Science.gov

Sample records for 10-m avnir multispectral

  1. Preliminary radiometric calibration assessment of ALOS AVNIR-2

    USGS Publications Warehouse

    Bouvet, M.; Goryl, P.; Chander, G.; Santer, R.; Saunier, S.

    2008-01-01

    This paper summarizes the activities carried out in the frame of the data quality activities of the Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) sensor onboard the Advanced Land Observing Satellite (ALOS). Assessment of the radiometric calibration of the AVNIR-2 multi-spectral imager is achieved via three intercomparisons to currently flying sensors over the Libyan desert, during the first year of operation. AU three methodologies indicate a slight underestimation of AVNIR-2 in band 1 by 4 to 7% with respect to other sensors radiometric scale. Band 2 does not show any obvious bias. Results for band 3 are affected by saturation due to inappropriate gain setting. Two methodologies indicate no significant bias in band 4. Preliminary results indicate possible degradations of the AVNIR-2 channels, which, when modeled as an exponentially decreasing functions, have time constants of respectively 13.2 %.year-1, 8.8%.year-1 and 0.1%.year-1 in band 1, 2 and 4 (with respect to the radiometric scale of the MEdium Resolution Imaging Spectrometer, MERIS). Longer time series of AVNIR-2 data are needed to draw final conclusions. ?? 2007 IEEE.

  2. Radiometric, geometric, and image quality assessment of ALOS AVNIR-2 and PRISM sensors

    USGS Publications Warehouse

    Saunier, S.; Goryl, P.; Chander, G.; Santer, R.; Bouvet, M.; Collet, B.; Mambimba, A.; Kocaman, Aksakal S.

    2010-01-01

    The Advanced Land Observing Satellite (ALOS) was launched on January 24, 2006, by a Japan Aerospace Exploration Agency (JAXA) H-IIA launcher. It carries three remote-sensing sensors: 1) the Advanced Visible and Near-Infrared Radiometer type 2 (AVNIR-2); 2) the Panchromatic Remote-Sensing Instrument for Stereo Mapping (PRISM); and 3) the Phased-Array type L-band Synthetic Aperture Radar (PALSAR). Within the framework of ALOS Data European Node, as part of the European Space Agency (ESA), the European Space Research Institute worked alongside JAXA to provide contributions to the ALOS commissioning phase plan. This paper summarizes the strategy that was adopted by ESA to define and implement a data verification plan for missions operated by external agencies; these missions are classified by the ESA as third-party missions. The ESA was supported in the design and execution of this plan by GAEL Consultant. The verification of ALOS optical data from PRISM and AVNIR-2 sensors was initiated 4 months after satellite launch, and a team of principal investigators assembled to provide technical expertise. This paper includes a description of the verification plan and summarizes the methodologies that were used for radiometric, geometric, and image quality assessment. The successful completion of the commissioning phase has led to the sensors being declared fit for operations. The consolidated measurements indicate that the radiometric calibration of the AVNIR-2 sensor is stable and agrees with the Landsat-7 Enhanced Thematic Mapper Plus and the Envisat MEdium-Resolution Imaging Spectrometer calibration. The geometrical accuracy of PRISM and AVNIR-2 products improved significantly and remains under control. The PRISM modulation transfer function is monitored for improved characterization.

  3. Classification Metrics for Improved Atmospheric Correction of Multispectral VNIR Imagery

    PubMed Central

    Richter, Rudolf

    2008-01-01

    Multispectral visible/near-infrared (VNIR) earth observation satellites, e.g., Ikonos, Quickbird, ALOS AVNIR-2, and DMC, usually acquire imagery in a few (3 – 5) spectral bands. Atmospheric correction is a challenging task for these images because the standard methods require at least one shortwave infrared band (around 1.6 or 2.2 μm) or hyperspectral instruments to derive the aerosol optical thickness. New classification metrics for defining cloud, cloud over water, haze, water, and saturation are presented to achieve improvements for an automatic processing system. The background is an ESA contract for the development of a prototype atmospheric processor for the optical payload AVNIR-2 on the ALOS platform. PMID:27873911

  4. Extracting Features of Acacia Plantation and Natural Forest in the Mountainous Region of Sarawak, Malaysia by ALOS/AVNIR2 Image

    NASA Astrophysics Data System (ADS)

    Fadaei, H.; Ishii, R.; Suzuki, R.; Kendawang, J.

    2013-12-01

    The remote sensing technique has provided useful information to detect spatio-temporal changes in the land cover of tropical forests. Land cover characteristics derived from satellite image can be applied to the estimation of ecosystem services and biodiversity over an extensive area, and such land cover information would provide valuable information to global and local people to understand the significance of the tropical ecosystem. This study was conducted in the Acacia plantations and natural forest situated in the mountainous region which has different ecological characteristic from that in flat and low land area in Sarawak, Malaysia. The main objective of this study is to compare extract the characteristic of them by analyzing the ALOS/AVNIR2 images and ground truthing obtained by the forest survey. We implemented a ground-based forest survey at Aacia plantations and natural forest in the mountainous region in Sarawak, Malaysia in June, 2013 and acquired the forest structure data (tree height, diameter at breast height (DBH), crown diameter, tree spacing) and spectral reflectance data at the three sample plots of Acacia plantation that has 10 x 10m area. As for the spectral reflectance data, we measured the spectral reflectance of the end members of forest such as leaves, stems, road surface, and forest floor by the spectro-radiometer. Such forest structure and spectral data were incorporated into the image analysis by support vector machine (SVM) and object-base/texture analysis. Consequently, land covers on the AVNIR2 image were classified into three forest types (natural forest, oil palm plantation and acacia mangium plantation), then the characteristic of each category was examined. We additionally used the tree age data of acacia plantation for the classification. A unique feature was found in vegetation spectral reflectance of Acacia plantations. The curve of the spectral reflectance shows two peaks around 0.3μm and 0.6 - 0.8μm that can be assumed to

  5. Chlorophyll and suspended sediment mapping to the Caribbean Sea from rivers in the capital city of the Dominican Republic using ALOS AVNIR-2 data.

    PubMed

    Sakuno, Yuji; Miño, Esteban R; Nakai, Satoshi; Mutsuda, Hidemi; Okuda, Tetsuji; Nishijima, Wataru; Castro, Rolando; García, Amarillis; Peña, Rosanna; Rodríguez, Marcos; Depratt, G Conrado

    2014-07-01

    This study aims to study the distribution of contaminants in rivers that flow into the Caribbean Sea using chlorophyll-a (Chl-a) and suspended sediment (SS) as markers and ALOS AVNIR-2 satellite sensor data. The Haina River (HN) and Ozama and Isabela Rivers (OZ-IS) that flow through the city of Santo Domingo, the capital of the Dominican Republic, were chosen. First, in situ spectral reflectance/Chl-a and SS datasets obtained from these rivers were acquired in March 2011 (case A: with no rain influence) and June 2011 (case B: with rain influence), and the estimation algorithm of Chl-a and SS using AVNIR-2 data was developed from the datasets. Moreover, the developed algorithm was applied to AVNIR-2 data in November 2010 for case A and August 2010 for case B. Results revealed that for Chl-a and SS estimations under cases A and B conditions, the reflectance ratio of AVNIR-2 band 4 and band 3 (AV4/AV3) and the reflectance of AVNIR-2 band 4 (AV4) were effective. The Chl-a and SS mapping results obtained using AVNIR-2 data corresponded with the field survey results. Finally, an outline of the distribution of contaminants at the mouth of the river that flows into the Caribbean Sea was obtained for both rivers in cases A and B.

  6. Multispectral Photography

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Model II Multispectral Camera is an advanced aerial camera that provides optimum enhancement of a scene by recording spectral signatures of ground objects only in narrow, preselected bands of the electromagnetic spectrum. Its photos have applications in such areas as agriculture, forestry, water pollution investigations, soil analysis, geologic exploration, water depth studies and camouflage detection. The target scene is simultaneously photographed in four separate spectral bands. Using a multispectral viewer, such as their Model 75 Spectral Data creates a color image from the black and white positives taken by the camera. With this optical image analysis unit, all four bands are superimposed in accurate registration and illuminated with combinations of blue green, red, and white light. Best color combination for displaying the target object is selected and printed. Spectral Data Corporation produces several types of remote sensing equipment and also provides aerial survey, image processing and analysis and number of other remote sensing services.

  7. Recent Evolution of the Mont Saint-Michel Bay as seen by ALOS AVNIR-2 Data (ADEN AO 3643)

    NASA Astrophysics Data System (ADS)

    Deroin, Jean-Paul; Bilaudeau, Clelia; Deffontaines, Benoit

    2008-11-01

    The ALOS AVNIR-2 scene acquired on October 24, 2007 has been used for drawing a new map of the Mont Saint-Michel Bay. This area is characterised by a large dry-fallen tidal flat, one of the largest in the world. The tidal records indicate that the ALOS datatake was acquired in favorable conditions, the elevation of the sea at 2.56 m being very close to the theoretical minimum value (about 2.30 m). In these conditions, the largest tidal flat observed by a sun-synchronous satellite on the Mont Saint-Michel Bay is exposed.

  8. Regional extent of permafrost and boreal forest degradations in the central Yakutia by ALOS-PALSAR and AVNIR2 images

    NASA Astrophysics Data System (ADS)

    Iijima, Yoshihiro; Fedorov, Alexander; Abe, Konomi; Ise, Hajime; Masuzawa, Tadashi

    2013-04-01

    Wet climate with largely increased in precipitation during summer and snow accumulation during winter had continued 4 years since 2004 winter in eastern Siberia. Soil moisture in the active layer had been significantly increased corresponding with thawing of permafrost near the surface during following years. The perennially water-logged active layer furthermore exacerbated the boreal forest habitat, namely withered and dead forests widely extended in this region. In the present study, we have attempted to extract the region of degraded boreal forest based on the analysis of satellite data in the left and right banks of Lena River near Yakutsk, along with expansion of the water surface area in relation to permafrost degradation. We utilized ALOS-PALSAR and AVNIR2 images taken during 2006 through 2009. After geocoding and noise reduction of PALSAR images, classification of water surface area including water-logged ground was performed with supervised classification using the threshold of a microwave backscattering coefficient. Then, we compared the distribution of the water-logged area between multi-years. In addition, during the same period, supervised classification of grassland and boreal forest was conducted using AVNIR2 images. Then, both classifications were overlaid and the multi-years change in degraded boreal forest due to water-logged conditions was extracted as well. Boreal forest in the left bank of the Lena River distributes on river terrace where density of alas lakes is quite low due to consisting of sandy loam soil with underlying permafrost with less ground ice content. In this area, water surface area expanded in concaved terrain and along the valley year by year in conjunction with change from forest to grassland. On the other hand, forest in the right bank of the Lena River distributed in the region with very high density of alas lakes due to underlying ice rich permafrost. During the same period, alas lakes expanded and boreal forest on the

  9. Fourier multispectral imaging.

    PubMed

    Jia, Jie; Ni, Chuan; Sarangan, Andrew; Hirakawa, Keigo

    2015-08-24

    Current multispectral imaging systems use narrowband filters to capture the spectral content of a scene, which necessitates different filters to be designed for each application. In this paper, we demonstrate the concept of Fourier multispectral imaging which uses filters with sinusoidally varying transmittance. We designed and built these filters employing a single-cavity resonance, and made spectral measurements with a multispectral LED array. The measurements show that spectral features such as transmission and absorption peaks are preserved with this technique, which makes it a versatile technique than narrowband filters for a wide range of multispectral imaging applications.

  10. Multispectral photography for earth resources

    NASA Technical Reports Server (NTRS)

    Wenderoth, S.; Yost, E.; Kalia, R.; Anderson, R.

    1972-01-01

    A guide for producing accurate multispectral results for earth resource applications is presented along with theoretical and analytical concepts of color and multispectral photography. Topics discussed include: capabilities and limitations of color and color infrared films; image color measurements; methods of relating ground phenomena to film density and color measurement; sensitometry; considerations in the selection of multispectral cameras and components; and mission planning.

  11. Multispectral imaging probe

    SciTech Connect

    Sandison, David R.; Platzbecker, Mark R.; Descour, Michael R.; Armour, David L.; Craig, Marcus J.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.

  12. Multispectral imaging probe

    DOEpatents

    Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.

    1999-07-27

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.

  13. Multispectral metamaterial absorber.

    PubMed

    Grant, J; McCrindle, I J H; Li, C; Cumming, D R S

    2014-03-01

    We present the simulation, implementation, and measurement of a multispectral metamaterial absorber (MSMMA) and show that we can realize a simple absorber structure that operates in the mid-IR and terahertz (THz) bands. By embedding an IR metamaterial absorber layer into a standard THz metamaterial absorber stack, a narrowband resonance is induced at a wavelength of 4.3 μm. This resonance is in addition to the THz metamaterial absorption resonance at 109 μm (2.75 THz). We demonstrate the inherent scalability and versatility of our MSMMA by describing a second device whereby the MM-induced IR absorption peak frequency is tuned by varying the IR absorber geometry. Such a MSMMA could be coupled with a suitable sensor and formed into a focal plane array, enabling multispectral imaging.

  14. Multispectral Internet imaging

    NASA Astrophysics Data System (ADS)

    Brettel, Hans; Schmitt, Francis J. M.

    2000-12-01

    We present a system for multispectral image acquisition which is accessible via an Internet connection. The system includes an electronically tunable spectral filter and a monochrome digital camera, both controlled from a PC-type computer acting as a Web server. In contrast to the three fixed color channels of an ordinary WebCam, our system provides a virtually unlimited number of spectral channels. To allow for interactive use of this multispectral image acquisition system through the network, we developed a set of Java servlets which provide access to the system through HyperText Transfer Protocol (HTTP) requests. Since only the standard Common Gateway Interface (CGI) mechanisms for client-server communication are used, the system is accessible from any Web browser.

  15. Polarimetric Multispectral Imaging Technology

    NASA Technical Reports Server (NTRS)

    Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.

    1993-01-01

    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.

  16. MULTISPECTRAL THERMAL IMAGER - OVERVIEW

    SciTech Connect

    P. WEBER

    2001-03-01

    The Multispectral Thermal Imager satellite fills a new and important role in advancing the state of the art in remote sensing sciences. Initial results with the full calibration system operating indicate that the system was already close to achieving the very ambitious goals which we laid out in 1993, and we are confident of reaching all of these goals as we continue our research and improve our analyses. In addition to the DOE interests, the satellite is tasked about one-third of the time with requests from other users supporting research ranging from volcanology to atmospheric sciences.

  17. Multispectral thermal imaging

    SciTech Connect

    Weber, P.G.; Bender, S.C.; Borel, C.C.; Clodius, W.B.; Smith, B.W.; Garrett, A.; Pendergast, M.M.; Kay, R.R.

    1998-12-01

    Many remote sensing applications rely on imaging spectrometry. Here the authors use imaging spectrometry for thermal and multispectral signatures measured from a satellite platform enhanced with a combination of accurate calibrations and on-board data for correcting atmospheric distortions. The approach is supported by physics-based end-to-end modeling and analysis, which permits a cost-effective balance between various hardware and software aspects. The goal is to develop and demonstrate advanced technologies and analysis tools toward meeting the needs of the customer; at the same time, the attributes of this system can address other applications in such areas as environmental change, agriculture, and volcanology.

  18. Multispectral multisensor image fusion using wavelet transforms

    USGS Publications Warehouse

    Lemeshewsky, George P.

    1999-01-01

    Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.

  19. Demonstration of a 10-m Solar Sail System

    NASA Technical Reports Server (NTRS)

    Murphy, David M.; Macy, Brian D.; Gaspar, James L.

    2004-01-01

    The NASA In-Space Propulsion (ISP) program has been sponsoring system design development and hardware demonstration activities of solar sail technology over the past 16 months. Efforts to validate by test a moderate-scale (10-m) 1/4 symmetry ground demonstration sail system are nearly complete. Results of testing and analytical model validation of component and assembly functional, strength, stiffness, shape, and dynamic behavior are discussed.

  20. Multispectral imaging and image processing

    NASA Astrophysics Data System (ADS)

    Klein, Julie

    2014-02-01

    The color accuracy of conventional RGB cameras is not sufficient for many color-critical applications. One of these applications, namely the measurement of color defects in yarns, is why Prof. Til Aach and the Institute of Image Processing and Computer Vision (RWTH Aachen University, Germany) started off with multispectral imaging. The first acquisition device was a camera using a monochrome sensor and seven bandpass color filters positioned sequentially in front of it. The camera allowed sampling the visible wavelength range more accurately and reconstructing the spectra for each acquired image position. An overview will be given over several optical and imaging aspects of the multispectral camera that have been investigated. For instance, optical aberrations caused by filters and camera lens deteriorate the quality of captured multispectral images. The different aberrations were analyzed thoroughly and compensated based on models for the optical elements and the imaging chain by utilizing image processing. With this compensation, geometrical distortions disappear and sharpness is enhanced, without reducing the color accuracy of multispectral images. Strong foundations in multispectral imaging were laid and a fruitful cooperation was initiated with Prof. Bernhard Hill. Current research topics like stereo multispectral imaging and goniometric multispectral measure- ments that are further explored with his expertise will also be presented in this work.

  1. Multispectral scanner optical system

    NASA Technical Reports Server (NTRS)

    Stokes, R. C.; Koch, N. G. (Inventor)

    1980-01-01

    An optical system for use in a multispectral scanner of the type used in video imaging devices is disclosed. Electromagnetic radiation reflected by a rotating scan mirror is focused by a concave primary telescope mirror and collimated by a second concave mirror. The collimated beam is split by a dichroic filter which transmits radiant energy in the infrared spectrum and reflects visible and near infrared energy. The long wavelength beam is filtered and focused on an infrared detector positioned in a cryogenic environment. The short wavelength beam is dispersed by a pair of prisms, then projected on an array of detectors also mounted in a cryogenic environment and oriented at an angle relative to the optical path of the dispersed short wavelength beam.

  2. Multispectral Resource Sampler Workshop

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The utility of the multispectral resource sampler (MRS) was examined by users in the following disciplines: agriculture, atmospheric studies, engineering, forestry, geology, hydrology/oceanography, land use, and rangelands/soils. Modifications to the sensor design were recommended and the desired types of products and number of scenes required per month were indicated. The history, design, capabilities, and limitations of the MRS are discussed as well as the multilinear spectral array technology which it uses. Designed for small area inventory, the MRS can provide increased temporal, spectral, and spatial resolution, facilitate polarization measurement and atmospheric correction, and test onboard data compression techniques. The advantages of using it along with the thematic mapper are considered.

  3. Multispectral imaging radar

    NASA Technical Reports Server (NTRS)

    Porcello, L. J.; Rendleman, R. A.

    1972-01-01

    A side-looking radar, installed in a C-46 aircraft, was modified to provide it with an initial multispectral imaging capability. The radar is capable of radiating at either of two wavelengths, these being approximately 3 cm and 30 cm, with either horizontal or vertical polarization on each wavelength. Both the horizontally- and vertically-polarized components of the reflected signal can be observed for each wavelength/polarization transmitter configuration. At present, two-wavelength observation of a terrain region can be accomplished within the same day, but not with truly simultaneous observation on both wavelengths. A multiplex circuit to permit this simultaneous observation has been designed. A brief description of the modified radar system and its operating parameters is presented. Emphasis is then placed on initial flight test data and preliminary interpretation. Some considerations pertinent to the calibration of such radars are presented in passing.

  4. Multispectral Microimager for Astrobiology

    NASA Technical Reports Server (NTRS)

    Sellar, R. Glenn; Farmer, Jack D.; Kieta, Andrew; Huang, Julie

    2006-01-01

    A primary goal of the astrobiology program is the search for fossil records. The astrobiology exploration strategy calls for the location and return of samples indicative of environments conducive to life, and that best capture and preserve biomarkers. Successfully returning samples from environments conducive to life requires two primary capabilities: (1) in situ mapping of the mineralogy in order to determine whether the desired minerals are present; and (2) nondestructive screening of samples for additional in-situ testing and/or selection for return to laboratories for more in-depth examination. Two of the most powerful identification techniques are micro-imaging and visible/infrared spectroscopy. The design and test results are presented from a compact rugged instrument that combines micro-imaging and spectroscopic capability to provide in-situ analysis, mapping, and sample screening capabilities. Accurate reflectance spectra should be a measure of reflectance as a function of wavelength only. Other compact multispectral microimagers use separate LEDs (light-emitting diodes) for each wavelength and therefore vary the angles of illumination when changing wavelengths. When observing a specularly-reflecting sample, this produces grossly inaccurate spectra due to the variation in the angle of illumination. An advanced design and test results are presented for a multispectral microimager which demonstrates two key advances relative to previous LED-based microimagers: (i) acquisition of actual reflectance spectra in which the flux is a function of wavelength only, rather than a function of both wavelength and illumination geometry; and (ii) increase in the number of spectral bands to eight bands covering a spectral range of 468 to 975 nm.

  5. MSS D Multispectral Scanner System

    NASA Technical Reports Server (NTRS)

    Lauletta, A. M.; Johnson, R. L.; Brinkman, K. L. (Principal Investigator)

    1982-01-01

    The development and acceptance testing of the 4-band Multispectral Scanners to be flown on LANDSAT D and LANDSAT D Earth resources satellites are summarized. Emphasis is placed on the acceptance test phase of the program. Test history and acceptance test algorithms are discussed. Trend data of all the key performance parameters are included and discussed separately for each of the two multispectral scanner instruments. Anomalies encountered and their resolutions are included.

  6. 10m/500 Mbps WDM visible light communication systems.

    PubMed

    Lin, Wen-Yi; Chen, Chia-Yi; Lu, Hai-Han; Chang, Ching-Hung; Lin, Ying-Pyng; Lin, Huang-Chang; Wu, Hsiao-Wen

    2012-04-23

    A wavelength-division-multiplexing (WDM) visible light communiction (VLC) system employing red and green laser pointer lasers (LPLs) with directly modulating data signals is proposed and experimentally demonstrated. With the assistance of preamplifier and adaptive filter at the receiving sites, low bit error rate (BER) at 10 m/500 Mbps operation is obtained for each wavelength. The use of preamplifier and adaptive filter offer significant improvements for free-space transmission performance. Improved performance of BER of <10(-9), as well as better and clear eye diagram were achieved in our proposed WDM VLC systems. LPL features create a new category of good performance with high-speed data rate, long transmission length (>5m), as well as easy handling and installation. This proposed WDM VLC system reveals a prominent one to present its advancement in simplicity and convenience to be installed.

  7. Miniature snapshot multispectral imager

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam; Ashe, Philip R.; Tan, Songsheng

    2011-03-01

    We present a miniature snapshot multispectral imager based on using a monolithic filter array that operates in the short wavelength infrared spectral region and has a number of defense and commercial applications. The system is low-weight, portable with a miniature platform, and requires low power. The imager uses a 4×4 Fabry-Pérot filter array operating from 1487 to 1769 nm with a spectral bandpass ~10 nm. The design of the filters is based on using a shadow mask technique to fabricate an array of Fabry-Pérot etalons with two multilayer dielectric mirrors. The filter array is installed in a commercial handheld InGaAs camera, replacing the imaging lens with a custom designed 4×4 microlens assembly with telecentric imaging performance in each of the 16 subimaging channels. We imaged several indoor and outdoor scenes. The microlens assembly and filter design is quite flexible and can be tailored for any wavelength region from the ultraviolet to the longwave infrared, and the spectral bandpass can also be customized to meet sensing requirements. In this paper we discuss the design and characterization of the filter array, the microlens optical assembly, and imager and present imaging results.

  8. Multispectral imaging method and apparatus

    DOEpatents

    Sandison, D.R.; Platzbecker, M.R.; Vargo, T.D.; Lockhart, R.R.; Descour, M.R.; Richards-Kortum, R.

    1999-07-06

    A multispectral imaging method and apparatus are described which are adapted for use in determining material properties, especially properties characteristic of abnormal non-dermal cells. A target is illuminated with a narrow band light beam. The target expresses light in response to the excitation. The expressed light is collected and the target's response at specific response wavelengths to specific excitation wavelengths is measured. From the measured multispectral response the target's properties can be determined. A sealed, remote probe and robust components can be used for cervical imaging. 5 figs.

  9. Multispectral imaging method and apparatus

    DOEpatents

    Sandison, David R.; Platzbecker, Mark R.; Vargo, Timothy D.; Lockhart, Randal R.; Descour, Michael R.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging method and apparatus adapted for use in determining material properties, especially properties characteristic of abnormal non-dermal cells. A target is illuminated with a narrow band light beam. The target expresses light in response to the excitation. The expressed light is collected and the target's response at specific response wavelengths to specific excitation wavelengths is measured. From the measured multispectral response the target's properties can be determined. A sealed, remote probe and robust components can be used for cervical imaging

  10. Multispectral Analysis of NMR Imagery

    NASA Technical Reports Server (NTRS)

    Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.

    1985-01-01

    Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.

  11. Gimbaled multispectral imaging system and method

    DOEpatents

    Brown, Kevin H.; Crollett, Seferino; Henson, Tammy D.; Napier, Matthew; Stromberg, Peter G.

    2016-01-26

    A gimbaled multispectral imaging system and method is described herein. In an general embodiment, the gimbaled multispectral imaging system has a cross support that defines a first gimbal axis and a second gimbal axis, wherein the cross support is rotatable about the first gimbal axis. The gimbaled multispectral imaging system comprises a telescope that fixed to an upper end of the cross support, such that rotation of the cross support about the first gimbal axis causes the tilt of the telescope to alter. The gimbaled multispectral imaging system includes optics that facilitate on-gimbal detection of visible light and off-gimbal detection of infrared light.

  12. Sandia multispectral analyst remote sensing toolkit (SMART).

    SciTech Connect

    Post, Brian Nelson; Smith, Jody Lynn; Geib, Peter L.; Nandy, Prabal; Wang, Nancy Nairong

    2003-03-01

    This remote sensing science and exploitation work focused on exploitation algorithms and methods targeted at the analyst. SMART is a 'plug-in' to commercial remote sensing software that provides algorithms to enhance the utility of the Multispectral Thermal Imager (MTI) and other multispectral satellite data. This toolkit has been licensed to 22 government organizations.

  13. A multispectral sorting device for wheat kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A low-cost multispectral sorting device was constructed using three visible and three near-infrared light-emitting diodes (LED) with peak emission wavelengths of 470 nm (blue), 527 nm (green), 624 nm (red), 850 nm, 940 nm, and 1070 nm. The multispectral data were collected by rapidly (~12 kHz) blin...

  14. PORTABLE MULTISPECTRAL IMAGING INSTRUMENT FOR FOOD INDUSTRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this paper is to design and fabricate a hand-held multispectral instrument for real-time contaminant detection. Specifically, the protocol to develop a portable multispectral instrument including optical sensor design, fabrication, calibration, data collection, analysis and algorith...

  15. Multispectral Image Processing for Plants

    NASA Technical Reports Server (NTRS)

    Miles, Gaines E.

    1991-01-01

    The development of a machine vision system to monitor plant growth and health is one of three essential steps towards establishing an intelligent system capable of accurately assessing the state of a controlled ecological life support system for long-term space travel. Besides a network of sensors, simulators are needed to predict plant features, and artificial intelligence algorithms are needed to determine the state of a plant based life support system. Multispectral machine vision and image processing can be used to sense plant features, including health and nutritional status.

  16. Multispectral determination of vegetative cover in corn crop canopy

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.

    1972-01-01

    The relationship between different amounts of vegetative ground cover and the energy reflected by corn canopies was investigated. Low altitude photography and an airborne multispectral scanner were used to measure this reflected energy. Field plots were laid out, representing four growth stages of corn. Two plot locations were chosen-on a very dark and a very light surface soil. Color and color infrared photographs were taken from a vertical distance of 10 m. Estimates of ground cover were made from these photographs and were related to field measurements of leaf area index. Ground cover could be predicted from leaf area index measurements by a second order equation. Microdensitometry and digitzation of the three separated dye layers of color infrared film showed that the near infrared dye layer is most valuable in ground cover determinations. Computer analysis of the digitized photography provided an accurate method of determining precent ground cover.

  17. Multispectral vegetative canopy parameter retrieval

    NASA Astrophysics Data System (ADS)

    Borel, Christoph C.; Bunker, David J.

    2011-11-01

    Precision agriculture, forestry and environmental remote sensing are applications uniquely suited to the 8 bands that DigitalGlobe's WorldView-2 provides. At the fine spatial resolution of 0.5 m (panchromatic) and 2 m (multispectral) individual trees can be readily resolved. Recent research [1] has shown that it is possible for hyper-spectral data to invert plant reflectance spectra and estimate nitrogen content, leaf water content, leaf structure, canopy leaf area index and, for sparse canopies, also soil reflectance. The retrieval is based on inverting the SAIL (Scattering by Arbitrary Inclined Leaves) vegetation radiative transfer model for the canopy structure and the reflectance model PROSPECT4/5 for the leaf reflectance. Working on the paper [1] confirmed that a limited number of adjacent bands covering just the visible and near infrared can retrieve the parameters as well, opening up the possibility that this method can be used to analyze multi-spectral WV-2 data. Thus it seems possible to create WV-2 specific inversions using 8 bands and apply them to imagery of various vegetation covered surfaces of agricultural and environmental interest. The capability of retrieving leaf water content and nitrogen content has important applications in determining the health of vegetation, e.g. plant growth status, disease mapping, quantitative drought assessment, nitrogen deficiency, plant vigor, yield, etc.

  18. Classification by Using Multispectral Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Liao, C. T.; Huang, H. H.

    2012-07-01

    Remote sensing images are generally recorded in two-dimensional format containing multispectral information. Also, the semantic information is clearly visualized, which ground features can be better recognized and classified via supervised or unsupervised classification methods easily. Nevertheless, the shortcomings of multispectral images are highly depending on light conditions, and classification results lack of three-dimensional semantic information. On the other hand, LiDAR has become a main technology for acquiring high accuracy point cloud data. The advantages of LiDAR are high data acquisition rate, independent of light conditions and can directly produce three-dimensional coordinates. However, comparing with multispectral images, the disadvantage is multispectral information shortage, which remains a challenge in ground feature classification through massive point cloud data. Consequently, by combining the advantages of both LiDAR and multispectral images, point cloud data with three-dimensional coordinates and multispectral information can produce a integrate solution for point cloud classification. Therefore, this research acquires visible light and near infrared images, via close range photogrammetry, by matching images automatically through free online service for multispectral point cloud generation. Then, one can use three-dimensional affine coordinate transformation to compare the data increment. At last, the given threshold of height and color information is set as threshold in classification.

  19. Cucumber disease diagnosis using multispectral images

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Li, Hongning; Shi, Junsheng; Yang, Weiping; Liao, Ningfang

    2009-07-01

    In this paper, multispectral imaging technique for plant diseases diagnosis is presented. Firstly, multispectral imaging system is designed. This system utilizes 15 narrow-band filters, a panchromatic band, a monochrome CCD camera, and standard illumination observing environment. The spectral reflectance and color of 8 Macbeth color patches are reproduced between 400nm and 700nm in the process. In addition, spectral reflectance angle and color difference is obtained through measurements and analysis of color patches using spectrometer and multispectral imaging system. The result shows that 16 narrow-bands multispectral imaging system realizes good accuracy in spectral reflectance and color reproduction. Secondly, a horticultural plant, cucumber' familiar disease are the researching objects. 210 multispectral samples are obtained by multispectral and are classified by BP artificial neural network. The classification accuracies of Sphaerotheca fuliginea, Corynespora cassiicola, Pseudoperonospora cubensis are 100%. Trichothecium roseum and Cladosporium cucumerinum are 96.67% and 90.00%. It is confirmed that the multispectral imaging system realizes good accuracy in the cucumber diseases diagnosis.

  20. Estimation of Density of Localized States in Amorphous Se80Te20 and Se80Te10M10 (M = Cd, In, Sb) Alloys Using AC Conductivity Measurements

    NASA Astrophysics Data System (ADS)

    Chandel, N.; Mehta, N.; Kumar, A.

    2015-08-01

    The ac conductivity of amorphous Se80Te20 (a-Se80Te20) and amorphous Se80Te10M10 (a-Se80Te10M10) alloys has been measured as a function of temperature and frequency in a low-temperature regime. An analysis of the experimental data confirms that ac conductivity is reasonably well interpreted by the Austin-Mott model. The density of localized states was determined in the low-temperature region from 201 K to 280 K. Possible explanations of "metal-induced effects" on the conduction mechanism of a-Se80Te20 alloy are discussed.

  1. On-board multispectral classification study

    NASA Technical Reports Server (NTRS)

    Ewalt, D.

    1979-01-01

    The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground.

  2. Multispectral Scanner for Monitoring Plants

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2004-01-01

    A multispectral scanner has been adapted to capture spectral images of living plants under various types of illumination for purposes of monitoring the health of, or monitoring the transfer of genes into, the plants. In a health-monitoring application, the plants are illuminated with full-spectrum visible and near infrared light and the scanner is used to acquire a reflected-light spectral signature known to be indicative of the health of the plants. In a gene-transfer- monitoring application, the plants are illuminated with blue or ultraviolet light and the scanner is used to capture fluorescence images from a green fluorescent protein (GFP) that is expressed as result of the gene transfer. The choice of wavelength of the illumination and the wavelength of the fluorescence to be monitored depends on the specific GFP.

  3. Multispectral sensing of moisture stress

    NASA Technical Reports Server (NTRS)

    Olson, C. E., Jr.

    1970-01-01

    Laboratory reflectance data, and field tests with multispectral remote sensors provide support for this hypotheses that differences in moisture content and water deficits are closely related to foliar reflectance from woody plants. When these relationships are taken into account, automatic recognition techniques become more powerful than when they are ignored. Evidence is increasing that moisture relationships inside plant foliage are much more closely related to foliar reflectance characteristics than are external variables such as soil moisture, wind, and air temperature. Short term changes in water deficits seem to have little influence on foliar reflectance, however. This is in distinct contrast to significant short-term changes in foliar emittance from the same plants with changing wind, air temperature, incident radiation, or water deficit conditions.

  4. Commercial Applications Multispectral Sensor System

    NASA Technical Reports Server (NTRS)

    Birk, Ronald J.; Spiering, Bruce

    1993-01-01

    NASA's Office of Commercial Programs is funding a multispectral sensor system to be used in the development of remote sensing applications. The Airborne Terrestrial Applications Sensor (ATLAS) is designed to provide versatility in acquiring spectral and spatial information. The ATLAS system will be a test bed for the development of specifications for airborne and spaceborne remote sensing instrumentation for dedicated applications. This objective requires spectral coverage from the visible through thermal infrared wavelengths, variable spatial resolution from 2-25 meters; high geometric and geo-location accuracy; on-board radiometric calibration; digital recording; and optimized performance for minimized cost, size, and weight. ATLAS is scheduled to be available in 3rd quarter 1992 for acquisition of data for applications such as environmental monitoring, facilities management, geographic information systems data base development, and mineral exploration.

  5. Galileo multispectral imaging of Earth.

    PubMed

    Geissler, P; Thompson, W R; Greenberg, R; Moersch, J; McEwen, A; Sagan, C

    1995-08-25

    Nearly 6000 multispectral images of Earth were acquired by the Galileo spacecraft during its two flybys. The Galileo images offer a unique perspective on our home planet through the spectral capability made possible by four narrowband near-infrared filters, intended for observations of methane in Jupiter's atmosphere, which are not incorporated in any of the currently operating Earth orbital remote sensing systems. Spectral variations due to mineralogy, vegetative cover, and condensed water are effectively mapped by the visible and near-infrared multispectral imagery, showing a wide variety of biological, meteorological, and geological phenomena. Global tectonic and volcanic processes are clearly illustrated by these images, providing a useful basis for comparative planetary geology. Differences between plant species are detected through the narrowband IR filters on Galileo, allowing regional measurements of variation in the "red edge" of chlorophyll and the depth of the 1-micrometer water band, which is diagnostic of leaf moisture content. Although evidence of life is widespread in the Galileo data set, only a single image (at approximately 2 km/pixel) shows geometrization plausibly attributable to our technical civilization. Water vapor can be uniquely imaged in the Galileo 0.73-micrometer band, permitting spectral discrimination of moist and dry clouds with otherwise similar albedo. Surface snow and ice can be readily distinguished from cloud cover by narrowband imaging within the sensitivity range of Galileo's silicon CCD camera. Ice grain size variations can be mapped using the weak H2O absorption at 1 micrometer, a technique which may find important applications in the exploration of the moons of Jupiter. The Galileo images have the potential to make unique contributions to Earth science in the areas of geological, meteorological and biological remote sensing, due to the inclusion of previously untried narrowband IR filters. The vast scale and near global

  6. Multispectral imaging with vertical silicon nanowires

    PubMed Central

    Park, Hyunsung; Crozier, Kenneth B.

    2013-01-01

    Multispectral imaging is a powerful tool that extends the capabilities of the human eye. However, multispectral imaging systems generally are expensive and bulky, and multiple exposures are needed. Here, we report the demonstration of a compact multispectral imaging system that uses vertical silicon nanowires to realize a filter array. Multiple filter functions covering visible to near-infrared (NIR) wavelengths are simultaneously defined in a single lithography step using a single material (silicon). Nanowires are then etched and embedded into polydimethylsiloxane (PDMS), thereby realizing a device with eight filter functions. By attaching it to a monochrome silicon image sensor, we successfully realize an all-silicon multispectral imaging system. We demonstrate visible and NIR imaging. We show that the latter is highly sensitive to vegetation and furthermore enables imaging through objects opaque to the eye. PMID:23955156

  7. Toward Multispectral Imaging with Colloidal Metasurface Pixels.

    PubMed

    Stewart, Jon W; Akselrod, Gleb M; Smith, David R; Mikkelsen, Maiken H

    2017-02-01

    Multispectral colloidal metasurfaces are fabricated that exhibit greater than 85% absorption and ≈100 nm linewidths by patterning film-coupled nanocubes in pixels using a fusion of bottom-up and top-down fabrication techniques over wafer-scale areas. With this technique, the authors realize a multispectral pixel array consisting of six resonances between 580 and 1125 nm and reconstruct an RGB image with 9261 color combinations.

  8. Simultaneous denoising and compression of multispectral images

    NASA Astrophysics Data System (ADS)

    Hagag, Ahmed; Amin, Mohamed; Abd El-Samie, Fathi E.

    2013-01-01

    A new technique for denoising and compression of multispectral satellite images to remove the effect of noise on the compression process is presented. One type of multispectral images has been considered: Landsat Enhanced Thematic Mapper Plus. The discrete wavelet transform (DWT), the dual-tree DWT, and a simple Huffman coder are used in the compression process. Simulation results show that the proposed technique is more effective than other traditional compression-only techniques.

  9. Multispectral Image Analysis of Hurricane Gilbert

    DTIC Science & Technology

    1989-05-19

    Classification) Multispectral Image Analysis of Hurrican Gilbert (unclassified) 12. PERSONAL AUTHOR(S) Kleespies, Thomas J. (GL/LYS) 13a. TYPE OF REPORT...cloud top height. component, of tle image in the red channel, and similarly for the green and blue channels. Multispectral Muti.pectral image analysis can...However, there seems to be few references to the human range of vision, the selection as to which mllti.pp.tral image analysis of scenes or

  10. Multispectral palmprint recognition using a quaternion matrix.

    PubMed

    Xu, Xingpeng; Guo, Zhenhua; Song, Changjiang; Li, Yafeng

    2012-01-01

    Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR) illuminations were represented by a quaternion matrix, then principal component analysis (PCA) and discrete wavelet transform (DWT) were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%.

  11. Multispectral Palmprint Recognition Using a Quaternion Matrix

    PubMed Central

    Xu, Xingpeng; Guo, Zhenhua; Song, Changjiang; Li, Yafeng

    2012-01-01

    Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR) illuminations were represented by a quaternion matrix, then principal component analysis (PCA) and discrete wavelet transform (DWT) were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%. PMID:22666049

  12. Estimating atmospheric parameters and reducing noise for multispectral imaging

    DOEpatents

    Conger, James Lynn

    2014-02-25

    A method and system for estimating atmospheric radiance and transmittance. An atmospheric estimation system is divided into a first phase and a second phase. The first phase inputs an observed multispectral image and an initial estimate of the atmospheric radiance and transmittance for each spectral band and calculates the atmospheric radiance and transmittance for each spectral band, which can be used to generate a "corrected" multispectral image that is an estimate of the surface multispectral image. The second phase inputs the observed multispectral image and the surface multispectral image that was generated by the first phase and removes noise from the surface multispectral image by smoothing out change in average deviations of temperatures.

  13. Galileo multispectral imaging of Earth

    NASA Astrophysics Data System (ADS)

    Geissler, Paul; Thompson, W. Reid; Greenberg, Richard; Moersch, Jeff; McEwen, Alfred; Sagan, Carl

    Nearly 6000 multispectral images of Earth were acquired by the Galileo spacecraft during its two flybys. The Galileo images offer a unique perspective on our home planet through the spectral capability made possible by four narrowband near-infrared filters, intended for observations of methane in Jupiter's atmosphere, which are not incorporated in any of the currently operating Earth orbital remote sensing systems. Spectral variations due to mineralogy, vegetative cover, and condensed water are effectively mapped by the visible and near-infrared multispectral imagery, showing a wide variety of biological, meteorological, and geological phenomena. Global tectonic and volcanic processes are clearly illustrated by these images, providing a useful basis for comparative planetary geology. Differences between plant species are detected through the narrowband IR filters on Galileo, allowing regional measurements of variation in the ``red edge'' of chlorophyll and the depth of the 1-μm water band, which is diagnostic of leaf moisture content. Although evidence of life is widespread in the Galileo data set, only a single image (at ~2 km/pixel) shows geometrization plausibly attributable to our technical civilization. Water vapor can be uniquely imaged in the Galileo 0.73-μm band, permitting spectral discrimination of moist and dry clouds with otherwise similar albedo. Surface snow and ice can be readily distinguished from cloud cover by narrowband imaging within the sensitivity range of Galileo's silicon CCD camera. Ice grain size variations can be mapped using the weak H2O absorption at 1 μm, a technique which may find important applications in the exploration of the moons of Jupiter. The Galileo images have the potential to make unique contributions to Earth science in the areas of geological, meteorological and biological remote sensing, due to the inclusion of previously untried narrowband IR filters. The vast scale and near global coverage of the Galileo data set

  14. Multispectral Imaging from Mars PATHFINDER

    NASA Technical Reports Server (NTRS)

    Ferrand, William H.; Bell, James F., III; Johnson, Jeffrey R.; Bishop, Janice L.; Morris, Richard V.

    2007-01-01

    The Imager for Mars Pathfinder (IMP) was a mast-mounted instrument on the Mars Pathfinder lander which landed on Mars Ares Vallis floodplain on July 4, 1997. During the 83 sols of Mars Pathfinders landed operations, the IMP collected over 16,600 images. Multispectral images were collected using twelve narrowband filters at wavelengths between 400 and 1000 nm in the visible and near infrared (VNIR) range. The IMP provided VNIR spectra of the materials surrounding the lander including rocks, bright soils, dark soils, and atmospheric observations. During the primary mission, only a single primary rock spectral class, Gray Rock, was recognized; since then, Black Rock, has been identified. The Black Rock spectra have a stronger absorption at longer wavelengths than do Gray Rock spectra. A number of coated rocks have also been described, the Red and Maroon Rock classes, and perhaps indurated soils in the form of the Pink Rock class. A number of different soil types were also recognized with the primary ones being Bright Red Drift, Dark Soil, Brown Soil, and Disturbed Soil. Examination of spectral parameter plots indicated two trends which were interpreted as representing alteration products formed in at least two different environmental epochs of the Ares Vallis area. Subsequent analysis of the data and comparison with terrestrial analogs have supported the interpretation that the rock coatings provide evidence of earlier martian environments. However, the presence of relatively uncoated examples of the Gray and Black rock classes indicate that relatively unweathered materials can persist on the martian surface.

  15. Unsupervised classification of remote multispectral sensing data

    NASA Technical Reports Server (NTRS)

    Su, M. Y.

    1972-01-01

    The new unsupervised classification technique for classifying multispectral remote sensing data which can be either from the multispectral scanner or digitized color-separation aerial photographs consists of two parts: (a) a sequential statistical clustering which is a one-pass sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. Applications of the technique using an IBM-7094 computer on multispectral data sets over Purdue's Flight Line C-1 and the Yellowstone National Park test site have been accomplished. Comparisons between the classification maps by the unsupervised technique and the supervised maximum liklihood technique indicate that the classification accuracies are in agreement.

  16. Multispectral image segmentation of breast pathology

    NASA Astrophysics Data System (ADS)

    Hornak, Joseph P.; Blaakman, Andre; Rubens, Deborah; Totterman, Saara

    1991-06-01

    The signal intensity in a magnetic resonance image is not only a function of imaging parameters but also of several intrinsic tissue properties. Therefore, unlike other medical imaging modalities, magnetic resonance imaging (MRI) allows the imaging scientist to locate pathology using multispectral image segmentation. Multispectral image segmentation works best when orthogonal spectral regions are employed. In MRI, possible spectral regions are spin density (rho) , spin-lattice relaxation time T1, spin-spin relaxation time T2, and texture for each nucleus type and chemical shift. This study examines the ability of multispectral image segmentation to locate breast pathology using the total hydrogen T1, T2, and (rho) . The preliminary results indicate that our technique can locate cysts and fibroadenoma breast lesions with a minimum number of false-positives and false-negatives. Results, T1, T2, and (rho) algorithms, and segmentation techniques are presented.

  17. High-speed multispectral confocal biomedical imaging

    PubMed Central

    Carver, Gary E.; Locknar, Sarah A.; Morrison, William A.; Krishnan Ramanujan, V.; Farkas, Daniel L.

    2014-01-01

    Abstract. A new approach for generating high-speed multispectral confocal images has been developed. The central concept is that spectra can be acquired for each pixel in a confocal spatial scan by using a fast spectrometer based on optical fiber delay lines. This approach merges fast spectroscopy with standard spatial scanning to create datacubes in real time. The spectrometer is based on a serial array of reflecting spectral elements, delay lines between these elements, and a single element detector. The spatial, spectral, and temporal resolution of the instrument is described and illustrated by multispectral images of laser-induced autofluorescence in biological tissues. PMID:24658777

  18. Bathymetric mapping with passive multispectral imagery.

    PubMed

    Philpot, W D

    1989-04-15

    Bathymetric mapping will be most straightforward where water quality and atmospheric conditions are invariant over the scene. Under these conditions, both depth and an effective attenuation coefficient of the water over several different bottom types may be retrieved from passive, multispectral imagery. As scenes become more complex-with changing water type and variable atmospheric conditions-it is probable that a strictly spectral analysis will no longer be sufficient to extract depth from multispectral imagery. In these cases an independent source of information will be required. The most likely sources for such information are spatial and temporal variations in image data.

  19. Multispectral imaging fluorescence microscopy for living cells.

    PubMed

    Hiraoka, Yasushi; Shimi, Takeshi; Haraguchi, Tokuko

    2002-10-01

    Multispectral imaging technologies have been widely used in fields of astronomy and remote sensing. Interdisciplinary approaches developed in, for example, the National Aeronautics and Space Administration (NASA, USA), the Jet Propulsion Laboratory (JPL, USA), or the Communications Research Laboratory (CRL, Japan) have extended the application areas of these technologies from planetary systems to cellular systems. Here we overview multispectral imaging systems that have been devised for microscope applications. We introduce these systems with particular interest in live cell imaging. Finally we demonstrate examples of spectral imaging of living cells using commercially available systems with no need for user engineering.

  20. Optical Positions of ICRF Sources from CTIO 1.0M Data

    DTIC Science & Technology

    2015-01-01

    ABSTRACT As part of the USNO radio-optical reference frame link project, data were taken with the CTIO 1.0 m telescope in 2009. First position...ABSTRACT As part of the USNO radio-optical reference frame link project, data were taken with the CTIO 1.0 m telescope in 2009. First position...Yale 1.0 meter telescope and Y4K camera which were used for this study. TABLE 1. INSTRUMENT PROPERTIES aperture 1000 mm focal ratio f/10 Cass. filters

  1. Multispectral imaging using a single bucket detector

    NASA Astrophysics Data System (ADS)

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Li, Ziwei; Fan, Jingtao; Chen, Feng; Dai, Qionghai

    2016-04-01

    Existing multispectral imagers mostly use available array sensors to separately measure 2D data slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum range and high cost. To address these issues, we propose to conduct multispectral imaging using a single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low cost, small size and light weight. Technically, utilizing the detector’s fast response, a scene’s 3D spatial-spectral information is multiplexed into a dense 1D measurement sequence and then demultiplexed computationally under the single pixel imaging scheme. A proof-of-concept setup is built to capture multispectral data of 64 pixels × 64 pixels × 10 wavelength bands ranging from 450 nm to 650 nm, with the acquisition time being 1 minute. The imaging scheme holds great potentials for various low light and airborne applications, and can be easily manufactured as production-volume portable multispectral imagers.

  2. Multispectral imaging using a single bucket detector

    PubMed Central

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Li, Ziwei; Fan, Jingtao; Chen, Feng; Dai, Qionghai

    2016-01-01

    Existing multispectral imagers mostly use available array sensors to separately measure 2D data slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum range and high cost. To address these issues, we propose to conduct multispectral imaging using a single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low cost, small size and light weight. Technically, utilizing the detector’s fast response, a scene’s 3D spatial-spectral information is multiplexed into a dense 1D measurement sequence and then demultiplexed computationally under the single pixel imaging scheme. A proof-of-concept setup is built to capture multispectral data of 64 pixels × 64 pixels × 10 wavelength bands ranging from 450 nm to 650 nm, with the acquisition time being 1 minute. The imaging scheme holds great potentials for various low light and airborne applications, and can be easily manufactured as production-volume portable multispectral imagers. PMID:27103168

  3. Multispectral imaging using a single bucket detector.

    PubMed

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Li, Ziwei; Fan, Jingtao; Chen, Feng; Dai, Qionghai

    2016-04-22

    Existing multispectral imagers mostly use available array sensors to separately measure 2D data slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum range and high cost. To address these issues, we propose to conduct multispectral imaging using a single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low cost, small size and light weight. Technically, utilizing the detector's fast response, a scene's 3D spatial-spectral information is multiplexed into a dense 1D measurement sequence and then demultiplexed computationally under the single pixel imaging scheme. A proof-of-concept setup is built to capture multispectral data of 64 pixels × 64 pixels × 10 wavelength bands ranging from 450 nm to 650 nm, with the acquisition time being 1 minute. The imaging scheme holds great potentials for various low light and airborne applications, and can be easily manufactured as production-volume portable multispectral imagers.

  4. Summary of Michigan multispectral investigations program

    NASA Technical Reports Server (NTRS)

    Legault, R. R.

    1970-01-01

    The development of techniques to extend spectral signatures in space and time is reported. Signatures that were valid for 30 miles have been extended for 129 miles using transformation and sun sensor data so that a complicated multispectral recognition problem that required 219 learning sets can now be done with 13 learning sets.

  5. Multispectral Photography: the obscure becomes the obvious

    ERIC Educational Resources Information Center

    Polgrean, John

    1974-01-01

    Commonly used in map making, real estate zoning, and highway route location, aerial photography planes equipped with multispectral cameras may, among many environmental applications, now be used to locate mineral deposits, define marshland boundaries, study water pollution, and detect diseases in crops and forests. (KM)

  6. Blast investigation by fast multispectral radiometric analysis

    NASA Astrophysics Data System (ADS)

    Devir, A. D.; Bushlin, Y.; Mendelewicz, I.; Lessin, A. B.; Engel, M.

    2011-06-01

    Knowledge regarding the processes involved in blasts and detonations is required in various applications, e.g. missile interception, blasts of high-explosive materials, final ballistics and IED identification. Blasts release large amount of energy in short time duration. Some part of this energy is released as intense radiation in the optical spectral bands. This paper proposes to measure the blast radiation by a fast multispectral radiometer. The measurement is made, simultaneously, in appropriately chosen spectral bands. These spectral bands provide extensive information on the physical and chemical processes that govern the blast through the time-dependence of the molecular and aerosol contributions to the detonation products. Multi-spectral blast measurements are performed in the visible, SWIR and MWIR spectral bands. Analysis of the cross-correlation between the measured multi-spectral signals gives the time dependence of the temperature, aerosol and gas composition of the blast. Farther analysis of the development of these quantities in time may indicate on the order of the detonation and amount and type of explosive materials. Examples of analysis of measured explosions are presented to demonstrate the power of the suggested fast multispectral radiometric analysis approach.

  7. Sharpening advanced land imager multispectral data using a sensor model

    USGS Publications Warehouse

    Lemeshewsky, G.P.; ,

    2005-01-01

    The Advanced Land Imager (ALI) instrument on NASA's Earth Observing One (EO-1) satellite provides for nine spectral bands at 30m ground sample distance (GSD) and a 10m GSD panchromatic band. This report describes an image sharpening technique where the higher spatial resolution information of the panchromatic band is used to increase the spatial resolution of ALI multispectral (MS) data. To preserve the spectral characteristics, this technique combines reported deconvolution deblurring methods for the MS data with highpass filter-based fusion methods for the Pan data. The deblurring process uses the point spread function (PSF) model of the ALI sensor. Information includes calculation of the PSF from pre-launch calibration data. Performance was evaluated using simulated ALI MS data generated by degrading the spatial resolution of high resolution IKONOS satellite MS data. A quantitative measure of performance was the error between sharpened MS data and high resolution reference. This report also compares performance with that of a reported method that includes PSF information. Preliminary results indicate improved sharpening with the method reported here.

  8. Crack growth of 10M Ni-Mn-Ga material in cyclic mechanical loading

    NASA Astrophysics Data System (ADS)

    Aaltio, I.; Ge, Y.; Pulkkinen, H.; Sjöberg, A.; Söderberg, O.; Liu, X. W.; Hannula, S.-P.

    The 10M martensitic Ni-Mn-Ga single crystal materials are usually applied in the magneto-mechanical actuators. Therefore, it is important to know the possible effect of the long-term cyclic shape changes on their structure and behavior. This can be evaluated with the mechanical fatigue testing. In the present study, the single crystal 10M Ni-Mn-Ga samples of different compositions were applied to strain-controlled uniaxial mechanical cycling in the multivariant state at ambient temperature. The experiments revealed distinctive changes of the twin variant structure, especially in the mobile twin area, density of twin boundaries, and in the tendency for fatigue crack growth. Characterization of the crack surface showed that the cracks in the microscale grow in a step-wise manner on specific crystallographic planes, i.e, twin boundary planes, but that the macroscopic crack does not occur only along crystallographic directions.

  9. Information extraction techniques for multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Crane, R. B.; Turner, R. E.

    1972-01-01

    The applicability of recognition-processing procedures for multispectral scanner data from areas and conditions used for programming the recognition computers to other data from different areas viewed under different measurement conditions was studied. The reflective spectral region approximately 0.3 to 3.0 micrometers is considered. A potential application of such techniques is in conducting area surveys. Work in three general areas is reported: (1) Nature of sources of systematic variation in multispectral scanner radiation signals, (2) An investigation of various techniques for overcoming systematic variations in scanner data; (3) The use of decision rules based upon empirical distributions of scanner signals rather than upon the usually assumed multivariate normal (Gaussian) signal distributions.

  10. Investigation related to multispectral imaging systems

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Erickson, J. D.

    1974-01-01

    A summary of technical progress made during a five year research program directed toward the development of operational information systems based on multispectral sensing and the use of these systems in earth-resource survey applications is presented. Efforts were undertaken during this program to: (1) improve the basic understanding of the many facets of multispectral remote sensing, (2) develop methods for improving the accuracy of information generated by remote sensing systems, (3) improve the efficiency of data processing and information extraction techniques to enhance the cost-effectiveness of remote sensing systems, (4) investigate additional problems having potential remote sensing solutions, and (5) apply the existing and developing technology for specific users and document and transfer that technology to the remote sensing community.

  11. DISSOLUTION OF PLUTONIUM METAL IN 8-10 M NITRIC ACID

    SciTech Connect

    Rudisill, T.; Pierce, R.

    2012-02-21

    The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO{sub 2}) using Phase II of HB-Line. To support the new mission, the development of a Pu metal dissolution flowsheet which utilizes concentrated (8-10 M) nitric acid (HNO{sub 3}) solutions containing potassium fluoride (KF) is required. Dissolution of Pu metal in concentrated HNO{sub 3} is desired to eliminate the need to adjust the solution acidity prior to purification by anion exchange. The preferred flowsheet would use 8-10 M HNO{sub 3}, 0.015-0.07 M KF, and 0.5-1.0 g/L Gd to dissolve the Pu up to 6.75 g/L. An alternate flowsheet would use 8-10 M HNO{sub 3}, 0.1-0.2 M KF, and 1-2 g/L B to dissolve the Pu. The targeted average Pu metal dissolution rate is 20 mg/min-cm{sup 2}, which is sufficient to dissolve a 'standard' 2250-g Pu metal button in 24 h. Plutonium metal dissolution rate measurements showed that if Gd is used as the nuclear poison, the optimum dissolution conditions occur in 10 M HNO{sub 3}, 0.04-0.05 M KF, and 0.5-1.0 g/L Gd at 112 to 116 C (boiling). These conditions will result in an estimated Pu metal dissolution rate of {approx}11-15 mg/min-cm{sup 2} and will result in dissolution times of 36-48 h for standard buttons. The recommended minimum and maximum KF concentrations are 0.03 M and 0.07 M, respectively. The maximum KF concentration is dictated by a potential room-temperature Pu-Gd-F precipitation issue at low Pu concentrations. The purpose of the experimental work described in this report was two-fold. Initially a series of screening experiments was performed to measure the dissolution rate of Pu metal as functions of the HNO{sub 3}, KF, and Gd or B concentrations. The objective of the screening tests was to propose optimized conditions for subsequent flowsheet demonstration tests. Based on the rate measurements, this study found that optimal dissolution conditions in solutions containing 0.5-1.0 g/L Gd occurred in 8-10

  12. Development of a Miniature Snapshot Multispectral Imager

    DTIC Science & Technology

    2010-09-01

    imaging results. A main motivation behind development of such a compact imager is to be able to detect chemicals used in improvised explosive...devices (IEDs). 15. SUBJECT TERMS Fabry-Perot filter, multispectral, SWIR, microlens optics, IED detection 16. SECURITY CLASSIFICATION OF: 17...or prism, a filter wheel, a diffractive optic lens, a Fabry-Perot (F-P) etalon, or a tunable filter. All of these optical devices are used with a

  13. Multi-spectral photoacoustic elasticity tomography

    PubMed Central

    Liu, Yubin; Yuan, Zhen

    2016-01-01

    The goal of this work was to develop and validate a spectrally resolved photoacoustic imaging method, namely multi-spectral photoacoustic elasticity tomography (PAET) for quantifying the physiological parameters and elastic modulus of biological tissues. We theoretically and experimentally examined the PAET imaging method using simulations and in vitro experimental tests. Our simulation and in vitro experimental results indicated that the reconstructions were quantitatively accurate in terms of sizes, the physiological and elastic properties of the targets. PMID:27699101

  14. Material Characterization using Passive Multispectral Polarimetric Imagery

    DTIC Science & Technology

    2013-03-01

    wavelength due to the tendency of all materials to polarize scattered light very weakly in that regime . The derivative would be near zero for metals and...Applications in Remote Sensing. Oxford University Press, USA, 2009. [6] Coffland, Bruce. “Multispectral scanners for wildfire assessment”, 2008. URL... logs /sept14/media/volcanoo-cone-3.html. [24] National Oceanic and Atmospheric Administration. “Sonar”, Oct 2012. URL http://www.nmfs.noaa.gov/pr

  15. A multispectral imaging approach for diagnostics of skin pathologies

    NASA Astrophysics Data System (ADS)

    Lihacova, Ilze; Derjabo, Aleksandrs; Spigulis, Janis

    2013-06-01

    Noninvasive multispectral imaging method was applied for different skin pathology such as nevus, basal cell carcinoma, and melanoma diagnostics. Developed melanoma diagnostic parameter, using three spectral bands (540 nm, 650 nm and 950 nm), was calculated for nevus, melanoma and basal cell carcinoma. Simple multispectral diagnostic device was established and applied for skin assessment. Development and application of multispectral diagnostics method described further in this article.

