Science.gov

Sample records for 10-kw solid ozide

  1. Trade Study on Aggregation of Multiple 10-KW Solid Ozide Fuel Cell Power Modules

    SciTech Connect

    Ozpineci, B.

    2004-12-03

    According to the Solid State Energy Conversion Alliance (SECA) program guidelines, solid oxide fuel cells (SOFC) will be produced in the form of 3-10 kW modules for residential use. In addition to residential use, these modules can also be used in apartment buildings, hospitals, etc., where a higher power rating would be required. For example, a hospital might require a 250 kW power generating capacity. To provide this power using the SECA SOFC modules, 25 of the 10 kW modules would be required. These modules can be aggregated in different architectures to yield the necessary power. This report will show different approaches for aggregating numerous SOFC modules and will evaluate and compare each one with respect to cost, control complexity, ease of modularity, and fault tolerance.

  2. Development Report for the 10 KW Sound Attenuation Program (Preproduction ’F’ Kit).

    DTIC Science & Technology

    1981-12-02

    3.2 Panel Design The panels were to be constructed from solid aluminum sheet metal on all ex- ; terior surfaces and acoustic fiberglass or mineral ... wool bill overlayed with a synthetic film and encapsulated with perforated aluminum on the interior sur- faces. Per design, the acoustic panels on the

  3. Characterization of Ceramic Vane Materials for 10KW Turboalternator.

    DTIC Science & Technology

    1983-04-01

    eide if necessary end identify by block number) Silicon nitride Gas turbine engine Failure analysis Silicon carbide Mechanical properties Ceramics...silicon carbide, and sil- iconized silicon carbide, being considered for use in a small turbine engine . Chemistry, phase content, and room-temperature...sponsored by USAMERADCOK, Ft. Belvoir, Va., and the engine testing and development was done by Solar Turbines International, San Diego, Calif. ANMHRC

  4. The 28 GHZ, 10 KW, CW Gyrotron Generator for the VENUS ECR Ion Source at LBNL

    SciTech Connect

    Marks, M.; Evans, S.; Jory, H.; Holstein, D.; Rizzo, R.; Beck, P.; Cisto, B.; Leitner, D.; Lyneis, C.M.; Collins, D.; Dwinell, R.D.

    2005-03-15

    The VIA-301 Heatwave{sup TM} gyrotron generator was specifically designed to meet the requirements of the Venus ECR Ion Source at the Lawrence Berkeley National Laboratory (LBNL). VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end].This VIA-301 Heatwave{sup TM} gyrotron system provides 100 watts to 10 kW continuous wave (CW) RF output at 28 GHz. The RF output level is smoothly controllable throughout this entire range. The power can be set and maintained to within 10 watts at the higher power end of the power range and to within 30 watts at the lower power end of the power range. A dual directional coupler, analog conditioning circuitry, and a 12-bit analog input to the embedded controller are used to provide a power measurement accurate to within 2%. The embedded controller completes a feedback loop using an external command set point for desired power output. Typical control-loop-time is on the order of 500 mS. Hard-wired interlocks are provided for personnel safety and for protection of the generator system. In addition, there are software controlled interlocks for protection of the generator from high ambient temperature, high water temperature, and other conditions that would affect the performance of the generator or reduce the lifetime of the gyrotron. Cooling of the gyrotron and power supply is achieved using both water and forced circulation of ambient air. Water-cooling provides about 80% of the cooling requirement. Input power to the generator from the prime power line is less than 60 kW at full power. The Heatwave{sup TM} may be operated locally via its front panel or remotely via either RS-232 and/or Ethernet connections. Through the RS-232 the forward power, the reflected power

  5. The “SF” System of Sextupoles for the JLAB 10 KW Free Electron Laser Upgrade

    SciTech Connect

    George Biallas, Mark Augustine, Kenneth Baggett, David Douglas, Robin Wines

    2009-05-01

    The characteristics of the system of “SF” Sextupoles for the infrared Free Electron Laser Upgrade1 at the Thomas Jefferson National Accelerator Facility (JLab) are described. These eleven sextupoles possess a large field integral (2.15 T/m) with +/- 0.2%

  6. Design considerations for a 10-KW integrated hydrogen-oxygen regenerative fuel cell system

    SciTech Connect

    Hoberecht, M.A.; Gonzalez-Sanabria, O.D.; Miller, T.B.; Rieker, L.L.

    1984-08-01

    Integration of an alkaline fuel cell subsystem with an alkaline electrolysis subsystem to form a regenerative fuel cell (RFC) system for low-earth-orbit (LEO) applications characterized by relatively high overall round-trip electrical efficiency, long life, and high reliability is possible with present state-of-the-art technology. A hypothetical 10-kW system is being computer modeled and studied based on data from ongoing contractual efforts in both the alkaline fuel cell and alkaline water electrolysis areas. The alkaline fuel cell technology is being developed under an NASA-LeRC program with United Technologies Corporation (UTC), utilizing advanced cell components and standard Shuttle-Orbiter system hardware. The alkaline electrolysis technology is that of Life Systems, Inc. (LSI), which uses a static water vapor feed technique and scaled-up cell hardware being developed under an NASA-LeRC program. This paper addresses the computeraided study of the performance, operating, and design parameters of the hypothetical system.

  7. Design and application of PV power system for 100w to 10kw

    SciTech Connect

    Matlin, R.W.

    1982-06-01

    Photovoltaic systems are economically viable in remote areas where grid power is not available and where power requirements are modest. PV systems provide power for water pumping, navigation aids, and residential electrification. Water pumping applications are projected to provide the largest market. The world's largest PV pumping unit, a 25Kw centrifugal pump system used to irrigate 80 acres of corn in Nebraska, is shown. Volumetric style ''jack pumps'' have been installed in the Upper Volta, and in Arizona. Remote residential AC power systems at the Hopi reservation, and a navigational aid system in the St. Lawrence Seaway are also demonstrated. Life cycle costing has shown that it is preferable to use deep cycle batteries.

  8. The 28 GHZ, 10 KW, CW Gyrotron Generator for the VENUS ECR Ion Source at LBNL

    NASA Astrophysics Data System (ADS)

    Marks, M.; Evans, S.; Jory, H.; Holstein, D.; Rizzo, R.; Beck, P.; Cisto, B.; Leitner, D.; Lyneis, C. M.; Collins, D.; Dwinell, R. D.

    2005-03-01

    The VIA-301 Heatwave™ gyrotron generator was specifically designed to meet the requirements of the Venus ECR Ion Source at the Lawrence Berkeley National Laboratory (LBNL). VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end [1]. This VIA-301 Heatwave™ gyrotron system provides 100 watts to 10 kW continuous wave (CW) RF output at 28 GHz. The RF output level is smoothly controllable throughout this entire range. The power can be set and maintained to within 10 watts at the higher power end of the power range and to within 30 watts at the lower power end of the power range. A dual directional coupler, analog conditioning circuitry, and a 12-bit analog input to the embedded controller are used to provide a power measurement accurate to within 2%. The embedded controller completes a feedback loop using an external command set point for desired power output. Typical control-loop-time is on the order of 500 mS. Hard-wired interlocks are provided for personnel safety and for protection of the generator system. In addition, there are software controlled interlocks for protection of the generator from high ambient temperature, high water temperature, and other conditions that would affect the performance of the generator or reduce the lifetime of the gyrotron. Cooling of the gyrotron and power supply is achieved using both water and forced circulation of ambient air. Water-cooling provides about 80% of the cooling requirement. Input power to the generator from the prime power line is less than 60 kW at full power. The Heatwave™ may be operated locally via its front panel or remotely via either RS-232 and/or Ethernet connections. Through the RS-232 the forward power, the reflected power, the

  9. Making Solid Geometry Solid.

    ERIC Educational Resources Information Center

    Hartz, Viggo

    1981-01-01

    Allowing students to use a polystyrene cutter to fashion their own three-dimensional models is suggested as a means of allowing individuals to experience problems and develop ideas related to solid geometry. A list of ideas that can lead to mathematical discovery is provided. (MP)

  10. Solid lubricants

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1991-01-01

    The state of knowledge of solid lubricants is reviewed. The results of research on solid lubricants from the 1940's to the present are presented from a historical perspective. Emphasis is placed largely, but not exclusively, on work performed at NASA Lewis Research Center with a natural focus on aerospace applications. However, because of the generic nature of the research, the information presented in this review is applicable to most areas where solid lubricant technology is useful.

  11. Solid lubricants

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1993-01-01

    The state of knowledge of solid lubricants is reviewed. The results of research on solid lubricants from the 1940's to the present are presented from a historical perspective. Emphasis is placed largely, but not exclusively, on work performed at NASA Lewis Research Center with a natural focus on aerospace applications. However, because of the generic nature of the research, the information presented in this review is applicable to most areas where solid lubricant technology is useful.

  12. Solid consistency

    NASA Astrophysics Data System (ADS)

    Bordin, Lorenzo; Creminelli, Paolo; Mirbabayi, Mehrdad; Noreña, Jorge

    2017-03-01

    We argue that isotropic scalar fluctuations in solid inflation are adiabatic in the super-horizon limit. During the solid phase this adiabatic mode has peculiar features: constant energy-density slices and comoving slices do not coincide, and their curvatures, parameterized respectively by ζ and Script R, both evolve in time. The existence of this adiabatic mode implies that Maldacena's squeezed limit consistency relation holds after angular average over the long mode. The correlation functions of a long-wavelength spherical scalar mode with several short scalar or tensor modes is fixed by the scaling behavior of the correlators of short modes, independently of the solid inflation action or dynamics of reheating.

  13. Solid Solutions

    NASA Astrophysics Data System (ADS)

    Lee, Go-Eun; Kim, Il-Ho; Lim, Young Soo; Seo, Won-Seon; Choi, Byeong-Jun; Hwang, Chang-Won

    2014-06-01

    Since Bi2Te3 and Bi2Se3 have the same crystal structure, they form a homogeneous solid solution. Therefore, the thermal conductivity of the solid solution can be reduced by phonon scattering. The thermoelectric figure of merit can be improved by controlling the carrier concentration through doping. In this study, Bi2Te2.85Se0.15:D m (D: dopants such as I, Cu, Ag, Ni, Zn) solid solutions were prepared by encapsulated melting and hot pressing. All specimens exhibited n-type conduction in the measured temperature range (323 K to 523 K), and their electrical conductivities decreased slightly with increasing temperature. The undoped solid solution showed a carrier concentration of 7.37 × 1019 cm-3, power factor of 2.1 mW m-1 K-1, and figure of merit of 0.56 at 323 K. The figure of merit ( ZT) was improved due to the increased power factor by I, Cu, and Ag dopings, and maximum ZT values were obtained as 0.76 at 323 K for Bi2Te2.85Se0.15:Cu0.01 and 0.90 at 423 K for Bi2Te2.85Se0.15:I0.005. However, the thermoelectric properties of Ni- and Zn-doped solid solutions were not enhanced.

  14. Solid electrolytes

    DOEpatents

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  15. Rarefied solids

    NASA Technical Reports Server (NTRS)

    Noever, D. A.; Nikora, V. I.

    1994-01-01

    One important limit to creating low density materials is the objects' own weight. As a solid or colloidal matrix becomes more rarefied, gravity acts destructively to compress its suporting skeleton. We describe experimental results and propose a model which matches the low gravity behavior of rarefied or fractal solids. On parabolic airplane flights, we sought to demonstrate a key component of producing higher surface area fractals. Flight paths were selected to give a range of gravity levels: 0.01 g/g(sub 0) (low), 0.16 g(sub 0) (Lunar), 0.33 g/g(sub 0) (Martian), 1 g/g(sub 0) (Earth) and 1.8 g/g(sub 0) (high) (where g(sub 0) = 980 cm/sq s). Results using the model material of hydrophobic silica indicated that stable agglomeration of such tenuous objects can increase markedly in reduced gravity. Optical characterization revealed that fractal dimension changed directly with varying gravity. As measured by fractal dimension, effective surface area and roughness increased by 40% in low gravity. This finding supports the conclusion that relieving internal weight stresses on delicate aggregates can enhance their overall size (by two orders of magnitude) and internal surface area. We conclude that gravitational restructuring limits the overall size and void content of low-density solids. These sparse colloidal regimes may present new and technologically attractive physics, ranging from improved insulators, liquid-like tension in a 'solid' matrix, and characteristically low conductivities for sound and (8 to 14 micrometers wavelength) infrared radiation.

  16. Review of the State-of-the-Art in Power Electronics Suitable for 10-KW Military Power Systems

    SciTech Connect

    Staunton, R.H.

    2003-12-19

    The purpose of this report is to document the technological opportunities of integrating power electronics-based inverters into a TEP system, primarily in the 10-kW size range. The proposed enhancement offers potential advantages in weight reduction, improved efficiency, better performance in a wider range of generator operating conditions, greater versatility and adaptability, and adequate reliability. In order to obtain strong assurance of the availability of inverters that meet required performance and reliability levels, a market survey was performed. The survey obtained positive responses from several manufacturers in the motor drive and distributed generation industries. This study also includes technology reviews and assessments relating to circuit topologies, reliability issues, vulnerability to pulses of electromagnetic energy, potential improvements in semiconductor materials, and potential performance improvement through cryogenics.

  17. Solids fluidizer-injector

    DOEpatents

    Bulicz, Tytus R.

    1990-01-01

    An apparatus and process for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine.

  18. Solids mass flow determination

    DOEpatents

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  19. Rotary bulk solids divider

    DOEpatents

    Maronde, Carl P.; Killmeyer, Jr., Richard P.

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  20. ROTARY BULK SOLIDS DIVIDER

    DOEpatents

    Maronde, Carl P.; Killmeyer JR., Richard P.

    1992-03-03

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  1. Tetraphenylborate Solids Stability Tests

    SciTech Connect

    Walker, D.D.

    1997-06-25

    Tetraphenylborate solids are a potentially large source of benzene in the slurries produced in the In-Tank Precipitation (ITP) process. The stability of the solids is an important consideration in the safety analysis of the process and we desire an understanding of the factors that influence the rate of conversion of the solids to benzene. This report discusses current testing of the stability of tetraphenylborate solids.

  2. Laser cooling of solids

    SciTech Connect

    Epstein, Richard I; Sheik-bahae, Mansoor

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  3. Solid State Division

    SciTech Connect

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  4. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  5. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  6. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  7. Solid expellant plasma generator

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H. (Inventor); Poe, Garrett D. (Inventor); Rood, Robert (Inventor)

    2010-01-01

    An improved solid expellant plasma generator has been developed. The plasma generator includes a support housing, an electrode rod located in the central portion of the housing, and a mass of solid expellant material that surrounds the electrode rod within the support housing. The electrode rod and the solid expellant material are made of separate materials that are selected so that the electrode and the solid expellant material decompose at the same rate when the plasma generator is ignited. This maintains a point of discharge of the plasma at the interface between the electrode and the solid expellant material.

  8. Solids fluidizer-injector

    DOEpatents

    Bulicz, T.R.

    1990-04-17

    An apparatus and process are described for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine. 3 figs.

  9. Management of solid waste

    NASA Astrophysics Data System (ADS)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  10. Mixed oxide solid solutions

    DOEpatents

    Magno, Scott; Wang, Ruiping; Derouane, Eric

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  11. Management of solid waste

    SciTech Connect

    Thompson, W.T.; Stinton, L.H.

    1980-04-16

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options.

  12. Solid-state configurations

    NASA Technical Reports Server (NTRS)

    Schroeder, K. G.

    1980-01-01

    Two prototype solid-state phased array systems concepts developed for the solar power satellite (SPS) are described. In both concepts, the beam was centered on the rectenna by means of phase conjugation of a pilot signal emanating from the ground. Also discussed are results of solid state studies.

  13. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  14. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  15. Polyimide Precursor Solid Residuum

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    A polyimide precursor solid residuum is an admixture of an aromatic dianhydride or derivative thereof and an aromatic diamine or derivative thereof plus a complexing agent, which is complexed with the admixture by hydrogen bonding. The polyimide precursor solid residuum is effectively employed in the preparation of polyimide foam and the fabrication of polyimide foam structures.

  16. Solid Waste: Health Concerns

    ERIC Educational Resources Information Center

    Duel, Ward

    1975-01-01

    In this article the means of disposing solid wastes are discussed with reference to their health hazards and environmental desirability. Included in the discussion are solid waste dumps, landfills, incinerators, and grinders. Some attention is given to the reclamation of mineral resources from trash. (MA)

  17. Lubrication with solids.

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Johnson, R. L.

    1972-01-01

    Brief discussion of the historical background, variety range, chemistry, physics, and other properties of solid lubricants, and review of their current uses. The widespread use of solid lubricants did not occur until about 1947. At present, they are the object of such interest that a special international conference on their subject was held in 1971. They are used at temperatures beyond the useful range of conventional lubricating oils and greases. Their low volatility provides them with the capability of functioning effectively in vacuum and invites their use in space applications. Their high load carrying ability makes them useful with heavily loaded components. Solid lubricants, however, do lack some of the desirable properties of conventional lubricants. Unlike oils and greases, which have fluidity and can continuously be carried back into contact with lubricated surfaces, solid lubricants, because of their immobility, have finite lives. Also, oils and greases can carry away frictional heat from contacting surfaces, while solid lubricants cannot.

  18. Theory of Solid Surfaces.

    DTIC Science & Technology

    1976-05-01

    A~ —~ on 022 CAMBRIDGE UNIV (ENGLAND) CAVEND ISH LAB —. FIG 20/12 —“1THEORY OF SOLID SURFACES .(U) MAY 76 ~J C INKS ON, P W ANDERSON AF AFOSR...t_ ~ - ~ - ~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~ Grant Number AFOSR 73—2le~9 ~ Theory of Solid Surfaces J.C. INKSON and P.W. ANDERSON Cavendish Laboratory... solid state techniques to the theory of nucleii and neutron stars . On surfaces an important : ew development is described in the theory of catalysis

  19. The solid state

    SciTech Connect

    Guinier, A.; Remi, J.

    1989-01-01

    This book is an introduction to the solid state for students and non-specialists. Authors aim to relate the macroscopic properties of solids (usually crystalline) to models of their atomic structure. Thermal expansion, the electronic conductivity of metals, ferromagnetism, plastic deformation and diffusion in real systems are among specific topics addressed. Advanced mathematical explanations are set off from the rest of the text in boxed sections for readers wishing a more indepth treatment of topics. Abbreviated bibliography included. For academic collections in solid state physics.

  20. Solid propellant motor

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.; Marsh, H. E., Jr. (Inventor)

    1978-01-01

    A case bonded end burning solid propellant rocket motor is described. A propellant with sufficiently low modulus to avoid chamber buckling on cooling from cure and sufficiently high elongation to sustain the stresses induced without cracking is used. The propellant is zone cured within the motor case at high pressures equal to or approaching the pressure at which the motor will operate during combustion. A solid propellant motor with a burning time long enough that its spacecraft would be limited to a maximum acceleration of less than 1 g is provided by one version of the case bonded end burning solid propellant motor of the invention.

  1. Solid and Gaseous Fuels.

    ERIC Educational Resources Information Center

    Schultz, Hyman; And Others

    1989-01-01

    This review covers methods of sampling, analyzing, and testing coal, coke, and coal-derived solids and methods for the chemical, physical, and instrumental analyses of gaseous fuels. The review covers from October 1986, to September 1988. (MVL)

  2. Solids Accumulation Scouting Studies

    SciTech Connect

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    2012-09-26

    The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of

  3. ELECTRON IRRADIATION OF SOLIDS

    DOEpatents

    Damask, A.C.

    1959-11-01

    A method is presented for altering physical properties of certain solids, such as enhancing the usefulness of solids, in which atomic interchange occurs through a vacancy mechanism, electron irradiation, and temperature control. In a centain class of metals, alloys, and semiconductors, diffusion or displacement of atoms occurs through a vacancy mechanism, i.e., an atom can only move when there exists a vacant atomic or lattice site in an adjacent position. In the process of the invention highenergy electron irradiation produces additional vacancies in a solid over those normally occurring at a given temperature and allows diffusion of the component atoms of the solid to proceed at temperatures at which it would not occur under thermal means alone in any reasonable length of time. The invention offers a precise way to increase the number of vacancies and thereby, to a controlled degree, change the physical properties of some materials, such as resistivity or hardness.

  4. The Organic Solid State.

    ERIC Educational Resources Information Center

    Cowan, Dwaine O.; Wlygul, Frank M.

    1986-01-01

    Reviews interesting and useful electrical, magnetic, and optical properties of the organic solid state. Offers speculation as to areas of fruitful research. Discusses organic superconductors, conducting organic polymers, organic metals, and traces recent history of creation of organic metals. (JM)

  5. Solid Earth: Introduction

    NASA Astrophysics Data System (ADS)

    Rummel, R.

    1991-10-01

    The principles of the solid Earth program are introduced. When considering the study of solid Earth from space, satellites are used as beacons, inertial references, free fall probes and carrying platforms. The phenomenon measured by these satellites and the processes which can be studied as a result of these measurements are tabulated. The NASA solid Earth program focusses on research into surface kinematics, Earth rotation, land, ice, and ocean monitoring. The ESA solid Earth program identifies as its priority the Aristoteles mission for determining the gravity and magnetic field globally, with high spatial resolution and high accuracy. The Aristoteles mission characteristics and goals are listed. The benefits of the improved gravity information that will be provided by this mission are highlighted. This information will help in the following research: geodesy, orbit mechanics, geodynamics, oceanography, climate sea level, and the atmosphere.

  6. The solid waste dilemma

    USGS Publications Warehouse

    Amey, E.B.; Russell, J.A.; Hurdelbrink, R.J.

    1996-01-01

    In 1976, the U.S. Congress enacted the Resource Conservation and Recovery Act (RCRA) to further address the problem of increasing industrial and municipal waste. The main objectives of RCRA were to responsibly manage hazardous and solid waste and to procure materials made from recovered wastes. To fulfill these objectives, four main programs of waste management were developed. These programs were defined under Subtitle C, the Hazardous Waste Program; Subtitle D, the Solid Waste Program; Subtitle I, the Underground Storage Tank Program; and Subtitle J, the Medical Waste Program. Subtitle D illustrates the solid waste dilemma occurring in the United States. Under this program, states are encouraged to develop and implement their own waste management plans. These plans include the promotion of recycling solid wastes and the closing and upgrading of all environmentally unsound dumps. ?? 1996 International Association for Mathematical Geology.

  7. Solid Waste Treatment Technology

    ERIC Educational Resources Information Center

    Hershaft, Alex

    1972-01-01

    Advances in research and commercial solid waste handling are offering many more processing choices. This survey discusses techniques of storage and removal, fragmentation and sorting, bulk reduction, conversion, reclamation, mining and mineral processing, and disposal. (BL)

  8. Internal friction in solids

    NASA Astrophysics Data System (ADS)

    Wert, C. A.

    1986-09-01

    Study of the damping of vibrations in solids has developed into an acoustical spectroscopy which can elucidate many geometrical, thermodynamic, and kinetic characteristics of solids. In a relatively brief 15 years, between 1935 and 1950, Clarence Zener contributed physical insight, analytical procedures, and suggestions for important topics which persist even today. This review traces development of ideas and techniques from that period to the present. It uses chiefly as examples the flow of heat across vibrating reeds (and the corollary Gorsky effect), the Snoek effect in interstitial alloys, and the Zener effect in substitutional alloys. Internal friction of molecular reorientation in polymeric solids is described. Finally, the joint use of internal friction and dielectric loss is demonstrated to provide additional insight into molecular configurations in solids which are both mechanical and electric dipoles.

  9. Solid polymer electrolytes

    DOEpatents

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  10. Solid electrolyte cell

    NASA Technical Reports Server (NTRS)

    Richter, R. (Inventor)

    1982-01-01

    A solid electrolyte cell including a body of solid ionized gas-conductive electrolyte having mutually spaced surfaces and on which is deposited a multiplicity of mutually spaced electrodes is described. Strips and of bare substances are interposed between electrodes, so that currents of ionic gas may be established between the electrodes via the bare strips, whereby electrical resistance for the cells is lowered and the gas conductivity is enhanced.

  11. Solid polymer electrolytes

    DOEpatents

    Abraham, K.M.; Alamgir, M.; Choe, H.S.

    1995-12-12

    This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

  12. Solid state switch

    DOEpatents

    Merritt, Bernard T.; Dreifuerst, Gary R.

    1994-01-01

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

  13. Lyophilization -Solid Waste Treatment

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

    2004-01-01

    This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

  14. Keep solids in suspension

    SciTech Connect

    Gladki, H.Z.

    1997-10-01

    Mixing is an important operation in the CPI. It is not synonymous with agitation. Mixing is a random distribution into and through one another of two or more initially separate phases. Within that broad definition is the important specialty area of liquid-solid dispersion. This paper addresses the dispersion of solids in lower concentrations that don`t affect the rheological properties of the fluid. The just suspended condition represents the lowest grade of complete suspension, but this level of agitation is the most efficient for solids-liquid agitation. Higher mixing speeds waste energy. Undersized mixers need replacing. The top-entering mixer has a long history in the CPI and the environmental area. Many suspension studies were run with this type. These papers result in empirical correlations for just suspension conditions to scale up from laboratory measurement. Variables considered are the agitation speed, liquid and solids physical properties, solids concentration, system geometry and impeller type. Lately, submersible mixers are becoming more popular, but there are no published sizing methods. This article will explain how to define the critical hydraulic conditions in the tank to reach just solids suspension for a submersible agitator of the type described here as FJFA (Free Jet Flow Agitator).

  15. Solid Mathematical Marbling.

    PubMed

    Lu, Shufang; Jin, Xiaogang; Jaffer, Aubrey; Gao, Fei; Mao, Xiaoyang

    2016-05-25

    Years of research have been devoted to computer-generated two-dimensional marbling. However, three-dimensional marbling has yet to be explored. In this paper, we present mathematical marbling of three-dimensional solids which supports a compact random-access vector representation. Our solid marbling textures are created by composing closed-form 3D pattern tool functions. These tool functions are an injection function and five deformation functions. The injection function is used to generate basic patterns, and the deformation functions are responsible for transforming the basic pattern into complex marbling effects. The resulting representation is feature preserving and resolution-independent. Our approach can render high-quality images preserving both the sharp features and the smooth color variations of a solid texture. When implemented on the GPU, our representation enables efficient color evaluation during the real-time solid marbling texture mapping. The color of a point in the volume space is computed by the 3D pattern tool functions from its coordinates. Our method consumes very little memory because only the mathematical functions and their corresponding parameters are stored. In addition, we develop an intuitive user interface and a genetic algorithm to facilitate the solid marbling texture authoring process. We demonstrate the effectiveness of our approach through various solid marbling textures and 3D objects carved from them.

  16. Evaluation, analysis, and documentation support for the 10-kw Signature Suppressed Lightweight Electric Energy Plant (SLEEP). Technical report, April 1987-March 1988

    SciTech Connect

    Morsch, B.A.; Main, B.W.; Buckman, A.F.; Feaney, L.M.; Gist, J.Y.

    1988-03-14

    The US Army identified the need for a Signature Suppressed, Lightweight Electric Energy Plant (SLEEP) to improve the survivability of forward deployed units. The US Army Belvoir Research, Development and Engineering Center has the responsibility for procuring generators to meet this requirement. This study was to investigate power-generation technology and determine the most-effective technology to meet the SLEEP requirement. The Stirling was identified as the most-promising technology for SLEEP. Commercial systems and improvements to existing systems cannot meet this requirement. Procurement of SLEEP was determined to be well suited for the Army Streamlined Acquisition Program.

  17. Anisotropy in solid inflation

    SciTech Connect

    Bartolo, Nicola; Matarrese, Sabino; Ricciardone, Angelo; Peloso, Marco E-mail: sabino.matarrese@pd.infn.it E-mail: angelo.ricciardone@pd.infn.it

    2013-08-01

    In the model of solid / elastic inflation, inflation is driven by a source that has the field theoretical description of a solid. To allow for prolonged slow roll inflation, the solid needs to be extremely insensitive to the spatial expansion. We point out that, because of this property, the solid is also rather inefficient in erasing anisotropic deformations of the geometry. This allows for a prolonged inflationary anisotropic solution, providing the first example with standard gravity and scalar fields only which evades the conditions of the so called cosmic no-hair conjecture. We compute the curvature perturbations on the anisotropic solution, and the corresponding phenomenological bound on the anisotropy. Finally, we discuss the analogy between this model and the f(φ)F{sup 2} model, which also allows for anisotropic inflation thanks to a suitable coupling between the inflaton φ and a vector field. We remark that the bispectrum of the curvature perturbations in solid inflation is enhanced in the squeezed limit and presents a nontrivial angular dependence, as had previously been found for the f(φ)F{sup 2} model.

  18. Anisotropy in solid inflation

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Matarrese, Sabino; Peloso, Marco; Ricciardone, Angelo

    2013-08-01

    In the model of solid / elastic inflation, inflation is driven by a source that has the field theoretical description of a solid. To allow for prolonged slow roll inflation, the solid needs to be extremely insensitive to the spatial expansion. We point out that, because of this property, the solid is also rather inefficient in erasing anisotropic deformations of the geometry. This allows for a prolonged inflationary anisotropic solution, providing the first example with standard gravity and scalar fields only which evades the conditions of the so called cosmic no-hair conjecture. We compute the curvature perturbations on the anisotropic solution, and the corresponding phenomenological bound on the anisotropy. Finally, we discuss the analogy between this model and the f(phi)F2 model, which also allows for anisotropic inflation thanks to a suitable coupling between the inflaton phi and a vector field. We remark that the bispectrum of the curvature perturbations in solid inflation is enhanced in the squeezed limit and presents a nontrivial angular dependence, as had previously been found for the f(phi)F2 model.

  19. Defects in flexoelectric solids

    NASA Astrophysics Data System (ADS)

    Mao, Sheng; Purohit, Prashant K.

    2015-11-01

    A solid is said to be flexoelectric when it polarizes in proportion to strain gradients. Since strain gradients are large near defects, we expect the flexoelectric effect to be prominent there and decay away at distances much larger than a flexoelectric length scale. Here, we quantify this expectation by computing displacement, stress and polarization fields near defects in flexoelectric solids. For point defects we recover some well known results from strain gradient elasticity and non-local piezoelectric theories, but with different length scales in the final expressions. For edge dislocations we show that the electric potential is a maximum in the vicinity of the dislocation core. We also estimate the polarized line charge density of an edge dislocation in an isotropic flexoelectric solid which is in agreement with some measurements in ice. We perform an asymptotic analysis of the crack tip fields in flexoelectric solids and show that our results share some features from solutions in strain gradient elasticity and piezoelectricity. We also compute the energy release rate for cracks using simple crack face boundary conditions and use them in classical criteria for crack growth to make predictions. Our analysis can serve as a starting point for more sophisticated analytic and computational treatments of defects in flexoelectric solids which are gaining increasing prominence in the field of nanoscience and nanotechnology.

  20. Solid state cell with anolyte

    SciTech Connect

    Barnette, L. H.; Liang, C. C.

    1985-06-25

    A solid state cell having a solid cathode, a solid electrolyte, and a solid anolyte comprised of at least 50% by volume of ionically conductive materials such as the electrolye and 50% or less by volume of an active metal. The anolyte is either the cell anode or alternatively the anolyte is an additional structural member within said cell positioned between an anode, comprised of the same active metal, and the solid electrolyte.

  1. Local Solid Shape

    PubMed Central

    Koenderink, Jan; van Doorn, Andrea

    2015-01-01

    Local solid shape applies to the surface curvature of small surface patches—essentially regions of approximately constant curvatures—of volumetric objects that are smooth volumetric regions in Euclidean 3-space. This should be distinguished from local shape in pictorial space. The difference is categorical. Although local solid shape has naturally been explored in haptics, results in vision are not forthcoming. We describe a simple experiment in which observers judge shape quality and magnitude of cinematographic presentations. Without prior training, observers readily use continuous shape index and Casorati curvature scales with reasonable resolution. PMID:27648217

  2. Solid handling valve

    DOEpatents

    Williams, William R.

    1979-01-01

    The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

  3. Solid Rocket Booster Recovery

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The towing ship, Liberty, towed a recovered solid rocket booster (SRB) for the STS-5 mission to Port Canaveral, Florida. The recovered SRB would be inspected and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. The requirement for reusability dictated durable materials and construction to preclude corrosion of the hardware exposed to the harsh seawater environment. The SRB contains a complete recovery subsystem that includes parachutes, beacons, lights, and tow fixture.

  4. Solid Rocket Booster Recovery

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The towing ship, Liberty, towed a recovered solid rocket booster (SRB) for the STS-3 mission to Port Canaveral, Florida. The recovered SRB would be inspected and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. The requirement for reusability dictated durable materials and construction to preclude corrosion of the hardware exposed to the harsh seawater environment. The SRB contains a complete recovery subsystem that includes parachutes, beacons, lights, and tow fixture.

  5. Solid phases of tenoxicam.

    PubMed

    Cantera, Rodrigo G; Leza, María G; Bachiller, Carmen M

    2002-10-01

    In this report we describe the preparation and characterization of four polymorphic forms of tenoxicam; they are, three 1:1 stoichiometric solvates with acetonitrile, dioxane, and N,N-dimethylformamide, and an amorphous phase obtained by recrystallization in various solvents. Polymorph IV and solvates with dioxane and N,N-dimethylformamide are reported for the first time in this paper. In addition, three solvates were crystallized in acetone, ethyl acetate, and isopropyl alcohol. These solid forms were characterized by X-ray powder diffraction, differential scanning calorimetry, infrared spectroscopy, thermogravimetry, optical microscopy, and elemental analysis. Solid-state properties, intrinsic dissolution rate, and dissolution kinetics from formulated tablets are also provided.

  6. Solid state switch

    DOEpatents

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  7. Solid AFFF Technology Investigation

    DTIC Science & Technology

    2010-12-01

    SPEC AFFF concentrate, produced by Buckeye Fire Equipment Company . It was a 3 percent concentrate currently on the MIL-SPEC Qualified Products List...AFFF stick. 6.4.2.2 3M Solid AFFF Pellets In 1985, the 3M Company provided NRL with experimental solid AFFF pellets for testing as described in...AFFF pellets manufactured by the 3M Company , previously tested in 1985, were found in storage at NRL CBD. Tests STIK-11 through STIK-13, STIK-15, and

  8. Solid Propellant Flame Spectroscopy

    DTIC Science & Technology

    1988-08-01

    Flame, Vol. 44, pp. 27-34, 1982. 49. Stufflebeam , J. H., Shirley, J. A., CARS Diagnostics of High Pressure Combustion- II, Report on Contract DAAG 29...83-C-0001, United Technologies Research Center, Hartford, CT, 1985. 50. Stufflebeam , J. H., Progress of CARS Applications to Solid Propellant

  9. Solid-State Devices.

    ERIC Educational Resources Information Center

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine Corps enlisted personnel with the principles of solid-state devices and their functions. The course contains four study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work…

  10. Solid State Lighting

    SciTech Connect

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2013-03-30

    The article discusses solid state lighting technologies. This topic was covered in two previous ASHRAE Journal columns (2010). This article covers advancements in technologies and the associated efficacies. The life-cycle, energy savings and market potential of these technologies are addressed as well.

  11. Solid polymer electrolyte compositions

    DOEpatents

    Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba

    2001-01-01

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  12. Solid electrolyte structure

    DOEpatents

    Fraioli, Anthony V.

    1984-01-01

    A solid electrolyte structure for fuel cells and other electrochemical devices providing oxygen ion transfer by a multiplicity of exposed internal surfaces made of a composition containing an oxide of a multivalent transition metal and forming small pore-like passages sized to permit oxygen ion transfer while limiting the transfer of oxygen gas.

  13. Thiokol Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  14. Solid-Waste Management

    ERIC Educational Resources Information Center

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  15. Fundamentals of Solid Lubrication

    DTIC Science & Technology

    2012-03-01

    NOTES 14. ABSTRACT During this program, we have worked to develop a fundamental understanding of the chemical and tribological issues related to...approach, tribological measurements performed over a range of length scales, and the correlation of the two classes of information. Research activities...correlated measurements of surface composition and environmentally specific tribological performance of thin film solid lubricants. • Correlate shear

  16. Solid Phase Characterization of Solids Recovered from Failed Sluicer Arm

    SciTech Connect

    Cooke, Gary A.

