Science.gov

Sample records for 10-m wind speed

  1. Comparisons of Monthly Mean 10 M Wind Speeds from Satellites and NWP Products Over the Global Ocean

    DTIC Science & Technology

    2009-10-09

    Resolution QSCAT SSM/I NOGAPS ERA-40 NCEP Sea Winds instrument on the Quick Scatterometer Special Sensor Microwave/Imager Navy Operational...measurements with 25-point smoothing as described earlier. [25] Within the latitudes spanning the Arctic and Antarctic , no ice mask is applied in order to...ET AL.: 10 M WINDS OVER THE GLOBAL OCEAN D16109 egies that blend two or more of these products to produce improved forcing fields. [53

  2. Comparisons of Monthly Mean 10 m Wind Speeds from Satellites and NWP Products over the Global Ocean

    DTIC Science & Technology

    2009-08-01

    on the Quick Scatterometer 0.250 0.250 SSM/I Special Sensor Microwave/Imager 0.250 0.250 NOGAPS Navy Operational Global Atmospheric Prediction...latitudes spanning the Arctic and Antarctic , no ice mask is applied in order to show the extent of wind measurements from QSCAT (i.e., zero for ice...14 D16109 egies that blend two or more of these products to produce improved forcing fields. [53] Acknowledgments. The two anonymous reviewers are

  3. An Examination of Residual Wind Fluctuations Observed at 10 m over Flat Terrain.

    NASA Astrophysics Data System (ADS)

    Leahey, D. M.; Hansen, M. C.; Schroeder, M. B.

    1996-01-01

    This study investigates the behavior of wind fluctuations observed at the 10-m level over a flat terrain site located some 100 km east of the Rocky Mountains. The purposes were to assess residual fluctuations in order to ascertain effects attributable to the nonhomogenous, nonstationary character of turbulence and to evaluate influences of gravity waves. Residual wind fluctuations were defined for purposes of this study as the differences between observed half-hourly average standard deviations of wind fluctuations (v, u, w) and those that are expected to occur in association with simultaneous wind speeds and static stabilities. These latter fluctuations were estimated from equations developed by Leahey, Hansen, and Schroeder (LHS).Results of the analyses showed, as expected, that residual distributions for nonwesterly wind conditions were nearly Gaussian. Standard deviations for residuals of horizontal fluctuations, attributable to the nonhomogenous, nonstationary nature of turbulence, were 0.165 and 0.210 m s1 for stable and unstable situations, respectively. For residuals associated with vertical fluctuations they were, respectively, 0.065 and 0.075 m s1.Residuals for horizontal and vertical wind fluctuations observed when winds were from the mountains showed a greater tendency for the positive bias associated with gravity waves. This tendency was most evident under unstable conditions when gravity wave influences on horizontal fluctuations were apparent about 25% of the time. These influences are explained as being associated with mountain lee waves occurring at the planetary boundary layer's capping inversion. They are evidenced at the 10-m level because atmospheric mixing processes occurring in thermally unstable atmospheric situations bring momentum generated from these waves downward to the ground.Nonstationary and nonhomogenous atmospheric turbulence effects result in wind fluctuations whose half-hourly average standard deviations differ from those

  4. Forecasting Solar Wind Speeds

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.

    2006-03-01

    By explicitly taking into account the effects of Alfvén waves, I derive from a simple energetics argument a fundamental relation that predicts solar wind (SW) speeds in the vicinity of Earth from physical properties on the Sun. Kojima et al. recently found from observations that the ratio of surface magnetic field strength to the expansion factor of open magnetic flux tubes is a good indicator of the SW speed. I show by using the derived relation that this nice correlation is evidence of Alfvén wave acceleration of the SW in expanding flux tubes. The observations further require that the fluctuation amplitudes of magnetic field lines at the surface be almost universal in different coronal holes, which needs to be tested with future observations.

  5. Wind speed forecasting for wind energy applications

    NASA Astrophysics Data System (ADS)

    Liu, Hong

    With more wind energy being integrated into our grid systems, forecasting wind energy has become a necessity for all market participants. Recognizing the market demands, a physical approach to site-specific hub-height wind speed forecasting system has been developed. This system is driven by the outputs from the Canadian Global Environmental Multiscale (GEM) model. A simple interpolation approach benchmarks the forecasting accuracy inherited from GEM. Local, site specific winds are affected on a local scale by a variety of factors including representation of the land surface and local boundary-layer process over heterogeneous terrain which have been a continuing challenge in NWP models like GEM with typical horizontal resolution of order 15-km. In order to resolve these small scale effects, a wind energy industry standard model, WAsP, is coupled with GEM to improve the forecast. Coupling the WAsP model with GEM improves the overall forecasts, but remains unsatisfactory for forecasting winds with abrupt surface condition changes. Subsequently in this study, a new coupler that uses a 2-D RANS model of boundary-layer flow over surface condition changes with improved physics has been developed to further improve the forecasts when winds coming from a water surface to land experience abrupt changes in surface conditions. It has been demonstrated that using vertically averaged wind speeds to represent geostrophic winds for input into the micro-scale models could reduce forecast errors. The hub-height wind speed forecasts could be further improved using a linear MOS approach. The forecasting system has been evaluated, using a wind energy standard evaluation matrix, against data from an 80-m mast located near the north shore of Lake Erie. Coupling with GEM-LAM and a power conversion model using a theoretical power curve have also been investigated. For hub-height wind speeds GEM appears to perform better with a 15-Ian grid than the high resolution GEM-2.5Ian version at the

  6. Thermal and Wind Effects on the Azimuth Axis Tilt of the ASTE 10-m Antenna

    NASA Astrophysics Data System (ADS)

    Ukita, Nobuharu; Ezawa, Hajime; Ikenoue, Bungo; Saito, Masao

    2007-10-01

    The azimuth axis tilt of the ASTE 10-m antenna induced by thermal and wind loadings was investigated with a dual-axis inclinometer on the azimuth axis, along with thermometers on the pedestal and yoke structures and an ultrasonic anemometer on a nearby weather station. The dependences of the inclinometer zero-point offsets against temperature of the device, temperature gradients in the pedestal and yoke structure were obtained for the measurements over 11 months during the antenna being parked at its home position (azimuth angles = ?180 degrees, an elevation angle = 60 degrees) under wind velocities < 8 m s-1. The temperature dependences of the zero-point offsets were found to be 1.24 and -0.46 arcseconds/degree, and were close to those obtained with an independent method. The azimuth axis tilts due to the temperature difference between the two opposite sides of pedestal walls were found to be about 1.1 and 1.7 arcseconds/degree, and consistent with 1.5 arcseconds/degree estimated with a simple model. The residual axis tilt of the whole samples after removal of the temperature dependences shows dependence against overturning moment estimated from the wind data. The stiffness of the antenna structures between the yoke base section and the ground was estimated to be 5.3 and 3.4 GNm/rad using the observed tilts in two directions; and were smaller than 6.0 GNm/rad from a mechanical model prediction. Based on these field experiments, we discuss the improvements and limitations of pointing performance with the inclinometer metrology system.

  7. High-speed Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Ackeret, J

    1936-01-01

    Wind tunnel construction and design is discussed especially in relation to subsonic and supersonic speeds. Reynolds Numbers and the theory of compressible flows are also taken into consideration in designing new tunnels.

  8. Unsafe at Any (Wind) Speed?.

    NASA Astrophysics Data System (ADS)

    Schmidlin, Thomas; Hammer, Barbara; King, Paul; Ono, Yuichi; Miller, L. Scott; Thumann, Gregory

    2002-12-01

    The goal of this research was to examine the relative safety and stability of stationary motor vehicles exposed to severe winds. The focus was on private passenger vehicles. 1) The behavior of two instrumented storm-chase vehicles that were exposed to severe winds, 2) the behavior of 291 vehicles exposed to a tornado, and 3) the wind speed required to upset a sedan and a minivan exposed to winds in a wind tunnel were studied. A wind as strong as 47 m s1 (105 mph) has been measured by a storm-chase pickup truck and 44 m s1 (98 mph) by a storm chase sedan. The vehicles were not adversely affected by the wind. Also studied were 291 vehicles parked outdoors at homes struck by tornadoes, and the behavior of the vehicles was compared to the F-scale damage to the house. At sites with F1 or F2 damage, 72% of the vehicles were not moved by the wind and 96% were not tipped over. At sites with F3 or F4 damage, 50% were not moved by the wind and 82% were not tipped over. Wind tunnel tests on a sedan and minivan showed they were most vulnerable to upset (lifting of one tire from the ground) with wind directions near 45° and 135°, as measured from the front. When modeled with 5° of suspension tilt to the side, the sedan was found to be upset at wind speeds of 51-67 m s1 (115-150 mph), and the minivan was upset at wind speeds of 58-80 m s1 (130-180 mph). Although an underground shelter or sturdy building offer the best protection from severe winds, it is found that a vehicle may be a relatively stable place and may be safer than a mobile home or the outdoors. These findings may warrant changes to public recommendations made during tornado warnings and other severe storm situations.

  9. Offshore wind speed and wind power characteristics for ten locations in Aegean and Ionian Seas

    NASA Astrophysics Data System (ADS)

    Bagiorgas, Haralambos S.; Mihalakakou, Giouli; Rehman, Shafiqur; Al-Hadhrami, Luai M.

    2012-08-01

    This paper utilizes wind speed data measured at 3 and 10 m above water surface level using buoys at 10 stations in Ionian and Aegean Seas to understand the behaviour of wind and thereafter energy yield at these stations using 5 MW rated power offshore wind turbine. With wind power densities of 971 and 693 W/m2 at 50 m above water surface level, Mykonos and Lesvos were found to be superb and outstanding windy sites with wind class of 7 and 6, respectively. Other locations like Athos, Santorini and Skyros with wind power density of more than 530 W/m2 and wind class of 5 were found to be the excellent sites. Around 15-16% higher winds were observed at 10 m compared to that at 3 m. Lower values of wind speed were found during summer months and higher during winter time in most of the cases reported in the present work. Slightly decreasing (~2% per year) linear trends were observed in annual mean wind speed at Lesvos and Santorini. These trends need to be verified with more data from buoys or from nearby onshore meteorological stations. At Athos and Mykonos, increasing linear trends were estimated. At all the stations the chosen wind turbine could produce energy for more than 70% of the time. The wind speed distribution was found to be well represented by Weibull parameters obtained using Maximum likelihood method compared to WAsP and Method of Moments.

  10. Vertical extrapolations of wind speed

    SciTech Connect

    Doran, J.C.; Buck, J.W.; Heflick, S.K.

    1982-09-01

    The extrapolation of wind speeds and wind speed distributions from a lower to an upper level is examined, with particular emphasis on the power law approach. While the power laws are useful for representing the behavior of winds under a variety of conditions, they are shown to be inherently incorrect and misleading for extrapolations. The law's apparent simplicity nevertheless makes it attractive for certain purposes, and its performance at a number of windy sites is tested. The principal feature seems to be the large degree of scatter found from site to site, and even at a single site from one time to the next. Part of this is attributable to the effects of stability, as is seen by dividing the data into daytime and nighttime periods, but the scatter is by no means eliminated by this division. The behavior of the power law exponents is poorer still in complex terrain. While some general tendencies of these exponents can be found, their use cannot be recommended for anything more than a preliminary or rough estimate of wind speeds. Extrapolation formulas for Weibull distributions are also tested with the same data base. They are found to work reasonably well in the mean, but the uncertainties present make their use in any particular case somewhat risky. The use of kites to obtain estimates either of wind speed distributions or power law exponent distributions is simulated. As expected, there is a considerable degree of scatter associated with the results, but the use of kites seems to offer some small possibility of improvement compared to results obtained from the simple extrapolation formulas for Weibull distributions.

  11. Multifractal Behavior of Wind Speed and Wind Direction

    NASA Astrophysics Data System (ADS)

    Weerasinghe, R. M.; Pannila, A. S.; Jayananda, M. K.; Sonnadara, D. U. J.

    2016-01-01

    In this paper, an analysis of temporal variation of wind speed and wind direction recorded at 10 min intervals are presented. The measurements were carried out at Hambanthota, a site located in the southern coastal belt of Sri Lanka which has a high potential for wind power generation. The multifractal detrended fluctuation analysis was used to analyze the temporal scaling properties of wind speeds and wind directions. The analysis was carried out for seasonal variation of wind speed and wind direction. It was observed that the scaling behavior of wind speed in Hambanthota is similar to the scaling behavior observed in previous studies which were carried out in other parts of the world. The seasonal wind and wind direction change exhibits different scaling behavior. No difference in scaling behavior was observed with heights. The degree of multifractality is high for wind direction when compared with wind speed for each season.

  12. Solar Wind Speed Charged Dust

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Weimer, D.; Jian, L. K.; Luhmann, J. G.; Omidi, N.

    2009-04-01

    The correlation of the occurrence of magnetic disturbances, known as interplanetary field enhancements (IFEs), with the asteroid 2201 Oljato can only be explained as the interaction with charged dust in the asteroid's orbit, because the events occurred both before and after alignment with the asteroid. These single spacecraft observations did not determine how fast the dust was accelerated, or if they were affected at all by the solar wind. Shortly after STEREO A and B were launched, an IFE crossed the two spacecraft as well as ACE and Wind. This four-spacecraft configuration allowed us to determine that the disturbance was moving radially outward at 700 km/s, the solar wind speed. The conventional wisdom is that only the smallest dust particles can be affected by the solar wind, but examination of periods on STEREO when the spacecraft is being sprayed with multiple beta-meteoroid strikes shows no obvious correlation. Further, the IFEs are much less frequent than the "beta-meteoroid" impacts. Hence, it is possible that IFEs are associated with much larger dust particles, perhaps 1 micron-sized dust. If true, then those particles may be very dangerous albeit rare, possessing about 104 ergs.

  13. Mars - Wind friction speeds for particle movement

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Leach, R.; White, B.; Iversen, J.; Pollack, J.

    1976-01-01

    Wind friction threshold speeds for particle movement were determined in a low pressure boundary layer wind tunnel at an atmospheric pressure of 5.3 mb. The results imply that for comparable pressures on Mars, the minimum wind friction threshold speed is about 2.5 m/sec, which would require free-stream winds of 50 to 135 m/sec, depending on the character of the surface and the atmospheric conditions. The corresponding wind speeds at the height of the Viking lander meteorology instrument would be about a factor of two less than the free-stream wind speed. The particle size most easily moved by winds on Mars is about 160 microns; particles both larger and smaller than this (at least down to about 5 microns) require stronger winds to initiate movement.

  14. Deterministic prediction of surface wind speed variations

    NASA Astrophysics Data System (ADS)

    Drisya, G. V.; Kiplangat, D. C.; Asokan, K.; Satheesh Kumar, K.

    2014-11-01

    Accurate prediction of wind speed is an important aspect of various tasks related to wind energy management such as wind turbine predictive control and wind power scheduling. The most typical characteristic of wind speed data is its persistent temporal variations. Most of the techniques reported in the literature for prediction of wind speed and power are based on statistical methods or probabilistic distribution of wind speed data. In this paper we demonstrate that deterministic forecasting methods can make accurate short-term predictions of wind speed using past data, at locations where the wind dynamics exhibit chaotic behaviour. The predictions are remarkably accurate up to 1 h with a normalised RMSE (root mean square error) of less than 0.02 and reasonably accurate up to 3 h with an error of less than 0.06. Repeated application of these methods at 234 different geographical locations for predicting wind speeds at 30-day intervals for 3 years reveals that the accuracy of prediction is more or less the same across all locations and time periods. Comparison of the results with f-ARIMA model predictions shows that the deterministic models with suitable parameters are capable of returning improved prediction accuracy and capturing the dynamical variations of the actual time series more faithfully. These methods are simple and computationally efficient and require only records of past data for making short-term wind speed forecasts within practically tolerable margin of errors.

  15. Wind speeds on extrasolar worlds

    NASA Astrophysics Data System (ADS)

    Allers, Katelyn; Biller, Beth; Vos, Johanna; Williams, Peter; Berger, Edo

    2016-08-01

    We propose for photometric monitoring observations of 2MASS J10475385+2124234 and WISE J112254.73+255021.5 using Spitzer/IRAC. 2MASS J1047+21 and WISE J1122+25 are late spectral type (T6.5 and T6) radio emitters and have measured radio periods of 1.77 hrs and 1.30 hrs, respectively. Our proposed observations will not only characterize the variability of the two coolest known radio emitters but also provide a unique opportunity to measure the first wind speeds for brown dwarfs. Spitzer is currently the only facility capable of the photometric stability, continuous observations and 4.5 micron sensitivity necessary for the success of our program.

  16. Annual variations in sea surface wind speed around Japan observed by ASCAT

    NASA Astrophysics Data System (ADS)

    Takeyama, Y.; Shimada, S.; Ohsawa, T.; Kozai, K.; Kogaki, T.

    2015-12-01

    Sea surface wind speeds and these statistics can be applied for many marine industrial activities. For example, the averaged wind speed is crucial information for a site selection of an offshore wind farm. It has widely been recognized that a total amount of the offshore wind generation is strongly depended on the annual average wind speeds. A advanced scatterometer (ASCAT), which is a kind of scatterometer aboard METOP-A and B, has observed sea surface wind speeds at the height of 10 m above the sea surface approximately twice a day using active microwaves. The annual average wind speed can be calculated from the observed wind speed. For an actual use of the annual average wind speed, generalities and representativeness of the wind speed must be clarified. To investigate annual variations in sea surface wind speed around Japan (120°E to 165°E, 19°N to 49°N), the annual average wind speeds and these standard deviations are calculated from 5 years of ASCAT observations from 2010 through 2014. It is found that there are some sea areas where standard deviations are relatively higher than their surroundings. Annual average wind speed maps indicate that the high standard deviation is caused by strong winds from Eurasia in the winter of 2011 in part of North Pacific Ocean and Sea of Okhotsk. Additionally standard deviations for only winter are also higher than for summer in those sea areas. Therefore the strong wind speed in the winter of a particular year can easily affect to the annual average wind speed. Meanwhile off the coast of Niigata and Hokkaido, there are also higher standard deviation areas than their surroundings. Differences between monthly maximum wind speeds for the winter and minimum wind speeds for the summer in these areas are larger and the large differences seem to be a cause of the high standard deviations.

  17. Generalized extreme gust wind speeds distributions

    USGS Publications Warehouse

    Cheng, E.; Yeung, C.

    2002-01-01

    Since summer 1996, the US wind engineers are using the extreme gust (or 3-s gust) as the basic wind speed to quantify the destruction of extreme winds. In order to better understand these destructive wind forces, it is important to know the appropriate representations of these extreme gust wind speeds. Therefore, the purpose of this study is to determine the most suitable extreme value distributions for the annual extreme gust wind speeds recorded in large selected areas. To achieve this objective, we are using the generalized Pareto distribution as the diagnostic tool for determining the types of extreme gust wind speed distributions. The three-parameter generalized extreme value distribution function is, thus, reduced to either Type I Gumbel, Type II Frechet or Type III reverse Weibull distribution function for the annual extreme gust wind speeds recorded at a specific site.With the considerations of the quality and homogeneity of gust wind data collected at more than 750 weather stations throughout the United States, annual extreme gust wind speeds at selected 143 stations in the contiguous United States were used in the study. ?? 2002 Elsevier Science Ltd. All rights reserved.

  18. Critical wind speed at which trees break

    NASA Astrophysics Data System (ADS)

    Virot, E.; Ponomarenko, A.; Dehandschoewercker, É.; Quéré, D.; Clanet, C.

    2016-02-01

    Data from storms suggest that the critical wind speed at which trees break is constant (≃42 m /s ), regardless of tree characteristics. We question the physical origin of this observation both experimentally and theoretically. By combining Hooke's law, Griffith's criterion, and tree allometry, we show that the critical wind speed indeed hardly depends on the height, diameter, and elastic properties of trees.

  19. Climate projection of extreme wind speed regime in the Arctic

    NASA Astrophysics Data System (ADS)

    Surkova, Galina; Sokolova, Larisa

    2016-04-01

    Extreme surface wind events over the Arctic (60-90N, 0-360 E) are studied for the modern climate and for its future possible changes on the base of ERA-Interim reanalysis data and CMIP5 scenario RCP8.5. Horizontal surface wind speed (10 m) probability distribution functions in every grid point of reanalysis and models data over the Arctic were evaluated as well as wind speed for 50, 95, 99, 99.9 percentiles (V0.50, V0.95, V0.99, V0.999). At first, changes of V0.50, V0.95, V0.99, V0.999 were studied on the base of ERA-Interim reanalysis for 1981-2010. Results showed regional inhomogenity of wind speed trend intensity. Also, analysis was made for zonal means and separate sectors of the Arctic. To study climate projection of high wind speed there were taken u,v values from CMIP5 numerical experiments for 1961-1990 (Historical) and 2081-2100 (RCP8.5). RCP8.5 scenario was chosen as having the most pronounced response in the climate system, which gave more statistical significance to the calculated trends. Modeled extreme wind speeds for the total Arctic and zonal means show rather good agreement with reanalysis data (compared for decades 1981-1990, 1991-2000). At the same time regional intermodel variability of wind speed is revealed. Trend of extreme surface wind speed in 21 century and for 2081-2100 over the Arctic are analyzed for each model. The study was supported by the Russian Science Foundation (project no. 14-37-00038).

  20. Source region of low-speed wind

    NASA Technical Reports Server (NTRS)

    Watanabe, H.; Kojima, M.; Misawa, H.; Yamauchi, Y.

    1995-01-01

    We have been carrying out the interplanetary scintillation observations at a frequency of 327 MHz. The IPS measurements at this frequency can probe the distance range of 0.1-1 AU. We will report on source regions of the low-speed winds which were observed within 0.3 AU by the IPS method. The source regions of low-speed winds have been studied. In 1991, two spacecraft of Sakigake and IMP observed two low-speed streams in one solar rotation, which originated from a magnetic neutral line on the source surface. However speeds are slightly different from each other: one is 300 km/s while the other one is 400 km/s. Similar speed difference was also observed by the IPS method. We examined differences of these source regions in the soft X-ray images observed by the Yohkoh satellite. At the source region of the lower speed wind, sun spots were found under the neutral line, while nothing except the neutral line was found for the higher speed wind. We made a synoptic chart of the solar wind speeds which were observed within 0.3 AU. In this chart, compact regions of very low speed can be found clearly, and the amplitude of a low-speed belt is smaller than that of a magnetic neutral line. Distribution of the low-speed belt is rather suited above active regions than on a neutral line calculated by the potential field model.

  1. Rain-aerosol relationships influenced by wind speed

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Russell, Lynn M.; Lou, Sijia; Liu, Ying; Singh, Balwinder; Ghan, Steven J.

    2016-03-01

    Aerosol optical depth (AOD) has been shown to correlate with precipitation rate (R) in recent studies. The R-AOD relationships over oceans are examined in this study using 150 year simulations with the Community Earth System Model. Through partial correlation analysis, with the influence of 10 m wind speed removed, R-AOD relationships exert a change from positive to negative over the midlatitude oceans, indicating that wind speed makes a large contribution to the relationships by changing the sea-salt emissions. A simulation with prescribed sea-salt emissions shows that wind speed leads to increasing R by +0.99 mm d-1 averaged globally, offsetting 64% of the wet scavenging-induced decrease between polluted and clean conditions, defined according to percentiles of AOD. These demonstrate that wind speed is one of the major drivers of R-AOD relationships. Relative humidity at 915 hPa can also result in the positive relationships; however, its role is smaller than that of wind speed.

  2. Parameterizing surface wind speed over complex topography

    NASA Astrophysics Data System (ADS)

    Helbig, N.; Mott, R.; Herwijnen, A.; Winstral, A.; Jonas, T.

    2017-01-01

    Subgrid parameterizations are used in coarse-scale meteorological and land surface models to account for the impact of unresolved topography on wind speed. While various parameterizations have been suggested, these were generally validated on a limited number of measurements in specific geographical areas. We used high-resolution wind fields to investigate which terrain parameters most affect near-surface wind speed over complex topography under neutral conditions. Wind fields were simulated using the Advanced Regional Prediction System (ARPS) on Gaussian random fields as model topographies to cover a wide range of terrain characteristics. We computed coarse-scale wind speed, i.e., a spatial average over the large grid cell accounting for influence of unresolved topography, using a previously suggested subgrid parameterization for the sky view factor. We only require correlation length of subgrid topographic features and mean square slope in the coarse grid cell. Computed coarse-scale wind speed compared well with domain-averaged ARPS wind speed. To further statistically downscale coarse-scale wind speed, we use local, fine-scale topographic parameters, namely, the Laplacian of terrain elevations and mean square slope. Both parameters showed large correlations with fine-scale ARPS wind speed. Comparing downscaled numerical weather prediction wind speed with measurements from a large number of stations throughout Switzerland resulted in overall improved correlations and distribution statistics. Since we used a large number of model topographies to derive the subgrid parameterization and the downscaling framework, both are not scale dependent nor bound to a specific geographic region. Both can readily be implemented since they are based on easy to derive terrain parameters.

  3. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  4. Wind speed measurement by paper anemometer

    NASA Astrophysics Data System (ADS)

    Zhong, Juhua; Cheng, Zhongqi; Guan, Wenchuan

    2011-09-01

    A simple wind speed measurement device, a paper anemometer, is fabricated based on the theory of standing waves. In providing the working profile of the paper anemometer, an experimental device is established, which consists of an anemometer sensor, a sound sensor, a microphone, paper strips, a paper cup, and sonic acquisition software. It shows that the sound wave detected in the paper cup has a larger amplitude and the noise is depressed, though the frequency of the sound is twice that detected directly from the strip. From the experiments, we find that the frequency of the sonic wave does not change with wind speed; however, its amplitude increases with wind speed. To predict the wind speed, a correlation is established from the sound wave amplitude.

  5. Particle inhalability at low wind speeds.

    PubMed

    Brown, James S

    2005-12-15

    Accurate quantification of the dose delivered by aerosol exposures is essential for estimating the risk of potential adverse health effects. The fraction of airborne particles that can enter the nose or mouth during inhalation is referred to as the inspirable particulate mass fraction. This inhalable fraction is equivalent to delivered dose for particles greater than approximately 25 microm (aerodynamic particle diameter, d(ae)), which deposit completely and almost exclusively in the extrathoracic airways. Particle inhalability at high wind speeds (1-9 m/s) has been well characterized. However, there is a paucity of data describing the inhalability of particles at low wind speeds (< or =0.3 m/s), which are typical of indoor environments. High-wind-speed criteria poorly describe inhalability at low wind speeds. Based on the aspiration efficiencies of blunt and sharp-edged inlets, a function was developed for oral inhalability, P(I(O)), of particles at low wind speeds. This function predicts a slow decline in P(I(O)) from 0.95 at d(ae)= 8 microm, to 0.5 at d(ae) = 74 microm, and 0.1 at d(ae)= 175 microm. Data available from the literature for inhalability at relatively low wind speeds during oral breathing are well described by this logistic function (r(2)= 0.69).

  6. Characterization of Wind Meandering in Low-Wind-Speed Conditions

    NASA Astrophysics Data System (ADS)

    Mortarini, Luca; Stefanello, Michel; Degrazia, Gervasio; Roberti, Debora; Trini Castelli, Silvia; Anfossi, Domenico

    2016-10-01

    Investigation of low-wind cases observed during the Urban Turbulent Project campaign (Torino, Italy) and at the Santa Maria meteorological station (Santa Maria, Brazil) provides insight into the wind-meandering phenomenon, i.e. large, non-turbulent oscillations of horizontal wind speed and temperature. Meandering and non-meandering cases are identified through analysis of the Eulerian autocorrelation functions of the horizontal wind-velocity components and temperature. When all three autocorrelation functions oscillate, meandering is present. As with weak turbulence, meandering shows no dependence on stability but is influenced by presence of buildings and depends on wind speed. We show that, while the standard deviation of the horizontal velocity is always large in low-wind conditions, the standard deviation of the vertical velocity shows very different behaviour in meandering and non-meandering conditions. In particular, the value of the ratio of the standard deviations of the vertical and horizontal velocities typifies the meandering condition.

  7. Different cutoff values for 10-m walking speed simply classification of walking independence in stroke patients with or without cognitive impairment

    PubMed Central

    Yoshimoto, Yoshinobu; Oyama, Yukitsuna; Tanaka, Mamoru

    2015-01-01

    [Purpose] The aim of this study was to determine the threshold for classifying walking independence in stroke patients with and without cognitive disorders. [Subjects] The subjects were 130 patients with initial stroke hemiplegia. [Methods] The following factors were analyzed for associations with walking independence: Brunnstrom stage, one-leg standing time on the paralytic side, one-leg standing time on the non-paralytic side, and 10-m walking speed. We classified the patients with Mini-Mental State Examination (MMSE) scores ≥24 points into the high-score group and those with MMSE scores of ≤23 points into the low-score group and examined the main factors and cutoff values associated with walking independence in each group. [Results] The high-score group included 69 subjects (53.1%), and the low-score group included 61 subjects (46.9%). The primary factor associated with high MMSE scores among the stroke patients was the 10-m walking time. Using a cutoff level for the 10-m walking speed of 41.4 m/min resulted in a positive likelihood ratio of 6.3. The primary factor associated with low MMSE scores among the stroke patients was the 10-m walking time. Using a cutoff level for the 10-m walking speed of 48.0 m/min resulted in a positive likelihood ratio of 7.6. [Conclusion] The cutoff value for the 10-m walking speed can be used to evaluate walking independence in patients with stroke among patients with high or low MMSE scores. PMID:26157250

  8. Different cutoff values for 10-m walking speed simply classification of walking independence in stroke patients with or without cognitive impairment.

    PubMed

    Yoshimoto, Yoshinobu; Oyama, Yukitsuna; Tanaka, Mamoru

    2015-05-01

    [Purpose] The aim of this study was to determine the threshold for classifying walking independence in stroke patients with and without cognitive disorders. [Subjects] The subjects were 130 patients with initial stroke hemiplegia. [Methods] The following factors were analyzed for associations with walking independence: Brunnstrom stage, one-leg standing time on the paralytic side, one-leg standing time on the non-paralytic side, and 10-m walking speed. We classified the patients with Mini-Mental State Examination (MMSE) scores ≥24 points into the high-score group and those with MMSE scores of ≤23 points into the low-score group and examined the main factors and cutoff values associated with walking independence in each group. [Results] The high-score group included 69 subjects (53.1%), and the low-score group included 61 subjects (46.9%). The primary factor associated with high MMSE scores among the stroke patients was the 10-m walking time. Using a cutoff level for the 10-m walking speed of 41.4 m/min resulted in a positive likelihood ratio of 6.3. The primary factor associated with low MMSE scores among the stroke patients was the 10-m walking time. Using a cutoff level for the 10-m walking speed of 48.0 m/min resulted in a positive likelihood ratio of 7.6. [Conclusion] The cutoff value for the 10-m walking speed can be used to evaluate walking independence in patients with stroke among patients with high or low MMSE scores.

  9. LIDAR wind speed measurements at a Taiwan onshore wind park

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Lin, Ta-Hui; Hsuan, Chung-Yao; Li, Yu-Cheng; Yang, Ya-Fei; Tai, Tzy-Hwan; Huang, Chien-Cheng

    2016-04-01

    Measurements of wind speed and wind direction were carried out using a Leosphere Windcube LIDAR system at a Taiwan onshore wind park. The Lidar shot a total of five laser beams to the atmosphere to collect the light-of-sight (LOS) velocity. Four beams were sent successively in four cardinal directions along a 28° scanning cone angle, followed by a fifth, vertical beam. An unchangeable sampling rate of approximately 1.2 Hz was set in the LIDAR system to collect the LOS velocity. The supervisory control and data acquisition (SCADA) data from two GE 1.5 MW wind turbines near the LIDAR deployment site were acquired for the whole measuring period from February 4 to February 16 of 2015. The SCADA data include the blade angular velocity, the wind velocity measured at hub height from an anemometer mounted on the nacelle, the wind turbine yaw angle, and power production; each parameter was recorded as averages over 1-min periods. The data analysis involving the LIDAR measurements and the SCADA data were performed to obtain the turbulent flow statistics. The results show that the turbine power production has significant dependence to the wind speed, wind direction, turbulence intensity and wind shear.

  10. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect

    Simley, E.; Pao, L. Y.; Kelley, N.; Jonkman, B.; Frehlich, R.

    2012-01-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems that are designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed the validity of physicist G.I. Taylor's 1938 frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations using the National Renewable Energy Laboratory's (NREL's) 5-megawatt turbine model to create a more realistic measurement model. A simple model of wind evolution was applied to a frozen wind field that was used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements were also evaluated using a large eddy simulation (LES) of a stable boundary layer that was provided by the National Center for Atmospheric Research. The LIDAR measurement scenario investigated consists of a hub-mounted LIDAR that scans a circle of points upwind of the turbine in order to estimate the wind speed component in the mean wind direction. Different combinations of the preview distance that is located upwind of the rotor and the radius of the scan circle were analyzed. It was found that the dominant source of measurement error for short preview distances is the detection of transverse and vertical wind speeds from the line-of-sight LIDAR measurement. It was discovered in previous studies that, in the absence of wind evolution, the dominant source of error for large preview distances

  11. Dynamics of solar wind speed: Cycle 23

    NASA Astrophysics Data System (ADS)

    Sarkar, Tushnik; Khondekar, Mofazzal H.; Banerjee, Subrata

    2017-04-01

    A statistical signal processing approach has been made to study the dynamics of the speed of steady flow of hot plasma from the corona of sun known as solar wind generated in Solar Cycle 23. A long time series of solar wind speed of length 2492 days from 1st Jan, 1997 to 28th October, 2003 collected from Coordinated Heliospheric Observations (COHO) data base at NASA's National Space Science Data Center (NSSDC) is investigated for this purpose. Detection of nonlinearity and chaos in dynamics of solar wind speed is the prime objective of this work. In the present analysis delay vector variance (DVV) method is used to detect the existence of nonlinearity within the dynamics of solar wind speed. To explore the signature of the chaos in it multiple statistical methodologies like '0-1' test, the correlation dimension analysis, computation of Information Entropy of the time series and Largest Lyapunov Exponent method have been applied. It has been observed that though the coronal plasma i.e. solar wind flow rate has a nonlinear dynamics but without any chaos. The absence of chaos indicates a probable regular behaviour of the series. The unit magnitude of the Correlation dimension indicates the presence of the deterministic component of the series. Embedding Dimension obtained argues that the deterministic component has dimension of six. The nearly zero value of the Lyapunov exponent claims that the system is conservative and exhibits Lyapunov stability. These revelations establish that not only the solar wind speed alone but the solar wind-magnetosphere coupling is also contributing towards the complexity of the magnetospheric plasma dynamics.

  12. 3D Wind: Quantifying wind speed and turbulence intensity

    NASA Astrophysics Data System (ADS)

    Barthelmie, R. J.; Pryor, S. C.; Wang, H.; Crippa, P.

    2013-12-01

    Integrating measurements and modeling of wind characteristics for wind resource assessment and wind farm control is increasingly challenging as the scales of wind farms increases. Even offshore or in relatively homogeneous landscapes, there are significant gradients of both wind speed and turbulence intensity on scales that typify large wind farms. Our project is, therefore, focused on (i) improving methods to integrate remote sensing and in situ measurements with model simulations to produce a 3-dimensional view of the flow field on wind farm scales and (ii) investigating important controls on the spatiotemporal variability of flow fields within the coastal zone. The instrument suite deployed during the field experiments includes; 3-D sonic and cup anemometers deployed on meteorological masts and buoys, anemometers deployed on tethersondes and an Unmanned Aerial Vehicle, multiple vertically-pointing continuous-wave lidars and scanning Doppler lidars. We also integrate data from satellite-borne instrumentation - specifically synthetic aperture radar and scatterometers and output from the Weather Research and Forecast (WRF) model. Spatial wind fields and vertical profiles of wind speed from WRF and from the full in situ observational suite exhibit excellent agreement in a proof-of-principle experiment conducted in north Indiana particularly during convective conditions, but showed some discrepancies during the breakdown of the nocturnal stable layer. Our second experiment in May 2013 focused on triangulating a volume above an area of coastal water extending from the port in Cleveland out to an offshore water intake crib (about 5 km) and back to the coast, and includes extremely high resolution WRF simulations designed to characterize the coastal zone. Vertically pointing continuous-wave lidars were operated at each apex of the triangle, while the scanning Doppler lidar scanned out across the water over 90 degrees azimuth angle. Preliminary results pertaining to

  13. Sonic Anemometer Vertical Wind Speed Measurement Errors

    NASA Astrophysics Data System (ADS)

    Kochendorfer, J.; Horst, T. W.; Frank, J. M.; Massman, W. J.; Meyers, T. P.

    2014-12-01

    In eddy covariance studies, errors in the measured vertical wind speed cause errors of a similar magnitude in the vertical fluxes of energy and mass. Several recent studies on the accuracy of sonic anemometer measurements indicate that non-orthogonal sonic anemometers used in eddy covariance studies underestimate the vertical wind speed. It has been suggested that this underestimation is caused by flow distortion from the interference of the structure of the anemometer itself on the flow. When oriented ideally with respect to the horizontal wind direction, orthogonal sonic anemometers that measure the vertical wind speed with a single vertically-oriented acoustic path may measure the vertical wind speed more accurately in typical surface-layer conditions. For non-orthogonal sonic anemometers, Horst et al. (2014) proposed that transducer shadowing may be a dominant factor in sonic flow distortion. As the ratio of sonic transducer diameter to path length and the zenith angle of the three transducer paths decrease, the effects of transducer shadowing on measurements of vertical velocity will decrease. An overview of this research and some of the methods available to correct historical data will be presented.

  14. Rain-aerosol relationships influenced by wind speed: RAIN-AEROSOL RELATIONSHIPS

    SciTech Connect

    Yang, Yang; Russell, Lynn M.; Lou, Sijia; Liu, Ying; Singh, Balwinder; Ghan, Steven J.

    2016-03-08

    The aerosol optical depth (AOD) has been shown to correlate with precipitation rate (R) in recent studies. The relationships between R and AOD are examined in this study using 150-year simulations in preindustrial conditions with the CESM model. Through partial correlation analysis, with the impact from 10-m wind speed removed, relationships between modeled AOD and R exert a significant change from positive to negative over the mid-latitude oceans, indicating that the wind speed has the largest contribution to the relationships over the mid-latitude oceans. Sensitivity simulation shows that variations in wind speed lead to increasing R by +0.99 mm day-1 averaged globally, offsetting 64% of the wet scavenging induced decrease in precipitation between polluted and clean conditions. These demonstrate that wind speed is one of the major drivers of R-AOD relationships. Relative humidity can also result in the positive relationships; however, its role is smaller than that of wind speed.

  15. Derivation of physically motivated wind speed scales

    NASA Astrophysics Data System (ADS)

    Dotzek, Nikolai

    A class of new wind speed scales is proposed in which the relevant scaling factors are derived from physical quantities like mass flux density, energy density (pressure), or energy flux density. Hence, they are called Energy- or E-scales, and can be applied to wind speeds of any intensity. It is shown that the Mach scale is a special case of an E-scale. Aside from its foundation in physical quantities which allow for a calibration of the scales, the E-scale concept can help to overcome the present plethora of scales for winds in the range from gale to hurricane intensity. A procedure to convert existing data based on the Fujita-scale or other scales (Saffir-Simpson, TORRO, Beaufort) to their corresponding E-scales is outlined. Even for the large US tornado record, the workload of conversion in case of an adoption of the E-scale would in principle remain manageable (if the necessary metadata to do so were available), as primarily the F5 events would have to be re-rated. Compared to damage scales like the "Enhanced Fujita" or EF-scale concept recently implemented in the USA, the E-scales are based on first principles. They can consistently be applied all over the world for the purpose of climatological homogeneity. To account for international variations in building characteristics, one should not adapt wind speed scale thresholds to certain national building characteristics. Instead, one worldwide applicable wind speed scale based on physical principles should rather be complemented by nationally-adapted damage descriptions. The E-scale concept can provide the basis for such a standardised wind speed scale.

  16. Swatch Testing at Elevated Wind Speeds

    DTIC Science & Technology

    2014-07-17

    were less than 0.2°F. Experimental uncertainty was determined in a method outlined in reference 8 (Barlow, Rae and Pope) and the measured velocity...Apr 2013. 8. Barlow, J., B., Rae , W.H., Pope, A. Low-Speed Wind Tunnel Testing, 3rd Edition, Wiley, New York, 1999. 9. Akima, H., "A New

  17. Wind Speed Measurement by Paper Anemometer

    ERIC Educational Resources Information Center

    Zhong, Juhua; Cheng, Zhongqi; Guan, Wenchuan

    2011-01-01

    A simple wind speed measurement device, a paper anemometer, is fabricated based on the theory of standing waves. In providing the working profile of the paper anemometer, an experimental device is established, which consists of an anemometer sensor, a sound sensor, a microphone, paper strips, a paper cup, and sonic acquisition software. It shows…

  18. Pitch-controlled variable-speed wind turbine generation

    SciTech Connect

    Muljadi, E.; Butterfield, C.P.

    2000-03-01

    Wind energy is a viable option to complement other types of pollution-free generation. In the early development of wind energy, the majority of wind turbines were operated at constant speed. Recently, the number of variable-speed wind turbines installed in wind farms has increased and more wind turbine manufacturers are making variable-speed wind turbines. This paper covers the operation of variable-speed wind turbines with pitch control. The system the authors considered is controlled to generate maximum energy while minimizing loads. The maximization of energy was only carried out on a static basis and only drive train loads were considered as a constraint. In medium wind speeds, the generator and power converter control the wind turbine to capture maximum energy from the wind. In the high wind speed region, the wind turbine is controlled to maintain the aerodynamic power produced by the wind turbine. Two methods to adjust the aerodynamic power were investigated: pitch control and generator load control, both of which are employed to control the operation of the wind turbine. The analysis and simulation shows that the wind turbine can be operated at its optimum energy capture while minimizing the load on the wind turbine for a wide range of wind speeds.

  19. Decadal predictability of regional scale wind speed and wind energy potentials over Central Europe

    NASA Astrophysics Data System (ADS)

    Moemken, Julia; Reyers, Mark; Buldmann, Benjamin; Pinto, Joaquim G.

    2016-04-01

    Regional climate predictions on timescales from one year to one decade are gaining importance since this time frame falls within the planning horizon of politics, economy, and society. In this context, decadal predictions are of particular interest for the development of renewable energies such as wind energy. The present study examines the decadal predictability of regional scale wind speed and wind energy potentials in the framework of the MiKlip consortium ("Mittelfristige Klimaprognosen"; www.fona-miklip.de). This consortium aims to develop a model system based on the Max-Planck-Institute Earth System Model (MPI-ESM) that can provide skilful decadal predictions on regional and global scales. Three generations of the decadal prediction system, which differ primarily in their ocean initialisation, are analysed here. Ensembles of uninitialised historical and yearly initialised hindcast experiments are used to assess different skill scores for 10m wind speeds and wind energy output (Eout) over Central Europe, with special focus given to Germany. With this aim, a statistical-dynamical downscaling (SDD) approach is used for the regionalisation of the global datasets. Its added value is evaluated by comparison of skill scores for MPI-ESM large-scale wind speeds and SDD simulated regional wind speeds. All three MPI-ESM ensemble generations show some forecast skill for annual mean wind speed and Eout over Central Europe on yearly and multi-yearly time scales. The forecast skill is mostly limited to the first years after initialisation. Differences between the three ensemble generations are generally small. The regionalisation preserves and sometimes increases the forecast skill of the global runs but results depend on lead time and ensemble generation. Moreover, regionalisation often improves the ensemble spread. Seasonal Eout skills are generally lower than for annual means. Skill scores are lowest during summer, and persist longest in autumn. A large-scale westerly

  20. Gas transfer velocities measured at low wind speed over a lake

    USGS Publications Warehouse

    Crusius, J.; Wanninkhof, R.

    2003-01-01

    The relationship between gas transfer velocity and wind speed was evaluated at low wind speeds by quantifying the rate of evasion of the deliberate tracer, SF6, from a small oligotrophic lake. Several possible relationships between gas transfer velocity and low wind speed were evaluated by using 1-min-averaged wind speeds as a measure of the instantaneous wind speed values. Gas transfer velocities in this data set can be estimated virtually equally well by assuming any of three widely used relationships between k600 and winds referenced to 10-m height, U10: (1) a bilinear dependence with a break in the slope at ???3.7 m s-1, which resulted in the best fit; (2) a power dependence; and (3) a constant transfer velocity for U10 3.7 m s-1 which, coupled with the typical variability in instantaneous wind speeds observed in the field, leads to average transfer velocity estimates that are higher than those predicted for steady wind trends. The transfer velocities predicted by the bilinear steady wind relationship for U10 < ???3.7 m s-1 are virtually identical to the theoretical predictions for transfer across a smooth surface.

  1. Wind speed forecasting in the central California wind resource area

    SciTech Connect

    McCarthy, E.F.

    1997-12-31

    A wind speed forecasting program was implemented in the summer seasons of 1985 - 87 in the Central California Wind Resource Area (WRA). The forecasting program is designed to use either meteorological observations from the WRA and local upper air observations or upper air observations alone to predict the daily average windspeed at two locations. Forecasts are made each morning at 6 AM and are valid for a 24 hour period. Ease of use is a hallmark of the program as the daily forecast can be made using data entered into a programmable HP calculator. The forecasting program was the first step in a process to examine whether the electrical energy output of an entire wind power generation facility or defined subsections of the same facility could be predicted up to 24 hours in advance. Analysis of the results of the summer season program using standard forecast verification techniques show the program has skill over persistence and climatology.

  2. Effect of Wind Speed and Relative Humidity on Atmospheric Dust Concentrations in Semi-Arid Climates

    PubMed Central

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y.; Sáez, A. Eduardo; Betterton, Eric A.

    2014-01-01

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (> 4 m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. PMID:24769193

  3. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates.

    PubMed

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y; Sáez, A Eduardo; Betterton, Eric A

    2014-07-15

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (>4m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport.

  4. Further development of an improved altimeter wind speed algorithm

    NASA Technical Reports Server (NTRS)

    Chelton, Dudley B.; Wentz, Frank J.

    1986-01-01

    A previous altimeter wind speed retrieval algorithm was developed on the basis of wind speeds in the limited range from about 4 to 14 m/s. In this paper, a new approach which gives a wind speed model function applicable over the range 0 to 21 m/s is used. The method is based on comparing 50 km along-track averages of the altimeter normalized radar cross section measurements with neighboring off-nadir scatterometer wind speed measurements. The scatterometer winds are constructed from 100 km binned measurements of radar cross section and are located approximately 200 km from the satellite subtrack. The new model function agrees very well with earlier versions up to wind speeds of 14 m/s, but differs significantly at higher wind speeds. The relevance of these results to the Geosat altimeter launched in March 1985 is discussed.

  5. What Determines the Solar Wind Speed ?

    NASA Astrophysics Data System (ADS)

    Suzuki, T. K.; Fujiki, K.; Kojima, M.; Tokumaru, M.; Hirano, M.; Baba, D.; Yamasita, M.; Hakamada, K.

    2005-05-01

    Recent observations by Interplanetary Scintillation measurements by Nagoya-STEL group (Hirano et al.2003; Kojima et al.2004) show that solar wind speed is well-correlated with B/f, where B is radial magnetic field strength at the solar surface and f is a super-radial expansion factor of open flux tubes. We show that this correlation is nicely explained by dissipation of Alfven waves no matter what types of the wave dissipation processes operate. B determines the input energy flux of Alfven waves and f controls adiabatic loss of the wave energy, so that B/f is an important control parameter which determines the solar wind speed. (reference ) [1] Hirano, M., Kojima, M., Tokumaru, M., Fujiki, K., Ohmi, T., Yamashita, M, Hakamada, K., and Hayashi, K. 2003,, Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract SH21B-0164 [2] Kojima, M., K. Fujiki, M. Hirano, M. Tokumaru, T. Ohmi, and K. Hakamada, 2004, "The Sun and the heliosphere as an Integrated System", Giannina Poletto and Steven T. Suess, Eds. Kluwer Academic Publishers, in press

  6. Nonparametric analysis of high wind speed data

    NASA Astrophysics Data System (ADS)

    Francisco-Fernández, Mario; Quintela-del-Río, Alejandro

    2013-01-01

    In this paper, nonparametric curve estimation methods are applied to analyze time series of wind speeds, focusing on the extreme events exceeding a chosen threshold. Classical parametric statistical approaches in this context consist in fitting a generalized Pareto distribution (GPD) to the tail of the empirical cumulative distribution, using maximum likelihood or the method of the moments to estimate the parameters of this distribution. Additionally, confidence intervals are usually computed to assess the uncertainty of the estimates. Nonparametric methods to estimate directly some quantities of interest, such as the probability of exceedance, the quantiles or return levels, or the return periods, are proposed. Moreover, bootstrap techniques are used to develop pointwise and simultaneous confidence intervals for these functions. The proposed models are applied to wind speed data in the Gulf Coast of US, comparing the results with those using the GPD approach, by means of a split-sample test. Results show that nonparametric methods are competitive with respect to the standard GPD approximations. The study is completed generating synthetic data sets and comparing the behavior of the parametric and the nonparametric estimates in this framework.

  7. Effectiveness of Changing Wind Turbine Cut-in Speed to Reduce Bat Fatalities at Wind Facilities

    SciTech Connect

    Huso, Manuela M. P.; Hayes, John P.

    2009-04-01

    This report details an experiment on the effectiveness of changing wind turbine cut-in speed on reducing bat fatality from wind turbines at the Casselman Wind Project in Somerset County, Pennsylvania.

  8. Spatial and Temporal Patterns of Global Onshore Wind Speed Distribution

    SciTech Connect

    Zhou, Yuyu; Smith, Steven J.

    2013-09-09

    Wind power, a renewable energy source, can play an important role in electrical energy generation. Information regarding wind energy potential is important both for energy related modeling and for decision-making in the policy community. While wind speed datasets with high spatial and temporal resolution are often ultimately used for detailed planning, simpler assumptions are often used in analysis work. An accurate representation of the wind speed frequency distribution is needed in order to properly characterize wind energy potential. Using a power density method, this study estimated global variation in wind parameters as fitted to a Weibull density function using NCEP/CFSR reanalysis data. The estimated Weibull distribution performs well in fitting the time series wind speed data at the global level according to R2, root mean square error, and power density error. The spatial, decadal, and seasonal patterns of wind speed distribution were then evaluated. We also analyzed the potential error in wind power estimation when a commonly assumed Rayleigh distribution (Weibull k = 2) is used. We find that the assumption of the same Weibull parameter across large regions can result in substantial errors. While large-scale wind speed data is often presented in the form of average wind speeds, these results highlight the need to also provide information on the wind speed distribution.

  9. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    PubMed

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  10. Wind speed statistics for Goldstone, California, anemometer sites

    NASA Technical Reports Server (NTRS)

    Berg, M.; Levy, R.; Mcginness, H.; Strain, D.

    1981-01-01

    An exploratory wind survey at an antenna complex was summarized statistically for application to future windmill designs. Data were collected at six locations from a total of 10 anemometers. Statistics include means, standard deviations, cubes, pattern factors, correlation coefficients, and exponents for power law profile of wind speed. Curves presented include: mean monthly wind speeds, moving averages, and diurnal variation patterns. It is concluded that three of the locations have sufficiently strong winds to justify consideration for windmill sites.