  16. Airborne multispectral detection of regrowth cotton fields

    NASA Astrophysics Data System (ADS)

    Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.

    2015-01-01

    Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.

  17. Image processing of underwater multispectral imagery

    USGS Publications Warehouse

    Zawada, D. G.

    2003-01-01

    Capturing in situ fluorescence images of marine organisms presents many technical challenges. The effects of the medium, as well as the particles and organisms within it, are intermixed with the desired signal. Methods for extracting and preparing the imagery for analysis are discussed in reference to a novel underwater imaging system called the low-light-level underwater multispectral imaging system (LUMIS). The instrument supports both uni- and multispectral collections, each of which is discussed in the context of an experimental application. In unispectral mode, LUMIS was used to investigate the spatial distribution of phytoplankton. A thin sheet of laser light (532 nm) induced chlorophyll fluorescence in the phytoplankton, which was recorded by LUMIS. Inhomogeneities in the light sheet led to the development of a beam-pattern-correction algorithm. Separating individual phytoplankton cells from a weak background fluorescence field required a two-step procedure consisting of edge detection followed by a series of binary morphological operations. In multispectral mode, LUMIS was used to investigate the bio-assay potential of fluorescent pigments in corals. Problems with the commercial optical-splitting device produced nonlinear distortions in the imagery. A tessellation algorithm, including an automated tie-point-selection procedure, was developed to correct the distortions. Only pixels corresponding to coral polyps were of interest for further analysis. Extraction of these pixels was performed by a dynamic global-thresholding algorithm.

  18. LES Modeling of Lateral Dispersion in the Ocean on Scales of 10 m to 10 km

    DTIC Science & Technology

    2015-10-20

    Report 3. DATES COVERED (From - To) 01/07/2010 – 06/06/2015 4. TITLE AND SUBTITLE LES Modeling of Lateral Dispersion in the Ocean on Scales of 10...ocean on scales of 0.1-10 km that can be implemented in larger- scale ocean models. These parameterizations will incorporate the effects of local...Distribution approved for public release; distribution is unlimited. Final Report LES Modeling of Lateral Dispersion on Scales of 10 m to 10 km M.-Pascale

  19. Multispectral photometric stereo for acquiring high-fidelity surface normals.

    PubMed

    Nam, Giljoo; Kim, Min H

    2014-01-01

    Multispectral imaging and photometric stereo are common in 3D imaging but rarely have been combined. Reconstructing a 3D object's shape using photometric stereo is challenging owing to indirect illumination, specular reflection, and self-shadows, and removing interreflection in photometric stereo is problematic. A new multispectral photometric-stereo method removes interreflection on diffuse materials using multispectral-reflectance information and reconstructs 3D shapes with high accuracy. You can integrate this method into photometric-stereo systems by simply substituting the original camera with a multispectral camera.

  20. Development of a multispectral imagery device devoted to weed detection

    NASA Astrophysics Data System (ADS)

    Vioix, Jean-Baptiste; Douzals, Jean-Paul; Truchetet, Frederic; Navar, Pierre

    2003-04-01

    Multispectral imagery is a large domain with number of practical applications: thermography, quality control in industry, food science and agronomy, etc. The main interest is to obtain spectral information of the objects for which reflectance signal can be associated with physical, chemical and/or biological properties. Agronomic applications of multispectral imagery generally involve the acquisition of several images in the wavelengths of visible and near infrared. This paper will first present different kind of multispectral devices used for agronomic issues and will secondly introduce an original multispectral design based on a single CCD. Third, early results obtained for weed detection are presented.

  1. The Multispectral Imaging Science Working Group. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Cox, S. C. (Editor)

    1982-01-01

    The status and technology requirements for using multispectral sensor imagery in geographic, hydrologic, and geologic applications are examined. Critical issues in image and information science are identified.

  2. Bioaerosol sampling by a personal rotating cup sampler CIP 10-M.

    PubMed

    Görner, Peter; Fabriès, Jean-François; Duquenne, Philippe; Witschger, Olivier; Wrobel, Richard

    2006-01-01

    High concentrations of bioaerosols containing bacterial, fungal and biotoxinic matter are encountered in many workplaces, e.g. solid waste treatment plants, waste water treatment plants and sewage networks. A personal bioaerosol sampler, the CIP 10-M (M-microbiologic), has been developed to measure worker exposure to airborne biological agents. This sampler is battery operated; it is light and easy to wear and offers full work shift autonomy. It can sample much higher concentrations than biological impactors and limits the mechanical stress on the microorganisms. Biological particles are collected in 2 ml of liquid medium inside a rotating cup fitted with radial vanes to maintain an air flow rate of 10 l min(-1) at a rotational speed of approximately 7,000 rpm. The rotating cup is made of sterilisable material. The sampled particles follow a helicoidal trajectory as they are pushed to the surface of the liquid by centrifugal force, which creates a thin vertical liquid layer. Sterile water or another collecting liquid can be used. Three particle size selectors allow health-related aerosol fractions to be sampled according to international conventions. The sampled microbiological particles can be easily recovered for counting, incubation or further biochemical analysis, e.g., for airborne endotoxins. Its physical sampling efficiency was laboratory tested and field trials were carried out in industrial waste management conditions. The results indicate satisfactory collection efficiency, whilst experimental application has demonstrated the usefulness of the CIP 10-M personal sampler for individual bioaerosol exposure monitoring.

  3. DISSOLUTION OF PLUTONIUM METAL IN 8-10 M NITRIC ACID

    SciTech Connect

    Rudisill, T. S.; Pierce, R. A.

    2012-07-02

    The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO{sub 2}) using Phase II of HB-Line. To support the new mission, the development of a Pu metal dissolution flowsheet which utilizes concentrated (8-10 M) nitric acid (HNO{sub 3}) solutions containing potassium fluoride (KF) is required. Dissolution of Pu metal in concentrated HNO{sub 3} is desired to eliminate the need to adjust the solution acidity prior to purification by anion exchange. The preferred flowsheet would use 8-10 M HNO{sub 3}, 0.015-0.07 M KF, and 0.5-1.0 g/L Gd to dissolve the Pu up to 6.75 g/L. An alternate flowsheet would use 8-10 M HNO{sub 3}, 0.05-0.2 M KF, and 1-2 g/L B to dissolve the Pu. The targeted average Pu metal dissolution rate is 20 mg/min-cm{sup 2}, which is sufficient to dissolve a “standard” 2250-g Pu metal button in 24 h. Plutonium metal dissolution rate measurements showed that if Gd is used as the nuclear poison, the optimum dissolution conditions occur in 10 M HNO{sub 3}, 0.04-0.05 M KF, and 0.5-1.0 g/L Gd at 112 to 116 °C (boiling). These conditions will result in an estimated Pu metal dissolution rate of ~11-15 mg/min-cm{sup 2} and will result in dissolution times of 36-48 h for standard buttons. The recommended minimum and maximum KF concentrations are 0.03 M and 0.07 M, respectively. The data also indicate that lower KF concentrations would yield dissolution rates for B comparable to those observed with Gd at the same HNO{sub 3} concentration and dissolution temperature. To confirm that the optimal conditions identified by the dissolution rate measurements can be used to dissolve Pu metal up to 6.75 g/L in the presence of representative concentrations of Fe and Gd or B, a series of experiments was performed to demonstrate the flowsheets. In three of the five experiments, the offgas generation rate during the dissolution was measured and samples were analyzed for hydrogen gas (H{sub 2}). The use of

  4. Deterministic separation of cancer cells from blood at 10 mL/min

    NASA Astrophysics Data System (ADS)

    Loutherback, Kevin; D'Silva, Joseph; Liu, Liyu; Wu, Amy; Austin, Robert H.; Sturm, James C.

    2012-12-01

    Circulating tumor cells (CTCs) and circulating clusters of cancer and stromal cells have been identified in the blood of patients with malignant cancer and can be used as a diagnostic for disease severity, assess the efficacy of different treatment strategies and possibly determine the eventual location of metastatic invasions for possible treatment. There is thus a critical need to isolate, propagate and characterize viable CTCs and clusters of cancer cells with their associated stroma cells. Here, we present a microfluidic device for mL/min flow rate, continuous-flow capture of viable CTCs from blood using deterministic lateral displacement (DLD) arrays. We show here that a DLD array device can isolate CTCs from blood with capture efficiency greater than 85% CTCs at volumetric flow rates of up to 10 mL/min with no effect on cell viability.

  5. Innovative Structural Design Features for a 10 m Solar Sail Demonstrator

    NASA Technical Reports Server (NTRS)

    Laue, G.; Moore, J.; Clayton, W.

    2004-01-01

    The successful development of sail architectures will require careful attention to a number of key issues including but not limited to material strength issues, stress conditions for the membrane, load interactions between membrane and structure, and membrane material planarity. Along with the inherent challenges of fabricating and handling very large membrane structures these issues will pose real challenges for the near-term development of practical sail technologies. SRS has developed innovative technologies that deal directly with the challenges of developing very large sail membranes. Some of these technologies include edge reinforcements and innovative reinforcement attachment techniques, production of flight durable sail materials of less than 2.5 micron thicknesses and large scale fabrication techniques. SRS has employed these technologies in several large 10 m demonstrators that have been delivered to LaRC for solar vacuum testing. Details of the design of this system will be discussed.

  6. Constraining the Bulk Density of 10m-Class Near-Earth Asteroid 2012 LA

    NASA Astrophysics Data System (ADS)

    Mommert, Michael; Hora, Joseph; Farnocchia, Davide; Trilling, David; Chesley, Steve; Harris, Alan; Mueller, Migo; Smith, Howard

    2016-08-01

    The physical properties of near-Earth asteroids (NEAs) provide important hints on their origin, as well as their past physical and orbital evolution. Recent observations seem to indicate that small asteroids are different than expected: instead of being monolithic bodies, some of them instead resemble loose conglomerates of smaller rocks, so called 'rubble piles'. This is surprising, since self-gravitation is practically absent in these bodies. Hence, bulk density measurements of small asteroids, from which their internal structure can be estimated, provide unique constraints on asteroid physical models, as well as models for asteroid evolution. We propose Spitzer Space Telescope observations of 10 m-sized NEA 2012 LA, which will allow us to constrain the diameter, albedo, bulk density, macroporosity, and mass of this object. We require 30 hrs of Spitzer time to detect our target with a minimum SNR of 3 in CH2. In order to interpret our observational results, we will use the same analysis technique that we used in our successful observations and analyses of tiny asteroids 2011 MD and 2009 BD. Our science goal, which is the derivation of the target's bulk density and its internal structure, can only be met with Spitzer. Our observations will produce only the third comprehensive physical characterization of an asteroid in the 10m size range (all of which have been carried out by our team, using Spitzer). Knowledge of the physical properties of small NEAs, some of which pose an impact threat to the Earth, is of importance for understanding their evolution and estimating the potential of destruction in case of an impact, as well as for potential manned missions to NEAs for either research or potential commercial uses.

  7. Reproducible high-resolution multispectral image acquisition in dermatology

    NASA Astrophysics Data System (ADS)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  8. D Land Cover Classification Based on Multispectral LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.

  9. Multispectral data compression through transform coding and block quantization

    NASA Technical Reports Server (NTRS)

    Ready, P. J.; Wintz, P. A.

    1972-01-01

    Transform coding and block quantization techniques are applied to multispectral aircraft scanner data, and digitized satellite imagery. The multispectral source is defined and an appropriate mathematical model proposed. The Karhunen-Loeve, Fourier, and Hadamard encoders are considered and are compared to the rate distortion function for the equivalent Gaussian source and to the performance of the single sample PCM encoder.

  10. Astronaut Jack Lousma works at Multispectral camera experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, works at the S190A multispectral camera experiment in the Multiple Docking Adapter (MDA), seen from a color television transmission made by a TV camera aboard the Skylab space station cluster in Earth orbit. Lousma later used a small brush to clean the six lenses of the multispectral camera.

  11. Multispectral Airborne Laser Scanning for Automated Map Updating

    NASA Astrophysics Data System (ADS)

    Matikainen, Leena; Hyyppä, Juha; Litkey, Paula

    2016-06-01

    During the last 20 years, airborne laser scanning (ALS), often combined with multispectral information from aerial images, has shown its high feasibility for automated mapping processes. Recently, the first multispectral airborne laser scanners have been launched, and multispectral information is for the first time directly available for 3D ALS point clouds. This article discusses the potential of this new single-sensor technology in map updating, especially in automated object detection and change detection. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from a random forests analysis suggest that the multispectral intensity information is useful for land cover classification, also when considering ground surface objects and classes, such as roads. An out-of-bag estimate for classification error was about 3% for separating classes asphalt, gravel, rocky areas and low vegetation from each other. For buildings and trees, it was under 1%. According to feature importance analyses, multispectral features based on several channels were more useful that those based on one channel. Automatic change detection utilizing the new multispectral ALS data, an old digital surface model (DSM) and old building vectors was also demonstrated. Overall, our first analyses suggest that the new data are very promising for further increasing the automation level in mapping. The multispectral ALS technology is independent of external illumination conditions, and intensity images produced from the data do not include shadows. These are significant advantages when the development of automated classification and change detection procedures is considered.

  12. A multispectral method of determining sea surface temperatures

    NASA Technical Reports Server (NTRS)

    Shenk, W. E.

    1972-01-01

    A multispectral method for determining sea surface temperatures is discussed. The specifications of the equipment and the atmospheric conditions required for successful multispectral data acquisition are described. Examples of data obtained in the North Atlantic Ocean are presented. The differences between the actual sea surface temperatures and the equivalent blackbody temperatures as determined by a radiometer are plotted.

  13. Multispectral rock-type separation and classification.

    SciTech Connect

    Moya, Mary M.; Fogler, Robert Joseph; Paskaleva, Biliana; Hayat, Majeed M.

    2004-06-01

    This paper explores the possibility of separating and classifying remotely-sensed multispectral data from rocks and minerals onto seven geological rock-type groups. These groups are extracted from the general categories of metamorphic, igneous and sedimentary rocks. The study is performed under ideal conditions for which the data is generated according to laboratory hyperspectral data for the members, which are, in turn, passed through the Multi-spectral Thermal Imager (MTI) filters yielding 15 bands. The main challenge in separability is the small size of the training data sets, which initially did not permit direct application of Bayesian decision theory. To enable Bayseian classification, the original training data is linearly perturbed with the addition minerals, vegetation, soil, water and other valid impurities. As a result, the size of the training data is significantly increased and accurate estimates of the covariance matrices are achieved. In addition, a set of reduced (five) linearly-extracted canonical features that are optimal in providing the most important information about the data is determined. An alternative nonlinear feature-selection method is also employed based on spectral indices comprising a small subset of all possible ratios between bands. By applying three optimization strategies, combinations of two and three ratios are found that provide reliable separability and classification between all seven groups according to the Bhattacharyya distance. To set a benchmark to which the MTI capability in rock classification can be compared, an optimization strategy is performed for the selection of optimal multispectral filters, other than the MTI filters, and an improvement in classification is predicted.

  14. SWNT Imaging Using Multispectral Image Processing

    NASA Astrophysics Data System (ADS)

    Blades, Michael; Pirbhai, Massooma; Rotkin, Slava V.

    2012-02-01

    A flexible optical system was developed to image carbon single-wall nanotube (SWNT) photoluminescence using the multispectral capabilities of a typical CCD camcorder. The built in Bayer filter of the CCD camera was utilized, using OpenCV C++ libraries for image processing, to decompose the image generated in a high magnification epifluorescence microscope setup into three pseudo-color channels. By carefully calibrating the filter beforehand, it was possible to extract spectral data from these channels, and effectively isolate the SWNT signals from the background.

  15. Multispectral analysis of ocean dumped materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1977-01-01

    Remotely sensed data were collected in conjunction with sea-truth measurements in three experiments in the New York Bight. Pollution features of primary interest were ocean dumped materials, such as sewage sludge and acid waste. Sewage-sludge and acid-waste plumes, including plumes from sewage sludge dumped by the 'line-dump' and 'spot-dump' methods, were located, identified, and mapped. Previously developed quantitative analysis techniques for determining quantitative distributions of materials in sewage sludge dumps were evaluated, along with multispectral analysis techniques developed to identify ocean dumped materials. Results of these experiments and the associated data analysis investigations are presented and discussed.

  16. Multispectral analysis of ocean dumped materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1977-01-01

    Experiments conducted in the Atlantic coastal zone indicated that plumes resulting from ocean dumping of acid wastes and sewage sludge have unique spectral characteristics. Remotely sensed wide area synoptic coverage provided information on these pollution features that was not readily available from other sources. Aircraft remotely sensed photographic and multispectral scanner data were interpreted by two methods. First, qualitative analyses in which pollution features were located, mapped, and identified without concurrent sea truth and, second, quantitative analyses in which concurrently collected sea truth was used to calibrate the remotely sensed data and to determine quantitative distributions of one or more parameters in a plume.

  17. Highly Protable Airborne Multispectral Imaging System

    NASA Technical Reports Server (NTRS)

    Lehnemann, Robert; Mcnamee, Todd

    2001-01-01

    A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.

  18. Optimization of multispectral sensors for bathymetry applications

    NASA Technical Reports Server (NTRS)

    Tanis, F. J.; Byrnes, H. J.

    1986-01-01

    The Naval Oceanographic office has proposed to augment current capabilities with an airborne MSS system capable of conducting hydrographic surveys of shallow and clear oceanic waters for purposes of determining ocean depth and identifying marine hazards. Recent efforts have concentrated on development of an active/passive system, where the active system will be used to calibrate a passive multispectral sensor. In this paper, parameters which influence collection-system design and depth-extraction techniques have been used to describe the practical bounds to which MSS technology can support coastal bathymetric surveying. Performance is estimated in terms of expected S/N and depth-extraction errors.

  19. Mapping soil types from multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Zachary, A. L.

    1971-01-01

    Multispectral remote sensing and computer-implemented pattern recognition techniques were used for automatic ?mapping' of soil types. This approach involves subjective selection of a set of reference samples from a gray-level display of spectral variations which was generated by a computer. Each resolution element is then classified using a maximum likelihood ratio. Output is a computer printout on which the researcher assigns a different symbol to each class. Four soil test areas in Indiana were experimentally examined using this approach, and partially successful results were obtained.

  20. Multispectral image processing for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark J.; Lazaroff, Mark B.; Brennan, Mark W.

    1993-03-01

    New techniques are described for detecting environmental anomalies and changes using multispectral imagery. Environmental anomalies are areas that do not exhibit normal signatures due to man-made activities and include phenomena such as effluent discharges, smoke plumes, stressed vegetation, and deforestation. A new region-based processing technique is described for detecting these phenomena using Landsat TM imagery. Another algorithm that can detect the appearance or disappearance of environmental phenomena is also described and an example illustrating its use in detecting urban changes using SPOT imagery is presented.

  1. Multispectral imaging system for contaminant detection

    NASA Technical Reports Server (NTRS)

    Poole, Gavin H. (Inventor)

    2003-01-01

    An automated inspection system for detecting digestive contaminants on food items as they are being processed for consumption includes a conveyor for transporting the food items, a light sealed enclosure which surrounds a portion of the conveyor, with a light source and a multispectral or hyperspectral digital imaging camera disposed within the enclosure. Operation of the conveyor, light source and camera are controlled by a central computer unit. Light reflected by the food items within the enclosure is detected in predetermined wavelength bands, and detected intensity values are analyzed to detect the presence of digestive contamination.

  2. Multispectral image fusion using neural networks

    NASA Technical Reports Server (NTRS)

    Kagel, J. H.; Platt, C. A.; Donaven, T. W.; Samstad, E. A.

    1990-01-01

    A prototype system is being developed to demonstrate the use of neural network hardware to fuse multispectral imagery. This system consists of a neural network IC on a motherboard, a circuit card assembly, and a set of software routines hosted by a PC-class computer. Research in support of this consists of neural network simulations fusing 4 to 7 bands of Landsat imagery and fusing (separately) multiple bands of synthetic imagery. The simulations, results, and a description of the prototype system are presented.

  3. Multispectral-image fusion using neural networks

    NASA Astrophysics Data System (ADS)

    Kagel, Joseph H.; Platt, C. A.; Donaven, T. W.; Samstad, Eric A.

    1990-08-01

    A prototype system is being developed to demonstrate the use of neural network hardware to fuse multispectral imagery. This system consists of a neural network IC on a motherboard a circuit card assembly and a set of software routines hosted by a PC-class computer. Research in support of this consists of neural network simulations fusing 4 to 7 bands of Landsat imagery and fusing (separately) multiple bands of synthetic imagery. The simulations results and a description of the prototype system are presented. 1.

  4. Multispectral scanner imagery for plant community classification.

    NASA Technical Reports Server (NTRS)

    Driscoll, R. S.; Spencer, M. M.

    1973-01-01

    Optimum channel selection among 12 channels of multispectral scanner imagery identified six as providing the best information for computerized classification of 11 plant communities and two nonvegetation classes. Intensive preprocessing of the spectral data was required to eliminate bidirectional reflectance effects of the spectral imagery caused by scanner view angle and varying geometry of the plant canopy. Generalized plant community types - forest, grassland, and hydrophytic systems - were acceptably classified based on ecological analysis. Serious, but soluble, errors occurred with attempts to classify specific community types within the grassland system. However, special clustering analyses provided for improved classification of specific grassland communities.

  5. Wavelength, temperature, and voltage dependent calibration of a nematic liquid crystal multispectral polarization generating device

    SciTech Connect

    Baba, Justin S; Boudreaux, Philip R

    2007-01-01

    Rapid calibration of liquid crystal variable retarder (LCVR) devices is critical for successful clinical implementation of a LC-based Mueller matrix imaging system being developed for noninvasisve skin cancer detection. For multispectral implementation of such a system, the effect of wavelength (), temperature (T), and voltage (V) on the retardance () required to generate each desired polarization state needs to be clearly understood. Calibration involves quantifying this interdependence such that for a given set of system input variables, T, the appropriate voltage is applied across a LC cell to generate a particular retardance. This paper presents findings that elucidate the dependence of voltage, for a set retardance, on the aforementioned variables for a nematic LC cell: 253 mv100 nm-dependence andd 10 mVC T-dependence. Additionally, an empirically derived model is presented that enables initial voltage calibration of retardance for any desired input wavelength within the calibration range of 460-905 nm. copyright 2007 Optical Society of America

  6. An Examination of Residual Wind Fluctuations Observed at 10 m over Flat Terrain.

    NASA Astrophysics Data System (ADS)

    Leahey, D. M.; Hansen, M. C.; Schroeder, M. B.

    1996-01-01

    This study investigates the behavior of wind fluctuations observed at the 10-m level over a flat terrain site located some 100 km east of the Rocky Mountains. The purposes were to assess residual fluctuations in order to ascertain effects attributable to the nonhomogenous, nonstationary character of turbulence and to evaluate influences of gravity waves. Residual wind fluctuations were defined for purposes of this study as the differences between observed half-hourly average standard deviations of wind fluctuations (v, u, w) and those that are expected to occur in association with simultaneous wind speeds and static stabilities. These latter fluctuations were estimated from equations developed by Leahey, Hansen, and Schroeder (LHS).Results of the analyses showed, as expected, that residual distributions for nonwesterly wind conditions were nearly Gaussian. Standard deviations for residuals of horizontal fluctuations, attributable to the nonhomogenous, nonstationary nature of turbulence, were 0.165 and 0.210 m s1 for stable and unstable situations, respectively. For residuals associated with vertical fluctuations they were, respectively, 0.065 and 0.075 m s1.Residuals for horizontal and vertical wind fluctuations observed when winds were from the mountains showed a greater tendency for the positive bias associated with gravity waves. This tendency was most evident under unstable conditions when gravity wave influences on horizontal fluctuations were apparent about 25% of the time. These influences are explained as being associated with mountain lee waves occurring at the planetary boundary layer's capping inversion. They are evidenced at the 10-m level because atmospheric mixing processes occurring in thermally unstable atmospheric situations bring momentum generated from these waves downward to the ground.Nonstationary and nonhomogenous atmospheric turbulence effects result in wind fluctuations whose half-hourly average standard deviations differ from those

  7. Size-Frequency Distribution of Boulders ≥ 10 m on Comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Pajola, M.; Lucchetti, A.; A'Hearn, M. F.; Bertini, I.; Marzari, F.; La Forgia, F.; Lazzarin, M.; Naletto, G.; Barbieri, C.

    2015-12-01

    We present the first size-frequency distribution of boulders ≥ 10 m identified on comet 103P/Hartley 2, computed from the images taken by the Deep Impact/High Resolution Imager - Visible CCD camera on 4 November 2010. We derived the size-frequency distribution of the illuminated side of the comet (˜ 50%), as well as identified the power-law indexes characterizing the two lobes of 103P. 332 boulders larger than 10 m were identified on the imaged surface of the comet, with a global number density of nearly 140/km2 and a cumulative size-frequency distribution represented by a power-law with index of -2.7 ± 0.2. The two lobes of 103P show close indexes, i.e. -2.7 ± 0.2 for the bigger lobe (L1) and -2.6 +0.2/-0.5 for the smaller one (L2). Both the similar power-law indexes and the similar maximum boulder sizes derived for the two lobes point towards a similar fracturing/disintegration phenomena of the boulders as well as similar lifting processes that may occur in L1 and L2. Nonetheless, the significative difference in the number of boulders per km2 between the two lobes suggests that the more diffuse H2O sublimation on the bigger lobe produce twice the boulders per km2 with respect to those produced on the small lobe (primary activity CO2 driven). If we compare the boulder distribution of the hyperactive 103P comet with similar studies performed on 67P (67P/Churyumov-Gerasimenko, i.e. the comet studied by Rosetta spacecraft), we derive that 103P shows a lower global power-law index (-2.7 vs -3.6). The size-frequency boulder trend of 103P is somehow closer to the -2.2 value measured on the neck region of 67P, i.e. the most active region of the northern hemisphere of 67P; nevertheless the hyperactivity of 103P works in a very different way than the normal activity of 67P in the neck/Hapi area. In addition to the global differences between the two comets' activities, the absence of cliffs and walls on 103P show a completely different surface geomorphology between

  8. Size-frequency distribution of boulders ≥10 m on comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Pajola, Maurizio; Lucchetti, Alice; Bertini, Ivano; Marzari, Francesco; A'Hearn, Michael F.; La Forgia, Fiorangela; Lazzarin, Monica; Naletto, Giampiero; Barbieri, Cesare

    2016-01-01

    Aims: We derive the size-frequency distribution of boulders on comet 103P/Hartley 2, which are computed from the images taken by the Deep Impact/HRI-V imaging system. We indicate the possible physical processes that lead to these boulder size distributions. Methods: We used images acquired by the High Resolution Imager-Visible CCD camera on 4 November 2010. Boulders ≥10 m were identified and manually extracted from the datasets with the software ArcGIS. We derived the global size-frequency distribution of the illuminated side of the comet (~50%) and identified the power-law indexes characterizing the two lobes of 103P. The three-pixel sampling detection, together with the shadowing of the surface, enables unequivocally detection of boulders scattered all over the illuminated surface. Results: We identify 332 boulders ≥10 m on the imaged surface of the comet, with a global number density of nearly 140/km2 and a cumulative size-frequency distribution represented by a power law with index of -2.7 ± 0.2. The two lobes of 103P show similar indexes, i.e., -2.7 ± 0.2 for the bigger lobe (called L1) and -2.6+ 0.2/-0.5 for the smaller lobe (called L2). The similar power-law indexes and similar maximum boulder sizes derived for the two lobes both point toward a similar fracturing/disintegration phenomena of the boulders as well as similar lifting processes that may occur in L1 and L2. The difference in the number of boulders per km2 between L1 and L2 suggests that the more diffuse H2O sublimation on L1 produce twice the boulders per km2 with respect to those produced on L2 (primary activity CO2 driven). The 103P comet has a lower global power-law index (-2.7 vs. -3.6) with respect to 67P. The global differences between the two comets' activities, coupled with a completely different surface geomorphology, make 103P hardly comparable to 67P. A shape distribution analysis of boulders ≥30 m performed on 103P suggests that the cometary boulders show more elongated shapes

  9. A high-precision angle encoder for a 10-m submillimeter antenna

    NASA Astrophysics Data System (ADS)

    Ukita, Nobuharu; Ezawa, Hajime; Mimura, Hisashi; Suganuma, Akira; Kitazawa, Kanji; Masuda, Tadashi; Kawaguchi, Noboru; Sugiyama, Ryuichi; Miyawaki, Keizou

    2001-03-01

    We report measurements of angle error characteristics of new high-precision multi-speed resolvers developed for a 10-m submillimeter telescope of Nobeyama Radio Observatory. We have found the resolvers have an accuracy of 0.03" rms and 0.26" peak-to-peak, which is well below the error budget assigned to the angle encoder in the LMSA/ALMA project (0.15 - 0.2"). The error pattern in the raw readout had simple characteristics and was only composed of a few Fourier components which are associated with the number of winding poles and core slot number of stator. The 4" peak-to-peak error in the raw readout is reduced to less than 1/15 by the PROM correction. We have also found that shaft misalignment causes only small changes of error pattern (0.08" error per 0.10 mm shaft misalignment), which enables us to install the resolver simply by the fitting. The temperature dependence of error pattern also seems to be small enough for the operation temperature range specified in the project.

  10. High Resolution Imaging of Satellites with Ground-Based 10-m Astronomical Telescopes

    SciTech Connect

    Marois, C

    2007-01-04

    High resolution imaging of artificial satellites can play an important role in current and future space endeavors. One such use is acquiring detailed images that can be used to identify or confirm damage and aid repair plans. It is shown that a 10-m astronomical telescope equipped with an adaptive optics system (AO) to correct for atmospheric turbulence using a natural guide star can acquire high resolution images of satellites in low-orbits using a fast shutter and a near-infrared camera even if the telescope is not capable of tracking satellites. With the telescope pointing towards the satellite projected orbit and less than 30 arcsec away from a guide star, multiple images of the satellite are acquired on the detector using the fast shutter. Images can then be shifted and coadded by post processing to increase the satellite signal to noise ratio. Using the Keck telescope typical Strehl ratio and anisoplanatism angle as well as a simple diffusion/reflection model for a satellite 400 km away observed near Zenith at sunset or sunrise, it is expected that such system will produced > 10{sigma} K-band images at a resolution of 10 cm inside a 60 arcsec diameter field of view. If implemented, such camera could deliver the highest resolution satellite images ever acquired from the ground.

  11. Invited review article: A 10 mK scanning probe microscopy facility.

    PubMed

    Song, Young Jae; Otte, Alexander F; Shvarts, Vladimir; Zhao, Zuyu; Kuk, Young; Blankenship, Steven R; Band, Alan; Hess, Frank M; Stroscio, Joseph A

    2010-12-01

    We describe the design, development and performance of a scanning probe microscopy (SPM) facility operating at a base temperature of 10 mK in magnetic fields up to 15 T. The microscope is cooled by a custom designed, fully ultra-high vacuum (UHV) compatible dilution refrigerator (DR) and is capable of in situ tip and sample exchange. Subpicometer stability at the tip-sample junction is achieved through three independent vibration isolation stages and careful design of the dilution refrigerator. The system can be connected to, or disconnected from, a network of interconnected auxiliary UHV chambers, which include growth chambers for metal and semiconductor samples, a field-ion microscope for tip characterization, and a fully independent additional quick access low temperature scanning tunneling microscope (STM) and atomic force microscope (AFM) system. To characterize the system, we present the cooling performance of the DR, vibrational, tunneling current, and tip-sample displacement noise measurements. In addition, we show the spectral resolution capabilities with tunneling spectroscopy results obtained on an epitaxial graphene sample resolving the quantum Landau levels in a magnetic field, including the sublevels corresponding to the lifting of the electron spin and valley degeneracies.

  12. Deformation twinning in Ni–Mn–Ga micropillars with 10M martensite

    PubMed Central

    Reinhold, M.; Kiener, D.; Knowlton, W. B.; Dehm, G.; Müllner, P.

    2009-01-01

    The maximum actuation frequency of magnetic shape-memory alloys (MSMAs) significantly increases with decreasing size of the transducer making MSMAs interesting candidates for small scale actuator applications. To study the mechanical properties of Ni–Mn–Ga single crystals on small length scales, two single-domain micropillars with dimensions of 10×15×30 μm3 were fabricated from a Ni–Mn–Ga monocrystal using dual beam focused ion beam machining. The pillars were oriented such that the crystallographic c direction was perpendicular to the loading direction. The pillars were compressed to maximum stresses of 350 and 50 MPa, respectively. Atomic force microscopy and magnetic force microscopy were performed prior to fabrication of the pillars and following the deformation experiments. Both micropillars were deformed by twinning as evidenced by the stress-strain curve. For one pillar, a permanent deformation of 3.6% was observed and ac twins (10M martensite) were identified after unloading. For the other pillar, only 0.7% remained upon unloading. No twins were found in this pillar after unloading. The recovery of deformation is discussed in the light of pseudoelastic twinning and twin-substrate interaction. The twinning stress was higher than in similar macroscopic material. However, further studies are needed to substantiate a size effect. PMID:19859577

  13. Radiometric Characterization of IKONOS Multispectral Imagery

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Ryan, Robert E.; Kelly, Michelle; Holekamp, Kara; Zanoni, Vicki; Thome, Kurtis; Schiller, Stephen

    2002-01-01

    A radiometric characterization of Space Imaging's IKONOS 4-m multispectral imagery has been performed by a NASA funded team from the John C. Stennis Space Center (SSC), the University of Arizona Remote Sensing Group (UARSG), and South Dakota State University (SDSU). Both intrinsic radiometry and the effects of Space Imaging processing on radiometry were investigated. Relative radiometry was examined with uniform Antarctic and Saharan sites. Absolute radiometric calibration was performed using reflectance-based vicarious calibration methods on several uniform sites imaged by IKONOS, coincident with ground-based surface and atmospheric measurements. Ground-based data and the IKONOS spectral response function served as input to radiative transfer codes to generate a Top-of-Atmosphere radiance estimate. Calibration coefficients derived from each vicarious calibration were combined to generate an IKONOS radiometric gain coefficient for each multispectral band assuming a linear response over the full dynamic range of the instrument. These calibration coefficients were made available to Space Imaging, which subsequently adopted them by updating its initial set of calibration coefficients. IKONOS imagery procured through the NASA Scientific Data Purchase program is processed with or without a Modulation Transfer Function Compensation kernel. The radiometric effects of this kernel on various scene types was also investigated. All imagery characterized was procured through the NASA Scientific Data Purchase program.

  14. Automated oil spill detection with multispectral imagery

    NASA Astrophysics Data System (ADS)

    Bradford, Brian N.; Sanchez-Reyes, Pedro J.

    2011-06-01

    In this publication we present an automated detection method for ocean surface oil, like that which existed in the Gulf of Mexico as a result of the April 20, 2010 Deepwater Horizon drilling rig explosion. Regions of surface oil in airborne imagery are isolated using red, green, and blue bands from multispectral data sets. The oil shape isolation procedure involves a series of image processing functions to draw out the visual phenomenological features of the surface oil. These functions include selective color band combinations, contrast enhancement and histogram warping. An image segmentation process then separates out contiguous regions of oil to provide a raster mask to an analyst. We automate the detection algorithm to allow large volumes of data to be processed in a short time period, which can provide timely oil coverage statistics to response crews. Geo-referenced and mosaicked data sets enable the largest identified oil regions to be mapped to exact geographic coordinates. In our simulation, multispectral imagery came from multiple sources including first-hand data collected from the Gulf. Results of the simulation show the oil spill coverage area as a raster mask, along with histogram statistics of the oil pixels. A rough square footage estimate of the coverage is reported if the image ground sample distance is available.

  15. Multi-spectral imaging of oxygen saturation

    NASA Astrophysics Data System (ADS)

    Savelieva, Tatiana A.; Stratonnikov, Aleksander A.; Loschenov, Victor B.

    2008-06-01

    The system of multi-spectral imaging of oxygen saturation is an instrument that can record both spectral and spatial information about a sample. In this project, the spectral imaging technique is used for monitoring of oxygen saturation of hemoglobin in human tissues. This system can be used for monitoring spatial distribution of oxygen saturation in photodynamic therapy, surgery or sports medicine. Diffuse reflectance spectroscopy in the visible range is an effective and extensively used technique for the non-invasive study and characterization of various biological tissues. In this article, a short review of modeling techniques being currently in use for diffuse reflection from semi-infinite turbid media is presented. A simple and practical model for use with a real-time imaging system is proposed. This model is based on linear approximation of the dependence of the diffuse reflectance coefficient on relation between absorbance and reduced scattering coefficient. This dependence was obtained with the Monte Carlo simulation of photon propagation in turbid media. Spectra of the oxygenated and deoxygenated forms of hemoglobin differ mostly in the red area (520 - 600 nm) and have several characteristic points there. Thus four band-pass filters were used for multi-spectral imaging. After having measured the reflectance, the data obtained are used for fitting the concentration of oxygenated and free hemoglobin, and hemoglobin oxygen saturation.

  16. Efficient lossless compression scheme for multispectral images

    NASA Astrophysics Data System (ADS)

    Benazza-Benyahia, Amel; Hamdi, Mohamed; Pesquet, Jean-Christophe

    2001-12-01

    Huge amounts of data are generated thanks to the continuous improvement of remote sensing systems. Archiving this tremendous volume of data is a real challenge which requires lossless compression techniques. Furthermore, progressive coding constitutes a desirable feature for telebrowsing. To this purpose, a compact and pyramidal representation of the input image has to be generated. Separable multiresolution decompositions have already been proposed for multicomponent images allowing each band to be decomposed separately. It seems however more appropriate to exploit also the spectral correlations. For hyperspectral images, the solution is to apply a 3D decomposition according to the spatial and to the spectral dimensions. This approach is not appropriate for multispectral images because of the reduced number of spectral bands. In recent works, we have proposed a nonlinear subband decomposition scheme with perfect reconstruction which exploits efficiently both the spatial and the spectral redundancies contained in multispectral images. In this paper, the problem of coding the coefficients of the resulting subband decomposition is addressed. More precisely, we propose an extension to the vector case of Shapiro's embedded zerotrees of wavelet coefficients (V-EZW) with achieves further saving in the bit stream. Simulations carried out on SPOT images indicate the outperformance of the global compression package we performed.

  17. Airborne system for testing multispectral reconnaissance technologies

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Doergeloh, Heinrich; Keil, Heiko; Wetjen, Wilfried

    1999-07-01

    There is an increasing demand for future airborne reconnaissance systems to obtain aerial images for tactical or peacekeeping operations. Especially Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensor system and with real time jam resistant data transmission capabilities are of high interest. An airborne experimental platform has been developed as testbed to investigate different concepts of reconnaissance systems before their application in UAVs. It is based on a Dornier DO 228 aircraft, which is used as flying platform. Great care has been taken to achieve the possibility to test different kinds of multispectral sensors. Hence basically it is capable to be equipped with an IR sensor head, high resolution aerial cameras of the whole optical spectrum and radar systems. The onboard equipment further includes system for digital image processing, compression, coding, and storage. The data are RF transmitted to the ground station using technologies with high jam resistance. The images, after merging with enhanced vision components, are delivered to the observer who has an uplink data channel available to control flight and imaging parameters.

  18. An integrated compact airborne multispectral imaging system using embedded computer

    NASA Astrophysics Data System (ADS)

    Zhang, Yuedong; Wang, Li; Zhang, Xuguo

    2015-08-01

    An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.

  19. First Resolved Images of a Spacecraft in Geostationary Orbit with the Keck-II 10 m Telescope

    DTIC Science & Technology

    2010-09-01

    2009, with the adaptive optics on the largest telescope on the planet, the 10 m Keck-II on the 14000 foot summit of Mauna Kea . 1. Observations As...part of an engineering run at the Keck-II 10 m telescope on Mauna Kea , several adaptive optics images were obtained of geostationary satellite GE-23, a...largest telescope on the planet, the 10 m Keck-II on the 14000 foot summit of Mauna Kea . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17

  20. Thermal and Wind Effects on the Azimuth Axis Tilt of the ASTE 10-m Antenna

    NASA Astrophysics Data System (ADS)

    Ukita, Nobuharu; Ezawa, Hajime; Ikenoue, Bungo; Saito, Masao

    2007-10-01

    The azimuth axis tilt of the ASTE 10-m antenna induced by thermal and wind loadings was investigated with a dual-axis inclinometer on the azimuth axis, along with thermometers on the pedestal and yoke structures and an ultrasonic anemometer on a nearby weather station. The dependences of the inclinometer zero-point offsets against temperature of the device, temperature gradients in the pedestal and yoke structure were obtained for the measurements over 11 months during the antenna being parked at its home position (azimuth angles = ?180 degrees, an elevation angle = 60 degrees) under wind velocities < 8 m s-1. The temperature dependences of the zero-point offsets were found to be 1.24 and -0.46 arcseconds/degree, and were close to those obtained with an independent method. The azimuth axis tilts due to the temperature difference between the two opposite sides of pedestal walls were found to be about 1.1 and 1.7 arcseconds/degree, and consistent with 1.5 arcseconds/degree estimated with a simple model. The residual axis tilt of the whole samples after removal of the temperature dependences shows dependence against overturning moment estimated from the wind data. The stiffness of the antenna structures between the yoke base section and the ground was estimated to be 5.3 and 3.4 GNm/rad using the observed tilts in two directions; and were smaller than 6.0 GNm/rad from a mechanical model prediction. Based on these field experiments, we discuss the improvements and limitations of pointing performance with the inclinometer metrology system.

  1. Multispectral Filter Arrays: Recent Advances and Practical Implementation

    PubMed Central

    Lapray, Pierre-Jean; Wang, Xingbo; Thomas, Jean-Baptiste; Gouton, Pierre

    2014-01-01

    Thanks to some technical progress in interferencefilter design based on different technologies, we can finally successfully implement the concept of multispectral filter array-based sensors. This article provides the relevant state-of-the-art for multispectral imaging systems and presents the characteristics of the elements of our multispectral sensor as a case study. The spectral characteristics are based on two different spatial arrangements that distribute eight different bandpass filters in the visible and near-infrared area of the spectrum. We demonstrate that the system is viable and evaluate its performance through sensor spectral simulation. PMID:25407904

  2. Lattice algebra approach to multispectral analysis of ancient documents.

    PubMed

    Valdiviezo-N, Juan C; Urcid, Gonzalo

    2013-02-01

    This paper introduces a lattice algebra procedure that can be used for the multispectral analysis of historical documents and artworks. Assuming the presence of linearly mixed spectral pixels captured in a multispectral scene, the proposed method computes the scaled min- and max-lattice associative memories to determine the purest pixels that best represent the spectra of single pigments. The estimation of fractional proportions of pure spectra at each image pixel is used to build pigment abundance maps that can be used for subsequent restoration of damaged parts. Application examples include multispectral images acquired from the Archimedes Palimpsest and a Mexican pre-Hispanic codex.

  3. Eliminate background interference from latent fingerprints using ultraviolet multispectral imaging

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Xu, Xiaojing; Wang, Guiqiang

    2014-02-01

    Fingerprints are the most important evidence in crime scene. The technology of developing latent fingerprints is one of the hottest research areas in forensic science. Recently, multispectral imaging which has shown great capability in fingerprints development, questioned document detection and trace evidence examination is used in detecting material evidence. This paper studied how to eliminate background interference from non-porous and porous surface latent fingerprints by rotating filter wheel ultraviolet multispectral imaging. The results approved that background interference could be removed clearly from latent fingerprints by using multispectral imaging in ultraviolet bandwidth.

  4. Crop, soil, and geological mapping from digitized multispectral satellite photography.

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.; Kristof, S. J.; Levandowski, D. W.; Phillips, T. L.; Macdonald, R. B.

    1971-01-01

    An experimental study was conducted of digitized multispectral satellite photography to seek answers to the following two questions: what are the data handling problems and requirements of converting photographic density measurements to a usable digital form, and what surface features can be distinguished using multispectral data taken at satellite altitudes. Results include the digitization of three multiband black and white photographs and a color infrared photograph, the conversion of the results of digitization to a useful digital form, and several data analysis experiments. As a whole, they encourage the use of multiband photography as a multispectral data collection instrument.

  5. A program system for efficient multispectral classification

    NASA Astrophysics Data System (ADS)

    Åkersten, S. I.

    Pixelwise multispectral classification is an important tool for analyzing remotely sensed imagery data. The computing time for performing this analysis becomes significantly large when large, multilayer images are analyzed. In the classical implementation of the supervised multispectral classification assuming gaussian-shaped multidimensional class-clusters, the computing time is furthermore approximately proportional to the square of the number of image layers. This leads to very appreciable CPU-times when large numbers of multispectral channels are used and/or temporal classification is performed. In order to decrease computer time, a classification program system has been implemented which has the following characteristics: (1) a simple one-dimensional box classifier, (2) a multidimensional box classifier, (3) a class-pivotal "canonical" classifier utilizing full maximum likelihood and making full use of within-class and between-class statistical characteristics, (4) a hybrid classifier (2 and 3 combined), and (5) a local neighbourhood filtering algorithm producing generalized classification results. The heart of the classifier is the class-pivotal canonical classifier. This algorithm is based upon an idea of Dye suggesting the use of linear transformations making possible a simultaneous evaluation of a measure of the pixel being likely not to belong to the candidate class as well as computing its full maximum likelihood ratio. In case it is more likely to be misclassified the full maximum likelihood evaluation can be truncated almost immediately, i.e. the candidate class can often be rejected using only one or two of the available transformed spectral features. The result of this is a classifier with CPU-time which is empirically shown to be linearly dependent upon the number of image layers. The use of the hybrid classifier lowers the CPU-time with another factor of 3-4. Furthermore, for certain problems like classifying water-non water a single spectral band

  6. Temporal analysis of multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Wiegand, C. L.; Torline, R. J.

    1973-01-01

    Multispectral scanner reflectance data were sampled for bare soil, cotton, sorghum, corn, and citrus at four dates during a growing season (April, May, June, and July 1969) to develop a time-dependent signature for crop and soil discrimination. Discrimination tests were conducted for single-date and multidate formats using training and test data sets. For classifications containing several crops, the multidate or temporal approach improved discrimination compared with the single-date approach. The multidate approach also preserved recognition accuracy better in going from training fields to test fields than the single-date analysis. The spectral distinctiveness of bare soil versus vegetation resulted in essentially equal discrimination using single-date versus multidate data for those two categories.

  7. Analyzing High-Dimensional Multispectral Data

    NASA Technical Reports Server (NTRS)

    Lee, Chulhee; Landgrebe, David A.

    1993-01-01

    In this paper, through a series of specific examples, we illustrate some characteristics encountered in analyzing high- dimensional multispectral data. The increased importance of the second-order statistics in analyzing high-dimensional data is illustrated, as is the shortcoming of classifiers such as the minimum distance classifier which rely on first-order variations alone. We also illustrate how inaccurate estimation or first- and second-order statistics, e.g., from use of training sets which are too small, affects the performance of a classifier. Recognizing the importance of second-order statistics on the one hand, but the increased difficulty in perceiving and comprehending information present in statistics derived from high-dimensional data on the other, we propose a method to aid visualization of high-dimensional statistics using a color coding scheme.

  8. Multispectral tissue characterization for intestinal anastomosis optimization

    NASA Astrophysics Data System (ADS)

    Cha, Jaepyeong; Shademan, Azad; Le, Hanh N. D.; Decker, Ryan; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2015-10-01

    Intestinal anastomosis is a surgical procedure that restores bowel continuity after surgical resection to treat intestinal malignancy, inflammation, or obstruction. Despite the routine nature of intestinal anastomosis procedures, the rate of complications is high. Standard visual inspection cannot distinguish the tissue subsurface and small changes in spectral characteristics of the tissue, so existing tissue anastomosis techniques that rely on human vision to guide suturing could lead to problems such as bleeding and leakage from suturing sites. We present a proof-of-concept study using a portable multispectral imaging (MSI) platform for tissue characterization and preoperative surgical planning in intestinal anastomosis. The platform is composed of a fiber ring light-guided MSI system coupled with polarizers and image analysis software. The system is tested on ex vivo porcine intestine tissue, and we demonstrate the feasibility of identifying optimal regions for suture placement.

  9. Multispectral Mapping of the Moon by Clementine

    NASA Technical Reports Server (NTRS)

    Eliason, Eric M.; McEwen, Alfred S.; Robinson, M.; Lucey, Paul G.; Duxbury, T.; Malaret, E.; Pieters, Carle; Becker, T.; Isbell, C.; Lee, E.

    1998-01-01

    One of the chief scientific objectives of the Clementine mission at the Moon was to acquire global multispectral mapping. A global digital map of the Moon in 11 spectral bandpasses and at a scale of 100 m/pixel is being produced at the U.S. Geological Survey in Flagstaff Arizona Near-global coverage was acquired with the UVVIS camera (central wavelengths of 415, 750, 900, 950, and 1000 nm) and the NIR camera (1102, 1248, 1499, 1996, 2620, and 2792 nary). We expect to complete processing of the UVVIS mosaics before the fall of 1998, and to complete the NIR mosaics a year later. The purpose of this poster is to provide an update on the processing and to show examples of the products or perhaps even a wall-sized display of color products from the UVVIS mosaics.

  10. Multi-Spectral Cloud Property Retrieval

    NASA Technical Reports Server (NTRS)

    Carlson, Barbara E.; Lynch, R

    1999-01-01

    Despite numerous studies to retrieve cloud properties using infrared measurements the information content of the data has not yet been fully exploited. In an effort to more fully utilize the information content of infrared measurements, we have developed a multi-spectral technique for retrieving effective cloud particle size, optical depth and effective cloud temperature. While applicable to all cloud types, we begin by validating our retrieval technique through analysis of MS spectral radiances obtained during the SUCCESS field campaign over the ARM SGP CART facility, and compare our retrieval product with lidar and MODIS Airborne Simulator (MAS) measurement results. The technique is then applied to the Nimbus-4 MS infrared spectral measurements to obtain global cloud information.

  11. Contextual classification of multispectral image data

    NASA Technical Reports Server (NTRS)

    Tilton, J. C.; Swain, P. H.

    1981-01-01

    A general method is presented for exploiting both spatial and spectral information when classifying multispectral image data. This statistical classification algorithm utilizes the tendency of certain ground cover classes to be more likely to occur in some contexts than others. The theoretical model assumes the two-dimensional array of random observations and a 0-1 loss function, a distribution of the p-context array that is spatially invariant, and class-conditional independence for the observations. The problems that prevent the immediate use of this context classifier are the need for a generally applicable method for making adequate estimates of the context distribution and a reduction in the computational intensivity of the classifier. The former problem is being approached by a method that raises the relative frequency value for each class configuration to a power and uses the result as the context distribution estimate. The second is being approached by searching for a less computationally intensive algorithm.

  12. Spatial frequency analysis of multispectral data.

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    1972-01-01

    This paper presents the definitions of texture dependent features which can be obtained in terms of the spatial frequencies of small sections of remotely sensed multispectral data. The features are made independent of the direction of view by defining them as symmetric functions of the spatial frequencies sensed with various viewing directions. Several textural features are defined and experimental results indicating existence of signatures in these features are presented. Preliminary experiments have been performed on the classification of 60 samples, 10 from each of the following 6 categories - grass, trees, water, staked tomatoes, treated ground tomatoes, and untreated ground tomatoes. Classifications of the training samples using only one feature at a time indicate that several of the features yield classification efficiencies higher than 65%. The efficiency increases considerably when combinations of these features are used.

  13. Analysis of multispectral signatures of the shot

    NASA Astrophysics Data System (ADS)

    Kastek, Mariusz; Dulski, Rafał; Piątkowski, Tadeusz; Madura, Henryk; Bareła, Jarosław; Polakowski, Henryk

    2011-06-01

    The paper presents some practical aspects of sniper IR signature measurements. Description of particular signatures for sniper shot in typical scenarios has been presented. We take into consideration sniper activities in the open area as well as in urban environment. The measurements were made at field test ground. High precision laboratory measurements were also performed. Several infrared cameras were used during measurements to cover all measurement assumptions. Some of the cameras are measurement-class devices with high accuracy and frame rates. The registrations were simultaneously made in UV, NWIR, SWIR and LWIR spectral bands. The infrared cameras have possibilities to install optical filters for multispectral measurement. An ultra fast visual camera was also used for visible spectra registration. Exemplary sniper IR signatures for typical situation were presented. LWIR imaging spectroradiometer HyperCam was also used during the laboratory measurements and field experiments. The signatures collected by HyperCam were useful for the determination of spectral characteristics of shot.

  14. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE BYPRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This paper discusses the identification of organic disinfectant byproducts (DNPS) at a pilot plant in Evansville, IN, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high- and low-resolu...

  15. Pre-Processor for Compression of Multispectral Image Data

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron

    2006-01-01

    A computer program that preprocesses multispectral image data has been developed to provide the Mars Exploration Rover (MER) mission with a means of exploiting the additional correlation present in such data without appreciably increasing the complexity of compressing the data.

  16. Optimal wavelength band clustering for multispectral iris recognition.

    PubMed

    Gong, Yazhuo; Zhang, David; Shi, Pengfei; Yan, Jingqi

    2012-07-01

    This work explores the possibility of clustering spectral wavelengths based on the maximum dissimilarity of iris textures. The eventual goal is to determine how many bands of spectral wavelengths will be enough for iris multispectral fusion and to find these bands that will provide higher performance of iris multispectral recognition. A multispectral acquisition system was first designed for imaging the iris at narrow spectral bands in the range of 420 to 940 nm. Next, a set of 60 human iris images that correspond to the right and left eyes of 30 different subjects were acquired for an analysis. Finally, we determined that 3 clusters were enough to represent the 10 feature bands of spectral wavelengths using the agglomerative clustering based on two-dimensional principal component analysis. The experimental results suggest (1) the number, center, and composition of clusters of spectral wavelengths and (2) the higher performance of iris multispectral recognition based on a three wavelengths-bands fusion.

  17. Hyperspectral and multispectral imaging for evaluating food safety and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spectral imaging technologies have been developed rapidly during the past decade. This paper presents hyperspectral and multispectral imaging technologies in the area of food safety and quality evaluation, with an introduction, demonstration, and summarization of the spectral imaging techniques avai...

  18. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BYPRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This paper discusses the identification of organic disinfection byproducts (DBPs) at a pilot plant in Evansville, IN, which uses chlorine dioxide as a primary disinfectant. Unconventional multispectral identification techniques (gas chromatography combined with high- and low reso...

  19. Interactive color display for multispectral imagery using correlation clustering

    NASA Technical Reports Server (NTRS)

    Haskell, R. E. (Inventor)

    1979-01-01

    A method for processing multispectral data is provided, which permits an operator to make parameter level changes during the processing of the data. The system is directed to production of a color classification map on a video display in which a given color represents a localized region in multispectral feature space. Interactive controls permit an operator to alter the size and change the location of these regions, permitting the classification of such region to be changed from a broad to a narrow classification.

  20. Digital computer processing of peach orchard multispectral aerial photography

    NASA Technical Reports Server (NTRS)

    Atkinson, R. J.

    1976-01-01

    Several methods of analysis using digital computers applicable to digitized multispectral aerial photography, are described, with particular application to peach orchard test sites. This effort was stimulated by the recent premature death of peach trees in the Southeastern United States. The techniques discussed are: (1) correction of intensity variations by digital filtering, (2) automatic detection and enumeration of trees in five size categories, (3) determination of unhealthy foliage by infrared reflectances, and (4) four band multispectral classification into healthy and declining categories.

  1. Fast Lossless Compression of Multispectral-Image Data

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew

    2006-01-01

    An algorithm that effects fast lossless compression of multispectral-image data is based on low-complexity, proven adaptive-filtering algorithms. This algorithm is intended for use in compressing multispectral-image data aboard spacecraft for transmission to Earth stations. Variants of this algorithm could be useful for lossless compression of three-dimensional medical imagery and, perhaps, for compressing image data in general.

  2. Quantum Dot Detector Enhancement for Narrow Band Multispectral Applications

    DTIC Science & Technology

    2013-12-01

    AFRL-RY-WP-TR-2013-0168 QUANTUM DOT DETECTOR ENHANCEMENT FOR NARROW BAND MULTISPECTRAL APPLICATIONS John Derov and Neda Mojaverian... QUANTUM DOT DETECTOR ENHANCEMENT FOR NARROW BAND MULTISPECTRAL APPLICATIONS 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...enhancement of quantum dot photodetectors was also investigated. 15. SUBJECT TERMS quantum dot, quantum well, photodetectors, plasmonics 16

  3. Processing Of Multispectral Data For Identification Of Rocks

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.

    1990-01-01

    Linear discriminant analysis and supervised classification evaluated. Report discusses processing of multispectral remote-sensing imagery to identify kinds of sedimentary rocks by spectral signatures in geological and geographical contexts. Raw image data are spectra of picture elements in images of seven sedimentary rock units exposed on margin of Wind River Basin in Wyoming. Data acquired by Landsat Thematic Mapper (TM), Thermal Infrared Multispectral Scanner (TIMS), and NASA/JPL airborne synthetic-aperture radar (SAR).

  4. Use of digital multispectral videography to assess seagrass distribution in San Quintin Bay, Baja California, Mexico

    USGS Publications Warehouse

    Ward, D.H.; Tibbitts, T.L.; Morton, Alexandra; Carrera-Gonzalez, Eduardo; Kempka, R.

    2004-01-01

    Apparent threats to the spatial distribution of seagrass in San Quintín Bay prompted us to make a detailed assessment of habitats in the bay. Six coastal habitats and three seagrass subclasses were delineated using airborne digital multispectral videography (DMSV). Eelgrass, Zostera marina, was the predominant seagrass and covered 40% (1949 ha) of the areal extent of the bay in 1999. Eelgrass grew over a wide range of tidal depths from about –3.0 m mean lower low water (MLLW) to about 1.0 m MLLW, but greatest spatial extent occurred in intertidal areas –0.6 m to 1.0 m MLLW. Exposed-continuous (i.e., high density) eelgrass was the most abundant habitat in the bay. Widgeongrass, Ruppia maritima, was the only other seagrass present and covered 3% (136 ha) of the areal extent of the entire bay. Widgeongrass grew in single species stands in the upper intertidal (≥ 0.4 MLLW) and intermixed with eelgrass at lower tidal depths. Overall accuracy of the six habitat classes and three subclasses in the DMSV map was relatively high at 84%. Our detailed map of San Quintín Bay can be used in future change detection analyses to monitor the health of seagrasses in the bay.

  5. Design and implementation of digital airborne multispectral camera system

    NASA Astrophysics Data System (ADS)

    Lin, Zhaorong; Zhang, Xuguo; Wang, Li; Pan, Deai

    2012-10-01

    The multispectral imaging equipment is a kind of new generation remote sensor, which can obtain the target image and the spectra information simultaneously. A digital airborne multispectral camera system using discrete filter method had been designed and implemented for unmanned aerial vehicle (UAV) and manned aircraft platforms. The digital airborne multispectral camera system has the advantages of larger frame, higher resolution, panchromatic and multispectral imaging. It also has great potential applications in the fields of environmental and agricultural monitoring and target detection and discrimination. In order to enhance the measurement precision and accuracy of position and orientation, Inertial Measurement Unit (IMU) is integrated in the digital airborne multispectral camera. Meanwhile, the Temperature Control Unit (TCU) guarantees that the camera can operate in the normal state in different altitudes to avoid the window fogging and frosting which will degrade the imaging quality greatly. Finally, Flying experiments were conducted to demonstrate the functionality and performance of the digital airborne multispectral camera. The resolution capability, positioning accuracy and classification and recognition ability were validated.