    2015-03-09

    The Enclosure to this memo discusses the solid phase characterization of a solid sample that was retrieved from the single-shell Tank 241-C-111 extended reach sluicer #2. This sluicer, removed from riser #3 on September 25, 2014, was found to have approximately 0.4 gallons of solid tank waste adhering to the nozzle area.

  17. General view of the Solid Rocket Booster's (SRB) Solid Rocket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Solid Rocket Booster's (SRB) Solid Rocket Motor Segments in the Surge Building of the Rotation Processing and Surge Facility at Kennedy Space Center awaiting transfer to the Vehicle Assembly Building and subsequent mounting and assembly on the Mobile Launch Platform. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  18. How to Reduce Solid Waste.

    ERIC Educational Resources Information Center

    Martins, George; Clapp, Leallyn B.

    1974-01-01

    Discusses the problem of solid waste disposal in the United States, suggests ways in which solid wastes might be reduced, and proposes a number of related topics for student debate in classes or in science clubs. (JR)

  19. Solid state electrochemical current source

    DOEpatents

    Potanin, Alexander Arkadyevich; Vedeneev, Nikolai Ivanovich

    2002-04-30

    A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

  20. Solid polymer membrane program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are presented for a solid polymer electrolyte fuel cell development program. Failure mechanism was identified and resolution of the mechanism experienced in small stack testing was demonstrated. The effect included laboratory analysis and evaluation of a matrix of configurations and operational variables for effects on the degree of hydrogen fluoride released from the cell and on the degree of blistering/delamination occurring in the reactant inlet areas of the cell and to correlate these conditions with cell life capabilities. The laboratory evaluation tests were run at conditions intended to accelerate the degradation of the solid polymer electrolyte in order to obtain relative evaluations as quick as possible. Evaluation of the resolutions for the identified failure mechanism in space shuttle configuration cell assemblies was achieved with the fabrication and life testing of two small stack buildups of four cell assemblies and eight cells each.

  1. Reactive flow in solids

    NASA Astrophysics Data System (ADS)

    Brassart, Laurence; Suo, Zhigang

    2013-01-01

    When guest atoms diffuse into a host solid and react, the host may flow inelastically. Often a reaction can stimulate flow in a host too brittle to flow under a mechanical load alone. We formulate a theory of reactive flow in solids by regarding both flow and reaction as nonequilibrium processes, and placing the driving forces for flow and reaction on equal footing. We construct chemomechanical rate-dependent kinetic models without yield strength. In a host under constant stress and chemical potential, flow will persist indefinitely, but reaction will arrest. We also construct chemomechanical yield surface and flow rule by extending the von Mises theory of plasticity. We show that the host under a constant deviatoric stress will flow gradually in response to ramp chemical potential, and will ratchet in response to cyclic chemical potential.

  2. Solid State Laser

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Titan-CW Ti:sapphire (titanium-doped sapphire) tunable laser is an innovation in solid-state laser technology jointly developed by the Research and Solid State Laser Divisions of Schwartz Electro-optics, Inc. (SEO). SEO is producing the laser for the commercial market, an outgrowth of a program sponsored by Langley Research Center to develop Ti:sapphire technology for space use. SEO's Titan-CW series of Ti:sapphire tunable lasers have applicability in analytical equipment designed for qualitative analysis of carbohydrates and proteins, structural analysis of water, starch/sugar analyses, and measurements of salt in meat. Further applications are expected in semiconductor manufacture, in medicine for diagnosis and therapy, and in biochemistry.

  3. Metastable solid metallic hydrogen

    SciTech Connect

    Nellis, W. J.

    1999-04-01

    Hydrogen reaches the mimimum electrical conductivity of a metal at 140 GPa (1.4 Mbar), 0.6 g/cm3 (ninefold compression of initial liquid-H2 density), and 3000 K in the fluid phase. The quest for metallic hydrogen over the past 100 years is reviewed briefly. Possible scientific and technological uses of metastable solid metallic hydrogen (MSMH) are speculated upon in the unlikely event that the metallic fluid can be quenched to MSMH at ambient pressure and temperature: a quantum, metallic solid with novel physical properties, including room-temperature superconductivity; a very light-weight structural material; a fuel, propellant, and explosive, depending on the rate of release of stored energy; a dense fuel for higher energy yields in inertial confinement fusion; and an aid in the synthesis of novel hard materials. Some of the formidable difficulties to synthesize MSMH are discussed.

  4. Edge remap for solids

    SciTech Connect

    Kamm, James R.; Love, Edward; Robinson, Allen C.; Young, Joseph G.; Ridzal, Denis

    2013-12-01

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.

  5. Amorphous pharmaceutical solids.

    PubMed

    Vranić, Edina

    2004-07-01

    Amorphous forms are, by definition, non-crystalline materials which possess no long-range order. Their structure can be thought of as being similar to that of a frozen liquid with the thermal fluctuations present in a liquid frozen out, leaving only "static" structural disorder. The amorphous solids have always been an essential part of pharmaceutical research, but the current interest has been raised by two developments: a growing attention to pharmaceutical solids in general, especially polymorphs and solvates and a revived interest in the science of glasses and the glass transition. Amorphous substances may be formed both intentionally and unintentionally during normal pharmaceutical manufacturing operations. The properties of amorphous materials can be exploited to improve the performance of pharmaceutical dosage forms, but these properties can also give rise to unwanted effects that need to be understood and managed in order for the systems to perform as required.

  6. Solid surface luminescence analysis

    NASA Astrophysics Data System (ADS)

    Hurtubise, R. J.

    1984-04-01

    Several advances were made in understanding the interactions responsible for room-temperature phosphorescence. Infrared data showed strong room-temperature phosphorescence from compounds adsorbed on some surfaces which contained adsorbed water. A partial model for phosphor/solid-surface interactions was developed for nitrogen heterocycles and polycyclic aromatic hydrocarbons adsorbed on poly(acrylic acid)-salt mixtures. Hydroxyl aromatics behave as hydrogen donors, hydrogen accepting species, or as both hydrogen donors and hydrogen acceptors when adsorbed on solid-surfaces. Several new analytical methods and techniques were developed. Poly(acrylic acid)-phosphor solutions that were spotted on filter paper resulted in lower limits of detection and better reproducibility. Both qualitative and quantitative analysis of mixtures were achieved at the nanogram level by using room-temperature fluorescence and phosphorescence. In addition, the combined use of zeroth and second derivative room-temperature fluorescence and phosphorescence spectra was developed into a useful analytical approach.

  7. Solid phase extraction membrane

    DOEpatents

    Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  8. Solid State Research

    NASA Technical Reports Server (NTRS)

    Shaver, David C.

    1995-01-01

    This report covers in detail the research work of the Solid State Division at Lincoln Laboratory for the period 1 May-31 July 1995. The topics covered are: Electrooptical Devices, Quantum Electronics, Materials Research, Submicrometer Technology, High Speed Electronics, Microelectronics, and analog device technology. Funding is provided primarily by the Air Force, with additional Support provided by the Army, ARPA, Navy, BMDO, NASA and NIST.

  9. Solid State Research

    NASA Technical Reports Server (NTRS)

    Shaver, David C.

    1996-01-01

    This report covers in detail the research work of the Solid State Division at Lincoln Laboratory for the period 1 May - 31 July 1996. The topics covered are Electrooptical Devices, Quantum Electronics, Materials Research, Submicrometer Technology, High Speed Electronics, Microelectronics, and Analog Device Technology. Funding is provided primarily by the Air Force, with additional Support provided by the Army, DARPA, Navy, BMDO, NASA, and NIST.

  10. Solid State Research

    DTIC Science & Technology

    1989-08-15

    No copies are available for distribution. xix MS No. 8208 MNOS/CCD Circuits for Neural J.P. Sage 1989 IEEE Intl. Symposium Network Implementations...1564 (1985). 2. See, for example, R.S. Nelson, The Observation of Atomic Collisions in Crystalline Solids (North-Holland, Amsterdam, 1968). 3. J.E...oxygen. The increase in deposition rate with Ar could be due to an increase in ionization efficiency for N20 or SiH 4 caused by collisions with excited

  11. Solid waste handling

    SciTech Connect

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  12. Solid State Research.

    DTIC Science & Technology

    2007-11-02

    Technology, High Speed Electronics, Microelectronics, Analog Device Technology, and Advanced Silicon Technology. Funding is provided primarily by the...Illustrations vii Table ix Introduction xi Reports on Solid State Research xiii Organization xxiii 1. QUANTUM ELECTRONICS 1 1.1 High -Power Passively...Microchemical Etching of Silicon 13 3.2 Calorimetric Measurements of Optical Materials for 193-nm Lithography 17 4. HIGH SPEED ELECTRONICS 21 4.1

  13. Municipal Solid Waste Resources

    SciTech Connect

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  14. Solid Propellant Reclamation Study

    DTIC Science & Technology

    1982-11-01

    and Ethanol Amine (EA) NHC Recovery Process Flow Diagram Explosive Booster Process Flow’ Sheet Sol-Gel Extraction from Solid Propellant Chemical...Naval Weapons Center, China Lake, California, 1973-1975. e Leake, E. E., Recovery of HMX From Scrap PEX -9404 High Explosive. Silas Mason...ntly degraded by reacting ethanol - amlne (EA) with the urethane linkages In the binder MtwOrkt The propellent he studied was a polyurethane

  15. Tunable solid state lasers

    SciTech Connect

    Hammerling, R.; Budgor, A.B.; Pinto, A.

    1985-01-01

    This book presents the papers given at a conference on solid state lasers. Topics considered at the conference included transition-metal-doped lasers, line-narrowed alexandrite lasers, NASA specification, meteorological lidars, laser materials spectroscopy, laser pumped single pass gain, vibronic laser materials growth, crystal growth methods, vibronic laser theory, cross-fertilization through interdisciplinary fields, and laser action of color centers in diamonds.

  16. Solid State Research

    DTIC Science & Technology

    1986-11-15

    Uttaro, R.S. Vera , A. Wilde, R.E. Young, E.M. * Research Assistant T Staff Associate t Part Time XXVI 1.1 1. SOLID STATE DEVICE RESEARCH A...substrate temperature of 850° C, as shown in Figure 3-7(b). Figure 3-8 shows the low-temperature PL spectra of an Alo 2gGao 72AS layer excited by an Ar-ion

  17. Solid Fuel Combustion

    DTIC Science & Technology

    1990-08-01

    Continu.T on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP diffusion flame, solid fuel, flame radiation thermophoresis 19... thermophoresis and particle Brownian diffusion on particle profiles. In the first effort, a theoretical analysis is performed to study the distribution of small...particles (e.g., soot) of an assumed average dimension form at a global rate depending on the local fuel I concentration and temperature. Thermophoresis

  18. Laser Cooling of Solids

    DTIC Science & Technology

    2009-01-01

    state coolers such as thermoelectric (Peltier) devices. Several studies have shown that ytterbium- or thulium -doped solids should be capable of providing...that there is an advantage of pumping with lower energy photons. This increased effi- ciency was part of the motivation for investigating thulium ...the quantum efficiency. For pure thulium -doped material, non-radiative decay can over- whelm anti-Stokes cooling, depending on the properties of the

  19. Baghdad Municipal Solid Waste Landfill

    DTIC Science & Technology

    2006-10-19

    SOLID WASTE LANDFILL SIGIR PA... Solid Waste Landfill 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...Municipal Solid Waste Landfill , Baghdad, Iraq (Report Number SIGIR-PA-06-067) We are providing this project assessment report for your information

  20. SOLID WASTE STUDY

    SciTech Connect

    PAUL G. ORTIZ - COLEMAN RESEARCH CORP /COMPA INDUSTRIES

    1995-08-01

    The purpose of this document is to study the solid waste issues brought about by a Type C Investigation; ``Disposal of Inappropriate Material in the Los Alamos County Landfill'' (May 28, 1993). The study was completed in August 1995 by Coleman Research Corporation, under subcontract number 405810005-Y for Los Alamos National Laboratory (LANL). The study confirmed the issues identified in the Type C investigation, and also ascertained further issues or problems. During the course of this study two incidents involving hazardous waste resulted in the inappropriate disposal of the waste. An accidental spill, on June 8, 1995, at one of Laboratory buildings was not handled correctly, and ended up in the LAC Landfill. Hazardous waste was disposed of in a solid waste container and sent to the Los Alamos County Landfill. An attempt to locate the hazardous waste at the LAC Landfill was not successful. The second incident involving hazardous waste was discovered by the FSS-8, during a random dumpster surveillance. An interim dumpster program managed by FSS-8 discovered hazardous waste and copper chips in the solid waste, on August 9, 1995. The hazardous waste and copper chips would have been transported to the LAC Landfill if the audit team had not brought the problem to the awareness of the facility waste management personnel.

  1. Solar solids reactor

    DOEpatents

    Yudow, Bernard D.

    1987-01-01

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  2. Solar solids reactor

    DOEpatents

    Yudow, B.D.

    1986-02-24

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  3. Packaging of solid state devices

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  4. Illinois solid waste management legislation

    SciTech Connect

    1999-07-01

    Contents include: Degradable Plastic Act; Energy Assistance Act of 1989; Hazardous and Solid Waste Recycling and Treatment Act; Household Hazardous Waste Collection Program Act; Illinois Emergency Planning and Community Right to Know Act; Illinois Environmental Facilities Financing Act; Illinois Procurement Code; Illinois Solid Waste Management Act; Intergovernmental Cooperation Act; Junkyard Act; Litter Control Act; Local Solid Waste Disposal Act; Metro East Solid Waste Disposal and Energy Producing Service Act; Recycled Newsprint Use Act; Responsible Property Transfer Act of 1988; Solid Waste Disposal District Act; Solid Waste Planning and Recycling Act; Solid Waste Site Operator Certification Law; Township Refuse Collection and Disposal Act; Toxic Pollution Prevention Act; Used Motor Oil Recycling Act; Waste Oil Recovery Act; and Water Supply, Drainage and Flood Control Act.

  5. Solid State Research

    DTIC Science & Technology

    1992-05-15

    L. Chang, T. C. McGill* E. E. Mendez, and C. Tejedor , C. D. Parker eds. (Plenum, New York, 1991), W. D. Goodhue p. 487 Free-Space Board-to-Board...International Solid- Limits and Applications in Fast M. A. Hollis State Circuits Conference, Logic Circuits F . W. Smith San Francisco, California, 19-21...for 193-nm D. C. Shaver Lithography Process Development D. M. Craig C. A. Marchi M. A. Hartney F . Goodall* Optical Lithography at Feature Sizes M. A

  6. WET SOLIDS FLOW ENHANCEMENT

    SciTech Connect

    Hugo S. Caram; Natalie Foster

    1997-03-31

    The objective was to visualize the flow of granular materials in flat bottomed silo. This was done by for dry materials introducing mustard seeds and poppy seeds as tracer particles and imaging them using Nuclear Magnetic Resonance. The region sampled was a cylinder 25 mm in diameter and 40 mm in length. Eight slices containing 128*128 to 256*256 pixels were generated for each image. The size of the silo was limited by the size of the high resolution NMR imager available. Cross-sections of 150mm flat bottomed silos, with the tracer layers immobilized by a gel, showed similar qualitative patterns for both dry and wet granular solids.

  7. Solid State Research.

    DTIC Science & Technology

    2007-11-02

    Functionality Process Accuracy CCD MDAC 25,000 Multiply/add 2-Poly-Si, 2-metal 1.2 /zm Analog x 8 b Digital CMOS [1] 2,300 Multiply/add 2-Poly...additional support provided by the Army, ARPA, Navy, BMDO, NASA, and NIST. in TABLE OF CONTENTS Abstract üi List of Illustrations yii List of Tables x ...Introduction x * Reports on Solid State Research xiii Organization xxm 1. ELECTROOPTICAL DEVICES 1 1.1 1.3-jUm Strained-Layer InGaAsP/InP Quantum

  8. Solid amine development program

    NASA Technical Reports Server (NTRS)

    Lovell, J. S.

    1973-01-01

    A regenerable solid amine material to perform the functions of humidity control and CO2 removal for space shuttle type vehicle is reported. Both small scale and large scale testing have shown this material to be competitive, especially for the longer shuttle missions. However, it had been observed that the material off-gasses ammonia under certain conditions. This presents two concerns. The first, that the ammonia would contaminate the cabin atmosphere, and second, that the material is degrading with time. An extensive test program has shown HS-C to produce only trace quantities of atmospheric contaminants, and under normal extremes, to have no practical life limitation.

  9. Solid breeder materials

    SciTech Connect

    Johnson, C.E.; Clemmer, R.G.; Hollenber, G.w.

    1981-01-01

    Increased attention is being given to the consideration of lithium-containing ceramic materials for use as breeder blankets in fusion devices. These materials, e.g., Li/sub 2/O, ..gamma..-LiAlO/sub 2/, Li/sub 4/SiO/sub 4/, Li/sub 2/ZrO/sub 3/, etc., are attractive because of their inherent safety advantages. At present, there is a broad scope of laboratory and irradiation activities in force to provide the requisite data enabling selection of th prime-candidate solid breeder material.

  10. Solid state optical microscope

    SciTech Connect

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  11. Solid state optical microscope

    DOEpatents

    Young, I.T.

    1983-08-09

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

  12. Solid Earth: The priorities

    NASA Astrophysics Data System (ADS)

    Paquet, P.

    1991-10-01

    The European Space Agency's strategy concerning the solid Earth program is reviewed. Improvement of current knowledge of the global geopotential fields, both gravity and magnetic, was stressed as the highest priority. It was agreed that the objectives and goals of the planned Aristoteles mission correspond to this priority, and the need to realize this part of the program was stated. The interdisciplinary links of the program were identified, and it was decided that this program could make substantial contributions to research of oceans, climate and global change, atmosphere, ice and land surfaces.

  13. Solid State Research

    DTIC Science & Technology

    1990-11-15

    Alo .3Gao.7As confining layers. 38 IX Figure No. Page 3-2 Schematic structure and energy diagram of AlInGaAs/AlGaAs SCH SQW diode laser. 39 3-3...Lithography Photooxidation of a-Conjugated Si-Si Network Polymers High-Power Solid-State Laser Radar Technology Heat Driven Cryocoolers for...M.J. Nichols, K.B. Parker, CD. Rabe, S. Rathman, D.D. Smith, F.W., III Vera , A. xxvn ELECTROOPTICAL DEVICES ANALOG DEVICE TECHNOLOGY R.C

  14. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  15. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  16. Properties of solid supports.

    PubMed

    Meldal, M

    1997-01-01

    Many supports including composite materials and functionalized surfaces are available for solid-phase synthesis. In the process of selecting the proper support it is important to consider the optimal performance during solid-phase synthesis. For most purposes the mechanically stable beaded gel resins are preferred. These resins are homogeneous, and the loading and physical and chemical properties can easily be varied. Optimal properties have been obtained by radical polymerization of end group acryloylated long-chain polyethylene glycols. However, polystyrene resins or amide bond free PEG-based resins may be more suited for general organic synthesis where reactivity of radicals, carbenes, carbanions, carbenium ions, or strong Lewis acids have to be considered. Loading of the resins can have a dramatic effect on the outcome of a synthesis and has to be considered separately for each synthesis. Synthesis of long peptides with 50-100 amino acids imposes completely different requirements on the performance, swelling, and loading than a large-scale synthesis of, for example, the pentapeptide enkephalin. Automated multiple synthesizers constructed for columns of beaded gel or composite supports are available from many suppliers. It is therefore expected that the optimization of support properties will continue in order to meet new synthetic challenges. In the synthesis for solid-phase screening of binding of biomolecules to ligands directly on the resin beads, it is an advantage if the resin is not permeable to the biomolecule so unbound molecules can easily be removed by washing. This is the case with polystyrene-based resins, but they do, however, often show nonspecific adhesion of proteins owing to the hydrophobic character of the polystyrene. Modification of the functional groups of polystyrene with polyethylene glycol as spacers for synthesis of the binding ligands can increase the available ligand concentration on the bead surface and eliminate most of the

  17. Solids flow mapping in gas-solid risers

    NASA Astrophysics Data System (ADS)

    Bhusarapu, Satish Babu

    Gas-solid risers are extensively used in many industrial processes for gas-solid reactions (e.g. coal combustion and gasification) and for solid catalyzed gas phase reactions (e.g. fluid catalytic cracking, butane oxidation to maleic anhydride). Ab initio prediction of the complex multiphase fluid dynamics in risers is not yet possible, which makes reactor modeling difficult. In particular, quantification of solids flow and mixing is important. Almost all the experimental techniques used to characterize solids flow lead to appreciable errors in measured variables in large scale, high mass flux systems. In addition, none of the experimental techniques provide all the relevant data required to develop a satisfactory solids flow model. In this study, non-invasive Computer Automated Radioactive Particle Tracking (CARPT) is employed to visualize and quantify the solids dynamics and mixing in the gas-solid riser of a Circulating Fluidized Bed (CFB). A single radioactive tracer particle is monitored during its multiple visits to the riser and with an assumption of ergodicity, the following flow parameters are estimated: (a) Overall solids mass flux in the CFB loop. (b) Solids residence time distribution in the riser and down-comer. (c) Lagrangian and Eulerian solids velocity fields in a fully-developed section of the riser. This includes velocity fluctuations and components of the diffusivity tensor. The existing CARPT technique is extended to large scale systems. A new algorithm, based on a cross-correlation search, is developed for position rendition from CARPT data. Two dimensional solids holdup profiles are estimated using gamma-ray computed tomography. The image quality from the tomography data is improved by implementing an alternating minimization algorithm. This work establishes for the first time a reliable database for local solids dynamic quantities such as time-averaged velocities, Reynolds stresses, eddy diffusivities and turbulent kinetic energy. In addition

  18. Polarized Solid State Target

    NASA Astrophysics Data System (ADS)

    Dutz, Hartmut; Goertz, Stefan; Meyer, Werner

    2017-01-01

    The polarized solid state target is an indispensable experimental tool to study single and double polarization observables at low intensity particle beams like tagged photons. It was one of the major components of the Crystal-Barrel experiment at ELSA. Besides the operation of the 'CB frozen spin target' within the experimental program of the Crystal-Barrel collaboration both collaborative groups of the D1 project, the polarized target group of the Ruhr Universität Bochum and the Bonn polarized target group, have made significant developments in the field of polarized targets within the CRC16. The Bonn polarized target group has focused its work on the development of technically challenging polarized solid target systems towards the so called '4π continuous mode polarized target' to operate them in combination with 4π-particle detection systems. In parallel, the Bochum group has developed various highly polarized deuterated target materials and high precision NMR-systems, in the meantime used for polarization experiments at CERN, JLAB and MAMI, too.

  19. Retorting hydrocarbonaceous solids

    SciTech Connect

    Styring, R.E.

    1980-08-19

    Mined, crushed hydrocarbonaceous solids are pyrolyzed in a retort with a gas containing hydrocarbons. The gas is heated to a suitable temperature of at least 600/sup 0/F. Thereafter, a relatively small amount of oxygen is added to the heated gas outside the retort. The resulting mixture is then flowed into the retort. The amount of oxygen is theoretically sufficient to raise the temperature of the heated gas at least 100/sup 0/F., but is less than the amount theoretically sufficient to react with all of the hydrocarbons in the heated gas. The process is applicable to any type of retort wherein a retort recycle gas containing hydrocarbons is heated outside the retort and is then injected into the retort to provide a source of heat for pyrolyzing hydrocarbonaceous solids in the retort. The advantages of this modified indirect heated retorting method depends on the type of retort. This method provides added control over carbonate decomposition, coking or carbonization of the gas during heating, total gas flow, process variations, and the heat requirements and thermal efficiency of the process.

  20. Solid State Humidity Sensors

    NASA Astrophysics Data System (ADS)

    Chang, Song-Lin

    There are only a few solid state humidity sensors available today. Most of those sensors use a porous oxide material as a principal part of the device. The devices work on the basis of a change in resistance as the moisture in the air varies. In this experiment, two solid state humidity sensors have been developed for use under practical conditions. One is a Polymer Oxide Semiconductor device with a POLYOX film that absorbs the moisture from the air. The amount of water dipoles absorbed by the polymer is a function of relative humidity. This sensor can measure relative humidity from 20% to 90%. The other is a Dew Point sensor. The sensor is in contact with the upper surface of a miniature Peltier cooler. Water molecules deposited on the sensor surface cause the electrical current through the sensor to increase. The operator adjusts the temperature of the Peltier cooler until a saturated current through the sensor is reached. About one min. is required to measure low relative humidities. The Dew Point sensor can measure a range of relative humidities of 30% to 80%.

  1. WET SOLIDS FLOW ENHANCEMENT

    SciTech Connect

    Hugo S. Caram; Natalie Foster

    1999-03-30

    The elastic modulus E of wet granular material was found to be of the order of 0.25 MPa, this value does not compare well with the value predicted for a cubic array of spheres under Hertzian contact were the predicted values were in the order of 250 MPa . The strain-stress behavior of a wet granular media was measured using a split Parfitt tensile tester. In all cases the stress increases linearly with distance until the maximum uniaxial tensile stress is reached. The stress then decreases exponentially with distance after this maximum is reached. The linear region indicates that wet solids behave elastically for stresses below the tensile stresses and can store significant elastic energy. The elastic deformation cannot be explained by analyzing the behavior of individual capillary bridges and requires accounting for the deformation of the solids particles. The elastic modulus of the wet granular material remains unexplained. New information was found to support the experimental finding and a first theory to explain the very small elastic modulus is presented. A new model based on the used of the finite element method is being developed.

  2. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  3. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  4. Solid Lubrication Fundamentals and Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2001-01-01

    Solid Lubrication Fundamentals and Applications description of the adhesion, friction, abrasion, and wear behavior of solid film lubricants and related tribological materials, including diamond and diamond-like solid films. The book details the properties of solid surfaces, clean surfaces, and contaminated surfaces as well as discussing the structures and mechanical properties of natural and synthetic diamonds; chemical-vapor-deposited diamond film; surface design and engineering toward wear-resistant, self-lubricating diamond films and coatings. The author provides selection and design criteria as well as applications for synthetic and natural coatings in the commercial, industrial and aerospace industries..

  5. Solid lubrication design methodology

    NASA Technical Reports Server (NTRS)

    Aggarwal, B. B.; Yonushonis, T. M.; Bovenkerk, R. L.

    1984-01-01

    A single element traction rig was used to measure the traction forces at the contact of a ball against a flat disc at room temperature under combined rolling and sliding. The load and speed conditions were selected to match those anticipated for bearing applications in adiabatic diesel engines. The test program showed that the magnitude of traction forces were almost the same for all the lubricants tested; a lubricant should, therefore, be selected on the basis of its ability to prevent wear of the contact surfaces. Traction vs. slide/roll ratio curves were similar to those for liquid lubricants but the traction forces were an order of magnitude higher. The test data was used to derive equations to predict traction force as a function of contact stress and rolling speed. Qualitative design guidelines for solid lubricated concentrated contacts are proposed.

  6. Solids feeder apparatus

    DOEpatents

    Bell, Jr., Harold S.

    1979-01-01

    This invention sets forth a double-acting piston, which carries a floating piston, and which is reciprocated in a housing, for feeding coal to a high pressure gasifier system. The housing has a plurality of solids (for instance: coal) in-feeding ports and a single discharge port, the latter port being in communication with a high pressure gasifier system. The double-acting piston sequentially and individually communicates each of the in-feeding ports with the discharge port. The floating piston both seals off the discharge port while each in-feeding port is receiving coal or the like, to prevent undue escape of gas from the gasifier system, and translates in the housing, following a discharge of coal or the like into the discharge port, to return gas which has been admitted into the housing back into the gasifier system.

  7. Solid state rapid thermocycling

    DOEpatents

    Beer, Neil Reginald; Spadaccini, Christopher

    2014-05-13

    The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

  8. ISRO's solid rocket motors

    NASA Astrophysics Data System (ADS)

    Nagappa, R.; Kurup, M. R.; Muthunayagam, A. E.

    1989-08-01

    Solid rocket motors have been the mainstay of ISRO's sounding rockets and the first generation satellite launch vehicles. For the new launch vehicle under development also, the solid rocket motors contribute significantly to the vehicle's total propulsive power. The rocket motors in use and under development have been developed for a variety of applications and range in size from 30 mm dia employing 450 g of solid propellant—employed for providing a spin to the apogee motors—to the giant 2.8 m dia motor employing nearly 130 tonnes of solid propellant. The initial development, undertaken in 1967 was of small calibre motor of 75 mm dia using a double base charge. The development was essentially to understand the technological elements. Extruded aluminium tubes were used as a rocket motor casing. The fore and aft closures were machined from aluminium rods. The grain was a seven-pointed star with an enlargement of the port at the aft end and was charged into the chamber using a polyester resin system. The nozzle was a metallic heat sink type with graphite throat insert. The motor was ignited with a black powder charge and fired for 2.0 s. Subsequent to this, further developmental activities were undertaken using PVC plastisol based propellants. A class of sounding rockets ranging from 125 to 560 mm calibre were realized. These rocket motors employed improved designs and had delivered lsp ranging from 2060 to 2256 Ns/kg. Case bonding could not be adopted due to the higher cure temperatures of the plastisol propellants but improvements were made in the grain charging techniques and in the design of the igniters and the nozzle. Ablative nozzles based on asbestos phenolic and silica phenolic with graphite inserts were used. For the larger calibre rocket motors, the lsp could be improved by metallic additives. In the early 1970s designs were evolved for larger and more efficient motors. A series of 4 motors for the country's first satellite launch vehicle SLV-3 were

  9. Solid state power controllers

    NASA Technical Reports Server (NTRS)

    Gibbs, R. S.

    1973-01-01

    The rationale, analysis, design, breadboarding and testing of the incremental functional requirements are reported that led to the development of prototype 1 and 5 Amp dc and 1 Amp ac solid state power controllers (SSPC's). The SSPC's are to be considered for use as a replacement of electro-mechanical relays and circuit breakers in future spacecraft and aircraft. They satisfy the combined function of both the relay and circuit breaker and can be remotely controlled by small signals, typically 10 mA, 5 to 28 Vdc. They have the advantage over conventional relay/circuit breaker systems in that they can be located near utilization equipment and the primary ac or dc bus. The low level control, trip indication and status signals can be circuited by small guage wire for control, computer interface, logic, electrical multiplexing, unboard testing, and power management and distribution purposes. This results in increased system versatility at appreciable weight saving and increased reliability.

  10. Solid state electrolyte systems

    SciTech Connect

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R.

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  11. Application of Organic Solid Electrolytes

    NASA Technical Reports Server (NTRS)

    Sekido, S.

    1982-01-01

    If ions are considered to be solid material which transport electric charges, polymer materials can then be considered as organic solid electrolytes. The role of these electrolytes is discussed for (1) ion concentration sensors; (2) batteries using lithium as the cathode and a charge complex of organic material and iodine in the anode; and (3) elements applying electrical double layer capability.

  12. From Solid Waste to Energy.

    ERIC Educational Resources Information Center

    Wisely, F. E.; And Others

    A project designed to convert solid waste to energy is explained in this paper. In April, 1972, an investor-owned utility began to burn municipal solid waste as fuel for the direct production of electric power. This unique venture was a cooperative effort between the City of St. Louis, Missouri, and the Union Electric Company, with financial…

  13. Scalability study of solid xenon

    SciTech Connect

    Yoo, J.; Cease, H.; Jaskierny, W. F.; Markley, D.; Pahlka, R. B.; Balakishiyeva, D.; Saab, T.; Filipenko, M.

    2015-04-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.

  14. Solids suspensions in mixing tanks

    SciTech Connect

    Tojo, K.; Miyanami, K.

    1982-08-01

    The dynamic characteristics of solids flow in slurry reactors with an axial flow agitator, a marine propeller or a vibrating disk, have been investigated both theoretically and experimentally. The dynamic and steady state solids concentration profiles are well described by means of the axial sedimentation-dispersion model. The correlation equations for the model parameters are also provided. 14 refs.

  15. Valve for controlling solids flow

    DOEpatents

    Staiger, M. Daniel

    1985-01-01

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and apparatus for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  16. Valve for controlling solids flow

    DOEpatents

    Staiger, M.D.

    1982-09-29

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and means for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  17. Electrospray Ionization on Solid Substrates

    PubMed Central

    So, Pui-Kin; Hu, Bin; Yao, Zhong-Ping

    2014-01-01

    Development of electrospray ionization on solid substrates (solid-substrate ESI) avoids the clogging problem encountered in conventional capillary-based ESI, allows more convenient sampling and permits new applications. So far, solid-substrate ESI with various materials, e.g., metals, paper, wood, fibers and biological tissue, has been developed, and applications ranging from analysis of pure compounds to complex mixtures as well as in vivo study were demonstrated. Particularly, the capability of solid-substrate ESI in direct analysis of complex samples, e.g., biological fluids and foods, has significantly facilitated mass spectrometric analysis in real-life applications and led to increasingly important roles of these techniques nowadays. In this review, various solid-substrate ESI techniques and their applications are summarized and the prospects in this field are discussed. PMID:26819900

  18. Solution-solid-solid mechanism: superionic conductors catalyze nanowire growth.

    PubMed

    Wang, Junli; Chen, Kangmin; Gong, Ming; Xu, Bin; Yang, Qing

    2013-09-11

    The catalytic mechanism offers an efficient tool to produce crystalline semiconductor nanowires, in which the choice, state, and structure of catalysts are active research issues of much interest. Here we report a novel solution-solid-solid (SSS) mechanism for nanowire growth catalyzed by solid-phase superionic conductor nanocrystals in low-temperature solution. The preparation of Ag2Se-catalyzed ZnSe nanowires at 100-210 °C is exampled to elucidate the SSS model, which can be extendable to grow other II-VI semiconductor (e.g., CdSe, ZnS, and CdS) nanowires by the catalysis of nanoscale superionic-phase silver or copper(I) chalcogenides (Ag2Se, Ag2S, and Cu2S). The exceptional catalytic ability of these superionic conductors originates from their structure characteristics, known for high-density vacancies and fast mobility of silver or copper(I) cations in the rigid sublattice of Se(2-) or S(2-) ions. Insights into the SSS mechanism are provided based on the formation of solid solution and the solid-state ion diffusion/transport at solid-solid interface between catalyst and nanowire.

  19. A comparison of observables for solid-solid phase transitions

    SciTech Connect

    Smilowitz, Laura B; Henson, Bryan F; Romero, Jerry J

    2009-01-01

    The study of solid-solid phase transformations is hindered by the difficulty of finding a volumetric probe to use as a progress variable. Solids are typically optically opaque and heterogeneous. Over the past several years, second harmonic generation (SHG) has been used as a kinetic probe for a solid-solid phase transition in which the initial and final phases have different symmetries. Bulk generation of SHG is allowed by symmetry only in noncentrosymmetric crystallographic space groups. For the organic energetic nitramine octahydro-1,3 ,5,7 -tetranitro-1,3 ,5,7 -tatrazocine (HMX), the beta phase is centro symmetric (space group P2{sub 1}/c) and the delta phase iS noncentrosymmetric (space group P6{sub 1}22) making SHG an extremely sensitive, essentially zero background probe of the phase change progress. We have used SHG as a tool to follow the progress of the transformation from beta to delta phase during the solid-solid transformation. However, kinetic models of the transformation derived using different observables from several other groups have differed, showing later onset for the phase change and faster progression to completion. In this work, we have intercompared several techniques to understand these differences. The three techniques discussed are second harmonic generation, Raman spectroscopy, and differential scanning calorimetry (DSC). The progress of the beta to delta phase transition in HMX observed with each of these different probes will be discussed and advantages and disadvantages of each technique described. This paper compares several different observables for use in measuring the kinetics of solid-solid phase transitions. Relative advantages and disadvantages for each technique are described and a direct comparison of results is made for the beta to delta polymorphic phase transition of the energetic nitramine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tatrazocine.

  20. Electrical Breakdown in Solids

    NASA Astrophysics Data System (ADS)

    Hjalmarson, Harold; Zutavern, Fred; Kambour, Kenneth; Moore, Chris; Mar, Alan

    During electron breakdown of a solid subjected to a large electric field, impact ionization causes growth of an electron-hole plasma. This growth process is opposed by Auger recombination of the electron-hole pairs. In our work, such breakdown is investigated by obtaining steady-state solutions to the Boltzmann equation. In these calculations, the carriers are heated by the electric field and cooled by phonon emission. Our results imply that breakdown may lead to high carrier-density current filaments. Conductive filaments have been observed in optically-triggered, high-power photoconductive semiconductor switch (PCSS) devices being developed at Sandia Labs. The relationship between the steady-state computed solutions to the observed filaments will be discussed in the presentation. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  1. Solid waste comminution machine

    SciTech Connect

    Barclay, R.L.