  11. Assessing distributions for monthly mean wind speed data

    NASA Astrophysics Data System (ADS)

    Kamil, Mira Syahirah; Razali, Ahmad Mahir

    2016-11-01

    Analysis of the wind speed behavior will contribute the vital information for the wind energy potential and its development. Hence, this study focuses on fitting several distributions to determine the most appropriate probability distribution that will describe the wind pattern in Kuala Terengganu and Mersing. Four different statistical distributions have been fitted to the monthly mean wind speed from eight different directions. Two stations of Kuala Terengganu and Mersing have been observed for the period 2000 to 2008. These distributions were tested using Kolmogorov-Smirnov statistic to find the best fit for describing the observed data. The Weibull distribution shows a clear fit for all wind speed directions in both locations.

  12. Calculation of wind speeds required to damage or destroy buildings

    NASA Astrophysics Data System (ADS)

    Liu, Henry

    Determination of wind speeds required to damage or destroy a building is important not only for the improvement of building design and construction but also for the estimation of wind speeds in tornadoes and other damaging storms. For instance, since 1973 the U.S. National Weather Service has been using the well-known Fujita scale (F scale) to estimate the maximum wind speeds of tornadoes [Fujita, 1981]. The F scale classifies tornadoes into 13 numbers, F-0 through F-12. The wind speed (maximum gust speed) associated with each F number is given in Table 1. Note that F-6 through F-12 are for wind speeds between 319 mi/hr (mph) and the sonic velocity (approximately 760 mph; 1 mph = 1.6 km/kr). However, since no tornadoes have been classified to exceed F-5, the F-6 through F-12 categories have no practical meaning [Fujita, 1981].

  13. Ground-based Pc5 ULF wave power: Solar wind speed and MLT dependence

    NASA Astrophysics Data System (ADS)

    Pahud, D. M.; Rae, I. J.; Mann, I. R.; Murphy, K. R.; Amalraj, V.

    2009-07-01

    Using over 20 years of ground-based magnetometer data from the CANOPUS/CARISMA magnetometer array, we present a statistical characterisation of Pc5 ultra-low frequency (ULF) power in the 2-10 mHz band as a function of magnetic local time (MLT), L-shell, and solar wind speed. We examine the power across L-shells between 4.2 and 7.9, using data from the PINA, ISLL, GILL and FCHU stations, and demonstrate that there is a significant MLT dependence in both the H- and D-component median 2-10 mHz power during both fast (>500 km/s) and slow (<500 km/s) solar wind speeds. The H-component power consistently dominates over D-component power at all MLTs and during both fast and slow solar wind. At the higher-L stations (L>5.4), there are strong MLT power peaks in the morning and midnight local time sectors; the morning sector dominating midnight during fast solar wind events. At lower L-shells, there is no evidence of the midnight peak and the 2-10 mHz power is more symmetric with respect to MLT except during the fastest solar wind speeds. There is little evidence in the ground-based power of a localised MLT peak in ULF power at dusk, except at the lowest L-shell station, predominantly in the H-component. The median 2-10 mHz power increases with an approximate power law dependence on solar wind speed, at all local times across the L-shell domain studied in both components. The H-component power peaks at the latitude of the GILL station, with significantly lower power at both higher and lower L-shells. Conversely, the D-component power increases monotonically. We believe that this is evidence for 2-10 mHz power accumulating at auroral latitudes in field line resonances. Finally, we discuss how such ULF wave power characterisation might be used to derive empirical radiation belt radial diffusion coefficients based on, and driven by, the solar wind speed dependence of ULF wave power.

  14. Investigation of Wind Speed Persistence Over Marmara Region

    NASA Astrophysics Data System (ADS)

    Özgür, Evren; Koçak, Kasım

    2016-04-01

    Persistence is a measure of continuity of a variable over a period of time at any location. This definition implies that wind speed persistence means a positive serial correlation in a time series. In literature, there are numerous methods for measuring wind speed persistence. In this study, wind speed persistence were obtained for 19 stations located in Marmara Region by using two different methods. Daily wind speed data, taken from Turkish State Meteorological Service, were used in the study. The observation period was taken to be 1965-2014 for all stations. The methods used in the study are directional statistical method and wind speed duration curves approach. In directional statistical method, individual dates of winds are defined as directional variables; then, directional mean and variance are calculated. Wind dates are being converted to angular values and these days are being considered as a unit vector which has direction θ. In polar coordinate, the measures of directional mean and variance have been expressed as a vector with direction θmean and magnitude r. The r value can be considered as a measure of persistence. The wind speed duration curve is simply the cumulative distribution function of the wind speed in a certain period of time. In other words, it is the graphical representation of wind speed and percentage of exceedence time for a predefined threshold wind speed value in the same graphic. As a threshold wind speed, lower quartile (q0.25) value of ranked wind speed data were selected. In application, total time period was divided into five subperiods and changes of persistence in wind speeds as far as subperiods were presented. Persistence can be used in different kinds of study areas such as control of forest fires, dispersion of air pollutants, calculation of wind energy potential, ventilation of a city, etc. The results of this analysis showed that the proposed methods can be used as an alternative approach to determine whether a given time

  15. Reducing the uncertainty in wind speed estimations near the coast

    NASA Astrophysics Data System (ADS)

    Floors, Rogier; Hahmann, Andrea N.; Karagali, Ioanna; Vasiljevic, Nikola; Lea, Guillaume; Simon, Elliot; Courtney, Michael; Ahsbahs, Tobias; Bay Hasager, Charlotte; Badger, Merete; Peña, Alfredo

    2016-04-01

    Many countries plan to meet renewable energy targets by installing near-shore wind farms, because of the high offshore wind speeds and good grid connectivity. Because of the strong relation between mean wind speed and the annual energy production, there is an interest in reducing uncertainty of the estimation of the wind speed in these coastal areas. The RUNE project aims to provide recommendations on the use of lidar systems and mesoscale models results to find the most effective (cost vs. accuracy) solution of estimating near-shore wind resources. Here we show some first results of the RUNE measuring campaign at the west coast of Jutland that started in December 2015. In this campaign, a long-range WindScanner system (a multi-lidar instrumentation) was used simultaneously with measurements from several vertical profiling lidars, a meteorological mast and an offshore buoy. These measurements result in a detailed picture of the flow in a transect across the coastline from approximately 5 km offshore up to 3 km inland. The wind speed obtained from a lidar in a sector-scanning mode and from two time-synchronized lidars that were separated horizontally but focused in the same point, will be compared. Furthermore it will be shown how the resulting horizontal wind speed transects compare with the wind speed measurements from the vertical profiling lidars and the meteorological mast. The behaviour of the coastal gradient in wind speed in this area is discussed. Satellite data for the wind over the RUNE measurement area were also collected. Synthetic Aperture Radar (SAR) winds from Sentinel-1 and TerraSAR-X were retrieved at different spatial resolutions. Advanced Scatterometer (ASCAT) swath winds were obtained from both METOP-A and B platforms. These were used for direct comparisons with the lidar in sector scanning mode.

  16. An atlas of monthly mean distributions of SSMI surface wind speed, AVHRR/2 sea surface temperature, AMI surface wind velocity, TOPEX/POSEIDON sea surface height, and ECMWF surface wind velocity during 1993

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.

    1995-01-01

    The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.

  17. Transient response of sap flow to wind speed.

    PubMed

    Chu, Chia R; Hsieh, Cheng-I; Wu, Shen-Yuang; Phillips, Nathan G

    2009-01-01

    Transient responses of sap flow to step changes in wind speed were experimentally investigated in a wind tunnel. A Granier-type sap flow sensor was calibrated and tested in a cylindrical tube for analysis of its transient time response. Then the sensor was used to measure the transient response of a well-watered Pachira macrocarpa plant to wind speed variations. The transient response of sap flow was described using the resistance-capacitance model. The steady sap flow rate increased as the wind speed increased at low wind speeds. Once the wind speed exceeded 8.0 m s(-1), the steady sap flow rate did not increase further. The transpiration rate, measured gravimetrically, showed a similar trend. The response of nocturnal sap flow to wind speed variation was also measured and compared with the results in the daytime. Under the same wind speed, the steady sap flow rate was smaller than that in the daytime, indicating differences between diurnal and nocturnal hydraulic function, and incomplete stomatal closure at night. In addition, it was found that the temporal response of the Granier sensor is fast enough to resolve the transient behaviour of water flux in plant tissue.

  18. Towards a new tool of wind speed and wind direction verification

    NASA Astrophysics Data System (ADS)

    Dorninger, Manfred

    2016-04-01

    During MesoVICT the verification of 2D-surface wind fields will receive special attention. Vector fields like wind are more complex to verify than scalar quantities. It is common approach to verify the single scalar components with traditional verification measures. This makes an overall and easy to understand interpretation of wind speed and direction verification difficult. Alternatively only wind speed is verified, which is useful for evaluating wind storms or estimating wind power. Wind direction is rarely verified. Although it is an important quantity for e.g. the correct frontal position, in the case of forest fires or during landing procedures of airplanes. In this presentation a new and simple verification procedure is introduced dealing with wind speed and direction. It is a grid-point based scheme but can be applied for spatial, for temporal as well as for ensemble forecast evaluations. In a first step differences of forecasts and observations of wind speed and direction are calculated and are filled in a specific scatter plot in a polar coordinate system. The different quadrants of the scatter plot can be interpreted in the following way (quadrants are counted anti-clockwise): I) Forecasted wind direction is rotated too anti-clockwise (directed towards the cyclone center), wind speed too high II) Forecasted wind direction is rotated too anti-clockwise, wind speed too low III) Forecasted wind direction is rotated too clockwise, wind speed too low IV) Forecasted wind direction is rotated too clockwise, wind speed too high To reduce the information of the point cloud the centre of gravity is determined and radii containing 10%, 25%, .. are defined which represent another verification measure. Several examples and possibilities of a statistical evaluation of these difference scatter plots will be presented during the conference.

  19. Wind speed and direction measurements using the sphere anemometer

    NASA Astrophysics Data System (ADS)

    Heisselmann, Hendrik; Hoelling, Michael; Peinke, Joachim

    2009-11-01

    In times of growing energy demand, the importance of wind energy is rapidly increasing and so is the need for accurate wind speed and direction measurements. The widely spread cup anemometers show significant over-speeding under turbulent wind conditions as inherent in atmospherical flows while being solely capable of detecting the wind speed. Therefore, we propose the newly developed sphere anemometer as a simple an robust sensor for direction and velocity measurements. The sphere anemometer exploits the velocity-dependent deflection of a tube, which is the order of μm and can be detected by means of a light pointer as used in atomic force microscopes. In comparative measurements under laboratory conditions the sphere anemometer showed a significantly higher temporal resolution then cup anemometers while it does not exhibit any over-speeding. Additionally, results of atmospherical wind measurements with the sphere anemometer and state-of-the-art cup anemometry are presented.

  20. The Poisson Gamma distribution for wind speed data

    NASA Astrophysics Data System (ADS)

    Ćakmakyapan, Selen; Özel, Gamze

    2016-04-01

    The wind energy is one of the most significant alternative clean energy source and rapidly developing renewable energy sources in the world. For the evaluation of wind energy potential, probability density functions (pdfs) are usually used to model wind speed distributions. The selection of the appropriate pdf reduces the wind power estimation error and also allow to achieve characteristics. In the literature, different pdfs used to model wind speed data for wind energy applications. In this study, we propose a new probability distribution to model the wind speed data. Firstly, we defined the new probability distribution named Poisson-Gamma (PG) distribution and we analyzed a wind speed data sets which are about five pressure degree for the station. We obtained the data sets from Turkish State Meteorological Service. Then, we modelled the data sets with Exponential, Weibull, Lomax, 3 parameters Burr, Gumbel, Gamma, Rayleigh which are used to model wind speed data, and PG distributions. Finally, we compared the distribution, to select the best fitted model and demonstrated that PG distribution modeled the data sets better.

  1. Improving the Accuracy of Wind Turbine Power Curve Validation by the Rotor Equivalent Wind Speed Concept

    NASA Astrophysics Data System (ADS)

    Scheurich, Frank; Enevoldsen, Peder B.; Paulsen, Henrik N.; Dickow, Kristoffer K.; Fiedel, Moritz; Loeven, Alex; Antoniou, Ioannis

    2016-09-01

    The measurement of the wind speed at hub height is part of the current IEC standard procedure for the power curve validation of wind turbines. The inherent assumption is thereby made that this measured hub height wind speed sufficiently represents the wind speed across the entire rotor area. It is very questionable, however, whether the hub height wind speed (HHWS) method is appropriate for rotor sizes of commercial state-of-the-art wind turbines. The rotor equivalent wind speed (REWS) concept, in which the wind velocities are measured at several different heights across the rotor area, is deemed to be better suited to represent the wind speed in power curve measurements and thus results in more accurate predictions of the annual energy production (AEP) of the turbine. The present paper compares the estimated AEP, based on HHWS power curves, of two different commercial wind turbines to the AEP that is based on REWS power curves. The REWS was determined by LiDAR measurements of the wind velocities at ten different heights across the rotor area. It is shown that a REWS power curve can, depending on the wind shear profile, result in higher, equal or lower AEP estimations compared to the AEP predicted by a HHWS power curve.

  2. A Nonlinear Dynamics Approach for Incorporating Wind-Speed Patterns into Wind-Power Project Evaluation

    PubMed Central

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind—the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns. PMID:25617767

  3. Hourly Wind Speed Interval Prediction in Arid Regions

    NASA Astrophysics Data System (ADS)

    Chaouch, M.; Ouarda, T.

    2013-12-01

    The long and extended warm and dry summers, the low rate of rain and humidity are the main factors that explain the increase of electricity consumption in hot arid regions. In such regions, the ventilating and air-conditioning installations, that are typically the most energy-intensive among energy consumption activities, are essential for securing healthy, safe and suitable indoor thermal conditions for building occupants and stored materials. The use of renewable energy resources such as solar and wind represents one of the most relevant solutions to overcome the increase of the electricity demand challenge. In the recent years, wind energy is gaining more importance among the researchers worldwide. Wind energy is intermittent in nature and hence the power system scheduling and dynamic control of wind turbine requires an estimate of wind energy. Accurate forecast of wind speed is a challenging task for the wind energy research field. In fact, due to the large variability of wind speed caused by the unpredictable and dynamic nature of the earth's atmosphere, there are many fluctuations in wind power production. This inherent variability of wind speed is the main cause of the uncertainty observed in wind power generation. Furthermore, producing wind power forecasts might be obtained indirectly by modeling the wind speed series and then transforming the forecasts through a power curve. Wind speed forecasting techniques have received substantial attention recently and several models have been developed. Basically two main approaches have been proposed in the literature: (1) physical models such as Numerical Weather Forecast and (2) statistical models such as Autoregressive integrated moving average (ARIMA) models, Neural Networks. While the initial focus in the literature has been on point forecasts, the need to quantify forecast uncertainty and communicate the risk of extreme ramp events has led to an interest in producing probabilistic forecasts. In short term

  4. Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrieval Assessment with Dropsondes

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Biswas, Sayak K.

    2017-01-01

    Map surface wind speed over wide swath (approximately 50-60 km, for aircraft greater than FL600) in hurricanes. Provide research data for understanding hurricane structure, and intensity change. Enable improved forecasts, warnings, and decision support.

  5. Variable speed generator technology options for wind turbine generators

    NASA Technical Reports Server (NTRS)

    Lipo, T. A.

    1995-01-01

    The electrical system options for variable speed operation of a wind turbine generator are treated in this paper. The key operating characteristics of each system are discussed and the major advantages and disadvantages of each are identified

  6. Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; Quinn, P. K.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S.; Radionov, V. F.

    2012-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (approx. 0.004 - 0.005), even for strong winds over 10m/s. The relationships show significant scatter (correlation coefficients typically in the range 0.3 - 0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used

  7. Wind speed power spectrum analysis for Bushland, Texas

    SciTech Connect

    Eggleston, E.D.

    1996-12-31

    Numerous papers and publications on wind turbulence have referenced the wind speed spectrum presented by Isaac Van der Hoven in his article entitled Power Spectrum of Horizontal Wind Speed Spectrum in the Frequency Range from 0.0007 to 900 Cycles per Hour. Van der Hoven used data measured at different heights between 91 and 125 meters above the ground, and represented the high frequency end of the spectrum with data from the peak hour of hurricane Connie. These facts suggest we should question the use of his power spectrum in the wind industry. During the USDA - Agricultural Research Service`s investigation of wind/diesel system power storage, using the appropriate wind speed power spectrum became a significant issue. We developed a power spectrum from 13 years of hourly average data, 1 year of 5 minute average data, and 2 particularly gusty day`s 1 second average data all collected at a height of 10 meters. While the general shape is similar to the Van der Hoven spectrum, few of his peaks were found in the Bushland spectrum. While higher average wind speeds tend to suggest higher amplitudes in the high frequency end of the spectrum, this is not always true. Also, the high frequency end of the spectrum is not accurately described by simple wind statistics such as standard deviation and turbulence intensity. 2 refs., 5 figs., 1 tab.

  8. Capturing Wind Speed and Snow Accumulation Gradients across Complex Terrain

    NASA Astrophysics Data System (ADS)

    Winstral, A. H.; Marks, D. G.; Gurney, R. J.

    2009-12-01

    Wind speeds vary dramatically over short distances in mountain settings. Snow distribution is strongly affected by these disparate winds with drifts containing meters of snow-water-equivalence (SWE) often found adjacent to windward slopes containing minimal amounts of SWE. The heterogeneous snow distribution effects runoff, soil moisture, and vegetation patterns. Capturing these gradients in models is difficult due to the inherent complexity of wind fields and a general lack of data from high elevation, wind-exposed locations. This study was conducted in the Reynolds Mountain East research basin in southwest Idaho, USA. The basin is uniquely instrumented with a network of automated wind and snow depth sensors that capture a large range of variability. Additional manual snow surveys were conducted twice a year that captured the full gradient of snow distribution present in the basin. This unique dataset formed the foundation for establishing relationships between the variables of interest and readily available terrain and vegetation data. A significant relationship between upwind terrain structure and wind speed was established and further validated at two other sites. Snow accumulation rates were related to wind speed and terrain structure. Computationally efficient methods for distributing wind speed and snow accumulation from single point measurements were established from these findings. The algorithms were used to derive the spatial forcing fields for a distributed mass and energy balance snow model with effective results.

  9. Plant Gas Exchange at High Wind Speeds 1

    PubMed Central

    Caldwell, Martyn M.

    1970-01-01

    High altitude Rhododendron ferrugineum L. and Pinus cembra L. seedlings were exposed to winds at 15 meters per second for 24-hour periods. Wind-sensitive stomata of Rhododendron seedlings immediately initiated a closing response which resulted in decreased photosynthesis and an even greater reduction in transpiration. Stomatal aperture and transpiration rates of P. cembra were only slightly reduced by high speed winds. However, photosynthesis was substantially reduced because of changes in needle display to available irradiation. PMID:16657501

  10. Evaluation of SEASAT-A SMMR derived wind speed measurements

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Wind speeds derived from versions of the least-squares and regression algorithms developed after the JASIN Workshop were evaluated. The accuracy of scanning multichannel microwave radiometer (SMMR) wind retrievals was determined in terms of the intrinsic accuracy of a baseline surface truth data set in favorable conditions. Effects which degrade the wind retrievals or introduce biases were identified and assessed. The performance of the SMMR in storms was ascertained with particular emphasis on the effects of rain.

  11. Coronal hole structure and the high speed solar wind

    NASA Technical Reports Server (NTRS)

    Holzer, Thomas E.; Leer, Egil

    1997-01-01

    The basic physical processes which are important in the acceleration of high speed wind from coronal holes are reviewed. The early works of Birkeland and Parker are discussed. The extension of Parker's work is included. It is shown that the greatest area of uncertainty is that of coronal heating. It is demonstrated that in modeling solar wind acceleration, it is important to carry out a study on the chromosphere-corona-wind system analysis.

  12. Verification of high-speed solar wind stream forecasts using operational solar wind models

    NASA Astrophysics Data System (ADS)

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.; Nikolic, Ljubomir; Vennerstrom, Susanne; Schöngassner, Florian; Hofmeister, Stefan J.

    2016-07-01

    High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluate high-speed stream forecasts made by the empirical solar wind forecast (ESWF) and the semiempirical Wang-Sheeley-Arge (WSA) model based on the in situ plasma measurements from the Advanced Composition Explorer (ACE) spacecraft for the years 2011 to 2014. While the ESWF makes use of an empirical relation between the coronal hole area observed in Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images and solar wind properties at the near-Earth environment, the WSA model establishes a link between properties of the open magnetic field lines extending from the photosphere to the corona and the background solar wind conditions. We found that both solar wind models are capable of predicting the large-scale features of the observed solar wind speed (root-mean-square error, RMSE ≈100 km/s) but tend to either overestimate (ESWF) or underestimate (WSA) the number of high-speed solar wind streams (threat score, TS ≈ 0.37). The predicted high-speed streams show typical uncertainties in the arrival time of about 1 day and uncertainties in the speed of about 100 km/s. General advantages and disadvantages of the investigated solar wind models are diagnosed and outlined.

  13. Indexed semi-Markov process for wind speed modeling.

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first

  14. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NASA Astrophysics Data System (ADS)

    Diepeveen, N. F. B.; Jarquin-Laguna, A.

    2014-12-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near maximum aerodynamic efficiency for below rated wind speeds. The experiments with a small horizontal-axis wind turbine rotor, coupled to a hydraulic circuit, were conducted at the Open Jet Facility of the Delft University of Technology. In theory, the placement of a nozzle at the end of the hydraulic circuit causes the pressure and hence the rotor torque to increase quadratically with flow speed and hence rotation speed. The rotor torque is limited by a pressure relief valve. Results from the experiments proved the functionality of this passive speed control concept. By selecting the correct nozzle outlet area the rotor operates at or near the optimum tip speed ratio.

  15. Physical nature of the low-speed solar wind

    SciTech Connect

    Gosling, J.T.

    1996-09-01

    In situ observations indicate that the low-speed wind is highly variable. It commonly originates on open field lines that thread coronal streamers in the vicinity of the magnetic equator, but transient ejections are also a source of low-speed flows on occasion. Close to the Sun a large flow shear probably is common at the interface between low- and high-speed flows. Near solar activity minimum low-speed flows are confined to a narrow band 40-45{degree} wide centered roughly on the solar equator, but near solar maximum low-speed flows may dominate at all heliographic latitudes.

  16. Rotor equivalent wind speed for power curve measurement - comparative exercise for IEA Wind Annex 32

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Cañadillas, B.; Clifton, A.; Feeney, S.; Nygaard, N.; Poodt, M.; St. Martin, C.; Tüxen, E.; Wagenaar, J. W.

    2014-06-01

    A comparative exercise has been organised within the International Energy Agency (IEA) Wind Annex 32 in order to test the Rotor Equivalent Wind Speed (REWS) method under various conditions of wind shear and measurement techniques. Eight organisations from five countries participated in the exercise. Each member of the group has derived both the power curve based on the wind speed at hub height and the power curve based on the REWS. This yielded results for different wind turbines, located in diverse types of terrain and where the wind speed profile was measured with different instruments (mast or various lidars). The participants carried out two preliminary steps in order to reach consensus on how to implement the REWS method. First, they all derived the REWS for one 10 minute wind speed profile. Secondly, they all derived the power curves for one dataset. The main point requiring consensus was the definition of the segment area used as weighting for the wind speeds measured at the various heights in the calculation of the REWS. This comparative exercise showed that the REWS method results in a significant difference compared to the standard method using the wind speed at hub height in conditions with large shear and low turbulence intensity.

  17. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect

    Muljadi, E.; Butterfield, C.P.; Migliore, P.

    1996-11-01

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up, and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy the authors analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. In extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  18. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect

    Muljadi, E.; Butterfield, C.P.; Migliore, P.

    1995-11-01

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy we analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. in extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  19. MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY

    SciTech Connect

    Garrett, A; Robert Kurzeja, R; Eliel Villa-Aleman, E; Cary Tuckfield, C; Malcolm Pendergast, M

    2009-01-20

    The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper [1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology and water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions.

  20. Variable-Speed Wind System Design : Final Report.

    SciTech Connect

    Lauw, Hinan K.; Weigand, Claus H.; Marckx, Dallas A.; Electronic Power Conditioning, Inc.

    1993-10-01

    Almost from the onset of the development of wind energy conversion systems (WECS), it was known that variable-speed operation of the turbine would maximize energy capture. This study was commissioned to assess the cost, efficiency gain, reduction of the cost of energy (COE), and other operating implications of converting the existing hardware of a modern fixed-speed wind energy conversion system to variable-speed operation. The purpose of this study was to develop a preliminary design for the hardware required to allow variable-speed operation using a doubly-fed generator with an existing fixed-speed wind turbine design. The turbine selected for this study is the AWT-26 designed and built by Advanced Wind Turbines Inc. of Redmond, Washington. The lowest projected COE using this variable-speed generation system is projected to be $0.0499/kWh, compared to the lowest possible COE with fixed-speed generation which is projected to be $0.0546/kWh. This translates into a 8.6% reduction of the COE using this variable-speed generation option. The preliminary system design has advanced to where the printed circuit boards can be physically laid out based on the schematics and the system software can be written based on the control flow-charts. The core of hardware and software has been proven to be successful in earlier versions of VSG systems. The body of this report presents the results of the VSWG system development. Operation under normal and fault conditions is described in detail, the system performance for variable-speed operation is estimated and compared to the original fixed-speed system performance, and specifications for all system components (generator, power electronic converter, and system controller) are given. Costs for all components are estimated, and incremental system cost is compared to incremental energy production. Finally, operational features of the VSWG which are not available in the existing FSWG system are outlined.

  1. An Automatic Speed Control for Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1928-01-01

    Described here is an automatic control that has been used in several forms in wind tunnels at the Washington Navy Yard. The form now in use with the 8-foot tunnel at the Navy Yard is considered here. Details of the design and operation of the automatic control system are given. Leads from a Pitot tube are joined to an inverted cup manometer located above a rheostat. When the sliding weight of this instrument is set to a given notch, say for 40 m.p.h, the beam tip vibrates between two electric contacts that feed the little motor. Thus, when the wind is too strong or too weak, the motor automatically throws the rheostat slide forward and backward. If it failed to function well, the operator would notice the effect on his meniscus, and would operate the hand control by merely pressing the switch.

  2. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    SciTech Connect

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  3. Results and validation of marine surface wind speed obtained from SAC-D/Aquarius MWR

    NASA Astrophysics Data System (ADS)

    Tauro, C. B.; Etala, P.; Echevarría, P.; Hejazin, Y.; Jacob, M. M.; Jones, L.

    2012-12-01

    MWR (MicroWave Radiometer) is a radiometer on board SAC-D/Aquarius satellite, launched in June 2011. The SAC-D/Aquarius science mission was developed jointly by the Nacional Space Agency of Argentina (CONAE, Comisión Nacional de Actividades Espaciales) and the National Aeronautics and Space Administration of USA (NASA), that focuses on understanding the interaction between the global water cycle, ocean circulation and climate by measuring sea surface salinity. MWR is a three channel push broom, Dicke radiometer, that has 16 beams, 8 forward-looking at 36.5 GHz (in vertical and horizontal polarization) and 8 aft-looking at 23.8 GHz (in horizontal polarization), with a swath of approximately 380 Km. The beams are arranged to have two incidence angles, one of 52° (odd beams) and one of 58° (even beams) for both forward and aft-looks. Since recently, CONAE with collaboration of CFRSL (Central Florida Remote Sensing Laboratory), are generating geophysical parameters, all over the sea surface, using brightness temperature measurements from MWR. These parameters include columnar water vapor, wind speed, sea ice concentration and rain rate, which are ancillary data for the Aquarius salinity measurements. We present in this paper the first results of wind speed over the sea, obtained using the MWR data. The wind speed retrieval algorithm is based on the microwave radiative transfer theory by Wentz [1]. The algorithm developed uses MWR brigthness temperature at 36.5 GHz in both polarizations and sea surface temperature obtained from GDAS. As a result, the neutral stability ocean surface wind speed at 10 m height and the atmospheric trasnmissivity at 36.5 GHz are retrieved. In addition, a validation process in collaboration with the Naval Hydrographic Service of Argentina (SHN) has started. The final goal of this on-going work is to assess the quality of MWR wind data in conjunction with surface wind observations from other sources in a data assimilation system. At this

  4. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement.

    PubMed

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-06-02

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes.

  5. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement

    PubMed Central

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-01-01

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes. PMID:27271625

  6. Reduced Wind Speed Improves Plant Growth in a Desert City

    PubMed Central

    Bang, Christofer; Sabo, John L.; Faeth, Stanley H.

    2010-01-01

    Background The often dramatic effects of urbanization on community and ecosystem properties, such as primary productivity, abundances, and diversity are now well-established. In most cities local primary productivity increases and this extra energy flows upwards to alter diversity and relative abundances in higher trophic levels. The abiotic mechanisms thought to be responsible for increases in urban productivity are altered temperatures and light regimes, and increased nutrient and water inputs. However, another abiotic factor, wind speed, is also influenced by urbanization and well known for altering primary productivity in agricultural systems. Wind effects on primary productivity have heretofore not been studied in the context of urbanization. Methodology/Principal Findings We designed a field experiment to test if increased plant growth often observed in cities is explained by the sheltering effects of built structures. Wind speed was reduced by protecting Encelia farinosa (brittlebush) plants in urban, desert remnant and outlying desert localities via windbreaks while controlling for water availability and nutrient content. In all three habitats, we compared E. farinosa growth when protected by experimental windbreaks and in the open. E. farinosa plants protected against ambient wind in the desert and remnant areas grew faster in terms of biomass and height than exposed plants. As predicted, sheltered plants did not differ from unprotected plants in urban areas where wind speed is already reduced. Conclusion/Significance Our results indicate that reductions in wind speed due to built structures in cities contribute to increased plant productivity and thus also to changes in abundances and diversity of higher trophic levels. Our study emphasizes the need to incorporate wind speed in future urban ecological studies, as well as in planning for green space and sustainable cities. PMID:20548790

  7. Wind Speed Preview Measurement and Estimation for Feedforward Control of Wind Turbines

    NASA Astrophysics Data System (ADS)

    Simley, Eric J.

    Wind turbines typically rely on feedback controllers to maximize power capture in below-rated conditions and regulate rotor speed during above-rated operation. However, measurements of the approaching wind provided by Light Detection and Ranging (lidar) can be used as part of a preview-based, or feedforward, control system in order to improve rotor speed regulation and reduce structural loads. But the effectiveness of preview-based control depends on how accurately lidar can measure the wind that will interact with the turbine. In this thesis, lidar measurement error is determined using a statistical frequency-domain wind field model including wind evolution, or the change in turbulent wind speeds between the time they are measured and when they reach the turbine. Parameters of the National Renewable Energy Laboratory (NREL) 5-MW reference turbine model are used to determine measurement error for a hub-mounted circularly-scanning lidar scenario, based on commercially-available technology, designed to estimate rotor effective uniform and shear wind speed components. By combining the wind field model, lidar model, and turbine parameters, the optimal lidar scan radius and preview distance that yield the minimum mean square measurement error, as well as the resulting minimum achievable error, are found for a variety of wind conditions. With optimized scan scenarios, it is found that relatively low measurement error can be achieved, but the attainable measurement error largely depends on the wind conditions. In addition, the impact of the induction zone, the region upstream of the turbine where the approaching wind speeds are reduced, as well as turbine yaw error on measurement quality is analyzed. In order to minimize the mean square measurement error, an optimal measurement prefilter is employed, which depends on statistics of the correlation between the preview measurements and the wind that interacts with the turbine. However, because the wind speeds encountered by

  8. SSMI Wind Speed Climatology of the Time of Monsoon Wind Offset in the Western Arabian Sea

    NASA Technical Reports Server (NTRS)

    Halpern, David

    2000-01-01

    Forecasting the time of onset of monsoon wind in the western Arabian Sea, which is believed to precede the onset of rainfall along the west coast of India, is an important unsolved problem. Prior to measurements of the surface wind field by satellite, there was an absence of suitable surface wind observations. NASA scatterometer (NSCAT) surface wind vectors revealed that the time of the 1997 onset of 12 m/s southwest monsoon wind speeds in the western Arabian Sea preceded the onset of monsoon rainfall in Goa, India, by 3 - 4 days. Wind speed and direction data were necessary to establish a dynamical mechanism between times of onset of 12 m/s wind speed off Somalia and rainfall in Goa. Except for NSCAT, no satellite scatterometer wind product recorded adequately sampled 2-day 1deg x 1deg averaged wind vectors, which are the required space and time scales, to examine the wind-rain relationship in other years. However, the greater-than-95% steadiness of summer monsoon winds allows an opportunity to use satellite measurements of surface wind speed. The Special Sensor Microwave Imager (SSMI) recorded surface wind speed with adequate sampling to produce a 1-day, 1deg x 1deg data product during 1988 - 1998. SSMI data had been uniformly processed throughout the period. Times of onset of 12 m/s wind speed off Somalia determined with the SSMI data set were 21 May 1988, 24 May 1989, 17 May 1990, 28 May 1991, 8 June 1992, 28 May 1993, 30 May 1994, 7 June 1995, 29 May 1996, 12 June 1997, and 15 May 1998. Uncertainty of the 1992 and 1996 times of onset were increased because of the absence of SSMI data on 6 and 7 June 1992 and on 30 May 1996. Correlations of timing of monsoon wind onset with El Nino will be described. Variability of the time difference between times of onset of 12 m/s wind speed and Goa rainfall will be discussed. At the time of submission of the abstract, the Goa rainfall data have not arrived from the India Meteorological Department.

  9. Aerodynamic Separability in Tip Speed Ratio and Separability in Wind Speed- a Comparison

    NASA Astrophysics Data System (ADS)

    Gala Santos, M. L.; Leithead, W. E.; Jamieson, P.

    2014-12-01

    From extensive application over a number of years, it has been established that the nonlinear rotor aerodynamics of typical medium and large wind turbines exhibit an effectively global separability property, in other words the aerodynamic torque of the machine can be defined by two independent additive functions. Two versions of the separability of aerodynamic torque for variable speed wind turbines are investigated here; the separated function, related to wind speed, in the first version is only dependent on that variable and not rotor speed and in the second version is only dependent on tip speed ratio. Both provide very good approximations to the aerodynamic torque over extensive neighbourhoods of T0, at least from 0 to 2T0.

  10. Higher-than-predicted saltation threshold wind speeds on Titan

    NASA Astrophysics Data System (ADS)

    Burr, Devon M.; Bridges, Nathan T.; Marshall, John R.; Smith, James K.; White, Bruce R.; Emery, Joshua P.

    2015-01-01

    Titan, the largest satellite of Saturn, exhibits extensive aeolian, that is, wind-formed, dunes, features previously identified exclusively on Earth, Mars and Venus. Wind tunnel data collected under ambient and planetary-analogue conditions inform our models of aeolian processes on the terrestrial planets. However, the accuracy of these widely used formulations in predicting the threshold wind speeds required to move sand by saltation, or by short bounces, has not been tested under conditions relevant for non-terrestrial planets. Here we derive saltation threshold wind speeds under the thick-atmosphere, low-gravity and low-sediment-density conditions on Titan, using a high-pressure wind tunnel refurbished to simulate the appropriate kinematic viscosity for the near-surface atmosphere of Titan. The experimentally derived saltation threshold wind speeds are higher than those predicted by models based on terrestrial-analogue experiments, indicating the limitations of these models for such extreme conditions. The models can be reconciled with the experimental results by inclusion of the extremely low ratio of particle density to fluid density on Titan. Whereas the density ratio term enables accurate modelling of aeolian entrainment in thick atmospheres, such as those inferred for some extrasolar planets, our results also indicate that for environments with high density ratios, such as in jets on icy satellites or in tenuous atmospheres or exospheres, the correction for low-density-ratio conditions is not required.

  11. Higher-than-predicted saltation threshold wind speeds on Titan.

    PubMed

    Burr, Devon M; Bridges, Nathan T; Marshall, John R; Smith, James K; White, Bruce R; Emery, Joshua P

    2015-01-01

    Titan, the largest satellite of Saturn, exhibits extensive aeolian, that is, wind-formed, dunes, features previously identified exclusively on Earth, Mars and Venus. Wind tunnel data collected under ambient and planetary-analogue conditions inform our models of aeolian processes on the terrestrial planets. However, the accuracy of these widely used formulations in predicting the threshold wind speeds required to move sand by saltation, or by short bounces, has not been tested under conditions relevant for non-terrestrial planets. Here we derive saltation threshold wind speeds under the thick-atmosphere, low-gravity and low-sediment-density conditions on Titan, using a high-pressure wind tunnel refurbished to simulate the appropriate kinematic viscosity for the near-surface atmosphere of Titan. The experimentally derived saltation threshold wind speeds are higher than those predicted by models based on terrestrial-analogue experiments, indicating the limitations of these models for such extreme conditions. The models can be reconciled with the experimental results by inclusion of the extremely low ratio of particle density to fluid density on Titan. Whereas the density ratio term enables accurate modelling of aeolian entrainment in thick atmospheres, such as those inferred for some extrasolar planets, our results also indicate that for environments with high density ratios, such as in jets on icy satellites or in tenuous atmospheres or exospheres, the correction for low-density-ratio conditions is not required.

  12. Examples of the Influence of Turbine Wakes on Downwind Power Output, Surface Wind Speed, Turbulence and Flow Convergence in Large Wind Farms

    NASA Astrophysics Data System (ADS)

    Takle, E. S.; Rajewski, D. A.; Lundquist, J. K.; Doorenbos, R. K.

    2014-12-01

    We have analyzed turbine power and concurrent wind speed, direction and turbulence data from surface 10-m flux towers in a large wind farm for experiments during four summer periods as part of the Crop Wind Energy Experiment (CWEX). We use these data to analyze surface differences for a near-wake (within 2.5 D of the turbine line), far wake (17 D downwind of the turbine line), and double wake (impacted by two lines of turbines about 34 D downwind of the first turbine line) locations. Composites are categorized by10 degree directional intervals and three ambient stability categories as defined by Rajewski et al. (2013): neutral (|z/L|<0.05), stable (z/L>0.05) and unstable (z/L<-0.05), where z is the height of the measurement and L is the Monin-Obhukov length. The dominant influence of the turbines is under stably stratified conditions (i. e., mostly at night). A 25% to 40% increase in mean wind speed occurs when turbine wakes are moving over the downwind station at a distance of 2.8 D and 5.4 D (D = fan diameter). For the double wake condition (flux station leeward of two lines of turbines) we find a daytime (unstable conditions) speed reduction of 20% for southerly wind, but for nighttime (stable conditions) the surface speeds are enhancedby 40-60% for SSW-SW winds. The speedup is reduced as wind directions shift to the west. We interpret these speed variations as due to the rotation of the wake and interaction (or not) with higher speed air above the rotor layer in highly sheared nocturnal low-level jet conditions. From a cluster of flux stations and three profiling lidars deployed within and around a cluster of turbines in 2013 (CWEX-13) we found evidence of mesoscale influences. In particular, surface convergence (wind direction deflection of 10-20 degrees) was observed during periods of low nighttime winds (hub-height winds of 4-6 m/s) with power reduction of 50-75%. This is consistent with a similar range of deflection observed from a line of turbines in CWEX

  13. Modulation of Saturn's radio clock by solar wind speed.

    PubMed

    Zarka, Philippe; Lamy, Laurent; Cecconi, Baptiste; Prangé, Renée; Rucker, Helmut O

    2007-11-08

    The internal rotation rates of the giant planets can be estimated by cloud motions, but such an approach is not very precise because absolute wind speeds are not known a priori and depend on latitude: periodicities in the radio emissions, thought to be tied to the internal planetary magnetic field, are used instead. Saturn, despite an apparently axisymmetric magnetic field, emits kilometre-wavelength (radio) photons from auroral sources. This emission is modulated at a period initially identified as 10 h 39 min 24 +/- 7 s, and this has been adopted as Saturn's rotation period. Subsequent observations, however, revealed that this period varies by +/-6 min on a timescale of several months to years. Here we report that the kilometric radiation period varies systematically by +/-1% with a characteristic timescale of 20-30 days. Here we show that these fluctuations are correlated with solar wind speed at Saturn, meaning that Saturn's radio clock is controlled, at least in part, by conditions external to the planet's magnetosphere. No correlation is found with the solar wind density, dynamic pressure or magnetic field; the solar wind speed therefore has a special function. We also show that the long-term fluctuations are simply an average of the short-term ones, and therefore the long-term variations are probably also driven by changes in the solar wind.

  14. Cosmic ray modulation by high-speed solar wind fluxes

    NASA Technical Reports Server (NTRS)

    Dorman, L. I.; Kaminer, N. S.; Kuzmicheva, A. E.; Mymrina, N. V.

    1985-01-01

    Cosmic ray intensity variations connected with recurrent high-speed fluxes (HSF) of solar wind are investigated. The increase of intensity before the Earth gets into a HSF, north-south anisotropy and diurnal variation of cosmic rays inside a HSF as well as the characteristics of Forbush decreases are considered.

  15. Regime-dependent validation of simulated surface wind speed in coastal areas of the North Sea

    NASA Astrophysics Data System (ADS)

    Anders, Ivonne; Rockel, Burkhardt

    2014-05-01

    The knowledge of the wind climate at specific locations is of vital importance for risk assessment, engineering, and wind power assessment. Results from regional climate models (RCM) are getting more and more important to enlarge the investigation from local to regional scale. In this study we investigate the simulated near surface wind speed by a regional climate multi model ensemble carried out in the EU funded project ENSEMBLES. Within this project several participating European institutions run their regional climate models (RCM) for the same European domain (including the Mediterranean and Island) with the same grid size of 0.44° and in a second simulation 0.22°. The simulations use ERA40 reanalysis as forcing data and cover at least the time period from 1961 to 2000. To verify the near surface wind speed simulated by all participating models we compared not only daily mean of simulated 10m-wind speed but also daily maximum values to observation data. The special focus is on the coastal regions of the Netherlands and Germany. The objective procedure to classify the atmospheric circulation near the surface for the North Sea goes back to investigations of Jenkinson and Collison (1977). This simple and efficient method is based on the areal pressure distribution at the mean sea level (MSLP) and the derivation of two representative indices for wind and velocity at 16 grid points covering the North Sea and the surrounding with a spatial resolution of 10° by 5° (longitude by latitude). The definition of the circulation type, but also the identification of storm events are finally based on empirical relations between the two indices. Based on this weather classification we carry out a regime-dependent validation of the simulated surface wind speeds using the described analysing methods. We applied several measures and skill scores to analyse the RCMs performance compared to the driving field and to evaluate accuracy gain by including higher spatial resolution of

  16. The Link Between Mineral Dust and Wind Speed: Implications for Wind Energy in the Maghreb

    NASA Astrophysics Data System (ADS)

    McGraw, Z.; Storelvmo, T.

    2014-12-01

    Airborne dust is capable of degrading wind turbine performance. This will be a particularly salient consideration for future schemes to utilize wind energy in the Maghreb, a region of Africa marked by the presence of the Sahara desert, the world's largest source of mineral dust. In this study we analyzed the correlation between wind speed and the existence of dust in measurements pertaining to the region. Wind speed data was acquired from meteorological masts along with reanalysis output. Comparisons were made to the presence of polluted and desert dust as identified by CALIOP, a satellite-based lidar instrument, and to coarse-mode Aerosol Optical Depth (AOD) measurements from the AERONET network of sun photometers. It was anticipated that results would evidence the existence of a critical wind speed that is required for the emission of noticeable desert dust. The proximity of this threshold to the ideal range of wind speeds for turbine efficiency can potentially influence the feasibility of harvesting wind energy in the region.

  17. An atlas of monthly mean distributions of GEOSAT sea surface height, SSMI surface wind speed, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1988

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Zlotnicki, V.; Newman, J.; Brown, O.; Wentz, F.

    1991-01-01

    Monthly mean global distributions for 1988 are presented with a common color scale and geographical map. Distributions are included for sea surface height variation estimated from GEOSAT; surface wind speed estimated from the Special Sensor Microwave Imager on the Defense Meteorological Satellite Program spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer on NOAA spacecrafts; and the Cartesian components of the 10m height wind vector computed by the European Center for Medium Range Weather Forecasting. Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.

  18. Magnitude and frequency of wind speed shears and associated downdrafts

    NASA Technical Reports Server (NTRS)

    Alexander, M. B.; Campbell, C. W.

    1981-01-01

    Data are presented indicating the frequency of occurrence of wind shear and downdrafts together with information on the simultaneous occurrence of these two phenomena. High resolution wind profile measurements recorded at a 150 meter ground winds tower facility were used for the analysis. From instantaneous measurements during horizontal wind speeds of gale-force and below intensity, vertical motion at the 10, 60, and 150 m levels was approximately 60 percent downward and 40 percent upward. At the 18 level the percentages were reversed. Updraft maxima were an order of magnitude or two greater than downdrafts at all levels. Frequency of vertical motion or = 9.7 kts for a year at four levels was 338 occurrences upward and 274 downward. Approximately 90 percent of these updrafts occurred at the 18 m level almost equally during summer and winter, and 65 percent of the downdrafts were at the 150 m level during summer.

  19. Parameterization of air sea gas fluxes at extreme wind speeds

    NASA Astrophysics Data System (ADS)

    McNeil, Craig; D'Asaro, Eric

    2007-06-01

    Air-sea flux measurements of O 2 and N 2 obtained during Hurricane Frances in September 2004 [D'Asaro, E. A. and McNeil, C. L., 2006. Measurements of air-sea gas exchange at extreme wind speeds. Journal Marine Systems, this edition.] using air-deployed neutrally buoyant floats reveal the first evidence of a new regime of air-sea gas transfer occurring at wind speeds in excess of 35 m s - 1 . In this regime, plumes of bubbles 1 mm and smaller in size are transported down from near the surface of the ocean to greater depths by vertical turbulent currents with speeds up to 20-30 cm s - 1 . These bubble plumes mostly dissolve before reaching a depth of approximately 20 m as a result of hydrostatic compression. Injection of air into the ocean by this mechanism results in the invasion of gases in proportion to their tropospheric molar gas ratios, and further supersaturation of less soluble gases. A new formulation for air-sea fluxes of weakly soluble gases as a function of wind speed is proposed to extend existing formulations [Woolf, D.K, 1997. Bubbles and their role in gas exchange. In: Liss, P.S., and Duce, R.A., (Eds.), The Sea Surface and Global Change. Cambridge University Press, Cambridge, UK, pp. 173-205.] to span the entire natural range of wind speeds over the open ocean, which includes hurricanes. The new formulation has separate contributions to air-sea gas flux from: 1) non-supersaturating near-surface equilibration processes, which include direct transfer associated with the air-sea interface and ventilation associated with surface wave breaking; 2) partial dissolution of bubbles smaller than 1 mm that mix into the ocean via turbulence; and 3) complete dissolution of bubbles of up to 1 mm in size via subduction of bubble plumes. The model can be simplified by combining "surface equilibration" terms that allow exchange of gases into and out of the ocean, and "gas injection" terms that only allow gas to enter the ocean. The model was tested against the

  20. Performance of Statistical Temporal Downscaling Techniques of Wind Speed Data Over Aegean Sea

    NASA Astrophysics Data System (ADS)

    Gokhan Guler, Hasan; Baykal, Cuneyt; Ozyurt, Gulizar; Kisacik, Dogan

    2016-04-01

    Wind speed data is a key input for many meteorological and engineering applications. Many institutions provide wind speed data with temporal resolutions ranging from one hour to twenty four hours. Higher temporal resolution is generally required for some applications such as reliable wave hindcasting studies. One solution to generate wind data at high sampling frequencies is to use statistical downscaling techniques to interpolate values of the finer sampling intervals from the available data. In this study, the major aim is to assess temporal downscaling performance of nine statistical interpolation techniques by quantifying the inherent uncertainty due to selection of different techniques. For this purpose, hourly 10-m wind speed data taken from 227 data points over Aegean Sea between 1979 and 2010 having a spatial resolution of approximately 0.3 degrees are analyzed from the National Centers for Environmental Prediction (NCEP) The Climate Forecast System Reanalysis database. Additionally, hourly 10-m wind speed data of two in-situ measurement stations between June, 2014 and June, 2015 are considered to understand effect of dataset properties on the uncertainty generated by interpolation technique. In this study, nine statistical interpolation techniques are selected as w0 (left constant) interpolation, w6 (right constant) interpolation, averaging step function interpolation, linear interpolation, 1D Fast Fourier Transform interpolation, 2nd and 3rd degree Lagrange polynomial interpolation, cubic spline interpolation, piecewise cubic Hermite interpolating polynomials. Original data is down sampled to 6 hours (i.e. wind speeds at 0th, 6th, 12th and 18th hours of each day are selected), then 6 hourly data is temporally downscaled to hourly data (i.e. the wind speeds at each hour between the intervals are computed) using nine interpolation technique, and finally original data is compared with the temporally downscaled data. A penalty point system based on

  1. Hi-Q Rotor - Low Wind Speed Technology

    SciTech Connect

    Todd E. Mills; Judy Tatum

    2010-01-11

    The project objective was to optimize the performance of the Hi-Q Rotor. Early research funded by the California Energy Commission indicated the design might be advantageous over state-of-the-art turbines for collecting wind energy in low wind conditions. The Hi-Q Rotor is a new kind of rotor targeted for harvesting wind in Class 2, 3, and 4 sites, and has application in areas that are closer to cities, or 'load centers.' An advantage of the Hi-Q Rotor is that the rotor has non-conventional blade tips, producing less turbulence, and is quieter than standard wind turbine blades which is critical to the low-wind populated urban sites. Unlike state-of-the-art propeller type blades, the Hi-Q Rotor has six blades connected by end caps. In this phase of the research funded by DOE's Inventions and Innovation Program, the goal was to improve the current design by building a series of theoretical and numeric models, and composite prototypes to determine a best of class device. Development of the rotor was performed by aeronautical engineering and design firm, DARcorporation. From this investigation, an optimized design was determined and an 8-foot diameter, full-scale rotor was built and mounted using a Bergey LX-1 generator and furling system which were adapted to support the rotor. The Hi-Q Rotor was then tested side-by-side against the state-of-the-art Bergey XL-1 at the Alternative Energy Institute's Wind Test Center at West Texas State University for six weeks, and real time measurements of power generated were collected and compared. Early wind tunnel testing showed that the cut-in-speed of the Hi-Q rotor is much lower than a conventional tested HAWT enabling the Hi-Q Wind Turbine to begin collecting energy before a conventional HAWT has started spinning. Also, torque at low wind speeds for the Hi-Q Wind Turbine is higher than the tested conventional HAWT and enabled the wind turbine to generate power at lower wind speeds. Based on the data collected, the results of

  2. Short-term wind speed predictions with machine learning techniques

    NASA Astrophysics Data System (ADS)

    Ghorbani, M. A.; Khatibi, R.; FazeliFard, M. H.; Naghipour, L.; Makarynskyy, O.