  6. Novel instrumentation of multispectral imaging technology for detecting tissue abnormity

    NASA Astrophysics Data System (ADS)

    Yi, Dingrong; Kong, Linghua

    2012-10-01

    Multispectral imaging is becoming a powerful tool in a wide range of biological and clinical studies by adding spectral, spatial and temporal dimensions to visualize tissue abnormity and the underlying biological processes. A conventional spectral imaging system includes two physically separated major components: a band-passing selection device (such as liquid crystal tunable filter and diffraction grating) and a scientific-grade monochromatic camera, and is expensive and bulky. Recently micro-arrayed narrow-band optical mosaic filter was invented and successfully fabricated to reduce the size and cost of multispectral imaging devices in order to meet the clinical requirement for medical diagnostic imaging applications. However the challenging issue of how to integrate and place the micro filter mosaic chip to the targeting focal plane, i.e., the imaging sensor, of an off-shelf CMOS/CCD camera is not reported anywhere. This paper presents the methods and results of integrating such a miniaturized filter with off-shelf CMOS imaging sensors to produce handheld real-time multispectral imaging devices for the application of early stage pressure ulcer (ESPU) detection. Unlike conventional multispectral imaging devices which are bulky and expensive, the resulting handheld real-time multispectral ESPU detector can produce multiple images at different center wavelengths with a single shot, therefore eliminates the image registration procedure required by traditional multispectral imaging technologies.

  7. Application of multispectral systems for the diagnosis of plant diseases

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Liao, Ningfang; Wang, Guolong; Luo, Yongdao; Liang, Minyong

    2008-03-01

    Multispectral imaging technique combines space imaging and spectral detecting. It can obtain the spectral information and image information of object at the same time. Base on this concept, A new method proposed multispectral camera system to demonstrated plant diseases. In this paper, multispectral camera was used as image capturing device. It consists of a monochrome CCD camera and 16 narrow-band filters. The multispectral images of Macbeth 24 color patches are captured under the illumination of incandescent lamp in this experiment The 64 spectral reflectances of each color patches are calculated using Spline interpolation from 400 to 700nm in the process. And the color of the object is reproduced from the estimated spectral reflectance. The result for reproduction is contrast with the color signal using X-rite PULSE spectrophotometer. The average and maximum ΔΕ * ab are 9.23 and 12.81. It is confirmed that the multispectral system realizes the color reproduction of plant diseases from narrow-band multispectral image.

  8. Study of a hybrid multispectral processor

    NASA Technical Reports Server (NTRS)

    Marshall, R. E.; Kriegler, F. J.

    1973-01-01

    A hybrid processor is described offering enough handling capacity and speed to process efficiently the large quantities of multispectral data that can be gathered by scanner systems such as MSDS, SKYLAB, ERTS, and ERIM M-7. Combinations of general-purpose and special-purpose hybrid computers were examined to include both analog and digital types as well as all-digital configurations. The current trend toward lower costs for medium-scale digital circuitry suggests that the all-digital approach may offer the better solution within the time frame of the next few years. The study recommends and defines such a hybrid digital computing system in which both special-purpose and general-purpose digital computers would be employed. The tasks of recognizing surface objects would be performed in a parallel, pipeline digital system while the tasks of control and monitoring would be handled by a medium-scale minicomputer system. A program to design and construct a small, prototype, all-digital system has been started.

  9. Compressive hyperspectral and multispectral imaging fusion

    NASA Astrophysics Data System (ADS)

    Espitia, Óscar; Castillo, Sergio; Arguello, Henry

    2016-05-01

    Image fusion is a valuable framework which combines two or more images of the same scene from one or multiple sensors, allowing to improve the resolution of the images and increase the interpretable content. In remote sensing a common fusion problem consists of merging hyperspectral (HS) and multispectral (MS) images that involve large amount of redundant data, which ignores the highly correlated structure of the datacube along the spatial and spectral dimensions. Compressive HS and MS systems compress the spectral data in the acquisition step allowing to reduce the data redundancy by using different sampling patterns. This work presents a compressed HS and MS image fusion approach, which uses a high dimensional joint sparse model. The joint sparse model is formulated by combining HS and MS compressive acquisition models. The high spectral and spatial resolution image is reconstructed by using sparse optimization algorithms. Different fusion spectral image scenarios are used to explore the performance of the proposed scheme. Several simulations with synthetic and real datacubes show promising results as the reliable reconstruction of a high spectral and spatial resolution image can be achieved by using as few as just the 50% of the datacube.

  10. Cell metabolism, tumour diagnosis and multispectral FLIM

    NASA Astrophysics Data System (ADS)

    Rück, A.; Hauser, C.; Lorenz, S.; Mosch, S.; Rotte, S.; Kessler, M.; Kalinina, S.

    2013-02-01

    Fluorescence guided diagnosis of tumour tissue is in many cases insufficient, because false positive results are interfering with the outcome. Discrimination between tumour and inflammation could be therefore difficult. Improvement of fluorescence diagnosis through observation of cell metabolism could be the solution, which needs a detailed understanding of the origin of autofluorescence. However, a complex combination of fluorophores give rise to the emission signal. Also in PDD (photodynamic diagnosis) different photosensitizer metabolites contribute to the fluorescence signal. Therefore, the fluorescence decay in many cases does not show a simple monoexponential profile. In those cases a considerable improvement could be achieved when time-resolved and spectral-resolved techniques are simultaneously incorporated. The discussion will focus on the detection of NADH, FAD and 5-ALA induced porphyrins. With respect to NADH and FAD the discrimination between protein bound and free coenzyme was investigated with multispectral FLIM in normal oral keratinocytes and squamous carcinoma cells from different origin. The redox ratio, which can be correlated with the fluorescence lifetimes of NADH and FAD changed depending on the state of the cells. Most of the investigations were done in monolayer cell cultures. However, in order to get information from a more realistic in vivo situation additionally the chorioallantoismembrane (CAM) of fertilized eggs was used where tumour cells or biopsies were allowed to grow. The results of theses measurements will be discussed as well.

  11. Semantic segmentation of multispectral overhead imagery

    NASA Astrophysics Data System (ADS)

    Prasad, Lakshman; Pope, Paul A.; Sentz, Kari

    2016-05-01

    Land cover classification uses multispectral pixel information to separate image regions into categories. Image segmentation seeks to separate image regions into objects and features based on spectral and spatial image properties. However, making sense of complex imagery typically requires identifying image regions that are often a heterogeneous mixture of categories and features that constitute functional semantic units such as industrial, residential, or commercial areas. This requires leveraging both spectral classification and spatial feature extraction synergistically to synthesize such complex but meaningful image units. We present an efficient graphical model for extracting such semantically cohesive regions. We employ an initial hierarchical segmentation of images into features represented as nodes of an attributed graph that represents feature properties as well as their adjacency relations with other features. This provides a framework to group spectrally and structurally diverse features, which are nevertheless semantically cohesive, based on user-driven identifications of features and their contextual relationships in the graph. We propose an efficient method to construct, store, and search an augmented graph that captures nonadjacent vicinity relationships of features. This graph can be used to query for semantic notional units consisting of ontologically diverse features by constraining it to specific query node types and their indicated/desired spatial interaction characteristics. User interaction with, and labeling of, initially segmented and categorized image feature graph can then be used to learn feature (node) and regional (subgraph) ontologies as constraints, and to identify other similar semantic units as connected components of the constraint-pruned augmented graph of a query image.

  12. Multispectral Stokes polarimetry for dermatoscopic imaging

    NASA Astrophysics Data System (ADS)

    Castillejos, Y.; Martínez-Ponce, Geminiano; Mora-Nuñez, Azael; Castro-Sanchez, R.

    2015-12-01

    Most of skin pathologies, including melanoma and basal/squamous cell carcinoma, are related to alterations in external and internal order. Usually, physicians rely on their empirical expertise to diagnose these ills normally assisted with dermatoscopes. When there exists skin cancer suspicion, a cytology or biopsy is made, but both laboratory tests imply an invasive procedure. In this regard, a number of non-invasive optical techniques have been proposed recently to improve the diagnostic certainty and assist in the early detection of cutaneous cancer. Herein, skin optical properties are derived with a multispectral polarimetric dermatoscope using three different illumination wavelength intervals centered at 470, 530 and 635nm. The optical device consist of two polarizing elements, a quarter-wave plate and a linear polarizer, rotating at a different angular velocity and a CCD array as the photoreceiver. The modulated signal provided by a single pixel in the acquired image sequence is analyzed with the aim of computing the Stokes parameters. Changes in polarization state of selected wavelengths provide information about the presence of skin pigments such as melanin and hemoglobin species as well as collagen structure, among other components. These skin attributes determine the local physiology or pathology. From the results, it is concluded that optical polarimetry will provide additional elements to dermatologists in their diagnostic task.

  13. Airborne system for multispectral, multiangle polarimetric imaging.

    PubMed

    Bowles, Jeffrey H; Korwan, Daniel R; Montes, Marcos J; Gray, Deric J; Gillis, David B; Lamela, Gia M; Miller, W David

    2015-11-01

    In this paper, we describe the design, fabrication, calibration, and deployment of an airborne multispectral polarimetric imager. The motivation for the development of this instrument was to explore its ability to provide information about water constituents, such as particle size and type. The instrument is based on four 16 MP cameras and uses wire grid polarizers (aligned at 0°, 45°, 90°, and 135°) to provide the separation of the polarization states. A five-position filter wheel provides for four narrow-band spectral filters (435, 550, 625, and 750 nm) and one blocked position for dark-level measurements. When flown, the instrument is mounted on a programmable stage that provides control of the view angles. View angles that range to ±65° from the nadir have been used. Data processing provides a measure of the polarimetric signature as a function of both the view zenith and view azimuth angles. As a validation of our initial results, we compare our measurements, over water, with the output of a Monte Carlo code, both of which show neutral points off the principle plane. The locations of the calculated and measured neutral points are compared. The random error level in the measured degree of linear polarization (8% at 435) is shown to be better than 0.25%.

  14. Surface Emissivity Derived From Multispectral Satellite Data

    NASA Technical Reports Server (NTRS)

    Minnis, P.; Smith, W. L., Jr.; Young, D. F.

    1998-01-01

    Surface emissivity is critical for remote sensing of surface skin temperature and infrared cloud properties when the observed radiance is influenced by the surface radiation. It is also necessary to correctly compute the longwave flux from a surface at a given skin temperature. Surface emissivity is difficult to determine because skin temperature is an ill-defined parameter. The surface-emitted radiation may arise from a range of surface depths depending on many factors including soil moisture, vegetation, surface porosity, and heat capacity. Emissivity can be measured in the laboratory for pure surfaces. Transfer of laboratory measurements to actual Earth surfaces, however, is fraught with uncertainties because of their complex nature. This paper describes a new empirical approach for estimating surface skin temperature from a combination of brightness temperatures measured at different infrared wavelengths with satellite imagers. The method uses data from the new Geostationary Operational Environmental Satellite (GOES) imager to determine multispectral emissivities from the skin temperatures derived over the ARM Southern Great Plains domain.

  15. New Multispectral Cloud Retrievals from MODIS

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Tsay, Si-Chee; Ackerman, Steven A.; Menzel, W. Paul; Gray, Mark A.; Moody, Eric G.; Li, Jason Y.; Arnold, G. Thomas

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999. It achieved its final orbit and began Earth observations on February 24, 2000. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun- synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (two bands), 500 m (five bands) and 1000 m (29 bands). In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.

  16. Iris biometric system design using multispectral imaging

    NASA Astrophysics Data System (ADS)

    Widhianto, Benedictus Yohanes Bagus Y. B.; Nasution, Aulia M. T.

    2016-11-01

    An identity recognition system is a vital component that cannot be separated from life, iris biometric is one of the biometric that has the best accuracy reaching 99%. Usually, iris biometric systems use infrared spectrum lighting to reduce discomfort caused by radiation when the eye is given direct light, while the eumelamin that is forming the iris has the most flourescent radiation when given a spectrum of visible light. This research will be conducted by detecting iris wavelengths of 850 nm, 560 nm, and 590 nm, where the detection algorithm will be using Daugman algorithm by using a Gabor wavelet extraction feature, and matching feature using a Hamming distance. Results generated will be analyzed to identify how much differences there are, and to improve the accuracy of the multispectral biometric system and as a detector of the authenticity of the iris. The results obtained from the analysis of wavelengths 850 nm, 560 nm, and 590 nm respectively has an accuracy of 99,35 , 97,5 , 64,5 with a matching score of 0,26 , 0,23 , 0,37.

  17. Multispectral glancing incidence X-ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1990-01-01

    A multispectral glancing incidence X-ray telescope is illustrated capable of broadband, high-resolution imaging of solar and stellar X-ray and extreme ultraviolet radiation sources which includes a primary optical system preferably of the Wolter I type having a primary mirror system (20, 22). The primary optical system further includes an optical axis (24) having a primary focus (F1) at which the incoming radiation is focused by the primary mirrors. A plurality of ellipsoidal mirrors (30a, 30b, 30cand 30d) are carried at an inclination to the optical axis behind the primary focus (F1). A rotating carrier (32) is provided on which the ellipsoidal mirrors are carried so that a desired one of the ellipsoidal mirrors may be selectively positioned in front of the incoming radiation beam (26). In the preferred embodiment, each of the ellipsoidal mirrors has an identical concave surface carrying a layered synthetic microstructure coating tailored to reflect a desired wavelength of 1.5 .ANG. or longer. Each of the identical ellipsoidal mirrors has a second focus (F2) at which a detector (16) is carried. Thus the different wavelength image is focused upon the detector irregardless of which mirror is positioned in front of the radiation beam. In this manner, a plurality of low wavelengths in a wavelength band generally less than 30 angstroms can be imaged with a high resolution.

  18. A computer simulation for evaluating the array performance of the 10-m/phi/ 5-element super-synthesis telescope

    NASA Astrophysics Data System (ADS)

    Morita, K.-I.; Ishiguro, M.

    1980-03-01

    The array performance in several successive configurations was examined for the 10-m(phi) 5-element super-synthesis telescope. The number of (u, v) samples was used as a criterion of optimum (u, v) coverages. The optimum solution for a given declination was obtained by a random trial method. The performance was evaluated by computer simulation using model brightness distributions.

  19. The Multispectral Imaging Science Working Group. Volume 2: Working group reports

    NASA Technical Reports Server (NTRS)

    Cox, S. C. (Editor)

    1982-01-01

    Summaries of the various multispectral imaging science working groups are presented. Current knowledge of the spectral and spatial characteristics of the Earth's surface is outlined and the present and future capabilities of multispectral imaging systems are discussed.

  20. Lossless, Multi-Spectral Data Compressor for Improved Compression for Pushbroom-Type Instruments

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew

    2008-01-01

    A low-complexity lossless algorithm for compression of multispectral data has been developed that takes into account pushbroom-type multispectral imagers properties in order to make the file compression more effective.

  1. Mapping of hydrothermally altered rocks using airborne multispectral scanner data, Marysvale, Utah, mining district

    USGS Publications Warehouse

    Podwysocki, M.H.; Segal, D.B.; Jones, O.D.

    1983-01-01

    Multispectral data covering an area near Marysvale, Utah, collected with the airborne National Aeronautics and Space Administration (NASA) 24-channel Bendix multispectral scanner, were analyzed to detect areas of hydrothermally altered, potentially mineralized rocks. Spectral bands were selected for analysis that approximate those of the Landsat 4 Thematic Mapper and which are diagnostic of the presence of hydrothermally derived products. Hydrothermally altered rocks, particularly volcanic rocks affected by solutions rich in sulfuric acid, are commonly characterized by concentrations of argillic minerals such as alunite and kaolinite. These minerals are important for identifying hydrothermally altered rocks in multispectral images because they have intense absorption bands centered near a wavelength of 2.2 ??m. Unaltered volcanic rocks commonly do not contain these minerals and hence do not have the absorption bands. A color-composite image was constructed using the following spectral band ratios: 1.6??m/2.2??m, 1.6??m/0.48??m, and 0.67??m/1.0??m. The particular bands were chosen to emphasize the spectral contrasts that exist for argillic versus non-argillic rocks, limonitic versus nonlimonitic rocks, and rocks versus vegetation, respectively. The color-ratio composite successfully distinguished most types of altered rocks from unaltered rocks. Some previously unrecognized areas of hydrothermal alteration were mapped. The altered rocks included those having high alunite and/or kaolinite content, siliceous rocks containing some kaolinite, and ash-fall tuffs containing zeolitic minerals. The color-ratio-composite image allowed further division of these rocks into limonitic and nonlimonitic phases. The image did not allow separation of highly siliceous or hematitically altered rocks containing no clays or alunite from unaltered rocks. A color-coded density slice image of the 1.6??m/2.2??m band ratio allowed further discrimination among the altered units. Areas

  2. Study of multispectral convolution scatter correction in high resolution PET

    SciTech Connect

    Yao, R.; Lecomte, R.; Bentourkia, M.

    1996-12-31

    PET images acquired with a high resolution scanner based on arrays of small discrete detectors are obtained at the cost of low sensitivity and increased detector scatter. It has been postulated that these limitations can be overcome by using enlarged discrimination windows to include more low energy events and by developing more efficient energy-dependent methods to correct for scatter. In this work, we investigate one such method based on the frame-by-frame scatter correction of multispectral data. Images acquired in the conventional, broad and multispectral window modes were processed by the stationary and nonstationary consecutive convolution scatter correction methods. Broad and multispectral window acquisition with a low energy threshold of 129 keV improved system sensitivity by up to 75% relative to conventional window with a {approximately}350 keV threshold. The degradation of image quality due to the added scatter events can almost be fully recovered by the subtraction-restoration scatter correction. The multispectral method was found to be more sensitive to the nonstationarity of scatter and its performance was not as good as that of the broad window. It is concluded that new scatter degradation models and correction methods need to be established to fully take advantage of multispectral data.

  3. Personal Authentication Using Multifeatures Multispectral Palm Print Traits.

    PubMed

    Rajagopal, Gayathri; Manoharan, Senthil Kumar

    2015-01-01

    Biometrics authentication is an effective method for automatically recognizing a person's identity with high confidence. Multispectral palm print biometric system is relatively new biometric technology and is in the progression of being endlessly refined and developed. Multispectral palm print biometric system is a promising biometric technology for use in various applications including banking solutions, access control, hospital, construction, and forensic applications. This paper proposes a multispectral palm print recognition method with extraction of multiple features using kernel principal component analysis and modified finite radon transform. Finally, the images are classified using Local Mean K-Nearest Centroid Neighbor algorithm. The proposed method efficiently accommodates the rotational, potential deformations and translational changes by encoding the orientation conserving features. The proposed system analyses the hand vascular authentication using two databases acquired with touch-based and contactless imaging setup collected from multispectral Poly U palm print database and CASIA database. The experimental results clearly demonstrate that the proposed multispectral palm print authentication obtained better result compared to other methods discussed in the literature.

  4. Low SWaP multispectral sensors using dichroic filter arrays

    NASA Astrophysics Data System (ADS)

    Dougherty, John; Varghese, Ron

    2015-06-01

    The benefits of multispectral imaging are well established in a variety of applications including remote sensing, authentication, satellite and aerial surveillance, machine vision, biomedical, and other scientific and industrial uses. However, many of the potential solutions require more compact, robust, and cost-effective cameras to realize these benefits. The next generation of multispectral sensors and cameras needs to deliver improvements in size, weight, power, portability, and spectral band customization to support widespread deployment for a variety of purpose-built aerial, unmanned, and scientific applications. A novel implementation uses micro-patterning of dichroic filters1 into Bayer and custom mosaics, enabling true real-time multispectral imaging with simultaneous multi-band image acquisition. Consistent with color image processing, individual spectral channels are de-mosaiced with each channel providing an image of the field of view. This approach can be implemented across a variety of wavelength ranges and on a variety of detector types including linear, area, silicon, and InGaAs. This dichroic filter array approach can also reduce payloads and increase range for unmanned systems, with the capability to support both handheld and autonomous systems. Recent examples and results of 4 band RGB + NIR dichroic filter arrays in multispectral cameras are discussed. Benefits and tradeoffs of multispectral sensors using dichroic filter arrays are compared with alternative approaches - including their passivity, spectral range, customization options, and scalable production.

  5. Color enhancement in multispectral image of human skin

    NASA Astrophysics Data System (ADS)

    Mitsui, Masanori; Murakami, Yuri; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2003-07-01

    Multispectral imaging is receiving attention in medical color imaging, as high-fidelity color information can be acquired by the multispectral image capturing. On the other hand, as color enhancement in medical color image is effective for distinguishing lesion from normal part, we apply a new technique for color enhancement using multispectral image to enhance the features contained in a certain spectral band, without changing the average color distribution of original image. In this method, to keep the average color distribution, KL transform is applied to spectral data, and only high-order KL coefficients are amplified in the enhancement. Multispectral images of human skin of bruised arm are captured by 16-band multispectral camera, and the proposed color enhancement is applied. The resultant images are compared with the color images reproduced assuming CIE D65 illuminant (obtained by natural color reproduction technique). As a result, the proposed technique successfully visualizes unclear bruised lesions, which are almost invisible in natural color images. The proposed technique will provide support tool for the diagnosis in dermatology, visual examination in internal medicine, nursing care for preventing bedsore, and so on.

  6. Personal Authentication Using Multifeatures Multispectral Palm Print Traits

    PubMed Central

    Rajagopal, Gayathri; Manoharan, Senthil Kumar

    2015-01-01

    Biometrics authentication is an effective method for automatically recognizing a person's identity with high confidence. Multispectral palm print biometric system is relatively new biometric technology and is in the progression of being endlessly refined and developed. Multispectral palm print biometric system is a promising biometric technology for use in various applications including banking solutions, access control, hospital, construction, and forensic applications. This paper proposes a multispectral palm print recognition method with extraction of multiple features using kernel principal component analysis and modified finite radon transform. Finally, the images are classified using Local Mean K-Nearest Centroid Neighbor algorithm. The proposed method efficiently accommodates the rotational, potential deformations and translational changes by encoding the orientation conserving features. The proposed system analyses the hand vascular authentication using two databases acquired with touch-based and contactless imaging setup collected from multispectral Poly U palm print database and CASIA database. The experimental results clearly demonstrate that the proposed multispectral palm print authentication obtained better result compared to other methods discussed in the literature. PMID:26221628

  7. Multispectral Image Capturing with Foveon Sensors

    NASA Astrophysics Data System (ADS)

    Gehrke, R.; Greiwe, A.

    2013-08-01

    This article describes a specific image quality problem using an UAV and the commercially available multispectral camera Tetracam ADC Lite. The tests were carried out with commercially available UAV Multirotor MR-X 8 performed under normal use and conditions. The ADC Lite shows a remarkable rolling shutter effect caused by the movement and vibrations of the UAV and a slow readout speed of the sensor. Based on these studies the current state of a sensor development is presented, which is composed of two compact cameras with Foveon sensors. These cameras allow to record high quality image data without motion blur or rolling shutter effect. One camera captures the normal colour range; the second camera is modified for the near infrared. The moving parts of both cameras are glued to ensure that a geometric camera calibration is valid over a longer period of time. The success of the gluing procedure has been proven by multiple calibrations. For the matching of the colour- and infrared image the usability of calibrated relative orientation parameters between both cameras were tested. Despite absolutely synchronous triggering of the cameras by an electrical signal, a time delay can be found up to 3/100 s between the images. This time delay in combination with the movement and rotation of the UAV while taking the photos results in a significant error in the previously calibrated relative orientation. These parameters should not be used in further processing. This article concludes with a first result of a 4-channel image and an outlook on the following investigations.

  8. Characteristics of the Landsat Multispectral Data System

    USGS Publications Warehouse

    Taranik, James V.

    1978-01-01

    Landsat satellites were launched into orbit in 1972 and 1975. Additional Landsat satellites are planned for launch in 1978 and 1981. The satellites orbit the Earth at an altitude of approximately 900 km and each can obtain repetitive coverage of cloud-free areas every 18 days. A sun-synchronous orbit is used to insure repeatable illumination conditions. Repetitive satellite coverage allows optimal cover conditions for geologic applications to be identified. Seasonal variations in solar illumination must be analyzed to select the best Landsat data for geologic applications. Landsat data may be viewed in stereo where there is sufficient sidelap and sufficient topographic relief. Landsat-1 ceased operation on January 10, 1978. Landsat-2 detects, only solar radiation that is reflected from the Earth's surface in visible and near-visible wavelengths. The third Landsat will also detect emitted thermal radiation. The multispectral scanner (MSS) was the only sensing instrument used on the first two satellites. The MSS on Landsats-1 and -2 detect radiation which is reflected from a 79 m by 79 m area, and the data are formatted as if the measurement was made from a 56 m by 79 m area. The MSS integrates spectral response from all cover types within the 79 m by 79 m area. The integrated spectral signature often does not resemble the spectral signature from individual cover types, and the integrated signature is also modified by the atmosphere. Landsat-1 and -2 data are converted to 70 mm film and computer compatible tapes (CCT's) at Goddard Space Flight Center (GSFC); these are shipped to the EROS Data Center (EDC) for duplication and distribution to users. Landsat-C data will be converted to 241 mm-wide film and CCT's at EDC. Landsat-D data will be relayed from the satellite directly to geosynchronous satellites and then to the United States from any location on Earth.

  9. Multispectral photoacoustic microscopy based on an optical–acoustic objective

    PubMed Central

    Cao, Rui; Kilroy, Joseph P.; Ning, Bo; Wang, Tianxiong; Hossack, John A.; Hu, Song

    2015-01-01

    We have developed reflection-mode multispectral photoacoustic microscopy (PAM) based on a novel optical–acoustic objective that integrates a customized ultrasonic transducer and a commercial reflective microscope objective into one solid piece. This technical innovation provides zero chromatic aberration and convenient confocal alignment of the optical excitation and acoustic detection. With a wavelength-tunable optical-parametric-oscillator laser, we have demonstrated multispectral PAM over an ultrabroad spectral range of 270–1300 nm. A near-constant lateral resolution of ∼2.8 μm is achieved experimentally. Capitalizing on the consistent performance over the ultraviolet, visible, and near-infrared range, multispectral PAM enables label-free concurrent imaging of cell nucleus (DNA/RNA contrast at 270 nm), blood vessel (hemoglobin contrast at 532 nm), and sebaceous gland (lipid contrast at 1260 nm) at the same spatial scale in a living mouse ear. PMID:26236641

  10. Texture analysis for colorectal tumour biopsies using multispectral imagery.

    PubMed

    Peyret, Remy; Bouridane, Ahmed; Al-Maadeed, Somaya Ali; Kunhoth, Suchithra; Khelifi, Fouad

    2015-08-01

    Colorectal cancer is one of the most common cancers in the world. As part of its diagnosis, a histological analysis is often run on biopsy samples. Multispecral imagery taken from cancer tissues can be useful to capture more meaningful features. However, the resulting data is usually very large having a large number of varying feature types. This papers aims to investigate and compare the performances of multispectral imagery taken from colorectal biopsies using different techniques for texture feature extraction inclduing local binary patterns, Haraclick features and local intensity order patterns. Various classifiers such as Support Vector Machine and Random Forest are also investigated. The results show the superiority of multispectral imaging over the classical panchromatic approach. In the multispectral imagery's analysis, the local binary patterns combined with Support Vector Machine classifier gives very good results achieving an accuracy of 91.3%.

  11. Detection of microspheres in vivo using multispectral optoacoustic tomography.

    PubMed

    Bhutiani, N; Kimbrough, C W; Burton, N C; Morscher, S; Egger, M; McMasters, K; Woloszynska-Read, A; El-Baz, A; McNally, L R

    2017-02-06

    We introduce a new approach to detect individual microparticles that contain NIR fluorescent dye by multispectral optoacoustic tomography in the context of the hemoglobin-rich environment within murine liver. We encapsulated a near infrared (NIR) fluorescent dye within polystyrene microspheres, then injected them into the ileocolic vein, which drains to the liver. NIR absorption was determined using multispectral optoacoustic tomography. To quantitate the minimum diameter of microspheres, we used both colorimetric and spatial information to segment the regions in which the microspheres appear. Regional diameter was estimated by doubling the maximum regional distance. We found that the minimum microsphere size threshold for detection by multispectral optoacoustic tomography images is 78.9 µm.

  12. An Approach to Application Validation of Multispectral Sensors Using AVIRIS

    NASA Technical Reports Server (NTRS)

    Warner, Amanda; Blonski, Slawomir; Gasser, Gerald; Ryan, Robert; Zanoni, Vicki

    2001-01-01

    High-resolution multispectral data are becoming widely available for commercial and scientific use. For specific applications, such as agriculture studies, there is a need to quantify the performance of such systems. In many cases, parameters such as GSD and SNR can be optimized. Data sets with varying GSD's for the Landsat ETM+ bands were produced to evaluate the effects of GSD on various algorithms and transformations, such as NDVI, principal component analysis, unsupervised classification, and mixture analysis. By showing that AVIRIS data can be used to simulate spaceborne and airborne multispectral platforms over a wide range of GSD, this research can be used to assist in band selection and spatial resolution specifications for new sensors and in optimization of acquisition strategies for existing multispectral systems.

  13. Multispectral photoacoustic microscopy based on an optical-acoustic objective.

    PubMed

    Cao, Rui; Kilroy, Joseph P; Ning, Bo; Wang, Tianxiong; Hossack, John A; Hu, Song

    2015-06-01

    We have developed reflection-mode multispectral photoacoustic microscopy (PAM) based on a novel optical-acoustic objective that integrates a customized ultrasonic transducer and a commercial reflective microscope objective into one solid piece. This technical innovation provides zero chromatic aberration and convenient confocal alignment of the optical excitation and acoustic detection. With a wavelength-tunable optical-parametric-oscillator laser, we have demonstrated multispectral PAM over an ultrabroad spectral range of 270-1300 nm. A near-constant lateral resolution of ∼2.8 μm is achieved experimentally. Capitalizing on the consistent performance over the ultraviolet, visible, and near-infrared range, multispectral PAM enables label-free concurrent imaging of cell nucleus (DNA/RNA contrast at 270 nm), blood vessel (hemoglobin contrast at 532 nm), and sebaceous gland (lipid contrast at 1260 nm) at the same spatial scale in a living mouse ear.

  14. Filter selection based on light source for multispectral imaging

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Xu, Haisong

    2016-07-01

    In multispectral imaging, it is necessary to select a reduced number of filters to balance the imaging efficiency and spectral reflectance recovery accuracy. Due to the combined effect of filters and light source on reflectance recovery, the optimal filters are influenced by the employed light source in the multispectral imaging system. By casting the filter selection as an optimization issue, the selection of optimal filters corresponding to the employed light source proceeds with respect to a set of target samples utilizing one kind of genetic algorithms, regardless of the detailed spectral characteristics of the light source, filters, and sensor. Under three light sources with distinct spectral power distributions, the proposed filter selection method was evaluated on a filter-wheel based multispectral device with a set of interference filters. It was verified that the filters derived by the proposed method achieve better spectral and colorimetric accuracy of reflectance recovery than the conventional one under different light sources.

  15. Changes of multispectral soil patterns with increasing crop canopy

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Baumgardner, M. F.

    1972-01-01

    Multispectral data and automatic data processing were used to map surface soil patterns and to follow the changes in multispectral radiation from a field of maize (Zea mays L.) during a period from seeding to maturity. Panchromatic aerial photography was obtained in early May 1970 and multispectral scanner missions were flown on May 6, June 30, August 11 and September 5, 1970 to obtain energy measurements in 13 wavelength bands. The orange portion of the visible spectrum was used in analyzing the May and June data to cluster relative radiance of the soils into eight different radiance levels. The reflective infrared spectral band was used in analyzing the August and September data to cluster maize into different spectral categories. The computer-produced soil patterns had a striking similarity to the soil pattern of the aerial photograph. These patterns became less distinct as the maize canopy increased.

  16. Multispectral Microscopic Imager (MMI): Multispectral Imaging of Geological Materials at a Handlens Scale

    NASA Astrophysics Data System (ADS)

    Farmer, J. D.; Nunez, J. I.; Sellar, R. G.; Gardner, P. B.; Manatt, K. S.; Dingizian, A.; Dudik, M. J.; McDonnell, G.; Le, T.; Thomas, J. A.; Chu, K.

    2011-12-01

    The Multispectral Microscopic Imager (MMI) is a prototype instrument presently under development for future astrobiological missions to Mars. The MMI is designed to be a arm-mounted rover instrument for use in characterizing the microtexture and mineralogy of materials along geological traverses [1,2,3]. Such geological information is regarded as essential for interpreting petrogenesis and geological history, and when acquired in near real-time, can support hypothesis-driven exploration and optimize science return. Correlated microtexure and mineralogy also provides essential data for selecting samples for analysis with onboard lab instruments, and for prioritizing samples for potential Earth return. The MMI design employs multispectral light-emitting diodes (LEDs) and an uncooled focal plane array to achieve the low-mass (<1kg), low-cost, and high reliability (no moving parts) required for an arm-mounted instrument on a planetary rover [2,3]. The MMI acquires multispectral, reflectance images at 62 μm/pixel, in which each image pixel is comprised of a 21-band VNIR spectrum (0.46 to 1.73 μm). This capability enables the MMI to discriminate and resolve the spatial distribution of minerals and textures at the microscale [2, 3]. By extending the spectral range into the infrared, and increasing the number of spectral bands, the MMI exceeds the capabilities of current microimagers, including the MER Microscopic Imager (MI); 4, the Phoenix mission Robotic Arm Camera (RAC; 5) and the Mars Science Laboratory's Mars Hand Lens Imager (MAHLI; 6). In this report we will review the capabilities of the MMI by highlighting recent lab and field applications, including: 1) glove box deployments in the Astromaterials lab at Johnson Space Center to analyze Apollo lunar samples; 2) GeoLab glove box deployments during the 2011 Desert RATS field trials in northern AZ to characterize analog materials collected by astronauts during simulated EVAs; 3) field deployments on Mauna Kea

  17. Compact multispectral photodiode arrays using micropatterned dichroic filters

    NASA Astrophysics Data System (ADS)

    Chandler, Eric V.; Fish, David E.

    2014-05-01

    The next generation of multispectral instruments requires significant improvements in both spectral band customization and portability to support the widespread deployment of application-specific optical sensors. The benefits of spectroscopy are well established for numerous applications including biomedical instrumentation, industrial sorting and sensing, chemical detection, and environmental monitoring. In this paper, spectroscopic (and by extension hyperspectral) and multispectral measurements are considered. The technology, tradeoffs, and application fits of each are evaluated. In the majority of applications, monitoring 4-8 targeted spectral bands of optimized wavelength and bandwidth provides the necessary spectral contrast and correlation. An innovative approach integrates precision spectral filters at the photodetector level to enable smaller sensors, simplify optical designs, and reduce device integration costs. This method supports user-defined spectral bands to create application-specific sensors in a small footprint with scalable cost efficiencies. A range of design configurations, filter options and combinations are presented together with typical applications ranging from basic multi-band detection to stringent multi-channel fluorescence measurement. An example implementation packages 8 narrowband silicon photodiodes into a 9x9mm ceramic LCC (leadless chip carrier) footprint. This package is designed for multispectral applications ranging from portable color monitors to purpose- built OEM industrial and scientific instruments. Use of an eight-channel multispectral photodiode array typically eliminates 10-20 components from a device bill-of-materials (BOM), streamlining the optical path and shrinking the footprint by 50% or more. A stepwise design approach for multispectral sensors is discussed - including spectral band definition, optical design tradeoffs and constraints, and device integration from prototype through scalable volume production

  18. The application of UV multispectral technology in extract trace evdidence

    NASA Astrophysics Data System (ADS)

    Guo, Jingjing; Xu, Xiaojing; Li, Zhihui; Xu, Lei; Xie, Lanchi

    2015-11-01

    Multispectral imaging is becoming more and more important in the field of examination of material evidence, especially the ultraviolet spectral imaging. Fingerprints development, questioned document detection, trace evidence examination-all can used of it. This paper introduce a UV multispectral equipment which was developed by BITU & IFSC, it can extract trace evidence-extract fingerprints. The result showed that this technology can develop latent sweat-sebum mixed fingerprint on photo and ID card blood fingerprint on steel hold. We used the UV spectrum data analysis system to make the UV spectral image clear to identify and analyse.

  19. Multi-spectral band selection for satellite-based systems

    SciTech Connect

    Clodius, W.B.; Weber, P.G.; Borel, C.C.; Smith, B.W.

    1998-09-01

    The design of satellite based multispectral imaging systems requires the consideration of a number of tradeoffs between cost and performance. The authors have recently been involved in the design and evaluation of a satellite based multispectral sensor operating from the visible through the long wavelength IR. The criteria that led to some of the proposed designs and the modeling used to evaluate and fine tune the designs will both be discussed. These criteria emphasized the use of bands for surface temperature retrieval and the correction of atmospheric effects. The impact of cost estimate changes on the final design will also be discussed.

  20. Research into multispectral TDI-CCD imaging and fusion technology

    NASA Astrophysics Data System (ADS)

    He, Da; Zhou, Jianyong; Liu, Changlin; Chen, Hongbing

    2016-11-01

    A scanning imaging system based on 6144×96 multi-band five-color TDI-CCD was built, which is featuring Real-time imaging capability with high sensitivity and high dynamic range in multi-spectral bands for the same target. In this paper, the respective pixel topology for five TDI-CCD was obtained on the basis of their spatial relationship in five bands. Finally, high resolution gray-scale image and color image reconstruction for the scenic target were achieved by multi-Spectral fusion algorithm.

  1. Fourier Spectral Filter Array for Optimal Multispectral Imaging.

    PubMed

    Jia, Jie; Barnard, Kenneth J; Hirakawa, Keigo

    2016-04-01

    Limitations to existing multispectral imaging modalities include speed, cost, range, spatial resolution, and application-specific system designs that lack versatility of the hyperspectral imaging modalities. In this paper, we propose a novel general-purpose single-shot passive multispectral imaging modality. Central to this design is a new type of spectral filter array (SFA) based not on the notion of spatially multiplexing narrowband filters, but instead aimed at enabling single-shot Fourier transform spectroscopy. We refer to this new SFA pattern as Fourier SFA, and we prove that this design solves the problem of optimally sampling the hyperspectral image data.

  2. Atmospheric transformation of multispectral remote sensor data. [Great Lakes

    NASA Technical Reports Server (NTRS)

    Turner, R. E. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The effects of earth's atmosphere were accounted for, and a simple algorithm, based upon a radiative transfer model, was developed to determine the radiance at earth's surface free of atmospheric effects. Acutal multispectral remote sensor data for Lake Erie and associated optical thickness data were used to demonstrate the effectiveness of the atmospheric transformation algorithm. The basic transformation was general in nature and could be applied to the large scale processing of multispectral aircraft or satellite remote sensor data.

  3. Multispectral Video-Microscope Modified for Skin Diagnostics

    NASA Astrophysics Data System (ADS)

    Rubins, U.; Zaharans, J.; Ļihačova, I.; Spigulis, J.

    2014-12-01

    Commercial DinoLite AD413 digital microscope was modified for skin diagnostics purposes. The original LED ring (4 white and 4 ultraviolet light emitters) of microscope was replaced by a custom-designed 16-LED ring module consisting of four LED groups (450, 545, 660 and 940 nm), and an onboard LED controller with USB hub was added. The video acquisition and LED switching are performed using custom-designed Matlab software which provides real-time spectral analysis of multi-spectral images and calculation of skin chromophore optical density. The developed multispectral video-microscope is mainly meant for diagnostics of skin malformations, e.g. skin cancerous lesions.

  4. Comparisons of Monthly Mean 10 M Wind Speeds from Satellites and NWP Products Over the Global Ocean

    DTIC Science & Technology

    2009-10-09

    Resolution QSCAT SSM/I NOGAPS ERA-40 NCEP Sea Winds instrument on the Quick Scatterometer Special Sensor Microwave/Imager Navy Operational...measurements with 25-point smoothing as described earlier. [25] Within the latitudes spanning the Arctic and Antarctic , no ice mask is applied in order to...ET AL.: 10 M WINDS OVER THE GLOBAL OCEAN D16109 egies that blend two or more of these products to produce improved forcing fields. [53

  5. 17 CFR 249.510 - Form 10-M, consent to service of process by a nonresident general partner of a broker-dealer firm.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Form 10-M, consent to service... ACT OF 1934 Forms for Statements Made in Connection With Exempt Tender Offers § 249.510 Form 10-M... Note: For Federal Register citations affecting Form 10-M, see the List of CFR Sections Affected,...

  6. Structures and Stabilities of the Metal Doped Gold Nano-Clusters: M@Au10 (M = W, Mo, Ru, Co).

    PubMed

    Hossain, Delwar; Pittman, Charles U; Gwaltney, Steven R

    2014-01-01

    The structures and stabilities of a series of endohedral gold clusters containing ten gold atoms M@Au10 (M = W, Mo, Ru, Co) have been determined using density functional theory. The gradient-corrected functional BP86, the Tao-Perdew-Staroverov-Scuseria TPSS meta-GGA functional, and the hybrid density functionals B3LYP and PBE1PBE were employed to calculate the structures, binding energies, adiabatic ionization potentials, and adiabatic electron affinities for these clusters. The LanL2DZ effective core potentials and the corresponding valence basis sets were employed. The M@Au10 (M = W, Mo, Ru, Co) clusters have higher binding energies than an empty Au10 cluster. In addition, the large HOMO-LUMO gaps suggest that the M@Au10 (M = W, Mo, Ru, Co) clusters are all likely to be stable chemically. The ionization potentials and electron affinities for these clusters are very high, and the W@Au10 and Mo@Au10 clusters have electron affinities similar to the super-halogen Al13.

  7. Structures and Stabilities of the Metal Doped Gold Nano-Clusters: M@Au10 (M = W, Mo, Ru, Co)

    PubMed Central

    Hossain, Delwar; Pittman, Charles U.; Gwaltney, Steven R.

    2014-01-01

    The structures and stabilities of a series of endohedral gold clusters containing ten gold atoms M@Au10 (M = W, Mo, Ru, Co) have been determined using density functional theory. The gradient-corrected functional BP86, the Tao-Perdew-Staroverov-Scuseria TPSS meta-GGA functional, and the hybrid density functionals B3LYP and PBE1PBE were employed to calculate the structures, binding energies, adiabatic ionization potentials, and adiabatic electron affinities for these clusters. The LanL2DZ effective core potentials and the corresponding valence basis sets were employed. The M@Au10 (M = W, Mo, Ru, Co) clusters have higher binding energies than an empty Au10 cluster. In addition, the large HOMO–LUMO gaps suggest that the M@Au10 (M = W, Mo, Ru, Co) clusters are all likely to be stable chemically. The ionization potentials and electron affinities for these clusters are very high, and the W@Au10 and Mo@Au10 clusters have electron affinities similar to the super-halogen Al13. PMID:24611036

  8. Tools for interpretation of multispectral data

    NASA Astrophysics Data System (ADS)

    Speckert, Glen; Carpenter, Loren C.; Russell, Mike; Bradstreet, John; Waite, Tom; Conklin, Charlie

    1990-08-01

    P operations can be thus chained. A videotape showing the use of ELT and ChapIP with multispectral data will be presented.

  9. Nanohole-array-based device for 2D snapshot multispectral imaging.

    PubMed

    Najiminaini, Mohamadreza; Vasefi, Fartash; Kaminska, Bozena; Carson, Jeffrey J L

    2013-01-01

    We present a two-dimensional (2D) snapshot multispectral imager that utilizes the optical transmission characteristics of nanohole arrays (NHAs) in a gold film to resolve a mixture of input colors into multiple spectral bands. The multispectral device consists of blocks of NHAs, wherein each NHA has a unique periodicity that results in transmission resonances and minima in the visible and near-infrared regions. The multispectral device was illuminated over a wide spectral range, and the transmission was spectrally unmixed using a least-squares estimation algorithm. A NHA-based multispectral imaging system was built and tested in both reflection and transmission modes. The NHA-based multispectral imager was capable of extracting 2D multispectral images representative of four independent bands within the spectral range of 662 nm to 832 nm for a variety of targets. The multispectral device can potentially be integrated into a variety of imaging sensor systems.

  10. MULTISPECTRAL IDENTIFICATION AND CONFIRMATION OF ORGANIC COMPOUNDS IN WASTEWATER EXTRACTS

    EPA Science Inventory

    Application of multispectral identification techniques to samples from industrial and POTW wastewaters revealed identities of 63 compounds that had not been identified by empirical matching of mass spectra with spectral libraries. wenty-five of the compounds had not been found in...

  11. Spatial Resolution Characterization for AWiFS Multispectral Images

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Ryan, Robert E.; Pagnutti, Mary; Stanley, Thomas

    2007-01-01

    This viewgraph presentation describes the spatial resolution of the AWiFS multispectral images characterized by an estimation of the Modulation Transfer Function (MTF) at Nyquist frequency. The contents include: 1) MTF Analysis; 2) Target Analysis; 3) "Pulse Target"; 4) "Pulse" Method; 5) Target Images; 6) Bridge Profiles; 7) MTF Calculation; 8) MTF Results; and 9) Results Summary.

  12. Multispectral flow cytometry: The consequences of increased light collection.

    PubMed

    Feher, Kristen; von Volkmann, Konrad; Kirsch, Jenny; Radbruch, Andreas; Popien, Jan; Kaiser, Toralf

    2016-07-01

    In recent years, multispectral flow cytometry systems have come to attention. They differ from conventional flow cytometers in two key ways: a multispectral flow cytometer collects the full spectral information at the single cell level and the detector configuration is fixed and not explicitly tuned to a particular staining panel. This brings about clear hardware advantages, as a closed system should be highly stable, and ease-of-use should be improved if used in conjunction with custom unmixing software. An open question remains: what are the benefits of multispectral over conventional flow cytometry in terms of sensitivity and resolution? To probe this, we use Q (detection efficiency) and B (background) values and develop a novel "multivariate population overlap factor" to characterize the cytometer performance. To verify the usefulness of our factor, we perform representative experiments and compare our overlap factor to Q and B. Finally, we conclude that the increased light collection of multispectral flow cytometry does indeed lead to increased sensitivity, an improved detection limit, and a higher resolution. © 2016 International Society for Advancement of Cytometry.

  13. The trophic classification of lakes using ERTS multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Blackwell, R. J.; Boland, D. H.

    1975-01-01

    Lake classification methods based on the use of ERTS data are described. Preliminary classification results obtained by multispectral and digital image processing techniques indicate satisfactory correlation between ERTS data and EPA-supplied water analysis. Techniques for determining lake trophic levels using ERTS data are examined, and data obtained for 20 lakes are discussed.

  14. Multispectral microwave imaging radar for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Larson, R. W.; Rawson, R.; Ausherman, D.; Bryan, L.; Porcello, L.

    1974-01-01

    A multispectral airborne microwave radar imaging system, capable of obtaining four images simultaneously is described. The system has been successfully demonstrated in several experiments and one example of results obtained, fresh water ice, is given. Consideration of the digitization of the imagery is given and an image digitizing system described briefly. Preliminary results of digitization experiments are included.

  15. Engineering evaluation of 24 channel multispectral scanner. [from flight tests

    NASA Technical Reports Server (NTRS)

    Lambeck, P. F.

    1973-01-01

    The results of flight tests to evaluate the performance of the 24 channel multispectral scanner are reported. The flight plan and test site are described along with the time response and channel registration. The gain and offset drift, and moire patterns are discussed. Aerial photographs of the test site are included.

  16. Detection of sudden death syndrome using a multispectral imaging sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sudden death syndrome (SDS), caused by the fungus Fusarium solani f. sp. glycines, is a widespread mid- to late-season disease with distinctive foliar symptoms. This paper reported the development of an image analysis based method to detect SDS using a multispectral image sensor. A hue, saturation a...

  17. Leica ADS40 Sensor for Coastal Multispectral Imaging

    NASA Technical Reports Server (NTRS)

    Craig, John C.

    2007-01-01

    The Leica ADS40 Sensor as it is used for coastal multispectral imaging is presented. The contents include: 1) Project Area Overview; 2) Leica ADS40 Sensor; 3) Focal Plate Arrangements; 4) Trichroid Filter; 5) Gradient Correction; 6) Image Acquisition; 7) Remote Sensing and ADS40; 8) Band comparisons of Satellite and Airborne Sensors; 9) Impervious Surface Extraction; and 10) Impervious Surface Details.

  18. Development and application of multispectral algorithms for defect apple inspection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research developed and evaluated the multispectral algorithm derived from hyperspectral line-scan imaging system which equipped with an electron-multiplying-charge-coupled-device camera and an imaging spectrograph for the detection of defect Red Delicious apples. The algorithm utilized the fluo...

  19. Landsat multispectral sharpening using a sensor system model and panchromatic image

    USGS Publications Warehouse

    Lemeshewsky, G.P.; ,

    2003-01-01

    The thematic mapper (TM) sensor aboard Landsats 4, 5 and enhanced TM plus (ETM+) on Landsat 7 collect imagery at 30-m sample distance in six spectral bands. New with ETM+ is a 15-m panchromatic (P) band. With image sharpening techniques, this higher resolution P data, or as an alternative, the 10-m (or 5-m) P data of the SPOT satellite, can increase the spatial resolution of the multispectral (MS) data. Sharpening requires that the lower resolution MS image be coregistered and resampled to the P data before high spatial frequency information is transferred to the MS data. For visual interpretation and machine classification tasks, it is important that the sharpened data preserve the spectral characteristics of the original low resolution data. A technique was developed for sharpening (in this case, 3:1 spatial resolution enhancement) visible spectral band data, based on a model of the sensor system point spread function (PSF) in order to maintain spectral fidelity. It combines high-pass (HP) filter sharpening methods with iterative image restoration to reduce degradations caused by sensor-system-induced blurring and resembling. Also there is a spectral fidelity requirement: sharpened MS when filtered by the modeled degradations should reproduce the low resolution source MS. Quantitative evaluation of sharpening performance was made by using simulated low resolution data generated from digital color-IR aerial photography. In comparison to the HP-filter-based sharpening method, results for the technique in this paper with simulated data show improved spectral fidelity. Preliminary results with TM 30-m visible band data sharpened with simulated 10-m panchromatic data are promising but require further study.

  20. The Need for High Spatial Resolution Multispectral Thermal Remote Sensing Data In Urban Heat Island Research

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    2006-01-01

    Although the study of the Urban Heat Island (UHI) effect dates back to the early 1800's when Luke Howard discovered London s heat island, it has only been with the advent of thermal remote sensing systems that the extent, characteristics, and impacts of the UHI have become to be understood. Analysis of the UHI effect is important because above all, this phenomenon can directly influence the health and welfare of urban residents. For example, in 1995, over 700 people died in Chicago due to heat-related causes. UHI s are characterized by increased temperature in comparison to rural areas and mortality rates during a heat wave increase exponentially with the maximum temperature, an effect that is exacerbated by the UHI. Aside from the direct impacts of the UHI on temperature, UHI s can produce secondary effects on local meteorology, including altering local wind patterns, increased development of clouds and fog, and increasing rates of precipitation either over, or downwind, of cities. Because of the extreme heterogeneity of the urban surface, in combination with the sprawl associated with urban growth, thermal infrared (TIR) remote sensing data have become of significant importance in understanding how land cover and land use characteristics affect the development and intensification of the UHI. TIR satellite data have been used extensively to analyze the surface temperature regimes of cities to help observe and measure the impacts of surface temperatures across the urban landscape. However, the spatial scales at which satellite TIR data are collected are for the most part, coarse, with the finest readily available TIR data collected by the Landsat ETM+ sensor at 60m spatial resolution. For many years, we have collected high spatial resolution (10m) data using an airborne multispectral TIR sensor over a number of cities across the United States. These high resolution data have been used to develop an understanding of how discrete surfaces across the urban environment

  1. The Need for High Spatial Resolution Multispectral Thermal Remote Sensing Data In Urban Heat Island Research

    NASA Astrophysics Data System (ADS)

    Quattrochi, D. A.; Luvall, J. C.

    2006-12-01

    Although the study of the Urban Heat Island (UHI) effect dates back to the early 1800's when Luke Howard discovered London's heat island, it has only been with the advent of thermal remote sensing systems that the extent, characteristics, and impacts of the UHI have become to be understood. Analysis of the UHI effect is important because above all, this phenomenon can directly influence the health and welfare of urban residents. For example, in 1995, over 700 people died in Chicago due to heat-related causes. UHI's are characterized by increased temperature in comparison to rural areas and mortality rates during a heat wave increase exponentially with the maximum temperature, an effect that is exacerbated by the UHI. Aside from the direct impacts of the UHI on temperature, UHI's can produce secondary effects on local meteorology, including altering local wind patterns, increased development of clouds and fog, and increasing rates of precipitation either over, or downwind, of cities. Because of the extreme heterogeneity of the urban surface, in combination with the sprawl associated with urban growth, thermal infrared (TIR) remote sensing data have become of significant importance in understanding how land cover and land use characteristics affect the development and intensification of the UHI. TIR satellite data have been used extensively to analyze the surface temperature regimes of cities to help observe and measure the impacts of surface temperatures across the urban landscape. However, the spatial scales at which satellite TIR data are collected are for the most part, coarse, with the finest readily available TIR data collected by the Landsat ETM+ sensor at 60m spatial resolution. For many years, we have collected high spatial resolution (10m) data using an airborne multispectral TIR sensor over a number of cities across the United States. These high resolution data have been used to develop an understanding of how discrete surfaces across the urban environment

  2. Semiconductor laser multi-spectral sensing and imaging.

    PubMed

    Le, Han Q; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  3. Semiconductor Laser Multi-Spectral Sensing and Imaging

    PubMed Central

    Le, Han Q.; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers. PMID:22315555

  4. Multi-spectral confocal microendoscope for in-vivo imaging

    NASA Astrophysics Data System (ADS)

    Rouse, Andrew Robert

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.

  5. Multispectral Focal Plane Assembly for Satellite Remote Sensing

    SciTech Connect

    Rienstra, J.; Ballard, M.

    1997-12-31

    Sandia National Laboratories and several subsystem contractors are developing technologies applicable to multispectral remote sensing from space. A proof of concept multispectral sensor system is under development. The objective of building this sensor is to demonstrate and evaluate multispectral imaging technologies for various applications. The three major subsystems making up the sensor are the focal plane assembly (FPA), the cryocooler, and the telescope. This paper covers the focal plane assembly, which is the basis of the sensor system. The focal plane assembly includes sensor chip assemblies, optical filters, and a vacuum enclosure with cold shielding. Linear detector arrays provide spatial resolution in the cross-track direction for a pushbroom imager configuration. The optical filters define 15 spectral bands in a range from 0.45 microns to 10.7 microns. All the detector arrays are mounted on a single focal plane and are designed to operate at 75 K. No beam splitters are used. The four spectral bands covering the visible to near infrared have roughly 2400 pixels each, and the remaining 11 spectral bands have roughly 600 pixels each. The average total rate of multispectral data from the FPA is approximately 15.4 megapixels per second. At the time this paper is being written, the multispectral focal plane assembly is in the fabrication phase. A thermal/mechanical mockup has been built and tested for the vibration environment and to determine the thermal load. Some of the sensor chip assemblies and filters have been built and tested. Several notable features of the design are covered in the paper as well as preliminary test data.

  6. Single-Image Super Resolution for Multispectral Remote Sensing Data Using Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Liebel, L.; Körner, M.

    2016-06-01

    In optical remote sensing, spatial resolution of images is crucial for numerous applications. Space-borne systems are most likely to be affected by a lack of spatial resolution, due to their natural disadvantage of a large distance between the sensor and the sensed object. Thus, methods for single-image super resolution are desirable to exceed the limits of the sensor. Apart from assisting visual inspection of datasets, post-processing operations—e.g., segmentation or feature extraction—can benefit from detailed and distinguishable structures. In this paper, we show that recently introduced state-of-the-art approaches for single-image super resolution of conventional photographs, making use of deep learning techniques, such as convolutional neural networks (CNN), can successfully be applied to remote sensing data. With a huge amount of training data available, end-to-end learning is reasonably easy to apply and can achieve results unattainable using conventional handcrafted algorithms. We trained our CNN on a specifically designed, domain-specific dataset, in order to take into account the special characteristics of multispectral remote sensing data. This dataset consists of publicly available SENTINEL-2 images featuring 13 spectral bands, a ground resolution of up to 10m, and a high radiometric resolution and thus satisfying our requirements in terms of quality and quantity. In experiments, we obtained results superior compared to competing approaches trained on generic image sets, which failed to reasonably scale satellite images with a high radiometric resolution, as well as conventional interpolation methods.

  7. High incidence of interleukin 10 mRNA but not interleukin 2 mRNA detected in human breast tumours.

    PubMed Central

    Venetsanakos, E.; Beckman, I.; Bradley, J.; Skinner, J. M.

    1997-01-01

    Despite the presence of a lymphocytic infiltrate in solid cancers, the failure for tumour growth to be contained suggests an inadequate immune response to the tumour. Poor cytotoxicity exerted by tumour-infiltrating lymphocytes (TILs) against tumour cells in vitro, combined with continued tumour growth in vivo, suggests deficiencies in TIL function or numbers. Various theories have been postulated to explain how tumour cells may escape immunosurveillance and control. One of the many hypotheses is the failure of production of cytokines, which are necessary for T cells to mediate their function. Thus, the expression of cytokine mRNA in human breast tumour sections was investigated by reverse transcriptase polymerase chain reaction (RT-PCR) with cytokine-specific primers. A relatively consistent finding was detection of interleukin (IL) 10 mRNA among the tumours. No IL-2 and little IL-4 mRNA was detected in the tumours. IL-6 and IL-10 mRNA was detected in only one and two of the normal breast tissues respectively. IL-2, IL-4 and tumour necrosis factor (TNF)-alpha mRNA was not detected in any of the normal breast tissues. The reduced function of TILs may be related to IL-10, which has known inhibitory effects on T-cell activation. Images Figure 1 PMID:9192989

  8. MeV electron acceleration at 1 kHz with <10 mJ laser pulses

    NASA Astrophysics Data System (ADS)

    Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Miao, Bo; Woodbury, Daniel; Kim, Ki-Yong; Milchberg, Howard

    2017-01-01

    We demonstrate laser driven acceleration of electrons to MeV-scale energies at 1 kHz repetition rate using <10 mJ pulses focused on near-critical density He and H2 gas jets. Using the H2 gas jet, electron acceleration to 0.5 MeV in 10 fC bunches was observed with laser pulse energy as low as 1.3 mJ. Increasing the pulse energy to 10 mJ, we measure 1pC charge bunches with >1 MeV energy for both He and H gas jets. Such a high repetition rate, high flux ultrafast source has immediate application to time resolved probing of matter for scientific, medical, or security applications, either using the electrons directly or using a high-Z foil converter to generate ultrafast γ-rays. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.

  9. The 0.9 and 1.3 THz Superconducting HEB Mixer Receiver for the ASTE 10 m Telescope

    NASA Astrophysics Data System (ADS)

    Shiino, T.; Furuya, R.; Soma, T.; Sakai, T.; Watanabe, Y.; Sakai, N.; Jiang, L.; Ohguchi, O.; Maezawa, H.; Yamakura, T.; Yamamoto, S.

    2013-10-01

    We have developed low-noise waveguide-type superconducting hot electron bolometer (HEB) mixers for astronomical observations in the 0.8-1.0 and 1.3-1.5 THz bands, by using a relatively thick NbTiN superconducting film (10.8 nm). The receiver noise temperature of 350 K (DSB) at 0.81 THz and 490 K at 1.475 THz has been achieved. We have built the 0.8-1.0/1.3-1.5 THz dual band heterodyne receiver using these low noise HEB mixers, and have installed it on the ASTE (Atacama Submillimeter Telescope Experiment) 10 m telescope in Chile in 2011. The 13CO emission (J = 8-7 : 0.8813 THz) has successfully been detected toward the Orion A molecular cloud with our HEB mixer receiver.

  10. SIM.EM-K3 Key comparison of 10 mH inductance standards at 1 kHz

    NASA Astrophysics Data System (ADS)

    Moreno, J. A.; Côté, M.; Koffman, A.; Castro, B. I.; Vasconcellos, R. de Barros e.; Kyriazis, G.; Cazabat, M.; Izquierdo, D.; Faverio, C.; Slomovitz, D.

    2016-01-01

    A key comparison of 10 mH inductance standards at 1 kHz has been carried out with the participation of seven National Metrology Institutes of the Inter-American Metrology System, within the frame of the International Committee for Weights and Measures Mutual Recognition Arrangement (MRA), which was piloted by CENAM, Mexico. Three previously characterized commercial inductors, contained in individual enclosures with controlled temperature were used as traveling standards. This document presents the results and technical details of the comparison. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  11. Properties of nanocrystalline Fe75Si15M10 (M-Cr and Al) powders prepared by mechanical alloying.