    1986-08-26

    A solid waste comminution machine is described of the type having two sets of interleaving wheels, including a lower set and an upper set of wheel members. Each set includes a pair of shafts on which the wheel members are mounted, the pairs of shafts mounted on upright, mutually facing, movable arms. The improvement consists of: the upper set of wheel members having ripping and shearing tools attached to the circumferential periphery of the wheel members, the pair of shafts associated with the upper set of wheel members mounted on the movable arms, the lower set of wheel members mounted on a pair of fixed, parallel shafts, the shafts supported at one end of the arms with the lower set of wheel members interleaving in a material shearing relation. The shafts form a fixed pivot axis for the arms, the arms having fixed lengths with inward and outward ends, the outward ends extending beyond the shafts associated with the upper set of wheels thereby forming leverage regions, and hydraulic piston means having fixed ends and free ends, the free ends connected to the leverage regions for bringing the arms toward each other to a point at which the upper set of wheels mesh with sufficient force to enable ripping of material between the upper set of wheels.

  2. Solid Xenon Project

    NASA Astrophysics Data System (ADS)

    Balakishiyeva, Durdana N.; Mahapatra, Rupak; Saab, Tarek; Yoo, Jonghee

    2010-08-01

    Crystals like Germanium and Silicon need to be grown in specialized facilities which is time and money costly. It takes many runs to test the detector once it's manufactured and mishaps are very probable. It is of a great challenge to grow big germanium crystals and that's why stacking them up in a tower is the only way at the moment to increase testing mass. Liquid Noble gas experiments experiencing contamination problems, their predicted energy resolution at 10 keV and lower energy range is not as good as predicted. Every experiment is targeting one specific purpose, looking for one thing. Why not to design an experiment that is diverse and build a detector that can search for Dark Matter, Solar Axions, Neutrinoless Double Beta decay, etc. Solid Xenon detector is such detector. We designed a simple Xenon crystal growing chamber that was put together at Fermi National Accelerator Laboratory. The first phase of this experiment was to demonstrate that a good, crack free Xenon crystal can be grown (regardless of many failed attempts by various groups) and our first goal, 1 kg crystal, was successful.

  3. Gasification of carbonaceous solids

    DOEpatents

    Coates, Ralph L.

    1976-10-26

    A process and apparatus for converting coal and other carbonaceous solids to an intermediate heating value fuel gas or to a synthesis gas. A stream of entrained pulverized coal is fed into the combustion stage of a three-stage gasifier along with a mixture of oxygen and steam at selected pressure and temperature. The products of the combustion stage pass into the second or quench stage where they are partially cooled and further reacted with water and/or steam. Ash is solidified into small particles and the formation of soot is suppressed by water/steam injections in the quench stage. The design of the quench stage prevents slag from solidifying on the walls. The products from the quench stage pass directly into a heat recovery stage where the products pass through the tube, or tubes, of a single-pass, shell and tube heat exchanger and steam is generated on the shell side and utilized for steam feed requirements of the process.

  4. Solid state laser

    NASA Technical Reports Server (NTRS)

    Rines, Glen A. (Inventor); Moulton, Peter F. (Inventor); Harrison, James (Inventor)

    1993-01-01

    A wavelength-tunable, injection-seeded, dispersion-compensated, dispersively-pumped solid state laser includes a lasing medium; a highly reflective mirror; an output coupler; at least one isosceles Brewster prism oriented to the minimum deviation angle between the medium and the mirror for directing light of different wavelengths along different paths; means for varying the angle of the highly reflective mirror relative to the light from at least one Brewster angle for selecting a predetermined laser operating wavelength; a dispersion compensation apparatus associated with the lasing medium; a laser injection seeding port disposed between the dispersion compensation apparatus and one of the mirror and coupler and including a reflective surface at an acute non-Brewster angle to the laser beam for introducing a seed input; a dispersion compensation apparatus associated with the laser medium including opposite chirality optical elements; the lasing medium including a pump surface disposed at an acute angle to the laser beam to define a discrete path for the pumping laser beam separate from the pumped laser beam.

  5. Solid Xenon Project

    SciTech Connect

    Balakishiyeva, Durdana N.; Saab, Tarek; Mahapatra, Rupak; Yoo, Jonghee

    2010-08-30

    Crystals like Germanium and Silicon need to be grown in specialized facilities which is time and money costly. It takes many runs to test the detector once it's manufactured and mishaps are very probable. It is of a great challenge to grow big germanium crystals and that's why stacking them up in a tower is the only way at the moment to increase testing mass. Liquid Noble gas experiments experiencing contamination problems, their predicted energy resolution at 10 keV and lower energy range is not as good as predicted. Every experiment is targeting one specific purpose, looking for one thing. Why not to design an experiment that is diverse and build a detector that can search for Dark Matter, Solar Axions, Neutrinoless Double Beta decay, etc. Solid Xenon detector is such detector. We designed a simple Xenon crystal growing chamber that was put together at Fermi National Accelerator Laboratory. The first phase of this experiment was to demonstrate that a good, crack free Xenon crystal can be grown (regardless of many failed attempts by various groups) and our first goal, 1 kg crystal, was successful.

  6. Energy properties of solid fossil fuels and solid biofuels

    NASA Astrophysics Data System (ADS)

    Holubcik, Michal; Kolkova, Zuzana; Jandacka, Jozef

    2016-06-01

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  7. Optical constants of solid methane

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Thompson, W. R.; Sagan, C.; Arakawa, E. T.; Bruel, C.; Judish, J. P.; Khanna, R. K.; Pollack, J. B.

    1989-01-01

    Methane is the most abundant simple organic molecule in the outer solar system bodies. In addition to being a gaseous constituent of the atmospheres of the Jovian planets and Titan, it is present in the solid form as a constituent of icy surfaces such as those of Triton and Pluto, and as cloud condensate in the atmospheres of Titan, Uranus, and Neptune. It is expected in the liquid form as a constituent of the ocean of Titan. Cometary ices also contain solid methane. The optical constants for both solid and liquid phases of CH4 for a wide temperature range are needed for radiative transfer calculations, for studies of reflection from surfaces, and for modeling of emission in the far infrared and microwave regions. The astronomically important visual to near infrared measurements of solid methane optical constants are conspicuously absent from the literature. Preliminary results are presented of the optical constants of solid methane for the 0.4 to 2.6 micron region. K is reported for both the amorphous and the crystalline (annealed) states. Using the previously measured values of the real part of the refractive index, n, of liquid methane at 110 K n is computed for solid methane using the Lorentz-Lorentz relationship. Work is in progress to extend the measurements of optical constants n and k for liquid and solid to both shorter and longer wavelengths, eventually providing a complete optical constants database for condensed CH4.

  8. Stiffening solids with liquid inclusions

    NASA Astrophysics Data System (ADS)

    Style, Robert W.; Boltyanskiy, Rostislav; Allen, Benjamin; Jensen, Katharine E.; Foote, Henry P.; Wettlaufer, John S.; Dufresne, Eric R.

    2015-01-01

    From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and synthetic materials. Eshelby’s inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of a composite’s bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby’s theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet’s deformation is strongly size-dependent, with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the stiffness of soft solids. A straightforward extension of Eshelby’s theory, accounting for the surface tension of the solid-liquid interface, explains our experimental observations. The counterintuitive stiffening of solids by fluid inclusions is expected whenever inclusion radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young’s modulus of the solid matrix. These results suggest that surface tension can be a simple and effective mechanism to cloak the far-field elastic signature of inclusions.

  9. Pulsed optoacoustics in solids

    NASA Astrophysics Data System (ADS)

    Wei, Zibiao

    2000-10-01

    Optoacoustic techniques are widely used to probe and characterize target materials including solids, liquids and gases. Included in such applications are diagnoses of thin films and semiconductor materials. The need to obtain greater spatial resolution requires the generation of shorter optoacoustic pulses. For such pulses, non- thermal effects may be quite important. On the other hand, even when an optoacoustic pulse is generated by an initially non-thermal technique, the thermal aspects become important in its evolution and propagation. The research undertaken in this Ph.D. dissertation included the generation and detection of optoacoustic signals through the thermal elastic mechanism. Several applications in material property diagnostics were investigated using several pulsed lasers. Both contact and non-contact detection techniques were used. A compact, lightweight, inexpensive system using a semiconductor laser, with potentially wide applicability, was developed. We developed the methods of analysis required to compare and explain the experimental results obtained. Included in such development was the incorporation of the responsivity of a piezoelectric transducer, whose necessarily non-ideal characteristics need to be accounted for in any analysis. We extended the Rosencwaig-Gersho model, which is used to treat the thermal diffusion problem with a sinusoidal heat source, to a at source, to a general pulsed laser source. This problem was also solved by a numerical method we developed in this work. Two powerful tools were introduced to process experimental data. The Fourier transform was used to resolve the time interval between two acoustic echoes. The wavelet transform was used to identify optoacoustic pulses in different wave modes or those generated by different mechanisms. The wavelet shrinkage technique was used to remove white noise from the signal. We also developed a spectral ratio method, which eliminates the need for the knowledge of several material

  10. Characterization on defect solids

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert

    1994-01-01

    The purpose of this research has been to develop new semi-empirical techniques to describe ceramics, alloys, and metal/ceramic interfaces with applications in mind that support the materials aspects of the high speed civil transport program (HSCT). HSCT requires methods that aid in the design of alloys and ceramics for new high strength, high temperature applications. Current theoretical methods are not capable of carrying out this mission. Hence, new accurate and more efficient theoretical techniques are needed to facilitate the design of new materials and the examination of their properties. This program concentrated on modeling ceramics, but also dealt with alloy properties to a lesser degree. The primary accomplishment of this research was the development of a new equation of state (EOS) that models the energy/bond length relationship and includes terms that represent charge transfer between cations and anions. The new EOS has been used by researchers at the Naval Research Laboratory to develop a new semi-empirical method for calculating properties of ceramics and metal ceramic interfaces based on the embedded atom method. The results of the director's discretionary fund (DDF) research describing the binding energy relation was the enabling theoretical basis. Also the workers at Cleveland State and NASA Lewis have detailed an approach based on equivalent crystal theory as part of the DDF which is currently under development. In addition, initial results for using the Harris functional method have been developed. Finally, the techniques developed by us have proved useful for the study of high pressure properties of solids and have been used extensively by researchers in this field.

  11. Small Solid Rocket Motor Test

    NASA Video Gallery

    It was three-two-one to brilliant fire as NASA's Marshall Space Flight Center tested a small solid rocket motor designed to mimic NASA's Space Launch System booster. The Mar. 14 test provides a qui...

  12. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  13. Is solid helium a supersolid?

    SciTech Connect

    Hallock, Robert

    2015-05-15

    Recent experiments suggest that helium-4 atoms can flow through an experimental cell filled with solid helium. But that incompletely understood flow is quite different from the reported superfluid-like motion that so excited physicists a decade ago.

  14. Solid Waste Management Program Plan

    SciTech Connect

    Duncan, D.R.

    1990-08-01

    The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

  15. Relativistic Transformation of Solid Angle.

    ERIC Educational Resources Information Center

    McKinley, John M.

    1980-01-01

    Rederives the relativistic transformations of light intensity from compact sources (stars) to show where and how the transformation of a solid angle contributes. Discusses astrophysical and other applications of the transformations. (Author/CS)

  16. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  17. Propagating Instabilities in Solids

    NASA Astrophysics Data System (ADS)

    Kyriakides, Stelios

    1998-03-01

    Instability is one of the factors which limit the extent to which solids can be loaded or deformed and plays a pivotal role in the design of many structures. Such instabilities often result in localized deformation which precipitates catastrophic failure. Some materials have the capacity to recover their stiffness following a certain amount of localized deformation. This local recovery in stiffness arrests further local deformation and spreading of the instability to neighboring material becomes preferred. Under displacement controlled loading the propagation of the transition fronts can be achieved in a steady-state manner at a constant stress level known as the propagation stress. The stresses in the transition fronts joining the highly deformed zone to the intact material overcome the instability nucleation stresses and, as a result, the propagation stress is usually much lower than the stress required to nucleate the instability. The classical example of this class of material instabilities is L/"uders bands which tend to affect mild steels and other metals. Recent work has demonstrated that propagating instabilities occur in several other materials. Experimental and analytical results from four examples will be used to illustrate this point: First the evolution of L=FCders bands in mild steel strips will be revisited. The second example involves the evolution of stress induced phase transformations (austenite to martensite phases and the reverse) in a shape memory alloy under displacement controlled stretching. The third example is the crushing behavior of cellular materials such as honeycombs and foams made from metals and polymers. The fourth example involves the axial broadening/propagation of kink bands in aligned fiber/matrix composites under compression. The microstructure and, as a result, the micromechanisms governing the onset, localization, local arrest and propagation of instabilities in each of the four materials are vastly different. Despite this

  18. New solid armature design concept

    SciTech Connect

    Del Vecchio, R.M. )

    1991-01-01

    Solid armatures in railgun applications experience extreme mechanical, thermal, and electromagnetic conditions. They must be able to survive a launch without undue bore damage and yet have as small a mass as possible. In this paper, a new solid armature concept is presented, some of the factors influencing its design are examined and some relationships are established among the physical parameters which characterize its operation.

  19. High power solid state lasers

    SciTech Connect

    Weber, H.

    1988-01-01

    These proceedings discuss the following subjects: trends in materials processing with laser radiation; slabs and high power systems; glasses and new crystals; solid state lasers at HOYA Corp.; lamps, resonators and transmission; glasses as active materials for high average power solid state lasers; flashlamp pumped GGG-crystals; alexandrite lasers; designing telescope resonators; mode operation of neodymium: YAG lasers; intracavity frequency doubling with KTP crystal and thermal effects in cylinder lasers.

  20. Solid State Photovoltaic Research Branch

    SciTech Connect

    Not Available

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  1. Optical constants of solid methane

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Thompson, W. R.; Sagan, C.; Arakawa, E. T.; Bruel, C.; Judish, J. P.; Khanna, R. K.; Pollack, J. B.

    1990-01-01

    Methane is the most abundant simple organic molecule in the outer solar system bodies. In addition to being a gaseous constituent of the atmospheres of the Jovian planets and Titan, it is present in the solid form as a constituent of icy surfaces such as those of Triton and Pluto, and as cloud condensate in the atmospheres of Titan, Uranus, and Neptune. It is expected in the liquid form as a constituent of the ocean of Titan. Cometary ices also contain solid methane. The optical constants for both solid and liquid phases of CH4 for a wide temperature range are needed for radiative transfer calculations, for studies of reflection from surfaces, and for modeling of emission in the far infrared and microwave regions. The astronomically important visual to near infrared measurements of solid methane optical constants are conspicuously absent from the literature. Preliminary results are presented on the optical constants of solid methane for the 0.4 to 2.6 micrometer region. Deposition onto a substrate at 10 K produces glassy (semi-amorphous) material. Annealing this material at approximately 33 K for approximately 1 hour results in a crystalline material as seen by sharper, more structured bands and negligible background extinction due to scattering. The constant k is reported for both the amorphous and the crystalline (annealed) states. Typical values (at absorption maxima) are in the .001 to .0001 range. Below lambda = 1.1 micrometers the bands are too weak to be detected by transmission through the films less than or equal to 215 micrometers in thickness, employed in the studies to date. Using previously measured values of the real part of the refractive index, n, of liquid methane at 110 K, n is computed for solid methane using the Lorentz-Lorenz relationship. Work is in progress to extend the measurements of optical constants n and k for liquid and solid to both shorter and longer wavelengths, eventually providing a complete optical constants database for

  2. Conversion of organic solids to hydrocarbons

    DOEpatents

    Greenbaum, E.

    1995-05-23

    A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon. 5 Figs.

  3. Conversion of organic solids to hydrocarbons

    DOEpatents

    Greenbaum, Elias

    1995-01-01

    A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon.

  4. STRUCTURE AND PROPERTIES OF SOLID SOLUTIONS.

    DTIC Science & Technology

    Contents: solid solution strengthening and strain aging in Ag-base Al alloys; solid solution strengthening and aging in Cu-base Al alloys; solid ... solution strengthening in NaCl-base NaBr solutions; short-range order; solid solution strength in the gold-silver system.

  5. Hardness of cubic solid solutions

    PubMed Central

    Gao, Faming

    2017-01-01

    We demonstrate that a hardening rule exists in cubic solid solutions with various combinations of ionic, covalent and metallic bonding. It is revealed that the hardening stress ∆τFcg is determined by three factors: shear modulus G, the volume fraction of solute atoms fv, and the size misfit degree δb. A simple hardening correlation in KCl-KBr solid-solution is proposed as ∆τFcg = 0.27 G. It is applied to calculate the hardening behavior of the Ag-Au, KCl-KBr, InP-GaP, TiN-TiC, HfN-HfC, TiC-NbC and ZrC-NbC solid-solution systems. The composition dependence of hardness is elucidated quantitatively. The BN-BP solid-solution system is quantitatively predicted. We find a hardening plateau region around the x = 0.55–0.85 in BNxP1−x, where BNxP1−x solid solutions are far harder than cubic BN. Because the prediction is quantitative, it sets the stage for a broad range of applications. PMID:28054659

  6. Solid oxide electrochemical reactor science.

    SciTech Connect

    Sullivan, Neal P.; Stechel, Ellen Beth; Moyer, Connor J.; Ambrosini, Andrea; Key, Robert J.

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  7. Hardness of cubic solid solutions

    NASA Astrophysics Data System (ADS)

    Gao, Faming

    2017-01-01

    We demonstrate that a hardening rule exists in cubic solid solutions with various combinations of ionic, covalent and metallic bonding. It is revealed that the hardening stress ∆τFcg is determined by three factors: shear modulus G, the volume fraction of solute atoms fv, and the size misfit degree δb. A simple hardening correlation in KCl-KBr solid-solution is proposed as ∆τFcg = 0.27 G. It is applied to calculate the hardening behavior of the Ag-Au, KCl-KBr, InP-GaP, TiN-TiC, HfN-HfC, TiC-NbC and ZrC-NbC solid-solution systems. The composition dependence of hardness is elucidated quantitatively. The BN-BP solid-solution system is quantitatively predicted. We find a hardening plateau region around the x = 0.55–0.85 in BNxP1‑x, where BNxP1‑x solid solutions are far harder than cubic BN. Because the prediction is quantitative, it sets the stage for a broad range of applications.

  8. Structural characterization of solid foams

    NASA Astrophysics Data System (ADS)

    Maire, Éric; Adrien, Jérôme; Petit, Clémence

    2014-10-01

    For being a useful contribution to the understanding of the properties of solid foams, the characterization of the structure of solid foams has to be performed at different scales. The microstructure of the solid part of the foams has to be analyzed. For this, standard SEM observations are often used. The most important aspect (and the most problematic) remains the characterization of the porous architecture of these materials. The methods introduced in this paper concern both scales and the article discusses the specificity of the experiments in the case of porous materials. X-ray tomography is described in more details because it becomes widely used for this purpose. The paper also shows how the obtained 3D images (sometimes obtained during deformation) can be processed to yield important morphological parameters describing the foams. xml:lang="fr"

  9. Modern solid state laser materials

    SciTech Connect

    Krupke, W.F.

    1984-06-20

    This document contains visual aids used in an invited talk entitled Modern Solid State Laser Materials, presented at the Conference on Lasers and Electro-Optics (CLEO) held in Anaheim, California, on June 20, 1984. Interest at LLNL in solid state lasers focuses on evaluating the potential of solid state laser media for high average power applications, including inertial fusion power production. This talk identifies the relevant bulk material parameters characterizing average power capacity and uses chromium and neodymium co-doped gadolinium scandium gallium garnet (Nd:Cr:GSGG) as an example of a laser material with improved laser properties relative to Nd:YAG (plausible large-scale growth, more efficient spectral coupling to xenon flashlamp radiation, reduced stimulated emission cross section, adequate thermal shock and optical damage threshold parameters, etc.). Recently measured spectroscopic, kinetic, and thermo-mechanical properties of Nd:Cr:GSGG are given.

  10. Solid-solid phase transitions determined by differential scanning calorimetry.

    NASA Technical Reports Server (NTRS)

    Murrill, E.; Whitehead, M. E.; Breed, L.

    1972-01-01

    Data are presented to show that tris(hydroxymethyl)acetic acid, monochloropentaerythritol, monofluoropentaerythritol, difluoropentaerythritol, monoaminopentaerythritol, and diaminopentaerythritol exhibit solid-state transitions to a plastic crystalline state. Transitional enthalpies in many of these substances are lower than might be expected by analogy with related structures, suggesting that some configurational contributions to their entropy increments have been inhibited.

  11. Solid renal masses in adults

    PubMed Central

    Mittal, Mahesh Kumar; Sureka, Binit

    2016-01-01

    With the ever increasing trend of using cross-section imaging in today's era, incidental detection of small solid renal masses has dramatically multiplied. Coincidentally, the number of asymptomatic benign lesions being detected has also increased. The role of radiologists is not only to identify these lesions, but also go a one step further and accurately characterize various renal masses. Earlier detection of small renal cell carcinomas means identifying at the initial stage which has an impact on prognosis, patient management and healthcare costs. In this review article we share our experience with the typical and atypical solid renal masses encountered in adults in routine daily practice. PMID:28104933

  12. Dynamic failure in brittle solids

    SciTech Connect

    Grady, D.E.

    1994-04-01

    Failure of brittle solids within the extremes of the shock loading environment is not well understood. Recent shock-wave data on compression shear failure and tensile spall failure for selected high-strength ceramics are presented and used to examine the mechanisms of dynamic failure. Energy-based theories are used to bound the measured strength properties. A new concept of failure waves in brittle solids is explored in light of the kinetic processes of high-rate fracture. Classical failure criteria are compared with the present base of dynamic strength data on ceramics.

  13. Solid-state lithium battery

    SciTech Connect

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  14. Solid evacuated microspheres of hydrogen

    DOEpatents

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1982-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  15. Imaging of Solid Renal Masses.

    PubMed

    Kay, Fernando U; Pedrosa, Ivan

    2017-03-01

    Detection of solid renal masses has increased, although it has not resulted in significant mortality reduction from renal cell carcinoma. Efforts for improved lesion characterization have been pursued and incorporated in management algorithms, in order to distinguish clinically significant tumors from favorable or benign conditions. Concurrently, imaging methods have produced evidence supporting their role as useful tools not only in lesion detection but also characterization. In addition, newer modalities, such as contrast-enhanced ultrasonography, and advanced applications of MR imaging, are being investigated. This article reviews the current role of different imaging methods in the characterization of solid renal masses.

  16. Lubrication of rigid ellipsida solids

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1982-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza' classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared by using the exact expression for the film in the analysis. Contour plots are known that indicate in detail the pressure developed between the solids.

  17. The Advanced Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Mitchell, Royce E.

    1992-01-01

    The paper describes the Advanced Solid Rocket Motor (ASRM) that is being developed to replace, in 1997, the Redesigned Solid Rocket Motor which currently boosts the Space Shuttle. The ASRM will contain features to improve motor safety (fewer potential leak paths, improved seal materials, stronger case material, and fewer nozzle and case joints), an improved ignition system using through-bulkhead initiators, and highly reproducible manufacturing and inspection techniques with a large number of automated procedures. The ASRM will be able to deliver 12,000 lbs greater payloads to any given orbit of the Shuttle. There are also environmental improvements, realized by waste propellant recovery.

  18. Enzyme catalysis on solid surfaces.

    PubMed

    Laurent, Nicolas; Haddoub, Rose; Flitsch, Sabine L

    2008-06-01

    Enzyme-catalysed reactions in which substrates are bound (immobilised) to solid surfaces are becoming increasingly important in biotechnology. There is a general drive for miniaturisation and automation in chemistry and biology, and immobilisation of the reaction intermediates and substrates, for example on microarrays or nanoparticles, helps to address technical challenges in this area. In bionanotechnology, enzyme catalysis can provide highly selective and biocompatible tools for the modification of surfaces on the nano-scale. Here, we review the range of enzyme-catalysed reactions that have been successfully performed on the solid phase and discuss their application in biotechnology.

  19. Solid colloidal optical wavelength filter

    DOEpatents

    Alvarez, Joseph L.

    1992-01-01

    A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

  20. Regional solid waste management study

    SciTech Connect

    Not Available

    1992-09-01

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Rural Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.

  1. Solid Rocket Booster-Illustration

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This illustration is a cutaway of the solid rocket booster (SRB) sections with callouts. The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment. The boosters are designed to survive water impact at almost 60 miles per hour, maintain flotation with minimal damage, and preclude corrosion of the hardware exposed to the harsh seawater environment. Under the project management of the Marshall Space Flight Center, the SRB's are assembled and refurbished by the United Space Boosters. The SRM's are provided by the Morton Thiokol Corporation.

  2. Thin Film Solid Lubricant Development

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.

    1997-01-01

    Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.

  3. Solid lithium-ion electrolyte

    DOEpatents

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  4. Vacuum Flushing of Sewer Solids

    EPA Science Inventory

    The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...

  5. Solid lithium-ion electrolyte

    DOEpatents

    Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin

    1998-01-01

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  6. Equation of State of Solids.

    DTIC Science & Technology

    The report describes a program for computing equation of state parameters for a material which undergoes a phase transition, either rate-dependent or...obtaining explicit temperature dependence if measurements are made at three temperatures. It is applied to data from calcite. Finally a theoretical equation of state is described for solid iron. (Author)

  7. Solid oxide fuel cell generator

    DOEpatents

    Di Croce, A. Michael; Draper, Robert

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.

  8. Quadric solids and computational geometry

    SciTech Connect

    Emery, J.D.

    1980-07-25

    As part of the CAD-CAM development project, this report discusses the mathematics underlying the program QUADRIC, which does computations on objects modeled as Boolean combinations of quadric half-spaces. Topics considered include projective space, quadric surfaces, polars, affine transformations, the construction of solids, shaded image, the inertia tensor, moments, volume, surface integrals, Monte Carlo integration, and stratified sampling. 1 figure.

  9. Electrochemical processing of solid waste

    NASA Technical Reports Server (NTRS)

    Bockris, John OM.

    1987-01-01

    An investigation of electrochemical waste treatment methods suitable for closed, or partially closed, life support systems for manned space exploration is discussed. The technique being investigated involves the electrolysis of solid waste where the aim is to upgrade waste material (mainly fecal waste) to generate gases that can be recycled in a space station or planetary space environment.

  10. Solid Waste/Energy Curriculum.

    ERIC Educational Resources Information Center

    Vivan, V. Eugene; And Others

    Provided are solid waste/energy curriculum materials for grades K-2, 3-4, 5-6, 7-9, and 10-12. Separate folders containing units of study (focusing on trash, litter, and recycling) are provided for kindergarten (four units), grade 1 (two units), and grade 2 (two units). Folders contain teachers' directions and activity cards which include picture…

  11. Controls for Burning Solid Wastes

    ERIC Educational Resources Information Center

    Toro, Richard F.; Weinstein, Norman J.

    1975-01-01

    Modern thermal solid waste processing systems are becoming more complex, incorporating features that require instrumentation and control systems to a degree greater than that previously required just for proper combustion control. With the advent of complex, sophisticated, thermal processing systems, TV monitoring and computer control should…

  12. Recycling Solid Waste in Chattanooga

    ERIC Educational Resources Information Center

    Vredeveld, Ruth; Martin, Robin

    1973-01-01

    Students undertook a group project in collaboration with city officials to study garbage types in the community and possibilities of recycling solid wastes. Data collected from various sources revealed that public attitude was favorable for recycling efforts and that it was feasible economically. (PS)

  13. Solid Wastes and Water Quality.

    ERIC Educational Resources Information Center

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  14. Removing Solids From Supercritical Water

    NASA Technical Reports Server (NTRS)

    Hong, Glenn T.

    1992-01-01

    Apparatus removes precipitated inorganic salts and other solids in water-recycling process. Designed for use with oxidation in supercritical water which treats wastes and yields nearly pure water. Heating coils and insulation around vessel keep it hot. Locking bracket seals vessel but allows it to be easily opened for replacement of filled canisters.

  15. Overhauser effects in insulating solids

    SciTech Connect

    Can, T. V.; Corzilius, B.; Walish, J. J.; Griffin, R. G.; Caporini, M. A.; Rosay, M.; Maas, W. E.; Mentink-Vigier, F.; Vega, S.; Baldus, M.; Swager, T. M.

    2014-08-14

    We report magic angle spinning, dynamic nuclear polarization (DNP) experiments at magnetic fields of 9.4 T, 14.1 T, and 18.8 T using the narrow line polarizing agents 1,3-bisdiphenylene-2-phenylallyl (BDPA) dispersed in polystyrene, and sulfonated-BDPA (SA-BDPA) and trityl OX063 in glassy glycerol/water matrices. The {sup 1}H DNP enhancement field profiles of the BDPA radicals exhibit a significant DNP Overhauser effect (OE) as well as a solid effect (SE) despite the fact that these samples are insulating solids. In contrast, trityl exhibits only a SE enhancement. Data suggest that the appearance of the OE is due to rather strong electron-nuclear hyperfine couplings present in BDPA and SA-BDPA, which are absent in trityl and perdeuterated BDPA (d{sub 21}-BDPA). In addition, and in contrast to other DNP mechanisms such as the solid effect or cross effect, the experimental data suggest that the OE in non-conducting solids scales favorably with magnetic field, increasing in magnitude in going from 5 T, to 9.4 T, to 14.1 T, and to 18.8 T. Simulations using a model two spin system consisting of an electron hyperfine coupled to a {sup 1}H reproduce the essential features of the field profiles and indicate that the OE in these samples originates from the zero and double quantum cross relaxation induced by fluctuating hyperfine interactions between the intramolecular delocalized unpaired electrons and their neighboring nuclei, and that the size of these hyperfine couplings is crucial to the magnitude of the enhancements. Microwave power dependent studies show that the OE saturates at considerably lower power levels than the solid effect in the same samples. Our results provide new insights into the mechanism of the Overhauser effect, and also provide a new approach to perform DNP experiments in chemical, biophysical, and physical systems at high magnetic fields.

  16. Probing universality classes in solid-on-solid deposition.

    PubMed

    Castez, Marcos F; Salvarezza, Roberto C; Solari, Hernán G

    2004-07-01

    We consider several stochastic processes corresponding to the same physical solid-on-solid deposition problem. Simplified models presenting the same (conditional) mean and variance for each process are also introduced as well as generalizations in terms of the deposition of blobs and probabilistic deposition rules. We compare the evolution of the roughness as a function of time for a three-parameter family that includes as limit cases the Family model and the Edwards-Wilkinson equation, showing that in all cases the derived models with the same mean and variance are indistinguishable from the originating models in terms of the evolution of the roughness. Finally, we show that although all the models studied belong to the same universality class, some relevant features such as the final surface roughness are reproduced only for models within a restricted class determined by sharing the same (conditional) mean and variance.

  17. Nonthermal solid-to-solid phase transitions in tungsten

    NASA Astrophysics Data System (ADS)

    Giret, Yvelin; Daraszewicz, Szymon L.; Duffy, Dorothy M.; Shluger, Alexander L.; Tanimura, Katsumi

    2014-09-01

    The ab initio calculations of phonon dispersions and nonthermal forces along structural deformation paths were used to study nonthermal solid-to-solid phase transitions in photoexcited tungsten. We assumed that electronic excitation can be described by an electronic temperature and demonstrated that nonthermal, i.e., caused purely by electronic excitation, bcc-to-fcc and bcc-to-hcp phase transitions can occur for electronic temperatures between 1.7 and 4.3 eV. These transitions result from soft modes along the Σ line of the Brillouin zone. Structural path calculations at different electronic temperatures indicate that both transitions are likely to take place in nonequilibrium conditions. We further predict that transient fcc and hcp phases of tungsten could be observed for several ps.

  18. Solid-solid transitions induced by repulsive interactions revisited

    NASA Astrophysics Data System (ADS)

    Navascués, G.; Velasco, E.; Mederos, L.

    2016-10-01

    We revisit a problem already studied 15 years ago by us in collaboration with Stell and Hemmer: the isostructural solid-solid transitions induced by repulsive particle interactions exhibited by classical systems interacting via the Stell-Hemmer potentials. The full phase diagram in the crystal region is obtained by applying a perturbation theory for classical solids used during our collaboration with Stell. Also, the performance of such a theory is now tested by comparing the perturbative phase diagram with that obtained from computer simulations. The latter was calculated using a recently refined method to obtain the free-energy of crystals by means of Monte Carlo simulations. The perturbation theory captures the correct topology and correctly identifies the stable, fcc and bcc, phases. In addition, the theory predicts the occurrence of special points: a point where the two stable structures coexist at the same density, and two critical points terminating the corresponding isostructural phase transitions for fcc and bcc phases. The location of some of these features in the phase diagram is predicted almost quantitatively. However, phase boundaries involving the non-compact bcc phase are much less accurate, a problem that can be traced to the poor representation used for the bcc phase of the reference, hard-sphere, system.

  19. Assessing total and volatile solids in municipal solid waste samples.

    PubMed

    Peces, M; Astals, S; Mata-Alvarez, J

    2014-01-01

    Municipal solid waste is broadly generated in everyday activities and its treatment is a global challenge. Total solids (TS) and volatile solids (VS) are typical control parameters measured in biological treatments. In this study, the TS and VS were determined using the standard methods, as well as introducing some variants: (i) the drying temperature for the TS assays was 105°C, 70°C and 50°C and (ii) the VS were determined using different heating ramps from room tempature to 550°C. TS could be determined at either 105°C or 70°C, but oven residence time was tripled at 70°C, increasing from 48 to 144 h. The VS could be determined by smouldering the sample (where the sample is burnt without a flame), which avoids the release of fumes and odours in the laboratory. However, smouldering can generate undesired pyrolysis products as a consequence of carbonization, which leads to VS being underestimated. Carbonization can be avoided using slow heating ramps to prevent the oxygen limitation. Furthermore, crushing the sample cores decreased the time to reach constant weight and decreased the potential to underestimate VS.

  20. Reactions of Inorganic High Polymers as a Route to Tailored Solids

    DTIC Science & Technology

    1989-02-09

    polymers, liquid crystalline materials , bioerodable solids, solids with bioactive surfaces, solid electrolytes, semiconductors, or ultrastructures. Solids, Polymers, Phosphazenes, Synthesis, (Chemistry).

  1. Preparation of a Simple Thermochromic Solid.

    ERIC Educational Resources Information Center

    Van Oort, Michiel J. M.

    1988-01-01

    Suggests a laboratory introduction to solid-solid phase transitions, thermochromism, and color changes associated with changes in ligand coordination suitable for undergraduate students in physical and general chemistry. Describes the preparation and analysis of the experiment. (CW)

  2. Formula Feeding FAQs: Starting Solids and Milk

    MedlinePlus

    ... Year-Old Formula Feeding FAQs: Starting Solids and Milk KidsHealth > For Parents > Formula Feeding FAQs: Starting Solids ... When can I start giving my baby cow's milk? Before their first birthday, babies still need the ...

  3. Shock Induced Molecular Excitation in Solids.

    DTIC Science & Technology

    1983-04-06

    Atomistic Relations in Physics and Chemistry of Solids," in Optical Properties of Solids , ed. by S. Nudelman and S. S. Mitra, Plenum, New York... Properties of Solids , S. Nudelman and S. S. Mitra, eds., • Plenum, New York (1969), p. 310 ff. K • J 9 1 • 1...lOf) I • * - ’Plendl, J. Mi, "New Spectral and Atomistic Relations in Physics and Chemistry • t< ot Solids," in Optical

  4. Multicellular Streaming in Solid Tumours

    NASA Astrophysics Data System (ADS)

    Kas, Josef

    As early as 400 BCE, the Roman medical encyclopaedist Celsus recognized that solid tumours are stiffer than surrounding tissue. However, cancer cell lines are softer, and softer cells facilitate invasion. This paradox raises several questions: Does softness emerge from adaptation to mechanical and chemical cues in the external microenvironment, or are soft cells already present inside a primary solid tumour? If the latter, how can a more rigid tissue contain more soft cells? Here we show that in primary tumour samples from patients with mammary and cervix carcinomas, cells do exhibit a broad distribution of rigidities, with a higher fraction of softer and more contractile cells compared to normal tissue. Mechanical modelling based on patient data reveals that, surprisingly, tumours with a significant fraction of very soft cells can still remain rigid. Moreover, in tissues with the observed distributions of cell stiffnesses, softer cells spontaneously self-organize into lines or streams, possibly facilitating cancer metastasis.