    2016-02-01

    Hourly wind speed forecasting is presented by a modeling study with possible applications to practical problems including farming wind energy, aircraft safety and airport operations. Modeling techniques employed in this paper for such short-term predictions are based on the machine learning techniques of artificial neural networks (ANNs) and genetic expression programming (GEP). Recorded values of wind speed were used, which comprised 8 years of collected data at the Kersey site, Colorado, USA. The January data over the first 7 years (2005-2011) were used for model training; and the January data for 2012 were used for model testing. A number of model structures were investigated for the validation of the robustness of these two techniques. The prediction results were compared with those of a multiple linear regression (MLR) method and with the Persistence method developed for the data. The model performances were evaluated using the correlation coefficient, root mean square error, Nash-Sutcliffe efficiency coefficient and Akaike information criterion. The results indicate that forecasting wind speed is feasible using past records of wind speed alone, but the maximum lead time for the data was found to be 14 h. The results show that different techniques would lead to different results, where the choice between them is not easy. Thus, decision making has to be informed of these modeling results and decisions should be arrived at on the basis of an understanding of inherent uncertainties. The results show that both GEP and ANN are equally credible selections and even MLR should not be dismissed, as it has its uses.

  3. Aerodynamic performance of a low-speed wind tunnel.

    PubMed

    Frechen, F-B; Frey, M; Wett, M; Löser, C

    2004-01-01

    The determination of the odour mass flow emitted from a source is a very important step and forms the basis for all subsequent considerations and calculations. Wastewater treatment plants, as well as waste treatment facilities, consist of different kinds of odour sources. Unfortunately, most of the sources are passive sources, where no outward air flow-rate can be measured, but where odorants are obviously emitted. Thus, a type of sampling is required that allows to measure the emitted odour flow-rate (OFR). To achieve this, different methods are in use worldwide. Besides indirect methods, such as micrometeorological atmospheric dispersion models, which have not been used in Germany (in other countries due to different problems, direct methods are also used). Direct measurements include hood methods, commonly divided into static flux chambers, dynamic flux chambers and wind tunnels. The wind tunnel that we have been operating in principle since 1983 is different from all subsequent presented wind tunnels, in that we operate it at a considerably lower wind speed than the others. To describe the behaviour of this wind tunnel, measurement of the flow pattern in this low-speed tunnel are under way, and some initial results are presented here.

  4. Observed and Aogcm Simulated Relationships Between us Wind Speeds and Large Scale Modes of Climate Variability

    NASA Astrophysics Data System (ADS)

    Schoof, J. T.; Pryor, S. C.; Barthelmie, R. J.

    2013-12-01

    associated with high frequencies are amplified relative to those in NNR. Second, we quantify the observed and AOGCM-simulated relationships between ENSO, AO, and PNA indices and zonal and meridional wind components at multiple levels for the contiguous United States. The results are presented in form of maps displaying the strength of the relationship at different timescales, from daily to annual, and at multiple atmospheric levels, from 10m to 500 mb. The results of the analysis are used to provide context for regional wind climate projections based on 21st century AOGCM simulations.

  5. A short-term ensemble wind speed forecasting system for wind power applications

    NASA Astrophysics Data System (ADS)

    Baidya Roy, S.; Traiteur, J. J.; Callicutt, D.; Smith, M.

    2011-12-01

    This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 hour ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model (WRFSCM) and a persistence model. The ensemble is calibrated against observations for a 2 month period (June-July, 2008) at a potential wind farm site in Illinois using the Bayesian Model Averaging (BMA) technique. The forecasting system is evaluated against observations for August 2008 at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble while significantly reducing forecast uncertainty under all environmental stability conditions. The system also generates significantly better forecasts than persistence, autoregressive (AR) and autoregressive moving average (ARMA) models during the morning transition and the diurnal convective regimes. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 minute. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.

  6. Short-term wind-speed forecasting system for wind power applications

    NASA Astrophysics Data System (ADS)

    Traiteur, J. J.; Baidya Roy, S.

    2010-12-01

    Accurate short-term wind speed forecasts for utility-scale large wind farms will be crucial for the U.S. Department of Energy's goal of providing 20% of total electricity from wind by 2030. Communicating the level of uncertainty in these wind speed forecasts will allow the industry to better quantify the level of financial risk inherent with these forecasts. In this study, a computationally efficient and accurate system for short-term (0-60 mins) forecasting of wind speed is developed. This system uses a 27 member ensemble of the Weather Research and Forecasting Single-Column Model (WRF-SCM) to generate a probability density function (pdf) of daytime forecasts at 90m height for a location in Chalmers Township in West/Central Illinois. The WRF-SCM ensemble is initialized by the 20km Rapid Update Cycle (RUC) 00h forecast and perturbed by both perturbations in the initial conditions and physics options. The pdf is calibrated using Bayesian Model Averaging (BMA) where the individual forecasts are weighted according to their performance. This combination of a numerical weather prediction ensemble system and Bayesian statistics allows for accurate and computationally efficient prediction of 1 hour wind speed and the level of uncertainty in the forecasts.

  7. Importance of location for describing typical and extreme wind speed behavior

    NASA Astrophysics Data System (ADS)

    Griffin, B. J.; Kohfeld, K. E.; Cooper, A. B.; Boenisch, G.

    2010-11-01

    Several recent studies have considered the potential impact of climate change on regional wind intensity. However, previous wind speed studies in the Pacific Northwest (PNW) present conflicting results for wind speed trends in relation to climate drivers. This study analyzes the percentiles (50th, 75th, and 95th) of the strongly positively skewed distributions for PNW maximum daily wind speeds from 92 meteorological stations, and reveals different behaviors for average and extreme wind speeds. Considerably stronger winds are found at coastal locations compared with sites further inland. Extreme wind speeds at these coastal locations appear to follow an eight to nine-year cyclic pattern, while mainland sites have a small, linear downward wind speed trend. This finding of a behavioral dependence on location helps reconcile previous, apparently contradictory results and has important global implications for wind research and infrastructure planning, such as wind energy feasibility studies and air quality management activities.

  8. An Improved Wind Speed Retrieval Algorithm For The CYGNSS Mission

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Clarizia, M. P.

    2015-12-01

    The NASA spaceborne Cyclone Global Navigation Satellite System (CYGNSS) mission is a constellation of 8 microsatellites focused on tropical cyclone (TC) inner core process studies. CYGNSS will be launched in October 2016, and will use GPS-Reflectometry (GPS-R) to measure ocean surface wind speed in all precipitating conditions, and with sufficient frequency to resolve genesis and rapid intensification. Here we present a modified and improved version of the current baseline Level 2 (L2) wind speed retrieval algorithm designed for CYGNSS. An overview of the current approach is first presented, which makes use of two different observables computed from 1-second Level 1b (L1b) delay-Doppler Maps (DDMs) of radar cross section. The first observable, the Delay-Doppler Map Average (DDMA), is the averaged radar cross section over a delay-Doppler window around the DDM peak (i.e. the specular reflection point coordinate in delay and Doppler). The second, the Leading Edge Slope (LES), is the leading edge of the Integrated Delay Waveform (IDW), obtained by integrating the DDM along the Doppler dimension. The observables are calculated over a limited range of time delays and Doppler frequencies to comply with baseline spatial resolution requirements for the retrieved winds, which in the case of CYGNSS is 25 km. In the current approach, the relationship between the observable value and the surface winds is described by an empirical Geophysical Model Function (GMF) that is characterized by a very high slope in the high wind regime, for both DDMA and LES observables, causing large errors in the retrieval at high winds. A simple mathematical modification of these observables is proposed, which linearizes the relationship between ocean surface roughness and the observables. This significantly reduces the non-linearity present in the GMF that relate the observables to the wind speed, and reduces the root-mean square error between true and retrieved winds, particularly in the high wind

  9. 11. INTERIOR VIEW OF 8FOOT HIGH SPEED WIND TUNNEL. SAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF 8-FOOT HIGH SPEED WIND TUNNEL. SAME CAMERA POSITION AS VA-118-B-10 LOOKING IN THE OPPOSITE DIRECTION. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  10. Efficient Low-Speed Flight in a Wind Field

    NASA Technical Reports Server (NTRS)

    Feldman, Michael A.

    1996-01-01

    A new software tool was needed for flight planning of a high altitude, low speed unmanned aerial vehicle which would be flying in winds close to the actual airspeed of the vehicle. An energy modeled NLP (non-linear programming) formulation was used to obtain results for a variety of missions and wind profiles. The energy constraint derived included terms due to the wind field and the performance index was a weighted combination of the amount of fuel used and the final time. With no emphasis on time and with no winds the vehicle was found to fly at maximum lift to drag velocity, V(sub md). When flying in tail winds the velocity was less than V(sub md), while flying in head winds the velocity was higher than V(sub md). A family of solutions was found with varying times of flight and varying fuel amounts consumed which will aid the operator in choosing a flight plan depending on a desired landing time. At certain parts of the flight, the turning terms in the energy constraint equation were found to be significant. An analysis of a simpler vertical plane cruise optimal control problem was used to explain some of the characteristics of the vertical plane NLP results.

  11. Coronal holes and high-speed wind streams

    NASA Technical Reports Server (NTRS)

    Zirker, J. B.

    1977-01-01

    Coronal holes, regions of unusually low density and low temperature in the solar corona, are identified as Bartel's M regions, i.e., sources of high-speed wind streams that produce recurrent geomagnetic variations. Throughout the Skylab period the polar caps of the sun were coronal holes, and at lower latitudes the most persistent and recurrent holes were equatorial extensions of the polar caps. The holes rotated 'rigidly' at the equatorial synodic rate. They formed in regions of unipolar photospheric magnetic field, and their internal magnetic fields diverged rapidly with increasing distance from the sun. The geometry of the magnetic field in the inner corona seems to control both the physical properties of the holes and the global distribution of high-speed wind streams in the heliosphere. Phenomenological models for the birth and decay of coronal holes have been proposed.

  12. Neptune's wind speeds obtained by tracking clouds in Voyager images

    NASA Technical Reports Server (NTRS)

    Hammel, H. B.; Hansen, C. J.; Johnson, T. V.; Beebe, R. F.; De Jong, E. M.; Howell, C. D.; Ingersoll, A. P.; Limaye, S. S.; Magalhaes, J. A.; Pollack, J. B.

    1989-01-01

    Images of Neptune obtained by the narrow-angle camera of the Voyager 2 spacecraft reveal large-scale cloud features that persist for several months or longer. The features' periods of rotation about the planetary axis range from 15.8 to 18.4 hours. The atmosphere equatorward of -53 deg rotates with periods longer than the 16.05-hour period deduced from Voyager's planetary radio astronomy experiment (presumably the planet's internal rotation period). The wind speeds computed with respect to this radio period range from 20 meters per second eastward to 325 meters per second westward. Thus, the cloud-top wind speeds are roughly the same for all the planets ranging from Venus to Neptune, even though the solar energy inputs to the atmospheres vary by a factor of 1000.

  13. Wind farm induced changes in wind speed and surface fluxes over the North Sea

    NASA Astrophysics Data System (ADS)

    Chatterjee, Fabien; van Lipzig, Nicole; Meyers, Johan

    2016-04-01

    Offshore wind farm deployment in the North Sea is foreseen to expand dramatically in the coming years. The strong expansion of offshore wind parks is likely to affect the regional climatology on the North Sea. We assess this impact by conducting a regional climate model simulation over future wind farms built near the German coast. In order to achieve this, the wind farm parameterisation of Fitch et al. 2012, where wind farms are parameterised as elevated sources of turbulent kinetic energy and sinks of momentum ( Blahak et al 2010 and Fitch et al 2012) is implemented in COSMO-CLM at a 1.5 km resolution. As a first step, COSMO-CLM's ability to reproduce wind profiles over the North Sea is evaluated using wind speed data from the FINO1 meteorological mast, toghether with QuikScat scatterometer data, for a time period of 2000-2008. Subsequently, the impact of windfarms on the regional climate over a period of ten years (1999-2008) is assessed. A large scale wind farm can create wakes which depending on the wind direction could affect the power production of a neighbouring farm. Furthermore, wind farms decelerate the flow and create a vertical circulation in the inflow region. As a result, changes in vertical fluxes of moisture are observed. This leads to enhanced low level cloud cover which may trigger changes in precipitation.

  14. An atlas of monthly mean distributions of SSMI surface wind speed, ARGOS buoy drift, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1991

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.

    1993-01-01

    The following monthly mean global distributions for 1991 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free-drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components of the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.

  15. An atlas of monthly mean distributions of SSMI surface wind speed, ARGOS buoy drift, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1990

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.

    1993-01-01

    The following monthly mean global distributions for 1990 are proposed with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (US) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components on the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation values are displayed. Annual mean distributions are displayed.

  16. Comment on "Critical wind speed at which trees break"

    NASA Astrophysics Data System (ADS)

    Albrecht, Axel; Badel, Eric; Bonnesoeur, Vivien; Brunet, Yves; Constant, Thiéry; Défossez, Pauline; de Langre, Emmanuel; Dupont, Sylvain; Fournier, Meriem; Gardiner, Barry; Mitchell, Stephen J.; Moore, John R.; Moulia, Bruno; Nicoll, Bruce C.; Niklas, Karl J.; Schelhaas, Mart-Jan; Spatz, Hans-Christof; Telewski, Frank W.

    2016-12-01

    Virot et al. [E. Virot et al., Phys. Rev. E 93, 023001 (2016), 10.1103/PhysRevE.93.023001] assert that the critical wind speed at which ⩾50% of all trees in a population break is ≈42 m/s, regardless of tree characteristics. We show that empirical data do not support this assertion, and that the assumptions underlying the theory used by Virot et al. are inconsistent with the biomechanics of trees.

  17. Revised prediction (estimation) of Cape Kennedy, Florida, wind speed profile

    NASA Technical Reports Server (NTRS)

    Guttman, N. B.; Crutcher, H. L.

    1975-01-01

    The prediction of the wind profile maximum speed at Cape Kennedy, Florida, is made for any selected calendar data. The prediction is based on a normal probability distribution model with 15 years of smoothed input data and is static in the sense that no dynamic principles of persistence or synoptic features are considered. Comparison with similar predictions based on 6 years of data shows the same general pattern, but the variability decreased with the increase of sample size.

  18. The Radial Evolution of Solar Wind Speeds (Postprint)

    DTIC Science & Technology

    2012-03-05

    Albuquerque, New Mexico, USA. 3NASA/GSFC, Greenbelt, Maryland, USA. 4Space Plasma Physics, Department of Physics, University of New Hampshire, Durham...the solar wind speeds calculated by theWSAmodel out into the heliosphere. ENLIL is a 3‐DMagnetohydrodynamic heliospheric code that uses a thermal energy...density from an empirical fit to historic Helios observations [McGregor et al., 2011], and calculates tem- perature by assuming constant thermal

  19. Laboratory implementation of variable-speed wind turbine generation

    SciTech Connect

    Zinger, D S; Miller, A A; Muljadi, E; Butterfield, C P; Robinson, M C

    1996-07-01

    To improve the performance of wind turbines, various control schemes such as variable speed operation have been proposed. Testing of these control algorithms on a full scale system is very expensive. To test these systems simulation, we developed programs and small scale laboratory experiments. We used this system to verify a control method that attempts to keep the turbine operating at its peak power coefficient. Both the simulations and the experiments verified the principle of operation of this control scheme.

  20. Wind Tunnel Studies in Aerodynamic Phenomena at High Speed

    NASA Technical Reports Server (NTRS)

    Caldwell, F W; Fales, E N

    1921-01-01

    A great amount of research and experimental work has been done and fair success obtained in an effort to place airplane and propeller design upon an empirical basis. However, one can not fail to be impressed by the apparent lack of data available toward establishing flow phenomena upon a rational basis, such that they may be interpreted in terms of the laws of physics. With this end in view it was the object of the authors to design a wind tunnel differing from the usual type especially in regard to large power and speed of flow. This report describes the wind tunnel at Mccook Field and gives the results of experiments conducted in testing the efficiency of the wind tunnel.

  1. Systematic Controller Design Methodology for Variable-Speed Wind Turbines

    SciTech Connect

    Hand, M. M.; Balas, M. J.

    2002-02-01

    Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three operational regions. This paper provides a guide for controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship between the two opposing metrics is easily visualized.

  2. The Impacts of Wind Speed Trends and Long-term Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Cross, B.; Kohfeld, K. E.; Cooper, A.; Bailey, H. J.; Rucker, M.

    2013-12-01

    The use of wind power is growing rapidly in the Pacific Northwest (PNW ) due to environmental concerns, decreasing costs of implementation, strong wind speeds, and a desire to diversify electricity sources to minimize the impacts of streamflow variability on electricity prices and system flexibility. In hydroelectric dominated systems, like the PNW, the benefits of wind power can be maximized by accounting for the relationship between long term variability in wind speeds and reservoir inflows. Clean energy policies in British Columbia make the benefits of increased wind power generation during low streamflow periods particularly large, by preventing the overbuilding of marginal hydroelectric projects. The goal of this work was to quantify long-term relationships between wind speed and streamflow behavior in British Columbia. Wind speed data from the North American Regional Reanalysis (NARR) and cumulative usable inflows (CUI) from BC Hydro were used to analyze 10m wind speed and density (WD) trends, WD-CUI correlations, and WD anomalies during low and high inflow periods in the PNW (40°N to 65°N, 110°W to 135°W) from 1979-2010. Statistically significant positive wind speed and density trends were found for most of the PNW, with the largest increases along the Pacific Coast. CUI-WD correlations were weakly positive for most regions, with the highest values along the US coast (r ~0.55), generally weaker correlations to the north, and negative correlations (r ~ -0.25) along BC's North Coast. When considering seasonal relationships, the Spring freshet was coincident with lower WD anomalies west of the Rocky Mountains and higher WDs to the east. A similar but opposite pattern was observed for low inflow winter months. When considering interannual variability, lowest inflow years experienced positive WD anomalies (up to 40% increases) for the North Coast. In highest inflow years, positive WD anomalies were widespread in the US and for smaller patches of central BC

  3. The Distribution of Solar Wind Speeds During Solar Minimum: Calibration for Numerical Solar Wind Modeling Constraints on the Source of the Slow Solar Wind (Postprint)

    DTIC Science & Technology

    2012-03-05

    2003], and that the solar wind speed/ magnetic field expansion relationship is coinci- dental and is merely a result of the coronal geometry. [ 3 ] Wang... field component is 300 nT. The azimuthal magnetic field com- MCGREGOR ET AL.: MODELING SOLAR MINIMUM SOLAR WIND SPEEDS A03101A03101 3 of 11 Approved for...superradial expansion of the magnetic field to account for the observed solar wind speed variation. We investigate the solar wind in the inner corona using

  4. Gas exchange-wind speed relation measured with sulfur hexafluoride on a lake

    NASA Technical Reports Server (NTRS)

    Wanninkhof, R.; Broecker, W. S.; Ledwell, J. R.

    1985-01-01

    Gas-exchange processes control the uptake and release of various gases in natural systems such as oceans, rivers, and lakes. Not much is known about the effect of wind speed on gas exchange in such systems. In the experiment described here, sulfur hexafluoride was dissolved in lake water, and the rate of escape of the gas with wind speed (at wind speeds up to 6 meters per second) was determined over a 1-month period. A sharp change in the wind speed dependence of the gas-exchange coefficient was found at wind speeds of about 2.4 meters per second, in agreement with the results of wind-tunnel studies. However the gas-exchange coefficients at wind speeds above 3 meters per second were smaller than those observed in wind tunnels and are in agreement with earlier lake and ocean results.

  5. Contraction design for small low-speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1988-01-01

    An iterative design procedure was developed for 2- or 3-dimensional contractions installed on small, low speed wind tunnels. The procedure consists of first computing the potential flow field and hence the pressure distributions along the walls of a contraction of given size and shape using a 3-dimensional numerical panel method. The pressure or velocity distributions are then fed into 2-dimensional boundary layer codes to predict the behavior of the boundary layers along the walls. For small, low speed contractions, it is shown that the assumption of a laminar boundary layer originating from stagnation conditions at the contraction entry and remaining laminar throughout passage through the successful designs is justified. This hypothesis was confirmed by comparing the predicted boundary layer data at the contraction exit with measured data in existing wind tunnels. The measured boundary layer momentum thicknesses at the exit of four existing contractions, two of which were 3-D, were found to lie within 10 percent of the predicted values, with the predicted values generally lower. From the contraction wall shapes investigated, the one based on a 5th order polynomial was selected for newly designed mixing wind tunnel installation.

  6. Contraction design for small low-speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1988-01-01

    An iterative design procedure was developed for two- or three-dimensional contractions installed on small, low-speed wind tunnels. The procedure consists of first computing the potential flow field and hence the pressure distributions along the walls of a contraction of given size and shape using a three-dimensional numerical panel method. The pressure or velocity distributions are then fed into two-dimensional boundary layer codes to predict the behavior of the boundary layers along the walls. For small, low-speed contractions it is shown that the assumption of a laminar boundary layer originating from stagnation conditions at the contraction entry and remaining laminar throughout passage through the successful designs if justified. This hypothesis was confirmed by comparing the predicted boundary layer data at the contraction exit with measured data in existing wind tunnels. The measured boundary layer momentum thicknesses at the exit of four existing contractions, two of which were 3-D, were found to lie within 10 percent of the predicted values, with the predicted values generally lower. From the contraction wall shapes investigated, the one based on a fifth-order polynomial was selected for installation on a newly designed mixing layer wind tunnel.

  7. Relationship between gas exchange, wind speed, and radar backscatter in a large wind-wave tank

    NASA Technical Reports Server (NTRS)

    Wanninkhof, Richard H.; Bliven, L. F.

    1991-01-01

    The relationships between the gas exchange, wind speed, friction velocity, and radar backscatter from the water surface was investigated using data obtained in a large water tank in the Delft (Netherlands) wind-wave tunnel, filled with water supersaturated with SF6, N2O, and CH4. Results indicate that the gas-transfer velocities of these substances were related to the wind speed with a power law dependence. Microwave backscatter from water surface was found to be related to gas transfer velocities by a relationship in the form k(gas) = a 10 exp (b A0), where k is the gas transfer velocity for the particular gas, the values of a and b are obtained from a least squares fit of the average backscatter cross section and gas transfer at 80 m, and A0 is the directional (azimuthal) averaged return.

  8. Estimation of rotor effective wind speeds using autoregressive models on Lidar data

    NASA Astrophysics Data System (ADS)

    Giyanani, A.; Bierbooms, W. A. A. M.; van Bussel, G. J. W.

    2016-09-01

    Lidars have become increasingly useful for providing accurate wind speed measurements in front of the wind turbine. The wind field measured at distant meteorological masts changes its structure or was too distorted before it reaches the turbine. Thus, one cannot simply apply Taylor's frozen turbulence for representing this distant flow field at the rotor. Wind turbine controllers can optimize the energy output and reduce the loads significantly, if the wind speed estimates were known in advance with high accuracy and low uncertainty. The current method to derive wind speed estimations from aerodynamic torque, pitch angle and tip speed ratio after the wind field flows past the turbine and have their limitations, e.g. in predicting gusts. Therefore, an estimation model coupled with the measuring capability of nacelle based Lidars was necessary for detecting extreme events and for estimating accurate wind speeds at the rotor disc. Nacelle-mounted Lidars measure the oncoming wind field from utpo 400m(5D) in front of the turbine and appropriate models could be used for deriving the rotor effective wind speed from these measurements. This article proposes an auto-regressive model combined with a method to include the blockage factor in order to estimate the wind speeds accurately using Lidar measurements. An Armax model was used to determine the transfer function that models the physical evolution of wind towards the wind turbine, incorporating the effect of surface roughness, wind shear and wind variability at the site. The model could incorporate local as well as global effects and was able to predict the rotor effective wind speeds with adequate accuracy for wind turbine control actions. A high correlation of 0.86 was achieved as the Armax modelled signal was compared to a reference signal. The model could also be extended to estimate the damage potential during high wind speeds, gusts or abrupt change in wind directions, allowing the controller to act appropriately

  9. 9x15 Low Speed Wind Tunnel Acoustic Improvements

    NASA Technical Reports Server (NTRS)

    Stark, David; Stephens, David

    2016-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 8x6 SWT was completed in 1949 and acoustically treated to mitigate community noise issues in 1950. This treatment included the addition of a large muffler downstream of the 8x6 SWT test section and diffuser. The 9x15 LSWT was designed for performance testing of VSTOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel has been used principally for acoustic and performance testing of aircraft propulsions systems. The present document describes an anticipated acoustic upgrade to be completed in 2017.

  10. Wind speed variability and adaptation strategies in coastal areas of the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Griffin, Bradford

    Overall, previous wind speed studies in the Pacific Northwest (PNW) present conflicting results for wind speed trends (both increasing and decreasing) in relation to climate drivers. This study fills a gap in the understanding of PNW wind behaviour by: determining if relationships exist between wind speed distributions, ocean/atmospheric climate indices, and monitoring station-specific attributes; assessing the robustness of relationships for forecasting wind speeds within the study area; and presenting adaptation strategies to wind damage. Analyzing the quantiles of the strongly skewed (non-normal) wind speed distributions reveals different behaviours for average and extreme wind speeds and significantly stronger winds at coastal locations compared with sites further inland. Coast locations appear to follow a nine-year cyclic pattern, while mainland sites have a downward wind speed trend. This finding has important implications for wind research and infrastructure or ecosystem planning in areas such as wind energy feasibility studies and timing management activities. Keywords: Wind speed; Pacific Northwest; Quantiles; Linear mixed-effects model; Variability; Adaptation; Climate change.

  11. Wind Speed Estimation and Wake model Re-calibration for Downregulated Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Göçmen Bozkurt, Tuhfe; Giebel, Gregor; Kjølstad Poulsen, Niels; Réthoré, Pierre-Elouan; Mirzaei, Mahmood

    2014-05-01

    In recent years, the wind farm sizes have increased tremendously and with increasing installed capacity, the wind farms are requested to downregulate from their maximum possible power more frequently, especially in the offshore environment. Determination of the possible (or available) power is crucial not only because the reserve power has considerable market value but also for wind farm developers to be properly compensated for the loss during downregulation. While the available power calculation is straightforward for a single turbine, it gets rather complicated for the whole wind farm due to the change in the wake characteristics. In fact, the wake losses generated by the upstream turbine(s) decrease during downregulation and the downstream turbines therefore see more wind compared to the normal operation case. Currently, the Transmission System Operators (TSOs) have no real way to determine exactly the available power of a whole wind farm which is downregulated. Therefore, the PossPOW project aims to develop a verified and internationally accepted way to determine the possible power of a down-regulated offshore wind farm. The first phase of the project is to estimate the rotor effective wind speed. Since the nacelle anemometers are not readily available and are known to have reliability issues, the proposed method is to use power, pitch angle and rotational speed as inputs and combine it with a generic Cp model to estimate the wind speed. The performance of the model has been evaluated for both normal operation and downregulation periods using two different case studies: Horns Rev-I wind farm and NREL 5MW single turbine. During downregulation, the wake losses are not as severe and the velocity deficits at the downstream turbines are smaller as if also the wake is "downregulated". On the other hand, in order to calculate the available power, the wakes that would have been produced normally (if the turbines were not curtailed) are of importance, not the

  12. Wind shear proportional errors in the horizontal wind speed sensed by focused, range gated lidars

    NASA Astrophysics Data System (ADS)

    Lindelöw, P.; Courtney, M.; Parmentier, R.; Cariou, J. P.

    2008-05-01

    The 10-minute average horizontal wind speeds sensed with lidar and mast mounted cup anemometers, at 60 to 116 meters altitude at HØvsØre, are compared. The lidar deviation from the cup value as a function of wind velocity and wind shear is studied in a 2-parametric regression analysis which reveals an altitude dependent relation between the lidar error and the wind shear. A likely explanation for this relation is an error in the intended sensing altitude. At most this error is estimated to 9 m which induced errors in the horizontal wind velocity of up to 0.5 m/s as compared to a cup at the intended altitude. The altitude errors of focused range gated lidars are likely to arise partly from an unaccounted shift of the weighting functions, describing the sample volume, due to the range dependent collection efficiency of the focused telescope. Possibilities of correcting the lidar measurements both for wind velocity and wind shear dependent errors are discussed. The 2-parametric regression analysis described in this paper is proven to be a better approach when acceptance testing and calibrating lidars.

  13. Stability analysis of a variable-speed wind turbine

    SciTech Connect

    Bir, G.S.; Wright, A.D.; Butterfield, C.P.

    1996-10-01

    This paper examines the elastomechanical stability of a four-bladed wind turbine over a specific rotor speed range. Stability modes, frequencies, and dampings are extracted using a specialized modal processor developed at NREL that post-processes the response data generated by the ADAMS simulation code. The processor can analyze a turbine with an arbitrary number of rotor blades and offers a novel capability of isolating stability modes that become locked at a single frequency. Results indicate that over a certain rotor speed range, the tower lateral mode and the rotor regressive in-plane mode coalesce, resulting in a self-excited instability. Additional results show the effect of tower and nacelle parameters on the stability boundaries.

  14. Low Speed PSP Testing in Production Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James; Mehta, Rabi; Schairer, Ed; Hand, Larry; Nixon, David (Technical Monitor)

    1998-01-01

    The brightness signal from a pressure-sensitive paint varies inversely with absolute pressure. Consequently high signal-to-noise ratios are required to resolve aerodynamic pressure fields at low speeds, where the pressure variation around an object might only be a few percent of the mean pressure. This requirement is unavoidable, and implies that care must be taken to minimize noise sources present in the measurement. This paper discusses and compares the main noise sources in low speed PSP testing using the "classical" intensity-based single-luminophore technique. These are: temperature variation, model deformation, and lamp drift/paint degradation. Minimization of these error sources from the point of view of operation in production wind tunnels is discussed, with some examples from recent tests in NASA Ames facilities.

  15. Computational studies of horizontal axis wind turbines in high wind speed condition using advanced turbulence models

    NASA Astrophysics Data System (ADS)

    Benjanirat, Sarun

    Next generation horizontal-axis wind turbines (HAWTs) will operate at very high wind speeds. Existing engineering approaches for modeling the flow phenomena are based on blade element theory, and cannot adequately account for 3-D separated, unsteady flow effects. Therefore, researchers around the world are beginning to model these flows using first principles-based computational fluid dynamics (CFD) approaches. In this study, an existing first principles-based Navier-Stokes approach is being enhanced to model HAWTs at high wind speeds. The enhancements include improved grid topology, implicit time-marching algorithms, and advanced turbulence models. The advanced turbulence models include the Spalart-Allmaras one-equation model, k-epsilon, k-o and Shear Stress Transport (k-o-SST) models. These models are also integrated with detached eddy simulation (DES) models. Results are presented for a range of wind speeds, for a configuration termed National Renewable Energy Laboratory Phase VI rotor, tested at NASA Ames Research Center. Grid sensitivity studies are also presented. Additionally, effects of existing transition models on the predictions are assessed. Data presented include power/torque production, radial distribution of normal and tangential pressure forces, root bending moments, and surface pressure fields. Good agreement was obtained between the predictions and experiments for most of the conditions, particularly with the Spalart-Allmaras-DES model.

  16. Coupling between SST and wind speed over mesoscale eddies in the South China Sea

    NASA Astrophysics Data System (ADS)

    Sun, Shuangwen; Fang, Yue; Liu, Baochao; ᅟ, Tana

    2016-11-01

    The coupling between sea surface temperature (SST) and sea surface wind speed over mesoscale eddies in the South China Sea (SCS) was studied using satellite measurements. Positive correlations between SST anomalies (SSTA) and wind speed anomalies were found over both cyclonic and anticyclonic eddies. In contrast to the open oceans, the spatial patterns of the coupling over mesoscale eddies in the SCS depend largely on the seasonal variations of the background SST gradient, wind speed, and wind directional steadiness. In summer, the maximum SSTA location coincides with the center of eddy-induced sea surface height anomalies. In winter, the eddy-induced SSTA show a clear dipole pattern. The spatial patterns of wind speed anomalies over eddies are similar to those of the SSTA in both seasons. Wind speed anomalies are linearly correlated with SSTA over anticyclonic and cyclonic eddies. The coupling coefficients between SSTA and wind speed anomalies in the SCS are comparable to those in the open oceans.

  17. Effective wind speed estimation: Comparison between Kalman Filter and Takagi-Sugeno observer techniques.

    PubMed

    Gauterin, Eckhard; Kammerer, Philipp; Kühn, Martin; Schulte, Horst

    2016-05-01

    Advanced model-based control of wind turbines requires knowledge of the states and the wind speed. This paper benchmarks a nonlinear Takagi-Sugeno observer for wind speed estimation with enhanced Kalman Filter techniques: The performance and robustness towards model-structure uncertainties of the Takagi-Sugeno observer, a Linear, Extended and Unscented Kalman Filter are assessed. Hence the Takagi-Sugeno observer and enhanced Kalman Filter techniques are compared based on reduced-order models of a reference wind turbine with different modelling details. The objective is the systematic comparison with different design assumptions and requirements and the numerical evaluation of the reconstruction quality of the wind speed. Exemplified by a feedforward loop employing the reconstructed wind speed, the benefit of wind speed estimation within wind turbine control is illustrated.

  18. Vertical Structure of the Wind Speed Profile at the North Sea Offshore Measurement Platform FINO1

    NASA Astrophysics Data System (ADS)

    Kettle, A. J.

    2013-12-01

    The vertical wind speed profile in the lowest 100m of the marine atmospheric boundary layer has been characterized from data collected at the FINO1 offshore research platform in the German North Sea sector for 2005. Located in 30m of water, the platform has a dense vertical array of meteorological instrumentation to measure wind speed, air temperature, relative humidity, and atmospheric turbulence characteristics. Along measurements of the ocean temperature and surface waves, the platform is well-equipped to characterize wind properties in the near-surface boundary layer. Preliminary analysis reveals a high incidence of vertical wind speed profiles that deviate significantly from Monin-Obukhov similarity theory with wind speed inflections that suggest decoupled layers near the surface. The presentation shows how the properties of the vertical wind speed profile change mainly depending on the wind speed, wind direction, and time of year. The results are significant because there are few reports of inflections in the vertical wind speed profile over the ocean and there is an a priori assumption that the vertical wind speed profile varies smoothly according to similarity theory. There are possible consequences for the wind energy development in terms of understanding the forces acting on offshore wind turbines whose rotors sweep across heights 150-200m above the sea surface.

  19. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight

    USGS Publications Warehouse

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey. Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight. Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for

  20. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, Eduard

    1998-01-01

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  1. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, E.

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

  2. Variable Speed Wind Turbine Generator with Zero-sequence Filter

    DOEpatents

    Muljadi, Eduard

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  3. Evaluating the effects of land use and cover change on the decrease of surface wind speed over China in recent 30 years using a statistical downscaling method

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Zha, Jinlin; Zhao, Deming

    2017-01-01

    The long-term decrease of surface wind speed (SWS) has been revealed by previous studies in China in recent decades, but the reasons for the SWS decrease remain uncertain. In this paper, we evaluated the effects of land use and cover change (LUCC) on the SWS decrease during 1980-2011 over the Eastern China Plain (ECP) region using a combined method of statistical downscaling and observation minus reanalysis data, which was used to improve the climate prediction of general circulation models and to evaluate the influence of LUCC on climate change. To exclude the potential influence of LUCC on SWS observation, a statistical downscaling model (SDM) was established during 1980-1992 because a lower extent of LUCC occurred during this period than in later periods. The skill of the SDM was checked by comparing the results of different predictor combinations. Then, SDM was used to improve the wind speed data at 10 m above the surface in the ERA-Interim reanalysis data (V10m-ERA) during 1993-2011, which decreased the error in the reanalysis wind speed as far as possible. Then, the difference between the station observed SWS (V10m-OBV) and the downscaled SWS (V10m-SDM) during 1993-2011 (SWSD) was considered the quantitative estimation of the influence of the LUCC on SWS in this period. The V10m-SDM can capture both the large-scale and local characteristics in the observation, and their patterns are very similar. V10m-SDM has better performance in the spatial-temporal changes than does V10m-ERA with respect to V10m-OBV. The impact of LUCC on the SWS was pronounced, the SWSD was -0.24 m s-1 in 1993, and the SWSD reached -0.56 m s-1 in 2011. LUCC could induce a 0.17 m s-1 wind speed decrease per 10 year in the ECP region during 1993-2011. Furthermore, each 10 % rise of the urbanization rate could cause an approximately 0.12 m s-1 decrease in wind speed. Additionally, pressure-gradient force was eliminated as the primary cause of the observed long-term decrease of SWS in ECP by

  4. Substorm probabilities are best predicted from solar wind speed

    NASA Astrophysics Data System (ADS)

    Newell, P. T.; Liou, K.; Gjerloev, J. W.; Sotirelis, T.; Wing, S.; Mitchell, E. J.

    2016-08-01

    Most measures of magnetospheric activity - including auroral power (AP), magnetotail stretching, and ring current intensity - are best predicted by solar wind-magnetosphere coupling functions which approximate the frontside magnetopause merging rate. However radiation belt fluxes are best predicted by a simpler function, namely the solar wind speed, v. Since most theories of how these high energy electrons arise are associated with repeated rapid dipolarizations such as associated with substorms, this apparent discrepancy could be reconciled under the hypothesis that the frequency of substorms tracks v rather than the merging rate - despite the necessity of magnetotail flux loading prior to substorms. Here we investigate this conjecture about v and substorm probability. Specifically, a continuous list of substorm onsets compiled from SuperMAG covering January 1, 1997 through December 31, 2007 are studied. The continuity of SuperMAG data and near continuity of solar wind measurements minimize selection bias. In fact v is a much better predictor of onset probability than is the overall merging rate, with substorm odds rising sharply with v. Some loading by merging is necessary, and frontside merging does increase substorm probability, but nearly as strongly as does v taken alone. Likewise, the effects of dynamic pressure, p, are smaller than simply v taken by itself. Changes in the solar wind matter, albeit modestly. For a given level of v (or Bz), a change in v (or Bz) will increase the odds of a substorm for at least 2 h following the change. A decrease in driving elevates substorm probabilities to a greater extent than does an increase, partially supporting external triggering. Yet current v is the best single predictor of subsequently observing a substorm. These results explain why geomagnetically quiet years and active years are better characterized by low or high v (respectively) than by the distribution of merging estimators. It appears that the flow of energy

  5. A Novel Empirical Mode Decomposition With Support Vector Regression for Wind Speed Forecasting.

    PubMed

    Ren, Ye; Suganthan, Ponnuthurai Nagaratnam; Srikanth, Narasimalu

    2016-08-01

    Wind energy is a clean and an abundant renewable energy source. Accurate wind speed forecasting is essential for power dispatch planning, unit commitment decision, maintenance scheduling, and regulation. However, wind is intermittent and wind speed is difficult to predict. This brief proposes a novel wind speed forecasting method by integrating empirical mode decomposition (EMD) and support vector regression (SVR) methods. The EMD is used to decompose the wind speed time series into several intrinsic mode functions (IMFs) and a residue. Subsequently, a vector combining one historical data from each IMF and the residue is generated to train the SVR. The proposed EMD-SVR model is evaluated with a wind speed data set. The proposed EMD-SVR model outperforms several recently reported methods with respect to accuracy or computational complexity.

  6. Wind speed variability between 10 and 116 m height from the regional reanalysis COSMO-REA6 compared to wind mast measurements over Northern Germany and the Netherlands

    NASA Astrophysics Data System (ADS)

    Borsche, Michael; Kaiser-Weiss, Andrea K.; Kaspar, Frank

    2016-11-01

    Hourly and monthly mean wind speed and wind speed variability from the regional reanalysis COSMO-REA6 is analysed in the range of 10 to 116 m height above ground. Comparisons with independent wind mast measurements performed between 2001 and 2010 over Northern Germany over land (Lindenberg), the North Sea (FINO platforms), and The Netherlands (Cabauw) show that the COSMO-REA6 wind fields are realistic and at least as close to the measurements as the global atmospheric reanalyses (ERA20C and ERA-Interim) on the monthly scale. The median wind profiles of the reanalyses were found to be consistent with the observed ones. The mean annual cycles of variability are generally reproduced from 10 up to 116 m in the investigated reanalyses. The mean diurnal cycle is represented qualitatively near the ground by the reanalyses. At 100 m height, there is little diurnal cycle left in the global and regional reanalyses, though a diurnal cycle is still present in the measurements over land. Correlation coefficients between monthly means of the observations and the reanalyses range between 0.92 at 10 m and 0.99 at 116 m, with a slightly higher correlation of the regional reanalyses at Lindenberg at 10 m height which is significant only at a lower than 95 % significance level. Correlations of daily means tend to be higher for the regional reanalysis COSMO-REA6. Increasing temporal resolution further, reduces this advantage of the regional reanalysis. At around 100 m, ERA-Interim yields a higher correlation at Lindenberg and Cabauw, whereas COSMO-REA6 yields a higher correlation at FINO1 and FINO2.

  7. Effects of turbulence on power generation for variable-speed wind turbines

    SciTech Connect

    Muljadi, E.; Butterfield, C.P.; Buhl, M.L. Jr.

    1996-11-01

    One of the primary advantages of variable-speed wind turbines over fixed-speed turbines should be improved aerodynamic efficiency. With variable-speed generation, in order to maintain a constant ratio of wind speed to tip speed, the wind turbine changes rotor speed as the wind speed changes. In this paper we compare a stall-controlled, variable-speed wind turbine to a fixed-speed turbine. The focus of this paper is to investigate the effects of variable speed on energy capture and its ability to control peak power. We also show the impact of turbulence on energy capture in moderate winds. In this report, we use a dynamic simulator to apply different winds to a wind turbine model. This model incorporates typical inertial and aerodynamic performance characteristics. From this study we found a control strategy that makes it possible to operate a stall-controlled turbine using variable speed to optimize energy capture and to control peak power. We also found that turbulence does not have a significant impact on energy capture.

  8. Lidar in-space technology experiment measurements of sea surface directional reflectance and the link to surface wind speed.

    PubMed

    Menzies, R T; Tratt, D M; Hunt, W H

    1998-08-20

    The dependence of sea surface directional reflectance on surface wind stress suggests a method for deriving surface wind speed from space-based lidar measurements of sea surface backscatter. In particular, lidar measurements in the nadir angle range from 10 degrees to 30 degrees appear to be most sensitive to surface wind-speed variability in the regime below 10 m/s. The Lidar In-space Technology Experiment (LITE) shuttle lidar mission of September 1994 provided a unique opportunity to measure directional backscatter at selected locations by use of the landmark track maneuver and to measure fixed-angle backscatter from the ocean surfaces on a global scale. During the landmark track maneuver the shuttle orbiter orientation and roll axis are adjusted continuously to maintain the lidar footprint at a fixed location for a duration of ~1 min. Several data sets were converted to calibrated reflectance units and compared with a surface reflectance model to deduce surface wind speeds. Comparisons were made with ERS-1 scatterometer data and surface measurements.

  9. A Comparison of GPS and Scatterometer Sensing of Ocean Wind Speed and Direction

    NASA Technical Reports Server (NTRS)

    Armatys, Michael; Komjathy, Attila; Axelrad, Penina; Katzberg, Stephen J.

    2000-01-01

    Initial estimates of ocean surface wind speed and direction based on observations of reflected Global Positioning System (GPS) signals are presented and compared to QuikSCAT wind fields. The two wind speed estimates are generally in agreement to within 2-3 m/s, and under favorable conditions of well developed seas and stable winds, direction estimates agree to within 10 deg. An overview of the GPS technique is presented as well as a presentation and discussion of these first results.

  10. Low Wind Speed Turbine Developments in Convoloid Gearing: Final Technical Report, June 2005 - October 2008

    SciTech Connect

    Genesis Partners LP

    2010-08-01

    This report presents the results of a study conducted by Genesis Partners LP as part of the United States Department of Energy Wind Energy Research Program to develop wind technology that will enable wind systems to compete in regions having low wind speeds. The purpose of the program is to reduce the cost of electricity from large wind systems in areas having Class 4 winds to 3 cents per kWh for onshore systems or 5 cents per kWh for offshore systems. This work builds upon previous activities under the WindPACT project, the Next Generation Turbine project, and Phase I of the Low Wind Speed Turbine (LWST) project. This project is concerned with the development of more cost-effective gearing for speed increasers for wind turbines.

  11. A Statistical Model for the Prediction of Wind-Speed Probabilities in the Atmospheric Surface Layer

    NASA Astrophysics Data System (ADS)

    Efthimiou, G. C.; Hertwig, D.; Andronopoulos, S.; Bartzis, J. G.; Coceal, O.

    2016-11-01

    Wind fields in the atmospheric surface layer (ASL) are highly three-dimensional and characterized by strong spatial and temporal variability. For various applications such as wind-comfort assessments and structural design, an understanding of potentially hazardous wind extremes is important. Statistical models are designed to facilitate conclusions about the occurrence probability of wind speeds based on the knowledge of low-order flow statistics. Being particularly interested in the upper tail regions we show that the statistical behaviour of near-surface wind speeds is adequately represented by the Beta distribution. By using the properties of the Beta probability density function in combination with a model for estimating extreme values based on readily available turbulence statistics, it is demonstrated that this novel modelling approach reliably predicts the upper margins of encountered wind speeds. The model's basic parameter is derived from three substantially different calibrating datasets of flow in the ASL originating from boundary-layer wind-tunnel measurements and direct numerical simulation. Evaluating the model based on independent field observations of near-surface wind speeds shows a high level of agreement between the statistically modelled horizontal wind speeds and measurements. The results show that, based on knowledge of only a few simple flow statistics (mean wind speed, wind-speed fluctuations and integral time scales), the occurrence probability of velocity magnitudes at arbitrary flow locations in the ASL can be estimated with a high degree of confidence.

  12. The Impacts of Wind Speed Trends and 30-Year Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest.

    PubMed

    Cross, Benjamin D; Kohfeld, Karen E; Bailey, Joseph; Cooper, Andrew B

    2015-01-01

    In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979-2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC's North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast.

  13. The Impacts of Wind Speed Trends and 30-Year Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest

    PubMed Central

    Cross, Benjamin D.; Kohfeld, Karen E.; Bailey, Joseph; Cooper, Andrew B.

    2015-01-01

    In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979–2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC’s North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast. PMID:26271035

  14. Chaos and periodicity in solar wind speed: cycle 23

    NASA Astrophysics Data System (ADS)

    Sarkar, Tushnik; Ray, Rajdeep; Khondekar, Mofazzal H.; Ghosh, Koushik; Banerjee, Subrata

    2015-06-01

    The solar wind speed time series data from 1st January, 1997 to 28th October, 2003 has been pre-processed using simple exponential smoothing, discrete wavelet transform for denoising to investigate the underneath dynamics of it. Recurrence plot and recurrence quantification analysis has revealed that the time series is non-stationary one with deterministic chaotic behavior. The Hilbert-Huang Transform has been used in search of the underlying periods of the data series. Present investigation has revealed the periods of 21 days, 32.5 days, 43.6 days, 148.86 days, 180.7 days, 355.5 days, 403.2 days, 413.6 days, 490.72 days, 729.6 days, 1086.76 days, 1599.4 days and 1892.6 days.

  15. Multiple and variable speed electrical generator systems for large wind turbines

    NASA Technical Reports Server (NTRS)

    Andersen, T. S.; Hughes, P. S.; Kirschbaum, H. S.; Mutone, G. A.

    1982-01-01

    A cost effective method to achieve increased wind turbine generator energy conversion and other operational benefits through variable speed operation is presented. Earlier studies of multiple and variable speed generators in wind turbines were extended for evaluation in the context of a specific large sized conceptual design. System design and simulation have defined the costs and performance benefits which can be expected from both two speed and variable speed configurations.

  16. Sequential filtering for surface wind speed estimation from ambient noise measurement

    NASA Astrophysics Data System (ADS)

    Xiao, Peng; Yang, Kun-de; Lei, Zhi-xiong

    2017-03-01

    Many research results show that ocean ambient noise and wind speed are highly relevant, and the surface wind speed can be effectively inverted using ocean noise data. In most deep-sea cases, the ambient noise of medium frequency is mainly determined by the surface wind, and there is a conventional relationship between them. This paper gives an equation which shows this relationship firstly, and then a surface-wind inversion method is proposed. An efficient particle filter is used to estimate the speed distribution, and the results exhibit more focused close to the actual wind speed. The method is verified by the measured noise data, and analysis results showed that this approach can accurately give the trend of sea surface wind speed.

  17. A conceptual framework for evaluating variable speed generator options for wind energy applications

    NASA Technical Reports Server (NTRS)

    Reddoch, T. W.; Lipo, T. A.; Hinrichsen, E. N.; Hudson, T. L.; Thomas, R. J.

    1995-01-01

    Interest in variable speed generating technology has accelerated as greater emphasis on overall efficiency and superior dynamic and control properties in wind-electric generating systems are sought. This paper reviews variable speed technology options providing advantages and disadvantages of each. Furthermore, the dynamic properties of variable speed systems are contrasted with synchronous operation. Finally, control properties of variable speed systems are examined.

  18. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    NASA Astrophysics Data System (ADS)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  19. Assessing the Impact of Different Measurement Time Intervals on Observed Long-Term Wind Speed Trends

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, C.; Vicente-Serrano, S. M.; McVicar, T.; Jerez, S.; Revuelto, J.; López Moreno, J. I.

    2014-12-01

    During the last two decades climate studies have reported a tendency toward a decline in measured near-surface wind speed in some regions of Europe, North America, Asia and Australia. This weakening in observed wind speed has been recently termed "global stilling", showing a worldwide average trend of -0.140 m s-1 dec-1 during last 50-years. The precise cause of the "global stilling" remains largely uncertain and has been hypothetically attributed to several factors, mainly related to: (i) an increasing surface roughness (i.e. forest growth, land use changes, and urbanization); (ii) a slowdown in large-scale atmospheric circulation; (iii) instrumental drifts and technological improvements, maintenance, and shifts in measurements sites and calibration issues; (iv) sunlight dimming due to air pollution; and (v) astronomical changes. This study proposed a novel investigation aimed at analyzing how different measurement time intervals used to calculate a wind speed series can affect the sign and magnitude of long-term wind speed trends. For instance, National Weather Services across the globe estimate daily average wind speed using different time intervals and formulae that may affect the trend results. Firstly, we carried out a comprehensive review of wind studies reporting the sign and magnitude of wind speed trend and the sampling intervals used. Secondly, we analyzed near-surface wind speed trends recorded at 59 land-based stations across Spain comparing monthly mean wind speed series obtained from: (a) daily mean wind speed data averaged from standard 10-min mean observations at 0000, 0700, 1300 and 1800 UTC; and (b) average wind speed of 24 hourly measurements (i.e., wind run measurements) from 0000 to 2400 UTC. Thirdly and finally, we quantified the impact of anemometer drift (i.e. bearing malfunction) by presenting preliminary results (1-year of paired measurements) from a comparison of one new anemometer sensor against one malfunctioned anenometer sensor due

  20. Comparison of Two ARMA-GARCH Approaches for Forecasting the Mean and Volatility of Wind Speed

    NASA Astrophysics Data System (ADS)

    Erdem, Ergin; Shi, Jing; She, Ying

    In this study, we develop two ARMA-GARCH models for predicting the mean and volatility of wind speed. The first model employs the standalone ARMA-GARCH model for modeling the mean wind speed and the variance simultaneously. For the second model, in the first step, the current wind vector is decomposed into lateral and longitudinal components by using the prevailing wind direction. The mean and variance of the two components are then modeled using two separate ARMA-GARCH processes. Thereafter, the two components are combined back to form the resultant single wind vector. A large wind dataset is employed for model building and prediction so that the two approaches can be compared. It shows that the standalone ARMA-GARCH model is more accurate for predicting the wind speed, whereas the component ARMA-GARCH model performs better for predicting the wind variance.

  1. Coronal Holes and Solar Wind High-Speed Streams: I. Forecasting the Solar Wind Parameters

    NASA Astrophysics Data System (ADS)

    Vršnak, Bojan; Temmer, Manuela; Veronig, Astrid M.