    PubMed

    Kalita, M P C; Perumal, A; Srinivasan, A; Pandey, Brajesh; Verma, H C

    2008-08-01

    We report the structural and magnetic properties of the nanocrystalline Fe75Si15M10 (M-Al and Cr) powders prepared by mechanical alloying. The milling process produced a non-equilibrium solid solutions of bcc alpha-Fe(Si,Cr) and alpha-Fe(Si,Al). The average dislocation density increases and the average crystallite size decreases with increasing milling time. Magnetic property studies show that the coercivity of the sample increases and magnetization of the sample decreases with increasing milling time. The evolution of a non-equilibrium solid solution and the resulting magnetic properties of nanocrystalline powders are explained on the basis of Neel theory and modified random anisotropy model proposed by Shen et al.

  12. Identifying Meteor Streams Containing 10-m Bolides in Near-Earth Space and Determining their Temporal Evolution

    NASA Astrophysics Data System (ADS)

    Lai, H.; Russell, C. T.; Wei, H.; Delzanno, G.; Connors, M. G.

    2013-12-01

    The collision rate of small bodies orbiting the Sun increases with decreasing size. While small bodies in the 10-m class are difficult to detect from Earth, they are relatively easily detected by interplanetary spacecraft with magnetometers. A 10m body need be struck by a body only 20 cm across (traveling at 20 km/s) to be completely disrupted. The solar wind will sweep up the charged nano-scale dust as it flows through the debris forming a magnetic cloud. Because of the large size of the magnetic cloud only a small drop in the solar wind speed is needed to provide the momentum flux required to accelerate the cloud radially from the Sun. The cloud is carried outward and can be detected by any one of several interplanetary spacecraft. This procedure was first utilized on debris co-orbiting with the comet 2201 Oljato as monitored beginning in 1978 by the Pioneer Venus Orbiter and followed up by Venus Express that is still in operation. The meteoroid trail dissipated in just 30 years. We have used ACE, Wind and STEREO to identify a meteor stream co-orbiting with asteroid 138175 whose descending node is aligned with the Sun and the Earth on about April 17 each year. We have followed this trail from 1998 to the present and find that material extends to over 30° in front of the asteroid. It has been a steady producer of collisions over the last 15 years. The period of very close approach of this material to Earth may be over for a while but the material should be accessible by robotic or crewed missions as the orbit of 139175 has only a modest eccentricity and inclination to the ecliptic plane. Matching orbits with it should be similar in difficulty to a Venus flyby mission.

  13. Heart rate recovery after the 10-m incremental shuttle walking test in older adults with intellectual disabilities.

    PubMed

    Oppewal, Alyt; Hilgenkamp, Thessa I M; van Wijck, Ruud; Evenhuis, Heleen M

    2014-03-01

    Heart rate recovery (HRR) after exercise is an independent predictor for cardiovascular and all-cause mortality. To investigate the usefulness of HRR in cardiorespiratory exercise testing in older adults with intellectual disabilities (ID), the aims of this study were (a) to assess HRR in older adults with ID after the 10-m incremental shuttle walking test (ISWT) and (b) its association with personal characteristics (gender, age, distance walked on the ISWT, level of ID, genetic syndrome causing ID, autism, behavioral problems, and peak heart rate (HRpeak)). HRR was assessed after the 10-m incremental shuttle walking test in 300 older adults (>50 years) with borderline to profound ID. HRR was defined as the change from HRpeak during the ISWT to heart rate measured after 1, 2, 3, 4, and 5 min of passive recovery. The largest decrease in heart rate was in the first minute of recovery leveling off toward the fifth minute of recovery. An abnormal HHR (≤12 bpm) was seen in 36.1% of the participants with Down syndrome (DS) and in 30.7% of the participants with ID by other causes. After the fifth minute the heart rates of 69.4% of the participants with DS and of 61.4% of the participants with ID by other causes returned to resting levels. HRpeak and distance walked on the ISWT were positively related to all HRR measures. More severe ID was negatively related and having DS positively related to HRR after 3-5 min of recovery. The other characteristics were not significantly associated to HRR. HRR is a potentially useful outcome measure in cardiorespiratory fitness testing of older adults with ID with a direct, objective, and non-invasive measurement. Further research is needed to identify the relation between HRR and adverse health outcomes in this population.

  14. Implementation of Multispectral Image Classification on a Remote Adaptive Computer

    NASA Technical Reports Server (NTRS)

    Figueiredo, Marco A.; Gloster, Clay S.; Stephens, Mark; Graves, Corey A.; Nakkar, Mouna

    1999-01-01

    As the demand for higher performance computers for the processing of remote sensing science algorithms increases, the need to investigate new computing paradigms its justified. Field Programmable Gate Arrays enable the implementation of algorithms at the hardware gate level, leading to orders of m a,gnitude performance increase over microprocessor based systems. The automatic classification of spaceborne multispectral images is an example of a computation intensive application, that, can benefit from implementation on an FPGA - based custom computing machine (adaptive or reconfigurable computer). A probabilistic neural network is used here to classify pixels of of a multispectral LANDSAT-2 image. The implementation described utilizes Java client/server application programs to access the adaptive computer from a remote site. Results verify that a remote hardware version of the algorithm (implemented on an adaptive computer) is significantly faster than a local software version of the same algorithm implemented on a typical general - purpose computer).

  15. Tasseled cap transformation for HJ multispectral remote sensing data

    NASA Astrophysics Data System (ADS)

    Han, Ling; Han, Xiaoyong

    2015-12-01

    The tasseled cap transformation of remote sensing data has been widely used in environment, agriculture, forest and ecology. Tasseled cap transformation coefficients matrix of HJ multi-spectrum data has been established through Givens rotation matrix to rotate principal component transform vector to whiteness, greenness and blueness direction of ground object basing on 24 scenes year-round HJ multispectral remote sensing data. The whiteness component enhances the brightness difference of ground object, and the greenness component preserves more detailed information of vegetation change while enhances the vegetation characteristic, and the blueness component significantly enhances factory with blue plastic house roof around the town and also can enhance brightness of water. Tasseled cap transformation coefficients matrix of HJ will enhance the application effect of HJ multispectral remote sensing data in their application fields.

  16. [In-flight absolute radiometric calibration of UAV multispectral sensor].

    PubMed

    Chen, Wei; Yan, Lei; Gou, Zhi-Yang; Zhao, Hong-Ying; Liu, Da-Ping; Duan, Yi-Ni

    2012-12-01

    Based on the data of the scientific experiment in Urad Front Banner for UAV Remote Sensing Load Calibration Field project, with the help of 6 hyperspectral radiometric targets with good Lambertian property, the wide-view multispectral camera in UAV was calibrated adopting reflectance-based method. The result reveals that for green, red and infrared channel, whose images were successfully captured, the linear correlation coefficients between the DN and radiance are all larger than 99%. In final analysis, the comprehensive error is no more than 6%. The calibration results demonstrate that the hyperspectral targets equipped by the calibration field are well suitable for air-borne multispectral load in-flight calibration. The calibration result is reliable and could be used in the retrieval of geophysical parameters.

  17. An improved RANSAC algorithm for line matching on multispectral images

    NASA Astrophysics Data System (ADS)

    Wei, Lijun; Li, Yong; Yu, Hang; Xu, Liangpeng; Fan, Chunxiao

    2017-02-01

    This paper proposes a method for removing mismatched lines on multispectral images. The inaccurate detection of ending points brings a great challenge for matching lines since corresponding lines may not be integrally extracted. Due to the inaccurate detection of ending points, lines are usually mismatched with the line description. To eliminate the mismatched lines, we employ a modified RANSAC (Random Sample Consensus) consisting of two steps: (1) pick three line matches randomly and determine their intersections, which are used to calculate a transformation; (2) the best transformation is obtained by sorting the matching score of line matches and then the inliers are declared as the correct matches. Experimental results show that the proposed method can effectively remove incorrect matches on multispectral images.

  18. An Approach to Application of Multispectral Sensors, using AVIRIS Data

    NASA Technical Reports Server (NTRS)

    Warner, Amanda; Blonski, Slawomir; Gasser, Gerald; Ryan, Robert; Zanoni, Vicki

    2001-01-01

    High spatial resolution multispectral/hyperspectral sensors are being developed by private industry with science/research customers as end users. With an increasingly wide range of sensor choices, it is important for the remote sensing science community and commercial community alike to understand the trade-offs between ground sample distance (GSD), spectral resolution, and signal-to-noise ratio (SNR) in selecting a sensor that will best meet their needs. High spatial resolution hyperspectral imagery and super resolution multispectral charge-coupled device imagery can be used to develop prototypes of proposed data acquisition systems without building new systems or collecting large sets of additional data. By using these datasets to emulate proposed and existing systems, imaging systems may be optimized to meet customer needs in a virtual environment. This approach also enables one to determine, a priori, whether an existing dataset will be useful for a given application.

  19. Multispectral Electrical Impedance Tomography using Optimization over Manifolds

    NASA Astrophysics Data System (ADS)

    Fouchard, A.; Bonnet, S.; David, O.

    2016-10-01

    Electrical impedance tomography under spectral constraints uses a material basis decomposition to combine the different information embedded in the tissue spectra. This approach offers an alternative to static imaging while benefiting from systemic error cancellation using difference data. It suits well cases where no prior solution is known and the contrast lies entirely between frequencies, e.g. to diagnose acute stroke or cancer. In this work, a computational framework is presented to deal with the extra frequency dimensions and the constraints during reconstruction. A fraction volume approach is demonstrated with explicit Euclidean gradient, usage of a finite volume element solver and minimization over the oblique manifold. It is applied to synthetic data. Parameter estimations are compared between a monofrequency inversion and the proposed multispectral implementation. Results suggest that the proposed workflow enables to reduce the computational workload of multispectral inversion while ensuring valid proportions of materials within each control volume.

  20. Information extraction techniques for multi-spectral scanner data

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Crane, R. B.; Richardson, W.; Turner, R. E.

    1972-01-01

    Multispectral data recognition and information extraction problems considered are: (1) signature extension for improved recognition processing over large areas; (2) choice of density functions for recognition decision rules; (3) channel selection for cost reduction; and (4) radiation balance mapping for interpretation of wide spectrum scanner data. The formulation of a simulation model and reprocessing of both aircraft and space data reduces scan angle variations and extends signatures from one altitude to another. Comparison of the usefulness of empirical density functions and that of Gaussian density functions for recognition processing establishes the advantages of normal assumption for individual fields in processing of multispectral scanner data. Also reported is a procedure for producing radiation balance maps from wide spectra by analyzing energy budgets of vegetation and other surface materials through partitioning net absorbed radiant energy and estimating incoming power density at both short and long wavelengths.

  1. On-line object feature extraction for multispectral scene representation

    NASA Technical Reports Server (NTRS)

    Ghassemian, Hassan; Landgrebe, David

    1988-01-01

    A new on-line unsupervised object-feature extraction method is presented that reduces the complexity and costs associated with the analysis of the multispectral image data and data transmission, storage, archival and distribution. The ambiguity in the object detection process can be reduced if the spatial dependencies, which exist among the adjacent pixels, are intelligently incorporated into the decision making process. The unity relation was defined that must exist among the pixels of an object. Automatic Multispectral Image Compaction Algorithm (AMICA) uses the within object pixel-feature gradient vector as a valuable contextual information to construct the object's features, which preserve the class separability information within the data. For on-line object extraction the path-hypothesis and the basic mathematical tools for its realization are introduced in terms of a specific similarity measure and adjacency relation. AMICA is applied to several sets of real image data, and the performance and reliability of features is evaluated.

  2. A novel method to detect shadows on multispectral images

    NASA Astrophysics Data System (ADS)

    Daǧlayan Sevim, Hazan; Yardımcı ćetin, Yasemin; Özışık Başkurt, Didem

    2016-10-01

    Shadowing occurs when the direct light coming from a light source is obstructed by high human made structures, mountains or clouds. Since shadow regions are illuminated only by scattered light, true spectral properties of the objects are not observed in such regions. Therefore, many object classification and change detection problems utilize shadow detection as a preprocessing step. Besides, shadows are useful for obtaining 3D information of the objects such as estimating the height of buildings. With pervasiveness of remote sensing images, shadow detection is ever more important. This study aims to develop a shadow detection method on multispectral images based on the transformation of C1C2C3 space and contribution of NIR bands. The proposed method is tested on Worldview-2 images covering Ankara, Turkey at different times. The new index is used on these 8-band multispectral images with two NIR bands. The method is compared with methods in the literature.

  3. Improvements in estimating proportions of objects from multispectral data

    NASA Technical Reports Server (NTRS)

    Horwitz, H. M.; Hyde, P. D.; Richardson, W.

    1974-01-01

    Methods for estimating proportions of objects and materials imaged within the instantaneous field of view of a multispectral sensor were developed further. Improvements in the basic proportion estimation algorithm were devised as well as improved alien object detection procedures. Also, a simplified signature set analysis scheme was introduced for determining the adequacy of signature set geometry for satisfactory proportion estimation. Averaging procedures used in conjunction with the mixtures algorithm were examined theoretically and applied to artificially generated multispectral data. A computationally simpler estimator was considered and found unsatisfactory. Experiments conducted to find a suitable procedure for setting the alien object threshold yielded little definitive result. Mixtures procedures were used on a limited amount of ERTS data to estimate wheat proportion in selected areas. Results were unsatisfactory, partly because of the ill-conditioned nature of the pure signature set.

  4. Advanced Multispectral Scanner (AMS) study. [aircraft remote sensing

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The status of aircraft multispectral scanner technology was accessed in order to develop preliminary design specifications for an advanced instrument to be used for remote sensing data collection by aircraft in the 1980 time frame. The system designed provides a no-moving parts multispectral scanning capability through the exploitation of linear array charge coupled device technology and advanced electronic signal processing techniques. Major advantages include: 10:1 V/H rate capability; 120 deg FOV at V/H = 0.25 rad/sec; 1 to 2 rad resolution; high sensitivity; large dynamic range capability; geometric fidelity; roll compensation; modularity; long life; and 24 channel data acquisition capability. The field flattening techniques of the optical design allow wide field view to be achieved at fast f/nos for both the long and short wavelength regions. The digital signal averaging technique permits maximization of signal to noise performance over the entire V/H rate range.

  5. Acousto-optic tunable filter multispectral imaging system

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Chao, Tien-Hsin; Reyes, George

    1992-01-01

    This paper discusses recent activities of Jet Propulsion Laboratory in the development of a new type of remote sensing multispectral imaging instruments using acousto-optic tunable filter (AOTF) as programmable bandpass filter. This remote sensor provides real-time operation; observational flexibility; measurements of spectral, spatial, and polarization information using a single instrument; and compact, solid state structure without moving parts. Two microcomputer-controlled AOTF imaging spectrometer breadboard systems were designed and built. One operates in the wavelength range of 0.48-0.76 micron and the other in the range of 1.2-2.5 micron. Experiments were performed using these two systems to observe geological and botanical objects in laboratory and outdoor environment. Results have demonstrated the feasibility of using the AOTF multispectral imaging system as a real-time versatile remote sensor with operational flexibility for future Army tactical applications.

  6. High Spatial Resolution Airborne Multispectral Thermal Infrared Remote Sensing Data for Analysis of Urban Landscape Characteristics

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.; Arnold, James E. (Technical Monitor)

    2000-01-01

    We have used airborne multispectral thermal infrared (TIR) remote sensing data collected at a high spatial resolution (i.e., 10m) over several cities in the United States to study thermal energy characteristics of the urban landscape. These TIR data provide a unique opportunity to quantify thermal responses from discrete surfaces typical of the urban landscape and to identify both the spatial arrangement and patterns of thermal processes across the city. The information obtained from these data is critical to understanding how urban surfaces drive or force development of the Urban Heat Island (UHI) effect, which exists as a dome of elevated air temperatures that presides over cities in contrast to surrounding non-urbanized areas. The UHI is most pronounced in the summertime where urban surfaces, such as rooftops and pavement, store solar radiation throughout the day, and release this stored energy slowly after sunset creating air temperatures over the city that are in excess of 2-4'C warmer in contrast with non-urban or rural air temperatures. The UHI can also exist as a daytime phenomenon with surface temperatures in downtown areas of cities exceeding 38'C. The implications of the UHI are significant, particularly as an additive source of thermal energy input that exacerbates the overall production of ground level ozone over cities. We have used the Airborne Thermal and Land Applications Sensor (ATLAS), flown onboard a Lear 23 jet aircraft from the NASA Stennis Space Center, to acquire high spatial resolution multispectral TIR data (i.e., 6 bandwidths between 8.2-12.2 (um) over Huntsville, Alabama, Atlanta, Georgia, Baton Rouge, Louisiana, Salt Lake City, Utah, and Sacramento, California. These TIR data have been used to produce maps and other products, showing the spatial distribution of heating and cooling patterns over these cities to better understand how the morphology of the urban landscape affects development of the UHI. In turn, these data have been used

  7. Utilizing SAR and Multispectral Integrated Data for Emergency Response

    NASA Astrophysics Data System (ADS)

    Havivi, S.; Schvartzman, I.; Maman, S.; Marinoni, A.; Gamba, P.; Rotman, S. R.; Blumberg, D. G.

    2016-06-01

    Satellite images are used widely in the risk cycle to understand the exposure, refine hazard maps and quickly provide an assessment after a natural or man-made disaster. Though there are different types of satellite images (e.g. optical, radar) these have not been combined for risk assessments. The characteristics of different remote sensing data type may be extremely valuable for monitoring and evaluating the impacts of disaster events, to extract additional information thus making it available for emergency situations. To base this approach, two different change detection methods, for two different sensor's data were used: Coherence Change Detection (CCD) for SAR data and Covariance Equalization (CE) for multispectral imagery. The CCD provides an identification of the stability of an area, and shows where changes have occurred. CCD shows subtle changes with an accuracy of several millimetres to centimetres. The CE method overcomes the atmospheric effects differences between two multispectral images, taken at different times. Therefore, areas that had undergone a major change can be detected. To achieve our goals, we focused on the urban areas affected by the tsunami event in Sendai, Japan that occurred on March 11, 2011 which affected the surrounding area, coastline and inland. High resolution TerraSAR-X (TSX) and Landsat 7 images, covering the research area, were acquired for the period before and after the event. All pre-processed and processed according to each sensor. Both results, of the optical and SAR algorithms, were combined by resampling the spatial resolution of the Multispectral data to the SAR resolution. This was applied by spatial linear interpolation. A score representing the damage level in both products was assigned. The results of both algorithms, high level of damage is shown in the areas closer to the sea and shoreline. Our approach, combining SAR and multispectral images, leads to more reliable information and provides a complete scene for

  8. Versatile multispectral microscope based on light emitting diodes

    NASA Astrophysics Data System (ADS)

    Brydegaard, Mikkel; Merdasa, Aboma; Jayaweera, Hiran; Ålebring, Jens; Svanberg, Sune

    2011-12-01

    We describe the development of a novel multispectral microscope, based on light-emitting diodes, capable of acquiring megapixel images in thirteen spectral bands from the ultraviolet to the near infrared. The system captures images and spectra in transmittance, reflectance, and scattering modes. We present as examples of applications ground truth measurements for remote sensing and parasitology diagnostics. The system is a general purpose scientific instrument that could be used to develop dedicated simplified instruments with optimal bands and mode selection.

  9. Optimization of system parameters for a complete multispectral polarimeter

    SciTech Connect

    Hollstein, Andre; Ruhtz, Thomas; Fischer, Juergen; Preusker, Rene

    2009-08-20

    We optimize a general class of complete multispectral polarimeters with respect to signal-to-noise ratio, stability against alignment errors, and the minimization of errors regarding a given set of polarization states. The class of polarimeters that are dealt with consists of at least four polarization optics each with a multispectral detector. A polarization optic is made of an azimuthal oriented wave plate and a polarizing filter. A general, but not unique, analytic solution that minimizes signal-to-noise ratio is introduced for a polarimeter that incorporates four simultaneous measurements with four independent optics. The optics consist of four sufficient wave plates, where at least one is a quarter-wave plate. The solution is stable with respect to the retardance of the quarter-wave plate; therefore, it can be applied to real-world cases where the retardance deviates from {lambda}/4. The solution is a set of seven rotational parameters that depends on the given retardances of the wave plates. It can be applied to a broad range of real world cases. A numerical method for the optimization of arbitrary polarimeters of the type discussed is also presented and applied for two cases. First, the class of polarimeters that were analytically dealt with are further optimized with respect to stability and error performance with respect to linear polarized states. Then a multispectral case for a polarimeter that consists of four optics with real achromatic wave plates is presented. This case was used as the theoretical background for the development of the Airborne Multi-Spectral Sunphoto- and Polarimeter (AMSSP), which is an instrument for the German research aircraft HALO.

  10. Multi-spectral imaging with mid-infrared semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Wang, Yang; Le, Han Q.

    2006-01-01

    Multi-spectral laser imaging can be a useful technology for target discrimination, classification, and identification based on object spectral signatures. The mid-IR region (~3-14 μm) is particularly rich of molecular spectroscopic fingerprints, but the technology has been under utilized. Compact, potentially inexpensive semiconductor lasers may allow more cost-effective applications. This paper describes a development of semiconductor-laser-based multi-spectral imaging for both near-IR and mid-IR, and demonstrates the potential of this technology. The near-IR study employed 7 wavelengths from 0.635-1.55 μm, and used for system engineering evaluation as well as for studying the fundamental aspects of multi-spectral laser imaging. These include issues of wavelength-dependence scattering as a function of incident and receiving angle and the polarization effects. Stokes vector imaging and degree-of-linear-polarization were shown to reveal significant information to characterize the targets. The mid-IR study employed 4 wavelengths from 3.3-9.6 μm, and was applied to diverse targets that consist of natural and man-made materials and household objects. It was shown capable to resolve and distinguish small spectral differences among various targets, thanks to the laser radiometric and spectral accuracy. Colorless objects in the visible were shown with "colorful" signatures in the mid-IR. An essential feature of the study is an advanced system architecture that employs wavelength-division-multiplexed laser beams for high spectral fidelity and resolution. In addition, unlike conventional one-transmitter and one receiver design, the system is based on a scalable CDMA network concept with multiple transmitters and receivers to allow efficient information acquisition. The results suggest that multi-spectral laser imaging in general can be a unique and powerful technology for wide ranging applications.

  11. Multispectral optical tweezers for molecular diagnostics of single biological cells

    NASA Astrophysics Data System (ADS)

    Butler, Corey; Fardad, Shima; Sincore, Alex; Vangheluwe, Marie; Baudelet, Matthieu; Richardson, Martin

    2012-03-01

    Optical trapping of single biological cells has become an established technique for controlling and studying fundamental behavior of single cells with their environment without having "many-body" interference. The development of such an instrument for optical diagnostics (including Raman and fluorescence for molecular diagnostics) via laser spectroscopy with either the "trapping" beam or secondary beams is still in progress. This paper shows the development of modular multi-spectral imaging optical tweezers combining Raman and Fluorescence diagnostics of biological cells.

  12. Color coded data obtained by JPL's Shuttle Multispectral Infrared radiometer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Color coded data obtained from Baja California, Mexico to Texas by JPL's Shuttle Multispectral Infrared radiometer is pictured. The map shows where data was obtained on the 19th orbit of the mission. Yellow and green areas represent water. The first brown segment at left is Baja California, and the second begins at the coast of mainland Mexico and extends into Texas. The dark brown strips at the right are clouds.

  13. Retinex Preprocessing for Improved Multi-Spectral Image Classification

    NASA Technical Reports Server (NTRS)

    Thompson, B.; Rahman, Z.; Park, S.

    2000-01-01

    The goal of multi-image classification is to identify and label "similar regions" within a scene. The ability to correctly classify a remotely sensed multi-image of a scene is affected by the ability of the classification process to adequately compensate for the effects of atmospheric variations and sensor anomalies. Better classification may be obtained if the multi-image is preprocessed before classification, so as to reduce the adverse effects of image formation. In this paper, we discuss the overall impact on multi-spectral image classification when the retinex image enhancement algorithm is used to preprocess multi-spectral images. The retinex is a multi-purpose image enhancement algorithm that performs dynamic range compression, reduces the dependence on lighting conditions, and generally enhances apparent spatial resolution. The retinex has been successfully applied to the enhancement of many different types of grayscale and color images. We show in this paper that retinex preprocessing improves the spatial structure of multi-spectral images and thus provides better within-class variations than would otherwise be obtained without the preprocessing. For a series of multi-spectral images obtained with diffuse and direct lighting, we show that without retinex preprocessing the class spectral signatures vary substantially with the lighting conditions. Whereas multi-dimensional clustering without preprocessing produced one-class homogeneous regions, the classification on the preprocessed images produced multi-class non-homogeneous regions. This lack of homogeneity is explained by the interaction between different agronomic treatments applied to the regions: the preprocessed images are closer to ground truth. The principle advantage that the retinex offers is that for different lighting conditions classifications derived from the retinex preprocessed images look remarkably "similar", and thus more consistent, whereas classifications derived from the original

  14. Data processing 1: Advancements in machine analysis of multispectral data

    NASA Technical Reports Server (NTRS)

    Swain, P. H.

    1972-01-01

    Multispectral data processing procedures are outlined beginning with the data display process used to accomplish data editing and proceeding through clustering, feature selection criterion for error probability estimation, and sample clustering and sample classification. The effective utilization of large quantities of remote sensing data by formulating a three stage sampling model for evaluation of crop acreage estimates represents an improvement in determining the cost benefit relationship associated with remote sensing technology.

  15. LANDSAT-4 multispectral scanner (MSS) subsystem radiometric characterization

    NASA Technical Reports Server (NTRS)

    Alford, W. (Editor); Barker, J. (Editor); Clark, B. P.; Dasgupta, R.

    1983-01-01

    The multispectral band scanner (mass) and its spectral characteristics are described and methods are given for relating video digital levels on computer compatible tapes to radiance into the sensor. Topics covered include prelaunch calibration procedures and postlaunch radiometric processng. Examples of current data resident on the MSS image processing system are included. The MSS on LANDSAT 4 is compared with the scanners on earlier LANDSAT satellites.

  16. The Multispectral Imaging Science Working Group. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Cox, S. C. (Editor)

    1982-01-01

    Results of the deliberations of the six multispectral imaging science working groups (Botany, Geography, Geology, Hydrology, Imaging Science and Information Science) are summarized. Consideration was given to documenting the current state of knowledge in terrestrial remote sensing without the constraints of preconceived concepts such as possible band widths, number of bands, and radiometric or spatial resolutions of present or future systems. The findings of each working group included a discussion of desired capabilities and critical developmental issues.

  17. Retinal oxygen saturation evaluation by multi-spectral fundus imaging

    NASA Astrophysics Data System (ADS)

    Khoobehi, Bahram; Ning, Jinfeng; Puissegur, Elise; Bordeaux, Kimberly; Balasubramanian, Madhusudhanan; Beach, James

    2007-03-01

    Purpose: To develop a multi-spectral method to measure oxygen saturation of the retina in the human eye. Methods: Five Cynomolgus monkeys with normal eyes were anesthetized with intramuscular ketamine/xylazine and intravenous pentobarbital. Multi-spectral fundus imaging was performed in five monkeys with a commercial fundus camera equipped with a liquid crystal tuned filter in the illumination light path and a 16-bit digital camera. Recording parameters were controlled with software written specifically for the application. Seven images at successively longer oxygen-sensing wavelengths were recorded within 4 seconds. Individual images for each wavelength were captured in less than 100 msec of flash illumination. Slightly misaligned images of separate wavelengths due to slight eye motion were registered and corrected by translational and rotational image registration prior to analysis. Numerical values of relative oxygen saturation of retinal arteries and veins and the underlying tissue in between the artery/vein pairs were evaluated by an algorithm previously described, but which is now corrected for blood volume from averaged pixels (n > 1000). Color saturation maps were constructed by applying the algorithm at each image pixel using a Matlab script. Results: Both the numerical values of relative oxygen saturation and the saturation maps correspond to the physiological condition, that is, in a normal retina, the artery is more saturated than the tissue and the tissue is more saturated than the vein. With the multi-spectral fundus camera and proper registration of the multi-wavelength images, we were able to determine oxygen saturation in the primate retinal structures on a tolerable time scale which is applicable to human subjects. Conclusions: Seven wavelength multi-spectral imagery can be used to measure oxygen saturation in retinal artery, vein, and tissue (microcirculation). This technique is safe and can be used to monitor oxygen uptake in humans. This work

  18. Plant characteristic estimation using sonar, multispectral reflectance, and electromagnetic response

    NASA Astrophysics Data System (ADS)

    Jones, Carol L.

    Scope and method of study. The goal of this study was to design, test and validate three methods of remotely estimating plant physical and physiological characteristics. A free-space parallel plate electrostatic sensing system operating at medium radio frequency range was used to estimate water content and plant dry biomass. An ultrasound distance sensing system and a multispectral imaging system was used to directly estimate plant height and top view surface area and indirectly estimate plant biomass. NDVI was calculated from the multispectral imaging system data. Combining NDVI with the plant height and top view surface area estimates, a correlation was observed between plant biomass, chlorophyll content and chlorophyll concentration. Findings and conclusions. Plant water content and dry biomass of greenhouse grown spinach were estimated using a free-space electrostatic sensing system (r2 = 0.95). Ultrasonic sensor-based height estimates and top view surface area multispectral image data provided plant biomass estimates in corn and spinach (r 2 = 0.85 and 0.88). Estimates for snap beans were not as convincing (r2 = 0.52). Combining biomass estimates from the height and surface area data obtained by the ultrasonic distance sensor and the multispectral imaging system with NDVI670 calculated from reflectance data from the imaging system provided strong correlations with chlorophyll content in spinach (r 2 = 0.91). This was an improvement from the chlorophyll content estimates using only NDVI670. Correlations with chlorophyll concentration were weak. The strongest correlation was found using the reflectance ratio, NIR/Green (r2 = 0.30).

  19. Optimization of system parameters for a complete multispectral polarimeter.

    PubMed

    Hollstein, André; Ruhtz, Thomas; Fischer, Jürgen; Preusker, René

    2009-08-20

    We optimize a general class of complete multispectral polarimeters with respect to signal-to-noise ratio, stability against alignment errors, and the minimization of errors regarding a given set of polarization states. The class of polarimeters that are dealt with consists of at least four polarization optics each with a multispectral detector. A polarization optic is made of an azimuthal oriented wave plate and a polarizing filter. A general, but not unique, analytic solution that minimizes signal-to-noise ratio is introduced for a polarimeter that incorporates four simultaneous measurements with four independent optics. The optics consist of four sufficient wave plates, where at least one is a quarter-wave plate. The solution is stable with respect to the retardance of the quarter-wave plate; therefore, it can be applied to real-world cases where the retardance deviates from lambda/4. The solution is a set of seven rotational parameters that depends on the given retardances of the wave plates. It can be applied to a broad range of real world cases. A numerical method for the optimization of arbitrary polarimeters of the type discussed is also presented and applied for two cases. First, the class of polarimeters that were analytically dealt with are further optimized with respect to stability and error performance with respect to linear polarized states. Then a multispectral case for a polarimeter that consists of four optics with real achromatic wave plates is presented. This case was used as the theoretical background for the development of the Airborne Multi-Spectral Sunphoto- and Polarimeter (AMSSP), which is an instrument for the German research aircraft HALO.

  20. Dual multispectral and 3D structured light laparoscope

    NASA Astrophysics Data System (ADS)

    Clancy, Neil T.; Lin, Jianyu; Arya, Shobhit; Hanna, George B.; Elson, Daniel S.

    2015-03-01

    Intraoperative feedback on tissue function, such as blood volume and oxygenation would be useful to the surgeon in cases where current clinical practice relies on subjective measures, such as identification of ischaemic bowel or tissue viability during anastomosis formation. Also, tissue surface profiling may be used to detect and identify certain pathologies, as well as diagnosing aspects of tissue health such as gut motility. In this paper a dual modality laparoscopic system is presented that combines multispectral reflectance and 3D surface imaging. White light illumination from a xenon source is detected by a laparoscope-mounted fast filter wheel camera to assemble a multispectral image (MSI) cube. Surface shape is then calculated using a spectrally-encoded structured light (SL) pattern detected by the same camera and triangulated using an active stereo technique. Images of porcine small bowel were acquired during open surgery. Tissue reflectance spectra were acquired and blood volume was calculated at each spatial pixel across the bowel wall and mesentery. SL features were segmented and identified using a `normalised cut' algoritm and the colour vector of each spot. Using the 3D geometry defined by the camera coordinate system the multispectral data could be overlaid onto the surface mesh. Dual MSI and SL imaging has the potential to provide augmented views to the surgeon supplying diagnostic information related to blood supply health and organ function. Future work on this system will include filter optimisation to reduce noise in tissue optical property measurement, and minimise spot identification errors in the SL pattern.

  1. An LED-based lighting system for acquiring multispectral scenes

    NASA Astrophysics Data System (ADS)

    Parmar, Manu; Lansel, Steven; Farrell, Joyce

    2012-01-01

    The availability of multispectral scene data makes it possible to simulate a complete imaging pipeline for digital cameras, beginning with a physically accurate radiometric description of the original scene followed by optical transformations to irradiance signals, models for sensor transduction, and image processing for display. Certain scenes with animate subjects, e.g., humans, pets, etc., are of particular interest to consumer camera manufacturers because of their ubiquity in common images, and the importance of maintaining colorimetric fidelity for skin. Typical multispectral acquisition methods rely on techniques that use multiple acquisitions of a scene with a number of different optical filters or illuminants. Such schemes require long acquisition times and are best suited for static scenes. In scenes where animate objects are present, movement leads to problems with registration and methods with shorter acquisition times are needed. To address the need for shorter image acquisition times, we developed a multispectral imaging system that captures multiple acquisitions during a rapid sequence of differently colored LED lights. In this paper, we describe the design of the LED-based lighting system and report results of our experiments capturing scenes with human subjects.

  2. High Speed Method for in Situ Multispectral Image Registration

    SciTech Connect

    Perrine, Kenneth A.; Lamarche, Brian L.; Hopkins, Derek F.; Budge, Scott E.; Opresko, Lee; Wiley, H. S.; Sowa, Marianne B.

    2007-01-29

    Multispectral confocal spinning disk microscopy provides a high resolution method for real-time live cell imaging. However, optical distortions and the physical misalignments introduced by the use of multiple acquisition cameras can obscure spatial information contained in the captured images. In this manuscript, we describe a multispectral method for real-time image registration whereby the image from one camera is warped onto the image from a second camera via a polynomial correction. This method provides a real-time pixel-for-pixel match between images obtained over physically distinct optical paths. Using an in situ calibration method, the polynomial is characterized by a set of coefficients using a least squares solver. Error analysis demonstrates optimal performance results from the use of cubic polynomials. High-speed evaluation of the warp is then performed through forward differencing with fixed-point data types. Image reconstruction errors are reduced through bilinear interpolation. The registration techniques described here allow for successful registration of multispectral images in real-time (exceeding 15 frame/sec) and have a broad applicability to imaging methods requiring pixel matching over multiple data channels.

  3. Prototype focal plane assembly for multispectral remote sensing

    SciTech Connect

    Rienstra, J.L.; Vampola, J.A.

    1995-09-01

    Sandia National Laboratories and several subsystem contractors are developing technologies applicable to multispectral remote sensing. A prototype multispectral sensor system is under development. The three major subsystems making up the prototype sensor are the focal plane assembly (FPA), the cryocooler, and the telescope. This paper covers the focal plane assembly, which is the basis of the sensor system. The focal plane assembly includes sensor chip assemblies, optical filters, and a vacuum enclosure with cold shielding The optical filters define 15 spectral bands in a range from 0.45 {mu}m to 10.7 {mu}m. All the linear arrays are mounted on a single motherboard and are designed to operate at 75 K. The four spectral bands covering the visible to near infrared have roughly 2400 pixels each, and the remaining 11 spectral bands have roughly 600 pixels each. The average total rate of multispectral data from the FPA is approximately 16.4 megapixels per second. The diverse requirements for the focal plane assembly make this a challenging, sensor to design and build.

  4. Quality assessment of butter cookies applying multispectral imaging.

    PubMed

    Andresen, Mette S; Dissing, Bjørn S; Løje, Hanne

    2013-07-01

    A method for characterization of butter cookie quality by assessing the surface browning and water content using multispectral images is presented. Based on evaluations of the browning of butter cookies, cookies were manually divided into groups. From this categorization, reference values were calculated for a statistical prediction model correlating multispectral images with a browning score. The browning score is calculated as a function of oven temperature and baking time. It is presented as a quadratic response surface. The investigated process window was the intervals 4-16 min and 160-200°C in a forced convection electrically heated oven. In addition to the browning score, a model for predicting the average water content based on the same images is presented. This shows how multispectral images of butter cookies may be used for the assessment of different quality parameters. Statistical analysis showed that the most significant wavelengths for browning predictions were in the interval 400-700 nm and the wavelengths significant for water prediction were primarily located in the near-infrared spectrum. The water prediction model was found to correctly estimate the average water content with an absolute error of 0.22%. From the images it was also possible to follow the browning and drying propagation from the cookie edge toward the center.

  5. Multispectral Image Out-of-Focus Deblurring Using Interchannel Correlation.

    PubMed

    Chen, Shu-Jie; Shen, Hui-Liang

    2015-11-01

    Out-of-focus blur occurs frequently in multispectral imaging systems when the camera is well focused at a specific (reference) imaging channel. As the effective focal lengths of the lens are wavelength dependent, the blurriness levels of the images at individual channels are different. This paper proposes a multispectral image deblurring framework to restore out-of-focus spectral images based on the characteristic of interchannel correlation (ICC). The ICC is investigated based on the fact that a high-dimensional color spectrum can be linearly approximated using rather a few number of intrinsic spectra. In the method, the spectral images are classified into an out-of-focus set and a well-focused set via blurriness computation. For each out-of-focus image, a guiding image is derived from the well-focused spectral images and is used as the image prior in the deblurring framework. The out-of-focus blur is modeled as a Gaussian point spread function, which is further employed as the blur kernel prior. The regularization parameters in the image deblurring framework are determined using generalized cross validation, and thus the proposed method does not need any parameter tuning. The experimental results validate that the method performs well on multispectral image deblurring and outperforms the state of the arts.

  6. Multispectral image analysis for object recognition and classification

    NASA Astrophysics Data System (ADS)

    Viau, C. R.; Payeur, P.; Cretu, A.-M.

    2016-05-01

    Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.

  7. Tunable multispectral plasmon induced transparency based on graphene metamaterials.

    PubMed

    Sun, Chen; Si, Jiangnan; Dong, Zhewei; Deng, Xiaoxu

    2016-05-30

    A dynamically wavelength tunable multispectral plasmon induced transparency (PIT) device based on graphene metamaterials, which is composed of periodically patterned graphene double layers separated by a dielectric layer, is proposed theoretically and numerically in the terahertz frequency range. Considering the near-field coupling of different graphene layers and the bright-dark mode coupling in the same graphene layer, the coupled Lorentz oscillator model is adapted to explain the physical mechanism of multispectral EIT-like responses. The simulated transmission based on the finite-difference time-domain (FDTD) solutions indicates that the shifting and depth of the EIT resonances in multiple PIT windows are controlled by different geometrical parameters and Fermi energies distributions. A design scheme with graphene integration is employed, which allows independent tuning of resonance frequencies by electrostatically changing the Fermi energies of graphene double layer. Active control of the multispectral EIT-like responses enables the proposed device to be widely applied in optical information processing as tunable sensors, switches, and filters.

  8. Multispectral tissue analysis and classification towards enabling automated robotic surgery

    NASA Astrophysics Data System (ADS)

    Triana, Brian; Cha, Jaepyeong; Shademan, Azad; Krieger, Axel; Kang, Jin U.; Kim, Peter C. W.

    2014-02-01

    Accurate optical characterization of different tissue types is an important tool for potentially guiding surgeons and enabling automated robotic surgery. Multispectral imaging and analysis have been used in the literature to detect spectral variations in tissue reflectance that may be visible to the naked eye. Using this technique, hidden structures can be visualized and analyzed for effective tissue classification. Here, we investigated the feasibility of automated tissue classification using multispectral tissue analysis. Broadband reflectance spectra (200-1050 nm) were collected from nine different ex vivo porcine tissues types using an optical fiber-probe based spectrometer system. We created a mathematical model to train and distinguish different tissue types based upon analysis of the observed spectra using total principal component regression (TPCR). Compared to other reported methods, our technique is computationally inexpensive and suitable for real-time implementation. Each of the 92 spectra was cross-referenced against the nine tissue types. Preliminary results show a mean detection rate of 91.3%, with detection rates of 100% and 70.0% (inner and outer kidney), 100% and 100% (inner and outer liver), 100% (outer stomach), and 90.9%, 100%, 70.0%, 85.7% (four different inner stomach areas, respectively). We conclude that automated tissue differentiation using our multispectral tissue analysis method is feasible in multiple ex vivo tissue specimens. Although measurements were performed using ex vivo tissues, these results suggest that real-time, in vivo tissue identification during surgery may be possible.

  9. Polarization controllable multispectral symmetry-breaking absorberin mid-infrared

    NASA Astrophysics Data System (ADS)

    Chen, Nan; Pitchappa, Prakash; Ho, Chong Pei; Hasan, Dihan; Kropelnicki, Piotr; Alioto, Massimo; Lee, Chengkuo

    2016-08-01

    The versatility of mid-infrared metamaterial absorbers along with the ease of fabrication has been widely used in thermal imaging, molecule sensing, and many other applications. Controllable multispectral absorption is highly required for small footprint, multi-purpose, and real-time sensing applications. In this paper, we present the polarization control of interchangeable multispectral absorption based on the dual-band metamaterial absorber in split mode. Large modulation depth of absorption is obtained during multi-band transition through polarization control. We perform theoretical and numerical analysis to explain the results by formulating an equivalent circuit for the asymmetric cross resonator. Thermal controllability is also demonstrated to show the reversible and repeatable manipulation of absorption intensity at a given wavelength. Moreover, we characterized the limitation of this device under extreme high temperature. This work offers a design methodology for interchangeable multispectral metamaterial absorber from a new perspective by adopting polarization of incident light as a control mechanism, and this will open up possibilities for many valuable applications in the future.

  10. Classification of multispectral images by using Lagrangian support vector machines

    NASA Astrophysics Data System (ADS)

    Zhu, Hongmei; Yang, Xiaojun

    2008-12-01

    Lagragian support vector machine (LSVM) is a linearly convergent Lagrangian, which is obtained by reformulating the quadratic program of a standard linear support vector machine. To investigate the performance of the classifier working on multispectral images with LSVM as optimizer, we devise a new test based on LSVMs for classifying multispectral data in this work. First of all, data are preprocessed. To acquire the optimum bands for image classification, multispectral image is mapped into a two-dimensional feature space to inspect the bands with redundant spectral information. These extracted data acquired through the feature selection is named data group B relative to the original data group A for a purpose of comparison. Then, to classify multiclass problem, binary classification is extended to multiclass classification by pairwise method. Secondly, two groups of data are trained to find models. In this phase, optimal C values are chosen carefully through trials with different values. Then, classifiers based on LSVMs with optimal C values are used to yield optimal separating hyperplane (OSH). Lastly, in prediction phase, the two groups of data are inputted respectively into each classifier for testing. These classifiers include ones with linear kernel and ones with polynomial kernel of degree 2. The results of the experiment reveal that classifiers with LSVMs as an optimizer have excellent performances with both linear kernel and polynomial kernel of degree 2. Bias caused by the differentia of the two groups of data is not obvious.

  11. Time-resolved multispectral imaging of combustion reaction

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Fréderick

    2015-05-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. This allows to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases such as carbon dioxide (CO2) selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge about spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using Telops MS-IR MW camera which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profile derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  12. Time-resolved multispectral imaging of combustion reactions

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Frédérick

    2015-10-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. These allow to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases, such as carbon dioxide (CO2), selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge of spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using a Telops MS-IR MW camera, which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profiles derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  13. Multispectral Analysis of Indigenous Rock Art Using Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Skoog, B.; Helmholz, P.; Belton, D.

    2016-06-01

    Multispectral analysis is a widely used technique in the photogrammetric and remote sensing industry. The use of Terrestrial Laser Scanning (TLS) in combination with imagery is becoming increasingly common, with its applications spreading to a wider range of fields. Both systems benefit from being a non-contact technique that can be used to accurately capture data regarding the target surface. Although multispectral analysis is actively performed within the spatial sciences field, its extent of application within an archaeological context has been limited. This study effectively aims to apply the multispectral techniques commonly used, to a remote Indigenous site that contains an extensive gallery of aging rock art. The ultimate goal for this research is the development of a systematic procedure that could be applied to numerous similar sites for the purpose of heritage preservation and research. The study consisted of extensive data capture of the rock art gallery using two different TLS systems and a digital SLR camera. The data was combined into a common 2D reference frame that allowed for standard image processing to be applied. An unsupervised k-means classifier was applied to the multiband images to detect the different types of rock art present. The result was unsatisfactory as the subsequent classification accuracy was relatively low. The procedure and technique does however show potential and further testing with different classification algorithms could possibly improve the result significantly.

  14. Fast unmixing of multispectral optoacoustic data with vertex component analysis

    NASA Astrophysics Data System (ADS)

    Luís Deán-Ben, X.; Deliolanis, Nikolaos C.; Ntziachristos, Vasilis; Razansky, Daniel

    2014-07-01

    Multispectral optoacoustic tomography enhances the performance of single-wavelength imaging in terms of sensitivity and selectivity in the measurement of the biodistribution of specific chromophores, thus enabling functional and molecular imaging applications. Spectral unmixing algorithms are used to decompose multi-spectral optoacoustic data into a set of images representing distribution of each individual chromophoric component while the particular algorithm employed determines the sensitivity and speed of data visualization. Here we suggest using vertex component analysis (VCA), a method with demonstrated good performance in hyperspectral imaging, as a fast blind unmixing algorithm for multispectral optoacoustic tomography. The performance of the method is subsequently compared with a previously reported blind unmixing procedure in optoacoustic tomography based on a combination of principal component analysis (PCA) and independent component analysis (ICA). As in most practical cases the absorption spectrum of the imaged chromophores and contrast agents are known or can be determined using e.g. a spectrophotometer, we further investigate the so-called semi-blind approach, in which the a priori known spectral profiles are included in a modified version of the algorithm termed constrained VCA. The performance of this approach is also analysed in numerical simulations and experimental measurements. It has been determined that, while the standard version of the VCA algorithm can attain similar sensitivity to the PCA-ICA approach and have a robust and faster performance, using the a priori measured spectral information within the constrained VCA does not generally render improvements in detection sensitivity in experimental optoacoustic measurements.

  15. Code-excited linear predictive coding of multispectral MR images

    NASA Astrophysics Data System (ADS)

    Hu, Jian-Hong; Wang, Yao; Cahill, Patrick

    1996-02-01

    This paper reports a multispectral code excited linear predictive coding method for the compression of well-registered multispectral MR images. Different linear prediction models and the adaptation schemes have been compared. The method which uses forward adaptive autoregressive (AR) model has proven to achieve a good compromise between performance, complexity and robustness. This approach is referred to as the MFCELP method. Given a set of multispectral images, the linear predictive coefficients are updated over non-overlapping square macroblocks. Each macro-block is further divided into several micro-blocks and, the best excitation signals for each microblock are determined through an analysis-by-synthesis procedure. To satisfy the high quality requirement for medical images, the error between the original images and the synthesized ones are further specified using a vector quantizer. The MFCELP method has been applied to 26 sets of clinical MR neuro images (20 slices/set, 3 spectral bands/slice, 256 by 256 pixels/image, 12 bits/pixel). It provides a significant improvement over the discrete cosine transform (DCT) based JPEG method, a wavelet transform based embedded zero-tree wavelet (EZW) coding method, as well as the MSARMA method we developed before.

  16. Solid state high resolution multi-spectral imager CCD test phase

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The program consisted of measuring the performance characteristics of charge coupled linear imaging devices, and a study defining a multispectral imaging system employing advanced solid state photodetection techniques.

  17. MeV electron acceleration at 1kHz with <10 mJ laser pulses

    NASA Astrophysics Data System (ADS)

    Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Kim, Ki-Yong; Milchberg, Howard

    2016-10-01

    We demonstrate laser driven acceleration of electrons at 1 kHz repetition rate with pC charge above 1MeV per shot using < 10 mJ pulse energies focused on a near-critical density He or H2 gas jet. Using the H2 gas jet, electron acceleration to 0.5 MeV in 10 fC bunches was observed with laser pulse energy as low as 1.3mJ . Using a near-critical density gas jet sets the critical power required for relativistic self-focusing low enough for mJ scale laser pulses to self- focus and drive strong wakefields. Experiments and particle-in-cell simulations show that optimal drive pulse duration and chirp for maximum electron bunch charge and energy depends on the target gas species. High repetition rate, high charge, and short duration electron bunches driven by very modest pulse energies constitutes an ideal portable electron source for applications such as ultrafast electron diffraction experiments and high rep. rate γ-ray production. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.

  18. Search for the CO-dark Mass in the Central Molecular Zone by using the ASTE 10-m Telescope

    NASA Astrophysics Data System (ADS)

    Tanaka, Kunihiko

    2017-01-01

    Atomic carbon (C0) is one of the most abundant carbon-bearing species in the interstellar molecular gas, and its submillimeter lines are good tracers of low-density molecular clouds which are often dark in CO rotational lines. We present a new map of the central 150 pc region of the Milky Way in the 500 GHz [CI] line, which has been recently obtained with the ASTE 10-m telescope. The [CI] emission is brightest toward the central 5-pc region, where massive GMCs are absent. This [CI]-bright region is approximately centered toward Sgr A*, covering the entire circum-nuclear ring (CND) and the western part of the 50-km/s cloud. The C0/CO abundance ratio is 0.5-2 there, and the highest ratio is observed toward the CND but just outside of the 2-pc ring of dense gas. This discovery may suggest that the CO-dark component occupies a significant fraction of the molecular gas in the circumnuclear region.

  19. A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields.

    PubMed

    Assig, Maximilian; Etzkorn, Markus; Enders, Axel; Stiepany, Wolfgang; Ast, Christian R; Kern, Klaus

    2013-03-01

    We present design and performance of a scanning tunneling microscope (STM) that operates at temperatures down to 10 mK providing ultimate energy resolution on the atomic scale. The STM is attached to a dilution refrigerator with direct access to an ultra high vacuum chamber allowing in situ sample preparation. High magnetic fields of up to 14 T perpendicular and up to 0.5 T parallel to the sample surface can be applied. Temperature sensors mounted directly at the tip and sample position verified the base temperature within a small error margin. Using a superconducting Al tip and a metallic Cu(111) sample, we determined an effective temperature of 38 ± 1 mK from the thermal broadening observed in the tunneling spectra. This results in an upper limit for the energy resolution of ΔE = 3.5 kBT = 11.4 ± 0.3 μeV. The stability between tip and sample is 4 pm at a temperature of 15 mK as demonstrated by topography measurements on a Cu(111) surface.

  20. High-cycle fatigue of 10M Ni-Mn-Ga magnetic shape memory alloy in reversed mechanical loading

    NASA Astrophysics Data System (ADS)

    Aaltio, I.; Soroka, A.; Ge, Y.; Söderberg, O.; Hannula, S.-P.

    2010-07-01

    Application of Ni-Mn-Ga magnetic shape memory alloys in magnetic-field-induced actuation relies on their performance in long-term high-cycle fatigue. In this paper the performance and changes in the microstructure of a Ni-Mn-Ga 10M martensite single crystal material are reported in a long-term mechanically induced shape change cycling. The longest test was run for 2 × 109 cycles at a frequency of 250 Hz and a strain amplitude of ± 1%. After the test a clear increase of the dynamic stiffness of the material was detected. Three specimens out of ten were cycled until fracture occurred and their fracture mechanism was studied. It was observed that the macroscopic crack growth took place roughly at a 45° angle with respect to the loading direction that was along the lang100rang crystallographic direction of the sample. The macroscopic fracture plane seemed to correspond roughly to the {111} crystal planes. On a microscopic scale the fracture propagated in a step-like manner at least partly along crystallographic planes. The steps at the fracture plane correspond to the {101} twin planes, with the height of steps along the lang101rang direction. The final fracture of the samples occurred in a brittle manner after the critical stress was exceeded.

  1. B cells expressing IL-10 mRNA modulate memory T cells after DNA-Hsp65 immunization

    PubMed Central

    Fontoura, I. C.; Trombone, A.P.F.; Almeida, L. P.; Lorenzi, J. C. C.; Rossetti, R. A. M.; Malardo, T.; Padilha, E.; Schluchting, W.; Silva, R. L. L.; Gembre, A. F.; Fiuza, J. E. C.; Silva, C. L.; Panunto-Castelo, A.; Coelho-Castelo, A. A. M.

    2015-01-01

    In DNA vaccines, the gene of interest is cloned into a bacterial plasmid that is engineered to induce protein production for long periods in eukaryotic cells. Previous research has shown that the intramuscular immunization of BALB/c mice with a naked plasmid DNA fragment encoding the Mycobacterium leprae 65-kDa heat-shock protein (pcDNA3-Hsp65) induces protection against M. tuberculosis challenge. A key stage in the protective immune response after immunization is the generation of memory T cells. Previously, we have shown that B cells capture plasmid DNA-Hsp65 and thereby modulate the formation of CD8+ memory T cells after M. tuberculosis challenge in mice. Therefore, clarifying how B cells act as part of the protective immune response after DNA immunization is important for the development of more-effective vaccines. The aim of this study was to investigate the mechanisms by which B cells modulate memory T cells after DNA-Hsp65 immunization. C57BL/6 and BKO mice were injected three times, at 15-day intervals, with 100 µg naked pcDNA-Hsp65 per mouse. Thirty days after immunization, the percentages of effector memory T (TEM) cells (CD4+ and CD8+/CD44high/CD62Llow) and memory CD8+ T cells (CD8+/CD44high/CD62Llow/CD127+) were measured with flow cytometry. Interferon γ, interleukin 12 (IL-12), and IL-10 mRNAs were also quantified in whole spleen cells and purified B cells (CD43−) with real-time qPCR. Our data suggest that a B-cell subpopulation expressing IL-10 downregulated proinflammatory cytokine expression in the spleen, increasing the survival of CD4+ TEM cells and CD8+ TEM/CD127+ cells. PMID:26397973

  2. Implementation and evaluation of ILLIAC 4 algorithms for multispectral image processing

    NASA Technical Reports Server (NTRS)

    Swain, P. H.

    1974-01-01

    Data concerning a multidisciplinary and multi-organizational effort to implement multispectral data analysis algorithms on a revolutionary computer, the Illiac 4, are reported. The effectiveness and efficiency of implementing the digital multispectral data analysis techniques for producing useful land use classifications from satellite collected data were demonstrated.

  3. A multispectral sorting device for isolating single wheat kernels with high protein content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Automated sorting of single wheat kernels according to protein content was demonstrated using two novel multispectral sorting devices with different spectral ranges; 470-1070 nm (silicone based detector) and 910nm-1550 nm (InGaAs based detector). The multispectral data were acquired by rapidly (~12...

  4. Combining kriging, multispectral and multimodal microscopy to resolve malaria-infected erythrocyte contents.

    PubMed

    Dabo-Niang, S; Zoueu, J T

    2012-09-01

    In this communication, we demonstrate how kriging, combine with multispectral and multimodal microscopy can enhance the resolution of malaria-infected images and provide more details on their composition, for analysis and diagnosis. The results of this interpolation applied to the two principal components of multispectral and multimodal images illustrate that the examination of the content of Plasmodium falciparum infected human erythrocyte is improved.

  5. Monitoring of maize chlorophyll content based on multispectral vegetation indices

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Li, Minzan; Zheng, Lihua; Zhang, Yane; Zhang, Yajing

    2012-11-01

    In order to estimate the nutrient status of maize, the multi-spectral image was used to monitor the chlorophyll content in the field. The experiments were conducted under three different fertilizer treatments (High, Normal and Low). A multispectral CCD camera was used to collect ground-based images of maize canopy in green (G, 520~600nm), red (R, 630~690nm) and near-infrared (NIR, 760~900nm) band. Leaves of maize were randomly sampled to detect the chlorophyll content by UV-Vis spectrophotometer. The images were processed following image preprocessing, canopy segmentation and parameter calculation: Firstly, the median filtering was used to improve the visual contrast of image. Secondly, the leaves of maize canopy were segmented in NIR image. Thirdly, the average gray value (GIA, RIA and NIRIA) and the vegetation indices (DVI, RVI, NDVI, et al.) widely used in remote sensing were calculated. A new vegetation index, combination of normalized difference vegetation index (CNDVI), was developed. After the correlation analysis between image parameter and chlorophyll content, six parameters (GIA, RIA, NIRIA, GRVI, GNDVI and CNDVI) were selected to estimate chlorophyll content at shooting and trumpet stages respectively. The results of MLR predicting models showed that the R2 was 0.88 and the adjust R2 was 0.64 at shooting stage; the R2 was 0.77 and the adjust R2 was 0.31 at trumpet stage. It was indicated that vegetation indices derived from multispectral image could be used to monitor the chlorophyll content. It provided a feasible method for the chlorophyll content detection.

  6. The extension of endmember extraction to multispectral scenes

    NASA Astrophysics Data System (ADS)

    Gruninger, John H.; Ratkowski, Anthony J.; Hoke, Michael L.

    2004-08-01

    A multiple simplex endmember extraction method has been developed. Unlike convex methods that rely on a single simplex, the number of endmembers is not restricted by the number of linearly independent spectral channels. The endmembers are identified as the extreme points in the data set. The algorithm for finding the endmembers can simultaneously find endmember abundance maps. Multispectral and hyperspectral scenes can be complex and contain many materials under a variety of illumination and environmental conditions, but individual pixels typically contain only a few materials in a small subset of the illumination and environmental conditions which exist in the scene. This forms the physical basis for the approach that restricts the number of endmembers that combine to model a single pixel. No restriction is placed on the total number of endmembers, however. The algorithm for finding the endmembers and their abundances maps is sequential. Extreme points are identified based on the angle they make with the existing set. The point making the maximum angle with the existing set is chosen as the next endmember to add to enlarge the endmember set. The maximum number of endmembers that are allowed to be in a subset model for individual pixels is controlled by an input parameter. The subset selection algorithm is sequential and takes place simultaneously with the overall endmember extraction. The algorithm updates the abundances of previous endmembers and ensures that the abundances of previous and current endmembers remain positive or zero. The method offers advantages in multispectral data sets where the limited number of channels impairs material un-mixing by standard techniques. A description of the method is presented herein and applied to real and synthetic hyperspectral and multispectral data sets.

  7. A tiny VIS-NIR snapshot multispectral camera

    NASA Astrophysics Data System (ADS)

    Geelen, Bert; Blanch, Carolina; Gonzalez, Pilar; Tack, Nicolaas; Lambrechts, Andy

    2015-03-01

    Spectral imaging can reveal a lot of hidden details about the world around us, but is currently confined to laboratory environments due to the need for complex, costly and bulky cameras. Imec has developed a unique spectral sensor concept in which the spectral unit is monolithically integrated on top of a standard CMOS image sensor at wafer level, hence enabling the design of compact, low cost and high acquisition speed spectral cameras with a high design flexibility. This flexibility has previously been demonstrated by imec in the form of three spectral camera architectures: firstly a high spatial and spectral resolution scanning camera, secondly a multichannel snapshot multispectral camera and thirdly a per-pixel mosaic snapshot spectral camera. These snapshot spectral cameras sense an entire multispectral data cube at one discrete point in time, extending the domain of spectral imaging towards dynamic, video-rate applications. This paper describes the integration of our per-pixel mosaic snapshot spectral sensors inside a tiny, portable and extremely user-friendly camera. Our prototype demonstrator cameras can acquire multispectral image cubes, either of 272x512 pixels over 16 bands in the VIS (470-620nm) or of 217x409 pixels over 25 bands in the VNIR (600-900nm) at 170 cubes per second for normal machine vision illumination levels. The cameras themselves are extremely compact based on Ximea xiQ cameras, measuring only 26x26x30mm, and can be operated from a laptop-based USB3 connection, making them easily deployable in very diverse environments.