  5. Space Shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Hardy, G. B.

    1979-01-01

    Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

  6. Metabolic scaling in solid tumours

    NASA Astrophysics Data System (ADS)

    Milotti, E.; Vyshemirsky, V.; Sega, M.; Stella, S.; Chignola, R.

    2013-06-01

    Tumour metabolism is an outstanding topic of cancer research, as it determines the growth rate and the global activity of tumours. Recently, by combining the diffusion of oxygen, nutrients, and metabolites in the extracellular environment, and the internal motions that mix live and dead cells, we derived a growth law of solid tumours which is linked to parameters at the cellular level. Here we use this growth law to obtain a metabolic scaling law for solid tumours, which is obeyed by tumours of different histotypes both in vitro and in vivo, and we display its relation with the fractal dimension of the distribution of live cells in the tumour mass. The scaling behaviour is related to measurable parameters, with potential applications in the clinical practice.

  7. Clustering fossils in solid inflation

    SciTech Connect

    Akhshik, Mohammad

    2015-05-01

    In solid inflation the single field non-Gaussianity consistency condition is violated. As a result, the long tenor perturbation induces observable clustering fossils in the form of quadrupole anisotropy in large scale structure power spectrum. In this work we revisit the bispectrum analysis for the scalar-scalar-scalar and tensor-scalar-scalar bispectrum for the general parameter space of solid. We consider the parameter space of the model in which the level of non-Gaussianity generated is consistent with the Planck constraints. Specializing to this allowed range of model parameter we calculate the quadrupole anisotropy induced from the long tensor perturbations on the power spectrum of the scalar perturbations. We argue that the imprints of clustering fossil from primordial gravitational waves on large scale structures can be detected from the future galaxy surveys.

  8. Solid friction between soft filaments

    NASA Astrophysics Data System (ADS)

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A. W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  9. Solid friction between soft filaments

    SciTech Connect

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A. W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-03-02

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. In conclusion, our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  10. Modern solid state laser materials

    NASA Astrophysics Data System (ADS)

    Krupke, W. F.

    1984-06-01

    Visual aids used in an invited talk entitled Modern Solid State Laser Materials are presented. Interest at LLNL in solid state lasers focuses on evaluating the potential inertial fusion power production. The relevant bulk material parameters characterizing average power capacity are identified and chromium and neodymium co-doped gadolinium scandium gallium garnet (Nd:Cr:GSGG) are used as an example of a laser material with improved laser properties relative to Nd:YAG (plausible large scale growth, more efficient spectral coupling to xenon flashlamp radiation, reduced stimulated emission cross section, adequate thermal shock and optical damage threshold parameters, etc.). Recently measured spectroscopic, kinetic, and thermomechanical properties of Nd:Cr:GSGG are given.

  11. SMP: A solid modeling program

    NASA Technical Reports Server (NTRS)

    Randall, D. P.; Jones, K. H.; Vonofenheim, W. H.; Gates, R. L.

    1984-01-01

    A prototype solid modeling program, SMP, developed by CSC for Langley Research Center (LaRC) is documented in this paper. The SMP software is employed by the System and Experiments Branch (SEB) of the Space Systems Division (SSD) for preliminary space station design, but is intended as a general purpose tool. The SMP document provides details concerning: the basic geometric modeling primitives and associated operators, the data representation scheme utilized to structure the geometric model, the available commands for both editing and displaying the solid model, the interactive user interface and the input/output interfaces to external software, and the utility of the package in the LaRC computing environment. The document is sufficiently detailed to serve both as a user's guide and reference manual.

  12. Hazardous solid waste from agriculture.

    PubMed Central

    Loehr, R C

    1978-01-01

    Large quantities of food processing, crop, forestry, and animal solid wastes are generated in the United States each year. The major components of these wastes are biodegradable. However, they also contain components such as nitrogen, human and animal pathogens, medicinals, feed additives, salts, and certain metals, that under uncontrolled conditions can be detrimental to aquatic, plant, animal, or human life. The most common method of disposal of these wastes is application to the land. Thus the major pathways for transmission of hazards are from and through the soil. Use of these wastes as animal feed also can be a pathway. While at this time there are no crises associated with hazardous materials in agricultural solid wastes, the potential for problems should not be underestimated. Manpower and financial support should be provided to obtain more detailed information in this area, esepcially to better delineate transport and dispersal and to determine and evaluate risks. PMID:367770

  13. Metabolic scaling in solid tumours

    PubMed Central

    Milotti, E.; Vyshemirsky, V.; Sega, M.; Stella, S.; Chignola, R.

    2013-01-01

    Tumour metabolism is an outstanding topic of cancer research, as it determines the growth rate and the global activity of tumours. Recently, by combining the diffusion of oxygen, nutrients, and metabolites in the extracellular environment, and the internal motions that mix live and dead cells, we derived a growth law of solid tumours which is linked to parameters at the cellular level1. Here we use this growth law to obtain a metabolic scaling law for solid tumours, which is obeyed by tumours of different histotypes both in vitro and in vivo, and we display its relation with the fractal dimension of the distribution of live cells in the tumour mass. The scaling behaviour is related to measurable parameters, with potential applications in the clinical practice. PMID:23727729

  14. Biogasification of municipal solid wastes

    NASA Astrophysics Data System (ADS)

    Diaz, L. F.; Savage, G. M.; Trezek, G. J.; Golueke, C. G.

    1981-06-01

    A series of experiments on the anaerobic digestion of the organic fraction of municipal refuse was performed. The refuse fraction used in the study was one of the portions segregated in a resource recovery system developed at the University of California, Berkeley. The scale of experiments includes 4, 9, and 1600-L digesters. The refuse used as feed was enriched by the addition of raw sewage sludge in various ratios, i.e., from 0-100 percent of the total volatile solids. No other sources of nutrients or chemicals for pH control were introduced into the reactors. Organic loading rates ranging from 1.1-6.4 g of volatile solids/Ld were obtained. Typical hydraulic detention times were 15 to 30 days. Temperatures were kept within the range of 72-104 F (22-40 C). Digestion efficiency was based on energy conversion and gas production.

  15. Solid-state membrane module

    DOEpatents

    Gordon, John Howard; Taylor, Dale M.

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  16. Solid friction between soft filaments.

    PubMed

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes's drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  17. Solid-State Nuclear Power

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    2012-01-01

    A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.

  18. Radiation sensitive solid state switch

    NASA Technical Reports Server (NTRS)

    Hutto, R. J. (Inventor)

    1973-01-01

    A mechanically operable solid state switch suited for use in achieving a variable circuit-switching function is described. This switch is characterized by an annular array of photoresponsive switching devices, disposed in communication with an included source of radiation, and a plurality of interchangeable, mechanically operable interrupter disks. Each disk has a predetermined pattern of transparent and opaque portions. Operative displacement of each disk serves to make and break selected electrical circuits through the photo responsive devices of said array.

  19. A Simple Arbitrary Solid Slicer

    SciTech Connect

    Yao, J

    2005-06-23

    The intersection of a given plane and an arbitrary (possibly non-convex, with multiple connectivities) meshed solid is exactly expressed by a set of planar cross-sections. A rule for marching on the edges of an arbitrary polyhedron is set for obtaining the topology of the cross-section. The method neither seeks triangulation of the surface mesh nor utilizes look-up tables, therefore it has optimal efficiency.

  20. Solid rocket motor internal insulation

    NASA Technical Reports Server (NTRS)

    Twichell, S. E. (Editor); Keller, R. B., Jr.

    1976-01-01

    Internal insulation in a solid rocket motor is defined as a layer of heat barrier material placed between the internal surface of the case propellant. The primary purpose is to prevent the case from reaching temperatures that endanger its structural integrity. Secondary functions of the insulation are listed and guidelines for avoiding critical problems in the development of internal insulation for rocket motors are presented.

  1. Supercritical/Solid Catalyst (SSC)

    ScienceCinema

    None

    2016-07-12

    INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

  2. Supercritical/Solid Catalyst (SSC)

    SciTech Connect

    2010-01-01

    INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

  3. Solid Rocket Motor Acoustic Testing

    SciTech Connect

    Rogers, J.D.

    1999-03-31

    Acoustic data are often required for the determination of launch and powered flight loads for rocket systems and payloads. Such data are usually acquired during test firings of the solid rocket motors. In the current work, these data were obtained for two tests at a remote test facility where we were visitors. This paper describes the data acquisition and the requirements for working at a remote site, interfacing with the test hosts.

  4. Solid-state membrane module

    DOEpatents

    Hinklin, Thomas Ray; Lewinsohn, Charles Arthur

    2015-06-30

    A module for separating oxygen from an oxygen-containing gaseous mixture comprising planar solid-state membrane units, each membrane unit comprising planar dense mixed conducting oxides layers, planar channel-free porous support layers, and one or more planar intermediate support layers comprising at least one channeled porous support layer. The porosity of the planar channeled porous support layers is less than the porosity of the planar channel-free porous support layers.

  5. Inelastic proton-solid collisions

    NASA Astrophysics Data System (ADS)

    Echenique, P. M.; Flores, F.

    1987-05-01

    A first-principles calculation of charge states of moving protons in Al is presented. The many-body self-energy approach combined with ordinary atomic physics has been used. We find that at high velocities, V>2V0 or 3V0 (Bohr velocity), the processes are atomiclike, while at intermediate velocities, 0.7V0solid-state effects are responsible for the proton charges.

  6. Solid Lubricated Rolling Element Bearings

    DTIC Science & Technology

    1979-02-15

    where L coefficient of friction Sf = film shear strength Pf = film yield pressure 0 P = substrate yield pressure 5 S becomes the...as supported by known facts. , In addition to reducing the coefficient of friction and, therefore, controlling the traction of a solid lubricated...appropriate friction coefficients . For a much closer simulation, 40 it will be necessary to make certain modifications to the program. These required

  7. Rechargeable solid polymer electrolyte battery cell

    DOEpatents

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  8. 76 FR 53376 - Definition of Solid Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... AGENCY 40 CFR Parts 260, 261, and 270 RIN 2050-AG62 Definition of Solid Waste AGENCY: Environmental... definition of solid waste published in the Federal Register on July 22, 2011. EPA is proposing to revise certain exclusions from the definition of solid waste for hazardous secondary materials intended...

  9. Suspended Solids Profiler Shop Test Report

    SciTech Connect

    STAEHR, T.W.

    2000-01-19

    The Suspended Solids Profiler (SSP) Instrument is planned to be installed in the AZ-101 tank to measure suspended solids concentrations during mixer pump testing. The SSP sensor uses a reflectance measurement principle to determine the suspended solids concentrations. The purpose of this test is to provide a documented means of verifying that the functional components of the SSP operate properly.

  10. Solid Waste Management Plan. Revision 4

    SciTech Connect

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  11. Composite Solid Propellant Predictability and Quality Assurance

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar

    1989-01-01

    Reports are presented at the meeting at the University of Arizona on the study of predictable and reliable solid rocket motors. The following subject areas were covered: present state and trends in the research of solid propellants; the University of Arizona program in solid propellants, particularly in mixing (experimental and analytical results are presented).

  12. Energy and solid/hazardous waste

    SciTech Connect

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  13. Solid Waste Activity Packet for Teachers.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This solid waste activity packet introduces students to the solid waste problem in Illinois. Topics explore consumer practices in the market place, packaging, individual and community garbage generation, and disposal practices. The activities provide an integrated approach to incorporating solid waste management issues into subject areas. The…

  14. Solid rocket motor witness test

    NASA Technical Reports Server (NTRS)

    Welch, Christopher S.

    1991-01-01

    The Solid Rocket Motor Witness Test was undertaken to examine the potential for using thermal infrared imagery as a tool for monitoring static tests of solid rocket motors. The project consisted of several parts: data acquisition, data analysis, and interpretation. For data acquisition, thermal infrared data were obtained of the DM-9 test of the Space Shuttle Solid Rocket Motor on December 23, 1987, at Thiokol, Inc. test facility near Brigham City, Utah. The data analysis portion consisted of processing the video tapes of the test to produce values of temperature at representative test points on the rocket motor surface as the motor cooled down following the test. Interpretation included formulation of a numerical model and evaluation of some of the conditions of the motor which could be extracted from the data. These parameters included estimates of the insulation remaining following the tests and the thickness of the charred layer of insulation at the end of the test. Also visible was a temperature signature of the star grain pattern in the forward motor segment.

  15. Water-solids interactions: deliquescence.

    PubMed

    Mauer, Lisa J; Taylor, Lynne S

    2010-01-01

    Deliquescence is a first order phase transition from solid to solution that occurs at a relative humidity (RH) that is characteristic to the solid ingredient. In blends containing more than one component with deliquescent behavior, the RH of the solid-solution transition will be lowered, leading to some level of dissolution at relatively low RH conditions. Dissolution arising as a result of deliquescence will impact the chemical and physical stability of complex food systems. Because chemical reactions occur much more readily in solution, deliquescence will enhance the degradation of labile food ingredients. RH fluctuations will lead to cycles of deliquescence and efflorescence (crystallization), which will contribute to particle agglomeration and caking. This review addresses the phenomenon of deliquescence, the significance of deliquescence to the food industry, measurement techniques, the kinetics and thermodynamics of deliquescence, the behavior of mixtures of deliquescent salts (including phase diagrams and thermodynamics of binary systems), and consequences of deliquescence on chemical and physical stability of powdered food and nutritional ingredient blends.

  16. Solid-state proton conductors

    NASA Astrophysics Data System (ADS)

    Jewulski, J. R.; Osif, T. L.; Remick, R. J.

    1990-12-01

    The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling, and optimization studies. Correlation and optimization studies are described which include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells are presented which include the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms.

  17. Solid-state proton conductors

    SciTech Connect

    Jewulski, J.R.; Osif, T.L.; Remick, R.J.

    1990-12-01

    The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling and optimization studies. Correlation and optimization studies, to include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells including the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms. 164 refs., 27 figs., 13 tabs.

  18. Solid electrolyte oxygen regeneration system

    NASA Technical Reports Server (NTRS)

    Shumar, J. W.; See, G. G.; Schubert, F. H.; Powell, J. D.

    1976-01-01

    A program to design, develop, fabricate and assemble a one-man, self-contained, solid electrolyte oxygen regeneration system (SX-1) incorporating solid electrolyte electrolyzer drums was completed. The SX-1 is a preprototype engineering model designed to produce 0.952 kg (2.1 lb)/day of breathable oxygen (O2) from the electrolysis of metabolic carbon dioxide (CO2) and water vapor. The CO2 supply rate was established based on the metabolic CO2 generation rate for one man of 0.998 kg (2.2 lb)/day. The water supply rate (0.254 kg (0.56 lb)/day) was designed to be sufficient to make up the difference between the 0.952 kg (2.1 lb)/day O2 generation specification and the O2 available through CO2 electrolysis, 0.726 kg (1.6 lb)/day. The SX-1 was successfully designed, fabricated and assembled. Design verification tests (DVT) or the CO Disproportionators, H2 separators, control instrumentation, monitor instrumentation, water feed mechanism were successfully completed. The erratic occurrence of electrolyzer drum leakage prevented the completion of the CO2 electrolyzer module and water electrolyzer module DVT's and also prevented the performance of SX-1 integrated testing. Further development work is required to improve the solid electrolyte cell high temperature seals.

  19. Density-functional theory for fluid-solid and solid-solid phase transitions

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Atul S.; Singh, Yashwant

    2017-03-01

    We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u (r ) =ɛ "close="1 /n )">σ /r n , where parameter n measures softness of the potential. We find that for 1 /n ≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.

  20. Solid-solid transformation mechanism for nanocrystalline sodalite from pillared clay.

    PubMed

    Choy, Jin-Ho; Lee, Sung-Reol; Han, Yang-Su; Park, Man; Park, Gyeong-Su

    2003-08-07

    We here report the synthesis of nanocrystalline sodalite by a solid-solid transformation from a solid gel mixture of Al2O3 pillared montmorillonite (Al2O3-PILM) and NaOH under an ambient atmosphere at 80 degrees C. HR-TEM clearly shows both the formation of sodalite nuclei by the solid-solid transformation of the montmorillonite matrix and the crystal growth of nanocrystalline sodalite through the rearrangement of delocalized nuclei.

  1. Solid state division progress report, period ending February 29, 1980

    SciTech Connect

    Not Available

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.

  2. Generalized model for solid-on-solid interface growth.

    PubMed

    Richele, M F; Atman, A P F

    2015-05-01

    We present a probabilistic cellular automaton (PCA) model to study solid-on-solid interface growth in which the transition rules depend on the local morphology of the profile obtained from the interface representation of the PCA. We show that the model is able to reproduce a wide range of patterns whose critical roughening exponents are associated to different universality classes, including random deposition, Edwards-Wilkinson, and Kardar-Parisi-Zhang. By means of the growth exponent method, we consider a particular set of the model parameters to build the two-dimensional phase diagram corresponding to a planar cut of the higher dimensional parameter space. A strong indication of phase transition between different universality classes can be observed, evincing different regimes of deposition, from layer-by-layer to Volmer-Weber and Stransk-Krastanov-like modes. We expect that this model can be useful to predict the morphological properties of interfaces obtained at different surface deposition problems, since it allows us to simulate several experimental situations by setting the values of the specific transition probabilities in a very simple and direct way.

  3. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

    2003-12-08

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

  4. Thermal transport across symmetric and asymmetric solid-solid interfaces

    NASA Astrophysics Data System (ADS)

    Bi, Kedong; Liu, Yadong; Zhang, Chunwei; Li, Jiapeng; Chen, Minhua; Chen, Yunfei

    2016-10-01

    Thermal transport across symmetric and asymmetric solid-solid interfaces is investigated by non-equilibrium molecular dynamics simulations. For symmetric interfaces, simulation results demonstrate that the thermal interface resistance is reduced greatly with the temperature increasing from 20 to 70 K. Besides, the introduction of an interlayer in the region of a highly mismatched interface is predicted to effectively decrease the thermal interface resistance due to the vibrational bridge role of the interlayer in connecting two vibrationally mismatched materials. As for the case of asymmetric interfaces, it is found that the capacity of thermal transport across an asymmetric interface is related to the effective interfacial area, namely the smaller cross-section area of component materials. In addition, effects of the transition angle at asymmetric interfaces on the thermal interface resistance are further studied when heat flows through interfaces from the side with larger cross-section area to the other. It is shown that a smoother transition is preferred for thermal transport through an asymmetric interface.

  5. Solid-solid transitions in Pd-Pt nanoalloys

    NASA Astrophysics Data System (ADS)

    Panizon, Emanuele; Ferrando, Riccardo

    2015-11-01

    Solid-solid transformations in Pd-Pt nanoalloys in the size range 32-38 atoms and for different compositions are computationally studied by the superposition approximation to the partition function, and by molecular dynamics simulations. A broad spectrum of transition types is shown to take place. These transition types are: (i) one-to-one type, in which the global minimum, which is dominant at low temperatures, transforms into another single isomer with increasing temperature; (ii) one-to-many type, in which the transition is from a single isomer to a family of other isomers; (iii) many-to-many type, in which the transition is between two different families of isomers; (iv) many-to-one type, in which the effect of vibrational entropy is to greatly reduce the number of relevant structures with increasing temperatures. We provide a rationale for these behaviors, which stem from the interplay between energetics and vibrational entropy effects. The vibrational entropy is explained by analyzing the vibrational density of states and the specific features of the normal modes. Quantum effects on the structural transitions are also discussed.

  6. The Advanced Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Mitchell, Royce E.

    1992-01-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  7. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1993-01-01

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  8. Composting of municipal solid waste.

    PubMed

    Kumar, Sunil

    2011-06-01

    This paper reviews the literature on the composting process, which is one of the technological options for the processing of municipal solid wastes (MSWs). The process assumes a great significance, particularly from the point of its economic viability, capability for recycling of nutrients and waste minimization with minimum environmental problems. A number of studies on various aspects of the composting process, including process control and monitoring parameters such as temperature, pH, moisture content, aeration, and porosity are reviewed. Salient observations on microbial properties of composting are described and details of vermicomposting, as well as a detailed analysis of patents on composting of MSW, are presented.

  9. Radiation Effects in Solid Nitrogen

    NASA Astrophysics Data System (ADS)

    Savchenko, E. V.; Khyzhniy, I. V.; Uyutnov, S. A.; Bludov, M. A.; Barabashov, A. P.; Gumenchuk, G. B.; Bondybey, V. E.

    2017-04-01

    The radiation effects and relaxation processes in pre-irradiated by an electron beam solid N2 have been studied with a focus on the behavior of the so far unidentified emission band at 360 nm. The study was performed using optical and current spectroscopy methods: cathodoluminescence and developed by our group nonstationary luminescence, as well as spectrally resolved thermally stimulated luminescence, and thermally stimulated exoelectron emission. The measurements cover the temperature range of the α -phase existence. Activation spectroscopy evidenced connection of the 360 nm band with the neutralization reaction. Possible scenarios of N4+ neutralization via dissociative recombination are discussed, and interpretation of the 360 nm band is suggested.

  10. Solid-state optical microscope

    DOEpatents

    Young, I.T.

    1981-01-07

    A solid state optical microscope is described wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. Means for scanning in one of two orthogonal directions are provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  11. Municipal solid waste gasification: Perspectives

    SciTech Connect

    Bain, R.; Overend, R.P.; Chornet, E.; Craig, K.R.

    1996-12-31

    The paper consists of the transparencies that were used during the presentation. Flowcharts are presented for processing options for municipal solid wastes and refuse derived fuels, and for the gasification of refuse derived fuels. Summaries are presented on gasification and gas conditioning goals, the history of MSW gasification, clean gas requirements for engines, and recent history of several gasification processes (Lurgi CFB, TPS CFB, Thermoselect pilot plant, and Proler pilot plant). Challenges are listed and a flowchart for a typical gasification/gas conditioning process is given.

  12. Solid-State Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.

    2005-01-01

    This document is a web site page, and a data sheet about Personal protection (i.e., space suits) presented to the Radiation and Micrometeoroid Mitigation Technology Focus Group meeting. The website describes the work of the PI to improve solid state personal radiation dosimetry. The data sheet presents work on the active personal radiation detection system that is to provide real-time local radiation exposure information during EVA. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.

  13. Solid phase microextraction field kit

    DOEpatents

    Nunes, Peter J.; Andresen, Brian D.

    2005-08-16

    A field kit for the collection, isolation and concentration of trace amounts of high explosives (HE), biological weapons (BW) and chemical weapons (CW) residues in air, soil, vegetation, swipe, and liquid samples. The field kit includes a number of Solid Phase Microextraction (SPME) fiber and syringe assemblies in a hermetically sealed transportation container or tubes which includes a sampling port, a number of extra SPME fiber and syringe assemblies, the fiber and syringe assemblies including a protective cap for the fiber, and an extractor for the protective cap, along with other items including spare parts, protective glove, and an instruction manual, all located in an airtight container.

  14. Solid-oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Fee, D. C.; Ackerman, J. P.

    Solid-Oxide Fuel Cell (SOFC) systems offer significant advantages for a variety of fuels and applications. The simplicity and high efficiency of a direct reforming, contaminant-tolerant power system is advantageous for small natural gas or volatile liquid-fueled utility and industrial congeneration plants, as well as residential use. The further gain in efficiency from the incorporation of a bottoming cycle in large-scale plants is advantageous for coal-fueled utility baseload or industrial cogeneration facilities. Development of SOFC components is well advanced. The present effort focuses on improving cell life and performance as well as integration of cells into an array.

  15. Solid oxide fuel cell generator

    DOEpatents

    Draper, Robert; George, Raymond A.; Shockling, Larry A.

    1993-01-01

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  16. Solid Acid Based Fuel Cells

    DTIC Science & Technology

    2007-11-02

    superprotonic solid acids with elements such as P, As, Si and Ge, which have greater affinities to oxygen , we anticipate that the reduction reaction will be...bulk material consisted of an apatite phase (hexagonal symmetry) of variable composition, LixLa10-x(SiO4)6O3-x, with excess lithium residing in the...in Tables 1 and 2, indicate that this compound is a rather conventional apatite with fixed stoichiometry, LiLa9(SiO4)6O2 (x = 1). Such a result is

  17. Tidal disruption of solid bodies

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, Anthony R.

    1990-01-01

    The problem of stress, strain, and breakup in solid satellites and stray bodies subject to tidal perturbations is presently addressed in view of three novel considerations. After presenting a new analytic solution for the stress tensor in a homogeneous and compressible elastic sphere, where the inclusion of compressibility alters stresses by several percent, realistic failure criteria are noted to demonstrate the general failure of such ductile bodies as iron meteoroids by plastic shear, while brittle ice bodies fail by either tensile or shear fracture. A reexamination of crack propagation after initial failure allows the diverse breakup criteria to be reconciled.

  18. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1993-12-07

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  19. The Advanced Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Mitchell, Royce E.

    1992-08-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  20. Chemical design of nanocrystal solids.

    PubMed

    Kovalenko, Maksym V

    2013-01-01

    This account highlights our recent and present activities dedicated to chemical synthesis and applications of inorganic nanostructures. In particular, we discuss the potential of metal amides as precursors in the synthesis of metallic and semiconductor nanocrystals. We show the importance of surface chemical functionalization for the emergence of collective electronic properties in nanocrystal solids. We also demonstrate a new kind of long-range ordered, crystalline matter comprising colloidal nanocrystals and atomically defined inorganic clusters. Finally, we point the reader's attention to the high potential benefits of size- and shape-tunability of nanocrystals for achieving higher performance of rechargeable Li-ion battery electrodes.

  1. Colorimetric Solid-Phase Extractor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The heart of a colorimetric solid phase extractor (CSPE) test kit quickly measures the concentration of the biocides silver or iodine in astronauts' drinking water to determine whether concentrations are safe. When 10 milliliters (ml) of water is drawn through the disk, the disk will turn color (yellow in this picture for iodine) indicating the presence of the biocides. The device could someday be used to test water safety at reservoirs and water treatment plants on Earth. (photo credit: Microanalytical Instrumentation Center, Iowa State University).

  2. Dewetting of ultrathin solid films.

    PubMed

    Pierre-Louis, O; Chame, A; Saito, Y

    2009-11-06

    Ultrathin crytalline solid films are found to dewet with a faceted rim. In the case of heterogeneous dewetting initiated from a linear trench or from periodically arranged holes, the dewetted area expands either with a faceted multilayer rim or in a layer-by-layer fashion. In the case of homogeneous dewetting, holes are accompanied with multilayer rims and the uncoverage increases as a power law of time. Results of kinetic Monte Carlo simulations are elucidated within the frame of nucleation theory and surface diffusion limited dynamics.

  3. Dewetting of a solid monolayer.

    PubMed

    Pierre-Louis, O; Chame, Anna; Saito, Yukio

    2007-09-28

    We report on the dewetting of a monolayer on a solid substrate, where mass transport occurs via surface diffusion. For a wide range of parameters, a labyrinthine pattern of bilayer islands is formed. An irreversible regime and a thermodynamic regime are identified. In both regimes, the velocity of a dewetting front, the wavelength of the bilayer island pattern, and the rate of nucleation of dewetted zones are obtained. We also point out the existence of a scaling behavior, which is analyzed by means of a geometrical model.

  4. Solid oxide fuel cell generator

    DOEpatents

    Draper, R.; George, R.A.; Shockling, L.A.

    1993-04-06

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  5. Contamination and solid state welds.

    SciTech Connect

    Mills, Bernice E.

    2007-05-01

    Since sensitivity to contamination is one of the verities of solid state joining, there is a need for assessing contamination of the part(s) to be joined, preferably nondestructively while it can be remedied. As the surfaces that are joined in pinch welds are inaccessible and thus provide a greater challenge, most of the discussion is of the search for the origin and effect of contamination on pinch welding and ways to detect and mitigate it. An example of contamination and the investigation and remediation of such a system is presented. Suggestions are made for techniques for nondestructive evaluation of contamination of surfaces for other solid state welds as well as for pinch welds. Surfaces that have good visual access are amenable to inspection by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Although other techniques are useful for specific classes of contaminants (such as hydrocarbons), DRIFT can be used most classes of contaminants. Surfaces such as the interior of open tubes or stems that are to be pinch welded can be inspected using infrared reflection spectroscopy. It must be demonstrated whether or not this tool can detect graphite based contamination, which has been seen in stems. For tubes with one closed end, the technique that should be investigated is emission infrared spectroscopy.

  6. Solid friction between soft filaments

    DOE PAGES

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; ...

    2015-03-02

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag,more » can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. In conclusion, our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.« less

  7. Isotopic analysis of planetary solids

    NASA Astrophysics Data System (ADS)

    Tulej, M.; Riedo, A.; Neuland, M.; Meyer, S.; Wurz, P.

    2013-09-01

    Isotopic analysis of planetary surfaces is of considerable interest for planetology. Studies of isotope composition can deliver information on radio-isotope chronology of planetary soil/regolith, an insight to processes that altered planetary surface (space weathering) or on possible biogenic processes that occurred or still occur on the planet. Mass spectrometry is a well-suited method that delivers accurate and precise isotope composition. Among other instruments (LAZMA and LAMS), the miniature laser ablation/ionisation mass analyser, LMS developed in Bern for in situ space research can be used to measure the elemental and isotopic composition of planetary solids. LMS support mass spectrometric investigation with a mass resolution of m/Δm≈500-1500, dynamic range of at least 8 decades and detection sensitivity of ~10 ppb. Current studies of various solid materials and standard reference materials show that isotope composition can be conducted with an accuracy and precision at per mill level if the isotope concentration exceeds 10-100 ppm. Implications of the studies for in situ application are discussed.

  8. Germanium-silicon solid solutions

    NASA Technical Reports Server (NTRS)

    Zemskov, V. S.; Kubasov, V. N.; Belokurova, I. N.; Titkov, A. N.; Shulpina, I. L.; Safarov, V. I.; Guseva, N. B.

    1977-01-01

    An experiment on melting and directional crystallization of an antimony (Sb) doped germanium silicon (GeSi) solid solution was designed for the Apollo-Soyuz Test Project (ASTP) to study the possibility of using zero-g conditions for obtaining solid-solution monocrystals with uniformly distributed components. Crystallization in the zero-g environment did not occur under ideal stationary growth and segregation conditions. Crystallization under zero-g conditions revealed the heterogeneous nature of Si and Sb distribution in the cross sections of crystals. The presence of the radial thermal gradient in the multipurpose furnace could be one of the reasons for such Si and Sb distribution. The structure of space-grown crystals correlates with the nature of heterogeneities of Si and Sb distribution in crystals. The type of surface morphology and the contour observed in space-grown crystals were never observed in ground-based crystals and indicate the absence of wetting of the graphitized walls of the ampoule by the melt during melting and crystallization.

  9. Growth of Solid Solution Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.; Holland, L. R.

    1985-01-01

    The major objective of this program is to determine the conditions under which single crystals of solid solutions can be grown from the melt in a Bridgman configuration with a high degree of chemical homogeneity. The central aim is to assess the role of gravity in the growth process and to explore the possible advantages for growth in the absence of gravity. The alloy system being investigated is the solid solution semiconductor with x-values appropriate for infrared detector applications in Hg sub (1-x) Cd sub x Te the 8 to 14 micro m wavelength region. Both melt and Te-solvent growth are being considered. The study consists of an extensive ground-based experimental and theoretical research effort followed by flight experimentation where appropriate. Experimental facilities have been established for the purification, casting, and crystal growth of the alloy system. Facilities have been also established for the metallurgical, compositional, electric and optical characterization of the alloys. Crystals are being grown by the Bridgman-Stockbarger method and are analyzed by various experimental techniques to evaluate the effects of growth conditions on the longitudinal and radial compositional variations and defect densities in the crystals.

  10. Continuum representations of cellular solids

    NASA Astrophysics Data System (ADS)

    Neilsen, M. K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics, and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  11. Nanoscale Mixing of Soft Solids

    SciTech Connect

    Choi, Soo-Hyung; Lee, Sangwoo; Soto, Haidy E.; Lodge, Timothy P.; Bates, Frank S.

    2013-03-07

    Assessing the state of mixing on the molecular scale in soft solids is challenging. Concentrated solutions of micelles formed by self-assembly of polystyrene-block-poly(ethylene-alt-propylene) (PS-PEP) diblock copolymers in squalane (C{sub 30}H{sub 62}) adopt a body-centered cubic (bcc) lattice, with glassy PS cores. Utilizing small-angle neutron scattering (SANS) and isotopic labeling ({sup 1}H and {sup 2}H (D) polystyrene blocks) in a contrast-matching solvent (a mixture of squalane and perdeuterated squalane), we demonstrate quantitatively the remarkable fact that a commercial mixer can create completely random mixtures of micelles with either normal, PS(H), or deuterium-labeled, PS(D), cores on a well-defined bcc lattice. The resulting SANS intensity is quantitatively modeled by the form factor of a single spherical core. These results demonstrate both the possibility of achieving complete nanoscale mixing in a soft solid and the use of SANS to quantify the randomness.

  12. Solid holography and massive gravity

    NASA Astrophysics Data System (ADS)

    Alberte, Lasma; Baggioli, Matteo; Khmelnitsky, Andrei; Pujolàs, Oriol

    2016-02-01

    Momentum dissipation is an important ingredient in condensed matter physics that requires a translation breaking sector. In the bottom-up gauge/gravity duality, this implies that the gravity dual is massive. We start here a systematic analysis of holographic massive gravity (HMG) theories, which admit field theory dual interpretations and which, therefore, might store interesting condensed matter applications. We show that there are many phases of HMG that are fully consistent effective field theories and which have been left overlooked in the literature. The most important distinction between the different HMG phases is that they can be clearly separated into solids and fluids. This can be done both at the level of the unbroken spacetime symmetries as well as concerning the elastic properties of the dual materials. We extract the modulus of rigidity of the solid HMG black brane solutions and show how it relates to the graviton mass term. We also consider the implications of the different HMGs on the electric response. We show that the types of response that can be consistently described within this framework is much wider than what is captured by the narrow class of models mostly considered so far.

  13. Solid friction between soft filaments

    PubMed Central

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A.W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-01-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments1,2. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials. PMID:25730393

  14. Continuum representations of cellular solids

    SciTech Connect

    Neilsen, M.K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  15. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; Larry Chick

    2004-05-07

    The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.

  16. Transport of large solids in sewer pipes.

    PubMed

    Walski, Thomas; Edwards, Bryce; Helfer, Emil; Whitman, Brian E

    2009-07-01

    This paper presents a method for determining the conditions under which large solids (i.e., solids with a vertical dimension greater than the depth of water) are able to move in a pipe. Depending on the value of a dimensionless number [s(d/y) - 1], where s = specific gravity of the solids, d = water depth, and y = height of solids, motion will occur if a sufficient velocity (also reported as a Froude number or modified "solids" Froude number) is exceeded. Flume experiments were used to determine the coefficients to be used in the design. The velocity required to reach fluid movement was approximately 0.6 to 1.0 m/s (2 to 3 ft/s), which is consistent, although slightly higher than values generally used in conventional sewer design practice. However, it was demonstrated that increasing the pipe slope to achieve a higher velocity does not ensure that the solid will move.

  17. Washing of the AN-107 entrained solids

    SciTech Connect

    GJ Lumetta; FV Hoopes

    2000-03-31

    This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AN-107 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AN-107 entrained solids in 0.01 M NaOH, so that BNFL can evaluate whether these solids require caustic leaching.

  18. Solid-state rechargeable magnesium battery

    DOEpatents

    Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng

    2016-09-06

    Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.

  19. Solid-oxide fuel cell electrolyte

    DOEpatents

    Bloom, Ira D.; Hash, Mark C.; Krumpelt, Michael

    1993-01-01

    A solid-oxide electrolyte operable at between 600.degree. C. and 800.degree. C. and a method of producing the solid-oxide electrolyte are provided. The solid-oxide electrolyte comprises a combination of a compound having weak metal-oxygen interactions with a compound having stronger metal-oxygen interactions whereby the resulting combination has both strong and weak metal-oxygen interaction properties.