    2007-02-01

    We analyze the relationship between the coronal hole (CH) area/position and physical characteristics of the associated corotating high-speed stream (HSS) in the solar wind at 1 AU. For the analysis we utilize the data in the period DOY 25 125 of 2005, characterized by a very low coronal mass ejection (CME) activity. Distinct correlations between the daily averaged CH parameters and the solar wind characteristics are found, which allows us to forecast the solar wind velocity v, proton temperature T, proton density n, and magnetic field strength B, several days in advance in periods of low CME activity. The forecast is based on monitoring fractional areas A, covered by CHs in the meridional slices embracing the central meridian distance ranges [-40°,-20°], [-10°,10°], and [20°,40°]. On average, the peaks in the daily values of n, B, T, and v appear delayed by 1, 2, 3, and 4 days, respectively, after the area A attains its maximum in the central-meridian slice. The peak values of the solar wind parameters are correlated to the peak values of A, which provides also forecasting of the peak values of n, B, T, and v. The most accurate prediction can be obtained for the solar wind velocity, for which the average relative difference between the calculated and the observed peak values amounts to overline{\\vertδ\\vert}≈10 %. The forecast reliability is somewhat lower in the case of T, B, and n ( overline{\\vertδ\\vert}≈20 , 30, and 40%, respectively). The space weather implications are discussed, including the perspectives for advancing the real-time calculation of the Sun Earth transit times of coronal mass ejections and interplanetary shocks, by including more realistic real-time estimates of the solar wind characteristics.

  2. Spatial and temporal variability of wind speed and energy over Greece

    NASA Astrophysics Data System (ADS)

    Pappa, Ioanna; Dimakos, Yiannis; Dimas, Panagiotis; Kossieris, Panagiotis; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris

    2014-05-01

    To appraise the wind potential over Greece we analyse the main statistical properties of wind speed through time. To this end, we use 66 time series from 1932 to 2013 on daily and monthly time scale and examine the spatial variability of wind speed over Greece. To depict the main statistical behavior and potential of the wind over Greece, maps have been created illustrating the basic statistical characteristics of wind speed on monthly to annual time scale. We also examine time series of energy production from the currently developed system of key wind parks and we compare the theoretical potential with the actually produced energy. Finally, we explore a methodology to simulate wind energy production in a stochastic framework. In that context we generate hourly wind speed synthetic data using a modified Bartlett-Lewis model implemented in Hyetos. The results of our analysis offer an improved overall picture of wind speed variability over Greece and help us clarify to which extent Hyetos is applicable in the stochastic generation of wind speed time series.

  3. Generation and Validation of Spatial Distribution of Hourly Wind Speed Time-Series using Machine Learning

    NASA Astrophysics Data System (ADS)

    Veronesi, F.; Grassi, S.

    2016-09-01

    Wind resource assessment is a key aspect of wind farm planning since it allows to estimate the long term electricity production. Moreover, wind speed time-series at high resolution are helpful to estimate the temporal changes of the electricity generation and indispensable to design stand-alone systems, which are affected by the mismatch of supply and demand. In this work, we present a new generalized statistical methodology to generate the spatial distribution of wind speed time-series, using Switzerland as a case study. This research is based upon a machine learning model and demonstrates that statistical wind resource assessment can successfully be used for estimating wind speed time-series. In fact, this method is able to obtain reliable wind speed estimates and propagate all the sources of uncertainty (from the measurements to the mapping process) in an efficient way, i.e. minimizing computational time and load. This allows not only an accurate estimation, but the creation of precise confidence intervals to map the stochasticity of the wind resource for a particular site. The validation shows that machine learning can minimize the bias of the wind speed hourly estimates. Moreover, for each mapped location this method delivers not only the mean wind speed, but also its confidence interval, which are crucial data for planners.

  4. Flow-Visualization Techniques Used at High Speed by Configuration Aerodynamics Wind-Tunnel-Test Team

    NASA Technical Reports Server (NTRS)

    Lamar, John E. (Editor)

    2001-01-01

    This paper summarizes a variety of optically based flow-visualization techniques used for high-speed research by the Configuration Aerodynamics Wind-Tunnel Test Team of the High-Speed Research Program during its tenure. The work of other national experts is included for completeness. Details of each technique with applications and status in various national wind tunnels are given.

  5. Effect of wind speed on performance of a solar-pv array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thousands of solar photovoltaic (PV) arrays have been installed over the past few years, but the effect of wind speed on the predicted performance of PV arrays is not usually considered by installers. An increase in wind speed will cool the PV array, and the electrical power of the PV modules will ...

  6. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Characteristics of Class II Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-2 Table F-2 to Subpart F...

  7. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Characteristics of Class II Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-2 Table F-2 to Subpart F...

  8. Assimilation of satellite surface wind speed data using the GLA analysis/forecast system

    NASA Technical Reports Server (NTRS)

    Bloom, S. C.; Atlas, R.

    1988-01-01

    Research at the Goddard Laboratory for Atmospheres to evaluate methods to assign directions to both real and simulated surface wind speed data is discussed. Surface wind speed measurements are obtained from satellites, including Seasat, Nimbus-7, and Geosat. The methods include the interpolation of modeled forecast winds to the wind speed datum location, the use of surface pressures with a balance relation, and a variational analysis method. It is found that the best estimates may be obtained using a multipass approach to perform a surface analysis incorporating all conventional surface data.

  9. Spectral structure of 5 year time series of horizontal wind speed at the Boulder Atmospheric Observatory

    NASA Astrophysics Data System (ADS)

    Kang, Song-Lak; Won, Hoonill

    2016-10-01

    We investigate the spectral structures of 5 year, 1 min time series of horizontal wind speeds at 100 and 10 m heights at the Boulder Atmospheric Observatory tower located in the eastern slope of the Rocky Mountains, USA. In the full-scale spectra, the diurnal spectral peak, which is usually insignificant at a coastal or offshore site, is the most significant at both heights. The spectrum is enhanced on the low-frequency side of the diurnal peak during winter, but on the high-frequency side during summer, which indicates frequent synoptic weather events during winter supplanted by mesoscale events during summer. In terms of the spectral density in the spectral gap of Van der Hoven (1957), separating boundary layer turbulence from the synoptic-scale fluctuations, at a frequency between 10-4 and 10-3 Hz, we rank the daily time series at 100 m height and sample the summer top and winter bottom 10 percentile cases. The winter cases of the reduced spectral density in the gap region present the f-3 spectrum (f is frequency) and negatively skewed velocity increment distributions, which are the signatures of enstrophy (the integral of squared vorticity) cascade of turbulent two-dimensional (2-D) flows. In contrast, the summer cases of the enhanced spectral density present the f-5/3 spectrum and positively skewed velocity increment distributions, which are the signatures of upscale energy cascade of 2-D flows. In these mesoscale events that fill up the gap, the turbulence intensity-wind speed relationship is very sensitive to the choice of the averaging period.

  10. Nonparametric Stochastic Model for Uncertainty Quantifi cation of Short-term Wind Speed Forecasts

    NASA Astrophysics Data System (ADS)

    AL-Shehhi, A. M.; Chaouch, M.; Ouarda, T.

    2014-12-01

    Wind energy is increasing in importance as a renewable energy source due to its potential role in reducing carbon emissions. It is a safe, clean, and inexhaustible source of energy. The amount of wind energy generated by wind turbines is closely related to the wind speed. Wind speed forecasting plays a vital role in the wind energy sector in terms of wind turbine optimal operation, wind energy dispatch and scheduling, efficient energy harvesting etc. It is also considered during planning, design, and assessment of any proposed wind project. Therefore, accurate prediction of wind speed carries a particular importance and plays significant roles in the wind industry. Many methods have been proposed in the literature for short-term wind speed forecasting. These methods are usually based on modeling historical fixed time intervals of the wind speed data and using it for future prediction. The methods mainly include statistical models such as ARMA, ARIMA model, physical models for instance numerical weather prediction and artificial Intelligence techniques for example support vector machine and neural networks. In this paper, we are interested in estimating hourly wind speed measures in United Arab Emirates (UAE). More precisely, we predict hourly wind speed using a nonparametric kernel estimation of the regression and volatility functions pertaining to nonlinear autoregressive model with ARCH model, which includes unknown nonlinear regression function and volatility function already discussed in the literature. The unknown nonlinear regression function describe the dependence between the value of the wind speed at time t and its historical data at time t -1, t - 2, … , t - d. This function plays a key role to predict hourly wind speed process. The volatility function, i.e., the conditional variance given the past, measures the risk associated to this prediction. Since the regression and the volatility functions are supposed to be unknown, they are estimated using

  11. Estimated changes in wind speed and wind power density over the western High Plains, 1971-2000

    NASA Astrophysics Data System (ADS)

    Greene, J. Scott; Chatelain, Matthew; Morrissey, Mark; Stadler, Steve

    2012-08-01

    This manuscript presents the results of research on the temporal patterns in wind speed and wind power density from 1971 to 2000. The study area is across the western High Plains states east of the Rocky Mountains in an area which has a proven wind power resource. Policies and economic analyses involving the rapidly expanding wind power industry have often assumed a constant in the wind resource; however, any temporal pattern or trend in wind speeds can have a meaningful impact on the reliability of wind power as an energy resource. Using data provided by the North American Regional Climate Change Assessment Program (NARCCAP) to analyze decadal and seasonal trends of wind data, this study shows that from 1971 to 2000 there were some notable changes in the NARCCAP simulated wind velocities over the study region. Wind speed trends across the central High Plains of the USA were most notable across the western portion of the study area along the higher terrain near the front range of the Rocky Mountains. The most significant changes occurred during winter and spring when a large portion of the study area experienced the most substantial decrease in wind speed, with a 20% reduction in wind power density during spring across the western portion of the study area. During summer and fall, the trends are less noticeable, with only very small changes in the summer. Fall was the only season that saw widespread increased values of wind power density from the 1970s to 1990s, with increases of nearly 10% in some southern areas of the study area. Based upon the analysis of the data and previous literature, it is theorized that these changes could be the result of changing synoptic patterns across the study region.

  12. Directional Profiles of Wind Speed and Turbulence Intensity over Forest and Open Land

    NASA Astrophysics Data System (ADS)

    Beyer, Elisabeth; Dietz, Sebastian; Pinter, Anna

    2014-05-01

    More and more wind turbines are built onshore and reduce the available areas for wind energy. Forests are additional potential for wind energy priority areas. But the high roughness of wooden areas and the resulting turbulences make it difficult to assess sites in forests. In order to cope with this problem some measurements were done inside and outside wooden areas. Therefore met masts equipped with ultra sonic and cup anemometers and LIDAR were used. With the measured wind speed and its standard deviation the turbulence intensity was calculated. The results are direction dependent profiles of wind speed and turbulence intensity.

  13. Control algorithms for effective operation of variable-speed wind turbines

    SciTech Connect

    Not Available

    1993-10-01

    This report describes a computer code, called ASYM and provides results from its application in simulating the control of the 34-m Test Bed vertical-axis wind turbine (VAWT) in Bushland, Texas. The code synthesizes dynamic wind speeds on a second-by-second basis in the time domain. The wind speeds conform to a predetermined spectral content governed by the hourly average wind speed that prevails at each hour of the simulation. The hourly average values are selected in a probabilistic sense through the application of Markov chains, but their cumulative frequency of occurrence conforms to a Rayleigh distribution that is governed by the mean annual wind speed of the site selected. The simulated wind speeds then drive a series of control algorithms that enable the code to predict key operational parameters such as number of annual starts and stops, annual energy production, and annual fatigue damage at a critically stressed joint on the wind turbine. This report also presents results from the application of ASYM that pertain to low wind speed cut-in and cut-out conditions and controlled operation near critical speed ranges that excite structural vibrations that can lead to accelerated fatigue damage.

  14. Variation of the average 'freezing-in' temperature of oxygen ions with solar wind speed

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Vogt, C.

    1980-01-01

    Observations of the average oxygen ionization equilibrium as a function of speed of the solar wind are presented. At low solar wind speeds they indicate a coronal temperature at the freezing-in point of (1.6 + or - 0.2) x 10 to the 6th K. At speeds above 450 km/sec the apparent temperature starts to rise rapidly. This rise is tentatively interpreted in terms of a lack of thermodynamic equilibrium in the source region.

  15. Wind Speed Measurement from Bistatically Scattered GPS Signals

    NASA Technical Reports Server (NTRS)

    Garrison, James L.; Komjathy, Attila; Zavorotny, Valery U.; Katzberg, Stephen J.

    1999-01-01

    Instrumentation and retrieval algorithms are described which use the forward, or bistatically scattered range-coded signals from the Global Positioning System (GPS) radio navigation system for the measurement of sea surface roughness. This roughness is known to be related directly to the surface wind speed. Experiments were conducted from aircraft along the TOPEX ground track, and over experimental surface truth buoys. These flights used a receiver capable of recording the cross correlation power in the reflected signal. The shape of this power distribution was then compared against analytical models derived from geometric optics. Two techniques for matching these functions were studied. The first recognized the most significant information content in the reflected signal is contained in the trailing edge slope of the waveform. The second attempted to match the complete shape of the waveform by approximating it as a series expansion and obtaining the nonlinear least squares estimate. Discussion is also presented on anomalies in the receiver operation and their identification and correction.

  16. The Partition Between Terminal Speed and Mass Loss: Thin, Thick, and Rotating Line-Driven Winds

    NASA Astrophysics Data System (ADS)

    Gayley, K. G.; Onifer, A. J.

    2003-01-01

    Steady-state supersonic line-driven winds are important contributors to wind-blown bubbles in star forming regions. The key input to the bubble in the energy-conserving phase is the wind kinetic-energy flux, which involves both the mass-loss rate and the terminal speed. However, these quantities are themselves self-consistent parameters of the line-driving process, so relate to each other and to the resulting wind optical depth. This complex interrelation between optical depth, mass-loss, and wind speed lies at the heart of line-driven wind theory. Drawing on the successes and insights of ``CAK'' theory, I will convey a simplified view of how to unite these processes using the concept of effective opacity, with attention to the ramifications for nonspherical nebular and wind-blown structures. Recent extensions to nongray optically thick environments such as Wolf-Rayet winds and supernovae are also discussed.

  17. Short wind waves on the ocean: Long-wave and wind-speed dependences

    NASA Astrophysics Data System (ADS)

    Plant, William J.

    2015-09-01

    This second paper of our set on short wind waves on the ocean utilizes the wavenumber-frequency spectrum of short wave heights, F(k,f), derived in our previous paper to investigate kinematic effects on the dependence of the frequency spectrum, F(f), and the wavenumber spectrum, F(k), on long-wave height. We show that the model predicts that neither F(f) nor F(k) are exactly power law functions of their independent variables and that F(f) varies with significant wave height much more than F(k) does. After calibrating the model against wave gauges, we also investigate the dependence of mean-square-slopes (mss), mean-square heights (msh) and root-mean-square orbital velocities (rmsv) of short ocean waves on wind speed and maximum frequency or wavenumber. We use data from the wire wave gauges on University of Miami's Air-Sea Interaction Spar (ASIS) buoy for calibration purposes. Frequency spectra from the wave gauges begin to be affected by noise at about 2.5 Hz. Therefore, above 1 Hz, we utilize F(f) from the modeled F(k,f) to extend the frequency dependence up to 180 Hz. We set modeled spectral densities by matching measured spectra at 1 Hz. Using the calibrated F(f,k), we are able to estimate the average value of the total mss, for long and short waves, and its upwind and crosswind components up to 180 Hz for a variety of wind speeds. The average mss values are in good agreement with the measurements of Cox and Munk [1954], although the upwind and crosswind components agree less well.

  18. Maximizing Energy Capture of Fixed-Pitch Variable-Speed Wind Turbines

    SciTech Connect

    Pierce, K.; Migliore, P.

    2000-08-01

    Field tests of a variable-speed, stall-regulated wind turbine were conducted at a US Department of Energy Laboratory. A variable-speed generating system, comprising a doubly-fed generator and series-resonant power converter, was installed on a 275-kW, downwind, two-blade wind turbine. Gearbox, generator, and converter efficiency were measured in the laboratory so that rotor aerodynamic efficiency could be determined from field measurement of generator power. The turbine was operated at several discrete rotational speeds to develop power curves for use in formulating variable-speed control strategies. Test results for fixed-speed and variable-speed operation are presented along with discussion and comparison of the variable-speed control methodologies. Where possible, comparisons between fixed-speed and variable-speed operation are shown.

  19. Numerical Study of the High-Speed Leg of a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nayani, Sudheer; Sellers, William L., III; Brynildsen, Scott E.; Everhart, Joel L.

    2015-01-01

    The paper describes the numerical study of the high-speed leg of the NASA Langley 14 by 22-foot Low Speed Wind Tunnel. The high-speed leg consists of the Settling Chamber, Contraction, Test Section, and First Diffuser. Results are shown comparing two different exit boundary conditions and two different methods of determining the surface geometry.

  20. Air pollution is pushing wind speed into a regulator of surface solar irradiance in China

    NASA Astrophysics Data System (ADS)

    Wang, Y. W.; Yang, Y. H.; Zhou, X. Y.; Zhao, N.; Zhang, J. H.

    2014-05-01

    Analysis in 27 cities across China shows that surface solar irradiance (SSI) and wind speed track similar decadal trends in 1961-2011, suggesting wind speed as a possible regulator of SSI. This assumption is further confirmed by the continuously widening gap in annually averaged daily SSI between windy and windless clear-sky days with worsening air pollution. Wider gaps are noted for more polluted cities and seasons. The gap in SSI between windy and windless conditions could therefore serve as a good indicator for air quality. The regulatory effect of wind speed on SSI starts to be important when air pollution index exceeds the boundary of 125. A plausible mechanism of wind speed regulating SSI through interactions with aerosols is proposed. There are two cut-off points of 2.5 m s-1 and 3.5 m s-1 wind speeds. Winds <2.5 m s-1 noticeably disperse air pollutants and thereby enhance SSI. Above the 2.5 m s-1 threshold, air pollution and SSI become largely insensitive to changing wind speeds. Winds in excess of 3.5 m s-1 could enhance aerosol concentration probably by inducing dust-storms, which in turn attenuate SSI.

  1. A Hybrid Wavelet Transform Based Short-Term Wind Speed Forecasting Approach

    PubMed Central

    Wang, Jujie

    2014-01-01

    It is important to improve the accuracy of wind speed forecasting for wind parks management and wind power utilization. In this paper, a novel hybrid approach known as WTT-TNN is proposed for wind speed forecasting. In the first step of the approach, a wavelet transform technique (WTT) is used to decompose wind speed into an approximate scale and several detailed scales. In the second step, a two-hidden-layer neural network (TNN) is used to predict both approximated scale and detailed scales, respectively. In order to find the optimal network architecture, the partial autocorrelation function is adopted to determine the number of neurons in the input layer, and an experimental simulation is made to determine the number of neurons within each hidden layer in the modeling process of TNN. Afterwards, the final prediction value can be obtained by the sum of these prediction results. In this study, a WTT is employed to extract these different patterns of the wind speed and make it easier for forecasting. To evaluate the performance of the proposed approach, it is applied to forecast Hexi Corridor of China's wind speed. Simulation results in four different cases show that the proposed method increases wind speed forecasting accuracy. PMID:25136699

  2. High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer.

    PubMed

    Rahlff, Janina; Stolle, Christian; Giebel, Helge-Ansgar; Brinkhoff, Thorsten; Ribas-Ribas, Mariana; Hodapp, Dorothee; Wurl, Oliver

    2017-03-22

    The sea-surface microlayer (SML) at the boundary between atmosphere and hydrosphere represents a demanding habitat for bacteria. Wind speed is a crucial but poorly studied factor for its physical integrity. Increasing atmospheric burden of CO2, as suggested for future climate scenarios, may particularly act on this habitat at the air-sea interface. We investigated the effect of increasing wind speeds and different pCO2 levels on SML microbial communities in a wind-wave tunnel, which offered the advantage of low spatial and temporal variability. We found that enrichment of bacteria in the SML occurred solely at a U10 wind speed of ≤5.6 m s-1 in the tunnel and ≤4.1 m s-1 in the Baltic Sea. High pCO2 levels further intensified the bacterial enrichment in the SML during low wind speed. In addition, low wind speed and pCO2 induced the formation of a distinctive bacterial community as revealed by 16S rRNA gene fingerprints and influenced the presence or absence of individual taxonomic units within the SML. We conclude that physical stability of the SML below a system-specific wind speed threshold induces specific bacterial communities in the SML entailing strong implications for ecosystem functioning by wind-driven impacts on habitat properties, gas-exchange and matter cycling processes.

  3. A hybrid wavelet transform based short-term wind speed forecasting approach.

    PubMed

    Wang, Jujie

    2014-01-01

    It is important to improve the accuracy of wind speed forecasting for wind parks management and wind power utilization. In this paper, a novel hybrid approach known as WTT-TNN is proposed for wind speed forecasting. In the first step of the approach, a wavelet transform technique (WTT) is used to decompose wind speed into an approximate scale and several detailed scales. In the second step, a two-hidden-layer neural network (TNN) is used to predict both approximated scale and detailed scales, respectively. In order to find the optimal network architecture, the partial autocorrelation function is adopted to determine the number of neurons in the input layer, and an experimental simulation is made to determine the number of neurons within each hidden layer in the modeling process of TNN. Afterwards, the final prediction value can be obtained by the sum of these prediction results. In this study, a WTT is employed to extract these different patterns of the wind speed and make it easier for forecasting. To evaluate the performance of the proposed approach, it is applied to forecast Hexi Corridor of China's wind speed. Simulation results in four different cases show that the proposed method increases wind speed forecasting accuracy.

  4. Wind speed affects prey-catching behaviour in an orb web spider.

    PubMed

    Turner, Joe; Vollrath, Fritz; Hesselberg, Thomas

    2011-12-01

    Wind has previously been shown to influence the location and orientation of spider web sites and also the geometry and material composition of constructed orb webs. We now show that wind also influences components of prey-catching behaviour within the web. A small wind tunnel was used to generate different wind speeds. Araneus diadematus ran more slowly towards entangled Drosophila melanogaster in windy conditions, which took less time to escape the web. This indicates a lower capture probability and a diminished overall predation efficiency for spiders at higher wind speeds. We conclude that spiders' behaviour of taking down their webs as wind speed increases may therefore not be a response only to possible web damage.

  5. Wind speed affects prey-catching behaviour in an orb web spider

    NASA Astrophysics Data System (ADS)

    Turner, Joe; Vollrath, Fritz; Hesselberg, Thomas

    2011-12-01

    Wind has previously been shown to influence the location and orientation of spider web sites and also the geometry and material composition of constructed orb webs. We now show that wind also influences components of prey-catching behaviour within the web. A small wind tunnel was used to generate different wind speeds. Araneus diadematus ran more slowly towards entangled Drosophila melanogaster in windy conditions, which took less time to escape the web. This indicates a lower capture probability and a diminished overall predation efficiency for spiders at higher wind speeds. We conclude that spiders' behaviour of taking down their webs as wind speed increases may therefore not be a response only to possible web damage.

  6. Flight measurement and analysis of AAFE RADSCAT wind speed signature of the ocean

    NASA Technical Reports Server (NTRS)

    Schroeder, L. C.; Jones, W. L.; Schaffner, P. R.; Mitchell, J. L.

    1984-01-01

    The advanced aerospace flight experiment radiometer scatterometer (AAFE RADSCAT) which was developed as a research tool to evaluate the use of microwave frequency remote sensors to provide wind speed information at the ocean surface is discussed. The AAFE RADSCAT helped establish the feasibility of the satellite scatterometer for measuring both wind speed and direction. The most important function of the AAFE RADSCAT was to provide a data base of ocean normalized radar cross section (NRCS) measurements as a function of surface wind vector at 13.9 GHz. The NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions. The obtained data base was used to model the relationship between k sub u band radar signature and ocean surface wind vector. The models developed therefrom are compared with those used for inversion of the SEASAT-A satellite scatterometer (SASS) radar measurements to wind speeds.

  7. Comparing measurements of the horizontal wind speed of a 2D Multi-Lidar and a cup anemometer

    NASA Astrophysics Data System (ADS)

    Schneemann, Jörge; Trabucchi, Davide; José Trujillo, Juan; Kühn, Martin

    2014-12-01

    Wind measurements of a 2D Multi-Lidar and a mast mounted cup anemometer are compared in this study. Average wind speed and direction as well as the turbulence intensity of the wind speed are considered. Data analysis is mainly performed using standard regression analysis on 10 minute average data and the calculation of the power spectral density. The results show a good agreement regarding wind speed and direction and the turbulence intensity of the horizontal wind.

  8. Flux-tube geometry and solar wind speed during an activity cycle

    NASA Astrophysics Data System (ADS)

    Pinto, R. F.; Brun, A. S.; Rouillard, A. P.

    2016-07-01

    Context. The solar wind speed at 1 AU shows cyclic variations in latitude and in time which reflect the evolution of the global background magnetic field during the activity cycle. It is commonly accepted that the terminal (asymptotic) wind speed in a given magnetic flux-tube is generally anti-correlated with its total expansion ratio, which motivated the definition of widely used semi-empirical scaling laws relating one to the other. In practice, such scaling laws require ad hoc corrections (especially for the slow wind in the vicinities of streamer/coronal hole boundaries) and empirical fits to in situ spacecraft data. A predictive law based solely on physical principles is still missing. Aims: We test whether the flux-tube expansion is the controlling factor of the wind speed at all phases of the cycle and at all latitudes (close to and far from streamer boundaries) using a very large sample of wind-carrying open magnetic flux-tubes. We furthermore search for additional physical parameters based on the geometry of the coronal magnetic field which have an influence on the terminal wind flow speed. Methods: We use numerical magneto-hydrodynamical simulations of the corona and wind coupled to a dynamo model to determine the properties of the coronal magnetic field and of the wind velocity (as a function of time and latitude) during a whole 11-yr activity cycle. These simulations provide a large statistical ensemble of open flux-tubes which we analyse conjointly in order to identify relations of dependence between the wind speed and geometrical parameters of the flux-tubes which are valid globally (for all latitudes and moments of the cycle). Results: Our study confirms that the terminal (asymptotic) speed of the solar wind depends very strongly on the geometry of the open magnetic flux-tubes through which it flows. The total flux-tube expansion is more clearly anti-correlated with the wind speed for fast rather than for slow wind flows, and effectively controls the

  9. A hybrid approach for short-term forecasting of wind speed.

    PubMed

    Tatinati, Sivanagaraja; Veluvolu, Kalyana C

    2013-01-01

    We propose a hybrid method for forecasting the wind speed. The wind speed data is first decomposed into intrinsic mode functions (IMFs) with empirical mode decomposition. Based on the partial autocorrelation factor of the individual IMFs, adaptive methods are then employed for the prediction of IMFs. Least squares-support vector machines are employed for IMFs with weak correlation factor, and autoregressive model with Kalman filter is employed for IMFs with high correlation factor. Multistep prediction with the proposed hybrid method resulted in improved forecasting. Results with wind speed data show that the proposed method provides better forecasting compared to the existing methods.

  10. On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    The aa index can be decomposed into two separate components: the leading sporadic component due to solar activity as measured by sunspot number and the residual or recurrent component due to interplanetary disturbances, such as coronal holes. For the interval 1964-2006, a highly statistically important correlation (r = 0.749) is found between annual averages of the aa index and the solar wind speed (especially between the residual component of aa and the solar wind speed, r = 0.865). Because cyclic averages of aa (and the residual component) have trended upward during cycles 11-23, cyclic averages of solar wind speed are inferred to have also trended upward.

  11. A Hybrid Approach for Short-Term Forecasting of Wind Speed

    PubMed Central

    Tatinati, Sivanagaraja; Veluvolu, Kalyana C.

    2013-01-01

    We propose a hybrid method for forecasting the wind speed. The wind speed data is first decomposed into intrinsic mode functions (IMFs) with empirical mode decomposition. Based on the partial autocorrelation factor of the individual IMFs, adaptive methods are then employed for the prediction of IMFs. Least squares-support vector machines are employed for IMFs with weak correlation factor, and autoregressive model with Kalman filter is employed for IMFs with high correlation factor. Multistep prediction with the proposed hybrid method resulted in improved forecasting. Results with wind speed data show that the proposed method provides better forecasting compared to the existing methods. PMID:24453872

  12. Estimation of atmospheric sea salt dry deposition: Wind speed and particle size dependence

    NASA Astrophysics Data System (ADS)

    McDonald, R. L.; Unni, C. K.; Duce, R. A.

    1982-02-01

    Cascade impactor and bulk filter samples of atmospheric sea salt were collected at wind speeds from 3.4 to 10 m/s at coastal tower sites in the Florida Keys and Enewetak Atoll as part of the SEAREX (Sea Air Exchange) Program. Simultaneous dry deposition measurements were made to polyethylene plates. The samples were analyzed for Na as an indicator of sea salt. If the observed atmospheric sea salt particle mass distributions are corrected for the reduced collection efficiency of large particles, the observed dry deposition rates agree well with rates estimated from atmospheric sea salt particle concentrations and theoretical particle deposition velocities derived from gravitational settling velocities or from the equations of Slinn and Slinn (1980, 1981) for deposition to smooth, solid surfaces as well as natural water surfaces. The results emphasize the fact that even though large particles may represent only a small fraction of the total mass of sea salt over the ocean, they can dominate the dry deposition rates of the sea salt aerosol.

  13. Proposed modification to the inhalable aerosol convention applicable to realistic workplace wind speeds.

    PubMed

    Sleeth, Darrah K; Vincent, James H

    2011-06-01

    The current convention for sampling inhalable aerosols was based on several mannequin studies performed in wind tunnels at wind speeds between 0.5 and 4 m s(-1). In reality, as we now know, the wind speed in most modern indoor working environments is generally at or below ∼0.2 m s(-1). Inhalability studies performed in calm air aerosol chambers have shown that human aspiration efficiency at essentially zero wind speed is not consistent with the existing inhalable aerosol convention, calling into question the universal applicability of the current standard. More recently, experiments were carried out in a new hybrid wind tunnel-calm air chamber at more representative workplace wind speeds, between ∼0.1 and 0.5 m s(-1), to fill in this knowledge gap. Comparing these new data to both the existing inhalable aerosol convention and a recently proposed alternative for low wind movement suggests that, while the existing inhalable aerosol convention remains appropriate for wind speeds above ∼0.2 m s(-1), the modified version is more appropriate for the range below ∼0.2 m s(-1).

  14. Identification and Attribution of Global Wind Speed Trends at 100m

    NASA Astrophysics Data System (ADS)

    McGraw, Zachary; Smith, Ronald; Storelvmo, Trude

    2016-04-01

    Recent studies have found evidence that global climate change significantly alters the strength of large-scale wind patterns. Any enduring trends over large regions are potentially of value to understand due to their implications for the wind energy industry. In this study we identify and evaluate global wind speed trends at the wind turbine hub height (~100m) through the use of CMIP5 models, standard reanalyses (ERA-Interim, NCEP2) and a uniquely high-resolution analysis dataset (Vestas Mesoscale Library). By analyzing how wind speeds change across the globe throughout the period 1900-2100 (with emphasis on the satellite era, 1979-2014), we assess the significance of multi-decadal wind speed trends in the context of natural spatial and temporal variability. Our results show substantial differences in regional trends between different datasets though several regions including the Southern Hemisphere mid-latitudes and the Caribbean show consistently substantial changing wind speeds during the satellite era. Wind speed trends tend to diminish over large time scales and follow spatial patterns that link multi-decadal trends to the evolving behaviors of internal variability modes, especially those of ENSO and the Southern Annular Mode (SAM).

  15. An Analysis of Peak Wind Speed Data from Collocated Mechanical and Ultrasonic Anemometers

    NASA Technical Reports Server (NTRS)

    Short, David A.; Wells, Leonard A.; Merceret, Francis J.; Roeder, William P.

    2005-01-01

    This study focuses on a comparison of peak wind speeds reported by mechanical and ultrasonic anemometers at Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC) on the east central coast of Florida and Vandenberg Air Force Base (VAFB) on the central coast of California. The legacy mechanical wind instruments on CCAFS/KSC and VAFB weather towers are being changed from propeller-and-vane (CCAFS/KSC) and cup-and-vane (VAFB) sensors to ultrasonic sensors under the Range Standardization and Automation (RSA) program. The wind tower networks on KSC/CCAFS and VAFB have 41 and 27 towers, respectively. Launch Weather Officers, forecasters, and Range Safety analysts at both locations need to understand the performance of the new wind sensors for a myriad of reasons that include weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The Legacy sensors measure wind speed and direction mechanically. The ultrasonic RSA sensors have no moving parts. Ultrasonic sensors were originally developed to measure very light winds (Lewis and Dover 2004). The technology has evolved and now ultrasonic sensors provide reliable wind data over a broad range of wind speeds. However, because ultrasonic sensors respond more quickly than mechanical sensors to rapid fluctuations in speed, characteristic of gusty wind conditions, comparisons of data from the two sensor types have shown differences in the statistics of peak wind speeds (Lewis and Dover 2004). The 45th Weather Squadron (45 WS) and the 30 WS requested the Applied Meteorology Unit (AMU) to compare data from RSA and Legacy sensors to determine if there are significant differences in peak wind speed information from the two systems.

  16. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  17. Wind-Tunnel Testing In The 12-Foot Low - Speed Tunnel

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Low-speed wind tunnel test were conducted in the 12 - foot Tunnel at NASA Langley Research center to investigate application of various wing devices on the effect of stall departure resistance at high angles of attack.

  18. Future hub-height wind speed distributions from statistically downscaled CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Devis, A.; Demuzere, M.; van Lipzig, N.

    2013-12-01

    In order to realistically estimate wind-power yields, we need to know the hub-height wind speed under future climate conditions. Climate conditions of the upper atmosphere are commonly simulated using general circulation models (GCMs). However their typical resolutions are too coarse to assess the climate at the height of a wind turbine. This study simulates the hub-height wind speed probability distributions (PDFs) over Europe under future climate conditions. The analysis is based on the simulations of the CMIP5 earth system models, which are the latest development of GCMs. They include more components and feedbacks and their runs are performed at higher resolutions. In a first step, the ensemble of GCMs is evaluated on their representation of the wind speed PDFs in the lower atmosphere using ERA-Interim data. The evaluation indicates that GCMs are skillful down to their lowest model levels apart for the south of Europe, which is affected by a large scale winter bias and for certain coastal and orographical regions. Secondly, a statistical approach is developed which downscales the GCM output to the wind speed PDF at the height of the wind turbine hub. Since the evaluation analysis shows that GCMs are also skillful at the lower model levels, the statistical downscaling uses GCM variables describing the lower atmosphere, instead of the commonly used large scale circulation variables of the upper atmosphere. By doing so less uncertainty will be added trough the downscaling implementation. The downscaling methodology is developed for an observational site in the Netherlands, using hub-height wind speed observations and ERA-Interim data for the period 1989-2009. The statistical approach is based on a regression analysis of the parameters of the PDFs. Results indicate that the predictor selection is very much defined by the stability conditions of the atmospheric boundary layer. During convective summer-day conditions, the observed hub-height wind speed can skillfully

  19. An efficient method for distributing wind speeds over heterogeneous terrain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High spatial variability of wind over mountain landscapes can create strong gradients in mass and in energy fluxes at the scale of tens of meters. Variable winds are often cited as the cause of high heterogeneity in snow distribution in non-forested mountain locations. Distributed models capable o...

  20. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low generation limits

    PubMed Central

    Miller, Lee M.; Kleidon, Axel

    2016-01-01

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m−2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m−2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m−2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power. PMID:27849587

  1. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low generation limits.

    PubMed

    Miller, Lee M; Kleidon, Axel

    2016-11-29

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m(-2)) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m(-2)) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m(-2) of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

  2. Air sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats

    NASA Astrophysics Data System (ADS)

    D'Asaro, Eric; McNeil, Craig

    2007-06-01

    closer to that of air rather than that appropriate for Schmidt number scaling; by O 2 increases at about 10-m depth along the water trajectories accompanied by a reduction in void fraction as measured by conductivity; and from the profile of FCO( z), which peaks near 10 m instead of at the surface. At the highest winds O 2 and N 2 are injected into the ocean by bubbles dissolving at depth. This, plus entrainment of gas-rich water from below, supersaturates the mixed layer causing gas to flux out of the near-surface ocean. A net influx of gas results from the balance of these two competing processes. At lower speeds, the total gas fluxes, FBO, FBN and FCO(0), are out of the ocean and downgradient.

  3. Air sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats

    NASA Astrophysics Data System (ADS)

    D'Asaro, Eric; McNeil, Craig

    2008-11-01

    closer to that of air rather than that appropriate for Schmidt number scaling; by O 2 increases at about 10-m depth along the water trajectories accompanied by a reduction in void fraction as measured by conductivity; and from the profile of FCO( z), which peaks near 10 m instead of at the surface. At the highest winds O 2 and N 2 are injected into the ocean by bubbles dissolving at depth. This, plus entrainment of gas-rich water from below, supersaturates the mixed layer causing gas to flux out of the near-surface ocean. A net influx of gas results from the balance of these two competing processes. At lower speeds, the total gas fluxes, FBO, FBN and FCO(0), are out of the ocean and downgradient.

  4. Seasonal variation in wind speed and sea state from global satellite measurements

    NASA Astrophysics Data System (ADS)

    Sandwell, David T.; Agreen, Russell W.

    1984-03-01

    The GEOS 3 altimeter, which collected data intermittently for nearly 4 years, has measured significant wave heights and surface wind speeds over most of the world's oceans. Using these data, we have constructed contour maps of spatial variations in sea state and wind speed for winter and summer. To obtain reliable averages in the southern oceans, we low-pass filtered the data using a two-dimensional Gaussian filter with a half width of 600 km. The wind speed maps show that the zonal surface wind patterns, such as the westerlies, the horse latitudes, the trade winds, and the doldrums, shift south by about 10° between winter and summer. As expected, the highest wind speeds and sea states occur during the winter months in the mid-latitudes, 30°-60°. The most striking feature of the maps, however, is the large asymmetry in the summer to winter variation between the two hemispheres. The largest seasonal variations in sea state and wind speed occur in the northern hemisphere oceans and especially in the North Atlantic, where there is almost a factor of 2 variation. In contrast, the summer to winter variation in wind speed and sea state in the southern hemisphere oceans is relatively small. For example, the summer to winter increase in wind speed at 50°S is less than 10%, while at 50°N it is more than 50%. This differing variability can be attributed to the asymmetric distribution of continental area between the two hemispheres and the low effective heat capacity of the continents relative to the oceans.

  5. Effects of wind speed on aerosol spray penetration in adult mosquito bioassay cages.

    PubMed

    Hoffmann, W Clint; Fritz, Bradley K; Farooq, Muhammad; Cooperband, Miriam F

    2008-09-01

    Bioassay cages are commonly used to assess efficacy of insecticides against adult mosquitoes in the field. To correlate adult mortality readings to insecticidal efficacy and/or spray application parameters properly, it is important to know how the cage used in the bioassay interacts with the spray cloud containing the applied insecticide. This study compared the size of droplets, wind speed, and amount of spray material penetrating cages and outside of cages in a wind tunnel at different wind speeds. Two bioassay cages, Center for Medical, Agricultural and Veterinary Entomology (CMAVE) and Circle, were evaluated. The screen materials used on these cages reduced the size of droplets, wind speed, and amount of spray material inside the cages as compared to the spray cloud and wind velocity outside of the cages. When the wind speed in the dispersion tunnel was set at 0.6 m/sec (1.3 mph), the mean wind speed inside of the CMAVE Bioassay Cage and Circle Cage was 0.045 m/sec (0.10 mph) and 0.075 m/sec (0.17 mph), respectively. At air velocities of 2.2 m/sec (4.9 mph) in the dispersion tunnel, the mean wind speed inside of the CMAVE Bioassay Cage and Circle Cage was 0.83 m/sec (1.86 mph) and 0.71 m/sec (1.59 mph), respectively. Consequently, there was a consistent 50-70% reduction of spray material penetrating the cages compared to the spray cloud that approached the cages. These results provide a better understanding of the impact of wind speed, cage design, and construction on ultra-low-volume spray droplets.

  6. How Well Can We Measure the Vertical Wind Speed? Implications for Fluxes of Energy and Mass

    NASA Astrophysics Data System (ADS)

    Kochendorfer, John; Meyers, Tilden P.; Frank, John; Massman, William J.; Heuer, Mark W.

    2012-11-01

    Sonic anemometers are capable of measuring the wind speed in all three dimensions at high frequencies (10-50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a non-orthogonal transducer orientation were estimated for over 100 combinations of angle-of-attack and wind direction using a novel technique to measure the true angle-of-attack and wind speed within the turbulent atmospheric surface layer. Corrections to the vertical wind speed varied from -5 to 37% for all angles-of-attack and wind directions examined. When applied to eddy-covariance data from three NOAA flux sites, the wind-velocity corrections increased the magnitude of CO2 fluxes, sensible heat fluxes, and latent heat fluxes by ≈11%, with the actual magnitude of flux corrections dependent upon sonic anemometer, surface type, and scalar. A sonic anemometer that uses vertically aligned transducers to measure the vertical wind speed was also tested at four angles-of-attack, and corrections to the vertical wind speed measured using this anemometer were within ±1% of zero. Sensible heat fluxes over a forest canopy measured using this anemometer were 15% greater than sensible heat fluxes measured using a sonic anemometer with a non-orthogonal transducer orientation. These results indicate that sensors with a non-orthogonal transducer orientation, which includes the majority of the research-grade three-dimensional sonic anemometers currently in use, should be redesigned to minimize sine errors by measuring the vertical wind speed using one pair of vertically aligned transducers.

  7. Wind tunnel results of the high-speed NLF(1)-0213 airfoil

    NASA Technical Reports Server (NTRS)

    Sewall, William G.; Mcghee, Robert J.; Hahne, David E.; Jordan, Frank L., Jr.

    1987-01-01

    Wind tunnel tests were conducted to evaluate a natural laminar flow airfoil designed for the high speed jet aircraft in general aviation. The airfoil, designated as the High Speed Natural Laminar Flow (HSNLF)(1)-0213, was tested in two dimensional wind tunnels to investigate the performance of the basic airfoil shape. A three dimensional wing designed with this airfoil and a high lift flap system is also being evaluated with a full size, half span model.

  8. Numerical simulation of aerodynamic derivatives and critical wind speed for long-span bridges based on simplified steady wind field

    NASA Astrophysics Data System (ADS)

    Xin, Dabo; Ou, Jinping

    2007-06-01

    Combining the computational fluid dynamics-based numerical simulation with the forced vibration technique for extraction of aerodynamic derivatives, an approach for calculating the aerodynamic derivatives and the critical flutter wind speed for long-span bridges is presented in this paper. The RNG k-ɛ turbulent model is introduced to establish the governing equations, including the continuity equation and the Navier-Stokes equations, for solving the wind flow field around a two-dimensional bridge section. To illustrate the effectiveness and accuracy of the proposed approach, a simple application to the Hume Bridge in China is provided, and the numerical results show that the aerodynamic derivatives and the critical flutter wind speed obtained agree well with the wind tunnel test results.

  9. A Ku-Band Low Incidence Backscatter Model for Retrieving Wind Speeds

    NASA Astrophysics Data System (ADS)

    Ren, Lin; Yang, Jingsong; Zheng, Gang; Wang, Juan

    2016-08-01

    A new Ku-band low incidence backscatter model (KuLMOD) for retrieving wind speeds from Tropical Rainfall Mapping Mission (TRMM) precipitation radar (PR) data is proposed. The data set consisted of TRMM PR observations and collocated National Data Buoy Center (NDBC) and Tropical Ocean Global Atmosphere program (TOGA) buoy-measured wind and wave data. The TRMM PR data properties were analyzed with regard to their dependence on spatial resolution, wind speed, relative wind direction, and significant wave height. The KuLMOD model was developed using incidence angles (0.5–6.5°) and wind speeds (1.5–16.5 m/s) as inputs. The model coefficients were derived by fitting the collocated data. The KuLMOD-derived normalized radar cross section, σ0, was compared with those obtained from the TRMM PR observations and a quasi-specular theoretical model and showed good agreement. With the KuLMOD, the wind speeds were retrieved from the TRMM PR data using the least squares method and validated with the buoy measurements, yielding a root mean square error of 1.45 m/s. The retrieval accuracies for the different incidence angles, wind speeds, and spatial resolutions were obtained.

  10. Performance study of personal inhalable aerosol samplers at ultra-low wind speeds.

    PubMed

    Sleeth, Darrah K; Vincent, James H

    2012-03-01

    The assessment of personal inhalable aerosol samplers in a controlled laboratory setting has not previously been carried out at the ultra-low wind speed conditions that represent most modern workplaces. There is currently some concern about whether the existing inhalable aerosol convention is appropriate at these low wind speeds and an alternative has been suggested. It was therefore important to assess the performance of the most common personal samplers used to collect the inhalable aerosol fraction, especially those that were designed to match the original curve. The experimental set-up involved use of a hybrid ultra-low speed wind tunnel/calm air chamber and a rotating, heating breathing mannequin to measure the inhalable fraction of aerosol exposure. The samplers that were tested included the Institute of Occupational Medicine (IOM), Button, and GSP inhalable samplers as well as the closed-face cassette sampler that has been (and still is) widely used by occupational hygienists in many countries. The results showed that, down to ∼0.2 m s(-1), the samplers matched the current inhalability criterion relatively well but were significantly greater than this at the lowest wind speed tested. Overall, there was a significant effect of wind speed on sampling efficiency, with lower wind speeds clearly associated with an increase in sampling efficiency.

  11. Simple and Computationally Efficient Modeling of Surface Wind Speeds Over Heterogeneous Terrain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind speeds vary dramatically over short distances in mountain settings. Snow distribution is strongly affected by these disparate winds with drifts containing meters of snow-water-equivalence (SWE) often found adjacent to windward slopes containing minimal amounts of SWE. The heterogeneous snow d...

  12. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting.

    PubMed

    Men, Zhongxian; Yee, Eugene; Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian

    2014-01-01

    Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an "optimal" weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds.

  13. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting

    PubMed Central

    Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian

    2014-01-01

    Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an “optimal” weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds. PMID:27382627

  14. A Diagnostic Diagram to Understand the Marine Atmospheric Boundary Layer at High Wind Speeds

    NASA Astrophysics Data System (ADS)

    Kettle, Anthony

    2014-05-01

    Long time series of offshore meteorological measurements in the lower marine atmospheric boundary layer show dynamical regimes and variability that are forced partly by interaction with the underlying sea surface and partly by the passage of cloud systems overhead. At low wind speeds, the dynamics and stability structure of the surface layer depend mainly on the air-sea temperature difference and the measured wind speed at a standard height. The physical processes are mostly understood and the quantified through Monin-Obukhov (MO) similarity theory. At high wind speeds different dynamical regimes become dominant. Breaking waves contribute to the atmospheric loading of sea spray and water vapor and modify the character of air-sea interaction. Downdrafts and boundary layer rolls associated with clouds at the top of the boundary layer impact vertical heat and momentum fluxes. Data from offshore meteorological monitoring sites will typically show different behavior and the regime shifts depending on the local winds and synoptic conditions. However, the regular methods to interpret time series through spectral analysis give only a partial view of dynamics in the atmospheric boundary layer. Also, the spectral methods have limited use for boundary layer and mesoscale modellers whose geophysical diagnostics are mostly anchored in directly measurable quantities: wind speed, temperature, precipitation, pressure, and radiation. Of these, wind speed and the air-sea temperature difference are the most important factors that characterize the dynamics of the lower atmospheric boundary layer and they provide a dynamical and thermodynamic constraint to frame observed processes, especially at high wind speeds. This was recognized in the early interpretation of the Froya database of gale force coastal winds from mid-Norway (Andersen, O.J. and J. Lovseth, Gale force maritime wind. The Froya data base. Part 1: Sites and instrumentation. Review of the data base, Journal of Wind

  15. Consideration of tip speed limitations in preliminary analysis of minimum COE wind turbines

    NASA Astrophysics Data System (ADS)

    Cuerva-Tejero, A.; Yeow, T. S.; Lopez-Garcia, O.; Gallego-Castillo, C.

    2014-12-01

    A relation between Cost Of Energy, COE, maximum allowed tip speed, and rated wind speed, is obtained for wind turbines with a given goal rated power. The wind regime is characterised by the corresponding parameters of the probability density function of wind speed. The non-dimensional characteristics of the rotor: number of blades, the blade radial distributions of local solidity, twist, angle, and airfoil type, play the role of parameters in the mentioned relation. The COE is estimated using a cost model commonly used by the designers. This cost model requires basic design data such as the rotor radius and the ratio between the hub height and the rotor radius. Certain design options, DO, related to the technology of the power plant, tower and blades are also required as inputs. The function obtained for the COE can be explored to find those values of rotor radius that give rise to minimum cost of energy for a given wind regime as the tip speed limitation changes. The analysis reveals that iso-COE lines evolve parallel to iso-radius lines for large values of limit tip speed but that this is not the case for small values of the tip speed limits. It is concluded that., as the tip speed limit decreases, the optimum decision for keeping minimum COE values can be: a) reducing the rotor radius for places with high weibull scale parameter or b) increasing the rotor radius for places with low weibull scale parameter.

  16. Quantifying trends in surface roughness and the effect on surface wind speed observations

    NASA Astrophysics Data System (ADS)

    Wever, N.

    2012-06-01

    Many studies analyzing surface wind speed observations find a decrease in wind speed over the last 30 to 50 years. A cause sometimes proposed is increasing surface roughness, although to date the evidence that this is the primary factor is still inconclusive. In this study, changes in surface roughness are investigated for 20 stations in the Netherlands and 137 stations in 7 other European countries. From the Dutch data set, local aerodynamic roughness lengths were calculated from hourly gust factors. Trends in wind speed for individual stations and wind direction sectors correlate negatively with trends in surface roughness. For 1962-2009, typically a doubling of the local roughness length was found, with the strongest increase after 1981. An accompanying average decrease in wind speed by 3.1% (0.13 m/s) per decade was found for 1981-2009. A conceptual boundary layer model was used to show that 70% of the wind speed trend can be attributed to surface roughness changes; the remaining 30% of the trend remains unresolved. Changes in land use, including urbanization, forestation, and a decrease in pasture land area, are probable causes for the increasing surface roughness. For the European station data from the European Climate Assessment and Dataset (ECA&D) and the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss), the analysis was restricted to daily gust factors. Observed trends in wind speed at stations correlate negatively with trends in gust factors. Averaged over all stations, the wind speed decreased 1.2% (0.05 m/s) per decade over 1982-2009, consistent with increasing surface roughness.

  17. Comparison of Drop and Wind-Tunnel Experiments on Bomb Drag at High Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Gothert, B.

    1948-01-01

    The drag coefficients of bombs at high velocities velocity of fall was 97 percent of the speed of sound) (the highest are determined by drop tests and compared with measurements taken in the DVL high-speed closed wind tunnel and the open jet at AVA - Gottingen.

  18. Fixed-Speed and Variable-Slip Wind Turbines Providing Spinning Reserves to the Grid: Preprint

    SciTech Connect

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2012-11-01

    As the level of wind penetration increases, wind turbine technology must move from merely generating power from wind to taking a role in supporting the bulk power system. Wind turbines should have the capability to provide inertial response and primary frequency (governor) response so they can support the frequency stability of the grid. To provide governor response, wind turbines should be able to generate less power than the available wind power and hold the rest in reserve, ready to be accessed as needed. This paper explores several ways to control wind turbine output to enable reserve-holding capability. This paper focuses on fixed-speed (also known as Type 1) and variable-slip (also known as Type 2) turbines.