  8. In-vivo multi-spectral confocal microscopy

    NASA Astrophysics Data System (ADS)

    Rouse, Andrew R.; Udovich, Joshua A.; Gmitro, Arthur F.

    2005-03-01

    A multi-spectral confocal microendoscope (MCME) for in-vivo imaging has been developed. The MCME employs a flexible fiber-optic catheter coupled to a slit-scan confocal microscope with an imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The focus mechanism allows for imaging to a maximum tissue depth of 200 microns. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3 micron lateral resolution and 30 micron axial resolution. The system incorporates two laser sources and is therefore capable of simultaneous acquisition of spectra from multiple dyes using dual excitation. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 8nm to 16nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersion characteristics of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. In-vitro, and ex-vivo multi-spectral results are presented.

  9. Fusion of LIDAR Data and Multispectral Imagery for Effective Building Detection Based on Graph and Connected Component Analysis

    NASA Astrophysics Data System (ADS)

    Gilani, S. A. N.; Awrangjeb, M.; Lu, G.

    2015-03-01

    : Aitkenvale and Hervey Bay, for object-based and pixel-based completeness, correctness, and quality. The proposed technique detects buildings larger than 50 m2 and 10 m2 in the Aitkenvale site with 100% and 91% accuracy, respectively, while in the Hervey Bay site it performs better with 100% accuracy for buildings larger than 10 m2 in area.

  10. Oil slick studies using photographic and multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Macintyre, W. G.; Penney, M. E.; Oberholtzer, J. D.

    1971-01-01

    Field studies of spills of Nos. 6 (Bunker C), 4, and 2 fuel oils and menhaden fish oil in the southern Chesapeake Bay have been supplemented with aerial photographic and multispectral scanner data. Thin films showed best in ultraviolet and blue bands and thick films in the green. Color film was effective for all thicknesses. Thermal infrared imagery provided clear detection, but required field temperature and thickness data to distinguish thickness/emissivity variations from temperature variations. Slick spreading rates agree with the theory of Fay (1969); further study of spreading is in progress.

  11. Enhancement of multispectral thermal infrared images - Decorrelation contrast stretching

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.

    1992-01-01

    Decorrelation contrast stretching is an effective method for displaying information from multispectral thermal infrared (TIR) images. The technique involves transformation of the data to principle components ('decorrelation'), independent contrast 'stretching' of data from the new 'decorrelated' image bands, and retransformation of the stretched data back to the approximate original axes, based on the inverse of the principle component rotation. The enhancement is robust in that colors of the same scene components are similar in enhanced images of similar scenes, or the same scene imaged at different times. Decorrelation contrast stretching is reviewed in the context of other enhancements applied to TIR images.

  12. Middle infrared multispectral aircraft scanner data: analysis for geological applications.

    PubMed

    Kahle, A B; Madura, D P; Soha, J M

    1980-07-15

    Multispectral middle IR (8-13-microm) data were acquired with an aircraft scanner over Utah. Because these digital image data were dominated by temperature, all six channels were highly correlated. Extensive processing was required to allow geologic photointerpretation based on subtle variations in spectral emittance between rock types. After preliminary processing, ratio images were produced and color ratio composites created from these. Sensor calibration and an atmospheric model allowed determination of surface brightness, temperature, emittance, and color composite emittance images. The best separation of major rock types was achieved with a principal component transformation, followed by a Gaussian stretch, followed by an inverse transformation to the original axes.

  13. Lensless multispectral digital in-line holographic microscope

    NASA Astrophysics Data System (ADS)

    Ryle, James P.; McDonnell, Susan; Sheridan, John T.

    2011-12-01

    An compact multispectral digital in-line holographic microscope (DIHM) is developed that emulates Gabor's original holographic principle. Using sources of varying spatial coherence (laser, LED), holographic images of objects, including optical fiber, latex microspheres, and cancer cells, are successfully captured and numerically processed. Quantitative measurement of cell locations and percentage confluence are estimated, and pseudocolor images are also presented. Phase profiles of weakly scattering cells are obtained from the DIHM and are compared to those produced by a commercially available off-axis digital holographic microscope.

  14. Multi-spectral black meta-infrared detectors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Krishna, Sanjay

    2016-09-01

    There is an increased emphasis on obtaining imaging systems with on-demand spectro-polarimetric information at the pixel level. Meta-infrared detectors in which infrared detectors are combined with metamaterials are a promising way to realize this. The infrared region is appealing due to the low metallic loss, large penetration depth of the localized field and the larger feature sizes compared to the visible region. I will discuss approaches to realize multispectral detectors including our recent work on double metal meta-material design combined with Type II superlattices that have demonstrated enhanced quantum efficiency (collaboration with Padilla group at Duke University).

  15. Component pattern analysis of chemicals using multispectral THz imaging system

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Ogawa, Yuichi; Watanabe, Yuki

    2004-04-01

    We have developed a novel basic technology for terahertz (THz) imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral transillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  16. Surface composition of Mars: A Viking multispectral view

    NASA Technical Reports Server (NTRS)

    Adams, John B.; Smith, Milton O.; Arvidson, Raymond E.; Dale-Bannister, Mary; Guinness, Edward A.; Singer, Robert; Adams, John B.

    1987-01-01

    A new method of analyzing multispectral images takes advantage of the spectral variation from pixel to pixel that is typical for natural planetary surfaces, and treats all pixels as potential mixtures of spectrally distinct materials. For Viking Lander images, mixtures of only three spectral end members (rock, soil, and shade) are sufficient to explain the observed spectral variation to the level of instrumental noise. It was concluded that a large portion of the Martian surface consists of only two spectrally distinct materials, basalt and palgonitic soil. It is emphasized, however, that as viewed through the three broad bandpasses of Viking Orbiter, other materials cannot be distinguished from the mixtures.

  17. Snapshot spectral and polarimetric imaging; target identification with multispectral video

    NASA Astrophysics Data System (ADS)

    Bartlett, Brent D.; Rodriguez, Mikel D.

    2013-05-01

    As the number of pixels continue to grow in consumer and scientific imaging devices, it has become feasible to collect the incident light field. In this paper, an imaging device developed around light field imaging is used to collect multispectral and polarimetric imagery in a snapshot fashion. The sensor is described and a video data set is shown highlighting the advantage of snapshot spectral imaging. Several novel computer vision approaches are applied to the video cubes to perform scene characterization and target identification. It is shown how the addition of spectral and polarimetric data to the video stream allows for multi-target identification and tracking not possible with traditional RGB video collection.

  18. The Land Analysis System (LAS) for multispectral image processing

    USGS Publications Warehouse

    Wharton, S. W.; Lu, Y. C.; Quirk, Bruce K.; Oleson, Lyndon R.; Newcomer, J. A.; Irani, Frederick M.

    1988-01-01

    The Land Analysis System (LAS) is an interactive software system available in the public domain for the analysis, display, and management of multispectral and other digital image data. LAS provides over 240 applications functions and utilities, a flexible user interface, complete online and hard-copy documentation, extensive image-data file management, reformatting, conversion utilities, and high-level device independent access to image display hardware. The authors summarize the capabilities of the current release of LAS (version 4.0) and discuss plans for future development. Particular emphasis is given to the issue of system portability and the importance of removing and/or isolating hardware and software dependencies.

  19. Antenna evaluation study for the shuttle multispectral radar, phase 1

    NASA Technical Reports Server (NTRS)

    Coffey, E. L., III; Carver, K. R.

    1976-01-01

    Critical parameters of the shuttle multispectral radar antenna (SMRA) which most affect antenna performance were identified. A preliminary methematical model is presented for describing SMRA performance under the influence of various physical and environmental factors which might degrade performance. Because user groups have not agreed on optimum frequencies best suited for the broadest range of application, the study incorporates frequencies ranging from 1.2 to 14.5 GHz, as well as a consideration of incidence angles from near nadir to nearly 50 deg.

  20. Lensless multispectral digital in-line holographic microscope.

    PubMed

    Ryle, James P; McDonnell, Susan; Sheridan, John T

    2011-12-01

    An compact multispectral digital in-line holographic microscope (DIHM) is developed that emulates Gabor's original holographic principle. Using sources of varying spatial coherence (laser, LED), holographic images of objects, including optical fiber, latex microspheres, and cancer cells, are successfully captured and numerically processed. Quantitative measurement of cell locations and percentage confluence are estimated, and pseudocolor images are also presented. Phase profiles of weakly scattering cells are obtained from the DIHM and are compared to those produced by a commercially available off-axis digital holographic microscope.

  1. Analysis of lithology: Vegetation mixes in multispectral images

    NASA Technical Reports Server (NTRS)

    Adams, J. B.; Smith, M.; Adams, J. D.

    1982-01-01

    Discrimination and identification of lithologies from multispectral images is discussed. Rock/soil identification can be facilitated by removing the component of the signal in the images that is contributed by the vegetation. Mixing models were developed to predict the spectra of combinations of pure end members, and those models were refined using laboratory measurements of real mixtures. Models in use include a simple linear (checkerboard) mix, granular mixing, semi-transparent coatings, and combinations of the above. The use of interactive computer techniques that allow quick comparison of the spectrum of a pixel stack (in a multiband set) with laboratory spectra is discussed.

  2. Photographic films for the Multi-Spectral Solar Telescope Array

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Walker, Arthur B. C., Jr.; Deforest, Craig E.; Allen, Maxwell J.; Lindblom, Joakim F.; Gilliam, Lou; November, Larry; Brown, Todd; Dewan, Clyde A.

    1992-01-01

    The rocketborne Multi-Spectral Solar Telescope Array (MSSTA) uses an array of Ritchey-Chretien, Cassegrain, and Herschelian telescopes to produce ultrahigh-resolution full-disk images of the sun within the soft X-ray, EUV, and FUV ranges. Such imaging of the solar disk and corona out to several solar radii placed great demands on the MSSTA's data storage capabilities; in addition, its photographic films required very low outgassing rates. Results are presented from calibration tests conducted on the MSSTA's emulsions, based on measurements at NIST's synchrotron facility.

  3. Classification of human carcinoma cells using multispectral imagery

    NASA Astrophysics Data System (ADS)

    Ćinar, Umut; Y. Ćetin, Yasemin; Ćetin-Atalay, Rengul; Ćetin, Enis

    2016-03-01

    In this paper, we present a technique for automatically classifying human carcinoma cell images using textural features. An image dataset containing microscopy biopsy images from different patients for 14 distinct cancer cell line type is studied. The images are captured using a RGB camera attached to an inverted microscopy device. Texture based Gabor features are extracted from multispectral input images. SVM classifier is used to generate a descriptive model for the purpose of cell line classification. The experimental results depict satisfactory performance, and the proposed method is versatile for various microscopy magnification options.

  4. Extraction and classification of objects in multispectral images

    NASA Technical Reports Server (NTRS)

    Robertson, T. V.

    1973-01-01

    Presented here is an algorithm that partitions a digitized multispectral image into parts that correspond to objects in the scene being sensed. The algorithm partitions an image into successively smaller rectangles and produces a partition that tends to minimize a criterion function. Supervised and unsupervised classification techniques can be applied to partitioned images. This partition-then-classify approach is used to process images sensed from aircraft and the ERTS-1 satellite, and the method is shown to give relatively accurate results in classifying agricultural areas and extracting urban areas.

  5. Multispectral comparison of water ice deposits observed on cometary nuclei

    NASA Astrophysics Data System (ADS)

    Oklay Vincent, Nilda; Sunshine, Jessica M.; Pajola, Maurizio; Pommerol, Antoine; Vincent, Jean-Baptiste; Sierks, Holger; OSIRIS Team

    2016-10-01

    Cometary missions Deep Impact, EPOXI and Rosetta investigated the nuclei of comets 9P/Tempel 1, 103P/Hartley 2 and 67P/Churyumov-Gerasimenko respectively. Each of these three missions was equipped with multispectral cameras, allowing imaging at various wavelengths from NUV to NIR. In this spectral range, water ice-rich features display bluer spectral slopes than the average surface and some have very flat spectra. Features enriched in water ice are bright in the monochromatic images and are blue in the RGB color composites generated by using images taken in NUV, visible and NIR wavelentghs. Using these properties, water ice-rich features were detected on the nuclei of comets 9P [1], 103P [2] and 67P [3] via multispectral imaging cameras. Moreover, there were visual detections of jets and outbursts associated to some of these water ice-rich features when the right observing conditions were fulfilled [4, 5].We analyzed multispectral properties of different types of water ice-rich features [3] observed via OSIRIS NAC on comet 67P in the wavelength range of 260 nm to 1000 nm and then compared with those observed on comets 9P and 103P. Our multispectral analysis shows that the water ice deposits observed on comet 9P are very similar to the large bright blue clusters observed on comet 67P, while the large water ice deposit observed on comet 103P is similar to the large isolated water ice-rich features observed on comet 67P. The ice-rich deposits on comet 103P are the bluest of any comet, which indicates that the deposits on 103P contain more water ice than the ones observed on comets 9P and 67P [6].[1] Sunshine et al 2006, Science[2] Sunshine et al 2011, LPSC[3] Pommerol et al 2015, A&A[4] Oklay et al 2016, A&A[5] Vincent et al 2016, A&A[6] Oklay et al 2016, submitted

  6. An unsupervised classification technique for multispectral remote sensing data.

    NASA Technical Reports Server (NTRS)

    Su, M. Y.; Cummings, R. E.

    1973-01-01

    Description of a two-part clustering technique consisting of (a) a sequential statistical clustering, which is essentially a sequential variance analysis, and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by traditional supervised maximum-likelihood classification techniques.

  7. Algorithms for lineaments detection in processing of multispectral images

    NASA Astrophysics Data System (ADS)

    Borisova, D.; Jelev, G.; Atanassov, V.; Koprinkova-Hristova, Petia; Alexiev, K.

    2014-10-01

    Satellite remote sensing is a universal tool to investigate the different areas of Earth and environmental sciences. The advancement of the implementation capabilities of the optoelectronic devices which are long-term-tested in the laboratory and the field and are mounted on-board of the remote sensing platforms further improves the capability of instruments to acquire information about the Earth and its resources in global, regional and local scales. With the start of new high-spatial and spectral resolution satellite and aircraft imagery new applications for large-scale mapping and monitoring becomes possible. The integration with Geographic Information Systems (GIS) allows a synergistic processing of the multi-source spatial and spectral data. Here we present the results of a joint project DFNI I01/8 funded by the Bulgarian Science Fund focused on the algorithms of the preprocessing and the processing spectral data by using the methods of the corrections and of the visual and automatic interpretation. The objects of this study are lineaments. The lineaments are basically the line features on the earth's surface which are a sign of the geological structures. The geological lineaments usually appear on the multispectral images like lines or edges or linear shapes which is the result of the color variations of the surface structures. The basic geometry of a line is orientation, length and curve. The detection of the geological lineaments is an important operation in the exploration for mineral deposits, in the investigation of active fault patterns, in the prospecting of water resources, in the protecting people, etc. In this study the integrated approach for the detecting of the lineaments is applied. It combines together the methods of the visual interpretation of various geological and geographical indications in the multispectral satellite images, the application of the spatial analysis in GIS and the automatic processing of the multispectral images by Canny

  8. Polarization-sensitive multispectral tissue characterization for optimizing intestinal anastomosis

    NASA Astrophysics Data System (ADS)

    Cha, Jaepyeong; Triana, Brian; Shademan, Azad; Krieger, Axel; Kim, Peter C. W.; Kang, Jin U.

    2014-03-01

    A novel imaging system that recommends potential suture placement for anastomosis to surgeons is developed. This is achieved by a multispectral imaging system coupled with polarizers and image analysis software. We performed preliminary imaging of ex vivo porcine intestine to evaluate the system. Vulnerable tissue regions including blood vessels were successfully identified and segmented. Thickness of different tissue areas is visualized. Strategies towards optimal points for suture placements have been discussed. Preliminary data suggest our imaging platform and analysis algorithm may be useful in avoiding blood vessels, identifying optimal regions for suture placements to perform safer operations in possibly reduced time.

  9. Reconstructing the 3D fracture distribution model from core (10 cm) to outcrop (10 m) and lineament (10 km) scales

    NASA Astrophysics Data System (ADS)

    Darcel, C.; Davy, P.; Bour, O.; de Dreuzy, J.

    2006-12-01

    model from both outcrop and well fracturing observations, and we discuss the consistency between the along-core fracturing intensity profile, the outcrop fracture traces, and the lineament maps. In the Forsmark site investigated by SKB, we conclude that the power-law distribution model is statistically consistent from core scale (80 mm) to outcrop scale (~10 m); the consistency with the lineament scale (10 km) is still questionable. An important subhorizontal fracturing exists at shallow depth, but it does not seems to affect the statistics of highly dipping fractures.

  10. Clinical measurements analysis of multi-spectral photoplethysmograph biosensors

    NASA Astrophysics Data System (ADS)

    Asare, Lasma; Kviesis-Kipge, Edgars; Spigulis, Janis

    2014-05-01

    The developed portable multi-spectral photoplethysmograph (MS-PPG) optical biosensor device, intended for analysis of peripheral blood volume pulsations at different vascular depths, has been clinically verified. Multi-spectral monitoring was performed by means of a four - wavelengths (454 nm, 519 nm, 632 nm and 888 nm) light emitted diodes and photodiode with multi-channel signal output processing. Two such sensors can be operated in parallel and imposed on the patient's skin. The clinical measurements confirmed ability to detect PPG signals at four wavelengths simultaneously and to record temporal differences in the signal shapes (corresponding to different penetration depths) in normal and pathological skin. This study analyzed wavelengths relations between systole and diastole peak difference at various tissue depths in normal and pathological skin. The difference between parameters of healthy and pathological skin at various skin depths could be explain by oxy- and deoxyhemoglobin dominance at different wavelengths operated in sensor. The proposed methodology and potential clinical applications in dermatology for skin assessment are discussed.

  11. Theoretical and experimental investigation of multispectral photoacoustic osteoporosis detection method

    NASA Astrophysics Data System (ADS)

    Steinberg, Idan; Hershkovich, Hadas Sara; Gannot, Israel; Eyal, Avishay

    2014-03-01

    Osteoporosis is a widespread disorder, which has a catastrophic impact on patients lives and overwhelming related to healthcare costs. Recently, we proposed a multispectral photoacoustic technique for early detection of osteoporosis. Such technique has great advantages over pure ultrasonic or optical methods as it allows the deduction of both bone functionality from the bone absorption spectrum and bone resistance to fracture from the characteristics of the ultrasound propagation. We demonstrated the propagation of multiple acoustic modes in animal bones in-vitro. To further investigate the effects of multiple wavelength excitations and of induced osteoporosis on the PA signal a multispectral photoacoustic system is presented. The experimental investigation is based on measuring the interference of multiple acoustic modes. The performance of the system is evaluated and a simple two mode theoretical model is fitted to the measured phase signals. The results show that such PA technique is accurate and repeatable. Then a multiple wavelength excitation is tested. It is shown that the PA response due to different excitation wavelengths revels that absorption by the different bone constitutes has a profound effect on the mode generation. The PA response is measured in single wavelength before and after induced osteoporosis. Results show that induced osteoporosis alters the measured amplitude and phase in a consistent manner which allows the detection of the onset of osteoporosis. These results suggest that a complete characterization of the bone over a region of both acoustic and optical frequencies might be used as a powerful tool for in-vivo bone evaluation.

  12. Multispectral, thermal infrared satellite data for geologic applications

    NASA Technical Reports Server (NTRS)

    Blodget, H. W.; Andre, C. G.; Marcell, R.; Minor, T. B.

    1985-01-01

    The value of multispectral thermal infrared satellite data for geologic mapping was assessed, applying the principal component and canonical analysis techniques to the images of the central part of the Arabian Peninsula (a 200 x 300 km area). Low resolution thermal infrared (TIR) data from the Nimbus 5 Surface Composition Mapping Radiometer (SCMR) and the NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) were used. Color images included an 8.8 micrometer (SCMR) and 3.7 and 10.8 micrometer (AVHRR-night) data, ratioed AVHRR day/night TIR data, ratioed AVHRR reflected radiation data, and transformed 8- and 10-band TIR plus reflected radiation data. The results clearly demonstrated the potential geologic value of multispectral TIR data. Igneous and metamorphic units could be separated as a class (although not from each other except for young calc-alkaline granites). Some previously unmapped extensions of mapped faults below thick sedimentary units could be delineated. No single enhancement technique displayed all the potential information, implying that they should be used together.

  13. Morphological Feature Extraction for Automatic Registration of Multispectral Images

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.

    2007-01-01

    The task of image registration can be divided into two major components, i.e., the extraction of control points or features from images, and the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual extraction of control features can be subjective and extremely time consuming, and often results in few usable points. On the other hand, automated feature extraction allows using invariant target features such as edges, corners, and line intersections as relevant landmarks for registration purposes. In this paper, we present an extension of a recently developed morphological approach for automatic extraction of landmark chips and corresponding windows in a fully unsupervised manner for the registration of multispectral images. Once a set of chip-window pairs is obtained, a (hierarchical) robust feature matching procedure, based on a multiresolution overcomplete wavelet decomposition scheme, is used for registration purposes. The proposed method is validated on a pair of remotely sensed scenes acquired by the Advanced Land Imager (ALI) multispectral instrument and the Hyperion hyperspectral instrument aboard NASA's Earth Observing-1 satellite.

  14. Using Image Tour to Explore Multiangle, Multispectral Satellite Image

    NASA Technical Reports Server (NTRS)

    Braverman, Amy; Wegman, Edward J.; Martinez, Wendy; Symanzik, Juergen; Wallet, Brad

    2006-01-01

    This viewgraph presentation reviews the use of Image Tour to explore the multiangle, multispectral satellite imagery. Remote sensing data are spatial arrays of p-dimensional vectors where each component corresponds to one of p variables. Applying the same R(exp p) to R(exp d) projection to all pixels creates new images, which may be easier to analyze than the original because d < p. Image grand tour (IGT) steps through the space of projections, and d=3 outputs a sequence of RGB images, one for each step. In this talk, we apply IGT to multiangle, multispectral data from NASA's MISR instrument. MISR views each pixel in four spectral bands at nine view angles. Multiple views detect photon scattering in different directions and are indicative of physical properties of the scene. IGT allows us to explore MISR's data structure while maintaining spatial context; a key requirement for physical interpretation. We report results highlighting the uniqueness of multiangle data and how IGT can exploit it.

  15. Improved 3D cellular imaging by multispectral focus assessment

    NASA Astrophysics Data System (ADS)

    Zhao, Tong; Xiong, Yizhi; Chung, Alice P.; Wachman, Elliot S.; Farkas, Daniel L.

    2005-03-01

    Biological specimens are three-dimensional structures. However, when capturing their images through a microscope, there is only one plane in the field of view that is in focus, and out-of-focus portions of the specimen affect image quality in the in-focus plane. It is well-established that the microscope"s point spread function (PSF) can be used for blur quantitation, for the restoration of real images. However, this is an ill-posed problem, with no unique solution and with high computational complexity. In this work, instead of estimating and using the PSF, we studied focus quantitation in multi-spectral image sets. A gradient map we designed was used to evaluate the sharpness degree of each pixel, in order to identify blurred areas not to be considered. Experiments with realistic multi-spectral Pap smear images showed that measurement of their sharp gradients can provide depth information roughly comparable to human perception (through a microscope), while avoiding PSF estimation. Spectrum and morphometrics-based statistical analysis for abnormal cell detection can then be implemented in an image database where the axial structure has been refined.

  16. Multispectral single-scan lung imaging system: initial feasibility

    NASA Astrophysics Data System (ADS)

    Besson, Guy M.; Crocker, Kenneth E.

    2006-03-01

    This paper describes a system for multi-spectral single-scan lung imaging. The proposed approach relies on a low noise detector sampled at a high rate. The proposed method overcomes limitations of CCD time-and-delay integration slot-scanning systems. The system design and preliminary specifications are described. The results of initial spectral and system simulations in support of system feasibility per the outlined specifications are described. Initial investigations support the potential of the proposed approach to alleviate four shortcomings of the current digital flat-panel approach to chest radiography: (i) by enabling dynamic multi-spectral imaging in a single scan, the approach reduces the time delay between exposures, thus reducing sensitivity to motion; (ii) the approach enables dynamic technique feedback and technique adaptation, eliminating the need for a pre-exposures and reducing the likelihood of poor x-ray techniques in local image areas; (iii) by enabling direct measurement of the scatter field, the proposed method allows further scatter correction resulting in image quality improvements; (iv) finally, full-frame sampling of a digital detector allows imaging of the beam penumbra, thereby reclaiming the detection quantum efficiency loss due to over-collimation in current TDI slot-scanning approach; the resulting DQE potentially exceeds that of flat-panel detectors by a factor up to two.

  17. Multispectral glass transparent from visible to thermal infrared

    NASA Astrophysics Data System (ADS)

    Brehault, A.; Calvez, L.; Pain, T.; Adam, P.; Rollin, J.; Zhang, X. H.

    2014-06-01

    The thermal imaging market has experienced a strong growth during the recent years due to continued cost reduction of night vision devices. The development of uncooled focal plane detector arrays is the major reason for the cost reduction. Another reason is the continuous improvement of the optical solution. In this paper, we present a new multispectral material which responds to the increasing demand for optics operating simultaneously in the visible/SWIR (Short Wave InfraRed) and the thermal infrared region. The most important properties of some glasses from the GeS2-Ga2S3- CsCl system are highlighted in this study. A stable composition 15Ga2S3-75GeS2-10CsCl allowed the synthesis of a large glass without crystallization. The refractive index of this glass was precisely measured from 0.6 to 10.4μm by using the Littrow method. The chromatic dispersion was then calculated and compared with other multispectral materials.

  18. Pairwise KLT-Based Compression for Multispectral Images

    NASA Astrophysics Data System (ADS)

    Nian, Yongjian; Liu, Yu; Ye, Zhen

    2016-12-01

    This paper presents a pairwise KLT-based compression algorithm for multispectral images. Although the KLT has been widely employed for spectral decorrelation, its complexity is high if it is performed on the global multispectral images. To solve this problem, this paper presented a pairwise KLT for spectral decorrelation, where KLT is only performed on two bands every time. First, KLT is performed on the first two adjacent bands and two principle components are obtained. Secondly, one remainning band and the principal component (PC) with the larger eigenvalue is selected to perform a KLT on this new couple. This procedure is repeated until the last band is reached. Finally, the optimal truncation technique of post-compression rate-distortion optimization is employed for the rate allocation of all the PCs, followed by embedded block coding with optimized truncation to generate the final bit-stream. Experimental results show that the proposed algorithm outperforms the algorithm based on global KLT. Moreover, the pairwise KLT structure can significantly reduce the complexity compared with a global KLT.

  19. IMAGE 100: The interactive multispectral image processing system

    NASA Technical Reports Server (NTRS)

    Schaller, E. S.; Towles, R. W.

    1975-01-01

    The need for rapid, cost-effective extraction of useful information from vast quantities of multispectral imagery available from aircraft or spacecraft has resulted in the design, implementation and application of a state-of-the-art processing system known as IMAGE 100. Operating on the general principle that all objects or materials possess unique spectral characteristics or signatures, the system uses this signature uniqueness to identify similar features in an image by simultaneously analyzing signatures in multiple frequency bands. Pseudo-colors, or themes, are assigned to features having identical spectral characteristics. These themes are displayed on a color CRT, and may be recorded on tape, film, or other media. The system was designed to incorporate key features such as interactive operation, user-oriented displays and controls, and rapid-response machine processing. Owing to these features, the user can readily control and/or modify the analysis process based on his knowledge of the input imagery. Effective use can be made of conventional photographic interpretation skills and state-of-the-art machine analysis techniques in the extraction of useful information from multispectral imagery. This approach results in highly accurate multitheme classification of imagery in seconds or minutes rather than the hours often involved in processing using other means.

  20. Measurements and analysis of active/passive multispectral imaging

    NASA Astrophysics Data System (ADS)

    Grönwall, Christina; Hamoir, Dominique; Steinvall, Ove; Larsson, Hâkan; Amselem, Elias; Lutzmann, Peter; Repasi, Endre; Göhler, Benjamin; Barbé, Stéphane; Vaudelin, Olivier; Fracès, Michel; Tanguy, Bernard; Thouin, Emmanuelle

    2013-10-01

    This paper describes a data collection on passive and active imaging and the preliminary analysis. It is part of an ongoing work on active and passive imaging for target identification using different wavelength bands. We focus on data collection at NIR-SWIR wavelengths but we also include the visible and the thermal region. Active imaging in NIRSWIR will support the passive imaging by eliminating shadows during day-time and allow night operation. Among the applications that are most likely for active multispectral imaging, we focus on long range human target identification. We also study the combination of active and passive sensing. The target scenarios of interest include persons carrying different objects and their associated activities. We investigated laser imaging for target detection and classification up to 1 km assuming that another cueing sensor - passive EO and/or radar - is available for target acquisition and detection. Broadband or multispectral operation will reduce the effects of target speckle and atmospheric turbulence. Longer wavelengths will improve performance in low visibility conditions due to haze, clouds and fog. We are currently performing indoor and outdoor tests to further investigate the target/background phenomena that are emphasized in these wavelengths. We also investigate how these effects can be used for target identification and image fusion. Performed field tests and the results of preliminary data analysis are reported.

  1. Visual enhancement of unmixed multispectral imagery using adaptive smoothing

    USGS Publications Warehouse

    Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.

    2004-01-01

    Adaptive smoothing (AS) has been previously proposed as a method to smooth uniform regions of an image, retain contrast edges, and enhance edge boundaries. The method is an implementation of the anisotropic diffusion process which results in a gray scale image. This paper discusses modifications to the AS method for application to multi-band data which results in a color segmented image. The process was used to visually enhance the three most distinct abundance fraction images produced by the Lagrange constraint neural network learning-based unmixing of Landsat 7 Enhanced Thematic Mapper Plus multispectral sensor data. A mutual information-based method was applied to select the three most distinct fraction images for subsequent visualization as a red, green, and blue composite. A reported image restoration technique (partial restoration) was applied to the multispectral data to reduce unmixing error, although evaluation of the performance of this technique was beyond the scope of this paper. The modified smoothing process resulted in a color segmented image with homogeneous regions separated by sharpened, coregistered multiband edges. There was improved class separation with the segmented image, which has importance to subsequent operations involving data classification.

  2. Fuzzy Markov random fields versus chains for multispectral image segmentation.

    PubMed

    Salzenstein, Fabien; Collet, Christophe

    2006-11-01

    This paper deals with a comparison of recent statistical models based on fuzzy Markov random fields and chains for multispectral image segmentation. The fuzzy scheme takes into account discrete and continuous classes which model the imprecision of the hidden data. In this framework, we assume the dependence between bands and we express the general model for the covariance matrix. A fuzzy Markov chain model is developed in an unsupervised way. This method is compared with the fuzzy Markovian field model previously proposed by one of the authors. The segmentation task is processed with Bayesian tools, such as the well-known MPM (Mode of Posterior Marginals) criterion. Our goal is to compare the robustness and rapidity for both methods (fuzzy Markov fields versus fuzzy Markov chains). Indeed, such fuzzy-based procedures seem to be a good answer, e.g., for astronomical observations when the patterns present diffuse structures. Moreover, these approaches allow us to process missing data in one or several spectral bands which correspond to specific situations in astronomy. To validate both models, we perform and compare the segmentation on synthetic images and raw multispectral astronomical data.

  3. Energy dependence of scatter components in multispectral PET imaging.

    PubMed

    Bentourkia, M; Msaki, P; Cadorette, J; Lecomte, R

    1995-01-01

    High resolution images in PET based on small individual detectors are obtained at the cost of low sensitivity and increased detector scatter. These limitations can be partially overcome by enlarging discrimination windows to include more low-energy events and by developing more efficient energy-dependent methods to correct for scatter radiation from all sources. The feasibility of multispectral scatter correction was assessed by decomposing response functions acquired in multiple energy windows into four basic components: object, collimator and detector scatter, and trues. The shape and intensity of these components are different and energy-dependent. They are shown to contribute to image formation in three ways: useful (true), potentially useful (detector scatter), and undesirable (object and collimator scatter) information to the image over the entire energy range. With the Sherbrooke animal PET system, restoration of detector scatter in every energy window would allow nearly 90% of all detected events to participate in image formation. These observations suggest that multispectral acquisition is a promising solution for increasing sensitivity in high resolution PET. This can be achieved without loss of image quality if energy-dependent methods are made available to preserve useful events as potentially useful events are restored and undesirable events removed.

  4. Viability prediction of Ricinus cummunis L. seeds using multispectral imaging.

    PubMed

    Olesen, Merete Halkjær; Nikneshan, Pejman; Shrestha, Santosh; Tadayyon, Ali; Deleuran, Lise Christina; Boelt, Birte; Gislum, René

    2015-02-17

    The purpose of this study was to highlight the use of multispectral imaging in seed quality testing of castor seeds. Visually, 120 seeds were divided into three classes: yellow, grey and black seeds. Thereafter, images at 19 different wavelengths ranging from 375-970 nm were captured of all the seeds. Mean intensity for each single seed was extracted from the images, and a significant difference between the three colour classes was observed, with the best separation in the near-infrared wavelengths. A specified feature (RegionMSI mean) based on normalized canonical discriminant analysis, were employed and viable seeds were distinguished from dead seeds with 92% accuracy. The same model was tested on a validation set of seeds. These seeds were divided into two groups depending on germination ability, 241 were predicted as viable and expected to germinate and 59 were predicted as dead or non-germinated seeds. This validation of the model resulted in 96% correct classification of the seeds. The results illustrate how multispectral imaging technology can be employed for prediction of viable castor seeds, based on seed coat colour.

  5. Dual plasmonic gold nanoparticles for multispectral photoacoustic imaging application

    NASA Astrophysics Data System (ADS)

    Raghavan, Vijay; Subhash, Hrebesh; Breathnach, Aedán.; Leahy, Martin; Dockery, Peter; Olivo, Malini

    2014-03-01

    Nanoparticle contrast agents for molecular targeted imaging have widespread interest in diagnostic applications with cellular resolution, specificity and selectivity for visualization and assessment of various disease processes. Of particular interest is gold nanoparticle owing to its tunability of the surface plasmon resonance (SPR) and its relative inertness. Here we present the synthesis of anisotropic multi-branched star shaped gold nanoparticles exhibiting dual-band plasmon absorption peaks and its application as a contrast agent for multispectral photoacoustic imaging. The transverse plasmon absorption peak of the synthesised dual plasmonic gold nanostar (DPGNS) was around 700 nm and that of longitudinal plasmon absorption in the longer wavelength region around 1050-1150 nm. Unlike most reported PA contrast agent with surface plasmon absorption in the range of 700 to 800 nm showing moderate tissue penetration, 1050-1200 nm range lies in the farther region of the optical window of biological tissue where scattering and the intrinsic optical extinction of endogenous chromophores is at its minimum. We also present a proof of principle demonstration of DPGNS as contrast agent for multispectral photoacoustic animal imaging. Our results show that DPGNS are promising for PA imaging with extended-depth imaging applications.

  6. Online quantitative analysis of multispectral images of human body tissues

    SciTech Connect

    Lisenko, S A

    2013-08-31

    A method is developed for online monitoring of structural and morphological parameters of biological tissues (haemoglobin concentration, degree of blood oxygenation, average diameter of capillaries and the parameter characterising the average size of tissue scatterers), which involves multispectral tissue imaging, image normalisation to one of its spectral layers and determination of unknown parameters based on their stable regression relation with the spectral characteristics of the normalised image. Regression is obtained by simulating numerically the diffuse reflectance spectrum of the tissue by the Monte Carlo method at a wide variation of model parameters. The correctness of the model calculations is confirmed by the good agreement with the experimental data. The error of the method is estimated under conditions of general variability of structural and morphological parameters of the tissue. The method developed is compared with the traditional methods of interpretation of multispectral images of biological tissues, based on the solution of the inverse problem for each pixel of the image in the approximation of different analytical models. (biomedical optics)

  7. Recognition of lineaments in Eastern Rhodopes on Landsat multispectral images

    NASA Astrophysics Data System (ADS)

    Borisova, Denitsa; Jelev, Georgi; Atanassov, Valentin; Koprinkova-Hristova, Petia; Alexiev, Kiril

    Lineaments usually appear on the multispectral images as lines (edges) or linear formations as a result of the color variations of the surface structures. Lineaments are line features on earth’s surface which reflect geological structure. The basic geometry of a line is orientation, length and curve. Detection of lineaments is an important operation in the exploration for mineral deposits, in the investigation of active fault patterns, water resources, etc. In this study the integrated approach is applied. It comes together the methods of the visual interpretation of various geological and geographical indications in the satellite images, application of spatial analysis in GIS and automatic processing of Landsat multispectral image by Canny algorithm, Directional Filter and Neural Network. Canny algorithm for extracting edges is series of filters (Gaussian, Sobel, etc.) applied to all bands of the image using the free IDL source (http://www.cis.rit.edu/class/simg782/programs/ canny.pro). Directional Filter is applied to sharpen the image in a specific (preferred) direction. Another method is the Neural Network algorithm for recognizing lineaments. Lineaments are effectively extracted using different methods of automatic. The results from above mentioned methods are compared to results derived from visual interpretation of satellite images and from geological map. The rose-diagrams of distribution of lineaments and maps of their density are completed. Acknowledgments: This study is supported by the project DFNI - I01/8 funded by the Bulgarian Science Fund.

  8. Aerosol Remote Sensing Applications for Airborne Multiangle, Multispectral Shortwave Radiometers

    NASA Astrophysics Data System (ADS)

    von Bismarck, Jonas; Ruhtz, Thomas; Starace, Marco; Hollstein, André; Preusker, René; Fischer, Jürgen

    2010-05-01

    Aerosol particles have an important impact on the surface net radiation budget by direct scattering and absorption (direct aerosol effect) of solar radiation, and also by influencing cloud formation processes (semi-direct and indirect aerosol effects). To study the former, a number of multispectral sky- and sunphotometers have been developed at the Institute for Space Sciences of the Free University of Berlin in the past two decades. The latest operational developments were the multispectral aureole- and sunphotometer FUBISS-ASA2, the zenith radiometer FUBISS-ZENITH, and the nadir polarimeter AMSSP-EM, all designed for a flexible use on moving platforms like aircraft or ships. Currently the multiangle, multispectral radiometer URMS/AMSSP (Universal Radiation Measurement System/ Airborne Multispectral Sunphotometer and Polarimeter) is under construction for a Wing-Pod of the high altitude research aircraft HALO operated by DLR. The system is expected to have its first mission on HALO in 2011. The algorithms for the retrieval of aerosol and trace gas properties from the recorded multidirectional, multispectral radiation measurements allow more than deriving standard products, as for instance the aerosol optical depth and the Angstrom exponent. The radiation measured in the solar aureole contains information about the aerosol phasefunction and therefore allows conclusions about the particle type. Furthermore, airborne instrument operation allows vertically resolved measurements. An inversion algorithm, based on radiative transfer simulations and additionally including measured vertical zenith-radiance profiles, allows conclusions about the aerosol single scattering albedo and the relative soot fraction in aerosol layers. Ozone column retrieval is performed evaluating measurements from pixels in the Chappuis absorption band. A retrieval algorithm to derive the water-vapor column from the sunphotometer measurements is currently under development. Of the various airborne

  9. A multispectral scanner survey of the Rocky Flats Environmental Technology Site and surrounding area, Golden, Colorado

    SciTech Connect

    Brewster, S.B. Jr.; Brickey, D.W.; Ross, S.L.; Shines, J.E.

    1997-04-01

    Aerial multispectral scanner imagery was collected of the Rocky Flats Environmental Technology Site in Golden, Colorado, on June 3, 5, 6, and 7, 1994, using a Daedalus AADS1268 multispectral scanner and coincident aerial color and color infrared photography. Flight altitudes were 4,500 feet (1372 meters) above ground level to match prior 1989 survey data; 2,000 feet (609 meters) above ground level for sitewide vegetation mapping; and 1,000 feet (304 meters) above ground level for selected areas of special interest. A multispectral survey was initiated to improve the existing vegetation classification map, to identify seeps and springs, and to generate ARC/INFO Geographic Information System compatible coverages of the vegetation and wetlands for the entire site including the buffer zone. The multispectral scanner imagery and coincident aerial photography were analyzed for the detection, identification, and mapping of vegetation and wetlands. The multispectral scanner data were processed digitally while the color and color infrared photography were manually photo-interpreted to define vegetation and wetlands. Several standard image enhancement techniques were applied to the multispectral scanner data to assist image interpretation. A seep enhancement was applied and a color composite consisting of multispectral scanner channels 11, 7, and 5 (thermal infrared, mid-infrared, and red bands, respectively) proved most useful for detecting seeps, seep zones, and springs. The predawn thermal infrared data were also useful in identifying and locating seeps. The remote sensing data, mapped wetlands, and ancillary Geographic Information System compatible data sets were spatially analyzed for seeps.

  10. Multispectral information hiding in RGB image using bit-plane-based watermarking and its application

    NASA Astrophysics Data System (ADS)

    Shinoda, Kazuma; Watanabe, Aya; Hasegawa, Madoka; Kato, Shigeo

    2015-06-01

    Although it was expected that multispectral images would be implemented in many applications, such as remote sensing and medical imaging, their use has not been widely diffused in these fields. The development of a compact multispectral camera and display will be needed for practical use, but the format compatibility between multispectral and RGB images is also important for reducing the introduction cost and having high usability. We propose a method of embedding the spectral information into an RGB image by watermarking. The RGB image is calculated from the multispectral image, and then, the original multispectral image is estimated from the RGB image using Wiener estimation. The residual data between the original and the estimated multispectral image are compressed and embedded in the lower bit planes of the RGB image. The experimental results show that, as compared with Wiener estimation, the proposed method leads to more than a 10 dB gain in the peak signal-to-noise ratio of the reconstructed multispectral image, while there are almost no significant perceptual differences in the watermarked RGB image.

  11. Land use classification utilizing remote multispectral scanner data and computer analysis techniques

    NASA Technical Reports Server (NTRS)

    Leblanc, P. N.; Johannsen, C. J.; Yanner, J. E.

    1973-01-01

    An airborne multispectral scanner was used to collect the visible and reflective infrared data. A small subdivision near Lafayette, Indiana was selected as the test site for the urban land use study. Multispectral scanner data were collected over the subdivision on May 1, 1970 from an altitude of 915 meters. The data were collected in twelve wavelength bands from 0.40 to 1.00 micrometers by the scanner. The results indicated that computer analysis of multispectral data can be very accurate in classifying and estimating the natural and man-made materials that characterize land uses in an urban scene.

  12. Multispectral illumination and image processing techniques for active millimeter-wave concealed object detection.

    PubMed

    Zhang, Lixiao; Stiens, Johan; Elhawil, Amna; Vounckx, Roger

    2008-12-01

    Active millimeter-wave imaging systems for concealed object detection offer the possibility of much higher image contrast than passive systems, especially in indoor applications. By studying active millimeter-wave images of different test objects derived in the W band, we show that multispectral illumination is critical to the detectability of targets. We also propose to use image change detection techniques, including image differencing, normalized difference vegetation index, and principle component analysis to process the multispectral millimeter-wave images. The results demonstrate that multispectral illumination can significantly reveal the object features hidden by image artifacts and improve the appearance of the objects.

  13. Design and fabrication of Fourier spectral filter array for multispectral imaging

    NASA Astrophysics Data System (ADS)

    Ni, Chuan; Jia, Jie; Hirakawa, Keigo; Sarangan, Andrew

    2016-09-01

    Multispectral imaging has the capability to identify the state of objects based on their spectral characteristics. These are features not available with conventional color imaging based on metameric RGB (red, green and blue) colors alone. Current multispectral imaging systems use narrowband filters to capture the spectral content of a scene, which necessitates different filters to be designed and applied for each application. Previously, we demonstrated the concept of Fourier multispectral imaging using filters with sinusoidally varying transmittance [1, 2]. In this paper, we report to the design of a five channel, spatially multiplexed pixel filter array. This enables single-shot images and makes it possible to capture scenes containing moving objects.

  14. Transport-theory based multispectral imaging with PDE-constrained optimization

    NASA Astrophysics Data System (ADS)

    Kim, Hyun K.; Flexman, Molly; Yamashiro, Darrell J.; Kandel, Jessica J.; Hielscher, Andreas H.

    2011-02-01

    We introduce here a transport-theory-based PDE-constrained multispectral imaging algorithm for direct reconstruction of the spatial distribution of chromophores in tissue. The method solves the forward and inverse problems simultaneously in the framework of a reduced Hessian sequential quadratic programming method. The performance of the new algorithm is evaluated using numerical and experimental studies involving tumor bearing mice. The results show that the PDE-constrained multispectral method leads to 15-fold acceleration in the image reconstruction of tissue chromophores when compared to the unconstrained multispectral approach and also gives more accurate results when compared to the traditional two-step method.

  15. MathWeb: a concurrent image analysis tool suite for multispectral data fusion

    NASA Astrophysics Data System (ADS)

    Achalakul, Tiranee; Haaland, Peter D.; Taylor, Stephen

    1999-03-01

    This paper describes a preliminary approach to the fusion of multi-spectral image data for the analysis of cervical cancer. The long-term goal of this research is to define spectral signatures and automatically detect cancer cell structures. The approach combines a multi-spectral microscope with an image analysis tool suite, MathWeb. The tool suite incorporates a concurrent Principal Component Transform (PCT) that is used to fuse the multi-spectral data. This paper describes the general approach and the concurrent PCT algorithm. The algorithm is evaluated from both the perspective of image quality and performance scalability.

  16. High-contrast subcutaneous vein detection and localization using multispectral imaging

    NASA Astrophysics Data System (ADS)

    Wang, Fengtao; Behrooz, Ali; Morris, Michael; Adibi, Ali

    2013-05-01

    Multispectral imaging has shown promise in subcutaneous vein detection and localization in human subjects. While many limitations of single-wavelength methods are addressed in multispectral vein detection methods, their performance is still limited by artifacts arising from background skin reflectance and optimality of postprocessing algorithms. We propose a background removal technique that enhances the contrast and performance of multispectral vein detection. We use images acquired at visible wavelengths as reference for removing skin reflectance background from subcutaneous structures in near-infrared images. Results are validated by experiments on human subjects.

  17. Ice Cloud Optical Depth Retrievals from CRISM Multispectral Images

    NASA Astrophysics Data System (ADS)

    Klassen, David R.

    2014-11-01

    One set of data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Reconnaissance Orbiter (MRO) is the multispectral survey that measured the visible-through-near-infrared reflectance of the entire planet of Mars at specific wavelengths. The spectral data from several sols were be combined to create multi-spectral maps of Mars. In addition, these maps can be zonally averaged to create a latitude vs season image cube of Mars. All of these image cubes can be fit using a full radiative transfer modeling in order to retrieve ice cloud optical depth—as a map for one of the particular dates, or as a latitude vs season record.To compare the data radiative transfer models, a measure of the actual surface reflectance is needed. There are several possible ways to model this, such as using a nearby region that is "close enough" or by looking at the same region at different times and assuming one of those is the actual surface reflectance. Neither of these is ideal for trying to process an entire map of data because aerosol clouds can be fairly extensive both spatially and temporally.Another technique is to assume that the surface can be modeled as a linear combination of a limited set of intrinsic spectral endmembers. A combination of Principal Component Analysis (PCA) and Target Transformation (TT) has been used to recover just such a set of spectral endmember shapes. The coefficients in the linear combination then become additional fitting parameters in the radiative transfer modeling of each map point—all parameters are adjusted until the RMS error between the model and the data is minimized. Based on previous work, the PCA of martian spectral image cubes is relatively consistent regardless of season, implying the underlying, large-scale, intrinsic traits that dominate the data variance are relatively constant. These overall PCA results can then be used to create a single set of spectral endmembers that can be used for any of the data

  18. Different cutoff values for 10-m walking speed simply classification of walking independence in stroke patients with or without cognitive impairment

    PubMed Central

    Yoshimoto, Yoshinobu; Oyama, Yukitsuna; Tanaka, Mamoru

    2015-01-01

    [Purpose] The aim of this study was to determine the threshold for classifying walking independence in stroke patients with and without cognitive disorders. [Subjects] The subjects were 130 patients with initial stroke hemiplegia. [Methods] The following factors were analyzed for associations with walking independence: Brunnstrom stage, one-leg standing time on the paralytic side, one-leg standing time on the non-paralytic side, and 10-m walking speed. We classified the patients with Mini-Mental State Examination (MMSE) scores ≥24 points into the high-score group and those with MMSE scores of ≤23 points into the low-score group and examined the main factors and cutoff values associated with walking independence in each group. [Results] The high-score group included 69 subjects (53.1%), and the low-score group included 61 subjects (46.9%). The primary factor associated with high MMSE scores among the stroke patients was the 10-m walking time. Using a cutoff level for the 10-m walking speed of 41.4 m/min resulted in a positive likelihood ratio of 6.3. The primary factor associated with low MMSE scores among the stroke patients was the 10-m walking time. Using a cutoff level for the 10-m walking speed of 48.0 m/min resulted in a positive likelihood ratio of 7.6. [Conclusion] The cutoff value for the 10-m walking speed can be used to evaluate walking independence in patients with stroke among patients with high or low MMSE scores. PMID:26157250

  19. Different cutoff values for 10-m walking speed simply classification of walking independence in stroke patients with or without cognitive impairment.

    PubMed

    Yoshimoto, Yoshinobu; Oyama, Yukitsuna; Tanaka, Mamoru

    2015-05-01

    [Purpose] The aim of this study was to determine the threshold for classifying walking independence in stroke patients with and without cognitive disorders. [Subjects] The subjects were 130 patients with initial stroke hemiplegia. [Methods] The following factors were analyzed for associations with walking independence: Brunnstrom stage, one-leg standing time on the paralytic side, one-leg standing time on the non-paralytic side, and 10-m walking speed. We classified the patients with Mini-Mental State Examination (MMSE) scores ≥24 points into the high-score group and those with MMSE scores of ≤23 points into the low-score group and examined the main factors and cutoff values associated with walking independence in each group. [Results] The high-score group included 69 subjects (53.1%), and the low-score group included 61 subjects (46.9%). The primary factor associated with high MMSE scores among the stroke patients was the 10-m walking time. Using a cutoff level for the 10-m walking speed of 41.4 m/min resulted in a positive likelihood ratio of 6.3. The primary factor associated with low MMSE scores among the stroke patients was the 10-m walking time. Using a cutoff level for the 10-m walking speed of 48.0 m/min resulted in a positive likelihood ratio of 7.6. [Conclusion] The cutoff value for the 10-m walking speed can be used to evaluate walking independence in patients with stroke among patients with high or low MMSE scores.

  20. Multispectral Photogrammetric Data Acquisition and Processing Forwall Paintings Studies

    NASA Astrophysics Data System (ADS)

    Pamart, A.; Guillon, O.; Faraci, S.; Gattet, E.; Genevois, M.; Vallet, J. M.; De Luca, L.

    2017-02-01

    In the field of wall paintings studies different imaging techniques are commonly used for the documentation and the decision making in term of conservation and restoration. There is nowadays some challenging issues to merge scientific imaging techniques in a multimodal context (i.e. multi-sensors, multi-dimensions, multi-spectral and multi-temporal approaches). For decades those CH objects has been widely documented with Technical Photography (TP) which gives precious information to understand or retrieve the painting layouts and history. More recently there is an increasing demand of the use of digital photogrammetry in order to provide, as one of the possible output, an orthophotomosaic which brings a possibility for metrical quantification of conservators/restorators observations and actions planning. This paper presents some ongoing experimentations of the LabCom MAP-CICRP relying on the assumption that those techniques can be merged through a common pipeline to share their own benefits and create a more complete documentation.

  1. Interactive interface for visualizing and analyzing multispectral solar images

    NASA Astrophysics Data System (ADS)

    Hurlbert, Neal E.; Shine, Richard A.; Tarbell, Theodore D.

    1997-03-01

    We present an interactive software tool for manipulating image data, especially high resolution multi-spectral solar movies and images from several different instruments. This tool contains procedures for distortion removal for ground based solar movies, correlation tracking, image alignments, data compression, 3D FOurier filtering, interactive viewing of space/time slices in movies, and browsing through data cubes. This is a compete public domain package based on X windows and Unix which is currently running on Silicon Graphics and Digital Equipment workstations. These software tools are freely available to the international solar community. Many components are also applicable to image an movie analysis in astrophysics, space physics, and earth sciences. They are available with documentation via our web pages under http://www.space.lockheed.com.

  2. A study of techniques for processing multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Crane, R. B.; Richardson, W.; Hieber, R. H.; Malila, W. A.

    1973-01-01

    A linear decision rule to reduce the time required for processing multispectral scanner data is developed. Test results are presented which justify the use of the new rule for digital processing whenever both accuracy and processing time are important. A method of evaluating the performance of the rule is also developed and applied to the problem of choosing a subset of channels. A technique used to find linear combinations of channels is described. The ability to extend signatures throughout a small area of approximately fifty square miles is tested. After preprocessing, signatures derived from the first of seven overlapping data sets are applied to all data sets. The test results show that the average probability of misclassification tends to increase with an increase in the number of data sets over which the signatures are extended.

  3. Sub-pixel resolution with the Multispectral Thermal Imager (MTI).

    SciTech Connect

    Decker, Max Louis; Smith, Jody Lynn; Nandy, Prabal

    2003-06-01

    The Multispectral Thermal Imager Satellite (MTI) has been used to test a sub-pixel sampling technique in an effort to obtain higher spatial frequency imagery than that of its original design. The MTI instrument is of particular interest because of its infrared detectors. In this spectral region, the detector size is traditionally the limiting factor in determining the satellite's ground sampling distance (GSD). Additionally, many over-sampling techniques require flexible command and control of the sensor and spacecraft. The MTI sensor is well suited for this task, as it is the only imaging system on the MTI satellite bus. In this super-sampling technique, MTI is maneuvered such that the data are collected at sub-pixel intervals on the ground. The data are then processed using a deconvolution algorithm using in-scene measured point spread functions (PSF) to produce an image with synthetically-boosted GSD.

  4. Resampling approach for anomaly detection in multispectral images

    SciTech Connect

    Theiler, J. P.; Cai, D.

    2003-01-01

    We propose a novel approach for identifying the 'most unusual' samples in a data set, based on a resampling of data attributes. The resampling produces a 'background class' and then binary classification is used to distinguish the original training set from the background. Those in the training set that are most like the background (i e, most unlike the rest of the training set) are considered anomalous. Although by their nature, anomalies do not permit a positive definition (if I knew what they were, I wouldn't call them anomalies), one can make 'negative definitions' (I can say what does not qualify as an interesting anomaly). By choosing different resampling schemes, one can identify different kinds of anomalies. For multispectral images, anomalous pixels correspond to locations on the ground with unusual spectral signatures or, depending on how feature sets are constructed, unusual spatial textures.

  5. Non-invasive Imaging of Colitis using Multispectral Optoacoustic Tomography.

    PubMed

    Bhutiani, Neal; Grizzle, William E; Galandiuk, Susan; Otali, Denis; Dryden, Gerald W; Egilmez, Nejat K; McNally, Lacey R

    2016-12-01

    Currently, several non-invasive modalities, including MRI and PET, are being investigated to identify early intestinal inflammation, longitudinally monitor disease status, or detect dysplastic changes in patients with inflammatory bowel disease (IBD). Here, we assess the applicability and utility of multispectral optoacoustic tomography (MSOT) in evaluating the presence and severity of colitis. Mice with bacterial colitis demonstrated a temporally associated increase in mesenteric and colonic vascularity with an increase in mean signal intensity of oxygenated hemoglobin (p=0.004) by MSOT two days after inoculation. These findings were significantly more prominent 7 days after inoculation, with increased mean signal intensity of oxygenated hemoglobin (p=0.0002) and the development of punctate vascular lesions on the colonic surface, which corresponded to changes observed on colonoscopy as well as histology. With improvements in depth of tissue penetration, MSOT may hold potential as a sensitive, accurate, non-invasive imaging tool in evaluation of patients with IBD.

  6. Objective identification of dental abnormalities with multispectral fluorescence imaging.

    PubMed

    Singh, Surya Pratap; Fält, Pauli; Barman, Ishan; Koistinen, Arto; Dasari, Ramachandra Rao; Kullaa, Arja M

    2016-12-12

    Sensitive methods that can enable early detection of dental diseases (caries and calculus) are desirable in clinical practice. Optical spectroscopic approaches have emerged as promising alternatives owing to their wealth of molecular information and lack of sample preparation requirements. In the present study, using multispectral fluorescence imaging, we have demonstrated that dental caries and calculus can be objectively identified on extracted tooth. Spectral differences among control, carious and calculus conditions were attributed to the porphyrin pigment content, which is a byproduct of bacterial metabolism. Spectral maps generated using different porphyrin bands offer important clues to the spread of bacterial infection. Statistically significant differences utilizing fluorescence intensity ratios were observed among three groups. In contrast to laser induced fluorescence, these methods can provide information about exact spread of the infection and may aid in long term dental monitoring. Successful adoption of this approach for routine clinical usage can assist dentists in implementing timely remedial measures.

  7. Sparse-based multispectral image encryption via ptychography

    NASA Astrophysics Data System (ADS)

    Rawat, Nitin; Shi, Yishi; Kim, Byoungho; Lee, Byung-Geun

    2015-12-01

    Recently, we proposed a model of securing a ptychography-based monochromatic image encryption system via the classical Photon-counting imaging (PCI) technique. In this study, we examine a single-channel multispectral sparse-based photon-counting ptychography imaging (SMPI)-based cryptosystem. A ptychography-based cryptosystem creates a complex object wave field, which can be reconstructed by a series of diffraction intensity patterns through an aperture movement. The PCI sensor records only a few complex Bayer patterned samples that have been utilized in the decryption process. Sparse sensing and nonlinear properties of the classical PCI system, together with the scanning probes, enlarge the key space, and such a combination therefore enhances the system's security. We demonstrate that the sparse samples have adequate information for image decryption, as well as information authentication by means of optical correlation.

  8. Digital enhancement of multispectral MSS data for maximum image visibility

    NASA Technical Reports Server (NTRS)

    Algazi, V. R.

    1973-01-01

    A systematic approach to the enhancement of images has been developed. This approach exploits two principal features involved in the observation of images: the properties of human vision and the statistics of the images being observed. The rationale of the enhancement procedure is as follows: in the observation of some features of interest in an image, the range of objective luminance-chrominance values being displayed is generally limited and does not use the whole perceptual range of vision of the observer. The purpose of the enhancement technique is to expand and distort in a systematic way the grey scale values of each of the multispectral bands making up a color composite, to enhance the average visibility of the features being observed.

  9. Improved capabilities of the Multispectral Atmospheric Mapping Sensor (MAMS)

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Batson, K. Bryan; Atkinson, Robert J.; Moeller, Chris C.; Menzel, W. Paul; James, Mark W.

    1989-01-01

    The Multispectral Atmospheric Mapping Sensor (MAMS) is an airborne instrument being investigated as part of NASA's high altitude research program. Findings from work on this and other instruments have been important as the scientific justification of new instrumentation for the Earth Observing System (EOS). This report discusses changes to the instrument which have led to new capabilities, improved data quality, and more accurate calibration methods. In order to provide a summary of the data collected with MAMS, a complete list of flight dates and locations is provided. For many applications, registration of MAMS imagery with landmarks is required. The navigation of this data on the Man-computer Interactive Data Access System (McIDAS) is discussed. Finally, research applications of the data are discussed and specific examples are presented to show the applicability of these measurements to NASA's Earth System Science (ESS) objectives.

  10. Application of multispectral reflectance for early detection of tomato disease

    NASA Astrophysics Data System (ADS)

    Xu, Huirong; Zhu, Shengpan; Ying, Yibin; Jiang, Huanyu

    2006-10-01

    Automatic diagnosis of plant disease is important for plant management and environmental preservation in the future. The objective of this study is to use multispectral reflectance measurements to make an early discrimination between the healthy and infected plants by the strain of tobacco mosaic virus (TMV-U1) infection. There were reflectance changes in the visible (VIS) and near infrared spectroscopy (NIR) between the healthy and infected plants. Discriminant models were developed using discriminant partial least squares (DPLS) and Mahalanobis distance (MD). The DPLS models had a root mean square error of calibration (RMSEC) of 0.397 and correlation coefficient (r) of 0.59 and the MD model correctly classified 86.7% healthy plants and up to 91.7% infected plants.