  20. Quantum chemical characterization of solid acid catalysts

    NASA Astrophysics Data System (ADS)

    Ramani, Sriram

    Liquid and solid acids are used as catalysts in many industrially-important petrochemical processes, alternate fuel production methods and synthesis of gasoline octane-number boosters. Liquid acids pose several disadvantages such as health problems, water pollution and high cost of separation from the product stream. While solid acid catalysts do not have any of these disadvantages, their catalytic efficiency is less than that of liquid acids. Thus, a better understanding of the origin and nature of solid acidity is necessary to design solid acids of strength and stability comparable to that of the strong liquid acids in use. In addition, because of the heterogeneous nature of the solid acid, sites the acidity characterization methods used with liquid acids cannot provide a reliable measure of the solid acidity. Ongoing experimental research worldwide to develop a solid acidity scale has been only partly successful. This provides the motivation to use theoretical approaches such as computational chemistry methods to gain insight on the solid acidity, and thus complement the experimental studies. This work employs ab initio quantum mechanical computational chemistry techniques to calculate the electronic properties which provide a fundamental measure of the solid acidity. The objective of this dissertation is to examine the genesis and nature of solid acidity in silica-alumina, supported Mo oxide and sulfated Zr oxide catalysts as a function of their chemical composition and structural and electronic properties. This study also successfully demonstrates a strategy for the development of a solid acidity scale based on the calculated adsorption strength of standard gas-phase molecules on the solid acids.

  1. Solid State Lighting Program (Falcon)

    SciTech Connect

    Meeks, Steven

    2012-06-30

    Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioning which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated

  2. ISS Update: Burning and Suppression of Solids

    NASA Video Gallery

    ISS Update Commentator Pat Ryan interviews Paul Ferkul, Principal Investigator for the Burning and Suppression of Solids (BASS) experiment, about performing combustion experiments in microgravity. ...

  3. Acoustic superfocusing by solid phononic crystals

    SciTech Connect

    Zhou, Xiaoming; Assouar, M. Badreddine Oudich, Mourad

    2014-12-08

    We propose a solid phononic crystal lens capable of acoustic superfocusing beyond the diffraction limit. The unit cell of the crystal is formed by four rigid cylinders in a hosting material with a cavity arranged in the center. Theoretical studies reveal that the solid lens produces both negative refraction to focus propagating waves and surface states to amplify evanescent waves. Numerical analyses of the superfocusing effect of the considered solid phononic lens are presented with a separated source excitation to the lens. In this case, acoustic superfocusing beyond the diffraction limit is evidenced. Compared to the fluid phononic lenses, the solid lens is more suitable for ultrasonic imaging applications.

  4. Chemotherapy in Treating Patients With Solid Tumors

    ClinicalTrials.gov

    2013-07-01

    Bladder Cancer; Breast Cancer; Colorectal Cancer; Esophageal Cancer; Head and Neck Cancer; Kidney Cancer; Lung Cancer; Ovarian Cancer; Prostate Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  5. Municipal solid wastes and their disposal.

    PubMed Central

    Stone, R

    1978-01-01

    A brief overview is given of the sources, characteristics, and toxic constituents of municipal solid wastes. Several methods are presented for handling, treating, and disposal of solid wastes. Monitoring the landfill site is necessary; there has been a trend to recognize that municipal solid wastes may be hazardous and to provide separate secure handling, treatment, and disposal for their dangerous constituents. Under current state and Federal regulations, permits are being required to assure that proper handling of conventional solid wastes and more hazardous constituents are carefully managed. PMID:738240

  6. Fluidized-Solid-Fuel Injection Process

    NASA Technical Reports Server (NTRS)

    Taylor, William

    1992-01-01

    Report proposes development of rocket engines burning small grains of solid fuel entrained in gas streams. Main technical discussion in report divided into three parts: established fluidization technology; variety of rockets and rocket engines used by nations around the world; and rocket-engine equation. Discusses significance of specific impulse and ratio between initial and final masses of rocket. Concludes by stating three important reasons to proceed with new development: proposed engines safer; fluidized-solid-fuel injection process increases variety of solid-fuel formulations used; and development of fluidized-solid-fuel injection process provides base of engineering knowledge.

  7. Acoustic superfocusing by solid phononic crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoming; Assouar, M. Badreddine; Oudich, Mourad

    2014-12-01

    We propose a solid phononic crystal lens capable of acoustic superfocusing beyond the diffraction limit. The unit cell of the crystal is formed by four rigid cylinders in a hosting material with a cavity arranged in the center. Theoretical studies reveal that the solid lens produces both negative refraction to focus propagating waves and surface states to amplify evanescent waves. Numerical analyses of the superfocusing effect of the considered solid phononic lens are presented with a separated source excitation to the lens. In this case, acoustic superfocusing beyond the diffraction limit is evidenced. Compared to the fluid phononic lenses, the solid lens is more suitable for ultrasonic imaging applications.

  8. Solid Lubrication Fundamentals and Applications. Chapter 2

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1998-01-01

    This chapter describes powerful analytical techniques capable of sampling tribological surfaces and solid-film lubricants. Some of these techniques may also be used to determine the locus of failure in a bonded structure or coated substrate; such information is important when seeking improved adhesion between a solid-film lubricant and a substrate and when seeking improved performance and long life expectancy of solid lubricants. Many examples are given here and through-out the book on the nature and character of solid surfaces and their significance in lubrication, friction, and wear. The analytical techniques used include the late spectroscopic methods.

  9. Solid phase sequencing of biopolymers

    SciTech Connect

    Cantor, Charles R.; Hubert, Koster

    2014-06-24

    This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Probes may be affixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.

  10. Low acid producing solid propellants

    NASA Technical Reports Server (NTRS)

    Bennett, Robert R.

    1995-01-01

    The potential environmental effects of the exhaust products of conventional rocket propellants have been assessed by various groups. Areas of concern have included stratospheric ozone, acid rain, toxicity, air quality and global warming. Some of the studies which have been performed on this subject have concluded that while the impacts of rocket use are extremely small, there are propellant development options which have the potential to reduce those impacts even further. This paper discusses the various solid propellant options which have been proposed as being more environmentally benign than current systems by reducing HCI emissions. These options include acid neutralized, acid scavenged, and nonchlorine propellants. An assessment of the acid reducing potential and the viability of each of these options is made, based on current information. Such an assessment is needed in order to judge whether the potential improvements justify the expenditures of developing the new propellant systems.

  11. Scattering functions of Platonic solids

    SciTech Connect

    Chen, Wei-Ren; Herwig, Kenneth W; Li, Xin; Liu, Emily; Pynn, Roger; Shew, Chwen-Yang; Smith, Gregory Scott; Myles, Dean A A; He, Lilin; Meilleur, Flora

    2011-01-01

    In this report the single-particle scattering properties of five Platonic solids, including tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron, are investigated in a systematic manner. For each given geometry, the Debye spatial autocorrelation function (r), pair distance distribution function (PDDF) p (r) and intraparticle structure factor (form factor) P (Q) are respectively calculated and compared to the corresponding scattering function of the spherical referential system. Based on our theoretical models, the empirical relationship between the dodecahedral and icosahedral structural characteristics and those of the equivalent spheres is found. Moreover, the single-particle scattering properties of the icosahedral and the spherical shells with the same volume are further investigated and the prospect of using different data analysis approaches to explore their structural difference is also presented and discussed.

  12. Scattering functions of Platonic solids

    SciTech Connect

    Li, Xin; Shew, Chwen-Yang; He, Lilin; Meilleur, Flora; Myles, Dean A A; Liu, Emily; Zhang, Yang; Smith, Greg; Herwig, Kenneth W; Pynn, Roger; Chen, Wei-Ren

    2011-01-01

    The single-particle small-angle scattering properties of five Platonic solids, including the tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron, are systematically investigated. For each given geometry, the Debye spatial autocorrelation function, pair distance distribution function and intraparticle structure factor (form factor) are calculated and compared with the corresponding scattering function of a spherical reference system. From the theoretical models, the empirical relationship between the dodecahedral and icosahedral structural characteristics and those of the equivalent spheres is found. Moreover, the single-particle scattering properties of icosahedral and spherical shells with identical volume are investigated, and the prospect of using different data analysis approaches to explore their structural differences is presented and discussed.

  13. Solid oxide electrolysis: Concluding remarks.

    PubMed

    Jun, Areum; Ju, Young-Wan; Kim, Guntae

    2015-01-01

    Renewable energy resources such as solar energy, wind energy, hydropower or geothermal energy have attracted significant attention in recent years. Renewable energy sources have to match supply with demand, therefore it is essential that energy storage devices (e.g., secondary batteries) are developed. However, secondary batteries are accompanied with critical problems such as high cost for the limited energy storage capacity and loss of charge over time. Energy storage in the form of chemical species, such as H2 or CO2, have no constraints on energy storage capacity and will also be essential. When plentiful renewable energy exists, for example, it could be used to convert H2O into hydrogen via water electrolysis. Also, renewable energy resources could be used to reduce CO2 into CO and recycle CO2 and H2O into sustainable hydrocarbon fuels in solid oxide electrolysis (SOE).

  14. Delivering nanomedicine to solid tumors

    PubMed Central

    Jain, Rakesh K.; Stylianopoulos, Triantafyllos

    2011-01-01

    Recent advances in nanotechnology have offered new hope for cancer detection, prevention, and treatment. While the enhanced permeability and retention effect has served as a key rationale for using nanoparticles to treat solid tumors, it does not enable uniform delivery of these particles to all regions of tumors in sufficient quantities. This heterogeneous distribution of therapeutics is a result of physiological barriers presented by the abnormal tumor vasculature and interstitial matrix. These barriers are likely to be responsible for the modest survival benefit offered by many FDA-approved nanotherapeutics and must be overcome for the promise of nanomedicine in patients to be realized. Here, we review these barriers to the delivery of cancer therapeutics and summarize strategies that have been developed to overcome these barriers. Finally, we discuss design considerations for optimizing the delivery of nanoparticles to tumors. PMID:20838415

  15. Solid phase sequencing of biopolymers

    DOEpatents

    Cantor, Charles; Koster, Hubert

    2010-09-28

    This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include DNA or RNA in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.

  16. Combustion chemistry of solid propellants

    NASA Technical Reports Server (NTRS)

    Baer, A. D.; Ryan, N. W.

    1974-01-01

    Several studies are described of the chemistry of solid propellant combustion which employed a fast-scanning optical spectrometer. Expanded abstracts are presented for four of the studies which were previously reported. One study of the ignition of composite propellants yielded data which suggested early ammonium perchlorate decomposition and reaction. The results of a study of the spatial distribution of molecular species in flames from uncatalyzed and copper or lead catalyzed double-based propellants support previously published conclusions concerning the site of action of these metal catalysts. A study of the ammonium-perchlorate-polymeric-fuel-binder reaction in thin films, made by use of infrared absorption spectrometry, yielded a characterization of a rapid condensed-phase reaction which is likely important during the ignition transient and the burning process.

  17. Solids Control in Sludge Pretreatment

    SciTech Connect

    Beahm, E.C., Weber, C.F., Hunt, R.D., Dillow, T.A.

    1997-12-31

    Sludge pretreatment will likely involve washing, followed by caustic or acidic leaching and washing of sludge residues after leaching. The principal goal of pretreatment is to obtain a low-volume high-activity waste stream and a high-volume low-activity waste stream. Also, some waste constituents such as chromium and phosphate can be included in glass formulations only at very low concentrations; therefore, it is desirable to remove them from high-level waste streams. Two aspects of sludge treatment and subsequent separations should be well delineated and predictable: (1) the distribution of chemical species between aqueous solutions and solids and (2) potential problems due to chemical interactions that could result in process difficulties or safety concerns.Before any treatment technology is adopted, it must be demonstrated that the process can be carried out as planned. Three pretreatment methods were considered in the Tri-Party (Washington State Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy) negotiations: (1) sludge washing with corrosion- inhibiting water, (2) Enhanced Sludge Washing, and (3)acidic dissolution with separations processes. Enhanced Sludge Washing is the baseline process. In Enhanced Sludge Washing, sludge is first washed with corrosion-inhibiting water; it is then leached with caustic (sodium hydroxide solution) and washed again with corrosion- inhibiting water. The initial concern is whether a pretreatment technique is effective in separating sludge components. This can be evaluated by bench-scale tests with sludge specimens from underground storage tanks. The results give data on the distribution of important species such as aluminum, phosphate, and radionuclides between wash and leach solutions and solid sludge residues.

  18. Kinetics of Solid-Solid Phase Transition in Iron (u)

    SciTech Connect

    Schwartz, Cynthia, L

    2011-01-27

    Previously, dynamic experiments on iron have observed a non-zero transition time and width in the solid-solid {alpha}-{var_epsilon} phase transition. Using Proton Radiography at the los Alamos Neutron Science Center, we have performed plate impact experiments on iron to further study the {alpha}-{var_epsilon} phase transition which occurs at 13GPa. A 40mm bore powder gun was coupled to a proton radiography beam line and imaging system and synchronized to the impact of the projectile on the target sample with the proton beam pattern. A typical experimental configuration for the iron study, as shown below in 3 color-enhanced radiographs, is a 40mm diameter aluminum sabot impacting a 40mm diameter of polycrystalline ARMCO iron. The iron is backed by a sapphire optical window for velocimetry measurements. The aluminum flyer on the left of the iron is barely visible for visual display purposes. Direct density jumps were measured which corresponded to calculations to within 1% using a Wondy multi-phase equation of state model. In addition, shock velocities were measured using an edge fitting technique and followed that edge movement from radiograph to radiograph, where rad iographs are separated in time by 500 ns. Preliminary measurements give a shock velocity (P1 wave) of 5.251 km/s. The projectile velocity was 0.725 km/s which translate to a peak stress of 17.5 GPa. Assuming the P1 wave is instantaneous, we are able to calibrate the chromatic, motion, object and camera blur by measuring the width of the P1 wave. This approximation works in this case since each of the two density jumps are small compared to the density of the object. Subtracting the measured width of the P1 wave in quadrature from the width of the P2 wave gives a preliminary measurement of the transition length of 265 {micro}m. Therefore, a preliminary measured phase transition relaxation time {tau} = transition length/u{sub s} = 265 {micro}m/5.251 km/s = 50 ns. Both Boettger1 & Jensen2 conclude that

  19. Solid-solid phase transition measurements in iron

    SciTech Connect

    Schwartz, Cynthia Louise

    2010-01-01

    Previously, dynamic experiments on iron have observed a non-zero transition time and width in the solid-solid {alpha}-{var_epsilon} phase transition. Using Proton Radiography at the Los Alamos Neutron Science Center, we have performed plate impact experiments on iron to further study the {alpha}-{var_epsilon} phase transition which occurs at 13GPa. A 40mm bore powder gun was coupled to a proton radiography beam line and imaging system and synchronized to the impact of the projectile on the target sample with the proton beam pattern. A typical experimental configuration for the iron study, as shown below in 3 color-enhanced radiographs, is a 40mm diameter aluminum sabot impacting a 40mm diameter of polycrystalline ARMCO iron. The iron is backed by a sapphire optical window for velocimetry measurements. The aluminum flyer on the left of the iron is barely visible for visual display purposes. Direct density jumps were measured which corresponded to calculations to within 1% using a Wondy mUlti-phase equation of state model. In addition, shock velocities were measured using an edge fitting technique and followed that edge movement from radiograph to radiograph, where radiographs are separated in time by 500 ns. Preliminary measurements give a shock velocity (P1 wave) of 5.251 km/s. The projectile velocity was 0.725 km/s which translate to a peak stress of 17.5 GPa. Assuming the P1 wave is instantaneous, we are able to calibrate the chromatic, motion, object and camera blur by measuring the width of the P1 wave. This approximation works in this case since each of the two density jumps are small compared to the density of the object. Subtracting the measured width of the P1 wave in quadrature from the width of the P2 wave gives a preliminary measurement of the transition length of 265 {mu}m. Therefore, a preliminary measured phase transition relaxation time {tau} = transition length/u{sub s} = 265 {mu}m/5.251 km/s = 50 ns. Both Boettger and Jensen conclude that the

  20. Hanford Site Solid Waste Landfill permit application

    SciTech Connect

    Not Available

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs.

  1. Phonons in quantum solids with defects. [lattice vacancies and interstitials in solid helium and metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Jacobi, N.; Zmuidzinas, J. S.

    1974-01-01

    A formalism was developed for temperature-dependent, self-consistent phonons in quantum solids with defects. Lattice vacancies and interstitials in solid helium and metallic hydrogen, as well as electronic excitations in solid helium, were treated as defects that modify properties of these systems. The information to be gained from the modified phonon spectrum is discussed.

  2. Friction and solid-solid adhesion on complex metallic alloys

    PubMed Central

    Dubois, Jean-Marie; Belin-Ferré, Esther

    2014-01-01

    The discovery in 1987 of stable quasicrystals in the Al–Cu–Fe system was soon exploited to patent specific coatings that showed reduced friction in ambient air against hard antagonists. Henceforth, it was possible to develop a number of applications, potential or commercially exploited to date, that will be alluded to in this topical review. A deeper understanding of the characteristics of complex metallic alloys (CMAs) may explain why material made of metals like Al, Cu and Fe offers reduced friction; low solid–solid adhesion came later. It is linked to the surface energy being significantly lower on those materials, in which translational symmetry has become a weak property, that is determined by the depth of the pseudo-gap at the Fermi energy. As a result, friction is anisotropic in CMAs that builds up according to the translation symmetry along one direction, but is aperiodic along the other two directions. A review is given in this article of the most salient data found along these lines during the past two decades or so. PMID:27877675

  3. Biochemical transformation of solid carbonaceous material

    DOEpatents

    Lin, Mow S.; Premuzic, Eugene T.

    2001-09-25

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  4. Cell Model Of A Disordered Solid

    NASA Technical Reports Server (NTRS)

    Peng, Steven T. J.; Landel, Robert F.; Moacanin, Jovan; Simha, Robert; Papazoglou, Elizabeth

    1990-01-01

    Elastic properties predicted from first principles. Paper discusses generalization of cell theory of disordered (non-crystaline) solid to include anisotropic stresses. Study part of continuing effort to understand macroscopic stress-and-strain properties of solid materials in terms of microscopic physical phenomena. Emphasis on derivation, from first principles, of bulk, shear, and Young's moduli of glassy material at zero absolute temperature.

  5. Solid Waste, Air Pollution and Health

    ERIC Educational Resources Information Center

    Kupchik, George J.; Franz, Gerald J.

    1976-01-01

    This article examines the relationships among solid waste disposal, air pollution, and human disease. It is estimated that solid waste disposal contributes 9.7 percent of the total air pollution and 9.9 percent of the total air pollution health effect. Certain disposal-resource recovery systems can be implemented to meet air quality standards. (MR)

  6. Role of Bcl-3 in solid tumors

    PubMed Central

    2011-01-01

    Bcl-3 is an established oncogene in hematologic malignancies, such as B-cell chronic lymphocytic leukemias. Nevertheless, recent research has shown that it also participates in progression of diverse solid tumors. The present review summarizes the current knowledge of Bcl3 role in solid tumors progression, including some new insights in its possible molecular mechanisms of action. PMID:22195643

  7. Consideration of privatization of solid waste disposal

    SciTech Connect

    Harrison, W.K.

    1995-09-01

    Martin County is responsible by law for the solid waste disposal needs of all County residents. In the State of Florida, counties have the responsibility of providing solid waste disposal services. Florida Statutes 403.706 divides the responsibility among local governments as follows: {open_quotes}The governing body of a County has the responsibility and power to provide for the operation of solid waste disposal facilities to meet the needs of all incorporated and unincorporated areas of the County. In accordance with this section, municipalities are responsible for collecting and transporting solid waste from their jurisdictions to a solid waste disposal facility operated by a county or operated under a contract with a county.{close_quotes} Solid waste disposal is a mandatory obligation primarily because of public health and safety concerns. In addition to contributing to environmental damage, dumping (as opposed to landfilling) contributes to infestations of insects and rodents that carry disease to the human population. Although the County may choose to provide solid waste disposal service indirectly, the ultimate responsibility for the service will remain with the County. If a contractor fails to provide the service, the County will be legally responsible to the State and to County residents for correcting the failure. This report discussess issues associated with the privatization of solid waste disposal.

  8. Pre-Modeling Ensures Accurate Solid Models

    ERIC Educational Resources Information Center

    Gow, George

    2010-01-01

    Successful solid modeling requires a well-organized design tree. The design tree is a list of all the object's features and the sequential order in which they are modeled. The solid-modeling process is faster and less prone to modeling errors when the design tree is a simple and geometrically logical definition of the modeled object. Few high…

  9. Universality in the compressive behavior of solids

    NASA Technical Reports Server (NTRS)

    Vinet, P.; Ferrante, J.; Smith, J. R.; Rose, J. H.

    1986-01-01

    It was discovered that the isothermal equation of state for solids in compression is a simple, universal form. This single form accurately describes the pressure and bulk modulus as a function of volume for tonic, metallic, covalent, and rare gas solids.

  10. Pulsed supersonic expansion of nonvolatile solids

    SciTech Connect

    Christen, Wolfgang; Geggier, Stephanie; Grigorenko, Svitlana; Rademann, Klaus

    2004-11-01

    A compact apparatus for transferring nonvolatile particles into the gas phase and depositing them on a solid surface has been built and tested successfully. As initial experiment, solid caffeine with a vanishingly low vapor pressure has been dissolved in supercritical carbon dioxide, expanded into vacuum using a pulsed, supersonic molecular beam, and detected using a simple residual gas analyzer.

  11. Flow properties of suspensions rich in solids

    NASA Technical Reports Server (NTRS)

    Armstrong, W. P.; Gay, E. C.; Nelson, P. A.

    1969-01-01

    Mathematical evaluation of flow properties of fluids carrying high concentrations of solids in suspension relates suspension viscosity to physical properties of the solids and liquids, and provides a means for predicting flow behavior. A technique for calculating a suspensions flow rates is applicable to the design of pipelines.

  12. Managing America`s solid waste

    SciTech Connect

    Not Available

    1998-03-02

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  13. Solid Waste: Resource Recovery and Reuse

    ERIC Educational Resources Information Center

    Bernardo, James V.

    1973-01-01

    Discusses some of the processes involved in resource recovery (recycling) from municipal solid wastes. Provides specific examples of recovery of valuable resources, and suggests that the environmental consequences and technology related to solid waste treatment should be included in high school science courses. (JR)

  14. Solid Waste Management in Recreational Forest Areas.

    ERIC Educational Resources Information Center

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  15. Land Use Management for Solid Waste Programs

    ERIC Educational Resources Information Center

    Brown, Sanford M., Jr.

    1974-01-01

    The author discusses the problems of solid waste disposal and examines various land use management techniques. These include the land use plan, zoning, regionalization, land utilities, and interim use. Information concerning solid waste processing site zoning and analysis is given. Bibliography included. (MA)

  16. Solid fuel applications to transportation engines

    SciTech Connect

    Rentz, Richard L.; Renner, Roy A.

    1980-06-01

    The utilization of solid fuels as alternatives to liquid fuels for future transportation engines is reviewed. Alternative liquid fuels will not be addressed nor will petroleum/solid fuel blends except for the case of diesel engines. With respect to diesel engines, coal/oil mixtures will be addressed because of the high interest in this specific application as a result of the large number of diesel engines currently in transportation use. Final assessments refer to solid fuels only for diesel engines. The technical assessments of solid fuels utilization for transportation engines is summarized: solid fuel combustion in transportation engines is in a non-developed state; highway transportation is not amenable to solid fuels utilization due to severe environmental, packaging, control, and disposal problems; diesel and open-cycle gas turbines do not appear worthy of further development, although coal/oil mixtures for slow speed diesels may offer some promise as a transition technology; closed-cycle gas turbines show some promise for solid fuels utilization for limited applications as does the Stirling engine for use of cleaner solid fuels; Rankine cycle engines show good potential for limited applications, such as for locomotives and ships; and any development program will require large resources and sophisticated equipment in order to advance the state-of-the-art.

  17. A universal equation of state for solids

    NASA Technical Reports Server (NTRS)

    Vinet, P.; Ferrante, J.; Smith, J. R.; Rose, J. H.

    1986-01-01

    The total energy versus interatomic spacing of ionic, metallic, covalent, and rare-gas solids is examined, and a universal form for pressure as a function of volume for all classes of solids in compression is derived. The relation is shown to hold for pressure-volume data for hydrogen and deuterium, xenon, cesium, molybdenum, sodium chloride, and magnesium oxide.

  18. Solidity of Type III Bernoulli Crossed Products

    NASA Astrophysics Data System (ADS)

    Marrakchi, Amine

    2017-03-01

    We generalize a theorem of Chifan and Ioana by proving that for any, possibly type III, amenable von Neumann algebra A 0, any faithful normal state φ_0 and any discrete group {Γ}, the associated Bernoulli crossed product von Neumann algebra {M=(A_0,φ_0)^{overline{⊗} Γ} rtimes Γ} is solid relatively to L(Γ). In particular, if L(Γ) is solid then M is solid and if {Γ} is non-amenable and {A_0 ≠ C then M is a full prime factor. This gives many new examples of solid or prime type III factors. Following Chifan and Ioana, we also obtain the first examples of solid non-amenable type III equivalence relations.

  19. Solid waste burial grounds interim safety analysis

    SciTech Connect

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  20. Solid Lubricants for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2005-01-01

    Recent breakthroughs in gas foil bearing solid lubricants and computer based modeling has enabled the development of revolulionary Oil-Free turbomachinery systems. These innovative new and solid lubricants at low speeds (start-up and shut down). Foil bearings are hydrodynamic, self acting fluid film bearings made from thin, flexible sheet metal foils. These thin foils trap a hydrodynamic lubricating air film between their surfaces and moving shaft surface. For low temperature applications, like ainrafl air cycle machines (ACM's), polymer coatings provide important solid lubrication during start-up and shut down prior to the development of the lubricating fluid film. The successful development of Oil-Free gas turbine engines requires bearings which can operate at much higher temperatures (greater than 300 C). To address this extreme solid lubrication need, NASA has invented a new family of compostie solid lubricant coatings, NASA PS300.

  1. Vacancy-induced flow of solid helium

    NASA Astrophysics Data System (ADS)

    Benedek, Giorgio; Kalinin, Anton; Nieto, Pablo; Toennies, J. Peter

    2016-03-01

    The pulsed flow of solid 4He through a narrow capillary in a flow system which issues into vacuum is investigated at temperatures between 1.64 and 2.66 K and pressures between 54 and 104 bars. After each pulse three different capillary flow regimes are observed as the upstream pressure decreases: an oscillatory [mini-geyser (MG)] regime, a constant flow (CF) regime with a linearly decreasing pressure difference, and a nonresistant (NR) regime. A quantitative analysis of the three regimes suggests that the flow of solid 4He is driven by a counterflow of excess vacancies, which are injected downstream of the capillary at the solid/liquid interface near the micrometric orifice exposed to vacuum. The CF regime, where the flow velocity is found to be independent of the pressure difference, and the NR regime, where the solid flows as a Bernoulli fluid, suggest a new dynamic phase of solid helium induced by a steady influx of vacancies.

  2. Acoustic Measurements for Small Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Models have been developed to predict large solid rocket motor acoustic loads based on the scaling of small solid rocket motors. MSFC has measured several small solid rocket motors in horizontal and launch configurations to anchor these models. Solid Rocket Test Motor (SRTM) has ballistics similar to the Reusable Solid Rocket Motor (RSRM) therefore a good choice for acoustic scaling. Acoustic measurements were collected during the test firing of the Insulation Configuration Extended Length (ICXL) 7,6, and 8 (in firing order) in order to compare to RSRM horizontal firing data. The scope of this presentation includes: Acoustic test procedures and instrumentation implemented during the three SRTM firings and Data analysis method and general trends observed in the data.

  3. Fundamental considerations for future solid lubricants

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Sliney, H. E.

    1969-01-01

    Properties important to the performance of solid lubricants are discussed. Those properties include shear characteristics, coherence between particles, resistance to cold flow, adherence to the substrate, applicable chemical thermodynamics and kinetics of materials and environments, polymorphism, and rheology. The following generalizations are made: (1) chemical thermodynamics and kinetics are powerful tools for use in determining the useful environments and methods of application for solid film lubricants; (2) the primary requirement for a solid lubricant is low shear strength; (3) the rheology of solid film constituents and formulations is likely to be of vital importance to performance and life; and (4) adherence and mobility of surface films is another primary requirement for long lived solid lubricants.

  4. Solid freeform fabrication of biomaterials

    NASA Astrophysics Data System (ADS)

    Chu, Tien-Min Gabriel

    1999-12-01

    The biological performance of porous Hydroxyapatite (HA) is closely related to the pore architecture in the implants. The study on the effect of architecture to the biological performance of porous HA requires new manufacturing methods that can fabricate implants with controlled pores channels. In this thesis, four highly loaded HA and alumina suspensions were formulated and three different processes involving Solid Freeform Fabrication (SFF) were developed. An aqueous HA suspension in acrylamides was first formulated and the UV-curing properties were evaluated. With a medical grade HA powder, two non-aqueous HA suspensions were formulated: a 40 vol.% HA suspension in Hexanediol Diacrylate (HDDA) and a 40 vol.% HA suspension in 1:1 mix of Propoxylated Neopentyl Glycol Diacrylate (PNPGDA) and Isobomyl Acrylate (EBA). A 50 vol.% Alumina suspension in PNPGDA/IBA was also formulated. The effect of dispersant to the viscosity of the suspensions was characterized. In the Stereolithography (SL) method, the curing parameters of HA/HDDA and HA/PNPGDA/IBA were determined. Prototype HA implants with 1,700 mum internal channels were built directly on an SL Apparatus (SLA). The designed internal channel patterns were preserved after sintering. In the Ink-jet printing method, the high temperature flow behaviors of the suspensions were characterized. The effects of solids loading to the viscosity of the suspensions were modeled with Krieger-Dougherty equation. Leveling theory developed in paint industry was employed to analyze the self-leveling capability of the suspensions. In the indirect SL method, the thermal curing behavior of HA and alumina suspensions were characterized. The total cure time was measured and the curing kinetics was modeled. Negative molds for the implants were designed and built on SLA with epoxy resin. HA/PNPGDA/IBA was cast into the mold and cured in an oven. The binders and the epoxy mold were pyrolyzed and the green bodies sintered. Internal channels

  5. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  6. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  7. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  8. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  9. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  10. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  11. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  12. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  13. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  14. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  15. NASA's Advanced solid rocket motor

    NASA Technical Reports Server (NTRS)

    Mitchell, Royce E.

    1993-01-01

    The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.

  16. Solid rocket booster retrieval operations

    NASA Technical Reports Server (NTRS)

    Rasmussen, A. M.

    1985-01-01

    Solid Rocket Booster Retrieval operations are discussed in detail. The recovery of expended boosters and associated hardware without damage attributable to retrieval procedures is the main goal. The retrieval force consists tof ship's personnel and retrieval team members, each of whom has been trained and is highly skilled in multi-faceted operations. The retrieval force is equipped with two specially-built, highly maneuverable ships outfitted with parachute reels, retrieval cranes, towing winches, large volume-low pressure air compressors, SCUBA diving gear, inflatable boats with outboard motors and diver-operated SRB dewatering devices. The two ships are deployed in sufficient time to conduct an electronic and visual search of the impact area prior to launch. Upon search completeion, each ship takes station a safe distance from the predetermined impact point initiating both visual and electronic search in the direction of flight path, ensuring SRB acquisition at splashdown. When safe, the ships enter the impact area and commence recovery of all floating flight hardware which is subsequently returned to the Disassembly Facility for refurbishment and reuse. Retrieval techniques have evolved in parallel with equipment and flight hardware configuration changes. Additional changes have been initiated to improve personnel safety.

  17. Shock desensitizing of solid explosive

    SciTech Connect

    Davis, William C

    2010-01-01

    Solid explosive can be desensitized by a shock wave too weak to initiate it promptly, and desensitized explosive does not react although its chemical composition is almost unchanged. A strong second shock does not cause reaction until it overtakes the first shock. The first shock, if it is strong enough, accelerates very slowly at first, and then more rapidly as detonation approaches. These facts suggest that there are two competing reactions. One is the usual explosive goes to products with the release of energy, and the other is explosive goes to dead explosive with no chemical change and no energy release. The first reaction rate is very sensitive to the local state, and the second is only weakly so. At low pressure very little energy is released and the change to dead explosive dominates. At high pressure, quite the other way, most of the explosive goes to products. Numerous experiments in both the initiation and the full detonation regimes are discussed and compared in testing these ideas.

  18. Configurational forces in solid nanostructures

    SciTech Connect

    Zhigang Suo

    2006-06-12

    The DOE grant (DE-FG02-99ER45787) to Princeton University, entitled Configurational Forces in Solid Nanostructures, was intended to cover the four-year period from September 1999 to September 2003. Effective 1 July 2003, the PI will relocate from Princeton to join the Harvard faculty. Princeton University will submit the Final Financial Report, the Final Property Report, and the Final Patent Report. The expenditures to date are $261,513 with %8,487 remaining of the awarded amount of $320,000. Harvard University will submit a request for the remaining amount. This Final Technical Report covers from the period between September 1999 to June 2003. Three Ph.D. students, Wei Lu, Yanfei Gao and Wei Hong, admitted to Princeton in the fall of 1998, 1999, 2002, respectively, have been dedicated to this project. Wei Lu earned his Ph.D. in August 2001, and is now an assistant professor at The University of Michigan, Ann Arbor. Yanfei Gao earned his Ph.D. in February 2003, and is now a post-doc at Brown University. The amount of funding covers one student at a time. All three students received first-year fellowships from Princeton University. In the Mechanical and Aerospace Engineering Department, to fulfill a doctoral degree requirement, every student serves as a teaching assistant for three semesters, for which the student is partially paid by the University.

  19. Solid state radiative heat pump

    DOEpatents

    Berdahl, Paul H.

    1986-01-01

    A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

  20. Solid state radiative heat pump

    DOEpatents

    Berdahl, P.H.

    1984-09-28

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  1. Exciton dispersion in molecular solids.

    PubMed

    Cudazzo, Pierluigi; Sottile, Francesco; Rubio, Angel; Gatti, Matteo

    2015-03-25

    The investigation of the exciton dispersion (i.e. the exciton energy dependence as a function of the momentum carried by the electron-hole pair) is a powerful approach to identify the exciton character, ranging from the strongly localised Frenkel to the delocalised Wannier-Mott limiting cases. We illustrate this possibility at the example of four prototypical molecular solids (picene, pentacene, tetracene and coronene) on the basis of the parameter-free solution of the many-body Bethe-Salpeter equation. We discuss the mixing between Frenkel and charge-transfer excitons and the origin of their Davydov splitting in the framework of many-body perturbation theory and establish a link with model approaches based on molecular states. Finally, we show how the interplay between the electronic band dispersion and the exchange electron-hole interaction plays a fundamental role in setting the nature of the exciton. This analysis has a general validity holding also for other systems in which the electron wavefunctions are strongly localized, as in strongly correlated insulators.

  2. Exciton dispersion in molecular solids

    NASA Astrophysics Data System (ADS)

    Cudazzo, Pierluigi; Sottile, Francesco; Rubio, Angel; Gatti, Matteo

    2015-03-01

    The investigation of the exciton dispersion (i.e. the exciton energy dependence as a function of the momentum carried by the electron-hole pair) is a powerful approach to identify the exciton character, ranging from the strongly localised Frenkel to the delocalised Wannier-Mott limiting cases. We illustrate this possibility at the example of four prototypical molecular solids (picene, pentacene, tetracene and coronene) on the basis of the parameter-free solution of the many-body Bethe-Salpeter equation. We discuss the mixing between Frenkel and charge-transfer excitons and the origin of their Davydov splitting in the framework of many-body perturbation theory and establish a link with model approaches based on molecular states. Finally, we show how the interplay between the electronic band dispersion and the exchange electron-hole interaction plays a fundamental role in setting the nature of the exciton. This analysis has a general validity holding also for other systems in which the electron wavefunctions are strongly localized, as in strongly correlated insulators.

  3. Hollow Retroreflectors Offer Solid Benefits

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A technician who lead a successful team of scientists, engineers, and other technicians in the design, fabrication, and characterization of cryogenic retroreflectors for the NASA Cassini/Composite Infrared Spectrometer (CIRS) mission to Saturn, developed a hollow retroreflector technology while working at NASA Goddard Space Flight Center. With 16 years of NASA experience, the technician teamed up with another NASA colleague and formed PROSystems, Inc., of Sharpsburg, Maryland, to provide the optics community with an alternative source for precision hollow retroreflectors. The company's hollow retroreflectors are front surface glass substrates assembled to provide many advantages over existing hollow retroreflectors and solid glass retroreflectors. Previous to this new technology, some companies chose not to use hollow retroreflectors due to large seam widths and loss of signal. The "tongue and groove" facet design of PROSystems's retroreflector allows for an extremely small seam width of .001 inches. Feedback from users is very positive regarding this characteristic. Most of PROSystems's primary customers mount the hollow retroreflectors in chrome steel balls for laser tracker targets in applications such as automobile manufacturing and spacecraft assembly.