  19. A new approach for determining fully empirical altimeter wind speed model functions

    NASA Technical Reports Server (NTRS)

    Freilich, M. H.; Challenor, Peter G.

    1994-01-01

    A statistical technique is developed for determining fully empirical model functions relating altimeter backscatter (sigma(sub 0)) measurements to near-surface neutral stability wind speed. By assuming that sigma(sub 0) varies monotonically and uniquely with wind speed, the method requires knowledge only of the separate, rather than joint distribution functions of sigma(sub 0) and wind speed. Analytic simplifications result from using a Weibull distribution to approximate the global ocean wind speed distribution; several different wind data sets are used to demonstrate the validity of the Weibull approximation. The technique has been applied to 1 year of Geosat data. Validation of the new and historical model functions using an independent buoy data set demonstrates that the present model function not only has small overall bias and root mean square (RMS) errors, but yields smaller systematic error trends with wind speed and pseudowave age than previously published models. The present analysis suggests that generally accuracte altimeter model functions can be derived without the use of colocated measurements, nor is additional significant wave height information measured by the altimeter necessary.

  20. Probability density function selection based on the characteristics of wind speed data

    NASA Astrophysics Data System (ADS)

    Yürüşen, N. Y.; Melero, Julio J.

    2016-09-01

    The probabilistic approach has an important place in the wind energy research field as it provides cheap and fast initial information for experts with the help of simulations and estimations. Wind energy experts have been using the Weibull distribution for wind speed data for many years. Nevertheless, there exist cases, where the Weibull distribution is inappropriate with data presenting bimodal or multimodal behaviour which are unfit in high, null and low winds that can cause serious energy estimation errors. This paper presents a procedure for dealing with wind speed data taking into account non-Weibull distributions or data treatment when needed. The procedure detects deviations from the unimodal (Weibull) distribution and proposes other possible distributions to be used. The deviations of the used distributions regarding real data are addressed with the Root Mean Square Error (RMSE) and the annual energy production (AEP).

  1. Observed drag coefficients in high winds in the near offshore of the South China Sea

    DOE PAGES

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; ...

    2015-07-14

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a heightmore » of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.« less

  2. Observed drag coefficients in high winds in the near offshore of the South China Sea

    NASA Astrophysics Data System (ADS)

    Bi, Xueyan; Gao, Zhiqiu; Liu, Yangang; Liu, Feng; Song, Qingtao; Huang, Jian; Huang, Huijun; Mao, Weikang; Liu, Chunxia

    2015-07-01

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a height of 10 m is about 32 m s-1. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5-10 m s-1, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s-1. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18-27 m s-1. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s-1. Above this, the difference in the 10 m drag coefficients of the two towers disappears.

  3. Observed drag coefficients in high winds in the near offshore of the South China Sea

    SciTech Connect

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; Liu, Feng; Song, Qingtao; Huang, Jian; Huang, Huijun; Mao, Weikang; Liu, Chunxia

    2015-07-14

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a height of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.

  4. CONSTRAINING HIGH-SPEED WINDS IN EXOPLANET ATMOSPHERES THROUGH OBSERVATIONS OF ANOMALOUS DOPPLER SHIFTS DURING TRANSIT

    SciTech Connect

    Miller-Ricci Kempton, Eliza; Rauscher, Emily

    2012-06-01

    Three-dimensional (3D) dynamical models of hot Jupiter atmospheres predict very strong wind speeds. For tidally locked hot Jupiters, winds at high altitude in the planet's atmosphere advect heat from the day side to the cooler night side of the planet. Net wind speeds on the order of 1-10 km s{sup -1} directed towards the night side of the planet are predicted at mbar pressures, which is the approximate pressure level probed by transmission spectroscopy. These winds should result in an observed blueshift of spectral lines in transmission on the order of the wind speed. Indeed, Snellen et al. recently observed a 2 {+-} 1 km s{sup -1} blueshift of CO transmission features for HD 209458b, which has been interpreted as a detection of the day-to-night (substellar to anti-stellar) winds that have been predicted by 3D atmospheric dynamics modeling. Here, we present the results of a coupled 3D atmospheric dynamics and transmission spectrum model, which predicts the Doppler-shifted spectrum of a hot Jupiter during transit resulting from winds in the planet's atmosphere. We explore four different models for the hot Jupiter atmosphere using different prescriptions for atmospheric drag via interaction with planetary magnetic fields. We find that models with no magnetic drag produce net Doppler blueshifts in the transmission spectrum of {approx}2 km s{sup -1} and that lower Doppler shifts of {approx}1 km s{sup -1} are found for the higher drag cases, results consistent with-but not yet strongly constrained by-the Snellen et al. measurement. We additionally explore the possibility of recovering the average terminator wind speed as a function of altitude by measuring Doppler shifts of individual spectral lines and spatially resolving wind speeds across the leading and trailing terminators during ingress and egress.

  5. Adaptive pitch control for variable speed wind turbines

    DOEpatents

    Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  6. A Projected Large Low-Speed Wind Tunnel to Meet Australian Requierments.

    DTIC Science & Technology

    1982-03-01

    Sh~ps 4 2.L.2 Ground vebkkls 4 2.3 Addina Fields for Low-speed Aerodyamkc Investigatio 4 2.3.1 Mrshlps 4 2.3.2 Wind energy conversion system 4 2.3M... energy conversion "estn The use of wind energy in Australia in the future on a much larger scale than at present is a possibility already under...coastal surveillance platforms. As in the case of ship hulls, wind tunnel testing calls for the largest possible models to minimise scale effect. 2.3.2 Wind

  7. Performance comparison of control schemes for variable-speed wind turbines

    NASA Astrophysics Data System (ADS)

    Bottasso, C. L.; Croce, A.; Savini, B.

    2007-07-01

    We analyze the performance of different control schemes when applied to the regulation problem of a variable-speed representative wind turbine. In particular, we formulate and compare a wind-scheduled PID, a LQR controller and a novel adaptive non-linear model predictive controller, equipped with observers of the tower states and wind. The simulations include gusts and turbulent winds of varying intensity in nominal as well as off-design operating conditions. The experiments highlight the possible advantages of model-based non-linear control strategies.

  8. Wind noise at microphones within and across hearing aids at wind speeds below and above microphone saturation.

    PubMed

    Zakis, Justin A

    2011-06-01

    The variation of wind noise at hearing-aid microphones with wind speed, wind azimuth, and hearing-aid style was investigated. Comparisons were made across behind-the-ear (BTE) and completely-in-canal (CIC) devices, and between microphones within BTE devices. One CIC device and two BTE devices were placed on a Knowles Electronics Manikin for Acoustic Research. The smaller BTE device had vented plastic windshields around its microphone ports while the larger BTE device had none. The microphone output signals were digitally recorded in wind generated at 0, 3, 6, and 12 m/s at 8 wind azimuths. The microphone output signals were saturated at 12 m/s with wind-noise levels of up to 116 dB SPL at the microphone output. Wind-noise levels differed by up to 12 dB between microphones within the same BTE device, and across BTE devices by up to 6 or 8 dB for front or rear microphones, respectively. On average, wind-noise levels were lowest with the CIC device and highest at the rear microphone of the smaller BTE device. Engineering and clinical implications are discussed.

  9. Worldwide influence of Lamb Weather Types on Temperature, Precipitation and Wind Speed

    NASA Astrophysics Data System (ADS)

    Cortesi, Nicola; Torralba, Veronica; Bretonnière, Pierre-Antoine; Gonzalez-Reviriego, Nube; Peña-Angulo, Dhais; Doblas-Reyes, Francisco Javier

    2016-04-01

    One of the main objectives of synoptic climatology is the detection of large-scale atmospheric drivers determining local climate variability. Especially in the extra-tropical regions, synoptic circulation plays an important role in driving local climate; for example, it is known that Atlantic weather fronts are responsible of a high amount of winter precipitation in Europe. In this research, the Weather Type catalogue developed by Lamb to classify the continuum of the atmospheric circulation in 10-26 classes was obtained individually at each grid point of the mean sea level pressure Era-Interim dataset (spatial resolution 0.7°), spanning the whole world. Although the analysis was performed globally, Tropical and Polar regions were excluded, the former because the Coriolis effect is weak at 0-23° N-S (nullifying the vorticity index), and the latter due to the spatial distortion of the Lamb grid at very high latitudes. Each resulting Weather Type was related to the local observed average daily 2-m Temperature, Precipitation and 10-m Wind speed anomalies from Era-Interim during last 30 years (1985-2014) to identify the Weather Types that behave as climate drivers at seasonal and yearly time scale. While some countries and regions have already been analysed in detail individually at higher spatial and/or temporal resolutions, this study provides a global view, filling the existing gap in literature, particularly in the Southern Hemisphere (South Africa, South America, Australia) and over oceans, providing a bigger picture of the influence of Weather Types on climate.

  10. Probability distribution of surface wind speed induced by convective adjustment on Venus

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masaru

    2017-03-01

    The influence of convective adjustment on the spatial structure of Venusian surface wind and probability distribution of its wind speed is investigated using an idealized weather research and forecasting model. When the initially uniform wind is much weaker than the convective wind, patches of both prograde and retrograde winds with scales of a few kilometers are formed during active convective adjustment. After the active convective adjustment, because the small-scale convective cells and their related vertical momentum fluxes dissipate quickly, the large-scale (>4 km) prograde and retrograde wind patches remain on the surface and in the longitude-height cross-section. This suggests the coexistence of local prograde and retrograde flows, which may correspond to those observed by Pioneer Venus below 10 km altitude. The probability distributions of surface wind speed V during the convective adjustment have a similar form in different simulations, with a sharp peak around ∼0.1 m s-1 and a bulge developing on the flank of the probability distribution. This flank bulge is associated with the most active convection, which has a probability distribution with a peak at the wind speed 1.5-times greater than the Weibull fitting parameter c during the convective adjustment. The Weibull distribution P(> V) (= exp[-(V/c)k]) with best-estimate coefficients of Lorenz (2016) is reproduced during convective adjustments induced by a potential energy of ∼7 × 107 J m-2, which is calculated from the difference in total potential energy between initially unstable and neutral states. The maximum vertical convective heat flux magnitude is proportional to the potential energy of the convective adjustment in the experiments with the initial unstable-layer thickness altered. The present work suggests that convective adjustment is a promising process for producing the wind structure with occasionally generating surface winds of ∼1 m s-1 and retrograde wind patches.

  11. Compensating for volume and vector averaging biases in lidar wind speed measurements

    NASA Astrophysics Data System (ADS)

    Clive, Peter J. M.

    2008-10-01

    A number of vector and volume averaging considerations arise in relation to remote sensing, and in particular, Lidar. 1) Remote sensing devices obtain vector averages. These values are often compared to the scalar averages associated with cup anemometry. The magnitude of a vector average is less than or equal to the scalar average obtained over the same period. The use of Lidars in wind power applications has entailed the estimation of scalar averages by vector averages and vice versa. The relationship between the two kinds of average must therefore be understood. It is found that the ratio of the averages depends upon wind direction variability according to a Bessel function of the standard deviation of the wind direction during the averaging interval. 2) The finite probe length of remote sensing devices also incurs a volume averaging bias when wind shear is non-linear. The sensitivity of the devices to signals from a range of heights produces volume averages which will be representative of wind speeds at heights within that range. One can distinguish between the effective or apparent height the measured wind speeds represent as a result of volume averaging bias, and the configuration height at which the device has been set to measure wind speeds. If the wind shear is described by a logarithmic wind profile the apparent height is found to depend mainly on simple geometrical arguments concerning configuration height and probe length and is largely independent of the degree of wind shear. 3) The restriction of the locus of points at which radial velocity measurements are made to the circumference of a horizontally oriented disc at a particular height is seen to introduce ambiguity into results when dealing with wind vector fields which are not irrotational.

  12. Compensation of vector and volume averaging bias in lidar wind speed measurements

    NASA Astrophysics Data System (ADS)

    Clive, P. J. M.

    2008-05-01

    A number of vector and volume averaging considerations arise in relation to remote sensing, and in particular, Lidar. 1) Remote sensing devices obtain vector averages. These values are often compared to the scalar averages associated with cup anemometry. The magnitude of a vector average is less than or equal to the scalar average obtained over the same period. The use of Lidars in wind power applications has entailed the estimation of scalar averages by vector averages and vice versa. The relationship between the two kinds of average must therefore be understood. It is found that the ratio of the averages depends upon wind direction variability according to a Bessel function of the standard deviation of the wind direction during the averaging interval. 2) The finite probe length of remote sensing devices also incurs a volume averaging bias when wind shear is non-linear. The sensitivity of the devices to signals from a range of heights produces volume averages which will be representative of wind speeds at heights within that range. One can distinguish between the effective or apparent height the measured wind speeds represent as a result of volume averaging bias, and the configuration height at which the device has been set to measure wind speeds. If the wind shear is described by a logarithmic wind profile the apparent height is found to depend mainly on simple geometrical arguments concerning configuration height and probe length and is largely independent of the degree of wind shear. 3) The restriction of the locus of points at which radial velocity measurements are made to the circumference of a horizontally oriented disc at a particular height is seen to introduce ambiguity into results when dealing with wind vector fields which are not irrotational.

  13. Estimates of the wind speeds required for particle motion on Mars

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Haberle, R.; Greeley, R.; Iversen, J.

    1976-01-01

    Threshold wind speeds for setting particles into motion on Mars are estimated by evaluating experimentally observed threshold friction velocities and determining the ratio of this velocity to the threshold wind speed at the top of earth's atmospheric boundary layer (ABL). Turning angles between the direction of the wind at the top of the ABL and the wind stress at the surface are also estimated. Detailed consideration is given to the dependence of the threshold wind speed at the top of the ABL on particle diameter, surface pressure, air temperature, atmospheric stability and composition, surface roughness, and interparticle cohesion. The results are applied to interpret a number of phenomena that have been observed on Mars and are attributable to aeolian processes. It is shown that: (1) minimum threshold wind speeds of about 50 to 100 m/sec are required to cause particle motion on Mars under 'favorable' conditions; (2) particle motion should be infrequent and strongly correlated with proximity to small topographical features; (3) in general, particle motion occurs more readily at night than during the day, in winter polar areas than equatorial areas around noon, and for H2O or CO2 ice particles than for silicate particles; and (4) the boundary between saltating and suspendible particles is located at a particle diameter of about 100 microns.

  14. Dependence of velocity fluctuations on solar wind speeds: A simple analysis with IPS method

    NASA Technical Reports Server (NTRS)

    Misawa, H.; Kojima, M.

    1995-01-01

    A number of theoretical works have suggested that MHD plasma fluctuations in solar winds should play an important role particularly in the acceleration of high speed winds inside or near 0.1 AU from the sun. Since velocity fluctuations in solar winds are expected to be caused by the MHD plasma fluctuations, measurements of the velocity fluctuations give clues to reveal the acceleration process of solar winds. We made interplanetary scintillation (IPS) observations at the region out of 0.1 AU to investigate dependence of velocity fluctuations on flow speeds. For evaluating the velocity fluctuation of a flow, we selected the IPS data-set acquired at 2 separate antennas which located in the projected flow direction onto the baseline plane, and tried to compare skewness of the observed cross correlation function(CCF) with skewness of modeled CCFs in which velocity fluctuations were parametrized. The integration effect of IPS along a ray path was also taken into account in the estimation of modeled CCFs. Although this analysis method is significant to derive only parallel fluctuation components to the flow directions, preliminary analyses show following results: (1) High speed winds (Vsw greater than or equal to 500 km/s out of 0.3 AU) indicate enhancement of velocity fluctuations near 0.1 AU; and (2) Low speed winds (Vsw less than or equal to 400 Km/s out of 0.3 AU) indicate small velocity fluctuations at any distances.

  15. A reward semi-Markov process with memory for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first

  16. Estimation of solar wind speed within 20Rs of the Sun by using limb CMEs

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.; Gopalswamy, N.; Yashiro, S.; Matsuoka, A.; Nozomi/Mgf Team

    The speeds of propagation of CMEs in interplanetary space are less distributed than their initial speeds measured on their departure from the limb of the Sun. Gopalswamy et al.(2000, 2001) presented a linear relationship between initial speeds of limb CMEs and their average acceleration during their travel time in interplanetary space. The linear relationship suggests that some dragging force is acting on CMEs, depending on difference in speed between the CME and their ambient plasmas. The ambient speed obtained from the coeficcients of the linear relationship was 406 km/s, which is nearly the same as the real solar wind speed. If similar relationship holds within 20 solar radii from the Sun, it would give information on the initial speed of 'ambient' solar wind in the vicinity of the Sun. The relationship between the initial acceleration and the initial speeds of limb CMEs was examined by using SOHO/LASCO CME Catalogue (http://cdaw.gsfc.nasa.gov/CME_list/). Coefficients of correlation between the initial acceleration and the initial speeds of low-latitude CMEs were calculated by sliding 27-day windows in 1999. Although there were many cases where linear relationship was not clear, we found significant number of periods for which correlation coefficient was fairly good (from -0.6 to -1). For such cases, the 'ambient' solar wind speed within 20 solar radii was estimated to be 150 - 570 km/s. It is somewhat slower than but close to the speeds of real solar wind measured in interplanetary space. It suggests that low-latitude solar wind plasma was accelerated within a short distance. It may also indicate that coronal holes are not the only source of the solar wind. The 'ambient' speeds thus obtained did not always agreed with simultaneous, in-situ measurements by NOZOMI and ACE. Estimation of 'ambient' speed was also carried out by using CMEs that appeared in higher latitude, but no latitudinal dependence was found. Acknowledgments:This CME catalog is generated and

  17. Wind speed and temperature trends impacts on reference evapotranspiration in Southern Italy

    NASA Astrophysics Data System (ADS)

    Liuzzo, Lorena; Viola, Francesco; Noto, Leonardo V.

    2016-01-01

    In this study, the impacts of both temperature and wind speed trends on reference evapotranspiration have been assessed using as a case study the Southern Italy, which present a wide variety of combination of such climatic variables trends in terms of direction and magnitude. The existence of statistically significant trends in wind speed and temperature from observational datasets, measured in ten stations over Southern Italy during the period 1968-2004, has been investigated. Time series have been examined using the Mann-Kendall nonparametric statistical test in order to detect possible evidences of wind speed and temperature trends at different temporal resolution and significance level. Once trends have been examined and quantified, the effects of these trends on seasonal reference evapotranspiration have been evaluated using the FAO-56 Penman-Monteith equation. Results quantified the effects of extrapolated temperature and wind speed trends on reference evapotranspiration. Where these climatic drivers are on the same direction, reference evapotranspiration generally increases during the growing season due to a nonlinear overlapping of effects. Whereas wind speed decreases and temperature increases, there is a sort of counterbalancing effect between the two considered climatic forcing in determining future reference evapotranspiration.

  18. Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Huang, Yong; Wang, WanBo; Wang, XunNian; Li, HuaXing

    2014-06-01

    The present paper described an experimental investigation of separation control of an Unmanned Aerial Vehicle (UAV) at high wind speeds. The plasma actuator was based on Dielectric Barrier Discharge (DBD) and operated in a steady manner. The flow over a wing of UAV was performed with smoke flow visualization in the ϕ0.75 m low speed wind tunnel to reveal the flow structure over the wing so that the locations of plasma actuators could be optimized. A full model of the UAV was experimentally investigated in the ϕ3.2 m low speed wind tunnel using a six-component internal strain gauge balance. The effects of the key parameters, including the locations of the plasma actuators, the applied voltage amplitude and the operating frequency, were obtained. The whole test model was made of aluminium and acted as a cathode of the actuator. The results showed that the plasma acting on the surface of UAV could obviously suppress the boundary layer separation and reduce the model vibration at the high wind speeds. It was found that the maximum lift coefficient of the UAV was increased by 2.5% and the lift/drag ratio was increased by about 80% at the wind speed of 100 m/s. The control mechanism of the plasma actuator at the test configuration was also analyzed.

  19. A prediction model for wind speed ratios at pedestrian level with simplified urban canopies

    NASA Astrophysics Data System (ADS)

    Ikegaya, N.; Ikeda, Y.; Hagishima, A.; Razak, A. A.; Tanimoto, J.

    2017-02-01

    The purpose of this study is to review and improve prediction models for wind speed ratios at pedestrian level with simplified urban canopies. We adopted an extensive database of velocity fields under various conditions for arrays consisting of cubes, slender or flattened rectangles, and rectangles with varying roughness heights. Conclusions are summarized as follows: first, a new geometric parameter is introduced as a function of the plan area index and the aspect ratio so as to express the increase in virtual density that causes wind speed reduction. Second, the estimated wind speed ratios in the range 0.05 < z/ h < 0.3, where h is the building height, are consistent with those derived from the database to within an error of ±25%. Lastly, the effects of the spatial distribution of the flow were investigated by classifying the regions near building models into areas in front of, to the side of, or behind the building. The correlation coefficients between the wind speeds averaged over the entire region, and the front or side region values are larger than 0.8. In contrast, in areas where the influence of roughness elements is significant, such as behind a building, the wind speeds are weakly correlated.

  20. WIND SPEED AND ATMOSPHERIC STABILITY TRENDS FOR SELECTED UNITED STATES SURFACE STATIONS

    SciTech Connect

    Buckley, R; Allen H. Weber, A

    2006-11-01

    Recently it has been suggested that global warming and a decrease in mean wind speeds over most land masses are related. Decreases in near surface wind speeds have been reported by previous investigators looking at records with time spans of 15 to 30 years. This study focuses on United States (US) surface stations that have little or no location change since the late 1940s or the 1950s--a time range of up to 58 years. Data were selected from 62 stations (24 of which had not changed location) and separated into ten groups for analysis. The group's annual averages of temperature, wind speed, and percentage of Pasquill-Gifford (PG) stability categories were fitted with linear least squares regression lines. The results showed that the temperatures have increased for eight of the ten groups as expected. Wind speeds have decreased for nine of the ten groups. The mean slope of the wind speed trend lines for stations within the coterminous US was -0.77 m s{sup -1} per century. The percentage frequency of occurrence for the neutral (D) PG stability category decreased, while that for the unstable (B) and the stable (F) categories increased in almost all cases except for the group of stations located in Alaska.

  1. Long-term wind speed variations for three midwestern U.S. cities.

    PubMed

    Abhishek, A; Lee, Joo-Youp; Keener, Tim C; Yang, Y Jeffery

    2010-09-01

    Long-term wind speed variations were investigated for three midwestern cities including Indianapolis, IN; Cincinnati, OH; and Little Rock, AR in the continental United States. These cities were chosen because their topography is relatively flat and unaffected by large mountain ranges or other topographical features, they represent important regional economic centers, and they have all undergone major air quality management efforts over the past 35 yr to attempt to meet the National Ambient Air Quality Standards. The hourly data were obtained from the National Climatic Data Center from 1943 to 2008 for Indianapolis and Little Rock and from 1948 to 2008 for Cincinnati. The analysis included calculating the frequency of calms and wind speeds over five different bins for the respective cities. The results indicate a significant increase in the frequency of calms (statistical significance > 99.999%) and a decrease in the overall frequency of other wind speeds for all three cities. Increasing trend in calms is more predominant during the ozone season (April through October). The results from regression analysis, significance testing, and spatial correlation analysis support the argument that a common "midwestern" large-scale atmospheric forcing is influencing surface wind speed in this area. It was found that for all three cities the Pacific North American (PNA) teleconnection pattern has the highest relative association with the trends in wind speed. The results support large-scale continental effects (like teleconnections) as a hypothesis to be examined more closely along with already established evidence of the influence of the Pacific and Atlantic teleconnection anomalies. Reduced wind speed may have implications on air quality management efforts in the region. Increases in the frequency of calms would affect ozone distribution patterns and may suggest a need to make changes to their ozone mitigation strategy. Weaker winds would ventilate pollutants from these areas

  2. Wind speed effects on leaf energy balance, transpiration and water use efficiency

    NASA Astrophysics Data System (ADS)

    Schymanski, S. J.; Or, D.

    2014-12-01

    Transpiration and heat exchange rates by plant leaves involve coupled physiological processes of significant ecohydrological importance. Prediction of the effects of changing environmental conditions such as irradiance, temperature, humidity and wind speed requires a thorough understanding of these processes. The common assumption that leaf temperature equals air temperature may introduce significant bias into estimates of transpiration rates and water use efficiency (WUE, the amount of carbon gained by photosynthesis per unit of water lost by transpiration). Theoretical considerations and observations suggest that leaf temperatures may deviate substantially from air temperature under typical environmental conditions, leading to greatly modified transpiration rates compared to isothermal conditions. In particular, effects of wind on gas exchange must consider feedbacks with leaf temperature. Systematic quantification of the effects of wind speed on leaf heat and gas exchange rates yield some surprising insights. We found a range of conditions where increased wind speed can suppress transpiration rates. The result reflects unintuitive feedbacks between sensible heat flux, leaf temperature, leaf-to-air vapour pressure deficit and latent heat flux. Modelling results suggest that with high wind speeds the same leaf conductance (for water vapour and carbon dioxide) can be maintained with less evaporative losses. This leads to positive relation between water use efficiency and wind speed across a wide range of conditions. The presentation will report results from a lab experiment allowing separation of the different leaf energy balance components under fully controlled conditions (wind speed, temperature, humidity, irradiance) and put them into perspective with a detailed leaf energy balance model and the commonly used Penman-Monteith equation.

  3. Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range

    NASA Astrophysics Data System (ADS)

    Yong, Hyungseok; Chung, Jihoon; Choi, Dukhyun; Jung, Daewoong; Cho, Minhaeng; Lee, Sangmin

    2016-09-01

    Triboelectric nanogenerators are aspiring energy harvesting methods that generate electricity from the triboelectric effect and electrostatic induction. This study demonstrates the harvesting of wind energy by a wind-rolling triboelectric nanogenerator (WR-TENG). The WR-TENG generates electricity from wind as a lightweight dielectric sphere rotates along the vortex whistle substrate. Increasing the kinetic energy of a dielectric converted from the wind energy is a key factor in fabricating an efficient WR-TENG. Computation fluid dynamics (CFD) analysis is introduced to estimate the precise movements of wind flow and to create a vortex flow by adjusting the parameters of the vortex whistle shape to optimize the design parameters to increase the kinetic energy conversion rate. WR-TENG can be utilized as both a self-powered wind velocity sensor and a wind energy harvester. A single unit of WR-TENG produces open-circuit voltage of 11.2 V and closed-circuit current of 1.86 μA. Additionally, findings reveal that the electrical power is enhanced through multiple electrode patterns in a single device and by increasing the number of dielectric spheres inside WR-TENG. The wind-rolling TENG is a novel approach for a sustainable wind-driven TENG that is sensitive and reliable to wind flows to harvest wasted wind energy in the near future.

  4. Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range.

    PubMed

    Yong, Hyungseok; Chung, Jihoon; Choi, Dukhyun; Jung, Daewoong; Cho, Minhaeng; Lee, Sangmin

    2016-09-22

    Triboelectric nanogenerators are aspiring energy harvesting methods that generate electricity from the triboelectric effect and electrostatic induction. This study demonstrates the harvesting of wind energy by a wind-rolling triboelectric nanogenerator (WR-TENG). The WR-TENG generates electricity from wind as a lightweight dielectric sphere rotates along the vortex whistle substrate. Increasing the kinetic energy of a dielectric converted from the wind energy is a key factor in fabricating an efficient WR-TENG. Computation fluid dynamics (CFD) analysis is introduced to estimate the precise movements of wind flow and to create a vortex flow by adjusting the parameters of the vortex whistle shape to optimize the design parameters to increase the kinetic energy conversion rate. WR-TENG can be utilized as both a self-powered wind velocity sensor and a wind energy harvester. A single unit of WR-TENG produces open-circuit voltage of 11.2 V and closed-circuit current of 1.86 μA. Additionally, findings reveal that the electrical power is enhanced through multiple electrode patterns in a single device and by increasing the number of dielectric spheres inside WR-TENG. The wind-rolling TENG is a novel approach for a sustainable wind-driven TENG that is sensitive and reliable to wind flows to harvest wasted wind energy in the near future.

  5. Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range

    PubMed Central

    Yong, Hyungseok; Chung, Jihoon; Choi, Dukhyun; Jung, Daewoong; Cho, Minhaeng; Lee, Sangmin

    2016-01-01

    Triboelectric nanogenerators are aspiring energy harvesting methods that generate electricity from the triboelectric effect and electrostatic induction. This study demonstrates the harvesting of wind energy by a wind-rolling triboelectric nanogenerator (WR-TENG). The WR-TENG generates electricity from wind as a lightweight dielectric sphere rotates along the vortex whistle substrate. Increasing the kinetic energy of a dielectric converted from the wind energy is a key factor in fabricating an efficient WR-TENG. Computation fluid dynamics (CFD) analysis is introduced to estimate the precise movements of wind flow and to create a vortex flow by adjusting the parameters of the vortex whistle shape to optimize the design parameters to increase the kinetic energy conversion rate. WR-TENG can be utilized as both a self-powered wind velocity sensor and a wind energy harvester. A single unit of WR-TENG produces open-circuit voltage of 11.2 V and closed-circuit current of 1.86 μA. Additionally, findings reveal that the electrical power is enhanced through multiple electrode patterns in a single device and by increasing the number of dielectric spheres inside WR-TENG. The wind-rolling TENG is a novel approach for a sustainable wind-driven TENG that is sensitive and reliable to wind flows to harvest wasted wind energy in the near future. PMID:27653976

  6. Wind speed and direction measurement based on arc ultrasonic sensor array signal processing algorithm.

    PubMed

    Li, Xinbo; Sun, Haixin; Gao, Wei; Shi, Yaowu; Liu, Guojun; Wu, Yue

    2016-11-01

    This article investigates a kind of method to measure the wind speed and the wind direction, which is based on arc ultrasonic sensor array and combined with array signal processing algorithm. In the proposed method, a new arc ultrasonic array structure is introduced and the array manifold is derived firstly. On this basis, the measurement of the wind speed and the wind direction is analyzed and discussed by means of the basic idea of the classic MUSIC (Multiple Signal Classification) algorithm, which achieves the measurements of the 360° wind direction with resolution of 1° and 0-60m/s wind speed with resolution of 0.1m/s. The implementation of the proposed method is elaborated through the theoretical derivation and corresponding discussion. Besides, the simulation experiments are presented to show the feasibility of the proposed method. The theoretical analysis and simulation results indicate that the proposed method has superiority on anti-noise performance and improves the wind measurement accuracy.

  7. Wind plant capacity credit variations: A comparison of results using multiyear actual and simulated wind-speed data

    SciTech Connect

    Milligan, M.R.

    1997-12-31

    Although it is widely recognized that variations in annual wind energy capture can be significant, it is not clear how significant this effect is on accurately calculating the capacity credit of a wind plant. An important question is raised concerning whether one year of wind data is representative of long-term patterns. This paper calculates the range of capacity credit measures based on 13 years of actual wind-speed data. The results are compared to those obtained with synthetic data sets that are based on one year of data. Although the use of synthetic data sets is a considerable improvement over single-estimate techniques, this paper finds that the actual inter-annual variation in capacity credit is still understated by the synthetic data technique.

  8. Variability of the vertical profile of wind speed: characterization at various time scales and analytical approximation

    NASA Astrophysics Data System (ADS)

    Jourdier, Bénédicte; Plougonven, Riwal; Drobinski, Philippe; Dupont, Jean-Charles

    2014-05-01

    Wind measurements are key for the wind resource assessment. But as wind turbines get higher, wind measurement masts are often lower than the future wind turbine hub height. Therefore one of the first steps in the energy yield assessment is the vertical extrapolation of wind measurements. Such extrapolation is often done by approximating the vertical profile of wind speed with an analytical expression: either a logarithmic law which has a theoretical basis in Monin-Obukhov similarity theory; or a power law which is empirical. The present study analyzes the variability of the wind profile and how this variability affects the results of the vertical extrapolation methods. The study is conducted with data from the SIRTA observatory, 20km south of Paris (France). A large set of instrumentation is available, including sonic anemometers at 10 and 30 meters, a LIDAR measuring wind speeds from 40 to 200 meters and a SODAR measuring wind speeds starting from 100m up to 1km. The comparison between the instruments enables to characterize the measurements uncertainties. The observations show that close to the ground the wind is stronger during daytime and weaker at night while higher, around 150 m, the wind is weaker during daytime and stronger at night. Indeed the wind shear has a pronounced diurnal cycle. The vertical extrapolation methods currently used in the industry do not usually take into account the strong variability of the wind profile. The often fit the parameters of the extrapolation law, not on each time step, but on time-averaged profiles. The averaging period may be the whole measurement period or some part of it: there may be one constant parameter computed on the wind profile that was averaged on the whole year of measures, or the year of measures may be divided into a small number of cases (for example into night or daytime data, or into 4 seasons) and the parameter is adjusted for each case. The study analyzes thoroughly the errors generated by both

  9. First and second order semi-Markov chains for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Prattico, F.; Petroni, F.; D'Amico, G.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [3] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [1], by using two models, first

  10. Solar Wind Speed Structure in the Inner Corona at 3-12 Ro

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1995-01-01

    Estimates of solar wind speed obtained by Armstrong et al. [1986] based on 1983 VLA multiple-station intensity scintillation measurements inside 12 R(sub o) have been correlated with the electron density structure observed in white-light coronagraph measurements. The observed large- scale and apparently systematic speed variations are found to depend primarily on changes in heliographic latitude and longitude, which leads to the first results on large-scale speed structure in the acceleration region of the solar wind. Over an equatorial hole, solar wind speed is relatively steady, with peak-to-peak variations of 50 km/s and an average of 230 km/s. In contrast, the near-Sun flow speed across the streamer belt shows regular large-scale variations in the range of 100-300 km/s. Based on four groups of data, the gradient is 36 km/s per degree in heliocentric coordinates (corresponding to a rise of 260 km/s over a spatial distance on the Sun of two arcmin) with a standard deviation of 2.4 km/s per degree. The lowest speeds most likely coincide with the stalks of coronal streamers observed in white-light measurements. The detection of significant wind shear over the streamer belt is consistent with in situ and scintillation measurements showing that the density spectrum has a power-law form characteristic of fully developed turbulence over a much broader range of scales than in neighboring regions.

  11. Study of wind speed attenuation at Kavaratti Island using land-based, offshore, and satellite measurements

    NASA Astrophysics Data System (ADS)

    Joseph, Antony; Rivonkar, Pradhan; Balakrishnan Nair, T. M.

    2012-06-01

    The role of dense coconut palms in attenuating the wind speed at Kavaratti Island, which is located in the southeastern Arabian Sea, is examined based on land-based and offshore wind measurements (U10) using anchored-buoy-mounted and satellite-borne sensors (QuikSCAT scatterometer and TMI microwave imager) during an 8-year period (2000-2007). It is found that round the year monthly-mean wind speed measurements from the Port Control Tower (PCT) located within the coconut palm farm at the Kavaratti Island are weaker by 15-61% relative to those made from the nearby offshore region. Whereas wind speed attenuation at the island is ~15-40% in the mid-June to mid-October south-west monsoon period, it is ~41-61% during the rest of the year. Wind direction measurements from all the devices overlapped, except in March-April during which the buoy measurements deviated from the other measurements by ~20°. U10 wind speed measurements from PCT during the November 2009 tropical cyclone "Phyan" indicated approximately 50-80% attenuation relative to those from the seaward boundary of the island's lagoon (and therefore least influenced by the coconut palms). The observed wind speed attenuation can be understood through the theory of free turbulent flow jets embodied in the boundary-layer fluid dynamics, according to which both the axial and transverse components of the efflux of flows discharged through the inter-leaves porosity (orifice) undergo increasing attenuation in the downstream direction with increasing distance from the orifice. Thus, the observed wind speed attenuation at Kavaratti Island is attributable to the decline in wind energy transmission from the seaward boundary of the coconut palm farm with distance into the farm. Just like mangrove forests function as bio-shields against forces from oceanic waves and stormsurges through their large above-ground aerial root systems and standing crop, and thereby playing a distinctive role in ameliorating the effects of

  12. Mesoscale Near-Surface Wind Speed Variability Mapping with Synthetic Aperture Radar.

    PubMed

    Young, George; Sikora, Todd; Winstead, Nathaniel

    2008-11-05

    Operationally-significant wind speed variability is often observed within synthetic aperture radar-derived wind speed (SDWS) images of the sea surface. This paper is meant as a first step towards automated distinguishing of meteorological phenomena responsible for such variability. In doing so, the research presented in this paper tests feature extraction and pixel aggregation techniques focused on mesoscale variability of SDWS. A sample of twenty eight SDWS images possessing varying degrees of near-surface wind speed variability were selected to serve as case studies. Gaussian high- and low-pass, local entropy, and local standard deviation filters performed well for the feature extraction portion of the research while principle component analysis of the filtered data performed well for the pixel aggregation. The findings suggest recommendations for future research.

  13. Evaluation of flow quality in two large NASA wind tunnels at transonic speeds

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Stainback, P. C.; Owen, F. K.

    1980-01-01

    Wind tunnel testing of low drag airfoils and basic transition studies at transonic speeds are designed to provide high quality aerodynamic data at high Reynolds numbers. This requires that the flow quality in facilities used for such research be excellent. To obtain a better understanding of the characteristics of facility disturbances and identification of their sources for possible facility modification, detailed flow quality measurements were made in two prospective NASA wind tunnels. Experimental results are presented of an extensive and systematic flow quality study of the settling chamber, test section, and diffuser in the Langley 8 foot transonic pressure tunnel and the Ames 12 foot pressure wind tunnel. Results indicate that the free stream velocity and pressure fluctuation levels in both facilities are low at subsonic speeds and are so high as to make it difficult to conduct meaningful boundary layer control and transition studies at transonic speeds.

  14. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.

    1978-01-01

    Work was continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes (perhaps through changes in Reynold's number and freestream turbulence levels) on airfoil data and wall contours. Mechanical design analyses for the transonic self-streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility, which will eventually allow on-line computer operation of the wind tunnel, was outlined.

  15. Nature and Variability of Coronal Streamers and Their Relationship to the Slow Speed Wind

    NASA Technical Reports Server (NTRS)

    Strachan, Leonard

    2004-01-01

    NASA Grant NAGS12781 is a study on the "Nature and Variability of Coronal Streamers and their Relationship to the Slow Speed Wind." The two main goals of this study are to identify: I ) Where in the streamer structure does the solar wind originate, and 2 ) What coronal conditions are responsible for the variability of the slow speed wind. These goals are to be accomplished by carrying out the following activities: I ) Developing models for inferring the plasma outflow velocities in the extended solar corona based on UV spectroscopic and white light coronagraph data. 2 ) Producing UVCS Carrington Maps for the period around solar minimum 1996-1998. 3) Producing electron density profiles from the corresponding LASCO-C2 observations. 4) Identifying and selecting in situ data sets to be used for characterizing the solar wind from the streamers observed with UVCS. 5) Developing new visualization tools for using the UVCS synoptic data.

  16. Dual stator winding variable speed asynchronous generator: optimal design and experiments

    NASA Astrophysics Data System (ADS)

    Tutelea, L. N.; Deaconu, S. I.; Popa, G. N.

    2015-06-01

    In the present paper is carried out a theoretical and experimental study of dual stator winding squirrel cage asynchronous generator (DSWA) behavior in the presence of saturation regime (non-sinusoidal) due to the variable speed operation. The main aims are the determination of the relations of calculating the equivalent parameters of the machine windings to optimal design using a Matlab code. Issue is limited to three phase range of double stator winding cage-induction generator of small sized powers, the most currently used in the small adjustable speed wind or hydro power plants. The tests were carried out using three-phase asynchronous generator having rated power of 6 [kVA].

  17. Dual stator winding variable speed asynchronous generator: magnetic equivalent circuit with saturation, FEM analysis and experiments

    NASA Astrophysics Data System (ADS)

    Tutelea, L. N.; Muntean, N.; Deaconu, S. I.; Cunţan, C. D.

    2016-02-01

    The authors carried out a theoretical and experimental study of dual stator winding squirrel cage asynchronous generator (DSWA) behaviour in the presence of saturation regime (non-sinusoidal) due to the variable speed operation. The main aims are the determination of the relations of calculating the equivalent parameters of the machine windings, FEM validation of parameters and characteristics with free FEMM 4.2 computing software and the practice experimental tests for verifying them. Issue is limited to three phase range of double stator winding cage-asynchronous generator of small sized powers, the most currently used in the small adjustable speed wind or hydro power plants. The tests were carried out using three-phase asynchronous generator having rated power of 6 [kVA].

  18. Polar low-speed solar wind at the solar activity maximum

    NASA Astrophysics Data System (ADS)

    Ohmi, T.; Kojima, M.; Yokobe, A.; Tokumaru, M.; Fujiki, K.; Hakamada, K.

    2001-11-01

    The tomographic analysis of interplanetary scintillation (IPS) showed that low-speed winds (<= 370 kms-1) emanated out from the polar region at the last solar activity maximum. In order to investigate the origin of those low-speed winds, we compared the velocity distribution derived from the IPS tomographic analysis to the magnetic field structure derived from the potential field analysis. We found that the polar low-speed winds appeared for a short period just before and after the disappearance of polar open fields. When the polar coronal hole shrank very small before its disappearance, the coronal polar open field was encircled by large-scale closed loops and became super radially diverging field into the interplanetary space. A low-speed region appeared in this diverging polar magnetic field region. This situation is a condition very similar to the compact low-speed streams associated with equatorial active regions, which were found by Kojima et al. [1999]. After the open field regions had disappeared from the pole, the polar regions were occupied with closed loops. These closed loops were overlapped by the magnetic field which fanned out from the midlatitudes. A low-speed streamer located above these closed loops even after the polar open field had disappeared. The velocities of polar low-speed streams before polar hole disappearance were much lower than those after disappearance. This result suggests that the physical conditions to generate much lower speed streams are closely associated with large expansion from small open field regions encircled by large-scale closed loops. Finally, a reliability of the IPS measurement of polar low-speed wind was examined by simulating synthetic IPS observations in hypothetical model polar streams.

  19. The History and State of the Art of Variable-Speed Wind Turbine Technology

    NASA Astrophysics Data System (ADS)

    Carlin, P. W.; Laxson, A. S.; Muljadi, E. B.

    2003-04-01

    Early wind turbines used for performing mechanical work (pumping, grinding and cutting) optimized aerodynamics by being allowed to run at variable speed. Some of the earliest DC electric wind turbines were allowed to run at variable speed. With the advent of grid-connected AC turbines, rotational speeds were limited in order to control the wind turbine AC frequency output to equal the grid frequency. With the advent of semiconductor devices, attempts began as early as the 1970s to allow variable-speed operation of large-scale turbines. The introduction of a new generation of high-voltage, high-speed power electronic components allows a wide range of variable-speed operation for very-large-scale machines. Over the past 30 years a number of designs have been tested, a few of which have entered commercial operation. A number of these designs and their histories are described. A detailed description of a wide range of electrical methods for allowing variable-speed operation is provided.

  20. High speed video shooting with continuous-wave laser illumination in laboratory modeling of wind - wave interaction

    NASA Astrophysics Data System (ADS)

    Kandaurov, Alexander; Troitskaya, Yuliya; Caulliez, Guillemette; Sergeev, Daniil; Vdovin, Maxim

    2014-05-01

    Three examples of usage of high-speed video filming in investigation of wind-wave interaction in laboratory conditions is described. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 m, cross section of air channel 0.4 x 0.4 m, wind velocity up to 24 m/s) and at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m, wind velocity up to 10 m/s). A combination of PIV-measurements, optical measurements of water surface form and wave gages were used for detailed investigation of the characteristics of the wind flow over the water surface. The modified PIV-method is based on the use of continuous-wave (CW) laser illumination of the airflow seeded by particles and high-speed video. During the experiments on the Wind - wave stratified flume of IAP RAS Green (532 nm) CW laser with 1.5 Wt output power was used as a source for light sheet. High speed digital camera Videosprint (VS-Fast) was used for taking visualized air flow images with the frame rate 2000 Hz. Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved using conditional in phase averaging like in [1]. In the experiments on the LASIF more powerful Argon laser (4 Wt, CW) was used as well as high-speed camera with higher sensitivity and resolution: Optronics Camrecord CR3000x2, frame rate 3571 Hz, frame size 259×1696 px. In both series of experiments spherical 0.02 mm polyamide particles with inertial time 7 ms were used for seeding airflow. New particle seeding system based on utilization of air pressure is capable of injecting 2 g of particles per second for 1.3 - 2.4 s without flow disturbance. Used in LASIF this system provided high particle density on PIV-images. In combination with high-resolution camera it allowed us to obtain momentum fluxes directly from

  1. A storm severity index based on return levels of wind speeds

    NASA Astrophysics Data System (ADS)

    Becker, Nico; Nissen, Katrin M.; Ulbrich, Uwe

    2015-04-01

    European windstorms related to extra-tropical cyclones cause considerable damages to infrastructure during the winter season. Leckebusch et al. (2008) introduced a storm severity index (SSI) based on the exceedances of the local 98th percentile of wind speeds. The SSI is based on the assumption that (insured) damage usually occurs within the upper 2%-quantile of the local wind speed distribution (i.e. if the 98th percentile is exceeded). However, critical infrastructure, for example related to the power network or the transportation system, is usually designed to withstand wind speeds reaching the local 50-year return level, which is much higher than the 98th percentile. The aim of this work is to use the 50-year return level to develop a modified SSI, which takes into account only extreme wind speeds relevant to critical infrastructure. As a first step we use the block maxima approach to estimate the spatial distribution of return levels by fitting the generalized extreme value (GEV) distribution to the wind speeds retrieved from different reanalysis products. We show that the spatial distributions of the 50-year return levels derived from different reanalyses agree well within large parts of Europe. The differences between the reanalyses are largely within the range of the uncertainty intervals of the estimated return levels. As a second step the exceedances of the 50-year return level are evaluated and compared to the exceedances of the 98th percentiles for different extreme European windstorms. The areas where the wind speeds exceed the 50-year return level in the reanalysis data do largely agree with the areas where the largest damages were reported, e.g. France in the case of "Lothar" and "Martin" and Central Europe in the case of "Kyrill". Leckebusch, G. C., Renggli, D., & Ulbrich, U. (2008). Development and application of an objective storm severity measure for the Northeast Atlantic region. Meteorologische Zeitschrift, 17(5), 575-587.

  2. Threshold wind speed for dust emission in east Asia and its seasonal variations

    NASA Astrophysics Data System (ADS)

    Kurosaki, Y.; Mikami, M.

    2007-09-01

    We present maps of threshold wind speed for dust emission in east Asia, which are statistically evaluated from synoptic surface meteorological data. We define threshold wind speeds as ut5% and ut50%, which can be identified as threshold wind speeds at close to the most favorable land surface condition for dust emission and under normal land surface conditions, respectively. Spatial distributions of ut5% and ut50% are similar and roughly correspond to the land cover type. The threshold wind speed is low in desert regions such as the Taklimakan Desert (ut5% = 4.4 ± 0.6 m s-1 and ut50% = 6.7 ± 1.5 m s-1) and the Loess Plateau (ut5% = 6.9 ± 1.2 m s-1 and ut50% = 9.4 ± 1.6 m s-1). On the other hand, the highest is seen in northern Mongolia (ut5% = 9.8 ± 2.2 m s-1 and ut50% = 16.2 ± 2.5 m s-1), whose land cover type is grassland. One exception is the high threshold wind speed recorded in the Gobi Desert (ut5% = 8.9 ± 2.2 m s-1 and ut50% = 13.8 ± 2.0 m s-1). Seasonal variations in the threshold wind speed are narrow in desert regions such as the Taklimakan Desert, the Gobi Desert and Loess Plateau, but wide in grassland regions such as northern Mongolia. This suggests that land surface conditions are the similar throughout the year in desert regions, but seasonally variable in grassland regions.

  3. Relationships among daily mean and maximum wind speeds, with application to data quality assurance

    NASA Astrophysics Data System (ADS)

    Graybeal, Daniel Y.

    2006-01-01

    A growing number of climate change and variability studies, as well as applied research toward improving engineering design climatographies, require high-quality, long-term, extreme-value climate data sets for accurate and reliable estimates and assessments. As part of a historical weather data rescue project of the US government, new data quality control procedures are being developed and applied for daily maximum wind speeds. Not only are existing quality assurance procedures mostly lacking for such data but the climatological relationships upon which such quality checks may be based are also grossly underexploited. Therefore, this study seeks to elucidate relationships among peak-gust, fastest-mile, and fastest 5-min wind speeds, utilizing the peak gust factor model but generalizing it for these and other extreme wind-speed elements. The relationship between peak-gust factor and daily mean wind speed is also adapted for quality assurance and for a wider range of climates than previously studied. Fastest-interval wind-speed factors are found to follow Gaussian, gamma, or Weibull probability distributions, included within mixed models to handle zeros. Resistant prediction interval estimates about a resistant regression were developed for quality assurance of peak-gust factor, given the daily mean wind speed. Flagging thresholds were estimated using parametric bootstrapping. Flag rates from 0.05 to 0.5% are in line with rates reported in the literature, from work with similar data sets; overall Type I and Type II error rates are in the range 0.03-0.3%. The approach outlined lends itself straightforwardly to application in data quality assurance.

  4. An experimental study of several wind tunnel wall configurations using two V/STOL model configurations. [low speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Binion, T. W., Jr.

    1975-01-01

    Experiments were conducted in the low speed wind tunnel using two V/STOL models, a jet-flap and a jet-in-fuselage configuration, to search for a wind tunnel wall configuration to minimize wall interference on V/STOL models. Data were also obtained on the jet-flap model with a uniform slotted wall configuration to provide comparisons between theoretical and experimental wall interference. A test section configuration was found which provided some data in reasonable agreement with interference-free results over a wide range of momentum coefficients.

  5. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    PubMed

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.

  6. GPS Signal Scattering from Sea Surface: Wind Speed Retrieval Using Experimental Data and Theoretical Model

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila; Zavorotny, Valery U.; Axelrad, Penina; Born, George H.; Garrison, James L.

    2000-01-01

    Global Positioning System (GPS) signals reflected from the ocean surface have potential use for various remote sensing purposes. Some possibilities arc measurements of surface roughness characteristics from which ware height, wind speed, and direction could be determined. For this paper, GPS-reflected signal measurements collected at aircraft altitudes of 2 km to 5 km with a delay-Doppler mapping GPS receiver arc used to explore the possibility of determining wind speed. To interpret the GPS data, a theoretical model has been developed that describes the power of the reflected GPS signals for different time delays and Doppler frequencies as a function of geometrical and environmental parameters. The results indicate a good agreement between the measured and the modeled normalized signal power waveforms during changing surface wind conditions. The estimated wind speed using surface- reflected GPS data, obtained by comparing actual and modeled waveforms, shows good agreement (within 2 m/s) with data obtained from a nearby buoy and independent wind speed measurements derived from the TOPEX/Poseidon altimetric satellite.

  7. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems

    PubMed Central

    Ranganayaki, V.; Deepa, S. N.

