the methylene-tetrahydrofolate reductase (MTHFR) gene and coronary artery disease (CAD) with conflicting results. This study investigates the potential association of two point mutations in MTHFR, 677C-T and 1793G-A, along with other risk factors, with CAD. This is the first hospital-based study to investigate 1793G-A in this context. Genotype analysis was performed on 729 Caucasians and 66 African Americans undergoing coronary angiography using a novel PCR-based assay involving formation of Holliday junctions. Allelic frequencies for 677C-T were 66.2% C and 33.8% T for Caucasians and 90.9% C and 9.1% T for African Americans. With respect to the 1793G-A polymorphism, allelic frequencies were 94.7% G and 5.3% A for Caucasians and 99.2% G and 0.8% A for African Americans. Disease associations were examined in the Caucasian patients due to their greater genotype variability and larger number in the patient cohort. Results suggest that neither 677CT heterozygotes (OR-1.36; 95% CI 0.95 to 1.96) nor mutant homozygotes (OR-0.73; 95% CI 0.44 to 1.20) have either an increased or decreased risk for CAD compared to the 677CC genotype. Likewise, the 1793GA genotype did not demonstrate a statistically significant association with CAD compared to 1793GG patients (OR-0.79; 95% CI 0.47 to 1.33). Mean homocysteine levels (mumol/L) increased from normal to mutant for 677C-T (677CC: 10.2; 677CT: 11.0; 677TT: 11.6) and normal to heterozygous in 1793G-A (1793GG: 10.7; 1793GA: 11.5). These MTHFR polymorphisms did not contribute to the prediction of clinically defined CAD in Caucasians.

  11. Relationship of the 1793G-A and 677C-T Polymorphisms of the 5,10-Methylenetetrahydrofolate Reductase Gene to Coronary Artery Disease

    PubMed Central

    Kebert, Cory B.; Eichner, June E.; Moore, William E.; Schechter, Eliot; Yaoi, Takuro; Vogel, Steve; Allen, Richard A.; Dunn, S. Terence

    2006-01-01

    Numerous studies have investigated the relationship between polymorphisms, in particular 677C-T and 1298A-C, of the methylene-tetrahydrofolate reductase (MTHFR) gene and coronary artery disease (CAD) with conflicting results. This study investigates the potential association of two point mutations in MTHFR, 677C-T and 1793G-A, along with other risk factors, with CAD. This is the first hospital-based study to investigate 1793G-A in this context. Genotype analysis was performed on 729 Caucasians and 66 African Americans undergoing coronary angiography using a novel PCR-based assay involving formation of Holliday junctions. Allelic frequencies for 677C-T were 66.2% C and 33.8% T for Caucasians and 90.9% C and 9.1% T for African Americans. With respect to the 1793G-A polymorphism, allelic frequencies were 94.7% G and 5.3% A for Caucasians and 99.2% G and 0.8% A for African Americans. Disease associations were examined in the Caucasian patients due to their greater genotype variability and larger number in the patient cohort. Results suggest that neither 677CT heterozygotes (OR-1.36; 95% CI 0.95 to 1.96) nor mutant homozygotes (OR-0.73; 95% CI 0.44 to 1.20) have either an increased or decreased risk for CAD compared to the 677CC genotype. Likewise, the 1793GA genotype did not demonstrate a statistically significant association with CAD compared to 1793GG patients (OR-0.79; 95% CI 0.47 to 1.33). Mean homocysteine levels (μmol/L) increased from normal to mutant for 677C-T (677CC: 10.2; 677CT: 11.0; 677TT: 11.6) and normal to heterozygous in 1793G-A (1793GG: 10.7; 1793GA: 11.5). These MTHFR polymorphisms did not contribute to the prediction of clinically defined CAD in Caucasians. PMID:17264399

  12. Total folate and unmetabolized folic acid in the breast milk of a cross-section of Canadian women.

    PubMed

    Page, Rachael; Robichaud, André; Arbuckle, Tye E; Fraser, William D; MacFarlane, Amanda J

    2017-05-01

    Background: Folate requirements increase during pregnancy and lactation. It is recommended that women who could become pregnant, are pregnant, or are lactating consume a folic acid (FA)-containing supplement.Objectives: We sought to determine breast-milk total folate and unmetabolized folic acid (UMFA) contents and their relation with FA-supplement use and doses in a cohort of Canadian mothers who were enrolled in the MIREC (Maternal-Infant Research on Environmental Chemicals) study.Design: Breast-milk tetrahydrofolate (THF), 5-methyl-THF, 5-formyl-THF, 5,10-methenyl-THF, and UMFA were measured with the use of liquid chromatography-tandem mass spectrometry (n = 561). Total daily supplemental FA intake was based on self-reported FA-supplement use.Results: UMFA was detectable in the milk of 96.1% of the women. Total daily FA intake from supplements was associated with breast folate concentration and species. Breast-milk total folate was 18% higher (P < 0.001) in supplement users (n = 401) than in nonusers (n = 160), a difference driven by women consuming >400 μg FA/d (P ≤ 0.004). 5-Methyl-THF was 19% lower (P < 0.001) and UMFA was 126% higher (P < 0.001) in supplement users than in nonusers. Women who consumed >400 μg FA/d had proportionally lower 5-methyl-THF and higher UMFA than did women who consumed ≤400 μg FA/d.Conclusions: FA-supplement use was associated with modestly higher breast-milk total folate. Detectable breast-milk UMFA was nearly ubiquitous, including in women who did not consume an FA supplement. Breast-milk UMFA was proportionally higher than 5-methyl-THF in women who consumed >400 μg FA/d, thereby suggesting that higher doses exceed the physiologic capacity to metabolize FA and result in the preferential uptake of FA in breast milk. Therefore, FA-supplement doses >400 μg may not be warranted, especially in populations for whom FA fortification is mandatory. © 2017 American Society for Nutrition.

  13. Reduced rate of DNA replication fork movement in megaloblastic anemia.

    PubMed Central

    Wickremasinghe, R G; Hoffbrand, A V

    1980-01-01

    Chromatography on benzoylated naphthoylated DEAE-cellulose has been used to fractionate fully double-stranded from partially single-stranded DNA molecules. DNA was extracted from phytohemagglutinin-stimulated lymphocytes from patients with megaloblastic anemia resulting from vitamin B12 or folate deficiency after pulse-labeling the cells with [3H]thymidine for 5 min and chasing in unlabeled medium for 24 h. No gross accumulation of partially single-stranded material was observed in the DNA of these cells when compared with DNA from similarly labeled control cells obtained by the addition of 5-formyl tetrahydrofolic acid to th