  4. Shock desensitizing of solid explosives

    SciTech Connect

    Davis, William C

    2010-01-01

    Solid explosive can be desensitized by a shockwave too weak to initiate it promptly, and desensitized explosive does not react although its chemical composition is almost unchanged. A strong second shock does not cause reaction until it overtakes the first shock. The first shock, if it is strong enough, accelerates very slowly at first, and then more rapidly as detonation approaches. These facts suggest that there are two competing reactions. One is the usual explosive goes to products with the release of energy, and the other is explosive goes to dead explosive with no chemical change and no energy release. The first reaction rate is very sensitive to the local state, and the second is only weakly so. At low pressure very little energy is released and the change to dead explosive dominates. At high pressure, quite the other way, most of the explosive goes to products. Numerous experiments in both the initiation and the full detonation regimes are discussed and compared in support of these ideas.

  5. Environmentally compatible solid rocket propellants

    NASA Technical Reports Server (NTRS)

    Jacox, James L.; Bradford, Daniel J.

    1995-01-01

    Hercules' clean propellant development research is exploring three major types of clean propellant: (1) chloride-free formulations (no chlorine containing ingredients), being developed on the Clean Propellant Development and Demonstration (CPDD) contract sponsored by Phillips Laboratory, Edwards Air Force Base, CA; (2) low HCl scavenged formulations (HCl-scavenger added to propellant oxidized with ammonium perchlorate (AP)); and (3) low HCl formulations oxidized with a combination of AN and AP (with or without an HCl scavenger) to provide a significant reduction (relative to current solid rocket boosters) in exhaust HCl. These propellants provide performance approaching that of current systems, with less than 2 percent HCl in the exhaust, a significant reduction (greater than or equal to 70 percent) in exhaust HCl levels. Excellent processing, safety, and mechanical properties were achieved using only readily available, low cost ingredients. Two formulations, a sodium nitrate (NaNO3) scavenged HTPB and a chloride-free hydroxy terminated polyether (HTPE) propellant, were characterized for ballistic, mechanical, and rheological properties. In addition, the hazards properties were demonstrated to provide two families of class 1.3, 'zero-card' propellants. Further characterization is planned which includes demonstration of ballistic tailorability in subscale (one to 70 pound) motors over the range of burn rates required for retrofit into current Hercules space booster designs (Titan 4 SRMU and Delta 2 GEM).

  6. NASA's Advanced solid rocket motor

    NASA Astrophysics Data System (ADS)

    Mitchell, Royce E.

    The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.

  7. Warburg's effect on solid tumors.

    PubMed

    El Imad, Talal; El Khoury, Lara; Geara, Abdallah Sassine

    2014-11-01

    Lactic acidosis is the result of imbalance between the systemic formation of lactate and its hepatic metabolism. In cancer patients, lactic acidosis is mainly associated with hematologic malignancies (leukemia and lymphomas) and the mechanism is known as Warburg's effect. We report a 76-year-old male known to have hypertension and coronary artery disease, who presented with abdominal distension and lactic acidosis. His initial evaluation showed multiple liver masses that were biopsied and the patient was diagnosed with undifferentiated carcinoma of unknown primary, involving the liver. The patient had progression of lactic acidosis leading to his death on day-15. As the lactic acidosis was not in the setting of hypoxia or hemodynamic instability, we made the diagnosis of malignancy-associated type B lactic acidosis, also known as the Warburg's effect. Warburg's effect can occur in solid cancer if the tumor involves the liver. It has bad prognostic implications. The use of intravenous bicarbonate as a temporary measure is of controversial benefit, as it can potentially worsen the metabolic acidosis and its use should be limited to patients with very low pH. In cancer patients, the use of lactatebased intravenous fluids can be potentially harmful and can increase the risk of tumor metastasis, at least in animal malignancy models.

  8. Solid rocket motor cost model

    NASA Technical Reports Server (NTRS)

    Harney, A. G.; Raphael, L.; Warren, S.; Yakura, J. K.

    1972-01-01

    A systematic and standardized procedure for estimating life cycle costs of solid rocket motor booster configurations. The model consists of clearly defined cost categories and appropriate cost equations in which cost is related to program and hardware parameters. Cost estimating relationships are generally based on analogous experience. In this model the experience drawn on is from estimates prepared by the study contractors. Contractors' estimates are derived by means of engineering estimates for some predetermined level of detail of the SRM hardware and program functions of the system life cycle. This method is frequently referred to as bottom-up. A parametric cost analysis is a useful technique when rapid estimates are required. This is particularly true during the planning stages of a system when hardware designs and program definition are conceptual and constantly changing as the selection process, which includes cost comparisons or trade-offs, is performed. The use of cost estimating relationships also facilitates the performance of cost sensitivity studies in which relative and comparable cost comparisons are significant.

  9. Solid state safety jumper cables

    DOEpatents

    Kronberg, J.W.

    1993-02-23

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating positive'' terminals, and one has a lower voltage than the reference voltage, indicating negative'' terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  10. Solid state safety jumper cables

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating "positive" terminals, and one has a lower voltage than the reference voltage, indicating "negative" terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  11. Sample Results from MCU Solids Outage

    SciTech Connect

    Peters, T.; Washington, A.; Oji, L.; Coleman, C.; Poirier, M.

    2014-09-22

    Savannah River National Laboratory (SRNL) has received several solid and liquid samples from MCU in an effort to understand and recover from the system outage starting on April 6, 2014. SRNL concludes that the presence of solids in the Salt Solution Feed Tank (SSFT) is the likely root cause for the outage, based upon the following discoveries: A solids sample from the extraction contactor #1 proved to be mostly sodium oxalate; A solids sample from the scrub contactor#1 proved to be mostly sodium oxalate; A solids sample from the Salt Solution Feed Tank (SSFT) proved to be mostly sodium oxalate; An archived sample from Tank 49H taken last year was shown to contain a fine precipitate of sodium oxalate; A solids sample from ; A liquid sample from the SSFT was shown to have elevated levels of oxalate anion compared to the expected concentration in the feed. Visual inspection of the SSFT indicated the presence of precipitated or transferred solids, which were likely also in the Salt Solution Receipt Tank (SSRT). The presence of the solids coupled with agitation performed to maintain feed temperature resulted in oxalate solids migration through the MCU system and caused hydraulic issues that resulted in unplanned phase carryover from the extraction into the scrub, and ultimately the strip contactors. Not only did this carryover result in the Strip Effluent (SE) being pushed out of waste acceptance specification, but it resulted in the deposition of solids into several of the contactors. At the same time, extensive deposits of aluminosilicates were found in the drain tube in the extraction contactor #1. However it is not known at this time how the aluminosilicate solids are related to the oxalate solids. The solids were successfully cleaned out of the MCU system. However, future consideration must be given to the exclusion of oxalate solids into the MCU system. There were 53 recommendations for improving operations recently identified. Some additional considerations or

  12. Characterization of Flow Behavior of Semi-Solid Slurries with Low Solid Fractions

    NASA Astrophysics Data System (ADS)

    Chucheep, Thiensak; Wannasin, Jessada; Canyook, Rungsinee; Rattanochaikul, Tanate; Janudom, Somjai; Wisutmethangoon, Sirikul; Flemings, Merton C.

    2013-10-01

    Semi-solid slurry casting is a metal-forming process that involves transforming liquid metal into slurry having a low solid fraction and then forming the slurry into solid parts. To successfully apply this slurry-forming process, it is necessary to fully understand the flow behavior of semi-solid slurries. This present work applied the rapid quenching method and the modified gravity fluidity casting to investigate the flow behavior, which involves characterizations of the initial solid fraction, fluidity, and microstructure of semi-solid slurries. Three commercial aluminum alloys were used in this study: 383 (Al-Si11Cu), 356 (Al-Si7MgFe), and 7075 (Al-Zn6MgCu) alloys. The results show that the initial solid fractions can be controlled by varying the rheocasting time. The rapid quenching mold can be used to determine the initial solid fractions. In this method, it is important to apply the correcting procedure to account for growth during quenching and to include all the solid phases. Results from the fluidity study of semi-solid slurries show that the fluidity decreases as the initial solid fraction increases. The decrease is relatively rapid near the low end of the initial solid fraction curves, but is quite slow near the high end of the curves. All the three alloys follow this trend. The results also demonstrate that the slurries that contain high solid fractions of up to 30 pct can still flow well. The microstructure characterization results show that the solid particles in the slurries flow uniformly in the channel. A uniform and fine microstructure with limited phase segregation is observed in the slurry cast samples.

  13. 40 CFR Table Jj-4 to Subpart Jj of... - Volatile Solids and Nitrogen Removal through Solids Separation

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Volatile Solids and Nitrogen Removal... Pt. 98, Subpt. JJ, Table JJ-4 Table JJ-4 to Subpart JJ of Part 98—Volatile Solids and Nitrogen Removal through Solids Separation Type of solids separation Volatile solids removal (decimal)...

  14. 40 CFR Table Jj-4 to Subpart Jj of... - Volatile Solids and Nitrogen Removal through Solids Separation

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Volatile Solids and Nitrogen Removal... Pt. 98, Subpt. JJ, Table JJ-4 Table JJ-4 to Subpart JJ of Part 98—Volatile Solids and Nitrogen Removal through Solids Separation Type of solids separation Volatile solids removal (decimal)...

  15. 40 CFR Table Jj-4 to Subpart Jj of... - Volatile Solids and Nitrogen Removal through Solids Separation

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Volatile Solids and Nitrogen Removal... Pt. 98, Subpt. JJ, Table JJ-4 Table JJ-4 to Subpart JJ of Part 98—Volatile Solids and Nitrogen Removal through Solids Separation Type of solids separation Volatile solids removal (decimal)...

  16. 40 CFR Table Jj-4 to Subpart Jj of... - Volatile Solids and Nitrogen Removal through Solids Separation

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Volatile Solids and Nitrogen Removal... Pt. 98, Subpt. JJ, Table JJ-4 Table JJ-4 to Subpart JJ of Part 98—Volatile Solids and Nitrogen Removal through Solids Separation Type of solids separation Volatile solids removal (decimal)...

  17. Washing of the AW-101 entrained solids

    SciTech Connect

    GJ Lumetta

    2000-03-31

    BNFL Inc. (BNFL) is under contract with the US Department of Energy, River Protection Project (DOE-RPP) to design, construct, and operate facilities for treating wastes stored in the single-shell and double-shell tanks at the Hanford Site, Richland, Washington. The DOE-BNFL RPP contract identifies two feeds to the waste treatment plant: (1) primarily liquid low-activity waste (LAW) consisting of less than 2 wt% entrained solids and (2) high-level waste (HLW) consisting of 10 to 200 g/L solids slurry. This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AW-101 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AW-101 entrained solids in 0.01 M NaOH, so that BNFL can evaluate whether these solids require caustic leaching. The work was conducted according to test plan BNFL-TP-29953-9, Rev. 0, LAW Entrained Solids Water Wash and Caustic Leach Testing. The test went according to plan, with no deviations from the test plan. Based on the results of the 0.01 M NaOH washing, a decision was made by BNFL to not proceed with the caustic leaching test. The composition of the washed solids was such that caustic leaching would not result in significant reduction in the immobilized HLW volume.

  18. Mechanical stability of solids at negative pressures

    NASA Astrophysics Data System (ADS)

    Baidakov, V. G.

    2016-11-01

    The paper examines the reaction of an isotropic solid to infinitesimal and finite density perturbations. The boundary of stability against relatively small homogeneous and inhomogeneous deformations, and also the kinetic boundary of strength of a Lennard-Jones solid are determined in molecular dynamics experiments at negative pressures. It is shown that on the spinodal a solid retains its reducing reaction to small long-wave inhomogeneous perturbations. The work of formation of a critical pore also has a nonzero value on the spinodal.

  19. Passivation-free solid state battery

    DOEpatents

    Abraham, K.M.; Peramunage, D.

    1998-06-16

    This invention pertains to passivation-free solid-state rechargeable batteries composed of Li{sub 4}Ti{sub 5}O{sub 12} anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn{sub 2}O{sub 4}, LiCoO{sub 2}, LiNiO{sub 2} and LiV{sub 2}O{sub 5} and their derivatives. 5 figs.

  20. Solid State Energy Conversion Alliance Delphi SOFC

    SciTech Connect

    Steven Shaffer; Gary Blake; Sean Kelly; Subhasish Mukerjee; Karl Haltiner; Larry Chick; David Schumann; Jeff Weissman; Gail Geiger; Ralphi Dellarocco

    2006-12-31

    The following report details the results under the DOE SECA program for the period July 2006 through December 2006. Developments pertain to the development of a 3 to 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. This report details technical results of the work performed under the following tasks for the SOFC Power System: Task 1 SOFC System Development; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant Components; Task 5 Project Management; and Task 6 System Modeling & Cell Evaluation for High Efficiency Coal-Based Solid Oxide Fuel Cell Gas Turbine Hybrid System.

  1. Characterization of mechanical heterogeneity in amorphous solids

    NASA Astrophysics Data System (ADS)

    Peng, H. L.; Li, M. Z.; Sun, B. A.; Wang, W. H.

    2012-07-01

    The structural geometry and size distribution of the local atomic rearrangements induced by external stress in amorphous solids are investigated by molecular dynamics studies. We find that the size distribution exhibits a generic power-law behavior and their structural geometry shows fractal feature. This indicates that the local atomic rearrangements in amorphous solids are self-organized during deformation. A simple theoretical model based on the interaction of the heterogeneous elastic field sources is proposed which predicts the power-law scaling and characterizes the properties of the local atomic rearrangements in amorphous solids.

  2. Single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Miller, J. F.; Austin, A. E.; Richard, N.; Griesenauer, N. M.; Moak, D. P.; Mehrabian, M. R.; Gelles, S. H.

    1974-01-01

    The following definitions were sought in the research on single crystals of metal solid solutions: (1) the influence of convection and/or gravity present during crystallization on the substructure of a metal solid solution; (2) the influence of a magnetic field applied during crystallization on the substructure of a metal solid solution; and (3) requirements for a space flight experiment to verify the results. Growth conditions for the selected silver-zinc alloy system are described, along with pertinent technical and experimental details of the project.

  3. Scalar operators in solid-state NMR

    SciTech Connect

    Sun, Boqin

    1991-11-01

    Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.

  4. Passivation-free solid state battery

    DOEpatents

    Abraham, Kuzhikalail M.; Peramunage, Dharmasena

    1998-01-01

    This invention pertains to passivation-free solid-state rechargeable batteries composed of Li.sub.4 Ti.sub.5 O.sub.12 anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn.sub.2 O.sub.4, LiCoO.sub.2, LiNiO.sub.2 and LiV.sub.2 O.sub.5 and their derivatives.

  5. Effects from past solid waste disposal practices.

    PubMed Central

    Johnson, L J; Daniel, D E; Abeele, W V; Ledbetter, J O; Hansen, W R

    1978-01-01

    This paper reviews documented environmental effects experience from the disposal of solid waste materials in the U.S. Selected case histories are discussed that illustrate waste migration and its actual or potential effects on human or environmental health. Principal conclusions resulting from this review were: solid waste materials do migrate beyond the geometric confines of the initial placement location; environmental effects have been experienced from disposal of municipal, agricultural, and toxic chemical wastes; and utilization of presently known science and engineering principles in sitting and operating solid waste disposal facilities would make a significant improvement in the containment capability of shallow land disposal facilities. PMID:367769

  6. Solid State Li-ion Batteries

    DTIC Science & Technology

    2013-10-23

    demonstrated that the vapor deposition of thin lithium films onto Li2S-P2S5 glass-ceramic solid -state electrolyte (SSE) pellets can improve...and S.-H. Lee, “Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all- solid -state lithium ...Kitaura, A. Hayashi, T. Ohtomo, S. Hama and M. Tatsumisago, “Fabrication of electrode– electrolyte interfaces in all- solid -state rechargeable lithium

  7. Improved FGD dewatering process cuts solid wastes

    SciTech Connect

    Moer, C.; Fernandez, J.; Carraro, B.

    2009-08-15

    In 2007, Duke Energy's W.H. Zimmer Station set out to advance the overall performance of its flue gas desulfurization (FGD) dewatering process. The plant implemented a variety of measures, including upgrading water-solids separation, improving polymer program effectiveness and reliability, optimizing treatment costs, reducing solid waste sent to the landfill, decreasing labor requirements, and maintaining septic-free conditions in clarifiers. The changes succeeded in greatly reducing solid waste generation and achieving total annual savings of over half a million dollars per year. 8 figs., 1 tab.

  8. Electrothermal design aspects of transitioning solid armatures

    NASA Astrophysics Data System (ADS)

    Schoolderman, A. J.; de Zeeuw, W. A.; Koops, M.

    1993-01-01

    To optimize erosion-free rail accelerator launch of solid brush armatures, a 2D model and an analytical model are used to study the temperature distribution, the coefficient of friction and the transitioning behavior of U-shaped solid armatures made of Cu, Al, Mo, and Ti during electromagnetic launch. In order to experimentally verify the insights gained from these theoretical studies, recently developed diagnostics are applied. The growth potential of solid armatures for weapons applications is highlighted by considering such materials as Ti and Mo.

  9. Proton conducting membrane using a solid acid

    NASA Technical Reports Server (NTRS)

    Chisholm, Calum (Inventor); Narayanan, Sekharipuram R. (Inventor); Boysen, Dane (Inventor); Haile, Sossina M. (Inventor)

    2002-01-01

    A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting. The solid acid material has the general form M.sub.a H.sub.b (XO.sub.t).sub.c.

  10. Interfacial material for solid oxide fuel cell

    DOEpatents

    Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.

    1999-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  11. Electron transfer reactions in microporous solids

    SciTech Connect

    Mallouk, T.E.

    1993-01-01

    Basic thrust the research program involves use of microporous solids (zeolites, clays, layered and tunnel structure oxide semiconductors) as organizing media for artificial photosynthetic systems. Purpose of the microporous solid is twofold. First, it induces spatial organization of photoactive and electroactive components (sensitizers, semiconductor particles, electron relays, and catalysts) at the solid-solution interface, enhancing the quantum efficiency of charge separation and separating physically the ultimate electron donor and acceptor in the electron transport chain. Second, since the microcrystalline solid admits only molecules of a certain charge and size, it is possible to achieve permanent charge separation by sieving chemical photoproducts (e.g., H[sub 2] and I[sub 3][sup [minus

  12. Factors influencing spontaneous combustion of solid waste.

    PubMed

    Moqbel, Shadi; Reinhart, Debra; Chen, Ruey-Hung

    2010-01-01

    Landfill fires create a critical problem for landfill operators and require investigation of its occurrence and the conditions that favor its initiation. Subsurface fires are considered the most significant due to the difficulty in determining their location and extent. These fires are mainly caused by spontaneous combustion, combustion due to high temperature in absence of flame. This study investigates the effect of moisture content, oxygen concentration and leachate components on spontaneous ignition, combustion initiation, and self-heating of solid waste. A new procedure for testing spontaneous ignition is described; however, variations in solid waste components and landfill conditions can create some limitations to its use. The presence of water and dissolved solids in leachate was found to accelerate chemical self-heating of the solid waste. Oxygen concentration at 10% by volume can sustain chemical oxidation but did not promote accelerated burning.

  13. Solid oxide materials research accelerated electrochemical testing

    SciTech Connect

    Windisch, C.; Arey, B.

    1995-08-01

    The objectives of this work were to develop methods for accelerated testing of cathode materials for solid oxide fuel cells under selected operating conditions. The methods would be used to evaluate the performance of LSM cathode material.

  14. Drying of solids in fluidized beds

    SciTech Connect

    Kannan, C.S.; Thomas, P.P.; Varma, Y.B.G.

    1995-09-01

    Fluidized bed drying is advantageously adopted in industrial practice for drying of granular solids such as grains, fertilizers, chemicals, and minerals either for long shelf life or to facilitate further processing or handling. Solids are dried in batch and in continuous fluidized beds corresponding to cross-flow and countercurrent flow of phases covering a wide range in drying conditions. Materials that essentially dry with constant drying rate and then give a falling drying rate approximately linear with respect to solids moisture content (sand) as well as those with an extensive falling rate period with the subsequent falling rate being a curve with respect to the moisture content (mustard, ragi, poppy seeds) are chosen for the study. The performance of the continuous fluidized bed driers is compared with that of batch fluidized bed driers; the performance is predicted using batch kinetics, the residence time distribution of solids, and the contact efficiency between the phases.

  15. Rayleigh-Taylor instability in elastic solids

    NASA Astrophysics Data System (ADS)

    Piriz, A. R.; Cela, J. J. López; Cortázar, O. D.; Tahir, N. A.; Hoffmann, D. H. H.

    2005-11-01

    We present an analytical model for the Rayleigh-Taylor instability that allows for an approximate but still very accurate and appealing description of the instability physics in the linear regime. The model is based on the second law of Newton and it has been developed with the aim of dealing with the instability of accelerated elastic solids. It yields the asymptotic instability growth rate but also describes the initial transient phase determined by the initial conditions. We have applied the model to solid/solid and solid/fluid interfaces with arbitrary Atwood numbers. The results are in excellent agreement with previous models that yield exact solutions but which are of more limited validity. Our model allows for including more complex physics. In particular, the present approach is expected to lead to a more general theory of the instability that would allow for describing the transition to the plastic regime.

  16. NASA, ATK Successfully Test Solid Rocket Motor

    NASA Video Gallery

    With a loud roar and mighty column of flame, NASA and ATK Aerospace Systems successfully completed a two-minute, full-scale test of the largest and most powerful solid rocket motor designed for fli...

  17. Solid state laser technology - A NASA perspective

    NASA Technical Reports Server (NTRS)

    Allario, F.

    1985-01-01

    NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.

  18. Preliminary report on the diffusion of solids

    USGS Publications Warehouse

    Van Orstrand, C. E.; Dewey, F.P.

    1916-01-01

    Although 19 years has elapsed since Roberts-Austen published his classical paper on the diffusion of solid metals, no attempt seems to have been made to verify his important results and conclusions or to extend the investigations to minerals and to the great number of solids in which diffusion may be expected to occur. Progress has been made by means of chemical and electrical methods in the detection of diffusion in a number of metals in the solid state, some progress has been made in explaining the phenomena of diffusion on the basis of osmotic pressure and the kinetic theory, and recent measurements of the vapor pressures of solids have contributed indirectly to the progress of the science, but investigators have not undertaken the difficult and essential task of making definitive determinations of the coefficients of diffusivity at various pressures and temperatures.

  19. Layered solid sorbents for carbon dioxide capture

    DOEpatents

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  20. Co-combusting municipal and wastewater solids

    SciTech Connect

    Kunio Nojuchi )

    1992-12-01

    In the face of difficulties securing adequate landfill sites, Kyoto City, Japan, built an incineration system to co-combust its municipal refuse and wastewater solids. The system consists of two plants: the Ishida Wastewater Treatment Plant and the Higashi Incineration Plant (see Diagram). The merits of the co-combustion system lie in the heat content of the solids. The Higashi plant's design incineration capacity is 400 Mg/d, which can produce 135,456 kWh/d. Sixty-two percent of the steam produced by solids incineration is used for electrical power generation at Higashi and 25% is used at Ishida. The power supplied to Ishida meets 92% of the electrical consumption needs of the plant, of which 16% is used to dry and dewater solids.

  1. Standards Development for Solid-State Lighting

    SciTech Connect

    2011-12-16

    To accelerate the development and implementation of needed standards for solid-state lighting products, DOE works closely with a network of standards-setting organizations and offers technical assistance and support

  2. AN APPROXIMATE EQUATION OF STATE OF SOLIDS.

    DTIC Science & Technology

    research. By generalizing experimental data and obtaining unified relations describing the thermodynamic properties of solids, and approximate equation of state is derived which can be applied to a wide class of materials. (Author)

  3. Supercritical water oxidation - Microgravity solids separation

    NASA Technical Reports Server (NTRS)

    Killilea, William R.; Hong, Glenn T.; Swallow, Kathleen C.; Thomason, Terry B.

    1988-01-01

    This paper discusses the application of supercritical water oxidation (SCWO) waste treatment and water recycling technology to the problem of waste disposal in-long term manned space missions. As inorganic constituents present in the waste are not soluble in supercritical water, they must be removed from the organic-free supercritical fluid reactor effluent. Supercritical water reactor/solids separator designs capable of removing precipitated solids from the process' supercritical fluid in zero- and low- gravity environments are developed and evaluated. Preliminary experiments are then conducted to test the concepts. Feed materials for the experiments are urine, feces, and wipes with the addition of reverse osmosis brine, the rejected portion of processed hygiene water. The solid properties and their influence on the design of several oxidation-reactor/solids-separator configurations under study are presented.

  4. Breakdown of elasticity in amorphous solids

    NASA Astrophysics Data System (ADS)

    Biroli, Giulio; Urbani, Pierfrancesco

    2016-12-01

    What characterizes a solid is the way that it responds to external stresses. Ordered solids, such as crystals, exhibit an elastic regime followed by a plastic regime, both understood microscopically in terms of lattice distortion and dislocations. For amorphous solids the situation is instead less clear, and the microscopic understanding of the response to deformation and stress is a very active research topic. Several studies have revealed that even in the elastic regime the response is very jerky at low temperature, resembling very much the response of disordered magnetic materials. Here we show that in a very large class of amorphous solids this behaviour emerges upon decreasing temperature, as a phase transition, where standard elastic behaviour breaks down. At the transition all nonlinear elastic moduli diverge and standard elasticity theory no longer holds. Below the transition, the response to deformation becomes history- and time-dependent.

  5. Program Planning Concepts in Solid Waste Management

    ERIC Educational Resources Information Center

    Brown, Sanford M., Jr.

    1972-01-01

    Presents a brief review of the program planning process, and uses the example of a solid waste program to illustrate what has or has not been accomplished through the use of the planning process. (LK)

  6. Solid waste treatment processes for space station

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  7. Solid-state light sources getting smart.

    PubMed

    Schubert, E Fred; Kim, Jong Kyu

    2005-05-27

    More than a century after the introduction of incandescent lighting and half a century after the introduction of fluorescent lighting, solid-state light sources are revolutionizing an increasing number of applications. Whereas the efficiency of conventional incandescent and fluorescent lights is limited by fundamental factors that cannot be overcome, the efficiency of solid-state sources is limited only by human creativity and imagination. The high efficiency of solid-state sources already provides energy savings and environmental benefits in a number of applications. However, solid-state sources also offer controllability of their spectral power distribution, spatial distribution, color temperature, temporal modulation, and polarization properties. Such "smart" light sources can adjust to specific environments and requirements, a property that could result in tremendous benefits in lighting, automobiles, transportation, communication, imaging, agriculture, and medicine.

  8. AW-101 entrained solids - Solubility versus temperature

    SciTech Connect

    GJ Lumetta; RC Lettau; GF Piepel

    2000-03-31

    This report describes the results of a test conducted by Battelle to assess the solubility of the solids entrained in the diluted AW-101 low-activity waste (LAW) sample. BNFL requested Battelle to dilute the AW-1-1 sample using de-ionized water to mimic expected plant operating conditions. BNFL further requested Battelle to assess the solubility of the solids present in the diluted AW-101 sample versus temperature conditions of 30, 40, and 50 C. BNFL requested these tests to assess the composition of the LAW supernatant and solids versus expected plant-operating conditions. The work was conducted according to test plan BNFL-TP-29953-7, Rev. 0, Determination of the Solubility of LAW Entrained Solids. The test went according to plan, with no deviations from the test plan.

  9. Eigenstress model for electrochemistry of solid surfaces

    PubMed Central

    Ma, Hongxin; Xiong, Xilin; Gao, Panpan; Li, Xi; Yan, Yu; Volinsky, Alex A.; Su, Yanjing

    2016-01-01

    Thermodynamic analysis and molecular dynamics simulations were conducted to systematically study the size-dependent electrochemical response of solids. By combining the generalized Young-Laplace equation with the popular Butler-Volmer formulation, the direct influence of surface stress on solid film electrochemical reactions was isolated. A series of thermodynamic formulas were developed to describe the size-dependent electrochemical properties of the solid surface. These formulas include intrinsic surface elastic parameters, such as surface eigenstress and surface elastic modulus. Metallic films of Au, Pt, Ni, Cu and Fe were studied as examples. The anodic current density of the metal film increased, while the equilibrium potential decreased with increasing solid film thickness. PMID:27256492

  10. Atomic and Electronic Structure of Solids

    NASA Astrophysics Data System (ADS)

    Kaxiras, Efthimios

    2003-01-01

    Preface; Acknowledgements; Part I. Crystalline Solids: 1. Atomic structure of crystals; 2. The single-particle approximation; 3. Electrons in crystal potential; 4. Band structure of crystals; 5. Applications of band theory; 6. Lattice vibrations; 7. Magnetic behaviour of solids; 8. Superconductivity; Part II. Defects, Non-Crystalline Solids and Finite Structures: 9. Defects I: point defects; 10. Defects II: line defects; 11. Defects III: surfaces and interfaces; 12. Non-crystalline solids; 13. Finite structures; Part III. Appendices: A. Elements of classical electrodynamics; B. Elements of quantum mechanics; C. Elements of thermodynamics; D. Elements of statistical mechanics; E. Elements of elasticity theory; F. The Madelung energy; G. Mathematical tools; H. Nobel Prize citations; I. Units and symbols; References; Index.

  11. Layered solid sorbents for carbon dioxide capture

    SciTech Connect

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2013-02-25

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  12. Superprotonic solid acids: Structure, properties, and applications

    NASA Astrophysics Data System (ADS)

    Boysen, Dane Andrew

    In this work, the structure and properties of superprotonic MH nXO4-type solid acids (where M = monovalent cation, X = S, Se, P, As, and n = 1, 2) have been investigated and, for the first time, applied in fuel cell devices. Several MH nXO4-type solid acids are known to undergo a "superprotonic" solid-state phase transition upon heating, in which the proton conductivity increases by several orders of magnitude and takes on values of ˜10 -2O-1cm-1. The presence of superprotonic conductivity in fully hydrogen bonded solid acids, such as CsH2PO4, has long been disputed. In these investigations, through the use of pressure, the unequivocal identification of superprotonic behavior in both RbH2PO4 and CsH2PO 4 has been demonstrated, whereas for chemically analogous compounds with smaller cations, such as KH2PO4 and NaH2PO 4, superprotonic conductivity was notably absent. Such observations have led to the adoption of radius ratio rules, in an attempt to identify a critical ion size effect on the presence of superprotonic conductivity in solid acids. It has been found that, while ionic size does play a prominent role in the presence of superprotonic behavior in solid acids, equally important are the effects of ionic and hydrogen bonding. Next, the properties of superprotonic phase transition have been investigated from a thermodynamic standpoint. With contributions from this work, a formulation has been developed that accounts for the entropy resulting from both the disordering of both hydrogen bonds and oxy-anion librations in the superprotonic phase of solid acids. This formulation, fundamentally derived from Linus Pauling's entropy rules for ice, accurately accounts for the change in entropy through a superprotonic phase transition. Lastly, the first proof-of-priniciple fuel cells based upon solid acid electrolytes have been demonstrated. Initial results based upon a sulfate electrolyte, CsHSO4, demonstrated the viability of solid acids, but poor chemical stability

  13. Solid Earth Science ESDR System

    NASA Astrophysics Data System (ADS)

    Kedar, S.; Bock, Y.; Moore, A. W.; Squibb, M. B.; Liu, Z.; Hasse, J.; Fang, P.

    2013-12-01

    The Solid Earth Science ESDR System (SESES) provides mature, long-term calibrated and validated Earth System Data Records (ESDRs) that support NASA's Earth Surface and Interiors (ESI) focus area, routinely processing data from Earthscope's Plate Boundary Observatory GPS network, NASA's Real-time Earthquake Analysis for Disaster Mitigation network (READI), as well as from several global GPS networks. The project, which was initiated in 2006, provides multi-decade calibrated and validated GPS-derived deformation time series and deformation vectors, based on daily GPS data. The time series are a unique product in terms of number of stations and duration (over 20 years), and have been modeled and catalogued for coseismic, postseismic and transient deformation, as well as instrumental offsets. Calibration and validation of the GPS measured deformation time series are done through a combined solution of two independently derived GPS position time series. Improved sensitivity to real signals is provided by a Principal Component Analysis tool that is routinely applied to the Western North America time series. At its current stage SESES is in the process of generating and distributing the following new ESDRs: (a) Troposphere delay time series for calibrating atmospheric delay errors in Interferometric Synthetic Aperture Radar (InSAR) that are one of the limiting InSAR error sources. (b) Precipitable Water Vapor (PWV) time series for use in Probable Maximum Precipitation studies, historical weather event analysis, and studies of long-term water vapor trends. (c) Fusion of GPS and seismic measurements at collocated stations to estimate three-dimensional high-rate displacement time series with mm precision, during significant historic seismic events (e.g., 2003 Mw 8.3 Tokachi-oki earthquake in Japan; 2010 Mw 7.2 El Mayor-Cucapah earthquake in northern Baja California; 2011 Mw 9.0 Tohoku-oki earthquake in Japan) and new events during the project duration. Data sets to be used

  14. Solid State Reactor Final Report

    SciTech Connect

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas of research

  15. Water and stability of pharmaceutical solids

    NASA Astrophysics Data System (ADS)

    Shalaev, Evgenyi

    2007-03-01

    Solid pharmaceuticals are multi-component systems consisting of an active pharmaceutical ingredient (API) and inactive ingredients (excipients). Excipients may include inorganic salts (e.g., NaCl), carbohydrates (e.g., lactose), and polymers, to name a few, whereas APIs range from relatively simple molecules (e.g., aspirin) to proteins and olygonucleotides. Pharmaceutical solids could exist either as single-phase or heterophase systems. They also may have different extent of order, such as highly ordered crystalline phases, amorphous solids that are thermodynamically unstable but might be kinetically stable under the time frame of observation, and crystalline mesophases including liquid crystals. With all this diversity, there are common features for such systems, and two of them will be discussed in the presentation. (i) Requirements for chemical stability of pharmaceuticals are very strict. A very limited (e.g., less than 0.1%) extent of conversion is allowed in these materials over the shelf life, i.e., during several years of storage at ambient and (sometimes) not fully controlled (e.g., a medicine cabinet in one's bathroom) conditions. (ii) All pharmaceutical solids contain some water, although its amount and physical state are highly variable and may change during manufacturing and shelf life. There are many challenging questions and issues associated with the ``Water and stability of pharmaceutical solids'' subject; some of them will be considered in the presentation: (i) What are the features of chemical reactivity of crystalline vs disordered systems? (ii) What is the role of water in solid state chemical reactivity of amorphous solids, e.g., water as plasticizer vs reactant vs reaction media? (iii) How homogeneous are pharmaceutical amorphous solid solutions, e.g., carbohydrate-water systems? (iv) What is the optimal water content? With water being the most common destabilizing factor, is ``the drier - the better'' always the case?

  16. Grating enhanced solid-state laser amplifiers

    DOEpatents

    Erlandson, Alvin C.; Britten, Jerald A.

    2010-11-09

    A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. Such an invention, as disclosed herein, uses diffraction gratings to increase gain, stored energy density, and pumping efficiency of solid-state laser gain media, such as, but not limited to rods, disks and slabs. By coupling predetermined gratings to solid-state gain media, such as crystal or ceramic laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

  17. Detection of Pollution Caused by Solid Wastes

    NASA Technical Reports Server (NTRS)

    Golueke, Clarence G.

    1971-01-01

    To develop a means of detecting pollution, it s necessary to know something about the source and nature of the pollution. The type of pollution rising from solid wastes differs considerably from hat from liquid wastes or that from gaseous wastes ni its effect on the immediate environment. It may be "defined" by a series of negatives. When solid wastes are discarded on land, the resulting pollution is not land pollution in the sense of air and water pollution. For one thing, the solid wastes do not become a "part" of the land in that the wastes are neither intimately mixed nor homogenized into the land as are liquid and gaseous wastes into their respective media. The waste particles retain not only their chemical identity but also their visible (i.e., physical) characteristics. When buried, for example, the soil is under, above, and around the solids, because the wastes are there as discrete units. Secondly, solid wastes neither diffuse nor are they carried from the place at which they were deposited. In other words they remain stationary, providing of course the disposal site is land and not moving water. In a given area, solid wastes be not distributed uniformly over that area. Even the solid wastes falling into the specification of letter meets these specifications. In contrast liquid and gaseous wastes become intimately mixed, homogenized, and even dissolved in their media. Because solid wastes remain stationary, pollution constituted by their presence is highly localized and heavily concentrated, even to the extent that the pollution could be termed "micro" when compared to the macro-pollution arising from liquid and gasequs wastes.