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  8. Self-excited induction generator for variable-speed wind turbine generation

    SciTech Connect

    Muljadi, E; Gregory, B; Broad, D

    1996-10-01

    When an induction generator is connected to a utility bus, the voltage and frequency at the terminal of the generator are the same as the voltage and frequency of the utility. The reactive power needed by the induction generator is supplied by the utility and the real power is returned to the utility. The rotor speed varies within a very limited range, and the reactive power requirement must be transported through a long line feeder, thus creating additional transmission losses. The energy captured by a wind turbine can be increased if the rotor speed can be adjusted to follow wind speed variations. For small applications such as battery charging or water pumping, a stand alone operation can be implemented without the need to maintain the output frequency output of the generator. A self- excited induction generator is a good candidate for a stand alone operation where the wind turbine is operated at variable speed. Thus the performance of the wind turbine can be unproved. In this paper, we examine a self-excited induction generator operated in a stand alone mode. A potential application for battery charging is given. The output power of the generator will be controlled to improve the performance of the wind turbine.

  9. Influence of wind speed averaging on estimates of dimethylsulfide emission fluxes

    SciTech Connect

    Chapman, E. G.; Shaw, W. J.; Easter, R. C.; Bian, X.; Ghan, S. J.

    2002-12-03

    The effect of various wind-speed-averaging periods on calculated DMS emission fluxes is quantitatively assessed. Here, a global climate model and an emission flux module were run in stand-alone mode for a full year. Twenty-minute instantaneous surface wind speeds and related variables generated by the climate model were archived, and corresponding 1-hour-, 6-hour-, daily-, and monthly-averaged quantities calculated. These various time-averaged, model-derived quantities were used as inputs in the emission flux module, and DMS emissions were calculated using two expressions for the mass transfer velocity commonly used in atmospheric models. Results indicate that the time period selected for averaging wind speeds can affect the magnitude of calculated DMS emission fluxes. A number of individual marine cells within the global grid show DMS emissions fluxes that are 10-60% higher when emissions are calculated using 20-minute instantaneous model time step winds rather than monthly-averaged wind speeds, and at some locations the differences exceed 200%. Many of these cells are located in the southern hemisphere where anthropogenic sulfur emissions are low and changes in oceanic DMS emissions may significantly affect calculated aerosol concentrations and aerosol radiative forcing.

  10. Speed and Torque Control Strategies for Loss Reduction of Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Argent, Michael; McDonald, Alasdair; Leithead, Bill; Giles, Alexander

    2016-09-01

    This paper builds on the work into modelling the generator losses for Vertical Axis Wind Turbines from their intrinsic torque cycling to investigate the effects of aerodynamic inefficiencies caused by the varying rotational speed resulting from different torque control strategies to the cyclic torque. This is achieved by modelling the wake that builds up from the rotation of the VAWT rotor to investigate how the wake responds to a changing rotor speed and how this in turn affects the torque produced by the blades as well as the corresponding change in generator losses and any changes to the energy extracted by the wind turbine rotor.

  11. Linear retrieval and global measurements of wind speed from the Seasat SMMR

    NASA Technical Reports Server (NTRS)

    Pandey, P. C.

    1983-01-01

    Retrievals of wind speed (WS) from Seasat Scanning Multichannel Microwave Radiometer (SMMR) were performed using a two-step statistical technique. Nine subsets of two to five SMMR channels were examined for wind speed retrieval. These subsets were derived by using a leaps and bound procedure based on the coefficient of determination selection criteria to a statistical data base of brightness temperatures and geophysical parameters. Analysis of Monsoon Experiment and ocean station PAPA data showed a strong correlation between sea surface temperature and water vapor. This relation was used in generating the statistical data base. Global maps of WS were produced for one and three month periods.

  12. a New Method to Detect Regions Endangered by High Wind Speeds

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Ehrensperger, S.; Krauß, T.

    2016-06-01

    In this study we evaluate whether the methodology of Boosted Regression Trees (BRT) suits for accurately predicting maximum wind speeds. As predictors a broad set of parameters derived from a Digital Elevation Model (DEM) acquired within the Shuttle Radar Topography Mission (SRTM) is used. The derived parameters describe the surface by means of quantities (e.g. slope, aspect) and quality (landform classification). Furthermore land cover data from the CORINE dataset is added. The response variable is maximum wind speed, measurements are provided by a network of weather stations. The area of interest is Switzerland, a country which suits perfectly for this study because of its highly dynamic orography and various landforms.

  13. Control strategy for a variable-speed wind energy conversion system

    NASA Technical Reports Server (NTRS)

    Jacob, A.; Veillette, D.; Rajagopalan, V.

    1979-01-01

    A control concept for a variable-speed wind energy conversion system is proposed, for which a self-exited asynchronous cage generator is used along with a system of thyristor converters. The control loops are the following: (1) regulation of the entrainment speed as function of available mechanical energy by acting on the resistance couple of the asynchronous generator; (2) control of electric power delivered to the asynchronous machine, functioning as a motor, for start-up of the vertical axis wind converter; and (3) limitation of the slip value, and by consequence, of the induction currents in the presence of sudden variations of input parameters.

  14. Aerodynamic Characteristics of High Speed Trains under Cross Wind Conditions

    NASA Astrophysics Data System (ADS)

    Chen, W.; Wu, S. P.; Zhang, Y.

    2011-09-01

    Numerical simulation for the two models in cross-wind was carried out in this paper. The three-dimensional compressible Reynolds-averaged Navier-Stokes equations(RANS), combined with the standard k-ɛ turbulence model, were solved on multi-block hybrid grids by second order upwind finite volume technique. The impact of fairing on aerodynamic characteristics of the train models was analyzed. It is shown that, the flow separates on the fairing and a strong vortex is generated, the pressure on the upper middle car decreases dramatically, which leads to a large lift force. The fairing changes the basic patterns around the trains. In addition, formulas of the coefficient of aerodynamic force at small yaw angles up to 24° were expressed.

  15. Quantification of rain gauge measurement undercatch and wind speed correction

    NASA Astrophysics Data System (ADS)

    Pollock, Michael; Quinn, Paul; Dutton, Mark; Wilkinson, Mark

    2014-05-01

    Hydrological processes are adversely affected by systematic rain gauge inaccuracy due to wind induced undercatching. The implications of this are discussed and addressed. Despite evidence of the undercatch problem being cited in the past and the difficulty in solving such a complex problem; it has become an inconvenient truth to hydrologists that major inaccuracies in rainfall measurement exist. A two year long experiment using new equipment and improved data logging and telemetery techniques enriches this formative work to redress the wilful neglect with which accurate rainfall measurement has been treated in recent decades. Results from this work suggest that the annual systematic undercatch can be in the order of 20 percent in the UK. During specific periods (measured at high temporal resolution), this can rise to as high as 50 percent for a single wind impacted event. As one organisation, responsible for the environment in the UK, moves towards using fewer instruments (15 percent fewer in the next year), it is scarcely possible to overstate the importance in solving this problem. It had been hoped that new equipment, such as acoustic distrometer and weighing gauge technologies, would be able to reduce the magnitude of the bias. However, through data gathered in the 2 year experiment and through secondary sources from the 1970s and 1980s, it is demonstrated that this is not the case and that the same problems with undercatching remain now as they did then. We further postulate that wider, denser networks of inexpensive telemetered equipment are now possible but they must still address the undercatch issue. There is little merit in pointing out an age old problem if no solution is put forward to fix it. The aforementioned experiment has furnished new ideas and further work has been commissioned to address this problem. This will be achieved via the medium of a Knowledge Transfer Partnership between Newcastle University and an innovative equipment manufacturer

  16. Bernoulli-Langevin Wind Speed Model for Simulation of Storm Events

    NASA Astrophysics Data System (ADS)

    Fürstenau, Norbert; Mittendorf, Monika

    2016-12-01

    We present a simple nonlinear dynamics Langevin model for predicting the instationary wind speed profile during storm events typically accompanying extreme low-pressure situations. It is based on a second-degree Bernoulli equation with δ-correlated Gaussian noise and may complement stationary stochastic wind models. Transition between increasing and decreasing wind speed and (quasi) stationary normal wind and storm states are induced by the sign change of the controlling time-dependent rate parameter k(t). This approach corresponds to the simplified nonlinear laser dynamics for the incoherent to coherent transition of light emission that can be understood by a phase transition analogy within equilibrium thermodynamics [H. Haken, Synergetics, 3rd ed., Springer, Berlin, Heidelberg, New York 1983/2004.]. Evidence for the nonlinear dynamics two-state approach is generated by fitting of two historical wind speed profiles (low-pressure situations "Xaver" and "Christian", 2013) taken from Meteorological Terminal Air Report weather data, with a logistic approximation (i.e. constant rate coefficients k) to the solution of our dynamical model using a sum of sigmoid functions. The analytical solution of our dynamical two-state Bernoulli equation as obtained with a sinusoidal rate ansatz k(t) of period T (=storm duration) exhibits reasonable agreement with the logistic fit to the empirical data. Noise parameter estimates of speed fluctuations are derived from empirical fit residuals and by means of a stationary solution of the corresponding Fokker-Planck equation. Numerical simulations with the Bernoulli-Langevin equation demonstrate the potential for stochastic wind speed profile modeling and predictive filtering under extreme storm events that is suggested for applications in anticipative air traffic management.

  17. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2008-01-01

    The peak winds near the surface are an important forecast element for Space Shuttle landings. As defined in the Shuttle Flight Rules (FRs), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMTJ) developed a personal computer based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak-wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center. However, the shuttle must land at Edwards Air Force Base (EAFB) in southern California when weather conditions at Kennedy Space Center in Florida are not acceptable, so SMG forecasters requested that a similar tool be developed for EAFB. Marshall Space Flight Center (MSFC) personnel archived and performed quality control of 2-minute average and 10-minute peak wind speeds at each tower adjacent to the main runway at EAFB from 1997- 2004. They calculated wind climatologies and probabilities of average peak wind occurrence based on the average speed. The climatologies were calculated for each tower and month, and were stratified by hour, direction, and direction/hour. For the probabilities of peak wind occurrence, MSFC calculated empirical and modeled probabilities of meeting or exceeding specific 10-minute peak wind speeds using probability density functions. The AMU obtained and reformatted the data into Microsoft Excel PivotTables, which allows users to display different values with point-click-drag techniques. The GUT was then created from the PivotTables using Visual Basic for Applications code. The GUI is run through a macro within Microsoft Excel and allows forecasters to quickly display and

  18. Ocean Products from the SMAP Radiometer: Surface Salinity and Wind Speeds

    NASA Astrophysics Data System (ADS)

    Meissner, T.; Wentz, F. J.; Scott, J. P.

    2015-12-01

    Though designed to measure soil moisture, the SMAP radiometer is an excellent sensor to measure sea surface salinity and sea surface wind speed. It is possible to retrieve both quantities from passive SMAP observations without using the SMAP radar, whose transmitter likely failed in July 2015. With the demise of Aquarius the ability of the SMAP sensor to measure ocean salinity has gained importance. The main part of our presentation discusses the adaption of the Aquarius salinity retrieval algorithm to SMAP. It includes corrections for spurious signals coming from cold space, the galaxy, the sun and the moon as well as sidelobe and cross polarization effects from the SMAP antenna. Based on Aquarius observations, we have developed a radiative transfer model that characterizes the surface emission of a wind roughened ocean. Our surface roughness correction for the SMAP salinity retrieval will use match-ups of SMAP radiometer observations and surface wind speeds from WindSat or SSMIS. Our presentation will also address several important differences between the Aquarius and SMAP sensors that impact the ocean salinity retrievals. The full 360o look capability of SMAP makes it possible to take observations from the forward and backward looking direction basically at the same instance of time. We expect that this two-look capability will strongly aid the salinity retrievals. It will be possible to observe some of the spurious contamination sources like the reflected galaxy or the reflected sun from two different directions. Finally, we will address the capability to measure ocean surface wind speed with the SMAP radiometer. As it has been demonstrated with Aquarius and SMOS the L-band passive ocean surface emission exhibits very good sensitivity to surface wind speeds to at least 35 m/s and it is very little affected by precipitation. This allows the retrieval of ocean surface winds, in particular in storms and even under rainy conditions.

  19. Predicting extreme wind speeds on a tropical island for multi-peril catastrophe modelling

    NASA Astrophysics Data System (ADS)

    Thornton, James; Moncoulon, David; Millinship, Ian; Raven, Emma

    2013-04-01

    Catastrophe models are important tools used by the reinsurance industry for assessing and managing risk. Here, we present the methods used to develop high-resolution wind hazard maps for the Indian Ocean island of La Réunion. As the recent Cyclone Dumile (January 2013) reminded us, the island is at considerable risk from the extreme weather associated with tropical cyclones. It also contains a significant proportion of the total value insured in French overseas territories. The wind maps, alongside flood and storm surge maps, were ultimately combined with exposure information in a multi-peril catastrophe model to provide probabilistic estimates of insured loss. Our wind mapping methodology used established extreme value theory statistics to estimate the annual probability of extreme wind speeds, including those exceeding the observed maxima of our 19 year record, at meteorological stations. This gave approximate wind speeds for a range of return periods at these specific locations. Since the spatial density of the stations was insufficient to resolve the numerous potential effects of the complex island topography, geographically weighted regression (GWR) models were then developed to interpolate these cyclonic wind speeds across the entire island. Factors known to affect local wind speed such as elevation, surface roughness and coastal proximity were explicitly accounted for. Using this advanced interpolation method, wind hazard maps were produced for six return periods between 1 in 10 and 1 in 1000 years. Our maps compared favourably with those of historical events, and also showed patterns of wind speed in agreement with the findings of other studies investigating the effects of topography. Leave-one-out cross-validation (LOOCV) further confirmed the satisfactory performance of the models in providing a robust and comprehensive description of wind patterns during cyclone passage. Uncertainty increased with return period as more extrapolation of the limited

  20. A GIS wind resource map with tabular printout of monthly and annual wind speeds for 2,000 towns in Iowa

    SciTech Connect

    Brower, M.C.; Factor, T.

    1997-12-31

    The Iowa Wind Energy Institute, under a grant from the Iowa Energy Center, undertook in 1994 to map wind resources in Iowa. Fifty-meter met towers were erected at 13 locations across the state deemed promising for utility-scale wind farm development. Two years of summarized wind speed, direction, and temperature data were used to create wind resource maps incorporating effects of elevation, relative exposure, terrain roughness, and ground cover. Maps were produced predicting long-term mean monthly and annual wind speeds on a one-kilometer grid. The estimated absolute standard error in the predicted annual average wind speeds at unobstructed locations is 9 percent. The relative standard error between points on the annual map is estimated to be 3 percent. These maps and tabular data for 2,000 cities and towns in Iowa are now available on the Iowa Energy Center`s web site (http.//www.energy.iastate.edu).

  1. Validation of AROME wind speed forecasts against mast observations in the Finnish wind power resource mapping project

    NASA Astrophysics Data System (ADS)

    Kilpinen, J.

    2009-09-01

    The upgrade of the Finnish wind power resource mapping is going on. The previous mapping was published 1991 and it was mainly based on observations. The climatology for the present mapping is made with meso-scale NWP mode and down scaling to detailed topography using WAsP-model. One of the tasks in the mapping is to validate/verify the model wind speed against mast observation. There is a group of masts with measurement heights around 100 meters available for this purpose. Most of the masts are in the Helsinki Testbed area while some of the masts are at existing wind farms. From a larger data set (ERA INTERIM) a representative sample of months has been chosen and also two extra 12 month sets representing extreme wind conditions. The total sample consists of 72 separate months. The lateral boundaries and first guess is from ERA INTERIM data. HIRLAM model (with 7.5 km resolution) is used to make initial analyses for 2.5 km AROME model with 6 hourly data assimilation cycle. Finally AROME model is used to simulate the wind climate. The output is with 3 hour interval. The WAsP-model is used to downscale the wind in coastal areas and hills in Northern Finland with 250 meter resolution and corresponding roughness. For validation the operative AROME is used. Only 00 UTC initial analyses are used to make forecasts up to +24 hours with 3 hourly outputs to cover the diurnal cycle. The validation period began from June 2008 and it will last to the end of the project in October 2009. The number of masts is around 20 and the height of measurements is typically between 60 and 100 meters. The validation is made with traditional verification methods. A special attention is also made to the quality control of observations. A part of the wind speed measurement instruments are not typical cup anemometers but acoustic instruments (Vaisala VXT520). The detailed results of validation will be presented. The preliminary results for the year 2008 indicate that there is a slight positive

  2. Modeling Heteroscedasticity of Wind Speed Time Series in the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Kim, H. Y.; Marpu, P. R.; Ouarda, T.

    2014-12-01

    There has been a growing interest in wind resources in the Gulf region, not only for evaluating wind energy potential, but also for understanding and forecasting changes in wind, as a regional climate variable. In particular, time varying variance—the second order moment—or heteroscedasticity in wind time series is important to investigate since high variance causes turbulence, which affects wind power potential and may lead to structural changes in wind turbines. Nevertheless, the conditional variance of wind time series has been rarely explored, especially in the Gulf region. Therefore, the seasonal autoregressive integrated moving average-generalized autoregressive conditional heteroscedasticity (SARIMA-GARCH) model is applied to observed wind data in the United Arab Emirates (UAE). This model allows considering apparent seasonality which is present in wind time series and the heteroscedasticity in residuals indicated with the Engle test, to understand and forecast changes in the conditional variance of wind time series. In this study, the autocorrelation function of daily average wind speed time series obtained from seven stations within the UAE—Al Aradh, Al Mirfa, Al Wagan, East of Jebel Haffet, Madinat Zayed, Masdar City, Sir Bani Yas Island—is inspected to fit a SARIMA model. The best SARIMA model is selected according to the minimum Akaike Information Criteria (AIC) and based on residuals of the model. Then, the GARCH model is applied to the remaining residuals to capture the conditional variance of the SARIMA model. Results indicate that the SARIMA-GARCH model provides a good fir to wind data in the UAE.

  3. Heliolatitude structure of the solar wind proton speed and density at 1 AU for heliospheric modeling

    NASA Astrophysics Data System (ADS)

    Sokol, Justyna Maria; Swaczyna, Pawel; Bzowski, Maciej; Tokumaru, Munetoshi

    2014-05-01

    The heliolatitudinal structure of solar wind proton speed and density varies with solar activity. A model of its variation with time is needed for heliospheric studies and modeling. It is important for the global heliospheric structure, allows for an assessment of ionization rates of neutral species in the heliosphere and interpretation of observations of the energetic neutral atoms and neutral interstellar atoms. Sokół et al. 2013 presented a model of the heliolatitudinal and time variations of solar wind structure based on results of the computer assisted tomography analysis of the solar wind speed enabled by remote-sensing observations of interplanetary scintillations, in-situ measurements from Ulysses, and in-ecliptic measurements from various missions gathered in the OMNI2 database. They determined the 3D structure of solar wind on a yearly time grid from 1990 to 2011. Now we increase the time resolution of the grid used in the model. Because of the weather conditions in Japan, where the interplanetary scintillation observations are carried out, the solar wind data sets contain systematic gaps. For the purposes of the increase of the time resolution of the model for heliospheric studies the method of filling of these gap is needed. We present a comparison of various methods of gap filling. We present results of the investigation of the procedures of reconstruction of the solar wind density with the use of the solar wind invariants published in the literature. Additionally we study various algorithms of extrapolation of the heliolatitudinal time series of the solar wind proton speed and number density in time.

  4. Simple and Computationally Efficient Modeling of Surface Wind Speeds Over Heterogeneous Terrain

    NASA Astrophysics Data System (ADS)

    Winstral, A.; Marks, D.; Gurney, R.

    2007-12-01

    In mountain catchments wind frequently is the dominant process controlling snow distribution. The spatial variability of winds over mountain landscapes is considerable producing great spatial variability in mass and energy fluxes. Distributed models capable of capturing the variability of these mass and energy fluxes require time-series of distributed wind data at compatible fine spatial scale. Atmospheric and surface wind flow models in these regions have been limited by our abilities to represent the inherent complexities of the processes being modeled in a computationally efficient manner. Simplified parameterized models, such as those based on terrain and vegetation, though not as explicit as a model of fluid flow, are computationally efficient for operational use, including in real time. Recent work described just such a model that related a measure of topographic exposure to wind speed differences at proximal locations with varied exposures. The current work used a more expansive network of stations in the Reynolds Creek Experimental Watershed in southwestern Idaho, USA to test extension of the previous findings to larger domains. The stations in the study have varying degrees of wind exposure and comprise an area of approximately 125 km2 and an elevation range of 1200 - 2100 masl. Subsets of site data were detrended based on the relationship derived in the prior work to a selected standard exposure to ascertain and model the presence of any elevation-based trends in the hourly observations. Hourly wind speeds at the withheld stations were then predicted based on elevation and topographic exposure at each respective site. It was found that reasonable predictions of wind speed across this heterogeneous landscape capturing both large-scale elevation trends and small-scale topographic variability could be achieved in a computationally efficient manner.

  5. Monthly and annual percentage levels of wind speed differences computed by using FPS-16 radar/Jimsphere wind profile data from Cape Kennedy, Florida

    NASA Technical Reports Server (NTRS)

    Susko, M.; Kaufman, J. W.

    1973-01-01

    The percentage levels of wind speed differences are presented computed from sequential FPS-16 radar/Jimsphere wind profiles. The results are based on monthly profiles obtained from December 1964 to July 1970 at Cape Kennedy, Florida. The profile sequences contain a series of three to ten Jimspheres released at approximately 1.5-hour intervals. The results given are the persistence analysis of wind speed difference at 1.5-hour intervals to a maximum time interval of 12 hours. The monthly percentage of wind speed differences and the annual percentage of wind speed differences are tabulated. The percentage levels are based on the scalar wind speed changes calculated over an altitude interval of approximately 50 meters and printed out every 25 meters as a function of initial wind speed within each five-kilometer layer from near sea level to 20 km. In addition, analyses were made of the wind speed difference for the 0.2 to 1 km layer as an aid for studies associated with take-off and landing of the space shuttle.

  6. Numerical Study of the High-Speed Leg of a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nayani, Sudheer; Sellers, William L, III; Brynildsen, Scott E.; Everhart, Joel L.

    2015-01-01

    The paper describes a numerical study of the high-speed leg of the NASA Langley 14 x 22-ft Low-Speed Wind Tunnel. The high-speed leg consists of the settling chamber, contraction, test section, and first diffuser. Results are shown comparing two different sources of surface geometry, and two different unstructured grid solvers for the flow characteristics. Numerical simulations of the flow on the tunnel centerline, boundary layer profiles on the floor, and wall static pressures have been compared with experiment. Flow angularities along the test section length have also been determined.

  7. A 3-D High Speed Photographic Survey For Bomb Dropping In The Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Junren, Chen; Liangyi, Chen; Yuxian, Nie; Wenxing, Chen

    1989-06-01

    High speed Stereophotography may obtain 3-D information of the motion object. This paper deals with a high speed stereophotographic survey of dropping bomb in wind tunnel and measurement of its displacement, velocity, acceleration, angle of attack and yaw angle. Two high speed cinecameras are used, the two optical axes of the cameras are perpendicular to each other and in a plane being vertical to the plumb line. The optical axis of a camera (front camera) is parallel with the aircraft body, and the another (side camera) is perpendicular. Before taking the object and image distance of the two cameras must be measured by photographic method. The photographic rate is 304 fps.

  8. Level-crossing statistics of the horizontal wind speed in the planetary surface boundary layer.

    PubMed

    Edwards, Paul J.; Hurst, Robert B.

    2001-09-01

    The probability density of the times for which the horizontal wind remains above or below a given threshold speed is of some interest in the fields of renewable energy generation and pollutant dispersal. However there appear to be no analytic or conceptual models which account for the observed power law form of the distribution of these episode lengths over a range of over three decades, from a few tens of seconds to a day or more. We reanalyze high resolution wind data and demonstrate the fractal character of the point process generated by the wind speed level crossings. We simulate the fluctuating wind speed by a Markov process which approximates the characteristics of the real (non-Markovian) wind and successfully generates a power law distribution of episode lengths. However, fundamental questions concerning the physical basis for this behavior and the connection between the properties of a continuous-time stochastic process and the fractal statistics of the point process generated by its level crossings remain unanswered. (c) 2001 American Institute of Physics.

  9. Prediction of Wind Speeds Based on Digital Elevation Models Using Boosted Regression Trees

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Etienne, C.; Tian, J.; Krauß, T.

    2015-12-01

    In this paper a new approach is presented to predict maximum wind speeds using Gradient Boosted Regression Trees (GBRT). GBRT are a non-parametric regression technique used in various applications, suitable to make predictions without having an in-depth a-priori knowledge about the functional dependancies between the predictors and the response variables. Our aim is to predict maximum wind speeds based on predictors, which are derived from a digital elevation model (DEM). The predictors describe the orography of the Area-of-Interest (AoI) by various means like first and second order derivatives of the DEM, but also higher sophisticated classifications describing exposure and shelterness of the terrain to wind flux. In order to take the different scales into account which probably influence the streams and turbulences of wind flow over complex terrain, the predictors are computed on different spatial resolutions ranging from 30 m up to 2000 m. The geographic area used for examination of the approach is Switzerland, a mountainious region in the heart of europe, dominated by the alps, but also covering large valleys. The full workflow is described in this paper, which consists of data preparation using image processing techniques, model training using a state-of-the-art machine learning algorithm, in-depth analysis of the trained model, validation of the model and application of the model to generate a wind speed map.

  10. Influence of wind speed averaging on estimates of dimethylsulfide emission fluxes

    DOE PAGES

    Chapman, E. G.; Shaw, W. J.; Easter, R. C.; ...

    2002-12-03

    The effect of various wind-speed-averaging periods on calculated DMS emission fluxes is quantitatively assessed. Here, a global climate model and an emission flux module were run in stand-alone mode for a full year. Twenty-minute instantaneous surface wind speeds and related variables generated by the climate model were archived, and corresponding 1-hour-, 6-hour-, daily-, and monthly-averaged quantities calculated. These various time-averaged, model-derived quantities were used as inputs in the emission flux module, and DMS emissions were calculated using two expressions for the mass transfer velocity commonly used in atmospheric models. Results indicate that the time period selected for averaging wind speedsmore » can affect the magnitude of calculated DMS emission fluxes. A number of individual marine cells within the global grid show DMS emissions fluxes that are 10-60% higher when emissions are calculated using 20-minute instantaneous model time step winds rather than monthly-averaged wind speeds, and at some locations the differences exceed 200%. Many of these cells are located in the southern hemisphere where anthropogenic sulfur emissions are low and changes in oceanic DMS emissions may significantly affect calculated aerosol concentrations and aerosol radiative forcing.« less

  11. Two Machine Learning Approaches for Short-Term Wind Speed Time-Series Prediction.

    PubMed

    Ak, Ronay; Fink, Olga; Zio, Enrico

    2016-08-01

    The increasing liberalization of European electricity markets, the growing proportion of intermittent renewable energy being fed into the energy grids, and also new challenges in the patterns of energy consumption (such as electric mobility) require flexible and intelligent power grids capable of providing efficient, reliable, economical, and sustainable energy production and distribution. From the supplier side, particularly, the integration of renewable energy sources (e.g., wind and solar) into the grid imposes an engineering and economic challenge because of the limited ability to control and dispatch these energy sources due to their intermittent characteristics. Time-series prediction of wind speed for wind power production is a particularly important and challenging task, wherein prediction intervals (PIs) are preferable results of the prediction, rather than point estimates, because they provide information on the confidence in the prediction. In this paper, two different machine learning approaches to assess PIs of time-series predictions are considered and compared: 1) multilayer perceptron neural networks trained with a multiobjective genetic algorithm and 2) extreme learning machines combined with the nearest neighbors approach. The proposed approaches are applied for short-term wind speed prediction from a real data set of hourly wind speed measurements for the region of Regina in Saskatchewan, Canada. Both approaches demonstrate good prediction precision and provide complementary advantages with respect to different evaluation criteria.

  12. Application of extreme learning machine for estimation of wind speed distribution

    NASA Astrophysics Data System (ADS)

    Shamshirband, Shahaboddin; Mohammadi, Kasra; Tong, Chong Wen; Petković, Dalibor; Porcu, Emilio; Mostafaeipour, Ali; Ch, Sudheer; Sedaghat, Ahmad

    2016-03-01

    The knowledge of the probabilistic wind speed distribution is of particular significance in reliable evaluation of the wind energy potential and effective adoption of site specific wind turbines. Among all proposed probability density functions, the two-parameter Weibull function has been extensively endorsed and utilized to model wind speeds and express wind speed distribution in various locations. In this research work, extreme learning machine (ELM) is employed to compute the shape ( k) and scale ( c) factors of Weibull distribution function. The developed ELM model is trained and tested based upon two widely successful methods used to estimate k and c parameters. The efficiency and accuracy of ELM is compared against support vector machine, artificial neural network and genetic programming for estimating the same Weibull parameters. The survey results reveal that applying ELM approach is eventuated in attaining further precision for estimation of both Weibull parameters compared to other methods evaluated. Mean absolute percentage error, mean absolute bias error and root mean square error for k are 8.4600 %, 0.1783 and 0.2371, while for c are 0.2143 %, 0.0118 and 0.0192 m/s, respectively. In conclusion, it is conclusively found that application of ELM is particularly promising as an alternative method to estimate Weibull k and c factors.

  13. Hurricane Imaging Radiometer Wind Speed and Rain Rate Retrievals during the 2010 GRIP Flight Experiment

    NASA Technical Reports Server (NTRS)

    Sahawneh, Saleem; Farrar, Spencer; Johnson, James; Jones, W. Linwood; Roberts, Jason; Biswas, Sayak; Cecil, Daniel

    2014-01-01

    Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes.

  14. Process model for ammonia volatilization from anaerobic swine lagoons incorporating varying wind speeds and biogas bubbling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia volatilization from treatment lagoons varies widely with the total ammonia concentration, pH, temperature, suspended solids, atmospheric ammonia concentration above the water surface, and wind speed. Ammonia emissions were estimated with a process-based mechanistic model integrating ammonia ...

  15. Evaluation of spray drift using low speed wind tunnel measurements and dispersion modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work was to evaluate the EPA’s proposed Test Plan for the validation testing of pesticide spray drift reduction technologies (DRTs) for row and field crops, focusing on the evaluation of ground application systems using the low-speed wind tunnel protocols and processing the dat...

  16. Evaluation of the EPA Drift Reduction Technology (DRT) low-speed wind tunnel protocol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The EPA’s proposed Drift Reduction Technology low-speed wind tunnel evaluation protocol was tested across a series of modified ASAE reference nozzles. Both droplet size and deposition and flux volume measurements were made downwind from the nozzles operating in the tunnel at airspeeds of 1 and 2.5 ...

  17. Measurements and Modelling of the Wind Speed Profile in the Marine Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Peña, Alfredo; Gryning, Sven-Erik; Hasager, Charlotte B.

    2008-12-01

    We present measurements from 2006 of the marine wind speed profile at a site located 18 km from the west coast of Denmark in the North Sea. Measurements from mast-mounted cup anemometers up to a height of 45 m are extended to 161 m using LiDAR observations. Atmospheric turbulent flux measurements performed in 2004 with a sonic anemometer are compared to a bulk Richardson number formulation of the atmospheric stability. This is used to classify the LiDAR/cup wind speed profiles into atmospheric stability classes. The observations are compared to a simplified model for the wind speed profile that accounts for the effect of the boundary-layer height. For unstable and neutral atmospheric conditions the boundary-layer height could be neglected, whereas for stable conditions it is comparable to the measuring heights and therefore essential to include. It is interesting to note that, although it is derived from a different physical approach, the simplified wind speed profile conforms to the traditional expressions of the surface layer when the effect of the boundary-layer height is neglected.

  18. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  19. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The report gives results of a demonstration of the successful application of fuzzy logic to enhance the performance and control of a variable-speed wind generation system. A squirrel cage induction generator feeds the power to either a double-sided pulse-width modulation converte...

  20. Effect of windbreaks on wind speed and canker incidence and severity on grapefruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For fresh grapefruit the goal is to maximize pack-out by minimizing canker lesions on fruit. The objective of these trials was to determine the relationship between wind speed and incidence and severity of canker on 5 to 7 yr-old Ruby Red grapefruit trees located in two trial blocks (~4.5 ha) surrou...

  1. Effect of windbreaks on wind speed and citrus canker incidence on grapefruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For fresh grapefruit the goal is to maximize pack-out by minimizing canker lesions on fruit. The objective of these trials was to determine the relationship between wind speed and incidence and severity of citrus canker on 5 to 7 yr-old ‘Ruby Red’ grapefruit trees located in two trial blocks (~4.5 h...

  2. Conceptions of Tornado Wind Speed and Land Surface Interactions among Undergraduate Students in Nebraska

    ERIC Educational Resources Information Center

    Van Den Broeke, Matthew S.; Arthurs, Leilani

    2015-01-01

    To ascertain novice conceptions of tornado wind speed and the influence of surface characteristics on tornado occurrence, 613 undergraduate students enrolled in introductory science courses at a large state university in Nebraska were surveyed. Our findings show that students lack understanding of the fundamental concepts that (1) tornadoes are…

  3. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Feingold, G.; Yamaguchi, T.

    2015-10-01

    Observed and projected trends in large scale wind speed over the oceans prompt the question: how might marine stratocumulus clouds and their radiative properties respond to future changes in large scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum, and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and stronger entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning - afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m-2, long wave emissions are very insensitive to LWP. This leads to the more general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find furthermore that large scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment, and in part because circulation driven by shear from large scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large scale wind

  4. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    NASA Astrophysics Data System (ADS)

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    2016-05-01

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and stronger entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning-afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m-2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from buoyancy

  5. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE PAGES

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    2016-05-12

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and strongermore » entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m−2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over

  6. Magnetohydrodynamic tube waves and high speed solar wind streams

    NASA Astrophysics Data System (ADS)

    Cally, P. S.

    1987-03-01

    Davila (1985) addressed the question of wave propagation in a simple uniform width flux slab model of a coronal hole and concluded (1) the hole may act as a 'leaky wave guide', i.e., waves travelling along it may leak into the surrounding corona, but (2) the group velocity of waves with periods in a physically relevant range (around 100 s) is downward, indicating that such waves cannot carry energy into the solar wind and therefore cannot be driving it. The author agrees with (1) but argues that (2) results from a mistaken interpretation of a dispersion relation, and is incorrect. Furthermore, he applies the cylindrical tube leaky wave approach of Cally (1986) to a simple coronal hole model, and finds two wavetypes with substantial upward energy fluxes. However, of these, he argues that the so-called 'trig modes' (geometry modified fast waves) leak so profusely that they are unable to transport energy over the distance required; the non-axisymmetric 'thin tube' modes, though, do not suffer from this disability.

  7. High speed wind tunnel tests of the PTA aircraft. [Propfan Test Assessment Program

    NASA Technical Reports Server (NTRS)

    Aljabri, A. S.; Little, B. H., Jr.

    1986-01-01

    Propfans, advanced highly-loaded propellers, are proposed to power transport aircraft that cruise at high subsonic speeds, giving significant fuel savings over the equivalent turbofan-powered aircraft. NASA is currently sponsoring the Propfan Test Assessment Program (PTA) to provide basic data on the structural integrity and acoustic performance of the propfan. The program involves installation design, wind-tunnel tests, and flight tests of the Hamilton Standard SR-7 propfan in a wing-mount tractor installation on the Gulfstream II aircraft. This paper reports on the high-speed wind-tunnel tests and presents the computational aerodynamic methods that were employed in the analyses, design, and evaluation of the configuration. In spite of the complexity of the configuration, these methods provide aerodynamic predictions which are in excellent agreement with wind-tunnel data.

  8. Global measurements of sea surface temperature, wind speed and atmospheric water content from satellite microwave radiometry

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.; Swanson, L.

    1983-01-01

    The Scanning Multichannel Microwave Radiometer (SMMR) was launched on the Seasat and Nimbus 7 satellites in 1978. The SMMR has the ability to measure sea surface temperature and wind speed with the aid of microwaves. In addition, the instrument was designed to measure water vapor and cloud liquid water with better spatial resolution than previous microwave radiometers, and to make sea-ice measurements with higher precision. A description is presented of the results of global analyses of sea surface temperature, wind speed, water vapor, and cloud liquid water, taking into account data provided by the SMMR on the Seasat satellite. It is found that the SMMR data show good self-consistency, and can usefully measure global distributions of sea surface temperatures, surface winds, water vapor, and cloud liquid water.

  9. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.

    1977-01-01

    Work has continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes on airfoil data and wall contours. Mechanical design analyses for the transonic self streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility is outlined.

  10. Towards an improved wind speed scale and damage description adapted for Central Europe

    NASA Astrophysics Data System (ADS)

    Feuerstein, Bernold; Groenemeijer, Pieter; Dirksen, Erik; Hubrig, Martin; Holzer, Alois M.; Dotzek, Nikolai

    2011-06-01

    We propose an updated wind speed scale description adapted for Central Europe considering wind impact to buildings as well as to vegetation. The scale is motivated by the need of a broadly applicable, accurate and consistent tornado or downburst intensity rating system based on a standardised wind speed scale for the purpose of climatological homogeneity. The description comprises building and vegetation damage characteristics, which can be found in Central Europe - but similar in other parts of the world, occurring with the various classes of the Fujita- and T-scales. The scale description is supplemented by photographs of typical damage. For practical application, an ensemble-based use of a decision matrix for specific building structures and vegetation types is suggested.

  11. Application of stochastic methods for wind speed forecasting and wind turbines design at the area of Thessaly, Greece

    NASA Astrophysics Data System (ADS)

    Dimitriadis, Panayiotis; Lazaros, Lappas; Daskalou, Olympia; Filippidou, Ariadni; Giannakou, Marianna; Gkova, Eleni; Ioannidis, Romanos; Polydera, Angeliki; Polymerou, Eleni; Psarrou, Eleftheria; Vyrini, Alexandra; Papalexiou, Simon; Koutsoyiannis, Demetris

    2015-04-01

    Several methods exist for estimating the statistical properties of wind speed, most of them being deterministic or probabilistic, disregarding though its long-term behaviour. Here, we focus on the stochastic nature of wind. After analyzing several historical timeseries at the area of interest (AoI) in Thessaly (Greece), we show that a Hurst-Kolmogorov (HK) behaviour is apparent. Thus, disregarding the latter could lead to unrealistic predictions and wind load situations, causing some impact on the energy production and management. Moreover, we construct a stochastic model capable of preserving the HK behaviour and we produce synthetic timeseries using a Monte-Carlo approach to estimate the future wind loads in the AoI. Finally, we identify the appropriate types of wind turbines for the AoI (based on the IEC 61400 standards) and propose several industrial solutions. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  12. A level 2 wind speed retrieval algorithm for the CYGNSS mission

    NASA Astrophysics Data System (ADS)

    Clarizia, Maria Paola; Ruf, Christopher; O'Brien, Andrew; Gleason, Scott

    2014-05-01

    The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) is a spaceborne mission focused on tropical cyclone (TC) inner core process studies. CYGNSS consists of a constellation of 8 microsatellites, which will measure ocean surface wind speed in all precipitating conditions, including those experienced in the TC eyewall, and with sufficient frequency to resolve genesis and rapid intensification. It does so through the use of an innovative remote sensing technique, known as Global Navigation Satellite System-Reflectometry, or GNSS-R. GNSS-R uses signals of opportunity from navigation constellations (e.g. GPS, GLONASS, Galileo), scattered by the surface of the ocean, to retrieve the surface wind speed. The dense space-time sampling capabilities, the ability of L-band signals to penetrate well through rain, and the possibility of simple, low-cost/low-power GNSS receivers, make GNSS-R ideal for the CYGNSS goals. Here we present an overview of a Level 2 (L2) wind speed retrieval algorithm, which would be particularly suitable for CYGNSS, and could be used to estimate winds from GNSS-R in general. The approach makes use of two different observables computed from 1-second Level 2a (L2a) delay-Doppler Maps (DDMs) of radar cross section. The first observable is called Delay-Doppler Map Average (DDMA), and it's the averaged radar cross section over a delay-Doppler window around the DDM peak (i.e. the specular reflection point coordinate in delay and Doppler). The second is called the Leading Edge Slope (LES), and it's the leading edge of the Integrated Delay Waveform (IDW), obtained by integrating the DDM along the Doppler dimension. The observables are calculated over a limited range of delays and Doppler frequencies, to comply with baseline spatial resolution requirements for the retrieved winds, which in the case of CYGNSS is 25 km x 25 km. If the observable from the 1-second DDM corresponds to a resolution higher than the specified one, time-averaging between

  13. Venera-11 and Venera 12: Preliminary estimates for the wind speed and turbulence in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Kerzhanovich, V. V.; Makarov, M. Y.; Marov, F.; Roshdestvenskiy, M. K.; Sorokin, V. P.

    1979-01-01

    The methods and results of measurements for wind speed and atmospheric turbulence in the clouds of Venus are described, and compared with earlier results. The distribution of wind speed obtained from the data of Venera 12 is in good conformity with the data of the preceding Venera and Pioneer probes, indicating the existence of a constant and powerful zonal movement of the troposphere.

  14. A study on a vessel with multiple flat and hard sails to keep service speed in high winds

    NASA Astrophysics Data System (ADS)

    Onishi, Seiki; Momoki, Tsutomu; Ikeda, Yoshiho

    2010-06-01

    Ships which have large structures above water surface, such as pure car carriers (PCCs) and container vessels, have large speed reduction by wind pressure. In the present study, the running speed of a large PCC with two or more sails for using wind power is simulated. The simulated results demonstrate that the ship can keep a constant service speed even in winds of 20m/s except head and bow winds. This sail system can shorten annual average navigation time by about 4 hours per voyage.

  15. Nature and Variability of Coronal Streamers and their Relationship to the Slow Speed Wind

    NASA Technical Reports Server (NTRS)

    Strachan, Leonard

    2005-01-01

    NASA Grant NAG5-12781 is a study on the "Nature and Variability of Coronal Streamers and their Relationship to the Slow Speed Wind." The two main goals of this study are to identify: 1) Where in the streamer structure does the solar wind originate, and 2) What coronal conditions are responsible for the variability of the slow speed wind. To answer the first question, we examined the mostly closed magnetic field regions in streamer cores to search for evidence of outflow. Preliminary results from the OVI Doppler dimming ratios indicates that most of the flow originates from the edges of coronal streamers but this idea should be confirmed by a comparison of the coronal plasma properties with in situ solar wind data. To answer the second question, the work performed thus far suggests that solar minimum streamers have larger perpendicular velocity distributions than do solar maximum streamers. If it can be shown that solar minimum streamers also produce higher solar wind speeds then this would suggest that streamers and coronal holes have similar solar wind acceleration mechanisms. The key to both questions lie in the analysis of the in situ solar wind data sets. This work was not able to be completed during the period of performance and therefore the grant was formally extended for an additional year at no cost to NASA. We hope to have final results and a publication by the end of the calendar year 2004. The SAO personnel involved in the research are Leonard Strachan (PI), Mari Paz Miralles, Alexander Panasyuk, and a Southern University student Michael Baham.

  16. Multisensor satellite data integration for sea surface wind speed and direction determination

    NASA Technical Reports Server (NTRS)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  17. Experimental investigation of aerodynamic devices for wind turbine rotational speed control. Phase 1

    SciTech Connect

    Miller, L.S.

    1995-02-01

    An investigation was undertaken to identify the aerodynamic performance of five separate trailing-edge control devices, and to evaluate their potential for wind turbine overspeed and power modulation applications. A modular two-dimensional wind tunnel model was constructed and evaluated during extensive wind tunnel testing. Aerodynamic lift, drag, suction, and pressure coefficient data were acquired and analyzed for various control configurations and angles of attack. To further interpret their potential performance, the controls were evaluated numerically using a generic wind turbine geometry and a performance analysis computer program. Results indicated that the Spoiler-Flap control configuration was best softed for turbine braking applications. It exhibited a large negative suction coefficient over a broad angle-of-attack range, and good turbine braking capabilities, especially at low tip-speed ratio.

  18. A wave tank study of the dependence of X band cross sections on wind speed and water temperature

    NASA Technical Reports Server (NTRS)

    Keller, Mary Ruth; Keller, William C.; Plant, William J.

    1992-01-01

    The effects of varying the water temperature, wind speed, and wind stress on the values of backscatter were investigated using measurements of normalized radar cross sections of wind-generated waves, made at X band for both vertical and horizontal polarization for incidence angles 10, 28, 48, and 68 deg. The experiment was conducted using the Naval Research Laboratory wind-wave tank. Measurements made for a wide range of wind speeds and water temperatures are compared with results of backscattering models currently in use.

  19. Wind tunnel measurements of forward speed effects on jet noise from suppressor nozzles and comparison with flight test data

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.

    1975-01-01

    The results of a test program conducted in the NASA Ames 40- by 80-Foot Wind Tunnel to determine the effect of forward speed on the noise levels emanating from a conical ejector nozzle, a 32-spoke suppressor nozzle, and a 104-elliptical-tube suppressor nozzle are reported. It is shown that noise levels are reduced as forward speed is increased and that, for one suppressor configuration, forward speed enhances suppression. Comparisons of noise measurements made in the wind tunnel with those obtained in flight tests show good agreement. It is concluded that wind tunnels provide an effective means of measuring the effect of forward speed on aircraft noise.

  20. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2009-01-01

    The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.

  1. Solar wind iron abundance variations at solar wind speeds up to 600 km s sup -1, 1972 to 1976

    NASA Technical Reports Server (NTRS)

    Mitchell, D. G.; Roelof, E. C.; Bame, S. J.

    1982-01-01

    The Fe/H ratios in the peaks of high speed streams (HSS) were analyzed during the decline of Solar Cycle 20 and the following minimum (October 1972 to December 1976). The response of the 50 to 200 keV ion channel of the APL/JHU energetic particle experiment (EPE) on IMP-7 and 8 was utilized to solar wind iron ions at high solar wind speeds (V or = 600 km/sec). Fe measurements with solar wind H and He parameters were compared from the Los Alamos National Laboratory (LANL) instruments on the same spacecraft. In general, the Fe distribution parameters (bulk velocity, flow direction, temperature) are found to be similar to the LANL He parameters. Although the average Fe/H ration in many steady HSS peaks agrees within observational uncertainties with the nominal coronal ratio of 4.7 x 0.00001, abundance variations of a factor of up to 6 are obtained across a given coronal-hole associated HSS.

  2. ON THE ORIGIN OF THE SLOW SPEED SOLAR WIND: HELIUM ABUNDANCE VARIATIONS

    SciTech Connect

    Rakowski, Cara E.; Laming, J. Martin

    2012-07-20

    The first ionization potential (FIP) effect is the by now well-known enhancement in abundance over photospheric values of Fe and other elements with FIP below about 10 eV observed in the solar corona and slow speed solar wind. In our model, this fractionation is achieved by means of the ponderomotive force, arising as Alfven waves propagate through or reflect from steep density gradients in the solar chromosphere. This is also the region where low FIP elements are ionized, and high FIP elements are largely neutral leading to the fractionation as ions interact with the waves but neutrals do not. Helium, the element with the highest FIP and consequently the last to remain neutral as one moves upward, can be depleted in such models. Here, we investigate this depletion for varying loop lengths and magnetic field strengths. Variations in this depletion arise as the concentration of the ponderomotive force at the top of the chromosphere varies in response to Alfven wave frequency with respect to the resonant frequency of the overlying coronal loop, the magnetic field, and possibly also the loop length. We find that stronger depletions of He are obtained for weaker magnetic field, at frequencies close to or just above the loop resonance. These results may have relevance to observed variations of the slow wind solar He abundance with wind speed, with slower slow speed solar wind having a stronger depletion of He.

  3. Investigation of load reduction for a variable speed, variable pitch, and variable coning wind turbine

    SciTech Connect

    Pierce, K.

    1997-12-31

    A two bladed, variable speed and variable pitch wind turbine was modeled using ADAMS{reg_sign} to evaluate load reduction abilities of a variable coning configuration as compared to a teetered rotor, and also to evaluate control methods. The basic dynamic behavior of the variable coning turbine was investigated and compared to the teetered rotor under constant wind conditions as well as turbulent wind conditions. Results indicate the variable coning rotor has larger flap oscillation amplitudes and much lower root flap bending moments than the teetered rotor. Three methods of control were evaluated for turbulent wind simulations. These were a standard IPD control method, a generalized predictive control method, and a bias estimate control method. Each control method was evaluated for both the variable coning configuration and the teetered configuration. The ability of the different control methods to maintain the rotor speed near the desired set point is evaluated from the RMS error of rotor speed. The activity of the control system is evaluated from cycles per second of the blade pitch angle. All three of the methods were found to produce similar results for the variable coning rotor and the teetered rotor, as well as similar results to each other.

  4. Particle model simulation of diffusion in low wind speed stable conditions

    NASA Astrophysics Data System (ADS)

    Brusasca, G.; Tinarelli, G.; Anfossi, D.

    A Lagrangian particle model (LAMDA), previously developed and applied to the simulation of atmospheric dispersion in neutral and convective windy conditions, was modified to deal with stable low wind speed conditions. These last are among the most difficult to be treated. In fact, on the one hand, nearly calm situations, associated to strong stability and air stagnation, make the lower layers of the atmosphere poorly diffusive, and, on the other hand, the large fluctuations in the wind direction (meandering), spread the airborne pollutants over wide angular sectors. An ad hoc algorithm to simulate the effect of meadering on the dispersion is proposed. The model is validated by comparing its simulation results to three tracer experiments held in stable low wind speed conditions by the Idaho National Engineering Laboratory (U.S.A.) in 1974. These experiments present plume spread of different width (48, 138 and 360°, respectively, at an arc located 200 m downwind from the source) and are comprehensive of a wide set of conditions, ranging from strong to weak stability and from low wind speed to calm. The results of the comparison are discussed. The ability of the model to simulate the g.l.c. distributions with a good degree of confidence is illustrated.

  5. Performance of Steady-State Dispersion Models Under Low Wind-Speed Conditions

    NASA Astrophysics Data System (ADS)

    Qian, Wenjun; Venkatram, Akula

    2011-03-01

    We examine the performance of two steady-state models, a numerical solution of the advection-diffusion equation and the Gaussian plume-model-based AERMOD (the American Meteorological Society/Environmental Protection Agency Regulatory Model), to predict dispersion for surface releases under low wind-speed conditions. A comparison of model estimates with observations from two tracer studies, the Prairie Grass experiment and the Idaho Falls experiment indicates that about 50% of the concentration estimates are within a factor of two of the observations, but the scatter is large: the 95% confidence interval of the ratio of the observed to estimated concentrations is about 4. The model based on the numerical solution of the diffusion equation in combination with the model of Eckman (1994, Atmos Environ 28:265-272) for horizontal spread performs better than AERMOD in explaining the observations. Accounting for meandering of the wind reduces some of the overestimation of concentrations at low wind speeds. The results deteriorate when routine one-level observations are used to construct model inputs. An empirical modification to the similarity estimate of the surface friction velocity reduces the underestimation at low wind speeds.

  6. Atmospheric Boundary Layer and Clouds wind speed profile measurements with the new compact long range wind Lidar WindCube(TM) WLS70

    NASA Astrophysics Data System (ADS)

    Boquet, M.; Cariou, J. P.; Sauvage, L.; Lolli, S.; Parmentier, R.; Loaec, S.