  11. Multispectral synthesis of daylight using a commercial digital CCD camera.

    PubMed

    Nieves, Juan L; Valero, Eva M; Nascimento, Sérgio M C; Hernández-Andrés, Javier; Romero, Javier

    2005-09-20

    Performance of multispectral devices in recovering spectral data has been intensively investigated in some applications, as in spectral characterization of art paintings, but has received little attention in the context of spectral characterization of natural illumination. This study investigated the quality of the spectral estimation of daylight-type illuminants using a commercial digital CCD camera and a set of broadband colored filters. Several recovery algorithms that did not need information about spectral sensitivities of the camera sensors nor eigenvectors to describe the spectra were tested. Tests were carried out both with virtual data, using simulated camera responses, and real data obtained from real measurements. It was found that it is possible to recover daylight spectra with high spectral and colorimetric accuracy with a reduced number of three to nine spectral bands.

  12. Monitoring human melanocytic cell responses to piperine using multispectral imaging

    NASA Astrophysics Data System (ADS)

    Samatham, Ravikant; Phillips, Kevin G.; Sonka, Julia; Yelma, Aznegashe; Reddy, Neha; Vanka, Meenakshi; Thuillier, Philippe; Soumyanath, Amala; Jacques, Steven

    2011-03-01

    Vitiligo is a depigmentary disease characterized by melanocyte loss attributed most commonly to autoimmune mechanisms. Currently vitiligo has a high incidence (1% worldwide) but a poor set of treatment options. Piperine, a compound found in black pepper, is a potential treatment for the depigmentary skin disease vitiligo, due to its ability to stimulate mouse epidermal melanocyte proliferation in vitro and in vivo. The present study investigates the use of multispectral imaging and an image processing technique based on local contrast to quantify the stimulatory effects of piperine on human melanocyte proliferation in reconstructed epidermis. We demonstrate the ability of the imaging method to quantify increased pigmentation in response to piperine treatment. The quantization of melanocyte stimulation by the proposed imaging technique illustrates the potential use of this technology to quickly assess therapeutic responses of vitiligo tissue culture models to treatment non-invasively.

  13. Multi-spectral pyrometer for gas turbine blade temperature measurement

    NASA Astrophysics Data System (ADS)

    Gao, Shan; Wang, Lixin; Feng, Chi

    2014-09-01

    To achieve the highest possible turbine inlet temperature requires to accurately measuring the turbine blade temperature. If the temperature of blade frequent beyond the design limits, it will seriously reduce the service life. The problem for the accuracy of the temperature measurement includes the value of the target surface emissivity is unknown and the emissivity model is variability and the thermal radiation of the high temperature environment. In this paper, the multi-spectral pyrometer is designed provided mainly for range 500-1000°, and present a model corrected in terms of the error due to the reflected radiation only base on the turbine geometry and the physical properties of the material. Under different working conditions, the method can reduce the measurement error from the reflect radiation of vanes, make measurement closer to the actual temperature of the blade and calculating the corresponding model through genetic algorithm. The experiment shows that this method has higher accuracy measurements.

  14. Application of multispectral color photography to flame flow visualization

    NASA Technical Reports Server (NTRS)

    Stoffers, G.

    1979-01-01

    For flames of short duration and low intensity of radiation a spectroscopical flame diagnostics is difficult. In order to find some other means of extracting information about the flame structure from its radiation, the feasibility of using multispectral color photography was successfully evaluated. Since the flame photographs are close-ups, there is a considerable parallax between the single images, when several cameras are used, and additive color viewing is not possible. Each image must be analyzed individually, it is advisable to use color film in all cameras. One can either use color films of different spectral sensitivities or color films of the same type with different color filters. Sharp cutting filters are recommended.

  15. Modeling misregistration and related effects on multispectral classification

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1981-01-01

    The effects of misregistration on the multispectral classification accuracy when the scene registration accuracy is relaxed from 0.3 to 0.5 pixel are investigated. Noise, class separability, spatial transient response, and field size are considered simultaneously with misregistration in their effects on accuracy. Any noise due to the scene, sensor, or to the analog/digital conversion, causes a finite fraction of the measurements to fall outside of the classification limits, even within nominally uniform fields. Misregistration causes field borders in a given band or set of bands to be closer than expected to a given pixel, causing additional pixels to be misclassified due to the mixture of materials in the pixel. Simplified first order models of the various effects are presented, and are used to estimate the performance to be expected.

  16. Preliminary analysis of shuttle multispectral radiometer data for Southern Egypt

    USGS Publications Warehouse

    Rowan, L.C.; Goetz, A.F.H.; Kingston, M.J.

    1983-01-01

    The Shuttle Multispectral Infrared Radiometer (SMIRR) is a spectroradiometer covering the region from 0.5 to 2.5 ??m in 10 channels that acquired data from spots 100 m in diameter along the subspacecraft ground track. It was flown aboard the second flight of the space shuttle Columbia, November 12-14, 1981. Data collected during orbit 16 over southern Egypt show that carbonate rocks, kaolinite, and possibly montmorillonite can be identified by their SMIRR spectral signatures and limited knowledge of the lithologic units present. Detailed analysis of SMIRR data for this area indicates that calcite, kaolinite, and montmorillonite rocks give rise to absorption features that result in characteristic 10 channel spectra. ?? 1983.

  17. Estimating proportions of objects from multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Horwitz, H. M.; Lewis, J. T.; Pentland, A. P.

    1975-01-01

    Progress is reported in developing and testing methods of estimating, from multispectral scanner data, proportions of target classes in a scene when there are a significiant number of boundary pixels. Procedures were developed to exploit: (1) prior information concerning the number of object classes normally occurring in a pixel, and (2) spectral information extracted from signals of adjoining pixels. Two algorithms, LIMMIX and nine-point mixtures, are described along with supporting processing techniques. An important by-product of the procedures, in contrast to the previous method, is that they are often appropriate when the number of spectral bands is small. Preliminary tests on LANDSAT data sets, where target classes were (1) lakes and ponds, and (2) agricultural crops were encouraging.

  18. Multispectral scanner data applications evaluation. Volume 1: User applications study

    NASA Technical Reports Server (NTRS)

    Thomson, F. J.; Erickson, J. D.; Nalepka, R. F.; Weber, J. D.

    1974-01-01

    A six-month systems study of earth resource surveys from satellites was conducted and is reported. SKYLAB S-192 multispectral scanner (MSS) data were used as a baseline to aid in evaluating the characteristics of future systems using satellite MSS sensors. The study took the viewpoint that overall system (sensor and processing) characteristics and parameter values should be determined largely by user requirements for automatic information extraction performance in quasi-operational earth resources surveys, the other major factor being hardware limitations imposed by state-of-the-art technology and cost. The objective was to use actual aircraft and spacecraft MSS data to outline parametrically the trade-offs between user performance requirements and hardware performance and limitations so as to allow subsequent evaluation of compromises which must be made in deciding what system(s) to build.

  19. Precision Viticulture from Multitemporal, Multispectral Very High Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Kandylakis, Z.; Karantzalos, K.

    2016-06-01

    In order to exploit efficiently very high resolution satellite multispectral data for precision agriculture applications, validated methodologies should be established which link the observed reflectance spectra with certain crop/plant/fruit biophysical and biochemical quality parameters. To this end, based on concurrent satellite and field campaigns during the veraison period, satellite and in-situ data were collected, along with several grape samples, at specific locations during the harvesting period. These data were collected for a period of three years in two viticultural areas in Northern Greece. After the required data pre-processing, canopy reflectance observations, through the combination of several vegetation indices were correlated with the quantitative results from the grape/must analysis of grape sampling. Results appear quite promising, indicating that certain key quality parameters (like brix levels, total phenolic content, brix to total acidity, anthocyanin levels) which describe the oenological potential, phenolic composition and chromatic characteristics can be efficiently estimated from the satellite data.

  20. An ERTS multispectral scanner experiment for mapping iron compounds

    NASA Technical Reports Server (NTRS)

    Vincent, R. K. (Principal Investigator)

    1972-01-01

    There are no author-identified significant results in this report. An experimental plan for enhancing spectral features related to the chemical composition of geological targets in ERTS multispectral scanner data is described. The experiment is designed to produce visible-reflective infrared ratio images from ERTS-1 data. Iron compounds are promising remote sensing targets because they display prominent spectral features in the visible-reflective infrared wavelength region and are geologically significant. The region selected for this ERTS experiment is the southern end of the Wind River Range in Wyoming. If this method proves successful it should prove useful for regional geologic mapping, mineralogical exploration, and soil mapping. It may also be helpful to ERTS users in scientific disciplines other than geology, especially to those concerned with targets composed of mixtures of live vegetation and soil or rock.

  1. Geometric analysis and restitution of digital multispectral scanner data arrays

    NASA Technical Reports Server (NTRS)

    Baker, J. R.; Mikhail, E. M.

    1975-01-01

    An investigation was conducted to define causes of geometric defects within digital multispectral scanner (MSS) data arrays, to analyze the resulting geometric errors, and to investigate restitution methods to correct or reduce these errors. Geometric transformation relationships for scanned data, from which collinearity equations may be derived, served as the basis of parametric methods of analysis and restitution of MSS digital data arrays. The linearization of these collinearity equations is presented. Algorithms considered for use in analysis and restitution included the MSS collinearity equations, piecewise polynomials based on linearized collinearity equations, and nonparametric algorithms. A proposed system for geometric analysis and restitution of MSS digital data arrays was used to evaluate these algorithms, utilizing actual MSS data arrays. It was shown that collinearity equations and nonparametric algorithms both yield acceptable results, but nonparametric algorithms possess definite advantages in computational efficiency. Piecewise polynomials were found to yield inferior results.

  2. Multispectral analysis and cone signal modelling of pseudoisochromatic test plates

    NASA Astrophysics Data System (ADS)

    Luse, K.; Ozolinsh, M.; Fomins, S.; Gutmane, A.

    2013-12-01

    The aim of the study is to determine the consistency of the desired colour reproduction of the stimuli using calibrated printing technology available to anyone (EpsonStylus Pro 7800 printer was). 24 colour vision assessment plates created in the University of Latvia were analysed right after their fabrication on august 2012 and after intense use for 7 months (colour vision screening on 700 people). Multispectral imagery results indicate that the alignment of the samples after seven months of use has maintained on the CIExy confusion lines of deutan deficiency type, but the shift towards achromatic area in the diagram indicate decrease in the total colour difference (ΔE*ab) of test background (achromatic) areas and stimuli (chromatic) areas, thus affecting the testing outcome and deficiency severity level classification ability of the plates.

  3. 3D and multispectral imaging for subcutaneous veins detection.

    PubMed

    Paquit, Vincent C; Tobin, Kenneth W; Price, Jeffery R; Mèriaudeau, Fabrice

    2009-07-06

    The first and perhaps most important phase of a surgical procedure is the insertion of an intravenous (IV) catheter. Currently, this is performed manually by trained personnel. In some visions of future operating rooms, however, this process is to be replaced by an automated system. Experiments to determine the best NIR wavelengths to optimize vein contrast for physiological differences such as skin tone and/or the presence of hair on the arm or wrist surface are presented. For illumination our system is composed of a mercury arc lamp coupled to a 10nm band-pass spectrometer. A structured lighting system is also coupled to our multispectral system in order to provide 3D information of the patient arm orientation. Images of each patient arm are captured under every possible combinations of illuminants and the optimal combination of wavelengths for a given subject to maximize vein contrast using linear discriminant analysis is determined.

  4. Multispectral confocal scanning laser ophthalmoscope for retinal vessel oximetry

    NASA Astrophysics Data System (ADS)

    Lompado, Arthur; Smith, Matthew H.; Hillman, Lloyd W.; Denninghoff, Kurt R.

    2000-03-01

    Scanning laser microscopy is a widely used technique in ophthalmoscopy for providing high-resolution real time images of the retina. We describe a scanning laser ophthalmoscope that acquires retinal images at four wavelengths for the purpose of measuring the oxygen saturation of blood in retinal arteries and veins. Images at all four wavelengths are obtained across a single video frame using a temporal interlacing technique. An extraction procedure then permits analysis of four monochromatic images. A technique for calculating oxygen saturation from a multi-spectral image set is presented, along with preliminary measurements. The choice of wavelengths dramatically affects the oxygen saturation calculation accuracy and we present an optimized wavelength set and the calculated oxygen saturation results. The potential applications for this technology range from the diagnosis of various ophthalmic diseases to the detection of blood loss in trauma victims.

  5. Spatial clustering of pixels of a multispectral image

    DOEpatents

    Conger, James Lynn

    2014-08-19

    A method and system for clustering the pixels of a multispectral image is provided. A clustering system computes a maximum spectral similarity score for each pixel that indicates the similarity between that pixel and the most similar neighboring. To determine the maximum similarity score for a pixel, the clustering system generates a similarity score between that pixel and each of its neighboring pixels and then selects the similarity score that represents the highest similarity as the maximum similarity score. The clustering system may apply a filtering criterion based on the maximum similarity score so that pixels with similarity scores below a minimum threshold are not clustered. The clustering system changes the current pixel values of the pixels in a cluster based on an averaging of the original pixel values of the pixels in the cluster.

  6. Large-format and multispectral QWIP infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Goldberg, Arnold C.; Choi, Kwong-Kit; Jhabvala, Murzy; La, Anh; Uppal, Parvez N.; Winn, Michael L.

    2003-09-01

    The next generation of infrared (IR) focal plane arrays (FPAs) will need to be a significant improvement in capability over those used in present-day second generation FLIRs. The Army's Future Combat System requires that the range for target identification be greater than the range of detection for an opposing sensor. To accomplish this mission, the number of pixels on the target must be considerably larger than that possible with 2nd generation FLIR. Therefore, the 3rd generation FLIR will need to be a large format staring FPA with more than 1000 pixels on each side. In addition, a multi-spectral capability will be required to allow operability in challenging ambient environments, discriminate targets from decoys, and to take advantage of the smaller diffraction blur in the MWIR for enhanced image resolution. We report on laboratory measurements of a large format (1024 x 1024 pixels) single-color LWIR IR FPA made using the corrugated quantum well infrared photodetector (QWIP) structure by the ARL/NASA team. The pixel pitch is 18 μm and the spectral response peaks at 8.8 μm with a 9.2 μm cutoff. We report on recent results using a MWIR/LWIR QWIP FPA to image the boost phase of a launch vehicle for missile defense applications and a LWIR/LWIR FPA designed specifically for detecting the disturbed soil associated with buried land mines. Finally, we report on the fabrication of a new read-out integrated circuit (ROIC) specifically designed for multi-spectral operation.

  7. Pollutant monitoring of aircraft exhaust with multispectral imaging

    NASA Astrophysics Data System (ADS)

    Berkson, Emily E.; Messinger, David W.

    2016-10-01

    Communities surrounding local airports are becoming increasingly concerned about the aircraft pollutants emitted during the landing-takeoff (LTO) cycle, and their potential for negative health effects. Chicago, Los Angeles, Boston and London have all recently been featured in the news regarding concerns over the amount of airport pollution being emitted on a daily basis, and several studies have been published on the increased risks of cancer for those living near airports. There are currently no inexpensive, portable, and unobtrusive sensors that can monitor the spatial and temporal nature of jet engine exhaust plumes. In this work we seek to design a multispectral imaging system that is capable of tracking exhaust plumes during the engine idle phase, with a specific focus on unburned hydrocarbon (UHC) emissions. UHCs are especially potent to local air quality, and their strong absorption features allow them to act as a spatial and temporal plume tracer. Using a Gaussian plume to radiometrically model jet engine exhaust, we have begun designing an inexpensive, portable, and unobtrusive imaging system to monitor the relative amount of pollutants emitted by aircraft in the idle phase. The LWIR system will use two broadband filters to detect emitted UHCs. This paper presents the spatial and temporal radiometric models of the exhaust plume from a typical jet engine used on 737s. We also select filters for plume tracking, and propose an imaging system layout for optimal detectibility. In terms of feasibility, a multispectral imaging system will be two orders of magnitude cheaper than current unobtrusive methods (PTR-MS) used to monitor jet engine emissions. Large-scale impacts of this work will include increased capabilities to monitor local airport pollution, and the potential for better-informed decision-making regarding future developments to airports.

  8. A Multispectral Micro-Imager for Lunar Field Geology

    NASA Technical Reports Server (NTRS)

    Nunez, Jorge; Farmer, Jack; Sellar, Glenn; Allen, Carlton

    2009-01-01

    Field geologists routinely assign rocks to one of three basic petrogenetic categories (igneous, sedimentary or metamorphic) based on microtextural and mineralogical information acquired with a simple magnifying lens. Indeed, such observations often comprise the core of interpretations of geological processes and history. The Multispectral Microscopic Imager (MMI) uses multi-wavelength, light-emitting diodes (LEDs) and a substrate-removed InGaAs focal-plane array to create multispectral, microscale reflectance images of geological samples (FOV 32 X 40 mm). Each pixel (62.5 microns) of an image is comprised of 21 spectral bands that extend from 470 to 1750 nm, enabling the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases. MMI images provide crucial context information for in situ robotic analyses using other onboard analytical instruments (e.g. XRD), or for the selection of return samples for analysis in terrestrial labs. To further assess the value of the MMI as a tool for lunar exploration, we used a field-portable, tripod-mounted version of the MMI to image a variety of Apollo samples housed at the Lunar Experiment Laboratory, NASA s Johnson Space Center. MMI images faithfully resolved the microtextural features of samples, while the application of ENVI-based spectral end member mapping methods revealed the distribution of Fe-bearing mineral phases (olivine, pyroxene and magnetite), along with plagioclase feldspars within samples. Samples included a broad range of lithologies and grain sizes. Our MMI-based petrogenetic interpretations compared favorably with thin section-based descriptions published in the Lunar Sample Compendium, revealing the value of MMI images for astronaut and rover-mediated lunar exploration.

  9. Multispectral iris fusion for enhancement, interoperability, and cross wavelength matching

    NASA Astrophysics Data System (ADS)

    Burge, Mark J.; Monaco, Matthew K.

    2009-05-01

    Traditionally, only a narrow band of the Near-Infrared (NIR) spectrum (700-900nm) is utilized for iris recognition since this alleviates any physical discomfort from illumination, reduces specular reflections and increases the amount of texture captured for some iris colors. However, previous research has shown that matching performance is not invariant to iris color and can be improved by imaging outside of the NIR spectrum. Building on this research, we demonstrate that iris texture increases with the frequency of the illumination for lighter colored sections of the iris and decreases for darker sections. Using registered visible light and NIR iris images captured using a single-lens multispectral camera, we illustrate how physiological properties of the iris (e.g., the amount and distribution of melanin) impact the transmission, absorbance, and reflectance of different portions of the electromagnetic spectrum and consequently affect the quality of the imaged iris texture. We introduce a novel iris code, Multispectral Enhanced irisCode (MEC), which uses pixel-level fusion algorithms to exploit texture variations elicited by illuminating the iris at different frequencies, to improve iris matcher performance and reduce Failure-To-Enroll (FTE) rates. Finally, we present a model for approximating an NIR iris image using features derived from the color and structure of a visible light iris image. The simulated NIR images generated by this model are designed to improve the interoperability between legacy NIR iris images and those acquired under visible light by enabling cross wavelength matching of NIR and visible light iris images.

  10. Quantitative analysis of multi-spectral fundus images.

    PubMed

    Styles, I B; Calcagni, A; Claridge, E; Orihuela-Espina, F; Gibson, J M

    2006-08-01

    We have developed a new technique for extracting histological parameters from multi-spectral images of the ocular fundus. The new method uses a Monte Carlo simulation of the reflectance of the fundus to model how the spectral reflectance of the tissue varies with differing tissue histology. The model is parameterised by the concentrations of the five main absorbers found in the fundus: retinal haemoglobins, choroidal haemoglobins, choroidal melanin, RPE melanin and macular pigment. These parameters are shown to give rise to distinct variations in the tissue colouration. We use the results of the Monte Carlo simulations to construct an inverse model which maps tissue colouration onto the model parameters. This allows the concentration and distribution of the five main absorbers to be determined from suitable multi-spectral images. We propose the use of "image quotients" to allow this information to be extracted from uncalibrated image data. The filters used to acquire the images are selected to ensure a one-to-one mapping between model parameters and image quotients. To recover five model parameters uniquely, images must be acquired in six distinct spectral bands. Theoretical investigations suggest that retinal haemoglobins and macular pigment can be recovered with RMS errors of less than 10%. We present parametric maps showing the variation of these parameters across the posterior pole of the fundus. The results are in agreement with known tissue histology for normal healthy subjects. We also present an early result which suggests that, with further development, the technique could be used to successfully detect retinal haemorrhages.

  11. High resolution multispectral photogrammetric imagery: enhancement, interpretation and evaluations

    NASA Astrophysics Data System (ADS)

    Roberts, Arthur; Haefele, Martin; Bostater, Charles; Becker, Thomas

    2007-10-01

    A variety of aerial mapping cameras were adapted and developed into simulated multiband digital photogrammetric mapping systems. Direct digital multispectral, two multiband cameras (IIS 4 band and Itek 9 band) and paired mapping and reconnaissance cameras were evaluated for digital spectral performance and photogrammetric mapping accuracy in an aquatic environment. Aerial films (24cm X 24cm format) tested were: Agfa color negative and extended red (visible and near infrared) panchromatic, and; Kodak color infrared and B&W (visible and near infrared) infrared. All films were negative processed to published standards and digitally converted at either 16 (color) or 10 (B&W) microns. Excellent precision in the digital conversions was obtained with scanning errors of less than one micron. Radiometric data conversion was undertaken using linear density conversion and centered 8 bit histogram exposure. This resulted in multiple 8 bit spectral image bands that were unaltered (not radiometrically enhanced) "optical count" conversions of film density. This provided the best film density conversion to a digital product while retaining the original film density characteristics. Data covering water depth, water quality, surface roughness, and bottom substrate were acquired using different measurement techniques as well as different techniques to locate sampling points on the imagery. Despite extensive efforts to obtain accurate ground truth data location errors, measurement errors, and variations in the correlation between water depth and remotely sensed signal persisted. These errors must be considered endemic and may not be removed through even the most elaborate sampling set up. Results indicate that multispectral photogrammetric systems offer improved feature mapping capability.

  12. Light, shadows and surface characteristics: the multispectral Portable Light Dome

    NASA Astrophysics Data System (ADS)

    Watteeuw, Lieve; Hameeuw, Hendrik; Vandermeulen, Bruno; Van der Perre, Athena; Boschloos, Vanessa; Delvaux, Luc; Proesmans, Marc; Van Bos, Marina; Van Gool, Luc

    2016-11-01

    A multispectral, multidirectional, portable and dome-shaped acquisition system is developed within the framework of the research projects RICH (KU Leuven) and EES (RMAH, Brussels) in collaboration with the ESAT-VISICS research group (KU Leuven). The multispectral Portable Light Dome (MS PLD) consists of a hemispherical structure, an overhead camera and LEDs emitting in five parts of the electromagnetic spectrum regularly covering the dome's inside surface. With the associated software solution, virtual relighting and enhancements can be applied in a real-time, interactive manner. The system extracts genuine 3D and shading information based on a photometric stereo algorithm. This innovative approach allows for instantaneous alternations between the computations in the infrared, red, green, blue and ultraviolet spectra. The MS PLD system has been tested for research ranging from medieval manuscript illuminations to ancient Egyptian artefacts. Preliminary results have shown that it documents and measures the 3D surface structure of objects, re-visualises underdrawings, faded pigments and inscriptions, and examines the MS results in combination with the actual relief characteristics of the physical object. Newly developed features are reflection maps and histograms, analytic visualisations of the reflection properties of all separate LEDs or selected areas. In its capacity as imaging technology, the system acts as a tool for the analysis of surface materials (e.g. identification of blue pigments, gold and metallic surfaces). Besides offering support in answering questions of attribution and monitoring changes and decay of materials, the PLD also contributes to the identification of materials, all essential factors when making decisions in the conservation protocol.

  13. Trophic classification of Colorado lakes utilizing contact data, Landsat and aircraft-acquired multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Boland, D. H. P.; Blackwell, R. J.

    1978-01-01

    Multispectral scanner data, acquired over several Colorado lakes using Landsat-1 and aircraft, were used in conjunction with National Eutrophication Survey contact-sensed data to determine the feasibility of assessing lacustrine trophic levels. A trophic state index was developed using contact-sensed data for several trophic indicators (chlorophyll a, inverse of Secchi disk transparency, conductivity, total phosphorous, total organic nitrogen, algal assay yield). Relationships between the digitally processed multispectral scanner data, several trophic indicators, and the trophic index were examined using a supervised multispectral classification technique and regression techniques. Statistically significant correlations exist between spectral bands, several of the trophic indicators (chlorophyll a, Secchi disk transparency, total organic nitrogen), and the trophic state index. Color-coded photomaps were generated which depict the spectral aspects of trophic state. Multispectral scanner data acquired from satellite and aircraft platforms can be used to advantage in lake monitoring and survey programs.

  14. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This paper discusses the identification of organic disinfection by-products (DBPs) at a pilot plant in Evansville, Indiana, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high and low r...

  15. MULTISPECTRAL IDENTIFICATION OF ALKYL AND CHLOROALKYL PHOSPHATES FROM AN INDUSTRIAL EFFLUENT

    EPA Science Inventory

    Multispectral techniques (gas chromatography combined with low and high resolution electron-impact mass spectrometry, low and high resolution chemical ionization mass spectrometry, and Fourier transform infrared mass spectroscopy) were used to identify 13 alkyl and chloralkyl pho...

  16. Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis

    PubMed Central

    Kim, Sewoong; Cho, Dongrae; Kim, Jihun; Kim, Manjae; Youn, Sangyeon; Jang, Jae Eun; Je, Minkyu; Lee, Dong Hun; Lee, Boreom; Farkas, Daniel L.; Hwang, Jae Youn

    2016-01-01

    We investigate the potential of mobile smartphone-based multispectral imaging for the quantitative diagnosis and management of skin lesions. Recently, various mobile devices such as a smartphone have emerged as healthcare tools. They have been applied for the early diagnosis of nonmalignant and malignant skin diseases. Particularly, when they are combined with an advanced optical imaging technique such as multispectral imaging and analysis, it would be beneficial for the early diagnosis of such skin diseases and for further quantitative prognosis monitoring after treatment at home. Thus, we demonstrate here the development of a smartphone-based multispectral imaging system with high portability and its potential for mobile skin diagnosis. The results suggest that smartphone-based multispectral imaging and analysis has great potential as a healthcare tool for quantitative mobile skin diagnosis. PMID:28018743

  17. Multiscale multispectral optoacoustic tomography by a stationary wavelet transform prior to unmixing.

    PubMed

    Taruttis, Adrian; Rosenthal, Amir; Kacprowicz, Marcin; Burton, Neal C; Ntziachristos, Vasilis

    2014-05-01

    Multispectral optoacoustic tomography (MSOT) utilizes broadband ultrasound detection for imaging biologically-relevant optical absorption features at a range of scales. Due to the multiscale and multispectral features of the technology, MSOT comes with distinct requirements in implementation and data analysis. In this work, we investigate the interplay between scale, which depends on ultrasonic detection frequency, and optical multispectral spectral analysis, two dimensions that are unique to MSOT and represent a previously unexplored challenge. We show that ultrasound frequency-dependent artifacts suppress multispectral features and complicate spectral analysis. In response, we employ a wavelet decomposition to perform spectral unmixing on a per-scale basis (or per ultrasound frequency band) and showcase imaging of fine-scale features otherwise hidden by low frequency components. We explain the proposed algorithm by means of simple simulations and demonstrate improved performance in imaging data of blood vessels in human subjects.

  18. Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis.

    PubMed

    Kim, Sewoong; Cho, Dongrae; Kim, Jihun; Kim, Manjae; Youn, Sangyeon; Jang, Jae Eun; Je, Minkyu; Lee, Dong Hun; Lee, Boreom; Farkas, Daniel L; Hwang, Jae Youn

    2016-12-01

    We investigate the potential of mobile smartphone-based multispectral imaging for the quantitative diagnosis and management of skin lesions. Recently, various mobile devices such as a smartphone have emerged as healthcare tools. They have been applied for the early diagnosis of nonmalignant and malignant skin diseases. Particularly, when they are combined with an advanced optical imaging technique such as multispectral imaging and analysis, it would be beneficial for the early diagnosis of such skin diseases and for further quantitative prognosis monitoring after treatment at home. Thus, we demonstrate here the development of a smartphone-based multispectral imaging system with high portability and its potential for mobile skin diagnosis. The results suggest that smartphone-based multispectral imaging and analysis has great potential as a healthcare tool for quantitative mobile skin diagnosis.

  19. Bolus tracking with nanofilter-based multispectral videography for capturing microvasculature hemodynamics.

    PubMed

    Najiminaini, Mohamadreza; Kaminska, Bozena; St Lawrence, Keith; Carson, Jeffrey J L

    2014-04-24

    Multispectral imaging is a highly desirable modality for material-based analysis in diverse areas such as food production and processing, satellite-based reconnaissance, and biomedical imaging. Here, we present nanofilter-based multispectral videography (nMSV) in the 700 to 950 nm range made possible by the tunable extraordinary-optical-transmission properties of 3D metallic nanostructures. Measurements made with nMSV during a bolus injection of an intravascular tracer in the ear of a piglet resulted in spectral videos of the microvasculature. Analysis of the multispectral videos generated contrast measurements representative of arterial pulsation, the distribution of microvascular transit times, as well as a separation of the venous and arterial signals arising from within the tissue. Therefore, nMSV is capable of acquiring serial multispectral images relevant to tissue hemodynamics, which may have application to the detection and identification of skin cancer.

  20. Bolus tracking with nanofilter-based multispectral videography for capturing microvasculature hemodynamics

    NASA Astrophysics Data System (ADS)

    Najiminaini, Mohamadreza; Kaminska, Bozena; St. Lawrence, Keith; Carson, Jeffrey J. L.

    2014-04-01

    Multispectral imaging is a highly desirable modality for material-based analysis in diverse areas such as food production and processing, satellite-based reconnaissance, and biomedical imaging. Here, we present nanofilter-based multispectral videography (nMSV) in the 700 to 950 nm range made possible by the tunable extraordinary-optical-transmission properties of 3D metallic nanostructures. Measurements made with nMSV during a bolus injection of an intravascular tracer in the ear of a piglet resulted in spectral videos of the microvasculature. Analysis of the multispectral videos generated contrast measurements representative of arterial pulsation, the distribution of microvascular transit times, as well as a separation of the venous and arterial signals arising from within the tissue. Therefore, nMSV is capable of acquiring serial multispectral images relevant to tissue hemodynamics, which may have application to the detection and identification of skin cancer.

  1. On-board multispectral classification study. Volume 2: Supplementary tasks. [adaptive control

    NASA Technical Reports Server (NTRS)

    Ewalt, D.

    1979-01-01

    The operational tasks of the onboard multispectral classification study were defined. These tasks include: sensing characteristics for future space applications; information adaptive systems architectural approaches; data set selection criteria; and onboard functional requirements for interfacing with global positioning satellites.

  2. City of Irving utilizes high resolution multispectral imagery for NPDES compliance

    SciTech Connect

    Monday, H.M.; Urban, J.S.; Mulawa, D.; Benkelman, C.A.

    1994-04-01

    A case history of using high resolution multispectral imagery is described. A statistical clustering method was applied to identify the primary spectral signatures present within the image data. This was for the National Pollution Discharge Elimination System (NPDES).

  3. Detecting early stage pressure ulcer on dark skin using multispectral imager

    NASA Astrophysics Data System (ADS)

    Yi, Dingrong; Kong, Linghua; Sprigle, Stephen; Wang, Fengtao; Wang, Chao; Liu, Fuhan; Adibi, Ali; Tummala, Rao

    2010-02-01

    We are developing a handheld multispectral imaging device to non-invasively inspect stage I pressure ulcers in dark pigmented skins without the need of touching the patient's skin. This paper reports some preliminary test results of using a proof-of-concept prototype. It also talks about the innovation's impact to traditional multispectral imaging technologies and the fields that will potentially benefit from it.

  4. Active and passive multispectral scanner for earth resources applications: An advanced applications flight experiment

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.; Peterson, L. M.; Thomson, F. J.; Work, E. A.; Kriegler, F. J.

    1977-01-01

    The development of an experimental airborne multispectral scanner to provide both active (laser illuminated) and passive (solar illuminated) data from a commonly registered surface scene is discussed. The system was constructed according to specifications derived in an initial programs design study. The system was installed in an aircraft and test flown to produce illustrative active and passive multi-spectral imagery. However, data was not collected nor analyzed for any specific application.

  5. The use of ERTS-1 multispectral imagery for crop identification in a semi-arid climate

    NASA Technical Reports Server (NTRS)

    Stockton, J. G.; Bauer, M. E.; Blair, B. O.; Baumgardner, M. F.

    1975-01-01

    Crop identification using multispectral satellite imagery and multivariate pattern recognition was used to identify wheat accurately in Greeley County, Kansas. A classification accuracy of 97 percent was found for wheat and the wheat estimate in hectares was within 5 percent of the USDA's Statistical Reporting Service estimate for 1973. The multispectral response of cotton and sorghum in Texas was not unique enough to distinguish between them nor to separate them from other cultivated crops.

  6. Application of High Resolution Multispectral Imagery for Levee Slide Detection and Monitoring

    NASA Technical Reports Server (NTRS)

    Hossain, A. K. M. Azad; Easson, Greg

    2007-01-01

    The objective is to develop methods to detect and monitor levee slides using commercially available high resolution multispectral imagery. High resolution multispectral imagery like IKONOS and QuickBird are suitable for detecting and monitoring levee slides. IKONOS is suitable for visual inspection, image classification and Tasseled Cap transform based slide detection. Tasseled Cap based model was found to be the best method for slide detection. QuickBird was suitable for visual inspection and image classification.

  7. ASPIS, A Flexible Multispectral System for Airborne Remote Sensing Environmental Applications

    PubMed Central

    Papale, Dario; Belli, Claudio; Gioli, Beniamino; Miglietta, Franco; Ronchi, Cesare; Vaccari, Francesco Primo; Valentini, Riccardo

    2008-01-01

    Airborne multispectral and hyperspectral remote sensing is a powerful tool for environmental monitoring applications. In this paper we describe a new system (ASPIS) composed by a 4-CCD spectral sensor, a thermal IR camera and a laser altimeter that is mounted on a flexible Sky-Arrow airplane. A test application of the multispectral sensor to estimate durum wheat quality is also presented. PMID:27879875

  8. Experimental Results of Ground Disturbance Detection Using Uncooled Infrared Imagers in Wideband and Multispectral Modes

    DTIC Science & Technology

    2012-02-01

    imaging for ground disturbance detection. We performed experiments to study ground disturbance detection using multispectral imaging. Multispectral...were investigated and experimentally validated on buried mines signature using MWIR and LWIR cameras [2-4]. As the performance of low cost, uncooled...NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Defence R&D Canada

  9. The use of four band multispectral photography to identify forest cover types

    NASA Technical Reports Server (NTRS)

    Downs, S. W., Jr.

    1977-01-01

    Four-band multispectral aerial photography and a color additive viewer were employed to identify forest cover types in Northern Alabama. The multispectral photography utilized the blue, green, red and near-infrared spectral regions and was made with black and white infrared film. On the basis of color differences alone, a differentiation between conifers and hardwoods was possible; however, supplementary information related to forest ecology proved necessary for the differentiation of various species of pines and hardwoods.

  10. Multispectral band selection and spatial characterization: Application to mitosis detection in breast cancer histopathology.

    PubMed

    Irshad, H; Gouaillard, A; Roux, L; Racoceanu, D

    2014-07-01

    Breast cancer is the second most frequent cancer. The reference process for breast cancer prognosis is Nottingham grading system. According to this system, mitosis detection is one of the three important criteria required for grading process and quantifying the locality and prognosis of a tumor. Multispectral imaging, as relatively new to the field of histopathology, has the advantage, over traditional RGB imaging, to capture spectrally resolved information at specific frequencies, across the electromagnetic spectrum. This study aims at evaluating the accuracy of mitosis detection on histopathological multispectral images. The proposed framework includes: selection of spectral bands and focal planes, detection of candidate mitotic regions and computation of morphological and multispectral statistical features. A state-of-the-art of the methods for mitosis classification is also provided. This framework has been evaluated on MITOS multispectral dataset and achieved higher detection rate (67.35%) and F-Measure (63.74%) than the best MITOS contest results (Roux et al., 2013). Our results indicate that the selected multispectral bands have more discriminant information than a single spectral band or all spectral bands for mitotic figures, validating the interest of using multispectral images to improve the quality of the diagnostic in histopathology.

  11. Simulation of EO-1 Hyperion Data from ALI Multispectral Data Based on the Spectral Reconstruction Approach.

    PubMed

    Liu, Bo; Zhang, Lifu; Zhang, Xia; Zhang, Bing; Tong, Qingxi

    2009-01-01

    Data simulation is widely used in remote sensing to produce imagery for a new sensor in the design stage, for scale issues of some special applications, or for testing of novel algorithms. Hyperspectral data could provide more abundant information than traditional multispectral data and thus greatly extend the range of remote sensing applications. Unfortunately, hyperspectral data are much more difficult and expensive to acquire and were not available prior to the development of operational hyperspectral instruments, while large amounts of accumulated multispectral data have been collected around the world over the past several decades. Therefore, it is reasonable to examine means of using these multispectral data to simulate or construct hyperspectral data, especially in situations where hyperspectral data are necessary but hard to acquire. Here, a method based on spectral reconstruction is proposed to simulate hyperspectral data (Hyperion data) from multispectral Advanced Land Imager data (ALI data). This method involves extraction of the inherent information of source data and reassignment to newly simulated data. A total of 106 bands of Hyperion data were simulated from ALI data covering the same area. To evaluate this method, we compare the simulated and original Hyperion data by visual interpretation, statistical comparison, and classification. The results generally showed good performance of this method and indicated that most bands were well simulated, and the information both preserved and presented well. This makes it possible to simulate hyperspectral data from multispectral data for testing the performance of algorithms, extend the use of multispectral data and help the design of a virtual sensor.

  12. [A spatial adaptive algorithm for endmember extraction on multispectral remote sensing image].

    PubMed

    Zhu, Chang-Ming; Luo, Jian-Cheng; Shen, Zhan-Feng; Li, Jun-Li; Hu, Xiao-Dong

    2011-10-01

    Due to the problem that the convex cone analysis (CCA) method can only extract limited endmember in multispectral imagery, this paper proposed a new endmember extraction method by spatial adaptive spectral feature analysis in multispectral remote sensing image based on spatial clustering and imagery slice. Firstly, in order to remove spatial and spectral redundancies, the principal component analysis (PCA) algorithm was used for lowering the dimensions of the multispectral data. Secondly, iterative self-organizing data analysis technology algorithm (ISODATA) was used for image cluster through the similarity of the pixel spectral. And then, through clustering post process and litter clusters combination, we divided the whole image data into several blocks (tiles). Lastly, according to the complexity of image blocks' landscape and the feature of the scatter diagrams analysis, the authors can determine the number of endmembers. Then using hourglass algorithm extracts endmembers. Through the endmember extraction experiment on TM multispectral imagery, the experiment result showed that the method can extract endmember spectra form multispectral imagery effectively. What's more, the method resolved the problem of the amount of endmember limitation and improved accuracy of the endmember extraction. The method has provided a new way for multispectral image endmember extraction.

  13. Real-time aerial multispectral imaging solutions using dichroic filter arrays

    NASA Astrophysics Data System (ADS)

    Chandler, Eric V.; Fish, David E.

    2014-06-01

    The next generation of multispectral sensors and cameras needs to deliver significant improvements in size, weight, portability, and spectral band customization to support widespread commercial deployment for a variety of purposebuilt aerial, unmanned, and scientific applications. The benefits of multispectral imaging are well established for applications including machine vision, biomedical, authentication, and remote sensing environments - but many aerial and OEM solutions require more compact, robust, and cost-effective production cameras to realize these benefits. A novel implementation uses micropatterning of dichroic filters into Bayer and custom mosaics, enabling true real-time multispectral imaging with simultaneous multi-band image acquisition. Consistent with color camera image processing, individual spectral channels are de-mosaiced with each channel providing an image of the field of view. We demonstrate recent results of 4-9 band dichroic filter arrays in multispectral cameras using a variety of sensors including linear, area, silicon, and InGaAs. Specific implementations range from hybrid RGB + NIR sensors to custom sensors with applicationspecific VIS, NIR, and SWIR spectral bands. Benefits and tradeoffs of multispectral sensors using dichroic filter arrays are compared with alternative approaches - including their passivity, spectral range, customization options, and development path. Finally, we report on the wafer-level fabrication of dichroic filter arrays on imaging sensors for scalable production of multispectral sensors and cameras.

  14. Real-time compact multispectral imaging solutions using dichroic filter arrays

    NASA Astrophysics Data System (ADS)

    Chandler, Eric V.; Fish, David E.

    2014-03-01

    The next generation of multispectral sensors and cameras will need to deliver significant improvements in size, weight, portability, and spectral band customization to support widespread commercial deployment. The benefits of multispectral imaging are well established for applications including machine vision, biomedical, authentication, and aerial remote sensing environments - but many OEM solutions require more compact, robust, and cost-effective production cameras to realize these benefits. A novel implementation uses micro-patterning of dichroic filters into Bayer and custom mosaics, enabling true real-time multispectral imaging with simultaneous multi-band image acquisition. Consistent with color camera image processing, individual spectral channels are de-mosaiced with each channel providing an image of the field of view. We demonstrate recent results of 4-9 band dichroic filter arrays in multispectral cameras using a variety of sensors including linear, area, silicon, and InGaAs. Specific implementations range from hybrid RGB + NIR sensors to custom sensors with application-specific VIS, NIR, and SWIR spectral bands. Benefits and tradeoffs of multispectral sensors using dichroic filter arrays are compared with alternative approaches - including their passivity, spectral range, customization options, and development path. Finally, we report on the wafer-level fabrication of dichroic filter arrays on imaging sensors for scalable production of multispectral sensors and cameras.

  15. [Application and prospect of multi-spectral remote sensing in major natural disaster assessment].

    PubMed

    Wang, Fu-tao; Wang, Shi-xin; Zhou, Yi; Wang, Li-tao; Yan, Fu-li

    2011-03-01

    After the occurrence of major natural disasters, it is of great significance that disaster states are assessed timely and accurately for decision-making departments to draw up effective response programs. Multi-spectral remote sensing has a great advantage and potential in disaster assessment, with the characteristics of a wide range of data acquisition, high speed, etc. In several major natural disaster assessments in China, multi-spectral remote sensing technology has played an important role. Firstly, the present paper takes earthquake disasters, floods disasters and drought disasters as examples to summarize the specific applications of major natural disaster assessment based on the multi-spectral remote sensing. Secondly, in these specific applications they suffer from both relative shortage of data sources and limited breadth and depth of application; both of these problems are analyzed. Finally, the future development direction of major natural disaster assessment based on the multi-spectral remote sensing, such as the expansion of multi-spectral remote sensing data acquisition means, the establishment of major natural disasters assessment index system based on remote sensing, and the improvement of the assessment technology system based on multi-spectral remote sensing are also discussed.

  16. Investigation on High Performance of 10m Semi Anechoic Chamber by using Open-Top Hollow Pyramidal Hybrid EM Wave Absorber

    NASA Astrophysics Data System (ADS)

    Kurihara, Hiroshi; Saito, Toshifumi; Suzuki, Yoshikazu; Nishikata, Atsuhiro; Hashimoto, Osamu

    The emission radiated from electric and electronic equipments is evaluated through OATS. Recently, it is not fully prepared the environment for OATS because of a variety of communication radiation sources (e.g., digital television broadcast and cellular phone station). Therefore, the EM anechoic chambers are becoming more and more important as EMI test site. On the other hand, the EM anechoic chambers are needed high performance in order to cut down EMI countermeasure cost and calculate the antenna factor. The objective of this paper is mainly to present the EM wave absorber design in order to obtain within ±2dB against the theoretical site attenuation values in the 10m semi anechoic chamber at 30MHz to 300MHz. We get the necessary reflectivity of EM wave absorber by the basic site attenuation equation. We design the open-top hollow pyramidal new hybrid EM wave absorber consisted of 180cm long dielectric loss foam and ferrite tiles. Then, we design the 10m semi anechoic chamber by using the ray-tracing simulation and construct it in the size of L24m×W15.2m×H11.2m. More over, we measure the site attenuation of the constructed 10m semi anechoic chamber by using the broadband calculable dipole antennas. As the result, we confirm the validity of the designed open-top hollow pyramidal new hybrid EM wave absorber.

  17. Spatial Resolution Characterization for AWiFS Multispectral Images

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Ryan, Robert E.; Pagnutti, Mary; Stanley, Thomas

    2006-01-01

    Within the framework of the Joint Agency Commercial Imagery Evaluation program, the National Aeronautics and Space Administration, the National Geospatial-Intelligence Agency, and the U.S. Geological Survey cooperate in the characterization of high-to-moderate-resolution commercial imagery of mutual interest. One of the systems involved in this effort is the Advanced Wide Field Sensor (AWiFS) onboard the Indian Remote Sensing (IRS) Reourcesat-1 satellite, IRS-P6. Spatial resolution of the AWiFS multispectral images was characterized by estimating the value of the system Modulation Transfer Function (MTF) at the Nyquist spatial frequency. The Nyquist frequency is defined as half the sampling frequency, and the sampling frequency is equal to the inverse of the ground sample distance. The MTF was calculated as a ratio of the Fourier transform of a profile across an AWiFS image of the Lake Pontchartrain Causeway Bridge and the Fourier transform of a profile across an idealized model of the bridge for each spectral band evaluated. The mean MTF value for the AWiFS imagery evaluated was estimated to be 0.1.

  18. Multispectral UV imaging for determination of the tablet coating thickness.

    PubMed

    Novikova, Anna; Carstensen, Jens M; Zeitler, J Axel; Rades, Thomas; Leopold, Claudia S

    2017-03-01

    The applicability of off-line multispectral ultraviolet (UV) imaging in combination with multivariate data analysis was investigated to determine the coating thickness and its distribution on the tablet surface during lab scale coating. The UV imaging results were compared with the weight gain measured for each individual tablet and the corresponding coating thickness and its distribution measured by terahertz pulsed imaging (TPI). Three different tablet formulations were investigated, two of which contained UV active tablet cores. Three coating formulations were applied: Aquacoat(®) ECD (a mainly translucent coating) and Eudragit(®) NE (a turbid coating containing solid particles). It was shown that UV imaging is a fast and non-destructive method to predict individual tablet weight gain as well as coating thickness. The coating thickness distribution profiles determined by UV imaging correlated to the results of the TPI measurements. UV imaging appears to hold a significant potential as a PAT tool for determination of the tablet coating thickness and its distribution resulting from its high measurement speed, high molar absorptivity and a high scattering coefficient, in addition to relatively low costs.

  19. Multispectral image fusion for vehicle identification and threat analysis

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Blasch, Erik

    2016-05-01

    Unauthorized vehicles become an increasing threat to US facilities and locations especially overseas. Vehicle detection is a well-studied area. However, vehicle identification and intension analysis have not been sufficiently investigated. We propose to use multispectral (visible, thermal) images (1) to match the vehicle types with the registered (or authorized) vehicle types; (2) to analyze the vehicle moving patterns, (3) and study methods to utilize open information such as GPS and traffic information. When a vehicle is either permitted to access to the facility, or subjected to further manual inspection (scrutiny), the additional information (e.g., text) can be compared against the imagery features. We use information fusion (at image, feature, and score level) and neural network to increase vehicle matching accuracy. For the vehicle moving patterns, we will classify them as "normal" and "abnormal" by using driving speed, acceleration, stop, zig-zag, etc. The methods would support directions in physical and human-based sensor fusion, patterns of life (POL) analysis, and contextual-enhanced information fusion.

  20. High Throughput Multispectral Image Processing with Applications in Food Science

    PubMed Central

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John

    2015-01-01

    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing’s outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models) and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples. PMID:26466349

  1. Infrared optical coatings for the EarthCARE Multispectral Imager.

    PubMed

    Hawkins, Gary; Woods, David; Sherwood, Richard; Djotni, Karim

    2014-10-20

    The Earth Cloud, Aerosol and Radiation Explorer mission (EarthCARE) Multispectral Imager (MSI) is a radiometric instrument designed to provide the imaging of the atmospheric cloud cover and the cloud top surface temperature from a sun-synchronous low Earth orbit. The MSI forms part of a suite of four instruments destined to support the European Space Agency Living Planet mission on-board the EarthCARE satellite payload to be launched in 2016, whose synergy will be used to construct three-dimensional scenes, textures, and temperatures of atmospheric clouds and aerosols. The MSI instrument contains seven channels: four solar channels to measure visible and short-wave infrared wavelengths, and three channels to measure infrared thermal emission. In this paper, we describe the optical layout of the infrared instrument channels, thin-film multilayer designs, the coating deposition method, and the spectral system throughput for the bandpass interference filters, dichroic beam splitters, lenses, and mirror coatings to discriminate wavelengths at 8.8, 10.8, and 12.0 μm. The rationale for the selection of thin-film materials, spectral measurement technique, and environmental testing performance are also presented.

  2. Prediction of coefficients for lossless compression of multispectral images

    NASA Astrophysics Data System (ADS)

    Ruedin, Ana M. C.; Acevedo, Daniel G.

    2005-08-01

    We present a lossless compressor for multispectral Landsat images that exploits interband and intraband correlations. The compressor operates on blocks of 256 x 256 pixels, and performs two kinds of predictions. For bands 1, 2, 3, 4, 5, 6.2 and 7, the compressor performs an integer-to-integer wavelet transform, which is applied to each block separately. The wavelet coefficients that have not yet been encoded are predicted by means of a linear combination of already coded coefficients that belong to the same orientation and spatial location in the same band, and coefficients of the same location from other spectral bands. A fast block classification is performed in order to use the best weights for each landscape. The prediction errors or differences are finally coded with an entropy - based coder. For band 6.1, we do not use wavelet transforms, instead, a median edge detector is applied to predict a pixel, with the information of the neighbouring pixels and the equalized pixel from band 6.2. This technique exploits better the great similarity between histograms of bands 6.1 and 6.2. The prediction differences are finally coded with a context-based entropy coder. The two kinds of predictions used reduce both spatial and spectral correlations, increasing the compression rates. Our compressor has shown to be superior to the lossless compressors Winzip, LOCO-I, PNG and JPEG2000.

  3. Active multispectral imaging system for photodiagnosis and personalized phototherapies

    NASA Astrophysics Data System (ADS)

    Ugarte, M. F.; Chávarri, L.; Briz, S.; Padrón, V. M.; García-Cuesta, E.

    2014-10-01

    The proposed system has been designed to identify dermatopathologies or to apply personalized phototherapy treatments. The system emits electromagnetic waves in different spectral bands in the range of visible and near infrared to irradiate the target (skin or any other object) to be spectrally characterized. Then, an imaging sensor measures the target response to the stimulus at each spectral band and, after processing, the system displays in real time two images. In one of them the value of each pixel corresponds to the more reflected wavenumber whereas in the other image the pixel value represents the energy absorbed at each band. The diagnosis capability of this system lies in its multispectral design, and the phototherapy treatments are adapted to the patient and his lesion by measuring his absorption capability. This "in situ" absorption measurement allows us to determine the more appropriate duration of the treatment according to the wavelength and recommended dose. The main advantages of this system are its low cost, it does not have moving parts or complex mechanisms, it works in real time, and it is easy to handle. For these reasons its widespread use in dermatologist consultation would facilitate the work of the dermatologist and would improve the efficiency of diagnosis and treatment. In fact the prototype has already been successfully applied to pathologies such as carcinomas, melanomas, keratosis, and nevi.

  4. Automated Road Extraction from High Resolution Multispectral Imagery

    SciTech Connect

    Doucette, Peter J.; Agouris, Peggy; Stefanidis, Anthony

    2004-12-01

    Road networks represent a vital component of geospatial data sets in high demand, and thus contribute significantly to extraction labor costs. Multispectral imagery has only recently become widely available at high spatial resolutions, and modeling spectral content has received limited consideration for road extraction algorithms. This paper presents a methodology that exploits spectral content for fully automated road centerline extraction. Preliminary detection of road centerline pixel candidates is performed with Anti-parallel-edge Centerline Extraction (ACE). This is followed by constructing a road vector topology with a fuzzy grouping model that links nodes from a self-organized mapping of the ACE pixels. Following topology construction, a self-supervised road classification (SSRC) feedback loop is implemented to automate the process of training sample selection and refinement for a road class, as well deriving practical spectral definitions for non-road classes. SSRC demonstrates a potential to provide dramatic improvement in road extraction results by exploiting spectral content. Road centerline extraction results are presented for three 1m color-infrared suburban scenes, which show significant improvement following SSRC.

  5. Active multispectral imaging system for photodiagnosis and personalized phototherapies

    SciTech Connect

    Ugarte, M. F. E-mail: sbriz@fis.uc3m.es; Chávarri, L.; Padrón, V. M.; García-Cuesta, E.

    2014-10-15

    The proposed system has been designed to identify dermatopathologies or to apply personalized phototherapy treatments. The system emits electromagnetic waves in different spectral bands in the range of visible and near infrared to irradiate the target (skin or any other object) to be spectrally characterized. Then, an imaging sensor measures the target response to the stimulus at each spectral band and, after processing, the system displays in real time two images. In one of them the value of each pixel corresponds to the more reflected wavenumber whereas in the other image the pixel value represents the energy absorbed at each band. The diagnosis capability of this system lies in its multispectral design, and the phototherapy treatments are adapted to the patient and his lesion by measuring his absorption capability. This “in situ” absorption measurement allows us to determine the more appropriate duration of the treatment according to the wavelength and recommended dose. The main advantages of this system are its low cost, it does not have moving parts or complex mechanisms, it works in real time, and it is easy to handle. For these reasons its widespread use in dermatologist consultation would facilitate the work of the dermatologist and would improve the efficiency of diagnosis and treatment. In fact the prototype has already been successfully applied to pathologies such as carcinomas, melanomas, keratosis, and nevi.

  6. Multispectral Cloud Retrievals from MODIS on Terra and Aqua

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Ackerman, Steven A.; Menzel, W. Paul; Gray, Mark A.; Moody, Eric G.

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and the Aqua spacecraft on April 26, 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from each polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.

  7. Simultaneous Fusion and Denoising of Panchromatic and Multispectral Satellite Images

    NASA Astrophysics Data System (ADS)

    Ragheb, Amr M.; Osman, Heba; Abbas, Alaa M.; Elkaffas, Saleh M.; El-Tobely, Tarek A.; Khamis, S.; Elhalawany, Mohamed E.; Nasr, Mohamed E.; Dessouky, Moawad I.; Al-Nuaimy, Waleed; Abd El-Samie, Fathi E.

    2012-12-01

    To identify objects in satellite images, multispectral (MS) images with high spectral resolution and low spatial resolution, and panchromatic (Pan) images with high spatial resolution and low spectral resolution need to be fused. Several fusion methods such as the intensity-hue-saturation (IHS), the discrete wavelet transform, the discrete wavelet frame transform (DWFT), and the principal component analysis have been proposed in recent years to obtain images with both high spectral and spatial resolutions. In this paper, a hybrid fusion method for satellite images comprising both the IHS transform and the DWFT is proposed. This method tries to achieve the highest possible spectral and spatial resolutions with as small distortion in the fused image as possible. A comparison study between the proposed hybrid method and the traditional methods is presented in this paper. Different MS and Pan images from Landsat-5, Spot, Landsat-7, and IKONOS satellites are used in this comparison. The effect of noise on the proposed hybrid fusion method as well as the traditional fusion methods is studied. Experimental results show the superiority of the proposed hybrid method to the traditional methods. The results show also that a wavelet denoising step is required when fusion is performed at low signal-to-noise ratios.

  8. Nightfire method to track volcanic eruptions from multispectral satellite images

    NASA Astrophysics Data System (ADS)

    Trifonov, Grigory; Zhizhin, Mikhail; Melnikov, Dmitry

    2016-04-01

    This work presents the first results of an application of the Nightfire hotspot algorithm towards volcano activity detection. Nightfire algorithm have been developed to play along with a Suomi-NPP polar satellite launched in 2011, which has a new generation multispectral VIIRS thermal sensor on board, to detect gas flares related to the upstream and downstream production of oil and natural gas. Simultaneously using of nighttime data in SWIR, MWIR, and LWIR sensor bands the algorithm is able to estimate the hotspot temperature, size and radiant heat. Four years of non-filtered observations have been accumulated in a spatio-temporal detection database, which currently totals 125 GB in size. The first part of this work presents results of retrospective cross-match of the detection database with the publicly available observed eruptions databases. The second part discusses how an approximate 3D shape of a lava lake could be modeled based on the apparent source size and satellite zenith angle. The third part presents the results of fusion Landsat-8 and Himawari-8 satellites data with the VIIRS Nightfire for several active volcanoes.

  9. Joint alignment of multispectral images via semidefinite programming

    PubMed Central

    Zheng, Yuanjie; Wang, Yu; Jiao, Wanzhen; Hou, Sujuan; Ren, Yanju; Qin, Maoling; Hou, Dewen; Luo, Chao; Wang, Hong; Gee, James; Zhao, Bojun

    2017-01-01

    In this paper, we introduce a novel feature-point-matching based framework for achieving an optimized joint-alignment of sequential images from multispectral imaging (MSI). It solves a low-rank and semidefinite matrix that stores all pairwise-image feature-mappings by minimizing the total amount of point-to-point matching cost via a convex optimization of a semidefinite programming formulation. This unique strategy takes a complete consideration of the information aggregated by all point-matching costs and enables the entire set of pairwise-image feature-mappings to be solved simultaneously and near-optimally. Our framework is capable of running in an automatic or interactive fashion, offering an effective tool for eliminating spatial misalignments introduced into sequential MSI images during the imaging process. Our experimental results obtained from a database of 28 sequences of MSI images of human eye demonstrate the superior performances of our approach to the state-of-the-art techniques. Our framework is potentially invaluable in a large variety of practical applications of MSI images. PMID:28270991

  10. Autonomous exploration system: Techniques for interpretation of multispectral data

    NASA Technical Reports Server (NTRS)

    Yates, Gigi; Eberlein, Susan

    1989-01-01

    An on-board autonomous exploration system that fuses data from multiple sensors, and makes decisions based on scientific goals is being developed using a series of artificial neural networks. Emphasis is placed on classifying minerals into broad geological categories by analyzing multispectral data from an imaging spectrometer. Artificial neural network architectures are being investigated for pattern matching and feature detection, information extraction, and decision making. As a first step, a stereogrammetry net extracts distance data from two gray scale stereo images. For each distance plane, the output is the probable mineral composition of the region, and a list of spectral features such as peaks, valleys, or plateaus, showing the characteristics of energy absorption and reflection. The classifier net is constructed using a grandmother cell architecture: an input layer of spectral data, an intermediate processor, and an output value. The feature detector is a three-layer feed-forward network that was developed to map input spectra to four geological classes, and will later be expanded to encompass more classes. Results from the classifier and feature detector nets will help to determine the relative importance of the region being examined with regard to current scientific goals of the system. This information is fed into a decision making neural net along with data from other sensors to decide on a plan of activity. A plan may be to examine the region at higher resolution, move closer, employ other sensors, or record an image and transmit it back to Earth.

  11. Optical Sizing of Immunolabel Clusters through Multispectral Plasmon Coupling Microscopy

    PubMed Central

    Wang, Hongyun; Rong, Guoxin; Yan, Bo; Yang, Linglu; Reinhard, Björn M.