  18. Status report on solid control in leachates

    SciTech Connect

    Beahm, E.C.; Weber, C.F.; Lee, D.D.; Dillow, T.A.; Hunt, R.D.; Keswa, C.M.; Osseo-Asare, K.; Spear, K.E.

    1998-07-01

    Sludge pretreatment will involve some combination of washing and leaching with sodium hydroxide solutions to remove soluble salts and amphoteric material such as alumina. It is of paramount importance to prevent gelation and uncontrolled solid formation in tanks, transfer lines, and process equipment. An evaluation of results of washing and caustic leaching indicates that washing is more effective in dissolving sludge solids than subsequent sodium hydroxide treatment. Only aluminum and chromium were removed more effectively by caustic leaching than by water washing.

  19. Proton conducting membrane using a solid acid

    NASA Technical Reports Server (NTRS)

    Haile, Sossina M. (Inventor); Chisholm, Calum (Inventor); Boysen, Dane A. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2006-01-01

    A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting.

  20. Unsteady Processes in Solid Propellant Combustion,

    DTIC Science & Technology

    1977-05-01

    0—AflO ~5a INSTITUTO NACIONAL DE TECNICA AEROESPACIAL MADRID (SPAIN) F/S 21/9.2UNSTEADY PROCESSES IN SOLID PROPELLANT COMBUSTION . (U) MAY...PRO C E SS E S IN SOLID P R O P E L L A N T C O M B U S T I O N H A. Crespo and M. Kindelán Instituto Nacional de Técnica Aeroespacial Madrid , Spain j

  1. The heat capacity of solid antimony selenide

    NASA Astrophysics Data System (ADS)

    Pashinkin, A. S.; Malkova, A. S.; Mikhailova, M. S.

    2008-06-01

    The literature data on the heat capacity of solid antimony selenide over the temperature range 53 K- T m were analyzed. The heat capacity of Sb2Se3 was measured from 350 to 600 K on a DSM-2M calorimeter. The experimental data were used to calculate the dependence C p = a + bT + cT -2 and the thermodynamic functions of solid Sb2Se3 over the temperature range 298.15 700 K.

  2. Isothermal Equation Of State For Compressed Solids

    NASA Technical Reports Server (NTRS)

    Vinet, Pascal; Ferrante, John

    1989-01-01

    Same equation with three adjustable parameters applies to different materials. Improved equation of state describes pressure on solid as function of relative volume at constant temperature. Even though types of interatomic interactions differ from one substance to another, form of equation determined primarily by overlap of electron wave functions during compression. Consequently, equation universal in sense it applies to variety of substances, including ionic, metallic, covalent, and rare-gas solids. Only three parameters needed to describe equation for given material.

  3. Differences between solid superheating and liquid supercooling.

    PubMed

    Bai, Xian-Ming; Li, Mo

    2005-10-15

    The thermodynamic and kinetic behaviors for solid superheating and liquid supercooling were critically examined and compared via molecular-dynamics simulations. It is shown that the large elastic energy associated with internal melting and solid-liquid interface disorder play important roles in superheating. The growth rate is anisotropic for supercooling, but isotropic for superheating. Supercooling can be well described by the classical nucleation theory, whereas superheating shows many exceptions. The underlying mechanisms for these differences are discussed.

  4. Realistic Theory of Solid-State Qubits

    DTIC Science & Technology

    2006-03-20

    limited by decoherence due to the many extra degrees of freedom of a solid state system. We investigate a system of two solid state qubits that are...of systems with finite degrees of freedom whose dynamics are Lie-algebraically closed. vi) Transfer of knowledge to quantum dot charge qubis We studied...the stationary current depending on the internal degrees of freedom . In particular, it turns out that at fixed transport voltage, the current through

  5. A commentary on solid lubricants and wear resistant solids for use in extreme environments

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1982-01-01

    The need for high temperature tribological coatings and self-lubricating materials in advanced technology is discussed. A qualitative model for the mechanism of solid lubrication is proposed. The model is based upon microscopic observations of the dynamics of third-body solids in lubricated contacts. In this model, the rheology of plastic flow is suggested as a more general criterion for predicting the lubricating potential of a solid material than, for example, a specific crystal structure. Some examples of layer-lattice and nonlayer-lattice solids that lubricate by virtue of their extreme plasticity, film coherence, and adhesion to the lubricated metal are described. Circumstantial evidence for the model is presented for low shear-strength solids at room temperature and for solids such as calcium fluoride that become lubricative only when their brittle-to-ductile transition temperature is exceeded. Some materials considerations in the selection of hard-coat materials for wear control are also presented.

  6. Pediatric solid tumor genomics and developmental pliancy.

    PubMed

    Chen, X; Pappo, A; Dyer, M A

    2015-10-08

    Pediatric solid tumors are remarkably diverse in their cellular origins, developmental timing and clinical features. Over the last 5 years, there have been significant advances in our understanding of the genetic lesions that contribute to the initiation and progression of pediatric solid tumors. To date, over 1000 pediatric solid tumors have been analyzed by Next-Generation Sequencing. These genomic data provide the foundation to launch new research efforts to address one of the fundamental questions in cancer biology-why are some cells more susceptible to malignant transformation by particular genetic lesions at discrete developmental stages than others? Because of their developmental, molecular, cellular and genetic diversity, pediatric solid tumors provide an ideal platform to begin to answer this question. In this review, we highlight the diversity of pediatric solid tumors and provide a new framework for studying the cellular and developmental origins of pediatric cancer. We also introduce a new unifying concept called cellular pliancy as a possible explanation for susceptibility to cancer and the developmental origins of pediatric solid tumors.

  7. Solid-loaded flows: applications in technology

    SciTech Connect

    Molerus, O.

    1983-01-01

    The evaluation of experiments and the representation of the resulting data by nondimensional groups defined ad hoc largely governs the treatment of problems arising with solid-loaded flows in practice. Without doubt, this is a result of the very complex nature of solid-loaded flows and, consequently, empiricism tends to prevail, more or less. To overcome this situation, two sets of nondimensional groups, which take into consideration the translatory, as well as the rotary, motion of particles suspended in a fluid, are derived from the equations of motion of a solid body. The intuitive meaning of these nondimensional groups arises from their derivation. With respect to applications in engineering, the influence of the rotary motion of a particle on the motion of its center of gravity can thus be taken into account. As such, a common basis for the representation of the different phenomena observed with solid-loaded flows is established. The application of the above concepts to fluidization and hydraulic and pneumatic conveying proves their usefulness. New insights into well-known facts as well as new results demonstrate that taking the real nature of solid particles (i.e., those of finite dimensions) into consideration will provide a common and profound basis for the representation of different phenomena observed with solid-loaded flows in practice.

  8. 24 Inch Reusable Solid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A scaled-down 24-inch version of the Space Shuttle's Reusable Solid Rocket Motor was successfully fired for 21 seconds at a Marshall Space Flight Center (MSFC) Test Stand. The motor was tested to ensure a replacement material called Lycocel would meet the criteria set by the Shuttle's Solid Motor Project Office. The current material is a heat-resistant, rayon-based, carbon-cloth phenolic used as an insulating material for the motor's nozzle. Lycocel, a brand name for Tencel, is a cousin to rayon and is an exceptionally strong fiber made of wood pulp produced by a special 'solvent-spirning' process using a nontoxic solvent. It will also be impregnated with a phenolic resin. This new material is expected to perform better under the high temperatures experienced during launch. The next step will be to test the material on a 48-inch solid rocket motor. The test, which replicates launch conditions, is part of Shuttle's ongoing verification of components, materials, and manufacturing processes required by MSFC, which oversees the Reusable Solid Rocket Motor project. Manufactured by the ATK Thiokol Propulsion Division in Promontory, California, the Reusable Solid Rocket Motor measures 126 feet (38.4 meters) long and 12 feet (3.6 meters) in diameter. It is the largest solid rocket motor ever flown and the first designed for reuse. During its two-minute burn at liftoff, each motor generates an average thrust of 2.6 million pounds (1.2 million kilograms).

  9. Soft random solids and their heterogeneous elasticity

    NASA Astrophysics Data System (ADS)

    Mao, Xiaoming; Goldbart, Paul M.; Xing, Xiangjun; Zippelius, Annette

    2009-09-01

    Spatial heterogeneity in the elastic properties of soft random solids is examined via vulcanization theory. The spatial heterogeneity in the structure of soft random solids is a result of the fluctuations locked-in at their synthesis, which also brings heterogeneity in their elastic properties. Vulcanization theory studies semimicroscopic models of random-solid-forming systems and applies replica field theory to deal with their quenched disorder and thermal fluctuations. The elastic deformations of soft random solids are argued to be described by the Goldstone sector of fluctuations contained in vulcanization theory, associated with a subtle form of spontaneous symmetry breaking that is associated with the liquid-to-random-solid transition. The resulting free energy of this Goldstone sector can be reinterpreted as arising from a phenomenological description of an elastic medium with quenched disorder. Through this comparison, we arrive at the statistics of the quenched disorder of the elasticity of soft random solids in terms of residual stress and Lamé-coefficient fields. In particular, there are large residual stresses in the equilibrium reference state, and the disorder correlators involving the residual stress are found to be long ranged and governed by a universal parameter that also gives the mean shear modulus.

  10. Soft random solids and their heterogeneous elasticity.

    PubMed

    Mao, Xiaoming; Goldbart, Paul M; Xing, Xiangjun; Zippelius, Annette

    2009-09-01

    Spatial heterogeneity in the elastic properties of soft random solids is examined via vulcanization theory. The spatial heterogeneity in the structure of soft random solids is a result of the fluctuations locked-in at their synthesis, which also brings heterogeneity in their elastic properties. Vulcanization theory studies semimicroscopic models of random-solid-forming systems and applies replica field theory to deal with their quenched disorder and thermal fluctuations. The elastic deformations of soft random solids are argued to be described by the Goldstone sector of fluctuations contained in vulcanization theory, associated with a subtle form of spontaneous symmetry breaking that is associated with the liquid-to-random-solid transition. The resulting free energy of this Goldstone sector can be reinterpreted as arising from a phenomenological description of an elastic medium with quenched disorder. Through this comparison, we arrive at the statistics of the quenched disorder of the elasticity of soft random solids in terms of residual stress and Lamé-coefficient fields. In particular, there are large residual stresses in the equilibrium reference state, and the disorder correlators involving the residual stress are found to be long ranged and governed by a universal parameter that also gives the mean shear modulus.

  11. Solid phase thermodynamic perturbation theory: test and application to multiple solid phases.

    PubMed

    Zhou, Shiqi

    2007-08-28

    A simple procedure for the determination of hard sphere (HS) solid phase radial distribution function (rdf) is proposed, which, thanks to its physical foundation, allows for extension to other crystal structures besides the fcc structure. The validity of the procedure is confirmed by comparing (1) the predicted HS solid phase rdf's with corresponding simulation data and (2) the predicted non-HS solid phase Helmholtz free energy by the present solid phase first-order thermodynamic perturbation theory (TPT) whose numerical implementation depends on the HS solid phase rdf's as input, with the corresponding predictions also by the first-order TPT but the required HS solid phase rdf is given by an "exact" empirical simulation-fitted formula. The present solid phase first-order TPT predicts isostructural fcc-fcc transition of a hard core attractive Yukawa fluid, in very satisfactory agreement with the corresponding simulation data and is far more accurate than a recent thermodynamically consistent density functional perturbation theory. The present solid phase first-order TPT is employed to investigate multiple solid phases. It is found that a short-ranged potential, even if it is continuous and differentiable or is superimposed over a long-ranged potential, is sufficient to induce the multiple solid phases. When the potential range is short enough, not only isostructural fcc-fcc transition but also isostructural bcc-bcc transition, simple cubic (sc)-sc transition, or even fcc-bcc, fcc-sc, and bcc-sc transitions can be induced. Even triple point involving three solid phases becomes possible. The multiple solid phases can be stable or metastable depending on the potential parameters.

  12. Torrefaction Processing for Human Solid Waste Management

    NASA Technical Reports Server (NTRS)

    Serio, Michael A.; Cosgrove, Joseph E.; Wójtowicz, Marek A.; Stapleton, Thomas J.; Nalette, Tim A.; Ewert, Michael K.; Lee, Jeffrey; Fisher, John

    2016-01-01

    This study involved a torrefaction (mild pyrolysis) processing approach that could be used to sterilize feces and produce a stable, odor-free solid product that can be stored or recycled, and also to simultaneously recover moisture. It was demonstrated that mild heating (200-250 C) in nitrogen or air was adequate for torrefaction of a fecal simulant and an analog of human solid waste (canine feces). The net result was a nearly undetectable odor (for the canine feces), complete recovery of moisture, some additional water production, a modest reduction of the dry solid mass, and the production of small amounts of gas and liquid. The liquid product is mainly water, with a small Total Organic Carbon content. The amount of solid vs gas plus liquid products can be controlled by adjusting the torrefaction conditions (final temperature, holding time), and the current work has shown that the benefits of torrefaction could be achieved in a low temperature range (< 250 C). These temperatures are compatible with the PTFE bag materials historically used by NASA for fecal waste containment and will reduce the energy consumption of the process. The solid product was a dry material that did not support bacterial growth and was hydrophobic relative to the starting material. In the case of canine feces, the solid product was a mechanically friable material that could be easily compacted to a significantly smaller volume (approx. 50%). The proposed Torrefaction Processing Unit (TPU) would be designed to be compatible with the Universal Waste Management System (UWMS), now under development by NASA. A stand-alone TPU could be used to treat the canister from the UWMS, along with other types of wet solid wastes, with either conventional or microwave heating. Over time, a more complete integration of the TPU and the UWMS could be achieved, but will require design changes in both units.

  13. Solid electrolyte-electrode system for an electrochemical cell

    DOEpatents

    Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.

    1995-01-01

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided.

  14. Solid electrolyte-electrode system for an electrochemical cell

    DOEpatents

    Tuller, H.L.; Kramer, S.A.; Spears, M.A.

    1995-04-04

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided. 17 figures.

  15. Analysis of U.S. Army Solid Waste Management Policy.

    DTIC Science & Technology

    1992-07-01

    27 3.2.1 Army Solid Waste Generation ............................... 27 3.2.2 Non- Municipal Solid Waste .................................. 28...130 Glossary ...................................................................................... 131 List of Figures 2-1 U. S. Municipal Solid Waste Handling...and Alternatives ................................... 94 9 List of Tables 3-1 Examples of Army Municipal Solid Waste Composition .... 29 3-2 DoD and

  16. Pulse Jet Mixing Tests With Noncohesive Solids

    SciTech Connect

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro; Bailey, Sharon A.; Bower, John C.; Denslow, Kayte M.; Eakin, David E.; Elmore, Monte R.; Gauglitz, Phillip A.; Guzman, Anthony D.; Hatchell, Brian K.; Hopkins, Derek F.; Hurley, David E.; Johnson, Michael D.; Kirihara, Leslie J.; Lawler, Bruce D.; Loveland, Jesse S.; Mullen, O Dennis; Pekour, Mikhail S.; Peters, Timothy J.; Robinson, Peter J.; Russcher, Michael S.; Sande, Susan; Santoso, Christian; Shoemaker, Steven V.; Silva, Steve M.; Smith, Devin E.; Su, Yin-Fong; Toth, James J.; Wiberg, John D.; Yu, Xiao-Ying; Zuljevic, Nino

    2009-05-11

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants. The test data were used to independently develop mixing models that can be used to predict full-scale WTP vessel performance and to rate current WTP mixing system designs against two specific performance requirements. One requirement is to ensure that all solids have been disturbed during the mixing action, which is important to release gas from the solids. The second requirement is to maintain a suspended solids concentration below 20 weight percent at the pump inlet. The models predict the height to which solids will be lifted by the PJM action, and the minimum velocity needed to ensure all solids have been lifted from the floor. From the cloud height estimate we can calculate the concentration of solids at the pump inlet. The velocity needed to lift the solids is slightly more demanding than "disturbing" the solids, and is used as a surrogate for this metric. We applied the models to assess WTP mixing vessel performance with respect to the two perform¬ance requirements. Each mixing vessel was evaluated against these two criteria for two defined waste conditions. One of the wastes was defined by design limits and one was derived from Hanford waste characterization reports. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy

  17. Paramagnetic Attraction of Impurity-Helium Solids

    NASA Technical Reports Server (NTRS)

    Bernard, E. P.; Boltnev, R. E.; Khmelenko, V. V.; Lee, D. M.

    2003-01-01

    Impurity-helium solids are formed when a mixture of impurity and helium gases enters a volume of superfluid helium. Typical choices of impurity gas are hydrogen deuteride, deuterium, nitrogen, neon and argon, or a mixture of these. These solids consist of individual impurity atoms and molecules as well as clusters of impurity atoms and molecules covered with layers of solidified helium. The clusters have an imperfect crystalline structure and diameters ranging up to 90 angstroms, depending somewhat on the choice of impurity. Immediately following formation the clusters aggregate into loosely connected porous solids that are submerged in and completely permeated by the liquid helium. Im-He solids are extremely effective at stabilizing high concentrations of free radicals, which can be introduced by applying a high power RF dis- charge to the impurity gas mixture just before it strikes the super fluid helium. Average concentrations of 10(exp 19) nitrogen atoms/cc and 5 x 10(exp 18) deuterium atoms/cc can be achieved this way. It shows a typical sample formed from a mixture of atomic and molecular hydrogen and deuterium. It shows typical sample formed from atomic and molecular nitrogen. Much of the stability of Im-He solids is attributed to their very large surface area to volume ratio and their permeation by super fluid helium. Heat resulting from a chance meeting and recombination of free radicals is quickly dissipated by the super fluid helium instead of thermally promoting the diffusion of other nearby free radicals.

  18. Solid lubrication design methodology, phase 2

    NASA Technical Reports Server (NTRS)

    Pallini, R. A.; Wedeven, L. D.; Ragen, M. A.; Aggarwal, B. B.

    1986-01-01

    The high temperature performance of solid lubricated rolling elements was conducted with a specially designed traction (friction) test apparatus. Graphite lubricants containing three additives (silver, phosphate glass, and zinc orthophosphate) were evaluated from room temperature to 540 C. Two hard coats were also evaluated. The evaluation of these lubricants, using a burnishing method of application, shows a reasonable transfer of lubricant and wear protection for short duration testing except in the 200 C temperature range. The graphite lubricants containing silver and zinc orthophosphate additives were more effective than the phosphate glass material over the test conditions examined. Traction coefficients ranged from a low of 0.07 to a high of 0.6. By curve fitting the traction data, empirical equations for slope and maximum traction coefficient as a function of contact pressure (P), rolling speed (U), and temperature (T) can be developed for each lubricant. A solid lubricant traction model was incorporated into an advanced bearing analysis code (SHABERTH). For comparison purposes, preliminary heat generation calculations were made for both oil and solid lubricated bearing operation. A preliminary analysis indicated a significantly higher heat generation for a solid lubricated ball bearing in a deep groove configuration. An analysis of a cylindrical roller bearing configuration showed a potential for a low friction solid lubricated bearing.

  19. Preliminary Results of Solid Gas Generator Micropropulsion

    NASA Technical Reports Server (NTRS)

    deGroot, Wilhelmus A.; Reed, Brian D.; Brenizer, Marshall

    1999-01-01

    A decomposing solid thruster concept, which creates a more benign thermal and chemical environment than solid propellant combustion, while maintaining, performance similar to solid combustion, is described. A Micro-Electro-Mechanical (MEMS) thruster concept with diode laser and fiber-optic initiation is proposed, and thruster components fabricated with MEMS technology are presented. A high nitrogen content solid gas generator compound is evaluated and tested in a conventional axisymmetric thrust chamber with nozzle throat area ratio of 100. Results show incomplete decomposition of this compound in both low pressure (1 kPa) and high pressure (1 MPa) environments, with decomposition of up to 80% of the original mass. Chamber pressures of 1.1 MPa were obtained, with maximum calculated thrust of approximately 2.7 N. Resistively heated wires and resistively heated walls were used to initiate decomposition. Initiation tests using available lasers were unsuccessful, but infrared spectra of the compound show that the laser initiation tests used inappropriate wavelengths for optimal propellant absorption. Optimal wavelengths for laser ignition were identified. Data presented are from tests currently in progress. Alternative solid gas generator compounds are being evaluated for future tests.

  20. Solid-state dynamics of uranyl polyoxometalates.

    PubMed

    Alam, Todd M; Liao, Zuolei; Zakharov, Lev N; Nyman, May

    2014-07-01

    Understanding fundamental uranyl polyoxometalate (POM) chemistry in solution and the solid state is the first step to defining its future role in the development of new actinide materials and separation processes that are vital to every step of the nuclear fuel cycle. Many solid-state geometries of uranyl POMs have been described, but we are only beginning to understand their chemical behavior, which thus far includes the role of templates in their self-assembly, and the dynamics of encapsulated species in solution. This study provides unprecedented detail into the exchange dynamics of the encapsulated species in the solid state through Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy. Although it was previously recognized that capsule-like molybdate and uranyl POMs exchange encapsulated species when dissolved in water, analogous exchange in the solid state has not been documented, or even considered. Here, we observe the extremely high rate of transport of Li(+) and aqua species across the uranyl shell in the solid state, a process that is affected by both temperature and pore blocking by larger species. These results highlight the untapped potential of emergent f-block element materials and vesicle-like POMs.

  1. Fabricating the Solid Core Heatpipe Reactor

    SciTech Connect

    Ring, Peter J.; Sayre, Edwin D.; Houts, Mike

    2006-01-20

    The solid core heatpipe nuclear reactor has the potential to be the most dependable concept for the nuclear space power system. The design of the conversion system employed permits multiple failure modes instead of the single failure mode of other concepts. Regardless of the material used for the reactor, either stainless steel, high-temperature alloys, Nb1Zr, Tantalum Alloys or MoRe Alloys, making the solid core by machining holes in a large diameter billet is not satisfactory. This is because the large diameter billet will have large grains that are detrimental to the performance of the reactor due to grain boundary diffusion. The ideal fabrication method for the solid core is by hot isostatic pressure diffusion bonding (HIPing). By this technique, wrought fine-grained tubes of the alloy chosen are assembled into the final shape with solid cusps and seal welded so that there is a vacuum in between all surfaces to be diffusion bonded. This welded structure is then HIPed for diffusion bonding. A solid core made of Type 321 stainless steel has been satisfactorily produced by Advanced Methods and Materials and is undergoing evaluation by NASA Marshall Space Flight Center.

  2. Origin of Rigidity in Dry Granular Solids

    NASA Astrophysics Data System (ADS)

    Sarkar, Sumantra; Bi, Dapeng; Zhang, Jie; Behringer, R. P.; Chakraborty, Bulbul

    2013-08-01

    Solids are distinguished from fluids by their ability to resist shear. In traditional solids, the resistance to shear is associated with the emergence of broken translational symmetry as exhibited by a nonuniform density pattern. In this work, we focus on the emergence of shear rigidity in a class of solids where this paradigm is challenged. Dry granular materials have no energetically or entropically preferred density modulations. We show that, in contrast to traditional solids, the emergence of shear rigidity in these granular solids is a collective process, which is controlled solely by boundary forces, the constraints of force and torque balance, and the positivity of the contact forces. We develop a theoretical framework based on these constraints, which connects rigidity to broken translational symmetry in the space of forces, not positions of grains. We apply our theory to experimentally generated shear-jammed states and show that these states are indeed characterized by a persistent, non-uniform density modulation in force space, which emerges at the shear-jamming transition.

  3. 75 FR 34682 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... With the International Maritime Solid Bulk Cargoes (IMSBC) Code; Correction AGENCY: Coast Guard, DHS...: Harmonization With the International Maritime Solid Bulk Cargoes (IMSBC) Code.'' This correction provides... (IMSBC) Code,'' which published in the June 17, 2010, issue of the Federal Register, make the...

  4. 76 FR 8658 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... International Maritime Solid Bulk Cargoes (IMSBC) Code AGENCY: Coast Guard, DHS. ACTION: Rule; information... carriage of solid hazardous materials in bulk to allow use of the IMSBC Code as an equivalent form of... 202-366-9826. SUPPLEMENTARY INFORMATION: On January 1, 2011, compliance with the IMSBC Code...

  5. 75 FR 34573 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ...The Coast Guard proposes to harmonize its regulations with International Maritime Organization (IMO) amendments to Chapter VI and Chapter VII to the International Convention for the Safety of Life at Sea, 1974, as amended, (SOLAS) that make the International Maritime Solid Bulk Cargoes (IMSBC) Code mandatory. The amendments require that all vessels subject to SOLAS and carrying bulk solid......

  6. 49 CFR 173.242 - Bulk packagings for certain medium hazard liquids and solids, including solids with dual hazards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings for certain medium hazard liquids and solids, including solids with dual hazards. 173.242 Section 173.242 Transportation Other... medium hazard liquids and solids, including solids with dual hazards. When § 172.101 of this...

  7. 49 CFR 173.242 - Bulk packagings for certain medium hazard liquids and solids, including solids with dual hazards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bulk packagings for certain medium hazard liquids and solids, including solids with dual hazards. 173.242 Section 173.242 Transportation Other... medium hazard liquids and solids, including solids with dual hazards. When § 172.101 of this...

  8. 49 CFR 173.242 - Bulk packagings for certain medium hazard liquids and solids, including solids with dual hazards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Bulk packagings for certain medium hazard liquids and solids, including solids with dual hazards. 173.242 Section 173.242 Transportation Other... medium hazard liquids and solids, including solids with dual hazards. When § 172.101 of this...

  9. Solid materials for removing arsenic and method thereof

    DOEpatents

    Coronado, Paul R.; Coleman, Sabre J.; Sanner, Robert D.; Dias, Victoria L.; Reynolds, John G.

    2010-09-28

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  10. Solid materials for removing arsenic and method thereof

    DOEpatents

    Coronado, Paul R.; Coleman, Sabre J.; Sanner, Robert D.; Dias, Victoria L.; Reynolds, John G.

    2008-07-01

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  11. Coordinated garbage collection for raid array of solid state disks

    DOEpatents

    Dillow, David A; Ki, Youngjae; Oral, Hakki S; Shipman, Galen M; Wang, Feiyi

    2014-04-29

    An optimized redundant array of solid state devices may include an array of one or more optimized solid-state devices and a controller coupled to the solid-state devices for managing the solid-state devices. The controller may be configured to globally coordinate the garbage collection activities of each of said optimized solid-state devices, for instance, to minimize the degraded performance time and increase the optimal performance time of the entire array of devices.

  12. Solid Propellant Test Article (SPTA) Test Stand

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Solid Propellant Test Article (SPTA) test stand with the Modified Nasa Motor (M-NASA) test article at the Marshall Space Flight Center (MSFC). The SPTA test stand, 12-feet wide by 12-feet long by 24-feet high, was built in 1989 to provide comparative performance data on nozzle and case insulation material and to verify thermostructural analysis models. A modified NASA 48-inch solid motor (M-NASA motor) with a 12-foot blast tube and 10-inch throat makes up the SPTA. The M-NASA motor is being used to evaluate solid rocket motor internal non-asbestos insulation materials, nozzle designs, materials, and new inspection techniques. New internal motor case instrumentation techniques are also being evaluated.

  13. A Different Cone: Bursting Drops in Solids

    NASA Astrophysics Data System (ADS)

    Zhao, Xuanhe

    2013-03-01

    Drops in fluids tend to be spheres--a shape that minimizes surface energy. In thunderstorm clouds, drops can become unstable and emit thin jets when charged beyond certain limits. The instability of electrified drops in gases and liquids has been widely studied and used in applications including ink-jet printing, electrospinning nano-fibers, microfluidics and electrospray ionization. Here we report a different scenario: drops in solids become unstable and burst under sufficiently high electric fields. We find the instability of drops in solids morphologically resembles that in liquids, but the critical electric field for the instability follows a different scaling due to elasticity of solids. Our observations and theoretical models not only advance the fundamental understanding of electrified drops but also suggest a new failure mechanism of high-energy-density dielectric polymers, which have diverse applications ranging from capacitors for power grids and electric vehicles to muscle-like transducers for soft robots and energy harvesting.

  14. Application and future of solid foams

    NASA Astrophysics Data System (ADS)

    Bienvenu, Yves

    2014-10-01

    To conclude this series of chapters on solid foam materials, a review of industrial current applications and of mid-term market perspectives centred on manmade foams is given, making reference to natural cellular materials. Although the polymeric foam industrial development overwhelms the rest and finds applications on many market segments, more attention will be paid to the emerging market of inorganic-especially metallic-foams (and cellular materials) and their applications, present or upcoming. It is shown that the final applications of solid foams are primarily linked to transport and the present-day development of the different classes of solid foams is contrasted between functional applications and structural applications. xml:lang="fr"

  15. Drug targeting using solid lipid nanoparticles.

    PubMed

    Rostami, Elham; Kashanian, Soheila; Azandaryani, Abbas H; Faramarzi, Hossain; Dolatabadi, Jafar Ezzati Nazhad; Omidfar, Kobra

    2014-07-01

    The present review aims to show the features of solid lipid nanoparticles (SLNs) which are at the forefront of the rapidly developing field of nanotechnology with several potential applications in drug delivery and research. Because of some unique features of SLNs such as their unique size dependent properties it offers possibility to develop new therapeutics. A common denominator of all these SLN-based platforms is to deliver drugs into specific tissues or cells in a pathological setting with minimal adverse effects on bystander cells. SLNs are capable to incorporate drugs into nanocarriers which lead to a new prototype in drug delivery which maybe used for drug targeting. Hence solid lipid nanoparticles hold great promise for reaching the goal of controlled and site specific drug delivery and hence attracted wide attention of researchers. This review presents a broad treatment of targeted solid lipid nanoparticles discussing their types such as antibody SLN, magnetic SLN, pH sensitive SLN and cationic SLN.

  16. Monolithic solid-state lasers for spaceflight

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  17. Driver circuit for solid state light sources

    DOEpatents

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  18. Wet spinning of solid polyamic acid fibers

    NASA Technical Reports Server (NTRS)

    Dorogy, William E., Jr. (Inventor); St.clair, Anne K. (Inventor)

    1991-01-01

    The invention is a process for the production of solid aromatic polyamic acid and polyimide fibers from a wet gel or coagulation bath wet gel using N,N-dimethylacetamide (DMAc) solutions of the polyamic acid derived from aromatic dianhydrides such as 3,3',4,4' benzophenonetetra carboxylic dianhydride (BTDA) and aromatic diamines such as 4,4'-oxydianiline (4,4'-ODA). By utilizing the relationship among coagulation medium and concentration, resin inherent viscosity, resin percent solids, filament diameter, and fiber void content, it is possible to make improved polyamic acid fibers. Solid polyimide fibers, obtained by the thermal cyclization of the polyamic acid precursor, have increased tensile properties compared to fibers containing macropores from the same resin system.

  19. Secondary calcium solid electrolyte high temperature battery

    NASA Astrophysics Data System (ADS)

    Sammells, A. F.; Schumacher, B.

    1986-01-01

    The application of polycrystalline Ca(2+) conducting beta-double prime alumina solid electrolytes to a new type of high temperature battery is investigated, experimentally. The negative electrode in the battery consisted of a calcium-silicon alloy whose redox electrochemistry was mediated by the solid electrolyte via molten salt eutectic CaCl2 (51.4 m/o), and CaI2 (mp 550 C). The molten salt and the calcium alloy material were separated from the positive active material via the Ca2 Ca(2+) conducting polycrystalline electrolyte. The positive electrode consisted of a solid-state matrix having related crystallographic structure. The electrochemical reversibility of the cells was measured at 580 C. The charge-discharge characteristics of the cells are plotted vs. time in a graph.

  20. Acoustic Measurements of Small Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Rocket acoustic noise can induce loads and vibration on the vehicle as well as the surrounding structures. Models have been developed to predict these acoustic loads based on scaling existing solid rocket motor data. The NASA Marshall Space Flight Center acoustics team has measured several small solid rocket motors (thrust below 150,000 lbf) to anchor prediction models. This data will provide NASA the capability to predict the acoustic environments and consequent vibro-acoustic response of larger rockets (thrust above 1,000,000 lbf) such as those planned for the NASA Constellation program. This paper presents the methods used to measure acoustic data during the static firing of small solid rocket motors and the trends found in the data.

  1. Fungal infections in solid organ transplantation.

    PubMed

    Silveira, Fernanda P; Husain, Shahid

    2007-06-01

    Fungal infections in solid organ transplant recipients continue to be a significant cause of morbidity and mortality. Candida spp. and Aspergillus spp. account for most invasive fungal infections. The incidence of fungal infection varies with type of solid organ transplant. Liver transplant recipients have highest reported incidence of candida infections while lung transplant recipients have highest rate of Aspergillus infections. Recent epidemiological studies suggest the emergence of resistant strains of candida as well as mycelial fungi other than Aspergillus in these patients. The current review incorporates the recent changes in the epidemiology of fungal infections in solid organ transplant recipients and highlights the newer data on the diagnosis, prophylaxis and treatment of fungal infections in these patients.

  2. The Mechanism of Atomization Accompanying Solid Injection

    NASA Technical Reports Server (NTRS)

    Castleman, R A , Jr

    1933-01-01

    A brief historical and descriptive account of solid injection is followed by a detailed review of the available theoretical and experimental data that seem to throw light on the mechanism of this form of atomization. It is concluded that this evidence indicates that (1) the atomization accompanying solid injection occurs at the surface of the liquid after it issues as a solid stream from the orifice; and (2) that such atomization has a mechanism physically identical with the atomization which takes place in an air stream, both being due merely to the formation, at the gas-liquid interface, of fine ligaments under the influence of the relative motion of gas and liquid, and to their collapse, under the influence of surface tension, to form the drops in the spray.

  3. Ignition transient analysis of solid rocket motor

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1991-01-01

    Measurement data on the performance of Space Shuttle Solid Rocket Motor show wide variations in the head-end pressure changes and the total thrust build-up during the ignition transient periods. To analyze the flow and thermal behavior in the tested solid rocket motors, a 1-dimensional, ideal gas flow model via the SIMPLE algorithm was developed. Numerical results showed that burning patterns in the star-shaped head-end segment of the propellant and the erosive burning rate are two important factors controlling the ignition transients. The objective of this study is to extend the model to include the effects of aluminum particle commonly used in solid propellants. To treat the effects of aluminum-oxide particles in the combustion gas, conservation of mass, momentum, and energy equations for the particles are added in the numerical formulation and integrated by an inter-phase-slip algorithm.

  4. Ignition transient analysis of solid rocket motor

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1990-01-01

    To predict pressure-time and thrust-time behavior of solid rocket motors, a one-dimensional numerical model is developed. The ignition phase of solid rocket motors (time less than 0.4 sec) depends critically on complex interactions among many elements, such as rocket geometry, heat and mass transfer, flow development, and chemical reactions. The present model solves the mass, momentum, and energy equations governing the transfer processes in the rocket chamber as well as the attached converging-diverging nozzle. A qualitative agreement with the SRM test data in terms of head-end pressure gradient and the total thrust build-up is obtained. Numerical results show that the burning rate in the star-segmented head-end section and the erosive burning are two important parameters in the ignition transient of the solid rocket motor (SRM).

  5. Bubble Impact with a Solid Wall

    NASA Astrophysics Data System (ADS)

    Garg, Vishrut; Thete, Sumeet; Basaran, Osman

    2016-11-01

    In diverse natural and industrial processes, and in particular in process equipment widely used in oil and gas production, bubbles and drops that are immersed in a continuous liquid phase frequently collide with solid walls. In this talk, the impact with a solid wall of a gas bubble that is surrounded by a liquid that is either a Newtonian or a non-Newtonian fluid is analyzed by numerical simulation. Special attention is paid to the thin film that forms between the approaching bubble and the solid wall. Flow regimes that arise as the film thickness decreases are scrutinized and rationalized by comparison of the computational predictions to well-known and new analytical results from lubrication theory based thin film literature. Finally, flow transitions that occur as the lubrication theory breaks down and inertia becomes significant are investigated.