    2009-04-01

    To fully understand atmospheric dynamics, climate studies, energy transfer, and weather prediction the wind field is one of the most important atmospheric state variables. Small scales variability and low atmospheric layers are not described with sufficient resolution up to now. To answer these needs, the WLS70 long-range wind Lidar is a new generation of wind Lidars developed by LEOSPHERE, derived from the commercial WindCube™ Lidar widely used by the wind power industry and well-known for its great accuracy and data availability. The WLS70 retrieves the horizontal and vertical wind speed profiles as well as the wind direction at various heights simultaneously inside the boundary layer and cloud layers. The amplitude and spectral content of the backscattering signal are also available. From raw data, the embedded signal processing software performs the computation of the aerosol Doppler shift and backscattering coefficient. Higher values of normalized relative backscattering (NRB) are proportional to higher aerosol concentration. At 1540 nm, molecular scattering being negligible, it is then possible to directly retrieve the Boundary Layer height evolution observing the height at which the WindCube NRB drops drastically. In this work are presented the results of the measurements obtained during the LUAMI campaign that took place in Lindenberg, at the DWD (Deutscher WetterDienst) meteorological observatory, from November 2008 to January 2009. The WLS70 Lidar instrument was placed close together with an EZ Lidar™ ALS450, a rugged and compact eye safe aerosol Lidar that provides a real time measurement of backscattering and extinction coefficients, aerosol optical depth (AOD), automatic detection of the planetary boundary layer (PBL) height and clouds base and top from 100m up to more than 20km. First results put in evidence wind shear and veer phenomena as well as strong convective effects during the raise of the mixing layer or before rain periods. Wind speed

  7. Pose measurement method and experiments for high-speed rolling targets in a wind tunnel.

    PubMed

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-12-12

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  8. Pose Measurement Method and Experiments for High-Speed Rolling Targets in a Wind Tunnel

    PubMed Central

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-01-01

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°. PMID:25615732

  9. The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.; Leftwich, Megan C.

    2016-05-01

    This work visualizes the flow surrounding a scaled model vertical axis wind turbine at realistic operating conditions. The model closely matches geometric and dynamic properties—tip speed ratio and Reynolds number—of a full-size turbine. The flow is visualized using particle imaging velocimetry (PIV) in the midplane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Time-averaged results show an asymmetric wake behind the turbine, regardless of tip speed ratio, with a larger velocity deficit for a higher tip speed ratio. For the higher tip speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04U_∞. Phase-averaged vorticity fields—achieved by syncing the PIV system with the rotation of the turbine—show distinct structures form from each turbine blade. There were distinct differences in results by tip speed ratios of 0.9, 1.3, and 2.2 of when in the cycle structures are shed into the wake—switching from two pairs to a single pair of vortices being shed—and how they convect into the wake—the middle tip speed ratio vortices convect downstream inside the wake, while the high tip speed ratio pair is shed into the shear layer of the wake. Finally, results show that the wake structure is much more sensitive to changes in tip speed ratio than to changes in Reynolds number.

  10. High-latitude remote sensing of mesospheric wind speeds and carbon monoxide

    NASA Astrophysics Data System (ADS)

    Burrows, S. M.; Martin, C. L.; Roberts, E. A.

    2007-09-01

    We present high-resolution ground-based measurements of mesospheric carbon monoxide (CO) taken in the years 2002-5 from the AST/RO sub-millimeter telescope, located at Amundsen-Scott South Pole Station. These include the first winter measurements of CO directly from one of the geographic poles, which agree well with expected high concentrations within the polar vortex. We also use CO as a tracer to estimate mesospheric neutral wind speeds, by measuring small Doppler shifts in the rotational emission spectrum. We highlight the potential of high-resolution radiometric measurements mesospheric winds to fill a significant experimental data gap.

  11. An Analysis of Peak Wind Speed Data from Collocated Mechanical and Ultrasonic Anemometers

    NASA Technical Reports Server (NTRS)

    Short, David A.; Wells, Leonard; Merceret, Francis J.; Roeder, William P.

    2007-01-01

    This study compared peak wind speeds reported by mechanical and ultrasonic anemometers at Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC) on the east central coast of Florida and Vandenberg Air Force Base (VAFB) on the central coast of California. Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at CCAFS/KSC and VAFB for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The legacy CCAFS/KSC and VAFB weather tower wind instruments are being changed from propeller-and-vane (CCAFS/KSC) and cup-and-vane (VAFB) sensors to ultrasonic sensors under the Range Standardization and Automation (RSA) program. Mechanical and ultrasonic wind measuring techniques are known to cause differences in the statistics of peak wind speed as shown in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between the RSA ultrasonic and legacy mechanical sensors to determine if there are significant differences. Note that the instruments were sited outdoors under naturally varying conditions and that this comparison was not designed to verify either technology. Approximately 3 weeks of mechanical and ultrasonic wind data from each range from May and June 2005 were used in this study. The CCAFS/KSC data spanned the full diurnal cycle, while the VAFB data were confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on five different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The ten towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The ultrasonic sensors were collocated at the same vertical levels as the mechanical sensors and

  12. Low and high speed propellers for general aviation - Performance potential and recent wind tunnel test results

    NASA Technical Reports Server (NTRS)

    Jeracki, R. J.; Mitchell, G. A.

    1981-01-01

    A survey is presented of current research efforts in general aviation, low-speed propeller design and high-speed propfan design, with attention on such features as (1) advanced blade shapes, with novel airfoils and sweep, (2) tip devices, (3) integrated propeller/nacelle designs, (4) area-ruled spinners, (5) lightweight, all-composite blade construction, and (6) contra-rotating propfan systems. The potential overall improvements associated with these design modifications are calculated to lie at 10-15% for low-speed rotors and 15-30% for high-speed ones. Emphasis is placed on noise reduction, blade drag, performance prediction methods and wind tunnel testing of alternative rotor configurations. Extensive use of graphs is made in performance comparisons between alternative blade and rotor designs.

  13. Electron heating within interaction zones of simple high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Lemons, D. S.

    1978-01-01

    In the present paper, electron heating within the high-speed portions of three simple stream-stream interaction zones is studied to further our understanding of the physics of heat flux regulation in interplanetary space. To this end, the thermal signals present in the compressions at the leading edges of the simple high-speed streams are analyzed, showing that the data are inconsistent with the Spitzer conductivity. Instead, a polynomial law is found to apply. Its implication concerning the mechanism of interplanetary heat conduction is discussed, and the results of applying this conductivity law to high-speed flows inside of 1 AU are studied. A self-consistent model of the radial evolution of electrons in the high-speed solar wind is proposed.

  14. Orbiting observatory SOHO finds source of high-speed "wind" blowing from the Sun

    NASA Astrophysics Data System (ADS)

    1999-02-01

    "The search for the source of the solar wind has been like the hunt for the source of the Nile," said Dr. Don Hassler of the Southwest Research Institute, Boulder, Colorado, lead author of the paper in Science. "For 30 years, scientists have observed high-speed solar wind coming from regions in the solar atmosphere with open magnetic field lines, called coronal holes. However, only recently, with the observations from SOHO, have we been able to measure the detailed structure of this source region". The solar wind comes in two varieties : high-speed and low-speed. The low-speed solar wind moves at "only" 1.5 million kilometres per hour, while the high-speed wind is even faster, moving at speeds as high as 3 million kilometres per hour. As it flows past Earth, the solar wind changes the shape and structure of the Earth's magnetic field. In the past, the solar wind didn't affect us directly, but as we become increasingly dependent on advanced technology, we become more susceptible to its effects. Researchers are learning that variations in the solar wind flow can cause dramatic changes in the shape of the Earth's magnetic field, which can damage satellites and disrupt communications and electrical power systems. The nature and origin of the solar wind is one of the main mysteries ESA's solar observatory SOHO was designed to solve. It has long been thought that the solar wind flows from coronal holes; what is new is the discovery that these outflows are concentrated in specific patches at the edges of the honeycomb-shaped magnetic fields. Just below the surface of the Sun there are large convection cells, and each cell has a magnetic field associated with it. "If one thinks of these cells as paving stones in a patio, then the solar wind is breaking through like grass around the edges, concentrated in the corners where the paving stones meet", said Dr. Helen Mason, University of Cambridge, England, and co-author of the paper to appear in Science. "However, at speeds

  15. Solar Wind Helium Abundance as a Function of Speed and Heliographic Latitude: Variation through a Solar Cycle

    NASA Technical Reports Server (NTRS)

    Kasper, J. C.; Stenens, M. L.; Stevens, M. L.; Lazarus, A. J.; Steinberg, J. T.; Ogilvie, Keith W.

    2006-01-01

    We present a study of the variation of the relative abundance of helium to hydrogen in the solar wind as a function of solar wind speed and heliographic latitude over the previous solar cycle. The average values of A(sub He), the ratio of helium to hydrogen number densities, are calculated in 25 speed intervals over 27-day Carrington rotations using Faraday Cup observations from the Wind spacecraft between 1995 and 2005. The higher speed and time resolution of this study compared to an earlier work with the Wind observations has led to the discovery of three new aspects of A(sub He), modulation during solar minimum from mid-1995 to mid-1997. First, we find that for solar wind speeds between 350 and 415 km/s, A(sub He), varies with a clear six-month periodicity, with a minimum value at the heliographic equatorial plane and a typical gradient of 0.01 per degree in latitude. For the slow wind this is a 30% effect. We suggest that the latitudinal gradient may be due to an additional dependence of coronal proton flux on coronal field strength or the stability of coronal loops. Second, once the gradient is subtracted, we find that A(sub He), is a remarkably linear function of solar wind speed. Finally, we identify a vanishing speed, at which A(sub He), is zero, is 259 km/s and note that this speed corresponds to the minimum solar wind speed observed at one AU. The vanishing speed may be related to previous theoretical work in which enhancements of coronal helium lead to stagnation of the escaping proton flux. During solar maximum the A(sub He), dependences on speed and latitude disappear, and we interpret this as evidence of two source regions for slow solar wind in the ecliptic plane, one being the solar minimum streamer belt and the other likely being active regions.

  16. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.

    PubMed

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-08-09

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps.

  17. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction

    PubMed Central

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C.; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-01-01

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932

  18. The influence of non-logarithmic wind speed profiles on potential power output at Danish offshore sites

    NASA Astrophysics Data System (ADS)

    Motta, M.; Barthelmie, R. J.; Vølund, P.

    2005-04-01

    Detailed knowledge of mean wind speed profiles is essential for properly assessing the power output of a potential wind farm. Since atmospheric stratification plays a crucial role in affecting wind speed profiles, obtaining a detailed picture of the climatology of stability conditions at a given site is very important. In the present study, long time series from offshore measurement sites around Denmark are analysed, with the aim of quantifying the role of atmospheric stability in wind speed profiles and in our ability to model them. A simple method for evaluating stability is applied, and the resulting statistics of the atmospheric stratification is thoroughly studied. A significant improvement in the mean wind speed profile prediction is obtained by applying a stability correction to the logarithmic profiles suitable for neutral conditions. These results are finally used to estimate power densities at different heights. Copyright

  19. Large-scale Advanced Prop-fan (LAP) high speed wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Campbell, William A.; Wainauski, Harold S.; Arseneaux, Peter J.

    1988-01-01

    High Speed Wind Tunnel testing of the SR-7L Large Scale Advanced Prop-Fan (LAP) is reported. The LAP is a 2.74 meter (9.0 ft) diameter, 8-bladed tractor type rated for 4475 KW (6000 SHP) at 1698 rpm. It was designated and built by Hamilton Standard under contract to the NASA Lewis Research Center. The LAP employs thin swept blades to provide efficient propulsion at flight speeds up to Mach .85. Testing was conducted in the ONERA S1-MA Atmospheric Wind Tunnel in Modane, France. The test objectives were to confirm that the LAP is free from high speed classical flutter, determine the structural and aerodynamic response to angular inflow, measure blade surface pressures (static and dynamic) and evaluate the aerodynamic performance at various blade angles, rotational speeds and Mach numbers. The measured structural and aerodynamic performance of the LAP correlated well with analytical predictions thereby providing confidence in the computer prediction codes used for the design. There were no signs of classical flutter throughout all phases of the test up to and including the 0.84 maximum Mach number achieved. Steady and unsteady blade surface pressures were successfully measured for a wide range of Mach numbers, inflow angles, rotational speeds and blade angles. No barriers were discovered that would prevent proceeding with the PTA (Prop-Fan Test Assessment) Flight Test Program scheduled for early 1987.

  20. Seasonality, Interannual Variability, and Linear Tendency of Wind Speeds in the Northeast Brazil from 1986 to 2011

    PubMed Central

    Santos e Silva, Cláudio Moisés

    2013-01-01

    Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: filling of missing data, descriptive statistical calculations, boxplots, cluster analysis, and trend analysis using the Mann-Kendall statistical method. The seasonal variability of the average wind speeds of each group presented higher values for winter and spring and lower values in the summer and fall. The groups G1, G2, and G5 showed higher annual averages in the interannual variability of wind speeds. These observed peaks were attributed to the El Niño and La Niña events, which change the behavior of global wind circulation and influence wind speeds over the region. Trend analysis showed more significant negative values for the G3, G4, and G5 groups for all seasons of the year and in the annual average for the period under study. PMID:24250267

  1. Seasonality, interannual variability, and linear tendency of wind speeds in the northeast Brazil from 1986 to 2011.

    PubMed

    Torres Silva dos Santos, Alexandre; Moisés Santos e Silva, Cláudio

    2013-01-01

    Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: filling of missing data, descriptive statistical calculations, boxplots, cluster analysis, and trend analysis using the Mann-Kendall statistical method. The seasonal variability of the average wind speeds of each group presented higher values for winter and spring and lower values in the summer and fall. The groups G1, G2, and G5 showed higher annual averages in the interannual variability of wind speeds. These observed peaks were attributed to the El Niño and La Niña events, which change the behavior of global wind circulation and influence wind speeds over the region. Trend analysis showed more significant negative values for the G3, G4, and G5 groups for all seasons of the year and in the annual average for the period under study.

  2. Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database

    NASA Astrophysics Data System (ADS)

    Klotz, Bradley W.; Jiang, Haiyan

    2016-10-01

    A 12 year global database of rain-corrected satellite scatterometer surface winds for tropical cyclones (TCs) is used to produce composites of TC surface wind speed distributions relative to vertical wind shear and storm motion directions in each TC-prone basin and various TC intensity stages. These composites corroborate ideas presented in earlier studies, where maxima are located right of motion in the Earth-relative framework. The entire TC surface wind asymmetry is down motion left for all basins and for lower strength TCs after removing the motion vector. Relative to the shear direction, the motion-removed composites indicate that the surface wind asymmetry is located down shear left for the outer region of all TCs, but for the inner-core region it varies from left of shear to down shear right for different basin and TC intensity groups. Quantification of the surface wind asymmetric structure in further stratifications is a necessary next step for this scatterometer data set.

  3. Simulation and Study of Power Quality Issues in a Fixed Speed Wind Farm Substation

    PubMed Central

    Magesh, T.; Chellamuthu, C.

    2015-01-01

    Power quality issues associated with the fixed speed wind farm substation located at Coimbatore district are investigated as the wind generators are tripping frequently. The investigations are carried out using two power quality analyzers, Fluke 435 and Dranetz PX5.8, with one of them connected at group control breaker of the 110 kV feeder and the other at the selected 0.69 kV generator busbar during the period of maximum power generation. From the analysis of the recorded data it is found that sag, swell, and transients are the major events which are responsible for the tripping of the generators. In the present study, simulation models for wind, turbine, shaft, pitch mechanism, induction generator, and grid are developed using DIgSILENT. Using the turbine characteristics, a two-dimensional lookup table is designed to generate a reference pitch angle necessary to simulate the power curve of the passive stall controlled wind turbine. Various scenarios and their effects on the performance of the wind farm are studied and validated with the recorded data and waveforms. The simulation model will be useful for the designers for planning and development of the wind farm before implementation. PMID:25950016

  4. Simulation and study of power quality issues in a fixed speed wind farm substation.

    PubMed

    Magesh, T; Chellamuthu, C

    2015-01-01

    Power quality issues associated with the fixed speed wind farm substation located at Coimbatore district are investigated as the wind generators are tripping frequently. The investigations are carried out using two power quality analyzers, Fluke 435 and Dranetz PX5.8, with one of them connected at group control breaker of the 110 kV feeder and the other at the selected 0.69 kV generator busbar during the period of maximum power generation. From the analysis of the recorded data it is found that sag, swell, and transients are the major events which are responsible for the tripping of the generators. In the present study, simulation models for wind, turbine, shaft, pitch mechanism, induction generator, and grid are developed using DIgSILENT. Using the turbine characteristics, a two-dimensional lookup table is designed to generate a reference pitch angle necessary to simulate the power curve of the passive stall controlled wind turbine. Various scenarios and their effects on the performance of the wind farm are studied and validated with the recorded data and waveforms. The simulation model will be useful for the designers for planning and development of the wind farm before implementation.

  5. Wind-speed inversion from HF radar first-order backscatter signal

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Gurgel, Klaus-Werner; Voulgaris, George; Schlick, Thomas; Stammer, Detlef

    2012-01-01

    Land-based high-frequency (HF) radars have the unique capability of continuously monitoring ocean surface environments at ranges up to 200 km off the coast. They provide reliable data on ocean surface currents and under slightly stricter conditions can also give information on ocean waves. Although extraction of wind direction is possible, estimation of wind speed poses a challenge. Existing methods estimate wind speed indirectly from the radar derived ocean wave spectrum, which is estimated from the second-order sidebands of the radar Doppler spectrum. The latter is extracted at shorter ranges compared with the first-order signal, thus limiting the method to short distances. Given this limitation, we explore the possibility of deriving wind speed from radar first-order backscatter signal. Two new methods are developed and presented that explore the relationship between wind speed and wave generation at the Bragg frequency matching that of the radar. One of the methods utilizes the absolute energy level of the radar first-order peaks while the second method uses the directional spreading of the wind generated waves at the Bragg frequency. For both methods, artificial neural network analysis is performed to derive the interdependence of the relevant parameters with wind speed. The first method is suitable for application only at single locations where in situ data are available and the network has been trained for while the second method can also be used outside of the training location on any point within the radar coverage area. Both methods require two or more radar sites and information on the radio beam direction. The methods are verified with data collected in Fedje, Norway, and the Ligurian Sea, Italy using beam forming HF WEllen RAdar (WERA) systems operated at 27.68 and 12.5 MHz, respectively. The results show that application of either method requires wind speeds above a minimum value (lower limit). This limit is radar frequency dependent and is 2.5 and 4

  6. Tone Noise of Three Supersonic Helical Tip Speed Propellers in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Jeracki, R. J.; Blaha, B. J.

    1979-01-01

    Three supersonic helical tip speed propellers were tested in the NASA Lewis 8- by 6-foot wind tunnel. This is a perforated-wall wind tunnel but it does not have acoustic damping material on its walls. The propellers were tested at tunnel through flow Mach numbers of 0.6, 0.7, 0.75, 0.8, and 0.85 with different rotational speeds and blade setting angles. The three propellers, which had approximately the same aerodynamic performance, incorporated different plan forms and different amounts of sweep and yielded different near field noise levels. The acoustically designed propeller had 45 deg of tip sweep and was significantly quieter at M = 0.8 cruise than the straight bladed propeller. The intermediate 30 deg tip sweep propeller, which was swept for aerodynamic purposes, exhibited noise that was between the other two propellers. Noise trends with varying helical tip Mach number and blade loading were also observed.

  7. Comparative analysis of regression and artificial neural network models for wind speed prediction

    NASA Astrophysics Data System (ADS)

    Bilgili, Mehmet; Sahin, Besir

    2010-11-01

    In this study, wind speed was modeled by linear regression (LR), nonlinear regression (NLR) and artificial neural network (ANN) methods. A three-layer feedforward artificial neural network structure was constructed and a backpropagation algorithm was used for the training of ANNs. To get a successful simulation, firstly, the correlation coefficients between all of the meteorological variables (wind speed, ambient temperature, atmospheric pressure, relative humidity and rainfall) were calculated taking two variables in turn for each calculation. All independent variables were added to the simple regression model. Then, the method of stepwise multiple regression was applied for the selection of the “best” regression equation (model). Thus, the best independent variables were selected for the LR and NLR models and also used in the input layer of the ANN. The results obtained by all methods were compared to each other. Finally, the ANN method was found to provide better performance than the LR and NLR methods.

  8. Variable speed wind turbine control by discrete-time sliding mode approach.

    PubMed

    Torchani, Borhen; Sellami, Anis; Garcia, Germain

    2016-05-01

    The aim of this paper is to propose a new design variable speed wind turbine control by discrete-time sliding mode approach. This methodology is designed for linear saturated system. The saturation constraint is reported on inputs vector. To this end, the back stepping design procedure is followed to construct a suitable sliding manifold that guarantees the attainment of a stabilization control objective. It is well known that the mechanisms are investigated in term of the most proposed assumptions to deal with the damping, shaft stiffness and inertia effect of the gear. The objectives are to synthesize robust controllers that maximize the energy extracted from wind, while reducing mechanical loads and rotor speed tracking combined with an electromagnetic torque. Simulation results of the proposed scheme are presented.

  9. Long-term observations of the solar wind speed from the high latitude geomagnetic observatories

    NASA Astrophysics Data System (ADS)

    Lukianova, Renata; Kozlovsky, Alexander

    Solar wind speed is an important driver of the magnetospheric dynamics. The solar wind high speed streams (HSSs) affects the ionosphere and even the neutral atmosphere. Analysis of the geomagnetic secular variation at polar and auroral latitudes reveals a signal of the HSS as a significant deflection of the observatory annual means in the corresponding secular variation. A major reduction of the horizontal geomagnetic component at auroral latitudes and to a notable strengthening of the vertical component in both polar caps indicates an extreme intensity in the westward substorm auroral electrojet (WEJ) current detected in the strongest HSS years during the declining phase of each solar cycle. The near polar cap boundary observatories in Antarctic show the largest effect. The longest available time series from Godhavn and Sodankyla observatories allows monitoring the WEJ intensity during the last 100 years and makes it possible to associate the WEJ intensity with the extreme HSS.

  10. Short pulse radar used to measure sea surface wind speed and SWH. [Significant Wave Height

    NASA Technical Reports Server (NTRS)

    Hammond, D. L.; Mennella, R. A.; Walsh, E. J.

    1977-01-01

    A joint airborne measurement program is being pursued by NRL and NASA Wallops Flight Center to determine the extent to which wind speed and sea surface significant wave height (SWH) can be measured quantitatively and remotely with a short pulse (2 ns), wide-beam (60 deg), nadir-looking 3-cm radar. The concept involves relative power measurements only and does not need a scanning antenna, Doppler filters, or absolute power calibration. The slopes of the leading and trailing edges of the averaged received power for the pulse limited altimeter are used to infer SWH and surface wind speed. The interpretation is based on theoretical models of the effects of SWH on the leading edge shape and rms sea-surface slope on the trailing-edge shape. The models include the radar system parameters of antenna beam width and pulsewidth.

  11. Analysis and Modelling of Extreme Wind Speed Distributions in Complex Mountainous Regions

    NASA Astrophysics Data System (ADS)

    Laib, Mohamed; Kanevski, Mikhail

    2016-04-01

    Modelling of wind speed distributions in complex mountainous regions is an important and challenging problem which interests many scientists from several fields. In the present research, high frequency (10 min) Swiss wind speed monitoring data (IDAWEB service, Meteosuisse) are analysed and modelled with different parametric distributions (Weibull, GEV, Gamma, etc.) using maximum likelihood method. In total, 111 stations placed in different geomorphological units and at different altitude (from 203 to 3580 meters) are studied. Then, this information is used for training machine learning algorithms (Extreme Learning Machines, Support vector machine) to predict the distribution at new places, potentially useful for aeolian energy generation. An important part of the research deals with the construction and application of a high dimensional input feature space, generated from digital elevation model. A comprehensive study was carried out using feature selection approach to get the best model for the prediction. The main results are presented as spatial patterns of distributions' parameters.

  12. A Free-flight Wind Tunnel for Aerodynamic Testing at Hypersonic Speeds

    NASA Technical Reports Server (NTRS)

    Seiff, Alvin

    1954-01-01

    The supersonic free-flight wind tunnel is a facility at the Ames Laboratory of the NACA in which aerodynamic test models are gun-launched at high speed and directed upstream through the test section of a supersonic wind tunnel. In this way, test Mach numbers up to 10 have been attained and indications are that still higher speeds will be realized. An advantage of this technique is that the air and model temperatures simulate those of flight through the atmosphere. Also the Reynolds numbers are high. Aerodynamic measurements are made from photographic observation of the model flight. Instruments and techniques have been developed for measuring the following aerodynamic properties: drag, initial lift-curve slope, initial pitching-moment-curve slope, center of pressure, skin friction, boundary-layer transition, damping in roll, and aileron effectiveness. (author)

  13. Small parametric model for nonlinear dynamics of large scale cyclogenesis with wind speed variations

    NASA Astrophysics Data System (ADS)

    Erokhin, Nikolay; Shkevov, Rumen; Zolnikova, Nadezhda; Mikhailovskaya, Ludmila

    2016-07-01

    It is performed a numerical investigation of a self consistent small parametric model (SPM) for large scale cyclogenesis (RLSC) by usage of connected nonlinear equations for mean wind speed and ocean surface temperature in the tropical cyclone (TC). These equations may describe the different scenario of temporal dynamics of a powerful atmospheric vortex during its full life cycle. The numerical calculations have shown that relevant choice of SPMTs incoming parameters allows to describe the seasonal behavior of regional large scale cyclogenesis dynamics for a given number of TC during the active season. It is shown that SPM allows describe also the variable wind speed variations inside the TC. Thus by usage of the nonlinear small parametric model it is possible to study the features of RLSCTs temporal dynamics during the active season in the region given and to analyze the relationship between regional cyclogenesis parameters and different external factors like the space weather including the solar activity level and cosmic rays variations.

  14. The power spectrum of the solar wind speed for periods greater than 10 days

    NASA Technical Reports Server (NTRS)

    Fenimore, E. E.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gosling, J. T.

    1978-01-01

    The use of the more than 11 years of solar wind speed data obtained by Vela 2-6 and Imp 6-8 to study the power spectrum of speed variations in the range near the solar rotational frequency is discussed. The broad bands of power near periods of 27 days (corresponding to the rotational period of the sun), 13.5 days, and higher harmonics are characterized, and it is suggested that the described individual peaks in both the solar wind and the geomagnetic spectra are probably not due to differential rotation. The alternate explanation is that the multipeak nature of the power spectra are explained by a wave packet concept in which recurring highspeed streams are described as a series of pulses (separated by a constant period) that last for a varying number of solar rotations.

  15. Historical Trends in Wind Speed and Precipitation in the Pacific Northwest and Implications for Renewable Energy Development

    NASA Astrophysics Data System (ADS)

    Cross, B. D.; Kohfeld, K. E.; Cooper, A. B.

    2011-12-01

    Hydroelectric and wind power are two key elements for renewable energy generation in the Pacific Northwest. Understanding the climatic processes controlling winds and precipitation is important for forecasting hydroelectric power, and for understanding the potential for wind energy to supplement energy supplies in years with low precipitation. Using data from meteorological stations and the North American Regional Reanalysis (NARR) we examine patterns and trends in wind speed behavior and how they relate to changes in precipitation patterns over the time period of 1979-2010. As wind power generation is most dependent on the upper end of the strongly skewed wind speed distributions this study analyzes the 50th, 75th and 95th percentiles of maximum daily winds along with monthly precipitation totals for the area of 45-60N and 115-140W. Preliminary results suggest the existence of two distinct wind speed regimes, one mainly coastal and marine, and the other inland. Coastal areas are distinguished by stronger winds and positive trends averaging +0.02m/s/yr with lower trend magnitudes to the north. Inland regions show a similar latitudinal pattern with generally positive trends near 45N (+0.005 to +0.02m/s/yr), no significant trends between 49N and 55N and decreasing winds in the north (-0.005 to -0.01m/s/yr). Correlation between precipitation and wind speeds at the same location is strongest in southern marine and coastal areas (R2 ~ 0.6) and decreases rapidly inland and toward the north, becoming weakly negative at the extreme northern extent of the study area. The weak inland correlation between wind speed and precipitation and increasing coastal winds, suggest that wind power could be a viable complement to hydroelectric power in low precipitation years in both regions. Increasing trends in coastal wind speeds also suggest that wind energy could play a growing role in renewable energy production in the PNW. However, further work is needed to quantify the correlation

  16. Error estimates for ocean surface winds: Applying Desroziers diagnostics to the Cross-Calibrated, Multi-Platform analysis of wind speed

    NASA Astrophysics Data System (ADS)

    Hoffman, Ross N.; Ardizzone, Joseph V.; Leidner, S. Mark; Smith, Deborah K.; Atlas, Robert M.

    2013-04-01

    The cross-calibrated, multi-platform (CCMP) ocean surface wind project [Atlas et al., 2011] generates high-quality, high-resolution, vector winds over the world's oceans beginning with the 1987 launch of the SSM/I F08, using Remote Sensing Systems (RSS) microwave satellite wind retrievals, as well as in situ observations from ships and buoys. The variational analysis method [VAM, Hoffman et al., 2003] is at the center of the CCMP project's analysis procedures for combining observations of the wind. The VAM was developed as a smoothing spline and so implicitly defines the background error covariance by means of several constraints with adjustable weights, and does not provide an explicit estimate of the analysis error. Here we report on our research to develop uncertainty estimates for wind speed for the VAM inputs and outputs, i.e., for the background (B), the observations (O) and the analysis (A) wind speed, based on the Desroziers et al. [2005] diagnostics (DD hereafter). The DD are applied to the CCMP ocean surface wind data sets to estimate wind speed errors of the ECMWF background, the microwave satellite observations and the resulting CCMP analysis. The DD confirm that the ECMWF operational surface wind speed error standard deviations vary with latitude in the range 0.7-1.5 m/s and that the cross-calibrated Remote Sensing Systems (RSS) wind speed retrievals standard deviations are in the range 0.5-0.8 m/s. Further the estimated CCMP analysis wind speed standard deviations are in the range 0.2-0.4 m/s. The results suggests the need to revise the parameterization of the errors due to the FGAT (first guess at the appropriate time) procedure. Errors for wind speeds < 16 m/s are homogeneous, but for the relatively rare, but critical higher wind speed situations, errors are much larger. Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, A cross-calibrated, multi-platform ocean surface wind velocity product for

  17. Low-speed wind tunnel performance of high-speed counterrotation propellers at angle-of-attack

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Gazzaniga, John A.

    1989-01-01

    The low-speed aerodynamic performance characteristics of two advanced counterrotation pusher-propeller configurations with cruise design Mach numbers of 0.72 were investigated in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. The tests were conducted at Mach number 0.20, which is representative of the aircraft take-off/landing flight regime. The investigation determined the effect of nonuniform inflow on the propeller performance characteristics for several blade angle settings and a range of rotational speeds. The inflow was varied by yawing the propeller model to angle-of-attack by as much as plus or minus 16 degrees and by installing on the counterrotation propeller test rig near the propeller rotors a model simulator of an aircraft engine support pylon and fuselage. The results of the investigation indicated that the low-speed performance of the counterrotation propeller configurations near the take-off target operating points were reasonable and were fairly insensitive to changes in model angle-of-attack without the aircraft pylon/fuselage simulators installed on the propeller test rig. When the aircraft pylon/fuselage simulators were installed, small changes in propeller performance were seen at zero angle-of-attack, but fairly large changes in total power coefficient and very large changes of aft-to-forward-rotor torque ratio were produced when the propeller model was taken to angle-of-attack. The propeller net efficiency, though, was fairly insensitive to any changes in the propeller flowfield conditions near the take-off target operating points.

  18. Low-speed wind tunnel results for a modified 13-percent-thick airfoil

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1977-01-01

    Wind-tunnel tests were conducted to evaluate the effects on performance of modifying a 13-percent-thick low-speed airfoil. The airfoil contour was altered to reduce the aft upper surface pressure gradient and hence delay boundary layer separation at typical lift coefficients for light general aviation airplanes. The tests were conducted at a Mach number of 0.15 or less over a Reynolds number range from about 1,000,000 to 9,000,000.

  19. Effect of Wind Over Deck Conditions on Aircraft Approach Speeds for Carrier Landings

    DTIC Science & Technology

    1991-09-01

    the glideslope established by the carrier’s Fresnel lens , a pilot will perform a successful carrier landing. The NATOPS recommended approach speed...glideslope followed during the test, which is defined by the fresnel lens , establishes the aircraft’s sink rate. The minimum recovery head wind is...of a carrier landing, the pilot’s principle guidance shifts from the AOA indexer to the glideslope indicator i.e. the "ball" seen on the Fresnel Lens . The

  20. Wind-tunnel Tests at Low Speed of Swept and Yawed Wings Having Various Plan Forms

    NASA Technical Reports Server (NTRS)

    Purser, Paul E; Spearman, M Leroy

    1951-01-01

    Results are presented of wind-tunnel tests made at low speed of various small-scale models of sweptback, sweptforward, and yawed wings. The tests covered changes in aspect ratio, taper ratio, and tip shape. Some data were obtained with high-lift devices on sweptback wings and with ailerons on sweptforward wings. The data have been briefly analyzed and some comparisons have been made with the available theory.

  1. Influence of time scale wind speed data on sustainability analysis for irrigating greenhouse crops

    NASA Astrophysics Data System (ADS)

    Díaz Méndez, Rodrigo; García Llaneza, Joaquín; Peillón, Manuel; Perdigones, Alicia; Sanchez, Raul; Tarquis, Ana M.; Garcia, Jose Luis

    2014-05-01

    Appropriate water supply at crop/farm level, with suitable costs, is becoming more and more important. Energy management is closely related to water supply in this context, being wind energy one of the options to be considered, using wind pumps for irrigation water supply. Therefore, it is important to characterize the wind speed frequency distribution to study the technical feasibility to use its energy for irrigation management purpose. The general objective of this present research is to analyze the impact of time scale recorded wind speed data in the sustainability for tomato (Solanum lycopersicum L.) grown under greenhouse at Cuban conditions using drip irrigation system. For this porpoise, a daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. Several factors were included: wind velocity (W, m/s) in function of the time scale averaged, flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors. Three-hourly wind velocity (W3h, m/s) data from 1992 till 2008 was available for this study. The original data was grouped in six and twelve hourly data (W6h and W12h respectively) as well as daily data (W24h). For each time scale the daily estimation balance was applied. A comparison of the results points out a need for at least three-hourly data to be used mainly in the months in which mean wind speed are close or below the pumps threshold speed to start-up functioning. References Manuel Esteban Peillon Mesa, Ana Maria Tarquis Alfonso, José Luis García Fernández, and Raúl Sánchez Calvo. The use of wind pumps for irrigating greenhouse tomato crops: a case study in Cuba. Geophysical

  2. Experimental results of the variable speed, direct drive multipole synchronous wind turbine TWT1650

    NASA Astrophysics Data System (ADS)

    Torres, Eduardo; Garcia-Sanz, Mario

    2004-04-01

    This article presents details of the new variable speed multipole large wind turbine TWT1650 designed by the M. Torres group and summarizes some experimental results of the control system. After several years of multidisciplinary research the first prototype TWT1650 began to work at Cabanillas Wind Farm (Spain) in August 2001. Since then a large number of operational data have been collected and used to improve the behaviour of the machine. The design and controller tuning have been accomplished using advanced QFT (quantitative feedback theory) robust control strategies and have been optimized based on analysis of that information. This article introduces the main advantages of the multipole system and shows and evaluates some of the most representative experimental results under extreme wind conditions. Copyright

  3. Wind speeds in two tornadic storms and a tornado, deduced from Doppler Spectra

    SciTech Connect

    Zrnic, D.; Istok, M.

    1980-12-01

    Doppler spectra of a tornado were collected with a radar having a large unambiguous velocity range, +- 91 m s/sup -1/. Thus for the first time a presentation of nonaliased spectra was possible, showing direct measurement of radial velocities. By fitting the tornado model spectrum to data, the radius of maximum winds and tornado center location are deduced. Tornado spectral signature is defined as a double peak, symmetric with respect to the mean wind spectrum. Histograms of maximum measured wind speeds (from spectrum skirts) for two tornadic storms are obtained, and the histograms of velocity difference (between the left and right spectrum skirt) suggest that smaller scale turbulence (<500 m) is principally responsible for spectrum broadness.

  4. Wind speeds in lower atmosphere of Venus: Status report on possible measurement via differential VLBI tracking of entry probes

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.

    1972-01-01

    The potential of very-long-baseline interferometry (VLBI) is examined for use in the determination of wind speeds in Venus' lower atmosphere via the differential tracking of entry probes. A simplified mathematical model is presented in detail. An incomplete error analysis based on this model permits an educated guess to be made: an uncertainty in wind speed determination of no more than about 100/t m/sec, where t l is the corresponding time resolution in seconds, is an achievable goal, without the use of transponders on the miniprobes. If transponders are available on all probes, there should be little difficulty in estimating wind speeds with useful precision.

  5. Comparison of wind speed measurements over the oceans with the Special Sensor Microwave/Imager and the Geosat altimeter

    NASA Technical Reports Server (NTRS)

    Mognard, Nelly M.; Katsaros, Kristina B.

    1992-01-01

    In order to compare wind speed estimates from the Geosat altimeter and the Special Sensor Microwave/Imager (SSM/I), 25 colocated passes, within 2 hours of each other, were selected and the SSM/I estimates of wind speed and atmospheric parameters extracted along the Geosat track. Both instruments and their algorithms are described. A statistical comparison of wind speed estimates is presented and the effects of the atmospheric parameters from Geosat are analyzed. Quasi-simultaneous measurements by Geosat and SSM/I, along a Geosat track in the North-East Pacific, are also presented.

  6. Analysis And Synthesis Of Model Reference Controller For Variable Speed Wind Generators Inertial Support

    NASA Astrophysics Data System (ADS)

    Bećirović, Elvisa; Osmić, Jakub; Kušljugić, Mirza; Perić, Nedjeljko

    2015-01-01

    Model Reference Controller (MRC) for contribution of Variable Speed Wind Generators (VSWG) in inertial response of Electrical Power System (EPS) is presented and analyzed in this paper. MRC is synthesized based on a model of Generating Unit With non-Reheat Steam Turbine (GUNRST) thus enabling VSWG to emulate GUNRST response during the initial stage of dynamic frequency response ie inertial phase. Very important property of conventional steam generating units is that its contribution to inertial phase response is independent from the initial generating power. By using MRC in VSWG it is accomplished that in most common wind speed region (3-12 m/s) VSWG inertial support is almost independent from wind speed. Since in most EPSs VSWG replaces conventional steam generators, application of MRC algorithm provides that the characteristics of EPS in terms of inertial response are preserved, regardless of the growing trend of introducing VSWG. Evaluation analysis of the proposed MRC is performed on modified nine bus power system when VSWG with MRC is connected to one of the power system buses.

  7. Outdoor temperature, precipitation, and wind speed affect physical activity levels in children: a longitudinal cohort study

    PubMed Central

    Edwards, Nicholas M.; Myer, Gregory D.; Kalkwarf, Heidi J.; Woo, Jessica G.; Khoury, Philip R.; Hewett, Timothy E.; Daniels, Stephen R.

    2015-01-01

    Objective Evaluate effects of local weather conditions on physical activity in early childhood. Methods Longitudinal prospective cohort study of 372 children, 3 years old at enrollment, drawn from a major US metropolitan community. Accelerometer-measured (RT3) physical activity was collected every 4 months over 5 years and matched with daily weather measures: day length, heating/cooling degrees (degrees mean temperature < 65°F or ≥ 65°F, respectively), wind, and precipitation. Mixed regression analyses, adjusted for repeated measures, were used to test the relationship between weather and physical activity. Results Precipitation and wind speed were negatively associated with total physical activity and moderate-vigorous physical activity (P<0.0001). Heating and cooling degrees were negatively associated with total physical activity and moderate-vigorous physical activity and positively associated with inactivity (all P<0.0001), independent of age, sex, race, BMI, day length, wind, and precipitation. For every 10 additional heating degrees there was a five-minute daily reduction in moderate-vigorous physical activity. For every additional 10 cooling degrees there was a 17-minute reduction in moderate-vigorous physical activity. Conclusions Inclement weather (higher/lower temperature, greater wind speed, more rain/snow) is associated with less physical activity in young children. These deleterious effects should be considered when planning physical activity research, interventions, and policies. PMID:25423667

  8. Connecting the surface of the Sun to the Heliosphere : wind speed and magnetic field geometry

    NASA Astrophysics Data System (ADS)

    Pinto, Rui

    2016-07-01

    The large-scale solar wind speed distribution varies in time in response to the cyclic variations of the strength and geometry of the magnetic field of the corona. Based on this idea, semi-empirical predictive laws for the solar wind speed (such as in the widely-used WSA law) use simple parameters describing the geometry of the coronal magnetic field. In practice, such scaling laws require ad-hoc corrections and empirical fits to in-situ spacecraft data, and a predictive law based solely on physical principles is still missing. I will discuss improvements to this kind of laws based on the analysis of very large samples of wind acceleration profiles in open flux-tubes (both from MHD simulations and potential-field extrapolations), and possible strategies for corona and heliosphere model coupling. I will, furthermore present an ongoing modelling effort to determine the magnetic connectivity, paths and propagation delays of any type of disturbance (slow/fast solar wind, waves, energetic particles, ballistic propagation) between the solar surface and any point in the interplanetary space at any time. This is a key point for the exploitation of data from Solar Orbiter and Solar Probe Plus, and more generally for establishing connections between remote and in-situ spacecraft data. This is work is supported by the FP7 project #606692 (HELCATS).

  9. Algorithm Determines Wind Speed and Direction from Venturi-Sensor Data

    NASA Technical Reports Server (NTRS)

    Zysko, Jan A.; Perotti, Jose M.; Randazzo, John

    2004-01-01

    An algorithm computes the velocity of wind from the readings of an instrument like the one described in another Tech Brief. To recapitulate: The sensor has no moving parts and is a compact, rugged means of measuring wind vectors having magnitudes of as much as 300 mph (134 m/s). The sensor includes a Venturi gap bounded by a curved upper and a curved lower surface that are axisymmetric with respect to a vertical axis and mirror-symmetric with respect to a horizontal midplane. One of the curved surfaces is instrumented with multiple ports for measuring dynamic pressures. The sensor also incorporates auxiliary sensors for measuring temperature, relative humidity, and static atmospheric pressure. The design and operation of the sensor are based on the concepts of (1) using Bernoulli's equation (which expresses the relationship among variations of speed, density, and pressure along a streamline) to calculate the speed of the wind from differences among the pressure readings at the various ports; and (2) calculating the direction of the wind from the angular positions of ports selected according to comparisons among their pressure readings. The present algorithm performs these calculations.

  10. Statistical analysis of low frequency vibrations in variable speed wind turbines

    NASA Astrophysics Data System (ADS)

    Escaler, X.; Mebarki, T.

    2013-12-01

    The spectral content of the low frequency vibrations in the band from 0 to 10 Hz measured in full scale wind turbines has been statistically analyzed as a function of the whole range of steady operating conditions. Attention has been given to the amplitudes of the vibration peaks and their dependency on rotating speed and power output. Two different wind turbine models of 800 and 2000 kW have been compared. For each model, a sample of units located in the same wind farm and operating during a representative period of time have been considered. A condition monitoring system installed in each wind turbine has been used to register the axial acceleration on the gearbox casing between the intermediate and the high speed shafts. The average frequency spectrum has permitted to identify the vibration signature and the position of the first tower natural frequency in both models. The evolution of the vibration amplitudes at the rotor rotating frequency and its multiples has shown that the tower response is amplified by resonance conditions in one of the models. So, it is concluded that a continuous measurement and control of low frequency vibrations is required to protect the turbines against harmful vibrations of this nature.

  11. Magnetically Driven Winds from Post-Asymptotic Giant Branch Stars: Solutions for High-Speed Winds and Extreme Collimation

    NASA Astrophysics Data System (ADS)

    García-Segura, Guillermo; López, José Alberto; Franco, José

    2005-01-01

    This paper explores the effects of post-asymptotic giant branch (AGB) winds driven solely by magnetic pressure from the stellar surface. It is found that winds can reach high speeds under this assumption and lead to the formation of highly collimated proto-planetary nebulae. Bipolar knotty jets with periodic features and constant velocity are well reproduced by the models. Several wind models with terminal velocities from a few tens of km s-1 up to 103 km s-1 are calculated, yielding outflows with linear momenta in the range 1036-1040 g cm s-1, and kinetic energies in the range 1042-1047 ergs. These results are in accord with recent observations of proto-planetary nebulae that have pointed out serious energy and momentum deficits if radiation pressure is considered as the only driver for these outflows. Our models strengthen the notion that the large mass loss rates of post-AGB stars, together with the short transition times from the late AGB to the planetary nebula stage, could be directly linked with the generation of strong magnetic fields during this transition stage.

  12. Spatiotemporal patterns in methane flux and gas transfer velocity at low wind speeds: Implications for upscaling studies on small lakes

    NASA Astrophysics Data System (ADS)

    Schilder, J.; Bastviken, D.; Hardenbroek, M.; Heiri, O.

    2016-06-01

    Lakes contribute significantly to the global natural emissions of methane (CH4) and carbon dioxide. However, to accurately incorporate them into the continental carbon balance more detailed surveys of lacustrine greenhouse gas emissions are needed, especially in respect to spatiotemporal variability and to how this affects the upscaling of results. We investigated CH4 flux from a small, wind-shielded lake during 10 field trips over a 14 month period. We show that floating chambers may be used to calibrate the relationship between gas transfer velocity (k) and wind speed at 10 m height (U10) to the local system, in order to obtain more accurate estimates of diffusive CH4 flux than by applying general models predicting k based on U10. We confirm earlier studies indicating strong within-lake spatial variation in this relationship and in ebullitive CH4 flux within the lake basin. However, in contrast to the pattern reported in other studies, ebullitive CH4 flux was highest in the central parts of the lake. Our results indicate positive relationships between k and U10 at very low U10 (0-3 m s-1), which disagrees with earlier suggestions that this relationship may be negligible at low U10 values. We estimate annually averaged open water CH4 emission from Lake Gerzensee to be 3.6-5.8 mmol m-2 d-1. Our data suggest that estimates of greenhouse gas emissions from aquatic systems to the atmosphere based on the upscaling of short-term and small-scale measurements can be improved if both spatial and temporal variabilities of emissions are taken into account.

  13. Extended Statistical Short-Range Guidance for Peak Wind Speed Analyses at the Shuttle Landing Facility: Phase II Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.

    2003-01-01

    This report describes the results from Phase II of the AMU's Short-Range Statistical Forecasting task for peak winds at the Shuttle Landing Facility (SLF). The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The 45th Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A seven year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. A PC-based Graphical User Interface (GUI) tool was created to display the data quickly.

  14. Forecasting surface wind speeds over offshore islands near Taiwan during tropical cyclones: Comparisons of data-driven algorithms and parametric wind representations

    NASA Astrophysics Data System (ADS)

    Wei, Chih-Chiang

    2015-03-01

    Tropical cyclones often affect the western North Pacific region. Between May and October annually, enormous flood damage is frequently caused by typhoons in Taiwan. This study adopted machine learning techniques to forecast the hourly wind speeds over offshore islands near Taiwan during tropical cyclones. To develop a highly reliable surface wind speed prediction technique, the four kernel-based support vector machines for regression (SVR) models, comprising radial basis function, linear, polynomial, and Pearson VII universal kernels were used. To ensure the accuracy of the SVR model, traditional regressions and the parametric wind representations, comprising the modified Rankine profile, Holland wind profile, and DeMaria wind profile were used to compare wind speed forecasts. The methodology was applied to two islands near Taiwan, Lanyu, and Pengjia Islets. The forecasting horizon ranged from 1 to 6 h. The results indicated that the Pearson VII SVR is the most precise of the kernel-based SVR models, regressions, and parametric wind representations. Additionally, Typhoons Nanmadol and Saola which made landfall over Taiwan during 2011 and 2012 were simulated and examined. The results showed that the Pearson VII SVR yielded more favorable results than did the regressions and Holland wind profile. In addition, we observed that Holland wind profile seems applicable to open ocean but unsuitable for areas affected by topographic effects, such as the Central Mountain Range of Taiwan.

  15. Wind tunnel results of advanced high speed propellers in the takeoff, climb and landing operating regimes

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Jeracki, R. J.

    1985-01-01

    Low speed wind tunnel performance tests of two advanced propellers were completed. The 62.2 cm diameter adjustable pitch models were tested at Mach numbers typical of takeoff, initial climbout, and landing speeds in the 10 by 10 ft Supersonic Wind Tunnel. Both models had eight blades and a cruise design point operating condition of 0.80 Mach number, 10.668 km S.A. altitude, 243.8 m/s tip speed and a high power loading of 301 kW sq m. No adverse or unusual low speed operating conditions were found during the test with either the straight blade SR-2 or the 45 deg swept SR-3 propellers. The 45 deg swept propeller efficiency exceeded the straight blade efficiency by 4 to 5%. Typical net efficiencies of the straight and 45 deg swept propeller at a Mach 0.20 takeoff condition were 50.2 and 54.9% respectively. At a Mach 0.34 climb condition, the efficiencies were 53.7 and 59.1%. Reverse thrust data indicates that these propellers are capable of producing more reverse thrust at Mach 0.20 than a high bypass turbofan engine at Mach 0.20.

  16. Wind tunnel results of advanced high speed propellers in the takeoff, climb, and landing operating regimes

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Jeracki, R. J.

    1985-01-01

    Low speed wind tunnel performance tests of two advanced propellers were completed. The 62.2 cm diameter adjustable pitch models were tested at Mach numbers typical of takeoff, initial climbout, and landing speeds in the 10 by 10 ft Supersonic Wind Tunnel. Both models had eight blades and a cruise design point operating condition of 0.80 Mach number, 10.668 km S.A. altitude, 243.8 m/s tip speed and a high power loading of 301 kW sq m. No adverse or unusual low speed operating conditions were found during the test with either the straight blade SR-2 or the 45 deg swept SR-3 propellers. The 45 deg swept propeller efficiency exceeded the straight blade efficiency by 4 to 5 percent. Typical net efficiencies of the straight and 45 deg swept propeller at a Mach 0.20 takeoff condition were 50.2 and 54.9 percent respectively. At a Mach 0.34 climb condition, the efficiencies were 53.7 and 59.1 percent. Reverse thrust data indicates that these propellers are capable of producing more reverse thrust at Mach 0.20 than a high bypass turbofan engine at Mach 0.20.

  17. High-resolution daily gridded data sets of air temperature and wind speed for Europe

    NASA Astrophysics Data System (ADS)

    Brinckmann, Sven; Krähenmann, Stefan; Bissolli, Peter

    2016-10-01

    New high-resolution data sets for near-surface daily air temperature (minimum, maximum and mean) and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001-2010 for the purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project, which aims to develop decadal climate predictions. The main input data sources are SYNOP observations, partly supplemented by station data from the ECA&D data set (http://www.ecad.eu). These data are quality tested to eliminate erroneous data. By spatial interpolation of these station observations, grid data in a resolution of 0.044° (≈ 5km) on a rotated grid with virtual North Pole at 39.25° N, 162° W are derived. For temperature interpolation a modified version of a regression kriging method developed by Krähenmann et al.(2011) is used. At first, predictor fields of altitude, continentality and zonal mean temperature are used for a regression applied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new method based on the concept used for temperature was developed, involving predictor fields of exposure, roughness length, coastal distance and ERA-Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of the final daily grid data, cross validation is performed. Variance explained by the regression ranges from 70 to 90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final daily grid data amounts to 1-2 K and 1-1.5 ms-1 (depending on season and parameter) for daily temperature parameters

  18. High-resolution daily gridded datasets of air temperature and wind speed for Europe

    NASA Astrophysics Data System (ADS)

    Brinckmann, S.; Krähenmann, S.; Bissolli, P.