    2011-01-01

    The wavelength dependent scattering cross-sections of self-assembled silver nanoparticle clusters of known size (n) were measured on five different wavelength channels between 427 and 510 nm through correlation of multispectral imaging and scanning electron microscopy. A multivariate statistical analysis of the spectral response of this training set provided a correlation between spectral response and cluster size and enabled a classification of new measurements into four distinct nanoparticle association levels (I1 – I4) whose compositions were dominated by monomers (I1), dimers (I2), trimers and tetramers (I3), and larger clusters (I4), respectively. One potential application of the optical sizing approach is to map association levels of silver immunolabels on cellular surfaces. We demonstrate the feasibility of this approach using silver immunolabels targeted at the epidermal growth factor receptor on A431 cells in a proof of principle experiment. The ability to measure immunolabel association levels on sub-cellular length scales in an optical microscope provides new opportunities for experimentally assessing receptor density distributions on living cells in solution. PMID:21247191

  12. Classification of emerald based on multispectral image and PCA

    NASA Astrophysics Data System (ADS)

    Yang, Weiping; Zhao, Dazun; Huang, Qingmei; Ren, Pengyuan; Feng, Jie; Zhang, Xiaoyan

    2005-02-01

    Traditionally, the grade discrimination and classifying of bowlders (emeralds) are implemented by using methods based on people's experiences. In our previous works, a method based on NCS(Natural Color System) color system and sRGB color space conversion is employed for a coarse grade classification of emeralds. However, it is well known that the color match of two colors is not a true "match" unless their spectra are the same. Because metameric colors can not be differentiated by a three channel(RGB) camera, a multispectral camera(MSC) is used as image capturing device in this paper. It consists of a trichromatic digital camera and a set of wide-band filters. The spectra are obtained by measuring a series of natural bowlders(emeralds) samples. Principal component analysis(PCA) method is employed to get some spectral eigenvectors. During the fine classification, the color difference and RMS of spectrum difference between estimated and original spectra are used as criterion. It has been shown that 6 eigenvectors are enough to reconstruct reflection spectra of the testing samples.

  13. Multispectral variable magnification glancing incidence x ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A multispectral, variable magnification, glancing incidence, x-ray telescope capable of broadband, high resolution imaging of solar and stellar x-ray and extreme ultraviolet radiation sources is discussed. The telescope includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable mirror carriers, each providing a different magnification, are positioned behind the primary focus at an inclination to the optical axis. Each carrier has a series of ellipsoidal mirrors, and each mirror has a concave surface covered with a multilayer (layered synthetic microstructure) coating to reflect a different desired wavelength. The mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A detector such as an x-ray sensitive photographic film is positioned at the second respective focus of each mirror so that each mirror may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected mirror on the second carrier to receive the radiation.

  14. Radiometric Characterization of Hyperspectral Imagers using Multispectral Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Kurt, Thome; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff

    2009-01-01

    The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these test sites are not always successful due to weather and funding availability. Therefore, RSG has also automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor, This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral a imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (M0DIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of M0DlS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most brands as well as similar agreement between results that employ the different MODIS sensors as a reference.

  15. Multispectral imaging fluorescence microscopy for lymphoid tissue analysis

    NASA Astrophysics Data System (ADS)

    Monici, Monica; Agati, Giovanni; Fusi, Franco; Mazzinghi, Piero; Romano, Salvatore; Pratesi, Riccardo; Alterini, Renato; Bernabei, Pietro A.; Rigacci, Luigi

    1999-01-01

    Multispectral imaging autofluorescence microscopy (MIAM) is used here for the analysis of lymphatic tissues. Lymph node biopsies, from patients with lympthoadenopathy of different origin have been examined. Natural fluorescence (NF) images of 3 micrometers sections were obtained using three filters peaked at 450, 550 and 680 nm with 50 nm bandpass. Monochrome images were combined together in a single RGB image. NF images of lymph node tissue sections show intense blue-green fluorescence of the connective stroma. Normal tissue shows follicles with faintly fluorescent lymphocytes, as expected fro the morphologic and functional characteristics of these cells. Other more fluorescent cells (e.g., plasma cells and macrophages) are evidenced. Intense green fluorescence if localized in the inner wall of the vessels. Tissues coming from patients affected by Hodgkin's lymphoma show spread fluorescence due to connective infiltration and no evidence of follicle organization. Brightly fluorescent large cells, presumably Hodgkin cells, are also observed. These results indicate that MIAM can discriminate between normal and pathological tissues on the basis of their natural fluorescence pattern, and, therefore, represent a potentially useful technique for diagnostic applications. Analysis of the fluorescence spectra of both normal and malignant lymphoid tissues resulted much less discriminatory than MIAM.

  16. Classifications of Multispectral Colorectal Cancer Tissues Using Convolution Neural Network

    PubMed Central

    Haj-Hassan, Hawraa; Chaddad, Ahmad; Harkouss, Youssef; Desrosiers, Christian; Toews, Matthew; Tanougast, Camel

    2017-01-01

    Background: Colorectal cancer (CRC) is the third most common cancer among men and women. Its diagnosis in early stages, typically done through the analysis of colon biopsy images, can greatly improve the chances of a successful treatment. This paper proposes to use convolution neural networks (CNNs) to predict three tissue types related to the progression of CRC: benign hyperplasia (BH), intraepithelial neoplasia (IN), and carcinoma (Ca). Methods: Multispectral biopsy images of thirty CRC patients were retrospectively analyzed. Images of tissue samples were divided into three groups, based on their type (10 BH, 10 IN, and 10 Ca). An active contour model was used to segment image regions containing pathological tissues. Tissue samples were classified using a CNN containing convolution, max-pooling, and fully-connected layers. Available tissue samples were split into a training set, for learning the CNN parameters, and test set, for evaluating its performance. Results: An accuracy of 99.17% was obtained from segmented image regions, outperforming existing approaches based on traditional feature extraction, and classification techniques. Conclusions: Experimental results demonstrate the effectiveness of CNN for the classification of CRC tissue types, in particular when using presegmented regions of interest.

  17. High Throughput Multispectral Image Processing with Applications in Food Science.

    PubMed

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John

    2015-01-01

    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models) and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  18. Primary mirror alignment and assembly for a multispectral space telescope

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Cheng; Chang, Shenq-Tsong; Chang, Sheng-Hsiung; Chang, Chen-Peng; Lin, Yu-Chuan; Huang, Po-Hsuan; Tsay, Ho-Lin; Chin, Chi-Chieh; Pan, Hsu-Pin; Huang, Ting-Ming

    2013-10-01

    For a currently developing multispectral space Cassegrain telescope, the primary mirror with 450 mm clear aperture is made of Zerodur and lightweighted at a ratio about 50 % to meet both thermal and mass requirement. For this mirror, it is critical to reduce the astigmatism caused from the gravity effect, bonding process and the deformation from the mounting to the main structure of the telescope (main plate). In this article, the primary mirror alignment, MGSE, assembly process and the optical performance test for the primary mirror assembly are presented. The mechanical shim is the interface between the iso-static mount and main plate. It is used to compensate the manufacture errors of components and differences of local co-planarity errors to prevent the stress while iso-static mount (ISM) is screwed to main plate. After primary mirror assembly, an optical performance test method called bench test with novel algorithm is used to analyze the astigmatism caused from the gravity effect and the deformation from the mounting or supporter. In an effort to achieve the requirement for the tolerance in primary mirror assembly, the astigmatism caused from the gravity and deformation by the mounting force could be less than P-V 0.02λ at 633 nm. The consequence of these demonstrations indicates that the designed mechanical ground supported equipment (MGSE) for the alignment and assembly processes meet the critical requirements for primary mirror assembly of the telescope.

  19. Whole-body and multispectral photoacoustic imaging of adult zebrafish

    NASA Astrophysics Data System (ADS)

    Huang, Na; Xi, Lei

    2016-10-01

    Zebrafish is a top vertebrate model to study developmental biology and genetics, and it is becoming increasingly popular for studying human diseases due to its high genome similarity to that of humans and the optical transparency in embryonic stages. However, it becomes difficult for pure optical imaging techniques to volumetric visualize the internal organs and structures of wild-type zebrafish in juvenile and adult stages with excellent resolution and penetration depth. Even with the establishment of mutant lines which remain transparent over the life cycle, it is still a challenge for pure optical imaging modalities to image the whole body of adult zebrafish with micro-scale resolution. However, the method called photoacoustic imaging that combines all the advantages of the optical imaging and ultrasonic imaging provides a new way to image the whole body of the zebrafish. In this work, we developed a non-invasive photoacoustic imaging system with optimized near-infrared illumination and cylindrical scanning to image the zebrafish. The lateral and axial resolution yield to 80 μm and 600 μm, respectively. Multispectral strategy with wavelengths from 690 nm to 930 nm was employed to image various organs inside the zebrafish. From the reconstructed images, most major organs and structures inside the body can be precisely imaged. Quantitative and statistical analysis of absorption for organs under illumination with different wavelengths were carried out.

  20. Multispectral digital holographic microscopy with applications in water quality assessment

    NASA Astrophysics Data System (ADS)

    Kazemzadeh, Farnoud; Jin, Chao; Yu, Mei; Amelard, Robert; Haider, Shahid; Saini, Simarjeet; Emelko, Monica; Clausi, David A.; Wong, Alexander

    2015-09-01

    Safe drinking water is essential for human health, yet over a billion people worldwide do not have access to safe drinking water. Due to the presence and accumulation of biological contaminants in natural waters (e.g., pathogens and neuro-, hepato-, and cytotoxins associated with algal blooms) remain a critical challenge in the provision of safe drinking water globally. It is not financially feasible and practical to monitor and quantify water quality frequently enough to identify the potential health risk due to contamination, especially in developing countries. We propose a low-cost, small-profile multispectral (MS) system based on Digital Holographic Microscopy (DHM) and investigate methods for rapidly capturing holographic data of natural water samples. We have developed a test-bed for an MSDHM instrument to produce and capture holographic data of the sample at different wavelengths in the visible and the near Infra-red spectral region, allowing for resolution improvement in the reconstructed images. Additionally, we have developed high-speed statistical signal processing and analysis techniques to facilitate rapid reconstruction and assessment of the MS holographic data being captured by the MSDHM instrument. The proposed system is used to examine cyanobacteria as well as Cryptosporidium parvum oocysts which remain important and difficult to treat microbiological contaminants that must be addressed for the provision of safe drinking water globally.

  1. Critical dimension measurement of transparent film layers by multispectral imaging.

    PubMed

    Kwon, Soonyang; Kim, Namyoon; Jo, Taeyong; Pahk, Heui Jae

    2014-07-14

    An optical microscopy system as a non-destructive method for measuring critical dimension (CD) is widely used for its stability and fastness. In case of transparent thin film measurement, it is hard to recognize the pattern under white light illumination due to its transparency and reflectance characteristics. In this paper, the optical measurement system using multispectral imaging for CD measurement of transparent thin film is introduced. The measurement system utilizes an Acousto-Optic Tunable Filter (AOTF) to illuminate the specimen with various monochromatic lights. The relationship between spectral reflectance and CD measurement are deduced from series of measurement experiments with two kinds of Indium Tin Oxide (ITO) patterned samples. When the difference of spectral reflectance between substrate and thin film layers is large enough to yield a large image intensity difference, the thin film layer can be distinguished from substrate, and it is possible to measure the CD of transparent thin films. This paper analyzes CD measurement of transparent thin film with reflectance theory and shows that the CD measurement of transparent thin film can be performed successfully with the proposed system within a certain wavelength range filtered by AOTF.

  2. Terahertz detectors for long wavelength multi-spectral imaging.

    SciTech Connect

    Lyo, Sungkwun Kenneth; Wanke, Michael Clement; Reno, John Louis; Shaner, Eric Arthur; Grine, Albert D.

    2007-10-01

    The purpose of this work was to develop a wavelength tunable detector for Terahertz spectroscopy and imaging. Our approach was to utilize plasmons in the channel of a specially designed field-effect transistor called the grating-gate detector. Grating-gate detectors exhibit narrow-linewidth, broad spectral tunability through application of a gate bias, and no angular dependence in their photoresponse. As such, if suitable sensitivity can be attained, they are viable candidates for Terahertz multi-spectral focal plane arrays. When this work began, grating-gate gate detectors, while having many promising characteristics, had a noise-equivalent power (NEP) of only 10{sup -5} W/{radical}Hz. Over the duration of this project, we have obtained a true NEP of 10{sup -8} W/{radical}Hz and a scaled NEP of 10{sup -9}W/{radical}Hz. The ultimate goal for these detectors is to reach a NEP in the 10{sup -9{yields}-10}W/{radical}Hz range; we have not yet seen a roadblock to continued improvement.

  3. Multispectral optical telescope alignment testing for a cryogenic space environment

    NASA Astrophysics Data System (ADS)

    Newswander, Trent; Hooser, Preston; Champagne, James

    2016-09-01

    Multispectral space telescopes with visible to long wave infrared spectral bands provide difficult alignment challenges. The visible channels require precision in alignment and stability to provide good image quality in short wavelengths. This is most often accomplished by choosing materials with near zero thermal expansion glass or ceramic mirrors metered with carbon fiber reinforced polymer (CFRP) that are designed to have a matching thermal expansion. The IR channels are less sensitive to alignment but they often require cryogenic cooling for improved sensitivity with the reduced radiometric background. Finding efficient solutions to this difficult problem of maintaining good visible image quality at cryogenic temperatures has been explored with the building and testing of a telescope simulator. The telescope simulator is an onaxis ZERODUR® mirror, CFRP metered set of optics. Testing has been completed to accurately measure telescope optical element alignment and mirror figure changes in a cryogenic space simulated environment. Measured alignment error and mirror figure error test results are reported with a discussion of their impact on system optical performance.

  4. [An algorithm for highlightling structure in multispectral remote sensing].

    PubMed

    Wang, Qin-Jun; Lin, Qi-Zhong; Li, Ming-Xiao; Wei, Yong-Ming; Wang, Li-Ming

    2009-07-01

    Based on the principle of mineral generation, structures could provide not only passage ways for ore-forming fluid, but also space for them to aggregate. So, it was very important to study the feature of structures in study area before mineral exploration. In order to highlight structures using multispectral remote sensing data, an algorithm integrating principle component analysis (PCA), maximum noise fraction transformation (MNF) and original image data was proposed here. In the algorithm, the original image was firstly transformed by PCA and MNF; then all bands were normalized to reduce errors caused by different band dimensions, and three bands containing detailed structure information were selected to form the false color image in which structures in study area were highlighted. Results of transformation on enhanced thematic mapper (ETM) data acquired on June 27th 2000 in Hatu area, Xinjiang province, China showed that (1) the transformed image was not only more colorful than the original data, but also more gradational than the original data. (2) The color difference among objects was enhanced by the algorithm. (3) Structrues were highlighted by the algorithm. Therefore, the algorithm's effect of highlighting structures in study area was noticeable.

  5. Assigning Main Orientation to an EOH Descriptor on Multispectral Images

    PubMed Central

    Li, Yong; Shi, Xiang; Wei, Lijun; Zou, Junwei; Chen, Fang

    2015-01-01

    This paper proposes an approach to compute an EOH (edge-oriented histogram) descriptor with main orientation. EOH has a better matching ability than SIFT (scale-invariant feature transform) on multispectral images, but does not assign a main orientation to keypoints. Alternatively, it tends to assign the same main orientation to every keypoint, e.g., zero degrees. This limits EOH to matching keypoints between images of translation misalignment only. Observing this limitation, we propose assigning to keypoints the main orientation that is computed with PIIFD (partial intensity invariant feature descriptor). In the proposed method, SIFT keypoints are detected from images as the extrema of difference of Gaussians, and every keypoint is assigned to the main orientation computed with PIIFD. Then, EOH is computed for every keypoint with respect to its main orientation. In addition, an implementation variant is proposed for fast computation of the EOH descriptor. Experimental results show that the proposed approach performs more robustly than the original EOH on image pairs that have a rotation misalignment. PMID:26140348

  6. Phase classification by mean shift clustering of multispectral materials images.

    PubMed

    Martins, Diego Schmaedech; Josa, Victor M Galván; Castellano, Gustavo; da Costa, José A T Borges

    2013-10-01

    A mean-shift clustering (MSC) algorithm is introduced as a valuable alternative to perform materials phase classification from multispectral images. As opposed to other multivariate statistical techniques, such as factor analysis or principal component analysis (PCA), clustering techniques directly assign a class label to each pixel, so that their outputs are phase segmented images, i.e., there is no need for an additional segmentation algorithm. On the other hand, as compared to other clustering procedures and classification methods, such as segmentation by thresholding of multiple spectral components, MSC has the advantages of not requiring previous knowledge of the number of data clusters and not assuming any shape for these clusters, i.e., neither the number nor the composition of the phases must be previously known. This makes MSC a particularly useful tool for exploratory research, assisting phase identification of unknown samples. Visualization and interpretation of the results are also simplified, since the information content of the output image does not depend on the particular choice of the content of the color channels.We applied MSC to the analysis of two sets of X-ray maps acquired in scanning electron microscopes equipped with energy-dispersive detection systems. Our results indicate that MSC is capable of detecting additional phases, not clearly identified through PCA or multiple thresholding, with a very low empirical reject rate.

  7. Assessing carotid atherosclerosis by fiber-optic multispectral photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Hui, Jie; Li, Rui; Wang, Pu; Phillips, Evan; Bruning, Rebecca; Liao, Chien-Sheng; Sturek, Michael; Goergen, Craig J.; Cheng, Ji-Xin

    2015-03-01

    Atherosclerotic plaque at the carotid bifurcation is the underlying cause of the majority of ischemic strokes. Noninvasive imaging and quantification of the compositional changes preceding gross anatomic changes within the arterial wall is essential for diagnosis of disease. Current imaging modalities such as duplex ultrasound, computed tomography, positron emission tomography are limited by the lack of compositional contrast and the detection of flow-limiting lesions. Although high-resolution magnetic resonance imaging has been developed to characterize atherosclerotic plaque composition, its accessibility for wide clinical use is limited. Here, we demonstrate a fiber-based multispectral photoacoustic tomography system for excitation of lipids and external acoustic detection of the generated ultrasound. Using sequential ultrasound imaging of ex vivo preparations we achieved ~2 cm imaging depth and chemical selectivity for assessment of human arterial plaques. A multivariate curve resolution alternating least squares analysis method was applied to resolve the major chemical components, including intravascular lipid, intramuscular fat, and blood. These results show the promise of detecting carotid plaque in vivo through esophageal fiber-optic excitation of lipids and external acoustic detection of the generated ultrasound. This imaging system has great potential for serving as a point-ofcare device for early diagnosis of carotid artery disease in the clinic.

  8. Design Considerations, Modeling and Analysis for the Multispectral Thermal Imager

    SciTech Connect

    Borel, C.C.; Clodius, W.B.; Cooke, B.J.; Smith, B.W.; Weber, P.G.

    1999-02-01

    The design of remote sensing systems is driven by the need to provide cost-effective, substantive answers to questions posed by our customers. This is especially important for space-based systems, which tend to be expensive, and which generally cannot be changed after they are launched. We report here on the approach we employed in developing the desired attributes of a satellite mission, namely the Multispectral Thermal Imager. After an initial scoping study, we applied a procedure which we call: "End-to-end modeling and analysis (EEM)." We began with target attributes, translated to observable signatures and then propagated the signatures through the atmosphere to the sensor location. We modeled the sensor attributes to yield a simulated data stream, which was then analyzed to retrieve information about the original target. The retrieved signature was then compared to the original to obtain a figure of merit: hence the term "end-to-end modeling and analysis." We base the EEM in physics to ensure high fidelity and to permit scaling. As the actual design of the payload evolves, and as real hardware is tested, we can update the EEM to facilitate trade studies, and to judge, for example, whether components that deviate from specifications are acceptable.

  9. Whole-body multispectral photoacoustic imaging of adult zebrafish

    PubMed Central

    Huang, Na; Guo, Heng; Qi, Weizhi; Zhang, Zhiwei; Rong, Jian; Yuan, Zhen; Ge, Wei; Jiang, Huabei; Xi, Lei

    2016-01-01

    The zebrafish, an ideal vertebrate for studying developmental biology and genetics, is increasingly being used to understand human diseases, due to its high similarity to the human genome and its optical transparency during embryonic stages. Once the zebrafish has fully developed, especially wild-type breeds, conventional optical imaging techniques have difficulty in imaging the internal organs and structures with sufficient resolution and penetration depth. Even with established mutant lines that remain transparent throughout their life cycle, it is still challenging for purely optical imaging modalities to visualize the organs of juvenile and adult zebrafish at a micro-scale spatial resolution. In this work, we developed a non-invasive three-dimensional photoacoustic imaging platform with an optimized illumination pattern and a cylindrical-scanning-based data collection system to image entire zebrafish with micro-scale resolutions of 80 μm and 600 μm in the lateral and axial directions, respectively. In addition, we employed a multispectral strategy that utilized excitation wavelengths from 690 nm to 930 nm to statistically quantify the relative optical absorption spectrum of major organs. PMID:27699119

  10. Multispectral fundus imaging for early detection of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Beach, James M.; Tiedeman, James S.; Hopkins, Mark F.; Sabharwal, Yashvinder S.

    1999-04-01

    Functional imaging of the retina and associated structures may provide information for early assessment of risks of developing retinopathy in diabetic patients. Here we show results of retinal oximetry performed using multi-spectral reflectance imaging techniques to assess hemoglobin (Hb) oxygen saturation (OS) in blood vessels of the inner retina and oxygen utilization at the optic nerve in diabetic patients without retinopathy and early disease during experimental hyperglycemia. Retinal images were obtained through a fundus camera and simultaneously recorded at up to four wavelengths using image-splitting modules coupled to a digital camera. Changes in OS in large retinal vessels, in average OS in disk tissue, and in the reduced state of cytochrome oxidase (CO) at the disk were determined from changes in reflectance associated with the oxidation/reduction states of Hb and CO. Step to high sugar lowered venous oxygen saturation to a degree dependent on disease duration. Moderate increase in sugar produced higher levels of reduced CO in both the disk and surrounding tissue without a detectable change in average tissue OS. Results suggest that regulation of retinal blood supply and oxygen consumption are altered by hyperglycemia and that such functional changes are present before clinical signs of retinopathy.

  11. Multispectral analysis of limestone, dolomite, and granite, Mill Creek, Oklahoma

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.; Watson, K.

    1970-01-01

    Spectral reflectance and thermal emission data were collected at the Mill Creek, Oklahoma test site during NASA missions 132 and 133 in June 1970. The data were collected by three aircraft flown several times during the diurnal cycle at altitudes of 150 to 17,000 m above mean terrain. Reflectance of the main rock types (limestone, dolomite, and granite) was determined from the data collected using a 12-channel multispectral scanner during mission 133 and from thermal infrared images recorded during mission 132 on an RS-7 scanner from 17,000 m above terrain. A preliminary rock recognition map was generated automatically using data collected from 900 m above terrain. The discrimination provided by the map is reasonably accurate. Misidentification occurred in areas of unusually high dolomite reflectivity. High altitude thermal infrared (10 to 12 micrometers) images show regional folds and faults distinguished by the presence of thermally contrasting materials. Linear and curvilinear structural features two to three times smaller than the nominal 17 m resolution could be detected.

  12. Detection of melanoma metastases in resected human lymph nodes by noninvasive multispectral photoacoustic imaging.

    PubMed

    Langhout, Gerrit Cornelis; Grootendorst, Diederik Johannes; Nieweg, Omgo Edo; Wouters, Michel Wilhelmus Jacobus Maria; van der Hage, Jos Alexander; Jose, Jithin; van Boven, Hester; Steenbergen, Wiendelt; Manohar, Srirang; Ruers, Theodoor Jacques Marie

    2014-01-01

    Objective. Sentinel node biopsy in patients with cutaneous melanoma improves staging, provides prognostic information, and leads to an increased survival in node-positive patients. However, frozen section analysis of the sentinel node is not reliable and definitive histopathology evaluation requires days, preventing intraoperative decision-making and immediate therapy. Photoacoustic imaging can evaluate intact lymph nodes, but specificity can be hampered by other absorbers such as hemoglobin. Near infrared multispectral photoacoustic imaging is a new approach that has the potential to selectively detect melanin. The purpose of the present study is to examine the potential of multispectral photoacoustic imaging to identify melanoma metastasis in human lymph nodes. Methods. Three metastatic and nine benign lymph nodes from eight melanoma patients were scanned ex vivo using a Vevo LAZR(©) multispectral photoacoustic imager and were spectrally analyzed per pixel. The results were compared to histopathology as gold standard. Results. The nodal volume could be scanned within 20 minutes. An unmixing procedure was proposed to identify melanoma metastases with multispectral photoacoustic imaging. Ultrasound overlay enabled anatomical correlation. The penetration depth of the photoacoustic signal was up to 2 cm. Conclusion. Multispectral three-dimensional photoacoustic imaging allowed for selective identification of melanoma metastases in human lymph nodes.

  13. Landsat 8 Multispectral and Pansharpened Imagery Processing on the Study of Civil Engineering Issues

    NASA Astrophysics Data System (ADS)

    Lazaridou, M. A.; Karagianni, A. Ch.

    2016-06-01

    Scientific and professional interests of civil engineering mainly include structures, hydraulics, geotechnical engineering, environment, and transportation issues. Topics included in the context of the above may concern urban environment issues, urban planning, hydrological modelling, study of hazards and road construction. Land cover information contributes significantly on the study of the above subjects. Land cover information can be acquired effectively by visual image interpretation of satellite imagery or after applying enhancement routines and also by imagery classification. The Landsat Data Continuity Mission (LDCM - Landsat 8) is the latest satellite in Landsat series, launched in February 2013. Landsat 8 medium spatial resolution multispectral imagery presents particular interest in extracting land cover, because of the fine spectral resolution, the radiometric quantization of 12bits, the capability of merging the high resolution panchromatic band of 15 meters with multispectral imagery of 30 meters as well as the policy of free data. In this paper, Landsat 8 multispectral and panchromatic imageries are being used, concerning surroundings of a lake in north-western Greece. Land cover information is extracted, using suitable digital image processing software. The rich spectral context of the multispectral image is combined with the high spatial resolution of the panchromatic image, applying image fusion - pansharpening, facilitating in this way visual image interpretation to delineate land cover. Further processing concerns supervised image classification. The classification of pansharpened image preceded multispectral image classification. Corresponding comparative considerations are also presented.

  14. A practical one-shot multispectral imaging system using a single image sensor.

    PubMed

    Monno, Yusuke; Kikuchi, Sunao; Tanaka, Masayuki; Okutomi, Masatoshi

    2015-10-01

    Single-sensor imaging using the Bayer color filter array (CFA) and demosaicking is well established for current compact and low-cost color digital cameras. An extension from the CFA to a multispectral filter array (MSFA) enables us to acquire a multispectral image in one shot without increased size or cost. However, multispectral demosaicking for the MSFA has been a challenging problem because of very sparse sampling of each spectral band in the MSFA. In this paper, we propose a high-performance multispectral demosaicking algorithm, and at the same time, a novel MSFA pattern that is suitable for our proposed algorithm. Our key idea is the use of the guided filter to interpolate each spectral band. To generate an effective guide image, in our proposed MSFA pattern, we maintain the sampling density of the G -band as high as the Bayer CFA, and we array each spectral band so that an adaptive kernel can be estimated directly from raw MSFA data. Given these two advantages, we effectively generate the guide image from the most densely sampled G -band using the adaptive kernel. In the experiments, we demonstrate that our proposed algorithm with our proposed MSFA pattern outperforms existing algorithms and provides better color fidelity compared with a conventional color imaging system with the Bayer CFA. We also show some real applications using a multispectral camera prototype we built.

  15. Multispectral image alignment using a three channel endoscope in vivo during minimally invasive surgery.

    PubMed

    Clancy, Neil T; Stoyanov, Danail; James, David R C; Di Marco, Aimee; Sauvage, Vincent; Clark, James; Yang, Guang-Zhong; Elson, Daniel S

    2012-10-01

    Sequential multispectral imaging is an acquisition technique that involves collecting images of a target at different wavelengths, to compile a spectrum for each pixel. In surgical applications it suffers from low illumination levels and motion artefacts. A three-channel rigid endoscope system has been developed that allows simultaneous recording of stereoscopic and multispectral images. Salient features on the tissue surface may be tracked during the acquisition in the stereo cameras and, using multiple camera triangulation techniques, this information used to align the multispectral images automatically even though the tissue or camera is moving. This paper describes a detailed validation of the set-up in a controlled experiment before presenting the first in vivo use of the device in a porcine minimally invasive surgical procedure. Multispectral images of the large bowel were acquired and used to extract the relative concentration of haemoglobin in the tissue despite motion due to breathing during the acquisition. Using the stereoscopic information it was also possible to overlay the multispectral information on the reconstructed 3D surface. This experiment demonstrates the ability of this system for measuring blood perfusion changes in the tissue during surgery and its potential use as a platform for other sequential imaging modalities.

  16. Implementation of a neural network for multispectral luminescence imaging of lake pigment paints.

    PubMed

    Chane, Camille Simon; Thoury, Mathieu; Tournié, Aurélie; Echard, Jean-Philippe

    2015-04-01

    Luminescence multispectral imaging is a developing and promising technique in the fields of conservation science and cultural heritage studies. In this article, we present a new methodology for recording the spatially resolved luminescence properties of objects. This methodology relies on the development of a lab-made multispectral camera setup optimized to collect low-yield luminescence images. In addition to a classic data preprocessing procedure to reduce noise on the data, we present an innovative method, based on a neural network algorithm, that allows us to obtain radiometrically calibrated luminescence spectra with increased spectral resolution from the low-spectral resolution acquisitions. After preliminary corrections, a neural network is trained using the 15-band multispectral luminescence acquisitions and corresponding spot spectroscopy luminescence data. This neural network is then used to retrieve a megapixel multispectral cube between 460 and 710 nm with a 5 nm resolution from a low-spectral-resolution multispectral acquisition. The resulting data are independent from the detection chain of the imaging system (filter transmittance, spectral sensitivity of the lens and optics, etc.). As a result, the image cube provides radiometrically calibrated emission spectra with increased spectral resolution. For each pixel, we can thus retrieve a spectrum comparable to those obtained with conventional luminescence spectroscopy. We apply this method to a panel of lake pigment paints and discuss the pertinence and perspectives of this new approach.

  17. A Cost Effective Multi-Spectral Scanner for Natural Gas Detection

    SciTech Connect

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan; Seonghyeon Park

    2005-12-07

    The objective of this project is to design, fabricate and demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at EnUrga Inc. The multi-spectral scanner was also evaluated using a blind Department of Energy study at the Rocky Mountain Oilfield Testing Center. The performance of the scanner was inconsistent during the blind study. However, most of the leaks were outside the view of the multi-spectral scanner that was developed during the first year of the project. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, the optical design of the scanner was changed to improve the sensitivity of the system. Laboratory tests show that the system can reliably detect small leaks (20 SCFH) at 30 to 50 feet. A prototype scanner was built and evaluated during the second year of the project. Only laboratory evaluations were completed during the second year. The laboratory evaluations show the feasibility of using the scanner to determine natural gas pipeline leaks. Further field evaluations and optimization of the scanner are required before commercialization of the scanner can be initiated.

  18. A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data

    PubMed Central

    Qadri, Salman; Khan, Dost Muhammad; Ahmad, Farooq; Qadri, Syed Furqan; Babar, Masroor Ellahi; Shahid, Muhammad; Ul-Rehman, Muzammil; Razzaq, Abdul; Shah Muhammad, Syed; Fahad, Muhammad; Ahmad, Sarfraz; Pervez, Muhammad Tariq; Naveed, Nasir; Aslam, Naeem; Jamil, Mutiullah; Rehmani, Ejaz Ahmad; Ahmad, Nazir; Akhtar Khan, Naeem

    2016-01-01

    The main objective of this study is to find out the importance of machine vision approach for the classification of five types of land cover data such as bare land, desert rangeland, green pasture, fertile cultivated land, and Sutlej river land. A novel spectra-statistical framework is designed to classify the subjective land cover data types accurately. Multispectral data of these land covers were acquired by using a handheld device named multispectral radiometer in the form of five spectral bands (blue, green, red, near infrared, and shortwave infrared) while texture data were acquired with a digital camera by the transformation of acquired images into 229 texture features for each image. The most discriminant 30 features of each image were obtained by integrating the three statistical features selection techniques such as Fisher, Probability of Error plus Average Correlation, and Mutual Information (F + PA + MI). Selected texture data clustering was verified by nonlinear discriminant analysis while linear discriminant analysis approach was applied for multispectral data. For classification, the texture and multispectral data were deployed to artificial neural network (ANN: n-class). By implementing a cross validation method (80-20), we received an accuracy of 91.332% for texture data and 96.40% for multispectral data, respectively. PMID:27376088

  19. Multispectral code excited linear prediction coding and its application in magnetic resonance images.

    PubMed

    Hu, J H; Wang, Y; Cahill, P T

    1997-01-01

    This paper reports a multispectral code excited linear prediction (MCELP) method for the compression of multispectral images. Different linear prediction models and adaptation schemes have been compared. The method that uses a forward adaptive autoregressive (AR) model has been proven to achieve a good compromise between performance, complexity, and robustness. This approach is referred to as the MFCELP method. Given a set of multispectral images, the linear predictive coefficients are updated over nonoverlapping three-dimensional (3-D) macroblocks. Each macroblock is further divided into several 3-D micro-blocks, and the best excitation signal for each microblock is determined through an analysis-by-synthesis procedure. The MFCELP method has been applied to multispectral magnetic resonance (MR) images. To satisfy the high quality requirement for medical images, the error between the original image set and the synthesized one is further specified using a vector quantizer. This method has been applied to images from 26 clinical MR neuro studies (20 slices/study, three spectral bands/slice, 256x256 pixels/band, 12 b/pixel). The MFCELP method provides a significant visual improvement over the discrete cosine transform (DCT) based Joint Photographers Expert Group (JPEG) method, the wavelet transform based embedded zero-tree wavelet (EZW) coding method, and the vector tree (VT) coding method, as well as the multispectral segmented autoregressive moving average (MSARMA) method we developed previously.

  20. A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data.

    PubMed

    Qadri, Salman; Khan, Dost Muhammad; Ahmad, Farooq; Qadri, Syed Furqan; Babar, Masroor Ellahi; Shahid, Muhammad; Ul-Rehman, Muzammil; Razzaq, Abdul; Shah Muhammad, Syed; Fahad, Muhammad; Ahmad, Sarfraz; Pervez, Muhammad Tariq; Naveed, Nasir; Aslam, Naeem; Jamil, Mutiullah; Rehmani, Ejaz Ahmad; Ahmad, Nazir; Akhtar Khan, Naeem

    2016-01-01

    The main objective of this study is to find out the importance of machine vision approach for the classification of five types of land cover data such as bare land, desert rangeland, green pasture, fertile cultivated land, and Sutlej river land. A novel spectra-statistical framework is designed to classify the subjective land cover data types accurately. Multispectral data of these land covers were acquired by using a handheld device named multispectral radiometer in the form of five spectral bands (blue, green, red, near infrared, and shortwave infrared) while texture data were acquired with a digital camera by the transformation of acquired images into 229 texture features for each image. The most discriminant 30 features of each image were obtained by integrating the three statistical features selection techniques such as Fisher, Probability of Error plus Average Correlation, and Mutual Information (F + PA + MI). Selected texture data clustering was verified by nonlinear discriminant analysis while linear discriminant analysis approach was applied for multispectral data. For classification, the texture and multispectral data were deployed to artificial neural network (ANN: n-class). By implementing a cross validation method (80-20), we received an accuracy of 91.332% for texture data and 96.40% for multispectral data, respectively.

  1. Estimating crop water requirements of a command area using multispectral video imagery and geographic information systems

    NASA Astrophysics Data System (ADS)

    Ahmed, Rashid Hassan

    This research focused on the potential use of multispectral video remote sensing for irrigation water management. Two methods for estimating crop evapotranspiration were investigated, the energy balance estimation from multispectral video imagery and use of reflectance-based crop coefficients from multitemporal multispectral video imagery. The energy balance method was based on estimating net radiation, and soil and sensible heat fluxes, using input from the multispectral video imagery. The latent heat flux was estimated as a residual. The results were compared to surface heat fluxes measured on the ground. The net radiation was estimated within 5% of the measured values. However, the estimates of sensible and soil heat fluxes were not consistent with the measured values. This discrepancy was attributed to the methods for estimating the two fluxes. The degree of uncertainty in the parameters used in the methods made their application too limited for extrapolation to large agricultural areas. The second method used reflectance-based crop coefficients developed from the multispectral video imagery using alfalfa as a reference crop. The daily evapotranspiration from alfalfa was estimated using a nearby weather station. With the crop coefficients known for a canal command area, irrigation scheduling was simulated using the soil moisture balance method. The estimated soil moisture matched the actual soil moisture measured using the neutron probe method. Also, the overall water requirement estimated by this method was found to be in close agreement with the canal water deliveries. The crop coefficient method has great potential for irrigation management of large agricultural areas.

  2. DNA synthesis and microtubule assembly-related events in fertilized Paracentrotus lividus eggs: reversible inhibition by 10 mM procaine.

    PubMed

    Raymond, M N; Foucault, G; Coffe, G; Pudles, J

    1986-04-01

    This report describes the effects of 10 mM procaine on microtubule assembly and on DNA synthesis, as followed by [3H]colchicine binding assays and [3H]thymidine incorporation respectively, in fertilized Paracentrotus lividus eggs. In the absence of microtubule assembly inhibitors, about 25% of the total egg tubulin is submitted to two cycles of polymerization prior to the first cell division, this polymerization process precedes DNA synthesis. If the zygotes are treated with 10 mM procaine in the course of the cell cycle, tubulin polymerization is inhibited or microtubules are disassembled. DNA synthesis is inhibited when procaine treatment is performed 10 min, before the initiation of the S-period. However, when the drug is applied in the course of this synthetic period, the process is normally accomplished, but the next S-period becomes inhibited. Moreover, procaine treatment increases the cytoplasmic pH of the fertilized eggs by about 0.6 to 0.8 pH units. This pH increase precedes microtubule disassembly and inhibition of DNA synthesis. Washing out the drug induces a decrease of the intracellular pH which returns to about the same value as that of the fertilized egg controls. This pH change is then followed by the reinitiation of microtubule assembly, DNA synthesis and cell division. Our results show that the inhibition of both tubulin polymerization and DNA synthesis in fertilized eggs treated with 10 mM procaine, appears to be related to the drug-induced increase in cytoplasmic pH.

  3. Absence of ocular effects after either single or repeated exposure to 10 mW/cm(2) from a 60 GHz CW source.

    PubMed

    Kues, H A; D'Anna, S A; Osiander, R; Green, W R; Monahan, J C

    1999-12-01

    This study was designed to examine ocular effects associated with exposure to millimeter waves (60 GHz). Rabbits served as the primary experimental subjects. To confirm the results of the rabbit experiments in a higher species, the second phase of the study used nonhuman primates (Macaca mulatta). First, this study used time-resolved infrared radiometry to assess the field distribution patterns produced by different antennas operating at 60 GHz. These results allowed us to select an antenna that produced a uniform energy distribution and the best distance at which to expose our experimental subjects. The study then examined ocular changes after exposure at an incident power density of 10 mW/cm(2). Acute exposure of both rabbits and nonhuman primates consisted of a single 8 h exposure, and the repeated exposure protocol consisted of five separate 4 h exposures on consecutive days. One eye in each animal was exposed and the contralateral eye served as the sham-exposed control. After postexposure diagnostic examinations, animals were euthanized and the eyes were removed. Ocular tissue was examined by both light and transmission electron microscopy. Neither microscopic examinations nor the diagnostic procedures performed on the eyes of acute and repeatedly exposed rabbits found any ocular changes that could be attributed to millimeter-wave exposure at 10 mW/cm(2). Examination of the primates after comparable exposures also failed to detect any ocular changes due to exposure. On the basis of our results, we conclude that single or repeated exposure to 60 GHz CW radiation at 10 mW/cm(2) does not result in any detectable ocular damage.

  4. Multispectral Digital Image Analysis of Varved Sediments in Thin Sections

    NASA Astrophysics Data System (ADS)

    Jäger, K.; Rein, B.; Dietrich, S.

    2006-12-01

    An update of the recently developed method COMPONENTS (Rein, 2003, Rein & Jäger, subm.) for the discrimination of sediment components in thin sections is presented here. COMPONENTS uses a 6-band (multispectral) image analysis. To derive six-band spectral information of the sediments, thin sections are scanned with a digital camera mounted on a polarizing microscope. The thin sections are scanned twice, under polarized and under unpolarized plain light. During each run RGB images are acquired which are subsequently stacked to a six-band file. The first three bands (Blue=1, Green=2, Red=3) result from the spectral behaviour in the blue, green and red band with unpolarized light conditions, and the bands 4 to 6 (Blue=4, Green=5, Red=6) from the polarized light run. The next step is the discrimination of the sediment components by their transmission behaviour. Automatic classification algorithms broadly used in remote sensing applications cannot be used due to unavoidable variations of sediment particle or thin section thicknesses that change absolute grey values of the sediment components. Thus, we use an approach based on band ratios, also known as indices. By using band ratios, the grey values measured in different bands are normalized against each other and illumination variations (e.g. thickness variations) are eliminated. By combining specific ratios we are able to detect all seven major components in the investigated sediments (carbonates, diatoms, fine clastic material, plant rests, pyrite, quartz and resin). Then, the classification results (compositional maps) are validated. Although the automatic classification and the analogous classification show high concordances, some systematic errors could be identified. For example, the transition zone between the sediment and resin filled cracks is classified as fine clastic material and very coarse carbonates are partly classified as quartz because coarse carbonates can be very bright and spectra are partly

  5. Multispectral Imager With Improved Filter Wheel and Optics

    NASA Technical Reports Server (NTRS)

    Bremer, James C.

    2007-01-01

    Figure 1 schematically depicts an improved multispectral imaging system of the type that utilizes a filter wheel that contains multiple discrete narrow-band-pass filters and that is rotated at a constant high speed to acquire images in rapid succession in the corresponding spectral bands. The improvement, relative to prior systems of this type, consists of the measures taken to prevent the exposure of a focal-plane array (FPA) of photodetectors to light in more than one spectral band at any given time and to prevent exposure of the array to any light during readout. In prior systems, these measures have included, variously the use of mechanical shutters or the incorporation of wide opaque sectors (equivalent to mechanical shutters) into filter wheels. These measures introduce substantial dead times into each operating cycle intervals during which image information cannot be collected and thus incoming light is wasted. In contrast, the present improved design does not involve shutters or wide opaque sectors, and it reduces dead times substantially. The improved multispectral imaging system is preceded by an afocal telescope and includes a filter wheel positioned so that its rotation brings each filter, in its turn, into the exit pupil of the telescope. The filter wheel contains an even number of narrow-band-pass filters separated by narrow, spoke-like opaque sectors. The geometric width of each filter exceeds the cross-sectional width of the light beam coming out of the telescope. The light transmitted by the sequence of narrow-band filters is incident on a dichroic beam splitter that reflects in a broad shorter-wavelength spectral band that contains half of the narrow bands and transmits in a broad longer-wavelength spectral band that contains the other half of the narrow spectral bands. The filters are arranged on the wheel so that if the pass band of a given filter is in the reflection band of the dichroic beam splitter, then the pass band of the adjacent filter

  6. MA_MISS: Mars Multispectral Imager for Subsurface Studies

    NASA Astrophysics Data System (ADS)

    De Sanctis, M. C.; Coradini, A.; Ammannito, E.; Boccaccini, A.; Di Iorio, T.; Battistelli, E.; Capanni, A.

    2012-04-01

    A Drilling system, coupled with an in situ analysis package, is installed on the ExoMars Pasteur Rover to perform in situ investigations up to 2m in the Mars soil. Ma_Miss (Mars Multispectral Imager for Subsurface Studies) is a spectrometer devoted to observe the lateral wall of the borehole generated by the Drilling system. The instrument is fully integrated with the Drill and shares its structure and electronics. For the first time in Mars exploration experiments the water/geochemical environment will be investigated as function of depth in the shallow subsurface. Samples from the subsurface of Martian soil are unaltered by weathering process, oxidation and erosion. Subsurface access can be the key to look for signs of present and past environmental conditions, associated to the possibility for life (water, volatiles and weathering process). The analysis of uncontaminated samples by means of instrumented Drill and in situ observations is the solution for unambiguous interpretation of the original environment that leading to the formation of rocks. Ma_Miss experiment is perfectly suited to perform multispectral imaging of the drilled layers. Ma_Miss is a miniaturized near-infrared imaging spectrometer in the range 0.4-2.2 µm with 20nm spectral sampling. The task of illuminating the borehole wall and collecting the diffused light from the illuminated spot on the target requires a transparent window on the Drill tool, which shall prevent the dust contamination of the optical and mechanical elements inside. Hardness of sapphire is the closest to diamond one, thus avoiding the risk of scratches on its surface. The Sapphire window is cylindrical, and bounded such as to realize a continuous auger profile. Ma_Miss Optical Head performs the double task of illuminating the borehole wall with a spot around 1 mm diameter and of collecting the scattered light coming from a 0.1 mm diameter spot of the target. The signal from the Optical Head to the spectrometer is transferred

  7. An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography

    SciTech Connect

    Feng Jinchao; Qin Chenghu; Jia Kebin; Han Dong; Liu Kai; Zhu Shouping; Yang Xin; Tian Jie

    2011-11-15

    Purpose: Bioluminescence tomography (BLT) provides an effective tool for monitoring physiological and pathological activities in vivo. However, the measured data in bioluminescence imaging are corrupted by noise. Therefore, regularization methods are commonly used to find a regularized solution. Nevertheless, for the quality of the reconstructed bioluminescent source obtained by regularization methods, the choice of the regularization parameters is crucial. To date, the selection of regularization parameters remains challenging. With regards to the above problems, the authors proposed a BLT reconstruction algorithm with an adaptive parameter choice rule. Methods: The proposed reconstruction algorithm uses a diffusion equation for modeling the bioluminescent photon transport. The diffusion equation is solved with a finite element method. Computed tomography (CT) images provide anatomical information regarding the geometry of the small animal and its internal organs. To reduce the ill-posedness of BLT, spectral information and the optimal permissible source region are employed. Then, the relationship between the unknown source distribution and multiview and multispectral boundary measurements is established based on the finite element method and the optimal permissible source region. Since the measured data are noisy, the BLT reconstruction is formulated as l{sub 2} data fidelity and a general regularization term. When choosing the regularization parameters for BLT, an efficient model function approach is proposed, which does not require knowledge of the noise level. This approach only requests the computation of the residual and regularized solution norm. With this knowledge, we construct the model function to approximate the objective function, and the regularization parameter is updated iteratively. Results: First, the micro-CT based mouse phantom was used for simulation verification. Simulation experiments were used to illustrate why multispectral data were used

  8. Multispectral and hyperspectral imaging with AOTF for object recognition

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam; Dahmani, Rachid

    1999-01-01

    Acousto-optic tunable-filter (AOTF) technology has been used in the design of a no-moving parts, compact, lightweight, field portable, automated, adaptive spectral imaging system when combined with a high sensitivity imaging detector array. Such a system could detect spectral signatures of targets and/or background, which contain polarization information and can be digitally processed by a variety of algorithms. At the Army Research Laboratory, we have developed and used a number of AOTF imaging systems and are also carrying out the development of such imagers at longer wavelengths. We have carried out hyperspectral and multispectral imaging using AOTF systems covering the spectral range from the visible to mid-IR. One of the imager uses a two-cascaded collinear-architecture AOTF cell in the visible-to-near-IR range with a digital Si charge-coupled device camera as the detector. The images obtained with this system showed no color blurring or image shift due to the angular deviation of different colors as a result of diffraction, and the digital images are stored and processed with great ease. The spatial resolution of the filter was evaluated by means of the lines of a target chart. We have also obtained and processed images from another noncollinear visible-to-near-IR AOTF imager with a digital camera, and used hyperspectral image processing software to enhance object recognition in cluttered background. We are presently working on a mid-IR AOTF imaging system that uses a high- performance InSb focal plane array and image acquisition and processing software. We describe our hyperspectral imaging program and present results from our imaging experiments.

  9. JACIE Radiometric Assessment of QuickBird Multispectral Imagery

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Carver, David; Holekamp, Kara; Knowlton, Kelly; Ryan, Robert; Zanoni, Vicki; Thome, Kurtis; Aaron, David

    2004-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can place confidence in the imagery they use and can fully understand its properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, the NASA Stennis Space Center (SSC) Earth Science Applications (ESA) directorate,through the Joint Agency for Commercial Imagery Evaluation (JACIE) framework, established a commercial imaging satellite radiometric calibration team consisting of two groups: 1) NASA SSC ESA, supported by South Dakota State University, and 2) the University of Arizona Remote Sensing Group. The two groups determined the absolute radiometric calibration coefficients of the Digital Globe 4-band, 2.4-m QuickBird multispectral product covering the visible through near-infrared spectral region. For a 2-year period beginning in 2002, both groups employed some variant of a reflectance-based vicarious calibration approach, which required ground-based measurements coincident with QuickBird image acquisitions and radiative transfer calculations. The groups chose several study sites throughout the United States that covered nearly the entire dynamic range of the QuickBird sensor. QuickBird at-sensor radiance values were compared with those estimated by the two independent groups to determine the QuickBird sensor's radiometric accuracy. Approximately 20 at-sensor radiance estimates were vicariously determined each year. The estimates were combined to provide a high-precision radiometric gain calibration coefficient. The results of this evaluation provide the user community with an independent assessment of the QuickBird sensor's absolute calibration and stability over the 2-year period. While the techniques and method described reflect those developed at the NASA SSC, the results of both JACIE team groups are

  10. Multispectral photoacoustic imaging of nerves with a clinical ultrasound system

    NASA Astrophysics Data System (ADS)

    Mari, Jean Martial; West, Simeon; Beard, Paul C.; Desjardins, Adrien E.

    2014-03-01

    Accurate and efficient identification of nerves is of great importance during many ultrasound-guided clinical procedures, including nerve blocks and prostate biopsies. It can be challenging to visualise nerves with conventional ultrasound imaging, however. One of the challenges is that nerves can have very similar appearances to nearby structures such as tendons. Several recent studies have highlighted the potential of near-infrared optical spectroscopy for differentiating nerves and adjacent tissues, as this modality can be sensitive to optical absorption of lipids that are present in intra- and extra-neural adipose tissue and in the myelin sheaths. These studies were limited to point measurements, however. In this pilot study, a custom photoacoustic system with a clinical ultrasound imaging probe was used to acquire multi-spectral photoacoustic images of nerves and tendons from swine ex vivo, across the wavelength range of 1100 to 1300 nm. Photoacoustic images were processed and overlaid in colour onto co-registered conventional ultrasound images that were acquired with the same imaging probe. A pronounced optical absorption peak centred at 1210 nm was observed in the photoacoustic signals obtained from nerves, and it was absent in those obtained from tendons. This absorption peak, which is consistent with the presence of lipids, provides a novel image contrast mechanism to significantly enhance the visualization of nerves. In particular, image contrast for nerves was up to 5.5 times greater with photoacoustic imaging (0.82 +/- 0.15) than with conventional ultrasound imaging (0.148 +/- 0.002), with a maximum contrast of 0.95 +/- 0.02 obtained in photoacoustic mode. This pilot study demonstrates the potential of photoacoustic imaging to improve clinical outcomes in ultrasound-guided interventions in regional anaesthesia and interventional oncology.

  11. Evaluating intensity normalization for multispectral classification of carotid atherosclerotic plaque

    NASA Astrophysics Data System (ADS)

    Gao, Shan; van't Klooster, Ronald; van Wijk, Diederik F.; Nederveen, Aart J.; Lelieveldt, Boudewijn P. F.; van der Geest, Rob J.

    2015-03-01

    Intensity normalization is an important preprocessing step for automatic plaque analysis in MR images as most segmentation algorithms require the images to have a standardized intensity range. In this study, we derived several intensity normalization approaches with inspiration from expert manual analysis protocols, for classification of carotid vessel wall plaque from in vivo multispectral MRI. We investigated intensity normalization based on a circular region centered at lumen (nCircle); based on sternocleidomastoid muscle (nSCM); based on intensity scaling (nScaling); based on manually classified fibrous tissue (nManuFibrous) and based on automatic classified fibrous tissue (nAutoFibrous). The proposed normalization methods were evaluated using three metrics: (1) Dice similarity coefficient (DSC) between manual and automatic segmentation obtained by classifiers using different normalizations; (2) correlation between proposed normalizations and normalization used by expert; (3) Mahalanobis Distance between pairs of components. In the performed classification experiments, features of normalized image, smoothed, gradient magnitude and Laplacian images at multi-scales, distance to lumen, distance to outer wall, wall thickness were calculated for each vessel wall (VW) pixel. A supervised pattern recognition system, based on a linear discriminate classifier, was trained using the manual segmentation result to classify each VW pixel to be one of the four classes: fibrous tissue, lipid, calcification, and loose matrix according to the highest posterior probability. We evaluated our method on image data of 23 patients. Compared to the result of conventional square region based intensity normalizatio n, nScaling resulted in significant increase in DSC for lipid (p = 0.006) and nAutoFibrous resulted in significant increase in DSC for calcification (p = 0.004). In conclusion, it was demonstrated that the conventional region based normalization approach is not optimal and n

  12. Multispectral imaging of organ viability during uterine transplantation surgery

    NASA Astrophysics Data System (ADS)

    Clancy, Neil T.; Saso, Srdjan; Stoyanov, Danail; Sauvage, Vincent; Corless, David J.; Boyd, Michael; Noakes, David E.; Thum, Meen-Yau; Ghaem-Maghami, Sadaf; Smith, J. R.; Elson, Daniel S.

    2014-02-01

    Uterine transplantation surgery has been proposed as a treatment for permanent absolute uterine factor infertility (AUFI) in the case of loss of the uterus. Due to the complexity of the vasculature correct reanastomosis of the blood supply during transplantation surgery is a crucial step to ensure reperfusion and viability of the organ. While techniques such as fluorescent dye imaging have been proposed to visualise perfusion there is no gold standard for intraoperative visualisation of tissue oxygenation. In this paper results from a liquid crystal tuneable filter (LCTF)-based multispectral imaging (MSI) laparoscope are described. The system was used to monitor uterine oxygen saturation (SaO2) before and after transplantation. Results from surgeries on two animal models (rabbits and sheep) are presented. A feature-based registration algorithm was used to correct for misalignment induced by breathing or peristalsis in the tissues of interest prior to analysis. An absorption spectrum was calculated at each spatial pixel location using reflectance data from a reference standard, and the relative contributions from oxy- and deoxyhaemoglobin were calculated using a least squares regression algorithm with non-negativity constraints. Results acquired during animal surgeries show that cornual oxygenation changes are consistent with those observed in point measurements taken using a pulse oximeter, showing reduced SaO2 following reanastomosis. Values obtained using the MSI laparoscope were lower than those taken with the pulse oximeter, which may be due to the latter's use of the pulsatile arterial blood signal. Future work incorporating immunological test results will help to correlate SaO2 levels with surgical outcomes.

  13. Influence of photolysis on multispectral photoacoustic measurement of nitrogen dioxide concentration.

    PubMed

    Tian, Guoxun; Moosmüller, Hans; Arnott, W Patrick

    2013-09-01

    Multispectral photoacoustic instruments are commonly used to measure aerosol and nitrogen dioxide (NO2) light absorption coefficients to determine the radiation budget of the atmosphere. Here a new photoacoustic system is developed to explore the effect of photolysis on the measured signal in a multispectral photoacoustic spectrometer In this system, a 405-nm laser is used primarily as light source for photolysis. Additionally, a well-overlapped 532-nm laser, modulated at the resonant frequency of the photoacoustic instrument, is used to probe the NO2 concentration. As a result, the photolysis effect at 405 nm can be observed by the photoacoustic instrument through the 532-nm laser. This work determines an 11% reduction of the photoacoustic signal caused by the photolysis effect for typical conditions, which needs to be taken into account when calibrating multispectral photoacoustic spectrometers with NO2.

  14. Tissue classification for laparoscopic image understanding based on multispectral texture analysis.

    PubMed

    Zhang, Yan; Wirkert, Sebastian J; Iszatt, Justin; Kenngott, Hannes; Wagner, Martin; Mayer, Benjamin; Stock, Christian; Clancy, Neil T; Elson, Daniel S; Maier-Hein, Lena

    2017-01-01

    Intraoperative tissue classification is one of the prerequisites for providing context-aware visualization in computer-assisted minimally invasive surgeries. As many anatomical structures are difficult to differentiate in conventional RGB medical images, we propose a classification method based on multispectral image patches. In a comprehensive ex vivo study through statistical analysis, we show that (1) multispectral imaging data are superior to RGB data for organ tissue classification when used in conjunction with widely applied feature descriptors and (2) combining the tissue texture with the reflectance spectrum improves the classification performance. The classifier reaches an accuracy of 98.4% on our dataset. Multispectral tissue analysis could thus evolve as a key enabling technique in computer-assisted laparoscopy.

  15. Quantifying autophagy: Measuring LC3 puncta and autolysosome formation in cells using multispectral imaging flow cytometry.

    PubMed

    Pugsley, Haley R

    2017-01-01

    The use of multispectral imaging flow cytometry has been gaining popularity due to its quantitative power, high throughput capabilities, multiplexing potential and its ability to acquire images of every cell. Autophagy is a process in which dysfunctional organelles and cellular components that accumulate during growth and differentiation are degraded via the lysosome and recycled. During autophagy, cytoplasmic LC3 is processed and recruited to the autophagosomal membranes; the autophagosome then fuses with the lysosome to form the autolysosome. Therefore, cells undergoing autophagy can be identified by visualizing fluorescently labeled LC3 puncta and/or the co-localization of fluorescently labeled LC3 and lysosomal markers. Multispectral imaging flow cytometry is able to collect imagery of large numbers of cells and assess autophagy in an objective, quantitative, and statistically robust manner. This review will examine the four predominant methods that have been used to measure autophagy via multispectral imaging flow cytometry.

  16. Application of multispectral imaging detects areas with neuronal myelin loss, without tissue labelling.

    PubMed

    Vazgiouraki, Eleftheria; Papadakis, Vassilis M; Efstathopoulos, Paschalis; Lazaridis, Iakovos; Charalampopoulos, Ioannis; Fotakis, Costas; Gravanis, Achille

    2016-04-01

    The application of multispectral imaging to discriminate myelinated and demyelinated areas of neural tissue is herein presented. The method is applied through a custom-made, multispectral imaging monochromator, coupled to a commercially available microscope. In the present work, a series of spinal cord sections were analysed derived from mice with experimental autoimmune encephalomyelitis (EAE), an experimental model widely used to study multiple sclerosis (MS). The multispectral microscope allows imaging of local areas with loss of myelin without the need of tissue labelling. Imaging with the aforementioned method and system is compared in a parallel way with conventional methods (wide-field and confocal fluorescence microscopies). The diagnostic sensitivity of our method is 90.4% relative to the 'gold standard' method of immunofluorescence microscopy. The presented method offers a new platform for the possible future development of an in vivo, real-time, non-invasive, rapid imaging diagnostic tool of spinal cord myelin loss-derived pathologies.

  17. A COST EFFECTIVE MULTI-SPECTRAL SCANNER FOR NATURAL GAS DETECTION

    SciTech Connect

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan

    2004-04-01

    The objective of this project is to design, fabricate and field demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first six months of the project, the design for a laboratory version of the multispectral scanner was completed. The optical, mechanical, and electronic design for the scanner was completed. The optical design was analyzed using Zeemax Optical Design software and found to provide sufficiently resolved performance for the scanner. The electronic design was evaluated using a bread board and very high signal to noise ratios were obtained. Fabrication of a laboratory version of the multi-spectral scanner is currently in progress. A technology status report and a research management plan was also completed during the same period.

  18. Polarization-selective dynamically tunable multispectral Fano resonances: decomposing of subgroup plasmonic resonances.