  6. Method for silicon nitride precursor solids recovery

    DOEpatents

    Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.

    1992-12-15

    Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.

  7. Apparatus for silicon nitride precursor solids recovery

    DOEpatents

    Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.

    1995-04-04

    Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.

  8. Solid and Liquid Waste Drying Bag

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric (Inventor); Hogan, John A. (Inventor); Fisher, John W. (Inventor)

    2009-01-01

    Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.

  9. Solid state recording current meter conversion

    USGS Publications Warehouse

    Cheng, Ralph T.; Wang, Lichen

    1985-01-01

    The authors describe the conversion of an Endeco-174 current meter to a solid-state recording current meter. A removable solid-state module was designed to fit in the space originally occupied by an 8-track tape cartridge. The module contains a CPU and 128 kilobytes of nonvolatile CMOS memory. The solid-state module communicates with any terminal or computer using an RS-232C interface at 4800 baud rate. A primary consideration for conversion was to keep modifications of the current meter to a minimum. The communication protocol was designed to emulate the Endeco tape translation unit, thus the need for a translation unit was eliminated and the original data reduction programs can be used without any modification. After conversion, the data recording section of the current meter contains no moving parts; the storage capacity of the module is equivalent to that of the original tape cartridge.

  10. Solid Hydrogen Experiments for Atomic Propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2001-01-01

    This paper illustrates experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Solid particles of hydrogen were frozen in liquid helium, and observed with a video camera. The solid hydrogen particle sizes, their molecular structure transitions, and their agglomeration times were estimated. article sizes of 1.8 to 4.6 mm (0.07 to 0. 18 in.) were measured. The particle agglomeration times were 0.5 to 11 min, depending on the loading of particles in the dewar. These experiments are the first step toward visually characterizing these particles, and allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  11. Megajoule Dense Plasma Focus Solid Target Experiments

    NASA Astrophysics Data System (ADS)

    Podpaly, Y. A.; Falabella, S.; Link, A.; Povilus, A.; Higginson, D. P.; Shaw, B. H.; Cooper, C. M.; Chapman, S.; Bennett, N.; Sipe, N.; Olson, R.; Schmidt, A. E.

    2016-10-01

    Dense plasma focus (DPF) devices are plasma sources that can produce significant neutron yields from beam into gas interactions. Yield increases, up to approximately a factor of five, have been observed previously on DPFs using solid targets, such as CD2 and D2O ice. In this work, we report on deuterium solid-target experiments at the Gemini DPF. A rotatable target holder and baffle arrangement were installed in the Gemini device which allowed four targets to be deployed sequentially without breaking vacuum. Solid targets of titanium deuteride were installed and systematically studied at a variety of fill pressures, bias voltages, and target positions. Target holder design, experimental results, and comparison to simulations will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  12. Municipal solid waste management strategies in Turkey.

    PubMed

    Turan, N Gamze; Coruh, Semra; Akdemir, Andaç; Ergun, Osman Nuri

    2009-01-01

    Municipal solid waste (MSW) is a major environmental problem in Turkey, as in many developing countries. Problems associated with municipal solid waste are difficult to address, but efforts towards more efficient collection and transportation and environmentally acceptable waste disposal continue in Turkey. Although strict regulations on the management of solid waste are in place, primitive disposal methods such as open dumping and discharge into surface water have been used in various parts of Turkey. This study presents a brief history of the legislative trends in Turkey for MSW management. The study also presents the MSW responsibility and management structure together with the present situation of generation, composition, recycling, and treatment. The results show that approximately 25 million ton of MSW are generated annually in Turkey. About 77% of the population receives MSW services. In spite of efforts to change open dumping areas into sanitary landfills and to build modern recycling and composting facilities, Turkey still has over 2000 open dumps.

  13. Solid Waste Assurance Program Implementation Plan

    SciTech Connect

    Irons, L.G.

    1995-06-19

    On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixed waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities.

  14. Ionic model for highly compressed solid hydrogen

    NASA Astrophysics Data System (ADS)

    Yakub, E. S.

    2013-05-01

    We propose a simple ionic model for high-pressure conducting phase IV of solid hydrogen observed recently at room temperature. It is based on an assumption of dissociative ionization of hydrogen molecules 3H2=2H2(+)+2H(-) induced by high compression. The proposed model predicts the first order transition of molecular hydrogen solid into partly ionic conducting phase at megabar pressures and describes the temperature dependence of resistivity at room temperature. Its predictions are consistent with high temperature shock-compression experiments which exhibit conductivity of multiply shocked hydrogen. The location of phase transition line, the volume change, and the ionization degree in solid phase IV are estimated.

  15. Exactly isochoric deformations of soft solids

    NASA Astrophysics Data System (ADS)

    Biggins, John S.; Wei, Z.; Mahadevan, L.

    2014-12-01

    Many materials of contemporary interest, such as gels, biological tissues and elastomers, are easily deformed but essentially incompressible. Traditional linear theory of elasticity implements incompressibility only to first order and thus permits some volume changes, which become problematically large even at very small strains. Using a mixed coordinate transformation originally due to Gauss, we enforce the constraint of isochoric deformations exactly to develop a linear theory with perfect volume conservation that remains valid until strains become geometrically large. We demonstrate the utility of this approach by calculating the response of an infinite soft isochoric solid to a point force that leads to a nonlinear generalization of the Kelvin solution. Our approach naturally generalizes to a range of problems involving deformations of soft solids and interfaces in two-dimensional and axisymmetric geometries, which we exemplify by determining the solution to a distributed load that mimics muscular contraction within the bulk of a soft solid.

  16. Pulse Jet Mixing Tests With Noncohesive Solids

    SciTech Connect

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael K.; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro

    2012-02-17

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid. The tests were conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants, and the test data were used to develop models predicting two measures of mixing performance for full-scale WTP vessels. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure all solids are suspended off the floor, though not fully mixed). From the cloud height, the concentration of solids at the pump inlet can be estimated. The predicted critical suspension velocity for lifting all solids is not precisely the same as the mixing requirement for 'disturbing' a sufficient volume of solids, but the values will be similar and closely related. These predictive models were successfully benchmarked against larger scale tests and compared well with results from computational fluid dynamics simulations. The application of the models to assess mixing in WTP vessels is illustrated in examples for 13 distinct designs and selected operational conditions. The values selected for these examples are not final; thus, the estimates of performance should not be interpreted as final conclusions of design adequacy or inadequacy. However, this work does reveal that several vessels may require adjustments to design, operating features, or waste feed properties to ensure confidence in operation. The models described in this report will prove to be valuable engineering tools to evaluate options as designs are finalized for the WTP. Revision 1 refines data sets used for model development and summarizes models developed since the completion of Revision 0.

  17. Solid waste 30-year volume summary

    SciTech Connect

    Valero, O.J.; Armacost, L.L.; DeForest, T.J.; Templeton, K.J.; Williams, N.C.

    1994-06-01

    A 30-year forecast of the solid waste volumes to be generated or received at the US Department of Energy Hanford Site is described in this report. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste that will require treatment, storage, and disposal at Hanford`s Solid Waste Operations Complex (SWOC) during the 30-year period from FY 1994 through FY 2023. The data used to complete this document were collected from onsite and offsite waste generators who currently, or are planning to, ship solid wastes to the Hanford Site. An analysis of the data suggests that over 300,000 m{sup 3} of LLMW and TRU/TRUM waste will be managed at Hanford`s SWOC over the next 30 years. An extensive effort was made this year to collect this information. The 1993 solid waste forecast was used as a starting point, which identified approximately 100,000 m{sup 3} of LLMW and TRU/TRUM waste to be sent to the SWOC. After analyzing the forecast waste volume, it was determined that additional waste was expected from the tank waste remediation system (TWRS), onsite decontamination and decommissioning (D&D) activities, and onsite remedial action (RA) activities. Data presented in this report establish a starting point for solid waste management planning. It is recognized that forecast estimates will vary (typically increasing) as facility planning and missions continue to change and become better defined, but the information presented still provides useful insight into Hanford`s future solid waste management requirements.

  18. Micromechanically Based Constitutive Relations for Polycrystalline Solids

    NASA Technical Reports Server (NTRS)

    Nemat-Nasser, S.; Iwakuma, T.

    1983-01-01

    A basic method to estimate the overall mechanical response of solids which contain periodically distributed defects is presented. The method estimates the shape and growth pattern of voids periodically distributed over the grain boundaries in a viscous matrix. The relaxed moduli are obtained for a polycrytalline solid that undergoes relaxation by grain boundary sliding which accounts for the interaction effects. The overall inelastic nonlinear response at elevated temperatures in terms of a model which considers nonlinear power law creep within the grains, and linear viscous flow in the grain boundaries is discussed.

  19. Solid-liquid phase transition in argon

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Tang, H. T.

    1978-01-01

    Starting from the Lennard-Jones interatomic potential, a modified cell theory has been used to describe the solid-liquid phase transition in argon. The cell-size variations may be evaluated by a self-consistent condition. With the inclusion of cell-size variations, the transition temperature, the solid and liquid densities, and the liquid-phase radial-distribution functions have been calculated. These ab initio results are in satisfactory agreement with molecular-dynamics calculations as well as experimental data on argon.

  20. Combustion engineering issues for solid fuel systems

    SciTech Connect

    Bruce Miller; David Tillman

    2008-05-15

    The book combines modeling, policy/regulation and fuel properties with cutting edge breakthroughs in solid fuel combustion for electricity generation and industrial applications. This book provides real-life experiences and tips for addressing the various technical, operational and regulatory issues that are associated with the use of fuels. Contents are: Introduction; Coal Characteristics; Characteristics of Alternative Fuels; Characteristics and Behavior of Inorganic Constituents; Fuel Blending for Combustion Management; Fuel Preparation; Conventional Firing Systems; Fluidized-Bed Firing Systems; Post-Combustion Emissions Control; Some Computer Applications for Combustion Engineering with Solid Fuels; Gasification; Policy Considerations for Combustion Engineering.

  1. Use of Exoelectrons to Study Solid Films.

    DTIC Science & Technology

    1979-12-31

    AD—A000 621 MASSACHUSETTS INST OF TECH CAMBRIDGE SURFACE LAB FIG 201 LI USE OF EXOELECTRONS TO STUDY SOLID FILMS. (U) I UNCLASSIFIED £ RABINOWICZ ...CONTRACT OR GRANT NUMBER(.) (~~~1E~nest/ Rabinowicz — Marlj’Connelj7 ~~ S. PERFORMING ORGANIZATION NAM E AND ADDRESS 10. PROGRAM ELEMENT. PROJECT...exoelectrons to study solid films Final report Erne st Rabinowicz and Mark Connelly December 31, 1979 L U.S. Army Research Office Contract No. DAAG 29

  2. Solid/FEM integration at SNLA

    NASA Technical Reports Server (NTRS)

    Chavez, Patrick F.

    1987-01-01

    The effort at Sandia National Labs. on the methodologies and techniques being used to generate strict hexahedral finite element meshes from a solid model is described. The functionality of the modeler is used to decompose the solid into a set of nonintersecting meshable finite element primitives. The description of the decomposition is exported, via a Boundary Representative format, to the meshing program which uses the information for complete finite element model specification. Particular features of the program are discussed in some detail along with future plans for development which includes automation of the decomposition using artificial intelligence techniques.

  3. Transverse photothermal beam deflection within a solid

    SciTech Connect

    Spear, J.D.; Russo, R.E. )

    1991-07-15

    The mirage effect within a transparent solid substrate was used for monitoring optical absorption of a thin film. Refractive index gradients, which accompany thermal gradients below the film-coated surface, cause a probe laser beam to be deflected. The spectrum of copper, deposited onto a piece of clear acrylic, was recorded by this method of photothermal deflection. The influence of thermally induced mechanical stresses can alter the effective value of the thermo-optic coefficient of the solid, {ital dn}/{ital dT}.

  4. Analytical investigation of solid rocket nozzle failure

    NASA Technical Reports Server (NTRS)

    Mccoy, K. E.; Hester, J.

    1985-01-01

    On April 5, 1983, an Inertial Upper Stage (IUS) spacecraft experienced loss of control during the burn of the second of two solid rocket motors. The anomaly investigation showed the cause to be a malfunction of the solid rocket motor. This paper presents a description of the IUS system, a failure analysis summary, an account of the thermal testing and computer modeling done at Marshall Space Flight Center, a comparison of analysis results with thermal data obtained from motor static tests, and describes some of the design enhancement incorporated to prevent recurrence of the anomaly.

  5. Space Shuttle solid rocket motor exposure monitoring

    NASA Technical Reports Server (NTRS)

    Brown, S. W.

    1993-01-01

    During the processing of the Space Shuttle Solid Rocket Booster (SRB), segments at the Kennedy Space Center, an odor was detected around the solid propellant. An Industrial Hygiene survey was conducted to determine the chemical identity of the SRB offgassing constituents. Air samples were collected inside a forward SRB segment and analyzed to determine chemical composition. Specific chemical analysis for suspected offgassing constituents of the propellant indicated ammonia to be present. A gas chromatograph mass spectroscopy (GC/MS) analysis of the air samples detected numerous high molecular weight hydrocarbons.

  6. Lithium Based Anodes for Solid State Batteries

    DTIC Science & Technology

    1981-06-30

    AFOSR- 77- 3460 LITHIUM BASED ANODES FOR SOLID STATE BATTERIES R.A.H. Edwards, J.R. Owen and B.C.H. Steele I!Tolfson Unit for Solid State Ionics, D...use in secondary lithium batteries . Three main problems associated with the use of pure lithium as the negative plate are as follows: (a) Formation of...Proceedings of the Workshop on Lithium Non aque ous Battery Electrochemistry. Case Western Reserve Univ. June 4-6 1980, pp.130-142, The Electrochemical Soc

  7. Solid films and transports in cellular foams

    NASA Astrophysics Data System (ADS)

    Tan Hoang, Minh; Perrot, Camille

    2012-09-01

    We show that critical path ideas lead to the identification of two local characteristic sizes for the long wavelength acoustic properties in cellular solids, the pore and throat sizes. Application of the model to real foam samples, which may contain solid films or membranes yields quantitative agreement between a finite-element numerical homogenization approach and experimental results. From three routinely available laboratory measurements: the open porosity ϕ, the static viscous permeability k0, and the average struts length Lm obtained from microscopy analysis; asymptotic transport parameters at high-frequencies and the normal incidence sound absorption coefficient are derived with no adjustable parameters.

  8. Liquid/liquid/solid contact angles

    NASA Astrophysics Data System (ADS)

    Borocco, Marine; Pellet, Charlotte; Authelin, Jean-René; Clanet, Christophe; Quéré, David; Compagnie des Interfaces Team

    2016-11-01

    Many studies have investigated solid/liquid/air interfaces and their corresponding wetting properties. We discuss what happens in less-studied liquid/liquid/solid systems, and focus on questions of dynamical wetting in a tube, having in mind applications in detergency. We use a capillary tube filled with water and containing a slug of silicone oil (or vice-versa), and present a series of experiments to determine static and dynamic wetting properties corresponding to this situation. We also discuss interfacial aging of such systems.

  9. Neutron scattering from solid 3He

    NASA Astrophysics Data System (ADS)

    Schanen, R.; Sherline, T. E.; Toader, A. M.; Boyko, V.; Mat'as, S.; Meschke, M.; Schöttl, S.; Adams, E. D.; Cowan, B.; Godfrin, H.; Goff, J. P.; Roger, M.; Saunders, J.; Siemensmeyer, K.; Takano, Y.

    2003-05-01

    Multiple spin exchange leads, according to present understanding, to a variety of magnetically ordered states in solid 3He, depending on pressure and applied magnetic field. We report the status of experiments to directly determine these structures by neutron scattering. The large neutron absorption cross section, and associated sample heating, impose severe experimental demands on the design of the sample cell. We report on our proposed solution, including details of the sintered heat exchanger necessary to cool the sample, as well as the PrNi 5 nuclear demagnetization stage. The use of NMR in parallel experiments to characterise growth of the solid sample within the sinter is also discussed.

  10. Solid State Lasers from an Efficiency Perspective

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    2007-01-01

    Solid state lasers have remained a vibrant area of research because several major innovations expanded their capability. Major innovations are presented with emphasis focused on the laser efficiency. A product of efficiencies approach is developed and applied to describe laser performance. Efficiency factors are presented in closed form where practical and energy transfer effects are included where needed. In turn, efficiency factors are used to estimate threshold and slope efficiency, allowing a facile estimate of performance. Spectroscopic, thermal, and mechanical data are provided for common solid state laser materials.

  11. Millimeter Continuum Observations Of Disk Solids

    NASA Astrophysics Data System (ADS)

    Andrews, Sean

    2016-07-01

    I will offer a condensed overview of some key issues in protoplanetary disk research that makes use interferometric measurements of the millimeter-wavelength continuum emitted by their solid particles. Several lines of evidence now qualitatively support theoretical models for the growth and migration of disk solids, but also advertise a quantitative tension with the traditional efficiency of that evolution. New observations of small-scale substructures in disks might both reconcile the conflict and shift our focus in the mechanics of planet formation.

  12. Interstellar and interplanetary solids in the laboratory

    NASA Astrophysics Data System (ADS)

    Dartois, Emmanuel; Alata, Ivan; Engrand, Cécile; Brunetto, Rosario; Duprat, Jean; Pino, Thomas; Quirico, Eric; Remusat, Laurent; Bardin, Noémie; Mostefaoui, Smail; Morinaud, Gilles; Crane, Bruno; Szwec, Nicolas; Delauche, Lucie; Jamme, Frédéric; Sandt, Christophe; Dumas, Paul

    The composition of interstellar matter is driven by environmental parameters and results from extreme interstellar medium physico-chemical conditions. Astrochemists must rely on remote observations to monitor and analyze the interstellar solids composition. They bring additional information from the study of analogues produced in the laboratory, placed in simulated space environments. Planetologists and cosmochemists access and spectroscopically examine collected extraterrestrial material in the laboratory. Diffuse interstellar medium and molecular clouds observations set constraints on the composition of organic solids that can then be compared with collected extraterrestrial materials analyses, to shed light on their possible links.

  13. Solid state opening switches of new type

    NASA Astrophysics Data System (ADS)

    Kudasov, Yu. B.; Makarov, I. V.; Pavlov, V. N.

    2001-04-01

    We discuss two new types of high-current solid-state opening switches based on nonlinear diffusion of a strong magnetic field into a substance. In the first case, a magnetic field penetrates into solid solution (V 1- xCr x) 2O 3, which undergoes a metal-insulator phase transition of the first order under Joule heating. In the second case, a switching of current occurs due to the Hall diffusion of magnetic field into n-InAs. Results of numerical analysis are presented.

  14. Design of supercritical cascades with high solidity

    NASA Technical Reports Server (NTRS)

    Sanz, J. M.

    1982-01-01

    The method of complex characteristics of Garabedian and Korn was successfully used to design shockless cascades with solidities of up to one. A code was developed using this method and a new hodograph transformation of the flow onto an ellipse. This code allows the design of cascades with solidities of up to two and larger turning angles. The equations of potential flow are solved in a complex hodograph like domain by setting a characteristic initial value problem and integrating along suitable paths. The topology that the new mapping introduces permits a simpler construction of these paths of integration.

  15. Design of supercritical cascades with high solidity

    NASA Technical Reports Server (NTRS)

    Sanz, J. M.

    1982-01-01

    The method of complex characteristics of Garabedian and Korn has been successfully used to design shockless cascades with solidities of up to one. A new code has been developed using this method and a new hodograph transformation of the flow onto an ellipse. This new code allows the design of cascades with solidities of up to two and larger turning angles. The equations of potential flow are solved in a complex hodograph-like domain by setting a characteristic initial value problem and integrating along suitable paths. The topology that the new mapping introduces permits a simpler construction of these paths of integration.

  16. Mechanism for Solid State Crystal Conversion

    DTIC Science & Technology

    2000-12-30

    about a factor of 10 greater than those observed in Mn-Zn ferrite , YIG and BaTiO 3. It would be very useful to understand the practical and theoretical...Introduction and Background The unique properties of many single crystals provide great benefits in a wide range of magnetic , structural, optical and other...materials. In 1985 Tanji et al.2 reported a solid-solid process for producing Mn-Zn ferrite single crystals. The ferrite method required bringing a polished

  17. Hanford Site Solid Waste Acceptance Criteria

    SciTech Connect

    Not Available

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  18. Evaluation of dry solid waste recycling from municipal solid waste: case of Mashhad city, Iran.

    PubMed

    Farzadkia, Mahdi; Jorfi, Sahand; Akbari, Hamideh; Ghasemi, Mehdi

    2012-01-01

    The recycling for recovery and reuse of material and energy resources undoubtedly provides a substantial alternative supply of raw materials and reduces the dependence on virgin feedstock. The main objective of this study was to assess the potential of dry municipal solid waste recycling in Mashhad city, Iran. Several questionnaires were prepared and distributed among various branches of the municipality, related organizations and people. The total amount of solid waste generated in Mashhad in 2008 was 594, 800  tons with per capita solid waste generation rate of 0.609  kg  person(-1) day(-1). Environmental educational programmes via mass media and direct education of civilians were implemented to publicize the advantages and necessity of recycling. The amount of recycled dry solid waste was increased from 2.42% of total dry solid waste (2588.36  ton  year(-1)) in 1999 to 7.22% (10, 165  ton  year(-1)) in 2008. The most important fractions of recycled dry solid waste in Mashhad included paper and board (51.33%), stale bread (14.59%), glass (9.73%), ferrous metals (9.73%), plastic (9.73%), polyethylene terephthalate (2.62%) and non-ferrous metals (0.97%). It can be concluded that unfortunately the potential of dry solid waste recycling in Mashhad has not been considered properly and there is a great effort to be made in order to achieve the desired conditions of recycling.

  19. Fluid-solid coupled simulation of the ignition transient of solid rocket motor

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Liu, Peijin; He, Guoqiang

    2015-05-01

    The first period of the solid rocket motor operation is the ignition transient, which involves complex processes and, according to chronological sequence, can be divided into several stages, namely, igniter jet injection, propellant heating and ignition, flame spreading, chamber pressurization and solid propellant deformation. The ignition transient should be comprehensively analyzed because it significantly influences the overall performance of the solid rocket motor. A numerical approach is presented in this paper for simulating the fluid-solid interaction problems in the ignition transient of the solid rocket motor. In the proposed procedure, the time-dependent numerical solutions of the governing equations of internal compressible fluid flow are loosely coupled with those of the geometrical nonlinearity problems to determine the propellant mechanical response and deformation. The well-known Zeldovich-Novozhilov model was employed to model propellant ignition and combustion. The fluid-solid coupling interface data interpolation scheme and coupling instance for different computational agents were also reported. Finally, numerical validation was performed, and the proposed approach was applied to the ignition transient of one laboratory-scale solid rocket motor. For the application, the internal ballistics were obtained from the ground hot firing test, and comparisons were made. Results show that the integrated framework allows us to perform coupled simulations of the propellant ignition, strong unsteady internal fluid flow, and propellant mechanical response in SRMs with satisfactory stability and efficiency and presents a reliable and accurate solution to complex multi-physics problems.

  20. Response of Solid He-4 to External Stress: Interdigital Capacitor Solid Level Detector and Optical Interferometer

    NASA Technical Reports Server (NTRS)

    Fay, J.; Wada, Y.; Masutomi, R.; Elkholy, T.; Kojima, H.

    2003-01-01

    Two experiments are being conducted to observe the liquid/solid interface of He-4 near 1 K. Interesting instabilities are expected to occur when the solid is non-hydrostatically stressed. (1)A compact interdigital capacitor is used as a level detector to observe solid He-4 to which stresses are applied externally. The capacitor consists of 38 interlaced 50 m wide and 3.8 mm long gold films separated by 50 m and deposited onto a 5 mm by 5 mm sapphire substrate. The capacitor is placed on one flat end wall of a cylindrical chamber (xx mm diameter and xx mm long). The solid is grown to a known height and a stress is applied by a tubular PZT along the cylindrical axis. The observed small change in height of the solid at the wall is linearly proportional to the applied stress. The solid height decreases under compressive stress but does not change under tensile stress. The response of the solid on compressive stress is consistent with the expected quadratic dependence on strain. (2)Interferometric techniques are being developed for observing the solid He-4 surface profile. A laser light source is brought into the low temperature region via single mode optical fiber. The interference pattern is transmitted back out of the low temperature apparatus via optical fiber bundle. The solid He-4 growth chamber will be equipped with two PZT's such that stress can be applied from orthogonal directions. Orthogonally applied stress is expected to induce surface instability with island-like deformation on a grid pattern. Apparatus design and progress of its construction are described.

  1. Rheological and solid-state NMR assessments of copovidone/clotrimazole model solid dispersions.

    PubMed

    Yang, Fengyuan; Su, Yongchao; Zhu, Lei; Brown, Chad D; Rosen, Lawrence A; Rosenberg, Kenneth J

    2016-03-16

    This study aims to assess several model solid dispersions by using dynamic oscillatory rheology, solid-state NMR and other solid phase characterization techniques, and correlate their viscoelastic responses with processing methods and microstructures. A model active pharmaceutical ingredient (API), clotrimazole, was compounded with copovidone to form solid dispersions via various techniques with different mixing capabilities. Physicochemical characterizations of the resulting solid dispersions demonstrated that simple physical mixing led to a poorly mixed blend manifested by existence of large API crystalline content and heterogeneous distribution. Cryogenic milling significantly improved mixing of two components as a result of reduced particle size and increased contact surface area, but produced limited amorphous content. In contrast, hot melt extrusion (HME) processing resulted in a homogenous amorphous solid dispersion because of its inherent mixing efficiency. Storage modulus and viscosities versus frequency of different solid dispersions indicated that the incorporation of API into the polymer matrix resulted in a plasticizing effect which reduced the viscosity. The crystalline/aggregated forms of API also exhibited more elastic response than its amorphous/dispersed counterpart. Temperature ramps of the physical mixture with high API concentration captured a critical temperature, at which a bump was observed in damping factor. This bump was attributed to the dissolution of crystalline API into the polymer. In addition, heating-cooling cycles of various solid dispersions suggested that cryomilling and HME processing could form a homogeneous solid dispersion at low API content, whereas high drug concentration led to a relatively unstable dispersion due to supersaturation of API in the polymer.

  2. Solid-Matrix Luminescence Analysis and Coupling Solid-Matrix Luminescence with Separation Methodology

    SciTech Connect

    Robert J. Hurtubise

    2004-06-14

    In this report, the major results and conclusions of the research over the last two years and five months is considered. The report discusses the mechanistic aspects of oxygen quenching of solid-matrix phosphorescence (SMP), mechanistic aspects of moisture quenching of SMP, interactions and methodology to investigate phosphors in glucose glasses, new methods for coating filter paper for solid-phase microextraction with solid-matrix fluorescence (SMF) and SMP detection, mechanistic consideration of the heavy-atom quenching of the SMF and the enhancement of SMP of benzo[a]pyrene-DNA adducts, and new developments in liquid-liquid-liquid microextraction.

  3. Lyophilization for Water Recovery From Solid Waste

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  4. Spreadsheet Modeling of Electron Distributions in Solids

    ERIC Educational Resources Information Center

    Glassy, Wingfield V.

    2006-01-01

    A series of spreadsheet modeling exercises constructed as part of a new upper-level elective course on solid state materials and surface chemistry is described. The spreadsheet exercises are developed to provide students with the opportunity to interact with the conceptual framework where the role of the density of states and the Fermi-Dirac…

  5. Transitional care in solid organ transplantation.

    PubMed

    Kerkar, Nanda; Annunziato, Rachel

    2015-04-01

    Pediatric solid organ transplantation has become an accepted modality of treatment in the last few decades. The number of childhood recipients of solid organ transplantation surviving to adulthood is correspondingly rising. This review examines the epidemiology of pediatric solid organ transplant recipients, and the challenges faced during transition to adult services, with suggestions for improvement in collaborative and coordinated care. Transition to adulthood has been established as a vulnerable period for recipients of a solid organ transplant. Assessment of readiness for transfer, allowing sufficient time for preparation before the actual transfer, involvement of all stakeholders, and inclusion of a transition coordinator are some of the components that can facilitate successful transition to the adult transplant program. This programmatic approach improves both quality of life and long-term graft and patient survival. Moreover, the economic benefits associated with avoiding frequent hospitalizations for graft dysfunction and preventing re-transplantation more than compensate for the costs related to establishing and maintaining a robust transition program.

  6. Hydrologic implications of solid-water disposal

    USGS Publications Warehouse

    Schneider, William Joseph

    1970-01-01

    Site selection for disposal of solid wastes must be based on adequate water-resources information if pollutional potential is to be minimized. This will require regional as well as localized data on the water resources of the area. Only through such an approach can adequate protection be afforded to the environment in general and the water resources in particular.

  7. Solid Rocket Motor/Booster-Illustration

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This image illustrates the solid rocket motor (SRM)/solid rocket booster (SRB) configuration. The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the SRM's were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment. The boosters are designed to survive water impact at almost 60 miles per hour, maintain flotation with minimal damage, and preclude corrosion of the hardware exposed to the harsh seawater environment. Under the project management of the Marshall Space Flight Center, the SRB's are assembled and refurbished by the United Space Boosters. The SRM's are provided by the Morton Thiokol Corporation.

  8. Organic Binder Developments for Solid Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Mobasher, Amir A.

    2003-01-01

    A number of rapid prototyping techniques are under development at Marshall Space Flight Center's (MSFC) National Center for Advanced Manufacturing Rapid Prototyping Laboratory. Commercial binder developments in creating solid models for rapid prototyping include: 1) Fused Deposition Modeling; 2) Three Dimensional Printing; 3) Selective Laser Sintering (SLS). This document describes these techniques developed by the private sector, as well as SLS undertaken by MSFC.

  9. Evidence for Bulk Ripplocations in Layered Solids

    PubMed Central

    Gruber, Jacob; Lang, Andrew C.; Griggs, Justin; Taheri, Mitra L.; Tucker, Garritt J.; Barsoum, Michel W.

    2016-01-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation–best described as an atomic scale ripple–was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain. PMID:27640724

  10. The Pythagorean Theorem and the Solid State

    ERIC Educational Resources Information Center

    Kelly, Brenda S.; Splittgerber, Allan G.

    2005-01-01

    Packing efficiency and crystal density can be calculated from basic geometric principles employing the Pythagorean theorem, if the unit-cell structure is known. The procedures illustrated have applicability in courses such as general chemistry, intermediate and advanced inorganic, materials science, and solid-state physics.

  11. Density functional theory in the solid state.

    PubMed

    Hasnip, Philip J; Refson, Keith; Probert, Matt I J; Yates, Jonathan R; Clark, Stewart J; Pickard, Chris J

    2014-03-13

    Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The ability to predict structure-property relationships has revolutionized experimental fields, such as vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and interpret experimental spectra. In semiconductor physics, great progress has been made in the electronic structure of bulk and defect states despite the severe challenges presented by the description of excited states. Studies are no longer restricted to known crystallographic structures. DFT is increasingly used as an exploratory tool for materials discovery and computational experiments, culminating in ex nihilo crystal structure prediction, which addresses the long-standing difficult problem of how to predict crystal structure polymorphs from nothing but a specified chemical composition. We present an overview of the capabilities of solid-state DFT simulations in all of these topics, illustrated with recent examples using the CASTEP computer program.

  12. Solid composite electrolytes for lithium batteries

    DOEpatents

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  13. Intracavity solid state Raman marine transmitters

    NASA Astrophysics Data System (ADS)

    Murray, James T.; Austin, William L.; Calmes, Lonnie K.; Powell, Richard C.; McLean, John W.; Bryan, Elisabeth L.

    1997-07-01

    The design and performance of a short-pulse (1.5 ns), high- energy (90 mJ/pulse) nonlinear cavity-dumped, frequency- doubled, solid-state intracavity Raman laser is presented. The laser described is utilized as the transmitter in a high- resolution surf-zone marine imaging lidar system.

  14. Thin-Film Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  15. A bibliography of magnetooptics of solids.

    PubMed

    Palik, E D; Henvis, B W

    1967-04-01

    This bibliography contains many of the papers dealing with magnetooptical effects in solids. It is arranged in sections by subject matter and in chronological order within sections; the papers are alphabetized in each year by first author's last name. The information given is author, title of paper, and reference.

  16. Surge bin retorting solid feed material

    SciTech Connect

    Kennedy, C.R.; Krambeck, F.J.

    1984-11-06

    An improved surge bin for a Lurgi-Ruhrgas process has baffles which promote uniform flow of feed material through the surge bin. Improved retorting of kerogen from oil shale is obtained. Stripping gas such as steam, is supplied to the surge bin. A separator has a large disengaging volume to remove entrained solid particles and improve the quality of the hydrocarbon product.

  17. Solid-state NMR for bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Reichhardt, Courtney; Cegelski, Lynette

    2014-04-01

    Bacteria associate with surfaces and one another by elaborating an extracellular matrix to encapsulate cells, creating communities termed biofilms. Biofilms are beneficial in some ecological niches, but also contribute to the pathogenesis of serious and chronic infectious diseases. New approaches and quantitative measurements are needed to define the composition and architecture of bacterial biofilms to help drive the development of strategies to interfere with biofilm assembly. Solid-state nuclear magnetic resonance (NMR) is uniquely suited to the examination of insoluble and complex macromolecular and whole-cell systems. This article highlights three examples that implement solid-state NMR to deliver insights into bacterial biofilm composition and changes in cell-wall composition as cells transition to the biofilm lifestyle. Most recently, solid-state NMR measurements provided a total accounting of the protein and polysaccharide components in the extracellular matrix of an Escherichia coli biofilm and transformed our qualitative descriptions of matrix composition into chemical parameters that permit quantitative comparisons among samples. We present additional data for whole biofilm samples (cells plus the extracellular matrix) that complement matrix-only analyses. The study of bacterial biofilms by solid-state NMR is an exciting avenue ripe with many opportunities and we close the article by articulating some outstanding questions and future directions in this area.

  18. Density functional theory in the solid state

    PubMed Central

    Hasnip, Philip J.; Refson, Keith; Probert, Matt I. J.; Yates, Jonathan R.; Clark, Stewart J.; Pickard, Chris J.

    2014-01-01

    Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The ability to predict structure–property relationships has revolutionized experimental fields, such as vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and interpret experimental spectra. In semiconductor physics, great progress has been made in the electronic structure of bulk and defect states despite the severe challenges presented by the description of excited states. Studies are no longer restricted to known crystallographic structures. DFT is increasingly used as an exploratory tool for materials discovery and computational experiments, culminating in ex nihilo crystal structure prediction, which addresses the long-standing difficult problem of how to predict crystal structure polymorphs from nothing but a specified chemical composition. We present an overview of the capabilities of solid-state DFT simulations in all of these topics, illustrated with recent examples using the CASTEP computer program. PMID:24516184

  19. Specific Impulses Losses in Solid Propellant Rockets

    DTIC Science & Technology

    1974-12-17

    to use the collision function form proposed by Golovin to simplify this production term: 4C><=) <P- .: Accordingly: m hence, by integration: Now, we...November 21, 1940 in Paris, Seine. VFirst Thesis. "Contribution to the Study of Specific i Impulse Loss in Solid Propellant Rockets." Second Thesis

  20. Solid Lubrication Fundamentals and Applications. Chapter 6

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2000-01-01

    This chapter focuses attention on the friction and wear properties of selected solid lubricating films to aid users in choosing the best lubricant, deposition conditions, and operational variables. For simplicity, discussion of the tribological properties of concern is separated into two parts. The first part of the chapter discusses the different solid lubricating films selected for study including commercially developed solid film lubricants: (1) bonded molybdenum disulfide (MoS2), (2) magnetron-sputtered MoS2, (3) ion-plated silver, (4) ion-plated lead, (5) magnetron-sputtered diamondlike carbon (MS DLC), and (6) plasma-assisted, chemical-vapor-deposited diamondlike carbon (PACVD DEC) films. Marked differences in the friction and wear properties of the different films resulted from the different environmental conditions (ultrahigh vacuum, humid air, and dry nitrogen) and the solid film lubricant materials. The second part of the chapter discusses the physical and chemical characteristics, friction behavior, and endurance life of the magnetron-sputtered MoS2 films. The role of interface species and the effects of applied load, film thickness, oxygen pressure, environment, and temperature on the friction and wear properties are considered.