    PubMed

    Liu, Jietao; Zhao, Xiaoliang; Gong, Rui; Wu, Tengfei; Gong, Changmei; Shao, Xiaopeng

    2015-10-19

    We analyze the design of near infrared all-optical controllable and dynamically tunable multispectral Fano resonances based on subgroup decomposition of plasmonic resonances in hybrid nanoslits antenna plasmonic system. The theoretical investigation complemented with numerical simulations show that the Fano resonance lines shape can be tailored efficiently and continuously with the nanoslits geometry and the variation of the polarization states of the incident light. The subgroup decomposition of the spectral profile and the modification of plasmonic resonances lineshape that leads to the Fano-type profile of transmission is investigated and revealed. The separate contribution from individual spectral of single-slit array subgroup is attributed to the resulting overall multispectral Fano lineshape of the proposed T-shaped slits array at their corresponding spectral peaks zone. The polarization-selective tunability of the multispectral Fano resonances in the planar hybrid plasmonic system creates new avenues for designing multi-channel multi-wavelength tunable Fano effect.

  19. Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters.

    PubMed

    McCrindle, Iain J H; Grant, James; Drysdale, Timothy D; Cumming, David R S

    2013-08-12

    Multi-spectral imaging systems typically require the cumbersome integration of disparate filtering materials in order to work simultaneously in multiple spectral regions. We show for the first time how a single nano-patterned metal film can be used to filter multi-spectral content from the visible, near infrared and terahertz bands by hybridizing plasmonics and metamaterials. Plasmonic structures are well-suited to the visible band owing to the resonant dielectric properties of metals, whereas metamaterials are preferable at terahertz frequencies where metal conductivity is high. We present the simulated and experimental characteristics of our new hybrid synthetic multi-spectral material filters and demonstrate the independence of the metamaterial and plasmonic responses with respect to each other.

  20. Multi-spectral image enhancement algorithm based on keeping original gray level

    NASA Astrophysics Data System (ADS)

    Wang, Tian; Xu, Linli; Yang, Weiping

    2016-11-01

    Characteristics of multi-spectral imaging system and the image enhancement algorithm are introduced.Because histogram equalization and some other image enhancement will change the original gray level,a new image enhancement algorithm is proposed to maintain the gray level.For this paper, we have chosen 6 narrow-bands multi-spectral images to compare,the experimental results show that the proposed method is better than those histogram equalization and other algorithm to multi-spectral images.It also insures that histogram information contained in original features is preserved and guarantees to make use of data class information.What's more,on the combination of subjective and objective sharpness evaluation,details of the images are enhanced and noise is weaken.

  1. Automated classification of multispectral MR images using unsupervised constrained energy minimization based on fuzzy logic.

    PubMed

    Lin, Geng-Cheng; Wang, Chuin-Mu; Wang, Wen-June; Sun, Sheng-Yih

    2010-06-01

    Constrained energy minimization (CEM) has proven highly effective for hyperspectral (or multispectral) target detection and classification. It requires a complete knowledge of the desired target signature in images. This work presents "Unsupervised CEM (UCEM)," a novel approach to automatically target detection and classification in multispectral magnetic resonance (MR) images. The UCEM involves two processes, namely, target generation process (TGP) and CEM. The TGP is a fuzzy-set process that generates a set of potential targets from unknown information and then applies these targets to be desired targets in CEM. Finally, two sets of images, namely, computer-generated phantom images and real MR images, are used in the experiments to evaluate the effectiveness of UCEM. Experimental results demonstrate that UCEM segments a multispectral MR image much more effectively than either Functional MRI of the Brain's (FMRIB's) automated segmentation tool or fuzzy C-means does.

  2. Application of multispectral scanner data to the study of an abandoned surface coal mine

    NASA Technical Reports Server (NTRS)

    Spisz, E. W.

    1978-01-01

    The utility of aircraft multispectral scanner data for describing the land cover features of an abandoned contour-mined coal mine is considered. The data were obtained with an 11 band multispectral scanner at an altitude of 1.2 kilometers. Supervised, maximum-likelihood statistical classifications of the data were made to establish land-cover classes and also to describe in more detail the barren surface features as they may pertain to the reclamation or restoration of the area. The scanner data for the surface-water areas were studied to establish the variability and range of the spectral signatures. Both day and night thermal images of the area are presented. The results of the study show that a high degree of statistical separation can be obtained from the multispectral scanner data for the various land-cover features.

  3. Benchmarking Deep Learning Frameworks for the Classification of Very High Resolution Satellite Multispectral Data

    NASA Astrophysics Data System (ADS)

    Papadomanolaki, M.; Vakalopoulou, M.; Zagoruyko, S.; Karantzalos, K.

    2016-06-01

    In this paper we evaluated deep-learning frameworks based on Convolutional Neural Networks for the accurate classification of multispectral remote sensing data. Certain state-of-the-art models have been tested on the publicly available SAT-4 and SAT-6 high resolution satellite multispectral datasets. In particular, the performed benchmark included the AlexNet, AlexNet-small and VGG models which had been trained and applied to both datasets exploiting all the available spectral information. Deep Belief Networks, Autoencoders and other semi-supervised frameworks have been, also, compared. The high level features that were calculated from the tested models managed to classify the different land cover classes with significantly high accuracy rates i.e., above 99.9%. The experimental results demonstrate the great potentials of advanced deep-learning frameworks for the supervised classification of high resolution multispectral remote sensing data.

  4. Semi-supervised segmentation of multispectral remote sensing image based on spectral clustering

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangrong; Wang, Ting; Jiao, Licheng; Yang, Chun

    2009-10-01

    In this paper, a new multi-spectral remote sensing image segmentation method based on multi-parameter semi-supervised spectral clustering (STS3C) is proposed. Two types of instance-level constraints: must-link and cannot-link are incorporated into spectral cluster to construct semi-supervised spectral clustering in which the self-tuning parameter is applied to avoid the selection of the scaling parameter. Further, when STS3C is applied to multi-spectral remote sensing image segmentation, the uniform sampling technique combined with nearest neighbor rule is used to reduce the computation complexity. Segmentation results show that STS3C outperforms the semi-supervised spectral clustering with fixed parameter and the well-known clustering methods including k-means and FCM in multi-spectral remote sensing image segmentation.

  5. A Comparison of Local Variance, Fractal Dimension, and Moran's I as Aids to Multispectral Image Classification

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Sig-NganLam, Nina; Quattrochi, Dale A.

    2004-01-01

    The accuracy of traditional multispectral maximum-likelihood image classification is limited by the skewed statistical distributions of reflectances from the complex heterogenous mixture of land cover types in urban areas. This work examines the utility of local variance, fractal dimension and Moran's I index of spatial autocorrelation in segmenting multispectral satellite imagery. Tools available in the Image Characterization and Modeling System (ICAMS) were used to analyze Landsat 7 imagery of Atlanta, Georgia. Although segmentation of panchromatic images is possible using indicators of spatial complexity, different land covers often yield similar values of these indices. Better results are obtained when a surface of local fractal dimension or spatial autocorrelation is combined as an additional layer in a supervised maximum-likelihood multispectral classification. The addition of fractal dimension measures is particularly effective at resolving land cover classes within urbanized areas, as compared to per-pixel spectral classification techniques.

  6. An innovative multimodal/multispectral image registration method for medical images based on the Expectation-Maximization algorithm.

    PubMed

    Arce-Santana, Edgar; Campos-Delgado, Daniel U; Mejia-Rodriguez, Aldo; Reducindo, Isnardo

    2015-01-01

    In this paper, we present a methodology for multimodal/ multispectral image registration of medical images. This approach is formulated by using the Expectation-Maximization (EM) methodology, such that we estimate the parameters of a geometric transformation that aligns multimodal/multispectral images. In this framework, the hidden random variables are associated to the intensity relations between the studied images, which allow to compare multispectral intensity values between images of different modalities. The methodology is basically composed by an iterative two-step procedure, where at each step, a new estimation of the joint conditional multispectral intensity distribution and the geometric transformation is computed. The proposed algorithm was tested with different kinds of medical images, and the obtained results show that the proposed methodology can be used to efficiently align multimodal/multispectral medical images.

  7. Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping

    NASA Astrophysics Data System (ADS)

    Rapinel, Sébastien; Hubert-Moy, Laurence; Clément, Bernard

    2015-05-01

    Although wetlands play a key role in controlling flooding and nonpoint source pollution, sequestering carbon and providing an abundance of ecological services, the inventory and characterization of wetland habitats are most often limited to small areas. This explains why the understanding of their ecological functioning is still insufficient for a reliable functional assessment on areas larger than a few hectares. While LiDAR data and multispectral Earth Observation (EO) images are often used separately to map wetland habitats, their combined use is currently being assessed for different habitat types. The aim of this study is to evaluate the combination of multispectral and multiseasonal imagery and LiDAR data to precisely map the distribution of wetland habitats. The image classification was performed combining an object-based approach and decision-tree modeling. Four multispectral images with high (SPOT-5) and very high spatial resolution (Quickbird, KOMPSAT-2, aerial photographs) were classified separately. Another classification was then applied integrating summer and winter multispectral image data and three layers derived from LiDAR data: vegetation height, microtopography and intensity return. The comparison of classification results shows that some habitats are better identified on the winter image and others on the summer image (overall accuracies = 58.5 and 57.6%). They also point out that classification accuracy is highly improved (overall accuracy = 86.5%) when combining LiDAR data and multispectral images. Moreover, this study highlights the advantage of integrating vegetation height, microtopography and intensity parameters in the classification process. This article demonstrates that information provided by the synergetic use of multispectral images and LiDAR data can help in wetland functional assessment

  8. A channel-based color fusion technique using multispectral images for night vision enhancement

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng

    2011-09-01

    A fused image using multispectral images can increase the reliability of interpretation because it combines the complimentary information apparent in multispectral images. While a color image can be easily interpreted by human users (for visual analysis), and thus improves observer performance and reaction times. We propose a fast color fusion method, termed as channel-based color fusion, which is efficient for real time applications. Notice that the term of "color fusion" means combing multispectral images into a color-version image with the purpose of resembling natural scenes. On the other hand, false coloring technique usually has no intention of resembling natural scenery. The framework of channel-based color fusion is as follows, (1) prepare for color fusion by preprocessing, image registration and fusion; (2) form a color fusion image by properly assigning multispectral images to red, green, and blue channels; (3) fuse multispectral images (gray fusion) using a wavelet-based fusion algorithm; and (4) replace the value component of color fusion in HSV color space with the gray-fusion image, and finally transform back to RGB space. In night vision imaging, there may be two or several bands of images available, for example, visible (RGB), image intensified (II), near infrared (NIR), medium wave infrared (MWIR), long wave infrared (LWIR). The proposed channel-wise color fusions were tested with two-band (e.g., NIR + LWIR, II + LWIR, RGB + LWIR) or three-band (e.g., RGB + NIR + LWIR) multispectral images. Experimental results show that the colors in the fused images by the proposed method are vivid and comparable with that of the segmentation-based colorization. The processing speed of new method is much faster than any segmentation-based method.

  9. GIS Meets Airborne MSS: Geospatial Applications of High-Resolution Multispectral Data

    SciTech Connect

    Albert Guber

    1999-07-27

    Bechtel Nevada operates and flies Daedalus multispectral scanners for funded project tasks at the Department of Energy's Remote Sensing Laboratory. Historically, processing and analysis of multispectral data has afforded scientists the opportunity to see natural phenomena not visible to the naked eye. However, only recently has a system, more specifically a Geometric Correction System, existed to automatically geo-reference these data directly into a Geographic Information (GIS) database. Now, analyses, performed previously in a nongeospatial environment, are integrated directly into an Arc/Info GIS. This technology is of direct benefit to environmental and emergency response applications.

  10. Remote sensing operations (multispectral scanner and photographic) in the New York Bight, 22 September 1975

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Hall, J. B., Jr.

    1977-01-01

    Ocean dumping of waste materials is a significant environmental concern in the New York Bight. One of these waste materials, sewage sludge, was monitored in an experiment conducted in the New York Bight on September 22, 1975. Remote sensing over controlled sewage sludge dumping included an 11-band multispectral scanner, fiver multispectral cameras and one mapping camera. Concurrent in situ water samples were taken and acoustical measurements were made of the sewage sludge plumes. Data were obtained for sewage sludge plumes resulting from line (moving barge) and spot (stationary barge) dumps. Multiple aircraft overpasses were made to evaluate temporal effects on the plume signature.

  11. A multispectral scanner survey of the Salmon Site and surrounding area, Lamar County, Mississippi

    SciTech Connect

    Blohm, J.D.; Brewster, S.B. Jr.; Shines, J.E.

    1994-06-01

    An airborne multispectral scanner survey was conducted over the Salmon Site and the surrounding area in Lamar County, Mississippi, on May 8, 1992. Twelve-channel daytime multispectral data were collected from altitudes of 2,000 feet, 4,000 feet, and 6,000 feet above ground level. Large-scale color photography was acquired simultaneously with the scanner data. Three different composite images have been prepared to demonstrate the digital image enhancement techniques that can be applied to the data. The data that were acquired offer opportunity for further standard and customized analysis based on any specific environmental characterization issues associated with this site.

  12. Imaging Science Panel. Multispectral Imaging Science Working Group joint meeting with Information Science Panel: Introduction

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The state-of-the-art of multispectral sensing is reviewed and recommendations for future research and development are proposed. specifically, two generic sensor concepts were discussed. One is the multispectral pushbroom sensor utilizing linear array technology which operates in six spectral bands including two in the SWIR region and incorporates capabilities for stereo and crosstrack pointing. The second concept is the imaging spectrometer (IS) which incorporates a dispersive element and area arrays to provide both spectral and spatial information simultaneously. Other key technology areas included very large scale integration and the computer aided design of these devices.

  13. Michigan experimental multispectral mapping system: A description of the M7 airborne sensor and its performance

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.

    1974-01-01

    The development and characteristics of a multispectral band scanner for an airborne mapping system are discussed. The sensor operates in the ultraviolet, visual, and infrared frequencies. Any twelve of the bands may be selected for simultaneous, optically registered recording on a 14-track analog tape recorder. Multispectral imagery recorded on magnetic tape in the aircraft can be laboratory reproduced on film strips for visual analysis or optionally machine processed in analog and/or digital computers before display. The airborne system performance is analyzed.

  14. Multispectral imaging of pigmented and vascular cutaneous malformations: the influence of laser treatment

    NASA Astrophysics Data System (ADS)

    Kuzmina, Ilona; Diebele, Ilze; Asare, Lasma; Kempele, Anna; Abelite, Anita; Jakovels, Dainis; Spigulis, Janis

    2010-11-01

    The paper investigates influence and efficacy of laser therapy on pigmented and vascular cutaneous malformations by multispectral imaging technique. Parameter mapping of skin pigmented and vascular lesions and monitoring of the laser therapy efficacy are performed by multispectral imaging in wavelength range 450-700nm by scanning step - 10nm. Parameter maps of the oxyhemoglobin deoxyhemoglobin and melanin derived from the images are presented. Possibility of laser therapy efficacy monitoring by comparison of the parameter maps before and after laser treatment has been demonstrated. As both cutaneous pigmented and vascular malformations are commonly found lesions, the parameter mapping would be a valuable method to use routinely.

  15. Vector-lifting schemes based on sorting techniques for lossless compression of multispectral images

    NASA Astrophysics Data System (ADS)

    Benazza-Benyahia, Amel; Pesquet, Jean-Christophe

    2003-01-01

    In this paper, we introduce vector-lifting schemes which allow to generate very compact multiresolution representations, suitable for lossless and progressive coding of multispectral images. These new decomposition schemes exploit simultaneously the spatial and the spectral redundancies contained in multispectral images. When the spectral bands have different dynamic ranges, we improve dramatically the performances of the proposed schemes by a reversible histogram modification based on sorting permutations. Simulation tests carried out on real images allow to evaluate the performances of this new compression method. They indicate that the achieved compression ratios are higher than those obtained with currently used lossless coders.

  16. Adaptive multispectral image processing for the detection of targets in terrain clutter

    NASA Astrophysics Data System (ADS)

    Hoff, Lawrence E.; Zeidler, James R.; Yerkes, Christopher R.

    1992-08-01

    In passive detection of small infrared targets in image data, we are faced with the difficult task of enhancing some characteristic of the target or signal while suppressing the clutter or background image noise. We reported that an effective means by which targets may be identified is to exploit characteristics which exist between scenes measured in different bands in the long wave infrared region of the electromagnetic spectrum. These methods are broadly termed multispectral techniques. In this paper we present a method by which a two- dimensional least-mean square adaptive filter is used to distinguish between target and clutter using multispectral techniques.

  17. Software defined multi-spectral imaging for Arctic sensor networks

    NASA Astrophysics Data System (ADS)

    Siewert, Sam; Angoth, Vivek; Krishnamurthy, Ramnarayan; Mani, Karthikeyan; Mock, Kenrick; Singh, Surjith B.; Srivistava, Saurav; Wagner, Chris; Claus, Ryan; Vis, Matthew Demi

    2016-05-01

    Availability of off-the-shelf infrared sensors combined with high definition visible cameras has made possible the construction of a Software Defined Multi-Spectral Imager (SDMSI) combining long-wave, near-infrared and visible imaging. The SDMSI requires a real-time embedded processor to fuse images and to create real-time depth maps for opportunistic uplink in sensor networks. Researchers at Embry Riddle Aeronautical University working with University of Alaska Anchorage at the Arctic Domain Awareness Center and the University of Colorado Boulder have built several versions of a low-cost drop-in-place SDMSI to test alternatives for power efficient image fusion. The SDMSI is intended for use in field applications including marine security, search and rescue operations and environmental surveys in the Arctic region. Based on Arctic marine sensor network mission goals, the team has designed the SDMSI to include features to rank images based on saliency and to provide on camera fusion and depth mapping. A major challenge has been the design of the camera computing system to operate within a 10 to 20 Watt power budget. This paper presents a power analysis of three options: 1) multi-core, 2) field programmable gate array with multi-core, and 3) graphics processing units with multi-core. For each test, power consumed for common fusion workloads has been measured at a range of frame rates and resolutions. Detailed analyses from our power efficiency comparison for workloads specific to stereo depth mapping and sensor fusion are summarized. Preliminary mission feasibility results from testing with off-the-shelf long-wave infrared and visible cameras in Alaska and Arizona are also summarized to demonstrate the value of the SDMSI for applications such as ice tracking, ocean color, soil moisture, animal and marine vessel detection and tracking. The goal is to select the most power efficient solution for the SDMSI for use on UAVs (Unoccupied Aerial Vehicles) and other drop

  18. Multispectral imaging contributions to global land ice measurements from space

    USGS Publications Warehouse

    Kargel, J.S.; Abrams, M.J.; Bishop, M.P.; Bush, A.; Hamilton, G.; Jiskoot, H.; Kaab, Andreas; Kieffer, H.H.; Lee, E.M.; Paul, F.; Rau, F.; Raup, B.; Shroder, J.F.; Soltesz, D.; Stainforth, D.; Stearns, L.; Wessels, R.

    2005-01-01

    Global Land Ice Measurements from Space (GLIMS) is an international consortium established to acquire satellite images of the world's glaciers, analyse them for glacier extent and changes, and assess change data for causes and implications for people and the environment. Although GLIMS is making use of multiple remote-sensing systems, ASTER (Advanced Spaceborne Thermal Emission and reflection Radiometer) is optimized for many needed observations, including mapping of glacier boundaries and material facies, and tracking of surface dynamics, such as flow vector fields and supraglacial lake development. Software development by GLIMS is geared toward mapping clean-ice and debris-covered glaciers; terrain classification emphasizing snow, ice, water, and admixtures of ice with rock debris; multitemporal change analysis; visualization of images and derived data; and interpretation and archiving of derived data. A global glacier database has been designed at the National Snow and Ice Data Center (NSIDC, Boulder, Colorado); parameters are compatible with and expanded from those of the World Glacier Inventory (WGI). These technology efforts are summarized here, but will be presented in detail elsewhere. Our presentation here pertains to one broad question: How can ASTER and other satellite multispectral data be used to map, monitor, and characterize the state and dynamics of glaciers and to understand their responses to 20th and 21st century climate change? Our sampled results are not yet glaciologically or climatically representative. Our early results, while indicating complexity, are generally consistent with the glaciology community's conclusion that climate change is spurring glacier responses around the world (mainly retreat). Whether individual glaciers are advancing or retreating, the aggregate average of glacier change must be climatic in origin, as nonclimatic variations average out. We have discerned regional spatial patterns in glaciological response behavior

  19. Laser multi-spectral polarimetric diffuse-scatter imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yang

    Laser multi-spectral polarimetric diffuse scatter (LAMPODS) imaging is an approach that maps an object intrinsic optical scattering properties rather than the scattered light intensity like in conventional imaging. The technique involves comprehensive measurements of the object scattering response function that is to be parameterized with respect to wavelength, polarization, and angular scattering distribution. The LAMPODS images are mappings of the derived parameters, which are more fundamental than conventional images. The LAMPODS imaging system was built based on a system architecture design configured similarly to an optical wireless network that allows multiple communication connections simultaneously among any number of transmitters and receivers. The imaging system was implemented into several sets of experimental apparatuses that can detect Stokes vectors of backward and forward scattered light with laser sources at seven near infrared (NIR) wavelengths and a continuous mid-infrared (mid-IR) spectral range for both macroscopic and microscopic scan imaging applications. The system components, such as transmitters, receivers, image scan unit, and the data acquisition module, were built and/or tested to match the system-design requirements, which involved many optical, opto-mechanical, electronic, and computer programming/interfacing techniques and skills. The experiments performed include the study on the LAMPODS capability with isolated aspects of scattering response, and the test of LAMPODS on uncontrolled subjects. With special-made targets, the results indicate that the LAMPODS system can distinguish consistently the four produced random surface roughnesses, regardless of the subjects? Spectroscopic signature, and can separate the spectroscopic features independently. Various natural and man-made targets were tested to challenge the LAMPODS system capability and found many interesting features regarding spectral response, polarimetric response, and

  20. Multispectral Image Road Extraction Based Upon Automated Map Conflation

    NASA Astrophysics Data System (ADS)

    Chen, Bin

    Road network extraction from remotely sensed imagery enables many important and diverse applications such as vehicle tracking, drone navigation, and intelligent transportation studies. There are, however, a number of challenges to road detection from an image. Road pavement material, width, direction, and topology vary across a scene. Complete or partial occlusions caused by nearby buildings, trees, and the shadows cast by them, make maintaining road connectivity difficult. The problems posed by occlusions are exacerbated with the increasing use of oblique imagery from aerial and satellite platforms. Further, common objects such as rooftops and parking lots are made of materials similar or identical to road pavements. This problem of common materials is a classic case of a single land cover material existing for different land use scenarios. This work addresses these problems in road extraction from geo-referenced imagery by leveraging the OpenStreetMap digital road map to guide image-based road extraction. The crowd-sourced cartography has the advantages of worldwide coverage that is constantly updated. The derived road vectors follow only roads and so can serve to guide image-based road extraction with minimal confusion from occlusions and changes in road material. On the other hand, the vector road map has no information on road widths and misalignments between the vector map and the geo-referenced image are small but nonsystematic. Properly correcting misalignment between two geospatial datasets, also known as map conflation, is an essential step. A generic framework requiring minimal human intervention is described for multispectral image road extraction and automatic road map conflation. The approach relies on the road feature generation of a binary mask and a corresponding curvilinear image. A method for generating the binary road mask from the image by applying a spectral measure is presented. The spectral measure, called anisotropy-tunable distance (ATD

  1. Elucidation of the Corrosion Inhibition of Mild Steel in 1.0 M HCl by Catechin Monomers from Commercial Green Tea Extracts

    NASA Astrophysics Data System (ADS)

    Nofrizal, S.; Rahim, Afidah A.; Saad, Bahruddin; Bothi Raja, P.; Shah, Affaizza M.; Yahya, S.

    2012-04-01

    The inhibitive action of commercial green tea extracts on mild steel (MS) in a 1.0 M hydrochloric acid solution was investigated by weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). A high-performance liquid chromatographic (HPLC) analysis showed conclusively that of the eight catechin monomers and caffeine found in the original extracts, only four components were responsible for the inhibition of MS. The decreasing adsorption capacity of monomers on MS is related to the stereochemistry of molecules and the number of phenolic groups, and it is as follows: epigallocatechin gallate > epicatechin gallate > epigallocatechin > epicatechin. Adsorption of green tea extract constituent was found to follow Langmuir adsorption isotherm and the calculated Gibb's free energy values indicated the physisorption of inhibitor over MS surface. Physisorption was supported well by the potential zero charge (PZC) and molecular surface energy-level calculations.

  2. Synergistic of a coumarin derivative with potassium iodide on the corrosion inhibition of aluminum alloy in 1.0 M H2SO4

    NASA Astrophysics Data System (ADS)

    Mohamad, Abu Bakar; Kadhum, Abdul Amir H.; Al-Amiery, Ahmed A.; Ying, Lim Chai; Musa, Ahmed Y.

    2014-05-01

    Synergistic effects of the addition of KI on the corrosion inhibitive performance of a coumarin derivative on an aluminum alloy in 1.0 M H2SO4 at different temperatures were studied using various electrochemical measurements. Density functional theory was used to calculate the quantum chemical parameters of the coumarin derivative. The experimental results showed that the coumarin derivative is considered as a mixedtype inhibitor. The corrosion potential values were almost unchanged upon the addition of PBBC to the acidic solution. The inhibition efficiency increases with increasing inhibitor concentration and increases further in the presence of 6.02 mM KI but decreases significantly at higher temperature. The adsorption of PBBC obeyed the Langmuir isotherm, and being chemically adsorbed at lower temperatures, while physical adsorption is favoured at higher temperature. The theoretical results indicated that the coumarin derivative was adsorbed onto the surface of Al2024 through the sulfur, oxygen and nitrogen atoms.

  3. A simple multispectral imaging algorithm for detection of defects on red delicious apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: A multispectral algorithm for detection and differentiation of defect and normal Red Delicious apples was developed from analysis of a series of hyperspectral line-scan images. Methods: A fast line-scan hyperspectral imaging system mounted on a conventional apple sorting machine was used t...

  4. Application of Multispectral Imaging to Determine Quality Attributes and Ripeness Stage in Strawberry Fruit

    PubMed Central

    Liu, Changhong; Liu, Wei; Lu, Xuzhong; Ma, Fei; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2014-01-01

    Multispectral imaging with 19 wavelengths in the range of 405–970 nm has been evaluated for nondestructive determination of firmness, total soluble solids (TSS) content and ripeness stage in strawberry fruit. Several analysis approaches, including partial least squares (PLS), support vector machine (SVM) and back propagation neural network (BPNN), were applied to develop theoretical models for predicting the firmness and TSS of intact strawberry fruit. Compared with PLS and SVM, BPNN considerably improved the performance of multispectral imaging for predicting firmness and total soluble solids content with the correlation coefficient (r) of 0.94 and 0.83, SEP of 0.375 and 0.573, and bias of 0.035 and 0.056, respectively. Subsequently, the ability of multispectral imaging technology to classify fruit based on ripeness stage was tested using SVM and principal component analysis-back propagation neural network (PCA-BPNN) models. The higher classification accuracy of 100% was achieved using SVM model. Moreover, the results of all these models demonstrated that the VIS parts of the spectra were the main contributor to the determination of firmness, TSS content estimation and classification of ripeness stage in strawberry fruit. These results suggest that multispectral imaging, together with suitable analysis model, is a promising technology for rapid estimation of quality attributes and classification of ripeness stage in strawberry fruit. PMID:24505317

  5. Comparison of different detection methods for citrus greening disease based on airborne multispectral and hyperspectral imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus greening or Huanglongbing (HLB) is a devastating disease spread in many citrus groves since first found in 2005 in Florida. Multispectral (MS) and hyperspectral (HS) airborne images of citrus groves in Florida were taken to detect citrus greening infected trees in 2007 and 2010. Ground truthi...

  6. Information content of data from the LANDSAT 4 Thematic Mapper (TM) and multispectral scanner (MSS)

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1983-01-01

    Simultaneous data acquisition by the LANDSAT 4 thematic mapper and the multispectral scanner permits the comparison of the two types of image data with respect to engineering performance and data applications. Progress in the evaluation of information content of matching scenes in agricultural areas is briefly reported.

  7. Multispectral medical image fusion in Contourlet domain for computer based diagnosis of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Bhateja, Vikrant; Moin, Aisha; Srivastava, Anuja; Bao, Le Nguyen; Lay-Ekuakille, Aimé; Le, Dac-Nhuong

    2016-07-01

    Computer based diagnosis of Alzheimer's disease can be performed by dint of the analysis of the functional and structural changes in the brain. Multispectral image fusion deliberates upon fusion of the complementary information while discarding the surplus information to achieve a solitary image which encloses both spatial and spectral details. This paper presents a Non-Sub-sampled Contourlet Transform (NSCT) based multispectral image fusion model for computer-aided diagnosis of Alzheimer's disease. The proposed fusion methodology involves color transformation of the input multispectral image. The multispectral image in YIQ color space is decomposed using NSCT followed by dimensionality reduction using modified Principal Component Analysis algorithm on the low frequency coefficients. Further, the high frequency coefficients are enhanced using non-linear enhancement function. Two different fusion rules are then applied to the low-pass and high-pass sub-bands: Phase congruency is applied to low frequency coefficients and a combination of directive contrast and normalized Shannon entropy is applied to high frequency coefficients. The superiority of the fusion response is depicted by the comparisons made with the other state-of-the-art fusion approaches (in terms of various fusion metrics).

  8. Second derivative multispectral algorithm for quantitative assessment of cutaneous tissue oxygenation

    NASA Astrophysics Data System (ADS)

    Huang, Jiwei; Zhang, Shiwu; Gnyawali, Surya; Sen, Chandan K.; Xu, Ronald X.

    2015-03-01

    We report a second derivative multispectral algorithm for quantitative assessment of cutaneous tissue oxygen saturation (StO2). The algorithm is based on a forward model of light transport in multilayered skin tissue and an inverse algorithm for StO2 reconstruction. Based on the forward simulation results, a parameter of a second derivative ratio (SDR) is derived as a function of cutaneous tissue StO2. The SDR function is optimized at a wavelength set of 544, 552, 568, 576, 592, and 600 nm so that cutaneous tissue StO2 can be derived with minimal artifacts by blood concentration, tissue scattering, and melanin concentration. The proposed multispectral StO2 imaging algorithm is verified in both benchtop and in vivo experiments. The experimental results show that the proposed multispectral imaging algorithm is able to map cutaneous tissue StO2 in high temporal resolution with reduced measurement artifacts induced by different skin conditions in comparison with other three commercial tissue oxygen measurement systems. These results indicate that the multispectral StO2 imaging technique has the potential for noninvasive and quantitative assessment of skin tissue oxygenation with a high temporal resolution.

  9. Diffuse reflectance and fluorescence multispectral imaging system for assessment of skin

    NASA Astrophysics Data System (ADS)

    Saknite, Inga; Jakovels, Dainis; Spigulis, Janis

    2014-05-01

    The diffuse reflectance multispectral imaging technique has been used for distant mapping of in vivo skin chromophores (hemoglobin and melanin). The fluorescence multispectral imaging is not so common for skin applications due to complicity of data acquisition and processing, but could provide additional information about skin fluorophores. Both techniques are compatible, and could be combined into a multimodal solution. The multispectral imaging system Nuance based on liquid crystal tunable filters was adapted for diffuse reflectance and fluorescence spectral imaging of in vivo skin. Uniform illumination was achieved by LED ring light. Combination of four LEDs (warm white, 770 nm, 830 nm and 890 nm) was used to support diffuse reflectance mode in spectral range 450-950 nm. 405 nm LEDs were used for excitation of skin autofluorescence. Multispectral imaging system was adapted for spectral working range of 450-950 nm with scanning step of 10 nm and spectral resolution of 15 nm. An average field of view was 50x35 mm in size with spatial resolution 0,05 mm (the pixel size). Due to spectrally different illumination intensity and system sensitivity, various exposure times (from 7…500 ms) were used for each image acquisition. The proposed approach was tested for different skin lesions: benign nevus, hemangioma, basalioma and halo nevus. Spectral image cubes of different skin lesions were acquired and analyzed to test its diagnostic potential.

  10. Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation

    PubMed Central

    Li, Ziwei; Suo, Jinli; Hu, Xuemei; Deng, Chao; Fan, Jingtao; Dai, Qionghai

    2017-01-01

    Combining spectral imaging with compressive sensing (CS) enables efficient data acquisition by fully utilizing the intrinsic redundancies in natural images. Current compressive multispectral imagers, which are mostly based on array sensors (e.g, CCD or CMOS), suffer from limited spectral range and relatively low photon efficiency. To address these issues, this paper reports a multispectral imaging scheme with a single-pixel detector. Inspired by the spatial resolution redundancy of current spatial light modulators (SLMs) relative to the target reconstruction, we design an all-optical spectral splitting device to spatially split the light emitted from the object into several counterparts with different spectrums. Separated spectral channels are spatially modulated simultaneously with individual codes by an SLM. This no-moving-part modulation ensures a stable and fast system, and the spatial multiplexing ensures an efficient acquisition. A proof-of-concept setup is built and validated for 8-channel multispectral imaging within 420~720 nm wavelength range on both macro and micro objects, showing a potential for efficient multispectral imager in macroscopic and biomedical applications. PMID:28128300

  11. Uav Multispectral Survey to Map Soil and Crop for Precision Farming Applications

    NASA Astrophysics Data System (ADS)

    Sonaa, Giovanna; Passoni, Daniele; Pinto, Livio; Pagliari, Diana; Masseroni, Daniele; Ortuani, Bianca; Facchi, Arianna

    2016-06-01

    New sensors mounted on UAV and optimal procedures for survey, data acquisition and analysis are continuously developed and tested for applications in precision farming. Procedures to integrate multispectral aerial data about soil and crop and ground-based proximal geophysical data are a recent research topic aimed to delineate homogeneous zones for the management of agricultural inputs (i.e., water, nutrients). Multispectral and multitemporal orthomosaics were produced over a test field (a 100 m x 200 m plot within a maize field), to map vegetation and soil indices, as well as crop heights, with suitable ground resolution. UAV flights were performed in two moments during the crop season, before sowing on bare soil, and just before flowering when maize was nearly at the maximum height. Two cameras, for color (RGB) and false color (NIR-RG) images, were used. The images were processed in Agisoft Photoscan to produce Digital Surface Model (DSM) of bare soil and crop, and multispectral orthophotos. To overcome some difficulties in the automatic searching of matching points for the block adjustment of the crop image, also the scientific software developed by Politecnico of Milan was used to enhance images orientation. Surveys and image processing are described, as well as results about classification of multispectral-multitemporal orthophotos and soil indices.

  12. Enhancing the Detectability of Subtle Changes in Multispectral Imagery Through Real-time Change Magnification

    DTIC Science & Technology

    2015-07-27

    changes (movement or temperature fluctuations) in multiband ( visual , near-, shortwave- and longwave-infrared) imagery while simultaneously reducing...dynamic noise. We successfully applied the adapted algorithm to enhance the visibility of small movements in the Visual , Near-Infrared and Thermal (LWIR...image. 15. SUBJECT TERMS EOARD, Multispectral imagery, Temporal visual changes 16. SECURITY CLASSIFICATION OF: 17

  13. Target Detection over the Diurnal Cycle Using a Multispectral Infrared Sensor

    PubMed Central

    Zhao, Huijie; Ji, Zheng; Li, Na; Gu, Jianrong; Li, Yansong

    2016-01-01

    When detecting a target over the diurnal cycle, a conventional infrared thermal sensor might lose the target due to the thermal crossover, which could happen at any time throughout the day when the infrared image contrast between target and background in a scene is indistinguishable due to the temperature variation. In this paper, the benefits of using a multispectral-based infrared sensor over the diurnal cycle have been shown. Firstly, a brief theoretical analysis on how the thermal crossover influences a conventional thermal sensor, within the conditions where the thermal crossover would happen and why the mid-infrared (3~5 μm) multispectral technology is effective, is presented. Furthermore, the effectiveness of this technology is also described and we describe how the prototype design and multispectral technology is employed to help solve the thermal crossover detection problem. Thirdly, several targets are set up outside and imaged in the field experiment over a 24-h period. The experimental results show that the multispectral infrared imaging system can enhance the contrast of the detected images and effectively solve the failure of the conventional infrared sensor during the diurnal cycle, which is of great significance for infrared surveillance applications. PMID:28036073

  14. Joint spatio-spectral based edge detection for multispectral infrared imagery.

    SciTech Connect

    Krishna, Sanjay; Hayat, Majeed M.; Bender, Steven C.; Sharma, Yagya D.; Jang, Woo-Yong; Paskalva, Biliana S.

    2010-06-01

    Image segmentation is one of the most important and difficult tasks in digital image processing. It represents a key stage of automated image analysis and interpretation. Segmentation algorithms for gray-scale images utilize basic properties of intensity values such as discontinuity and similarity. However, it is possible to enhance edge-detection capability by means of using spectral information provided by multispectral (MS) or hyperspectral (HS) imagery. In this paper we consider image segmentation algorithms for multispectral images with particular emphasis on detection of multi-color or multispectral edges. More specifically, we report on an algorithm for joint spatio-spectral (JSS) edge detection. By joint we mean simultaneous utilization of spatial and spectral characteristics of a given MS or HS image. The JSS-based edge-detection approach, termed Spectral Ratio Contrast (SRC) edge-detection algorithm, utilizes the novel concept of matching edge signatures. The edge signature represents a combination of spectral ratios calculated using bands that enhance the spectral contrast between the two materials. In conjunction with a spatial mask, the edge signature give rise to a multispectral operator that can be viewed as a three-dimensional extension of the mask. In the extended mask, the third (spectral) dimension of each hyper-pixel can be chosen independently. The SRC is verified using MS and HS imagery from a quantum-dot in a well infrared (IR) focal plane array, and the Airborne Hyperspectral Imager.

  15. Remote identification of potential boll weevil host plants: Airborne multispectral detection of regrowth cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regrowth cotton plants can serve as potential hosts for boll weevils during and beyond the production season. Effective methods for timely areawide detection of these host plants are critically needed to expedite eradication in south Texas. We acquired airborne multispectral images of experimental...

  16. Second derivative multispectral algorithm for quantitative assessment of cutaneous tissue oxygenation.

    PubMed

    Huang, Jiwei; Zhang, Shiwu; Gnyawali, Surya; Sen, Chandan K; Xu, Ronald X

    2015-03-01

    We report a second derivative multispectral algorithm for quantitative assessment of cutaneous tissue oxygen saturation (StO₂). The algorithm is based on a forward model of light transport in multilayered skin tissue and an inverse algorithm for StO₂ reconstruction. Based on the forward simulation results, a parameter of a second derivative ratio (SDR) is derived as a function of cutaneous tissue StO₂. The SDR function is optimized at a wavelength set of 544, 552, 568, 576, 592, and 600 nm so that cutaneous tissue StO₂ can be derived with minimal artifacts by blood concentration, tissue scattering, and melanin concentration. The proposed multispectral StO₂ imaging algorithm is verified in both benchtop and in vivo experiments. The experimental results show that the proposed multispectral imaging algorithm is able to map cutaneous tissue StO₂ in high temporal resolution with reduced measurement artifacts induced by different skin conditions in comparison with other three commercial tissue oxygen measurement systems. These results indicate that the multispectral StO₂ imaging technique has the potential for noninvasive and quantitative assessment of skin tissue oxygenation with a high temporal resolution.

  17. A multispectral scanner survey of the United States Department of Energy's Paducah Gaseous Diffusion Plant

    SciTech Connect

    Not Available

    1991-06-01

    Airborne multispectral scanner data of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area were acquired during late spring 1990. This survey was conducted by the Remote Sensing Laboratory (RSL) which is operated by EG G Energy Measurements (EG G/EM) for the US Department of Energy (DOE) Nevada Operations Office. It was requested by the US Department of Energy (DOE) Environmental Audit Team which was reviewing environmental conditions at the facility. The objectives of this survey were to: (1) Acquire 12-channel, multispectral scanner data of the PGDP from an altitude of 3000 feet above ground level (AGL); (2) Acquire predawn, digital thermal infrared (TIR) data of the site from the same altitude; (3) Collect color and color-infrared (CIR) aerial photographs over the facilities; and (4) Illustrate how the analyses of these data could benefit environmental monitoring at the PGDP. This report summarizes the two multispectral scanner and aerial photographic missions at the Paducah Gaseous Diffusion Plant. Selected examples of the multispectral data are presented to illustrate its potential for aiding environmental management at the site. 4 refs., 1 fig., 2 tabs.

  18. Fast Multispectral Imaging by Spatial Pixel-Binning and Spectral Unmixing.

    PubMed

    Pan, Zhi-Wei; Shen, Hui-Liang; Li, Chunguang; Chen, Shu-Jie; Xin, John H

    2016-08-01

    Multispectral imaging system is of wide application in relevant fields for its capability in acquiring spectral information of scenes. Its limitation is that, due to the large number of spectral channels, the imaging process can be quite time-consuming when capturing high-resolution (HR) multispectral images. To resolve this limitation, this paper proposes a fast multispectral imaging framework based on the image sensor pixel-binning and spectral unmixing techniques. The framework comprises a fast imaging stage and a computational reconstruction stage. In the imaging stage, only a few spectral images are acquired in HR, while most spectral images are acquired in low resolution (LR). The LR images are captured by applying pixel binning on the image sensor, such that the exposure time can be greatly reduced. In the reconstruction stage, an optimal number of basis spectra are computed and the signal-dependent noise statistics are estimated. Then the unknown HR images are efficiently reconstructed by solving a closed-form cost function that models the spatial and spectral degradations. The effectiveness of the proposed framework is evaluated using real-scene multispectral images. Experimental results validate that, in general, the method outperforms the state of the arts in terms of reconstruction accuracy, with additional 20× or more improvement in computational efficiency.

  19. Estimation of cotton yield with varied irrigation and nitrogen treatments using aerial multispectral imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton yield varies spatially within a field. The variability can be caused by various production inputs such as soil properties, water management, and fertilizer application. Airborne multispectral imaging is capable of providing data and information to study effects of the inputs on yield qualitat...

  20. Multispectral fluorescence image algorithms for detection of frass on mature tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multispectral algorithm derived from hyperspectral line-scan fluorescence imaging under violet LED excitation was developed for the detection of frass contamination on mature tomatoes. The algorithm utilized the fluorescence intensities at five wavebands, 515 nm, 640 nm, 664 nm, 690 nm, and 724 nm...

  1. Combining transverse field detectors and color filter arrays to improve multispectral imaging systems.

    PubMed

    Martínez, Miguel A; Valero, Eva M; Hernández-Andrés, Javier; Romero, Javier; Langfelder, Giacomo

    2014-05-01

    This work focuses on the improvement of a multispectral imaging sensor based on transverse field detectors (TFDs). We aimed to achieve a higher color and spectral accuracy in the estimation of spectral reflectances from sensor responses. Such an improvement was done by combining these recently developed silicon-based sensors with color filter arrays (CFAs). Consequently, we sacrificed the filter-less full spatial resolution property of TFDs to narrow down the spectrally broad sensitivities of these sensors. We designed and performed several experiments to test the influence of different design features on the estimation quality (type of sensor, tunability, interleaved polarization, use of CFAs, type of CFAs, number of shots), some of which are exclusive to TFDs. We compared systems that use a TFD with systems that use normal monochrome sensors, both combined with multispectral CFAs as well as common RGB filters present in commercial digital color cameras. Results showed that a system that combines TFDs and CFAs performs better than systems with the same type of multispectral CFA and other sensors, or even the same TFDs combined with different kinds of filters used in common imaging systems. We propose CFA+TFD-based systems with one or two shots, depending on the possibility of using longer capturing times or not. Improved TFD systems thus emerge as an interesting possibility for multispectral acquisition, which overcomes the limited accuracy found in previous studies.

  2. Multispectral medical image fusion in Contourlet domain for computer based diagnosis of Alzheimer's disease.

    PubMed

    Bhateja, Vikrant; Moin, Aisha; Srivastava, Anuja; Bao, Le Nguyen; Lay-Ekuakille, Aimé; Le, Dac-Nhuong

    2016-07-01

    Computer based diagnosis of Alzheimer's disease can be performed by dint of the analysis of the functional and structural changes in the brain. Multispectral image fusion deliberates upon fusion of the complementary information while discarding the surplus information to achieve a solitary image which encloses both spatial and spectral details. This paper presents a Non-Sub-sampled Contourlet Transform (NSCT) based multispectral image fusion model for computer-aided diagnosis of Alzheimer's disease. The proposed fusion methodology involves color transformation of the input multispectral image. The multispectral image in YIQ color space is decomposed using NSCT followed by dimensionality reduction using modified Principal Component Analysis algorithm on the low frequency coefficients. Further, the high frequency coefficients are enhanced using non-linear enhancement function. Two different fusion rules are then applied to the low-pass and high-pass sub-bands: Phase congruency is applied to low frequency coefficients and a combination of directive contrast and normalized Shannon entropy is applied to high frequency coefficients. The superiority of the fusion response is depicted by the comparisons made with the other state-of-the-art fusion approaches (in terms of various fusion metrics).

  3. Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation.

    PubMed

    Li, Ziwei; Suo, Jinli; Hu, Xuemei; Deng, Chao; Fan, Jingtao; Dai, Qionghai

    2017-01-27

    Combining spectral imaging with compressive sensing (CS) enables efficient data acquisition by fully utilizing the intrinsic redundancies in natural images. Current compressive multispectral imagers, which are mostly based on array sensors (e.g, CCD or CMOS), suffer from limited spectral range and relatively low photon efficiency. To address these issues, this paper reports a multispectral imaging scheme with a single-pixel detector. Inspired by the spatial resolution redundancy of current spatial light modulators (SLMs) relative to the target reconstruction, we design an all-optical spectral splitting device to spatially split the light emitted from the object into several counterparts with different spectrums. Separated spectral channels are spatially modulated simultaneously with individual codes by an SLM. This no-moving-part modulation ensures a stable and fast system, and the spatial multiplexing ensures an efficient acquisition. A proof-of-concept setup is built and validated for 8-channel multispectral imaging within 420~720 nm wavelength range on both macro and micro objects, showing a potential for efficient multispectral imager in macroscopic and biomedical applications.

  4. Application of multispectral imaging to determine quality attributes and ripeness stage in strawberry fruit.

    PubMed

    Liu, Changhong; Liu, Wei; Lu, Xuzhong; Ma, Fei; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2014-01-01

    Multispectral imaging with 19 wavelengths in the range of 405-970 nm has been evaluated for nondestructive determination of firmness, total soluble solids (TSS) content and ripeness stage in strawberry fruit. Several analysis approaches, including partial least squares (PLS), support vector machine (SVM) and back propagation neural network (BPNN), were applied to develop theoretical models for predicting the firmness and TSS of intact strawberry fruit. Compared with PLS and SVM, BPNN considerably improved the performance of multispectral imaging for predicting firmness and total soluble solids content with the correlation coefficient (r) of 0.94 and 0.83, SEP of 0.375 and 0.573, and bias of 0.035 and 0.056, respectively. Subsequently, the ability of multispectral imaging technology to classify fruit based on ripeness stage was tested using SVM and principal component analysis-back propagation neural network (PCA-BPNN) models. The higher classification accuracy of 100% was achieved using SVM model. Moreover, the results of all these models demonstrated that the VIS parts of the spectra were the main contributor to the determination of firmness, TSS content estimation and classification of ripeness stage in strawberry fruit. These results suggest that multispectral imaging, together with suitable analysis model, is a promising technology for rapid estimation of quality attributes and classification of ripeness stage in strawberry fruit.

  5. A multispectral cloud type identification method using Nimbus 3 MRIR measurements.

    NASA Technical Reports Server (NTRS)

    Shenk, W. E.; Holub, R. J.

    1972-01-01

    Using Nimbus 3 medium resolution infrared radiometer measurements, a multispectral cloud type identification method is developed. This method includes a fourth spectral region (20-23 microns), the use of radiative transfer theory, and a semiquantitative evaluation of satellite cloud type estimates with concurrent high resolution photography from aircraft flights.

  6. Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries

    DOE PAGES

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...

    2014-12-09

    We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labelsmore » are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. In this study, our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.« less

  7. Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries

    SciTech Connect

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Altmann, Garrett L.

    2014-12-09

    We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labels are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. In this study, our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.

  8. Multispectral image compression based on DSC combined with CCSDS-IDC.

    PubMed

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches.

  9. Multimodal tissue perfusion imaging using multi-spectral and thermographic imaging systems applied on clinical data

    NASA Astrophysics Data System (ADS)

    Klaessens, John H. G. M.; Nelisse, Martin; Verdaasdonk, Rudolf M.; Noordmans, Herke Jan

    2013-03-01

    Clinical interventions can cause changes in tissue perfusion, oxygenation or temperature. Real-time imaging of these phenomena could be useful for surgical strategy or understanding of physiological regulation mechanisms. Two noncontact imaging techniques were applied for imaging of large tissue areas: LED based multispectral imaging (MSI, 17 different wavelengths 370 nm-880 nm) and thermal imaging (7.5 to 13.5 μm). Oxygenation concentration changes were calculated using different analyzing methods. The advantages of these methods are presented for stationary and dynamic applications. Concentration calculations of chromophores in tissue require right choices of wavelengths The effects of different wavelength choices for hemoglobin concentration calculations were studied in laboratory conditions and consequently applied in clinical studies. Corrections for interferences during the clinical registrations (ambient light fluctuations, tissue movements) were performed. The wavelength dependency of the algorithms were studied and wavelength sets with the best results will be presented. The multispectral and thermal imaging systems were applied during clinical intervention studies: reperfusion of tissue flap transplantation (ENT), effectiveness of local anesthetic block and during open brain surgery in patients with epileptic seizures. The LED multispectral imaging system successfully imaged the perfusion and oxygenation changes during clinical interventions. The thermal images show local heat distributions over tissue areas as a result of changes in tissue perfusion. Multispectral imaging and thermal imaging provide complementary information and are promising techniques for real-time diagnostics of physiological processes in medicine.

  10. Biochemical characterization of atherosclerotic plaques by endogenous multispectral fluorescence lifetime imaging microscopy

    PubMed Central

    Park, Jesung; Pande, Paritosh; Shrestha, Sebina; Clubb, Fred; Applegate, Brian E.; Jo, Javier A.

    2011-01-01

    OBJECTIVE To investigate the potential of endogenous multispectral fluorescence lifetime imaging microscopy (FLIM) for biochemical characterization of human coronary atherosclerotic plaques. METHODS Endogenous multispectral FLIM imaging was performed on the lumen of 58 segments of postmortem human coronary artery. The fluorescence was separated into three emission bands targeting the three main arterial endogenous fluorophores (390±20 nm for collagen, 452±22.5 nm for elastin, and 550±20 for lipids). The fluorescence normalized intensity and average lifetime from each emission band was used to classify each pixel of an image as either “High-Collagen”, “High-Lipids” or “Low-Collagen/Lipids” via multiclass Fisher’s linear discriminant analysis. RESULTS Classification of plaques as either “High-Collagen”, “High-Lipids” or “Low-Collagen/Lipids” based on the endogenous multispectral FLIM was achieved with a sensitivity/specificity of 96/98%, 89/99%, and 99/99%, respectively, where histopathology served as the gold standard. CONCLUSION The endogenous multispectral FLIM approach we have taken, which can readily be adapted for in vivo intravascular catheter based imaging, is capable of reliably identifying plaques with high content of either collagen or lipids. PMID:22138141

  11. Target Detection over the Diurnal Cycle Using a Multispectral Infrared Sensor.

    PubMed

    Zhao, Huijie; Ji, Zheng; Li, Na; Gu, Jianrong; Li, Yansong

    2016-12-29

    When detecting a target over the diurnal cycle, a conventional infrared thermal sensor might lose the target due to the thermal crossover, which could happen at any time throughout the day when the infrared image contrast between target and background in a scene is indistinguishable due to the temperature variation. In this paper, the benefits of using a multispectral-based infrared sensor over the diurnal cycle have been shown. Firstly, a brief theoretical analysis on how the thermal crossover influences a conventional thermal sensor, within the conditions where the thermal crossover would happen and why the mid-infrared (3~5 μm) multispectral technology is effective, is presented. Furthermore, the effectiveness of this technology is also described and we describe how the prototype design and multispectral technology is employed to help solve the thermal crossover detection problem. Thirdly, several targets are set up outside and imaged in the field experiment over a 24-h period. The experimental results show that the multispectral infrared imaging system can enhance the contrast of the detected images and effectively solve the failure of the conventional infrared sensor during the diurnal cycle, which is of great significance for infrared surveillance applications.

  12. Analysis of variograms with various sample sizes from a multispectral image

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variograms play a crucial role in remote sensing application and geostatistics. In this study, the analysis of variograms with various sample sizes of remotely sensed data was conducted. A 100 X 100 pixel subset was chosen from an aerial multispectral image which contained three wavebands, green, ...

  13. A multispectral scanner survey of the Tonopah Test Range, Nevada. Date of survey: August 1993

    SciTech Connect

    Brewster, S.B. Jr.; Howard, M.E.; Shines, J.E.

    1994-08-01

    The Multispectral Remote Sensing Department of the Remote Sensing Laboratory conducted an airborne multispectral scanner survey of a portion of the Tonopah Test Range, Nevada. The survey was conducted on August 21 and 22, 1993, using a Daedalus AADS1268 scanner and coincident aerial color photography. Flight altitudes were 5,000 feet (1,524 meters) above ground level for systematic coverage and 1,000 feet (304 meters) for selected areas of special interest. The multispectral scanner survey was initiated as part of an interim and limited investigation conducted to gather preliminary information regarding historical hazardous material release sites which could have environmental impacts. The overall investigation also includes an inventory of environmental restoration sites, a ground-based geophysical survey, and an aerial radiological survey. The multispectral scanner imagery and coincident aerial photography were analyzed for the detection, identification, and mapping of man-made soil disturbances. Several standard image enhancement techniques were applied to the data to assist image interpretation. A geologic ratio enhancement and a color composite consisting of AADS1268 channels 10, 7, and 9 (mid-infrared, red, and near-infrared spectral bands) proved most useful for detecting soil disturbances. A total of 358 disturbance sites were identified on the imagery and mapped using a geographic information system. Of these sites, 326 were located within the Tonopah Test Range while the remaining sites were present on the imagery but outside the site boundary. The mapped site locations are being used to support ongoing field investigations.

  14. WHITE-LIGHT SAGNAC INTERFEROMETER FOR SNAPSHOT POLARIMETRIC AND MULTISPECTRAL IMAGING

    DTIC Science & Technology

    2010-03-15

    investigate the accuracy of the multispectral data, a reflectance measurement from a healthy and unhealthy leaf was taken with the MSI, and compared to a...This relative reflectance measurement is depicted in fig. 10. Relatiw Retleclance "’· 01de< (Band) --Healthy (MSQ 0.9 --- Healthy (U21

  15. Sensitive segmentation of low-contrast multispectral images based on multiparameter space-resonance imaging method

    NASA Astrophysics Data System (ADS)

    Akhmetshin, Alexander M.; Akhmetshin, Lyudmila G.

    2001-10-01

    A new method of low contrast multispectral, hyperspectral and multiparameter images segmentation is outlined. The one has significant advantage in sensitivity and space resolving power of segmentation in comparison with known methods such as principal component transformation and fuzzy C-means clustering segmentation ones. New method is based on using of two important stages: 1) application virtual long-wave holographic transformation to each separate image of analyzed multispectral sequence (it is needed for increasing sensitivity of further analysis); 2) to each pixel of analyzed multispectral image is compare a virtual nonrecursive digital filter with complex coefficients. The one is characterized by its amplitude-frequency (AFC) and phase-frequency (PFC) characteristics. Information features used for visualization and segmentation are frequencies corresponded to maximum (resonance point) or minimum (antiresonance point) of AFC and group delay function calculated on base PFC. Information possibilities of new method are demonstrated on examples of multispectral remote sensing, various physical nature geophysical fields fusion and multiparameter MRI brain tumor hidden area influence detection.

  16. Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation

    NASA Astrophysics Data System (ADS)

    Li, Ziwei; Suo, Jinli; Hu, Xuemei; Deng, Chao; Fan, Jingtao; Dai, Qionghai

    2017-01-01

    Combining spectral imaging with compressive sensing (CS) enables efficient data acquisition by fully utilizing the intrinsic redundancies in natural images. Current compressive multispectral imagers, which are mostly based on array sensors (e.g, CCD or CMOS), suffer from limited spectral range and relatively low photon efficiency. To address these issues, this paper reports a multispectral imaging scheme with a single-pixel detector. Inspired by the spatial resolution redundancy of current spatial light modulators (SLMs) relative to the target reconstruction, we design an all-optical spectral splitting device to spatially split the light emitted from the object into several counterparts with different spectrums. Separated spectral channels are spatially modulated simultaneously with individual codes by an SLM. This no-moving-part modulation ensures a stable and fast system, and the spatial multiplexing ensures an efficient acquisition. A proof-of-concept setup is built and validated for 8-channel multispectral imaging within 420~720 nm wavelength range on both macro and micro objects, showing a potential for efficient multispectral imager in macroscopic and biomedical applications.

  17. Multispectral televisional measuring control of the ecological state of waterbodies on the characteristics macrophytes

    NASA Astrophysics Data System (ADS)

    Petruk, Vasil; Kvaternyuk, Sergii; Kozachuk, Anastasia; Sailarbek, Saltanat; Gromaszek, Konrad

    2015-12-01

    Improved methods for multispectral measuring television monitoring of the ecological state of water bodies on the characteristics of macrophytes groups to assess complex human impact on their environment. Integral assessment of water pollution is based on research products of higher aquatic plants and their communities by optical methods.

  18. Evaluating the Potential of Multispectral Airborne LIDAR for Topographic Mapping and Land Cover Classification

    NASA Astrophysics Data System (ADS)

    Wichmann, V.; Bremer, M.; Lindenberger, J.; Rutzinger, M.; Georges, C.; Petrini-Monteferri, F.

    2015-08-01

    Recently multispectral LiDAR became a promising research field for enhanced LiDAR classification workflows and e.g. the assessment of vegetation health. Current analyses on multispectral LiDAR are mainly based on experimental setups, which are often limited transferable to operational tasks. In late 2014 Optech Inc. announced the first commercially available multispectral LiDAR system for airborne topographic mapping. The combined system makes synchronic multispectral LiDAR measurements possible, solving time shift problems of experimental acquisitions. This paper presents an explorative analysis of the first airborne collected data with focus on class specific spectral signatures. Spectral patterns are used for a classification approach, which is evaluated in comparison to a manual reference classification. Typical spectral patterns comparable to optical imagery could be observed for homogeneous and planar surfaces. For rough and volumetric objects such as trees, the spectral signature becomes biased by signal modification due to multi return effects. However, we show that this first flight data set is suitable for conventional geometrical classification and mapping procedures. Additional classes such as sealed and unsealed ground can be separated with high classification accuracies. For vegetation classification the distinction of species and health classes is possible.

  19. Using airborne multispectral imagery to monitor cotton root rot expansion within a growing season

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot is a serious and destructive disease that affects cotton production in the southwestern United States. Accurate delineation of cotton root rot infestations is important for cost-effective management of the disease. The objective of this study was to use airborne multispectral imagery...

  20. Initial clinical testing of a multi-spectral imaging system built on a smartphone platform

    NASA Astrophysics Data System (ADS)

    Mink, Jonah W.; Wexler, Shraga; Bolton, Frank J.; Hummel, Charles; Kahn, Bruce S.; Levitz, David

    2016-03-01

    Multi-spectral imaging systems are often expensive and bulky. An innovative multi-spectral imaging system was fitted onto a mobile colposcope, an imaging system built around a smartphone in order to image the uterine cervix from outside the body. The multi-spectral mobile colposcope (MSMC) acquires images at different wavelengths. This paper presents the clinical testing of MSMC imaging (technical validation of the MSMC system is described elsewhere 1 ). Patients who were referred to colposcopy following abnormal screening test (Pap or HPV DNA test) according to the standard of care were enrolled. Multi-spectral image sets of the cervix were acquired, consisting of images from the various wavelengths. Image acquisition took 1-2 sec. Areas suspected for dysplasia under white light imaging were biopsied, according to the standard of care. Biopsied sites were recorded on a clockface map of the cervix. Following the procedure, MSMC data was processed from the sites of biopsied sites. To date, the initial histopathological results are still outstanding. Qualitatively, structures in the cervical images were sharper at lower wavelengths than higher wavelengths. Patients tolerated imaging well. The result suggests MSMC holds promise for cervical imaging.