    2015-08-01

    New high-resolution datasets for near surface daily air temperature (minimum, maximum and mean) and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001-2010 for the purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project, which aims to develop decadal climate predictions. The main input data sources are hourly SYNOP observations, partly supplemented by station data from the ECA&D dataset (http://www.ecad.eu). These data are quality tested to eliminate erroneous data and various kinds of inhomogeneities. Grids in a resolution of 0.044° (5 km) are derived by spatial interpolation of these station data into the CORDEX area. For temperature interpolation a modified version of a regression kriging method developed by Krähenmann et al. (2011) is used. At first, predictor fields of altitude, continentality and zonal mean temperature are chosen for a regression applied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new method based on the concept used for temperature was developed, involving predictor fields of exposure, roughness length, coastal distance and ERA Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of the final daily grid data, cross validation is performed. Explained variance ranges from 70 to 90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final daily grid data amounts to 1-2 °C and 1-1.5 m s-1 (depending on season and parameter) for daily temperature parameters and daily mean wind speed, respectively. The datasets presented in this article are published at http://dx.doi.org/10.5676/DWD_CDC/DECREG0110v1.

  19. Systematic approach for PID controller design for pitch-regulated, variable-speed wind turbines

    SciTech Connect

    Hand, M.M.; Balas, M.J.

    1997-11-01

    Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three regions of operation. This paper focuses on controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative (PID) controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship of the two opposing metrics is easily visualized. 2 refs., 9 figs.

  20. Improved Speed Control System for the 87,000 HP Wind Tunnel Drive

    NASA Technical Reports Server (NTRS)

    Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.

    1995-01-01

    This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.

  1. Corotating high-speed solar-wind streams and recurrent cosmic ray modulation

    NASA Astrophysics Data System (ADS)

    Singh, Y. P.; Badruddin

    2007-05-01

    We studied the solar magnetic cycle dependence of cosmic ray depressions due to the corotating high-speed solar wind streams (CSWS) during different polarity states of the heliosphere. The daily averaged cosmic ray intensity data from Climax, Oulu, and Thule neutron monitors together with simultaneous solar wind plasma and field data were subjected to the superposed epoch analysis with respect to CSWS start time. These analyses were carried out separately in different polarity states of the heliosphere A < 0 and A > 0 during solar minimum as well as during the periods of variable solar activity. Although the average variations in the solar wind velocity, IMF strength, and its variance are almost similar, the amplitudes of CSWS-associated cosmic ray depressions are quite different during different polarity epochs; they are larger during A > 0 than A < 0 periods. Further, correlation analysis between cosmic ray intensity and solar wind velocity during CSWS shows differences in their relationship during A > 0 and A < 0; they are much better during A > 0 than A < 0. Two other solar wind parameters, IMF strength and its variance, do not show a significant relationship with cosmic ray intensity change through the passage of these streams, although the initial depression coincides the enhancement of the two parameters. These results are discussed in the light of existing models of galactic cosmic ray modulation.

  2. High-Speed Imaging of Short Wind Waves by Shape from Refraction

    NASA Astrophysics Data System (ADS)

    Kiefhaber, D.; Reith, S.; Rocholz, R.; Jähne, B.

    2014-03-01

    This paper introduces the first high-speed system for slope imaging of wind-induced short water waves. The imaging slope gauge method is used, which is based on the shape from refraction principle. The downward looking camera with a telecentric lens observes the refraction of light rays coming from a high power custom telecentric LED light source that is placed underneath the wind wave facility. The light source can be programmed to arbitrary intensity gradients in the x- and y-direction, so that the origin of a light ray is coded in intensity. Four gradient images (acquired at 6000 fps) are combined for one 2D slope image. By only using intensity ratios, the measurements become independent of lens effects from the curved water surface and inhomogeneities in the light source. Independence of wave height is guaranteed by using telecentric illumination and telecentric imaging. The system is capable to measure the slopes of a wind-driven water surface in the Heidelberg Aeolotron wind-wave facility on a footprint of 200 x 160 mm with a spatial resolution of 0.22 mm and a temporal resolution of more than 1500 fps. For the first time, it is now possible to investigate the structure of short wind-induced waves with sufficient spatial and temporal resolution to study their dynamic characteristics without aliasing effects. Example images and a video of a 3D reconstructed water surface are shown to illustrate the principle.

  3. Relationship Between Solar-Wind Speed and Coronal Magnetic-Field Properties

    NASA Astrophysics Data System (ADS)

    Fujiki, Ken'ichi; Tokumaru, Munetoshi; Iju, Tomoya; Hakamada, Kazuyuki; Kojima, Masayoshi

    2015-09-01

    We have studied the relationship between the solar-wind speed [V] and the coronal magnetic-field properties (a flux-expansion factor [f] and photospheric magnetic-field strength [BS]) at all latitudes using data of interplanetary scintillation and solar magnetic field obtained for 24 years from 1986 to 2009. Using a cross-correlation analyses, we verified that V is inversely proportional to f and found that V tends to increase with BS if f is the same. As a consequence, we find that V has an extremely good linear correlation with BS/f. However, this linear relation of V and BS/f cannot be used for predicting the solar-wind velocity without information on the solar-wind mass flux. We discuss why the inverse relation between V and f has been successfully used for solar-wind velocity prediction, even though it does not explicitly include the mass flux and magnetic-field strength, which are important physical parameters for solar-wind acceleration.

  4. Acceleration phenomena of high-speed wind observed at 0.1-0.3 AU with interplanetary scintillation

    NASA Technical Reports Server (NTRS)

    Kojima, M.; Misawa, H.; Watanabe, H.; Yamauchi, Y.

    1995-01-01

    The radial distance dependence of solar wind speeds, which were measured by interplanetary scintillation method, has been studied especially for a high-speed solar wind, and large increase of the IPS speeds (300 km/s) was observed at the distance range of 0.1 - 0.3 AU. When the streams are mapped back onto the source surface, they distribute in polar coronal holes or their boundaries. Since the IPS measurement can be biased by several effects such as of line-of-sight integration, strong scattering and random velocities, we examined these biasing effects and have found difficulty to explain the large IPS speed increase with the biasing effects.

  5. World's first telepathology experiments employing WINDS ultra-high-speed internet satellite, nicknamed “KIZUNA”

    PubMed Central

    Sawai, Takashi; Uzuki, Miwa; Miura, Yasuhiro; Kamataki, Akihisa; Matsumura, Tsubasa; Saito, Kenji; Kurose, Akira; Osamura, Yoshiyuki R.; Yoshimi, Naoki; Kanno, Hiroyuki; Moriya, Takuya; Ishida, Yoji; Satoh, Yohichi; Nakao, Masahiro; Ogawa, Emiko; Matsuo, Satoshi; Kasai, Hiroyuki; Kumagai, Kazuhiro; Motoda, Toshihiro; Hopson, Nathan

    2013-01-01

    Background: Recent advances in information technology have allowed the development of a telepathology system involving high-speed transfer of high-volume histological figures via fiber optic landlines. However, at present there are geographical limits to landlines. The Japan Aerospace Exploration Agency (JAXA) has developed the “Kizuna” ultra-high speed internet satellite and has pursued its various applications. In this study we experimented with telepathology in collaboration with JAXA using Kizuna. To measure the functionality of the Wideband InterNet working engineering test and Demonstration Satellite (WINDS) ultra-high speed internet satellite in remote pathological diagnosis and consultation, we examined the adequate data transfer speed and stability to conduct telepathology (both diagnosis and conferencing) with functionality, and ease similar or equal to telepathology using fiber-optic landlines. Materials and Methods: We performed experiments for 2 years. In year 1, we tested the usability of the WINDS for telepathology with real-time video and virtual slide systems. These are state-of-the-art technologies requiring massive volumes of data transfer. In year 2, we tested the usability of the WINDS for three-way teleconferencing with virtual slides. Facilities in Iwate (northern Japan), Tokyo, and Okinawa were connected via the WINDS and voice conferenced while remotely examining and manipulating virtual slides. Results: Network function parameters measured using ping and Iperf were within acceptable limits. However; stage movement, zoom, and conversation suffered a lag of approximately 0.8 s when using real-time video, and a delay of 60-90 s was experienced when accessing the first virtual slide in a session. No significant lag or inconvenience was experienced during diagnosis and conferencing, and the results were satisfactory. Our hypothesis was confirmed for both remote diagnosis using real-time video and virtual slide systems, and also for

  6. On the Relationship Between High Speed Solar Wind Streams and Radiation Belt Electron Fluxes

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua

    2011-01-01

    Both past and recent research results indicate that solar wind speed has a close connection to radiation belt electron fluxes [e.g., Paulikas and Blake, 1979; Reeves et aI., 2011]: a higher solar wind speed is often associated with a higher level of radiation electron fluxes. But the relationship can be very complex [Reeves et aI., 2011]. The study presented here provides further corroboration of this viewpoint by emphasizing the importance of a global perspective and time history. We find that all the events during years 2010 and 2011 where the >0.8 MeV integral electron flux exceeds 10(exp 5) particles/sq cm/sr/s (pfu) at GEO orbit are associated with the high speed streams (HSS) following the onset of the Stream Interaction Region (SIR), with most of them belonging to the long-lasting Corotating Interaction Region (CIR). Our preliminary results indicate that during HSS events, a maximum speed of 700 km/s and above is a sufficient but not necessary condition for the > 0.8 MeV electron flux to reach 10(exp 5) pfu. But in the exception cases of HSS events where the electron flux level exceeds the 10(exp 5) pfu value but the maximum solar wind speed is less than 700 km/s, a prior impact can be noted either from a CME or a transient SIR within 3-4 days before the arrival of the HSS - stressing the importance of time history. Through superposed epoch analysis and studies providing comparisons with the CME events and the HSS events where the flux level fails to reach the 10(exp 5) pfu, we will present the quantitative assessment of behaviors and relationships of various quantities, such as the time it takes to reach the flux threshold value from the stream interface and its dependence on different physical parameters (e.g., duration of the HSS event, its maximum or average of the solar wind speed, IMF Bz, Kp). The ultimate goal is to apply what is derived to space weather forecasting.

  7. Transport of airborne pollen into the city of Thessaloniki: the effects of wind direction, speed and persistence

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Gioulekas, Dimitrios; Lazopoulou, Chariklia; Balafoutis, Christos; Vokou, Despina

    2005-01-01

    We examined the effect of the wind vector analyzed into its three components (direction, speed and persistence), on the circulation of pollen from differe nt plant taxa prominent in the Thessaloniki area for a 4-year period (1996- 1999). These plant taxa were Ambrosia spp., Artemisia spp., Chenopodiaceae, spp., Cupressaceae, Olea europaea, Pinaceae, Platanus spp., Poaceae, Populus spp., Quercus spp., and Urticaceae. Airborne pollen of Cupressaceae, Urticaceae, Quercus spp. and O. europaea make up approximately 70% of the total average annual pollen counts. The set of data that we worked with represented days without precipitation and time intervals during which winds blew from the same direction for at least 4 consecutive hours. We did this in order to study the effect of the different wind components independently of precipitation, and to avoid secondary effects produced by pollen resuspension phenomena. Factorial regression analysis among the summed bi-hourly pollen counts for each taxon and the values of wind speed and persistence per wind direction gave significant results in 22 cases (combinations of plant taxa and wind directions). The pollen concentrations of all taxa correlated significantly with at least one of the three wind components. In seven out of the 22 taxon-wind direction combinations, the pollen counts correlated positively with wind persistence, whereas this was the case for only two of the taxon-wind speed combinations. In seven cases, pollen counts correlated with the interaction effect of wind speed and persistence. This shows the importance of wind persistence in pollen transport, particularly when weak winds prevail for a considerable part of the year, as is the case for Thessaloniki. Medium/long-distance pollen transport was evidenced for Olea (NW, SW directions), Corylus (NW, SW), Poaceae (SW) and Populus (NW).

  8. Estimates of oceanic surface wind speed and direction using orthogonal beam scatterometer measurements and comparison of recent sea scattering theories

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Fung, A. K.; Dome, G. J.; Birrer, I. J.

    1978-01-01

    The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed.

  9. Towards the modelling of pedestrian wind speed using high-resolution digital surface models and statistical methods

    NASA Astrophysics Data System (ADS)

    Johansson, Lars; Onomura, Shiho; Lindberg, Fredrik; Seaquist, Jonathan

    2016-04-01

    Wind is a complex phenomenon and a critical factor in assessing climatic conditions and pedestrian comfort within cities. To obtain spatial information on near-ground wind speed, 3D computational fluid dynamics (CFD) modelling is often used. This is a computationally intensive method which requires extensive computer resources and is time consuming. By using a simpler 2D method, larger areas can be processed and less time is required. This study attempts to model the relationship between near-ground wind speed and urban geometry using 2.5D raster data and variable selection methods. Such models can be implemented in a geographic information system (GIS) to assess the spatial distribution of wind speed at street level in complex urban environments at scales from neighbourhood to city. Wind speed data, 2 m above ground, is obtained from simulations by CFD modelling and used as a response variable. A number of derivatives calculated from high-resolution digital surface models (DSM) are used as potential predictors. A sequential variable selection algorithm followed by all-possible subset regression was used to select candidate models for further evaluation. The results show that the selected models explain general spatial wind speed pattern characteristics but the prediction errors are large, especially so in areas with high wind speeds. However, all selected models did explain 90 % of the wind speed variability (R 2 ≈ 0.90). Predictors adding information on width and height ratio and alignment of street canyons with respect to wind direction are suggested for improving model performance. To assess the applicability of any derived model, the results of the CFD model should be thoroughly evaluated against field measurements.

  10. Frequency Regulation and Oscillation Damping Contributions of Variable-Speed Wind Generators in the U.S. Eastern Interconnection (EI)

    DOE PAGES

    Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; ...

    2014-05-16

    The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluatedmore » the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.« less

  11. Frequency Regulation and Oscillation Damping Contributions of Variable-Speed Wind Generators in the U.S. Eastern Interconnection (EI)

    SciTech Connect

    Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; Liu, Yilu

    2014-05-16

    The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluated the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.

  12. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    SciTech Connect

    Erdman, W.; Behnke, M.

    2005-11-01

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  13. Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey A.; Leo, Laura S.; Sabatino, Silvana Di; Fernando, Harindra J. S.; Pardyjak, Eric R.; Fairall, Christopher W.

    2016-06-01

    Measurements of small-scale turbulence made in the atmospheric boundary layer over complex terrain during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured on four towers deployed along the east lower slope (2-4°) of Granite Mountain near Salt Lake City in Utah, USA. The multi-level (up to seven) observations made during a 30-day long MATERHORN field campaign in September-October 2012 allowed the study of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence statistics (e.g., fluxes, variances, spectra, and cospectra) and their variations in katabatic flow. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along-slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The momentum flux is directed downward (upward) whereas the along-slope heat flux is downslope (upslope) below (above) the wind maximum. This suggests that the position of the jet-speed maximum can be obtained by linear interpolation between positive and negative values of the momentum flux (or the along-slope heat flux) to derive the height where the flux becomes zero. It is shown that the standard deviations of all wind-speed components (and therefore of the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind-speed maximum. We report several cases when the destructive effect of vertical heat flux is completely cancelled by the generation of turbulence due to the along-slope heat flux. Turbulence above the wind-speed

  14. A Comparison of Wind Speed Data from Mechanical and Ultrasonic Anemometers

    NASA Technical Reports Server (NTRS)

    Short, D.; Wells, L.; Merceret, F.; Roeder, W. P.

    2006-01-01

    This study compared the performance of mechanical and ultrasonic anemometers at the Eastern Range (ER; Kennedy Space Center and Cape Canaveral Air Force Station on Florida's Atlantic coast) and the Western Range (WR; Vandenberg Air Force Base on California's Pacific coast). Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at the ER and WR for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The current ER and WR weather tower wind instruments are being changed from the current propeller-and-vane (ER) and cup-and-vane (WR) sensors to ultrasonic sensors through the Range Standardization and Automation (RSA) program. The differences between mechanical and ultrasonic techniques have been found to cause differences in the statistics of peak wind speed in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between RSA and current sensors to determine if there are significant differences. Approximately 3 weeks of Legacy and RSA wind data from each range were used in the study, archived during May and June 2005. The ER data spanned the full diurnal cycle, while the WR data was confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on 5 different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The 10 towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The RSA sensors were collocated at the same vertical levels as the present sensors and typically within 15 ft horizontally of each another. Data from a total of 53 RSA ultrasonic sensors, collocated with present sensors were compared. The 1-minute average wind speed/direction and the 1

  15. Observations During GRIP from HIRAD: Ocean Surface Wind Speed and Rain Rate

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Jones, L.; Ruf, C. S.; Uhlhorn, E. W.; Bailey, M. C.; Buckley, C. D.; Simmons, D. E.; Johnstone, S.; Peterson, A.; Schultz, L. A.; Biewas, S.; Johnson, J. W.; Shah, G.; Feingstein, D.; Cleveland, W. H.; Johnson, J.; Hood, R. E.

    2011-01-01

    HIRAD (Hurricane Imaging Radiometer) flew on the WB-57 during NASA's GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be inferred. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years. The advantage of HIRAD over SFMR is that HIRAD can observe a +/- 60-degree swath, rather than a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. To the extent possible, comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  16. Bivariate ensemble model output statistics approach for joint forecasting of wind speed and temperature

    NASA Astrophysics Data System (ADS)

    Baran, Sándor; Möller, Annette

    2017-02-01

    Forecast ensembles are typically employed to account for prediction uncertainties in numerical weather prediction models. However, ensembles often exhibit biases and dispersion errors, thus they require statistical post-processing to improve their predictive performance. Two popular univariate post-processing models are the Bayesian model averaging (BMA) and the ensemble model output statistics (EMOS). In the last few years, increased interest has emerged in developing multivariate post-processing models, incorporating dependencies between weather quantities, such as for example a bivariate distribution for wind vectors or even a more general setting allowing to combine any types of weather variables. In line with a recently proposed approach to model temperature and wind speed jointly by a bivariate BMA model, this paper introduces an EMOS model for these weather quantities based on a bivariate truncated normal distribution. The bivariate EMOS model is applied to temperature and wind speed forecasts of the 8-member University of Washington mesoscale ensemble and the 11-member ALADIN-HUNEPS ensemble of the Hungarian Meteorological Service and its predictive performance is compared to the performance of the bivariate BMA model and a multivariate Gaussian copula approach, post-processing the margins with univariate EMOS. While the predictive skills of the compared methods are similar, the bivariate EMOS model requires considerably lower computation times than the bivariate BMA method.

  17. Relation Between Coronal Hole Areas and Solar Wind Speeds Derived from Interplanetary Scintillation Measurements

    NASA Astrophysics Data System (ADS)

    Tokumaru, Munetoshi; Satonaka, Daiki; Fujiki, Ken'ichi; Hayashi, Keiji; Hakamada, Kazuyuki

    2017-03-01

    We investigate the relation between coronal hole (CH) areas and solar wind speeds during 1995 - 2011 using the potential field (PF) model analysis of magnetograph observations and interplanetary scintillation (IPS) observations by the Institute for Space-Earth Environmental Research (formerly Solar-Terrestrial Environment Laboratory) of Nagoya University. We obtained a significant positive correlation between the CH areas (A) derived from the PF model calculations and solar wind speeds (V) derived from the IPS observations. The correlation coefficients between them are usually high, but they drop significantly in solar maxima. The slopes of the A - V relation are roughly constant except for the period around solar maximum, when flatter or steeper slopes are observed. The excursion of the correlation coefficients and slopes at solar maxima is ascribed partly to the effect of rapid structural changes in the coronal magnetic field and solar wind, and partly to the predominance of small CHs. It is also demonstrated that V is inversely related to the flux expansion factor (f) and that f is closely related to A^{-1/2}; hence, V ∝ A^{1/2}. A better correlation coefficient is obtained from the A^{1/2} - V relation, and this fact is useful for improving space weather predictions. We compare the CH areas derived from the PF model calculations with He i 1083 nm observations and show that the PF model calculations provide reliable estimates of the CH area, particularly for large A.

  18. Global satellite measurements of water vapour, wind speed and wave height

    NASA Technical Reports Server (NTRS)

    Chelton, D. B.; Hussey, K. J.; Parke, M. E.

    1981-01-01

    The results of global measurements of atmospheric water vapor by the Seasat Scanning Multichannel Microwave Radiometer and wave height and wind speed by the Seasat altimeter (ALT) are reported. The 13.5 GHz ALT has a 3.125 ns pulsewidth and 1022 Hz repetition rate, and measures surface height to a resolution exceeding 10 cm celative to a reference ellipsoid. Full ALT data comprise 135 km equatorial groundtracks, with about a 50 cm difference of sea wave height compared to buoy reference measurements, and windspeed accuracy to within 0.25-1.58 m/sec up to 20 m/sec. Highest water vapor concentrations were observed in the tropics and the lowest at high latitudes. Wind speeds were highest for the north-east and south-east tradewinds in both the Atlantic and Pacific oceans. Average wave height is small in the summer North Hemisphere and the largest waves are in the winter Southern ocean, and lowest in western Atlantic and Pacific ocean areas where winds are lightest.

  19. Relative importance of parameters affecting wind speed prediction using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ghorbani, M. A.; Khatibi, R.; Hosseini, B.; Bilgili, M.

    2013-10-01

    In traditional artificial neural networks (ANN) models, the relative importance of the individual meteorological input variables is often overlooked. A case study is presented in this paper to model monthly wind speed values using meteorological data (air pressure, air temperature, relative humidity, and precipitation), where the study also includes an estimate of the relative importance of these variables. Recorded monthly mean data are available at a gauging site in Tabriz, Azerbaijan, Iran, for the period from 2000 to 2005, gauged in the city at the outskirt of alluvial funneling mountains with an established microclimatic conditions and a diurnal wind regime. This provides a sufficiently severe test for the ANN model with a good predictive capability of 1 year of lead time but without any direct approach to refer the predicted results to local microclimatic conditions. A method is used in this paper to calculate the relative importance of each meteorological input parameters affecting wind speed, showing that air pressure and precipitation are the most and least influential parameters with approximate values of 40 and 10 %, respectively. This gained knowledge corresponds to the local knowledge of the microclimatic and geomorphologic conditions surrounding Tabriz.

  20. Application of Rapid Prototyping Methods to High-Speed Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Springer, A. M.

    1998-01-01

    This study was undertaken in MSFC's 14-Inch Trisonic Wind Tunnel to determine if rapid prototyping methods could be used in the design and manufacturing of high speed wind tunnel models in direct testing applications, and if these methods would reduce model design/fabrication time and cost while providing models of high enough fidelity to provide adequate aerodynamic data, and of sufficient strength to survive the test environment. Rapid prototyping methods utilized to construct wind tunnel models in a wing-body-tail configuration were: fused deposition method using both ABS plastic and PEEK as building materials, stereolithography using the photopolymer SL-5170, selective laser sintering using glass reinforced nylon, and laminated object manufacturing using plastic reinforced with glass and 'paper'. This study revealed good agreement between the SLA model, the metal model with an FDM-ABS nose, an SLA nose, and the metal model for most operating conditions, while the FDM-ABS data diverged at higher loading conditions. Data from the initial SLS model showed poor agreement due to problems in post-processing, resulting in a different configuration. A second SLS model was tested and showed relatively good agreement. It can be concluded that rapid prototyping models show promise in preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.

  1. Ocean's response to Hurricane Frances and its implications for drag coefficient parameterization at high wind speeds

    NASA Astrophysics Data System (ADS)

    Zedler, S. E.; Niiler, P. P.; Stammer, D.; Terrill, E.; Morzel, J.

    2009-04-01

    The drag coefficient parameterization of wind stress is investigated for tropical storm conditions using model sensitivity studies. The Massachusetts Institute of Technology (MIT) Ocean General Circulation Model was run in a regional setting with realistic stratification and forcing fields representing Hurricane Frances, which in early September 2004 passed east of the Caribbean Leeward Island chain. The model was forced with a NOAA-HWIND wind speed product after converting it to wind stress using four different drag coefficient parameterizations. Respective model results were tested against in situ measurements of temperature profiles and velocity, available from an array of 22 surface drifters and 12 subsurface floats. Changing the drag coefficient parameterization from one that saturated at a value of 2.3 × 10-3 to a constant drag coefficient of 1.2 × 10-3 reduced the standard deviation difference between the simulated minus the measured sea surface temperature change from 0.8°C to 0.3°C. Additionally, the standard deviation in the difference between simulated minus measured high pass filtered 15-m current speed reduced from 15 cm/s to 5 cm/s. The maximum difference in sea surface temperature response when two different turbulent mixing parameterizations were implemented was 0.3°C, i.e., only 11% of the maximum change of sea surface temperature caused by the storm.

  2. Bivariate ensemble model output statistics approach for joint forecasting of wind speed and temperature

    NASA Astrophysics Data System (ADS)

    Baran, Sándor; Möller, Annette

    2016-06-01

    Forecast ensembles are typically employed to account for prediction uncertainties in numerical weather prediction models. However, ensembles often exhibit biases and dispersion errors, thus they require statistical post-processing to improve their predictive performance. Two popular univariate post-processing models are the Bayesian model averaging (BMA) and the ensemble model output statistics (EMOS). In the last few years, increased interest has emerged in developing multivariate post-processing models, incorporating dependencies between weather quantities, such as for example a bivariate distribution for wind vectors or even a more general setting allowing to combine any types of weather variables. In line with a recently proposed approach to model temperature and wind speed jointly by a bivariate BMA model, this paper introduces an EMOS model for these weather quantities based on a bivariate truncated normal distribution. The bivariate EMOS model is applied to temperature and wind speed forecasts of the 8-member University of Washington mesoscale ensemble and the 11-member ALADIN-HUNEPS ensemble of the Hungarian Meteorological Service and its predictive performance is compared to the performance of the bivariate BMA model and a multivariate Gaussian copula approach, post-processing the margins with univariate EMOS. While the predictive skills of the compared methods are similar, the bivariate EMOS model requires considerably lower computation times than the bivariate BMA method.

  3. Wind-tunnel modelling of the tip-speed ratio influence on the wake evolution

    NASA Astrophysics Data System (ADS)

    Stein, Victor P.; Kaltenbach, Hans-Jakob

    2016-09-01

    Wind-tunnel measurements on the near-wake evolution of a three bladed horizontal axis wind turbine model (HAWT) in the scale 1:O(350) operating in uniform flow conditions and within a turbulent boundary layer at different tip speed ratios are presented. Operational conditions are chosen to exclude Reynolds number effects regarding the turbulent boundary layer as well as the rotor performance. Triple-wire anemometry is used to measure all three velocity components in the mid-vertical and mid-horizontal plane, covering the range from the near- to the far-wake region. In order to analyse wake properties systematically, power and thrust coefficients of the turbine were measured additionally. It is confirmed that realistic modelling of the wake evolution is not possible in a low-turbulence uniform approach flow. Profiles of mean velocity and turbulence intensity exhibit large deviations between the low-turbulence uniform flow and the turbulent boundary layer, especially in the far-wake region. For nearly constant thrust coefficients differences in the evolution of the near-wake can be identified for tip speed ratios in the range from 6.5 to 10.5. It is shown that with increasing downstream distances mean velocity profiles become indistinguishable whereas for turbulence statistics a subtle dependency on the tip speed ratio is still noticeable in the far-wake region.

  4. Occurrence of high-speed solar wind streams over the Grand Modern Maximum

    NASA Astrophysics Data System (ADS)

    Mursula, Kalevi; Lukianova, Renata; Holappa, Lauri

    2015-04-01

    In the declining phase of the solar cycle, when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity in the near-Earth space. Here, using a novel definition of geomagnetic activity at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculate the annually averaged solar wind speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onwards. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each solar cycle 16-23. For most cycles the HSS activity clearly maximizes during one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of solar cycle 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.

  5. A link between high-speed solar wind streams and explosive extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Prikryl, Paul; Iwao, Koki; Muldrew, Donald B.; Rušin, Vojto; Rybanský, Milan; Bruntz, Robert

    2016-11-01

    A link between solar wind magnetic sector boundary (heliospheric current sheet) crossings by the Earth and the upper-level tropospheric vorticity was discovered in the 1970s. These results have been later confirmed but the proposed mechanisms remain controversial. Extratropical-cyclone tracks obtained from two meteorological reanalysis datasets are used in superposed epoch analysis of time series of solar wind plasma parameters and green coronal emission line intensity. The time series are keyed to times of maximum growth of explosively developing extratropical cyclones in the winter season. The new statistical evidence corroborates the previously published results (Prikryl et al., 2009). This evidence shows that explosive extratropical cyclones tend to occur after arrivals of solar wind disturbances such as high-speed solar wind streams from coronal holes when large amplitude magneto-hydrodynamic waves couple to the magnetosphere-ionosphere system. These MHD waves modulate Joule heating and/or Lorentz forcing of the high-latitude thermosphere generating medium-scale atmospheric gravity waves that propagate energy upward and downward from auroral zone through the atmosphere. At the tropospheric level, in spite of significantly reduced amplitudes, these gravity waves can provide a lift of unstable air to release the moist symmetric instability thus initiating slantwise convection and forming cloud/precipitation bands. The release of latent heat is known to provide energy for rapid development and intensification of extratropical cyclones.

  6. Dependence of the Normalized Radar Cross Section of Water Waves on Bragg Wavelength-Wind Speed Sensitivity

    NASA Technical Reports Server (NTRS)

    Long, David G.; Collyer, R. Scott; Reed, Ryan; Arnold, David V.

    1996-01-01

    Measurements of the normalized radar cross section (sigma(sup o)) made by the YSCAT ultrawideband scatterometer during an extended deployment on the Canada Centre for Inland Waters(CCIW) Research Tower located at Lake Ontario are analyzed and compared with anemometer wind measurements to study the sensitivity of (sigma(sup o)) to the wind speed as a function of the Bragg wavelength. This paper concentrates on upwind and downwind azimuth angles in the wind speed range of 4.5-12 m/s. While YSCAT collected measurements of sigma(sup o) at a variety of frequencies and incidence angles, this paper focuses on frequencies of 2.0, 3.05, 5.30, 10.02, and 14.0 GHz and incidence angles within the Bragg regime, 30-50 deg. Adopting a power law model to describe the relationship between sigma(sup o) and wind speed, both wind speed exponents and upwind/downwind (u/d) ratios of sigma(sup o) are found using least squares linear regression. The analysis of the wind speed exponents and u/d ratios show that shorter Bragg wavelengths (Lambda less than 4 cm) are the most sensitive to wind speed and direction. Additionally, vertical polarization (V-pol) sigma(sup o) is shown to be more sensitive to wind speed than horizontal polarization (H-pol) sigma(sup o), while the H-pol u/d ratio is larger than the V-pol u/d ratio.

  7. Aeroacoustic response of coaxial wall-mounted Helmholtz resonators in a low-speed wind tunnel.

    PubMed

    Slaton, William V; Nishikawa, Asami

    2015-01-01

    The aeroacoustic response of coaxial wall-mounted Helmholtz resonators with different neck geometries in a low-speed wind tunnel has been investigated. Experimental test results of this system reveal a strong aeroacoustic response over a Strouhal number range of 0.25 to 0.1 for both increasing and decreasing the flow rate in the wind tunnel. Aeroacoustic response in the low-amplitude range O(10(-3)) < Vac/Vflow < O(10(-1)) has been successfully modeled by describing-function analysis. This analysis, coupled with a turbulent flow velocity distribution model, gives reasonable values for the location in the flow of the undulating stream velocity that drives vortex shedding at the resonator mouth. Having an estimate for the stream velocity that drives the flow-excited resonance is crucial when employing the describing-function analysis to predict aeroacoustic response of resonators.

  8. 9- by 15-Foot Low Speed Wind Tunnel Acoustic Improvements Expanded Overview

    NASA Technical Reports Server (NTRS)

    Stephens, David

    2016-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 8x6 SWT was completed in 1949 and acoustically treated to mitigate community noise issues in 1950. This treatment included the addition of a large muffler downstream of the 8x6 SWT test section and diffuser. The 9x15 LSWT was designed for performance testing of V/STOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel been used principally for acoustic and performance testing of aircraft propulsion systems. The present document describes an anticipated acoustic upgrade to be completed in 2017.

  9. Proposal of a new autocorrelation function in low wind speed conditions

    NASA Astrophysics Data System (ADS)

    Moor, L. P.; Degrazia, G. A.; Stefanello, M. B.; Mortarini, L.; Acevedo, O. C.; Maldaner, S.; Szinvelski, C. R. P.; Roberti, D. R.; Buligon, L.; Anfossi, D.

    2015-11-01

    In this study a new mathematical expression to describe the observed meandering autocorrelation functions in low-wind speed is proposed. The analysis utilizes a large number of best fit curves to show that the proposed theoretical function well reproduces the general form and the negative lobes characterizing the experimental meandering autocorrelation function. Further, the good agreement of the measured autocorrelation curves with the proposed algebraic autocorrelation function allows to calculate the magnitudes of the meandering period and of the loop parameter. The results agree with the values presented and discussed in the literature. Therefore, the new formulation describing experimental meandering autocorrelation functions can be used to simulate the dispersion of contaminant during low wind episodes and to determine relevant meandering parameters.

  10. The Split Window Microwave Radiometer (SWMR) for hurricane wind speed measurement from space

    NASA Technical Reports Server (NTRS)

    Swift, Calvin T.; Black, P. G.

    1992-01-01

    The monitoring of hurricanes demands considerable resources each year by the National Oceanic and Atmospheric Administration. Even with the extensive use of satellite and airborne probing of those storms, there is still much uncertainty involved in predicting landfall for timely evacuation of people subject to the threat. The concept of the Split Window Microwave Radiometer (SWMR) is to add an additional capability of remotely measuring surface winds to hopefully improve prediction capabilities or at least define the severity of the storm while it is far from land. Some of the present science and observational needs are addressed in this report as are remote sensing limitations which impact the design of a minimal system which can be launched into low earth orbit by a low cost launch system. This study has concluded that wind speed and rain rate maps of hurricanes can be generated with an X-Band radiometer system with an antenna whose aperture is 2 m on a side.

  11. Comparing variable updraft melting layer heights to convective wind speeds using polarimetric radar data

    NASA Astrophysics Data System (ADS)

    Harris, Ronald A., III

    The melting layer (ML) appears on vertical radar cross sections as a bright band of higher reflectivity values. Single polarization radars only detect this feature in stratiform precipitation events, whereas dual polarization radars offer the advantage of detecting the ML in both stratiform and convective precipitation events. The ML is known to be lifted higher locally within a convective updraft, so the goal of the present study was to determine if there is a correlation between the vertical displacement of the ML in an updraft (above the ambient ML) and the speed of the storm's reported wind gusts. Fourteen storms were investigated. Wind reports from the Storm Prediction Center (SPC) website were used and radar data were obtained from the National Climatic Data Center (NCDC) website for two dual polarization radar sites: Vance Air Force Base (KVNX) in Enid, OK, and Wichita, KS (KICT). Each storm was studied in detail using a combination of plan views of the cross correlation coefficient (rhoHV, which drops to anomalously low values within the ML) and vertical cross sections of reflectivity. Ultimately, no correlation was found between the height of the updraft ML and the speed of the convective wind gusts. This suggests that the height to which a parcel is lifted by an updraft does not affect the speed at which it descends in the ensuing downdraft. This is likely due to the fact that the mechanisms determining updraft strength are almost entirely separate from those that determine downdraft strength. For example, instability and lift govern updraft strength, whereas downdraft strength is predominantly governed by evaporational cooling and negative buoyancy.

  12. The Generation of Smooth High Speed Solar Wind from Plume-Interplume Mixing

    NASA Technical Reports Server (NTRS)

    Parhi, Shyamsundar; Suess, Steven T.; Sulkanen, Martin E.

    1998-01-01

    Plumes and rays are magnetic field aligned density striations in coronal holes with different values of plasma beta. The overall plasma beta is very small in the low corona but exceeds unity beyond 15-20 solar radius. High speed solar wind reported beyond 0.3 AU is relatively smooth and uniform and known to originate from the much filamented coronal hole. Thus the obvious question is how to generate a smooth solar wind from seemingly filamentary structure. Hence one has to find a mechanism to substantiate this apparent observed (Ulysses) phenomenon. To do this we model plumes as jets (or wakes) of plasma emitted from the solar surface. The shear between a jet and its ambient is known to become unstable to the MHD Kelvin-Helmholtz ("KH") instability if the Alfven Mach number of the jet is greater than one and the uniform external magnetic field is small. Starting with a simple configuration we consider a jet of half thickness R, having uniform density and uniform internal magnetic field. The external medium has also a uniform density and uniform magnetic field. The jet is perturbed at the boundary with a linear amplitude and fixed frequency. We simulate the coronal jet using the 3D ZEUS code. The first results indicate the slab jet is unstable to the MHD KH instability at 5-10 solar radius for some angle of wave propagation. The propagating instability may smooth the filamented flow. It may also produce the entrained Alfvenic fluctuations observed by Ulysses in the high speed wind. We are at present determining the parameters which induce large growth rate. This may clarify the mystery behind the emergence of fast smooth solar wind from very filamentary structures in coronal holes. Also, using the dispersion relation already available for such a flow we obtain some general description of the instability criteria for the KH instability at a jet interface.

  13. F-15 SMTD low speed jet effects wind tunnel test results

    NASA Technical Reports Server (NTRS)

    Blake, William B.

    1988-01-01

    Key results from low speed wind tunnel testing of the F-15 STOL and Maneuver Technology Demonstrator (SMDT) with thrust reversers are presented. Longitudinally, the largest induced increments in the stability and control occur at landing gear height. These generally reflect an induced lift loss and a nose-up pitching moment, and vary with sideslip. Directional stability is reduced at landing gear height with full reverse thrust. Nonlinearities in the horizontal tail effectiveness are found in free air and at landing gear height.

  14. The Acoustic Environment of the NASA Glenn 9- by 15-foot Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Stephens, David B.

    2015-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel is an acoustic testing facility with a long history of aircraft propulsion noise research. Due to interest in renovating the facility to support future testing of advanced quiet engine designs, a study was conducted to document the background noise level in the facility and investigate the sources of contaminating noise. The anechoic quality of the facility was also investigated using an interrupted noise method. The present report discusses these aspects of the noise environment in this facility.

  15. Error propagation equations for estimating the uncertainty in high-speed wind tunnel test results

    SciTech Connect

    Clark, E.L.

    1994-07-01

    Error propagation equations, based on the Taylor series model, are derived for the nondimensional ratios and coefficients most often encountered in high-speed wind tunnel testing. These include pressure ratio and coefficient, static force and moment coefficients, dynamic stability coefficients, and calibration Mach number. The error equations contain partial derivatives, denoted as sensitivity coefficients, which define the influence of free-steam Mach number, M{infinity}, on various aerodynamic ratios. To facilitate use of the error equations, sensitivity coefficients are derived and evaluated for five fundamental aerodynamic ratios which relate free-steam test conditions to a reference condition.

  16. Approach to the CFD analysis applied to HMDs during high-speed wind blast

    NASA Astrophysics Data System (ADS)

    Tiu, William; Ingleton, Martin

    2000-06-01

    Helmet Mounted Displays (HMD) are now an essential element in fast jet aircraft cockpits and the demanding safety requirements must be maintained. Exposure to high-speed air- blast was a fundamental requirement of a developmental HMD produced by BAE SYSTEMS. Safety criteria based on stability, strength and aerodynamic loads meant that reliance on an empirical development was no longer appropriate. Success was achieved from a combination of experience, analysis, design and testing. Computational Fluid Dynamics modeling combined with validation testing in a wind tunnel provided a vital understanding of the aerodynamic loads developed during the windblast event and significantly reduced developmental risk.

  17. NASA Lewis 9- by 15-foot low-speed wind tunnel user manual

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1993-01-01

    This manual describes the 9- by 15-Foot Low-Speed Wind Tunnel at the Lewis Research Center and provides information for users who wish to conduct experiments in this atmospheric facility. Tunnel variables such as pressures, temperatures, available tests section area, and Mach number ranges (0.05 to 0.20) are discussed. In addition, general support systems such as air systems, hydraulic system, hydrogen system, laser system, flow visualization system, and model support systems are described. Instrumentation and data processing and acquisition systems are also discussed.

  18. Assessment of wind tunnel corrections for multielement airfoils at transonic speeds

    NASA Technical Reports Server (NTRS)

    Gaffney, R. L., Jr.; Hassan, H. A.; Salas, M. D.

    1985-01-01

    A finite volume formulation of the Euler equations using Cartesian grids is used to calculate the transonic flow over multielement airfoils and to use the resulting solutions to assess wall interference effects in wind tunnels. Available methods and recommendations for evaluating such effects, which are based on shifts in Mach number and angle of attack, are examined and the results are compared with measurements using the flapped supercritical SKF 1.1 airfoil. Based on the calculations, it is concluded that shifts in Mach number and angle of attack cannot by themselves account for viscous and wall effects on multielement airfoils at transonic speeds.

  19. Balancing rotor speed regulation and drive train loads of floating wind turbines

    NASA Astrophysics Data System (ADS)

    Fischer, Boris; Loepelmann, Peter

    2016-09-01

    The interaction of the blade pitch controller with structural motion is particularly important for wind turbines mounted on floating platforms. A controls-based approach to overcome the related technical challenges is to feed back the nacelle's motion to the demanded generator torque. This work aims to further improve this approach by feeding back only a narrow fraction of the available frequency range. Simulations show that, in doing so, unrealistically high torque magnitudes are avoided, and better a trade-off between rotor speed regulation and drive train loads is achieved.

  20. Low-speed wind-tunnel test of a STOL supersonic-cruise fighter concept

    NASA Technical Reports Server (NTRS)

    Coe, Paul L., Jr.; Riley, Donald R.

    1988-01-01

    A wind-tunnel investigation was conducted to examine the low-speed static stability and control characteristics of a 0.10 scale model of a STOL supersonic cruise fighter concept. The concept, referred to as a twin boom fighter, was designed as a STOL aircraft capable of efficient long range supersonic cruise. The configuration name is derived from the long twin booms extending aft of the engine to the twin vertical tails which support a high center horizontal tail. The propulsion system features a two dimensional thrust vectoring exhaust nozzle which is located so that the nozzle hinge line is near the aircraft center of gravity. This arrangement is intended to allow large thrust vector angles to be used to obtain significant values of powered lift, while minimizing pitching moment trim changes. Low speed stability and control information was obtained over an angle of attack range including the stall. A study of jet induced power effects was included.

  1. Atlantic Tropical Cyclone Monitoring with AMSU-A: Estimation of Maximum Sustained Wind Speeds

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Braswell, William D.

    2001-01-01

    The first Advanced Microwave Sounding Unit temperature sounder (AMSU-A) was launched on the NOAA-15 satellite on 13 May 1998. The AMSU-A's higher spatial and radiometric resolutions provide more useful information on the strength of the middle- and upper-tropospheric warm cores associated with tropical cyclones than have previous microwave temperature sounders. The gradient wind relationship suggests that the temperature gradient near the core of tropical cyclones increases nonlinearly with wind speed. The gradient wind equation is recast to include AMSU-A-derived variables, Stepwise regression is used to determine which of these variables is most closely related to maximum sustained winds (V(sub max)). The satellite variables investigated include the radially averaged gradients at two spatial resolutions of AMSU-A channels 1-10 T(sub b) data (delta(sub r)T(sub B)), the squares of these gradients, a channel-15-based scattering index (SI(sub 89)), and area-averaged T(sub B). Calculations of T(sub B) and delta(sub r)T(sub B) from mesoscale model simulations of Andrew reveal the effects of the AMSU spatial sampling on the cyclone warm core presentation. Stepwise regression of 66 AMSU-A terms against National Hurricane Center V(sub max) estimates from the 1998 and 1999 Atlantic hurricane season confirms the existence of a nonlinear relationship between wind speed and radially averaged temperature gradients near the cyclone warm core. Of six regression terms, four are dominated by temperature information, and two are interpreted as correcting for hydrometeor contamination. Jackknifed regressions were performed to estimate the algorithm performance on independent data. For the 82 cases that had in situ measurements of V(sub max), the average error standard deviation was 4.7 m/s. For 108 cases without in situ wind data, the average error standard deviation was 7.5 m/s Operational considerations, including the detection of weak cyclones and false alarm reduction, are also

  2. Atlantic Tropical Cyclone Monitoring with AMSU-A: Estimation of Maximum Sustained Wind Speeds

    NASA Technical Reports Server (NTRS)

    Spencer, Roy; Braswell, William D.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    The first Advanced Microwave Sounding Unit temperature sounder (AMSU-A) was launched on the NOAA-15 satellite on 13 May 1998. The AMSU-A's higher spatial and radiometric resolutions provide more useful information on the strength of the middle and upper tropospheric warm cores associated with tropical cyclones than have previous microwave temperature sounders. The gradient wind relationship suggests that the temperature gradient near the core of tropical cyclones increases nonlinearly with wind speed. We recast the gradient wind equation to include AMSU-A derived variables. Stepwise regression is used to determine which of these variables is most closely related to maximum sustained winds (V(sub max)). The satellite variables investigated include the radially averaged gradients at two spatial resolutions of AMSU-A channels 1 through 10 T(sub b) data (delta(sub r)T(sub b)), the squares of these gradients, a channel 15 based scattering index (SI-89), and area averaged T(sub b). Calculations of Tb and delta(sub r)T(sub b) from mesoscale model simulations of Andrew reveal the effects of the AMSU spatial sampling on the cyclone warm core presentation. Stepwise regression of 66 AMSU-A terms against National Hurricane Center (NHC) V(sub max) estimates from the 1998 and 1999 Atlantic hurricane season confirms the existence of a nonlinear relationship between wind speed and radially averaged temperature gradients near the cyclone warm core. Of six regression terms, four are dominated by temperature information, and two are interpreted as correcting for hydrometeor contamination. Jackknifed regressions were performed to estimate the algorithm performance on independent data. For the 82 cases that had in situ measurements of V(sub max), the average error standard deviation was 4.7 m/s. For 108 cases without in situ wind data, the average error standard deviation was 7.5 m/s. Operational considerations, including the detection of weak cyclones and false alarm reduction are

  3. Potential errors in using one anemometer to characterize the wind power over an entire rotor disk

    NASA Technical Reports Server (NTRS)

    Simon, R. L.

    1982-01-01

    Wind data collected at four levels on a 90-m tower in a prospective wind farm area are used to evaluate how well the 10-m wind speed data with and without intermittent vertical profile measurements compare with the 90-m tower data. If a standard, or even predictable, wind speed profile existed, there would be no need for a large, expensive tower. This cost differential becomes even more significant if several towers are needed to study a prospective wind farm.

  4. Extreme-value time-series analysis of Australian Region A gust wind speeds to examine instrument bias

    NASA Astrophysics Data System (ADS)

    Cechet, R. P.; Sanabria, L. A.

    2010-08-01

    Australian building codes through the Australia/New Zealand Wind Actions Standard as well as the wind engineering community in general rely to a significant extent on the peak gust wind speed observations collected over more than 70 years by the Australian Bureau of Meteorology (BoM). In the mid-1980's BoM commenced a program to replace the aging pressure tube Dines anemometers with cup anemometers. During the replacement procedure, many localities had more than one type of anemometer operating, recording extreme events. Systematic differences between instrument measurements during this overlap period raised serious concerns about the utility of the peak gust wind speed database. This paper presents the results of a reanalysis of the current BoM peak wind gust database for the non-cyclonic region (Region A) of the Australia/New Zealand Wind Actions Standard. The study utilises extreme value distribution analysis and compares estimates of the 500-year return-period (RP) peak gust wind exceedance level derived from segments of the record measured with the Dines and replacement anemometers. Results indicate that the later period appears to have a significant reduction in extreme events; 17 of 31 sites have a mean 500 year RP exceedance level for the replacement anemometer section of the record below the lower 95% confidence limit for the Dines anemometer part of the record. The 3PM mean wind speed time-series observations have also been examined, and they exhibit a similar trend.

  5. X-ray bright points and high-speed wind streams: A preliminary analysis from Yohkoh and Ulysses data

    NASA Technical Reports Server (NTRS)

    Poletto, Giannina; Suess, Steven T.; Khan, J. I.; Uchida, Y.; Hiei, E.; Neugebauer, M.; Goldstein, B. E.; Strong, K. T.; Harvey, K. L.

    1994-01-01

    The following aspect of the solar wind mass flux, and of its variation, is examined: whether coronal plumes might be responsible for the long-term variability of the mass flux in high-speed streams emanating from coronal holes. The assumption that plumes are rooted in coronal bright points (BP's) is made. The behavior of X-ray BP's, imaged by the Yohkoh soft X-ray telescope (SXT), during a seven month period when Ulysses experiments observed a series of recurrent high-speed streams, is analyzed. If plumes/BP's are sources of the wind mass flux, changes in the coronal hole BP density to mimic changes of the mass flux in high-speed streams are expected. SOHO will have the capability of measuring the solar wind speed/density at small heliocentric distances while simultaneously observing coronal BP's and coronal plumes.

  6. Effect of Tip-Speed Constraints on the Optimized Design of a Wind Turbine

    SciTech Connect

    Dykes, K.; Resor, B.; Platt, A.; Guo, Y.; Ning, A.; King, R.; Parsons, T.; Petch, D.; Veers, P.

    2014-10-01

    This study investigates the effect of tip-velocity constraints on system levelized cost of energy (LCOE). The results indicate that a change in maximum tip speed from 80 to 100~m/s could produce a 32% decrease in gearbox weight (a 33% reduction in cost) which would result in an overall reduction of 1%-9% in system LCOE depending on the design approach. Three 100~m/s design cases were considered including a low tip-speed ratio/high-solidity rotor design, a high tip-speed ratio/ low-solidity rotor design, and finally a flexible blade design in which a high tip-speed ratio was used along with removing the tip deflection constraint on the rotor design. In all three cases, the significant reduction in gearbox weight caused by the higher tip-speed and lower overall gear ratio was counterbalanced by increased weights for the rotor and/or other drivetrain components and the tower. As a result, the increased costs of either the rotor or drivetrain components offset the overall reduction in turbine costs from down-sizing the gearbox. Other system costs were not significantly affected, whereas energy production was slightly reduced in the 100~m/s case low tip-speed ratio case and increased in the high tip-speed ratio case. This resulted in system cost of energy reductions moving from the 80~m/s design to the 100~m/s designs of 1.2% for the low tip-speed ratio, 4.6% for the high tip-speed ratio, and 9.5% for the final flexible case (the latter result is optimistic because the impact of deflection of the flexible blade on power production was not modeled). Overall, the results demonstrate that there is a trade-off in system design between the maximum tip velocity and the overall wind plant cost of energy, and there are many trade-offs within the overall system in designing a turbine for a high maximum tip velocity.

  7. Wind-Speed Profile and Roughness Sublayer Depth Modelling in Urban Boundary Layers

    NASA Astrophysics Data System (ADS)

    Pelliccioni, Armando; Monti, Paolo; Leuzzi, Giovanni

    2016-08-01

    We propose a new formulation for the wind-speed profile in the urban boundary layer, which can be viewed as a generalisation of the commonly used logarithmic law. The model is based on the assumption that the role played by the classical aerodynamic roughness length and the displacement height in the logarithmic law is taken by a sole variable, the local length scale, which follows a pattern of exponential decrease with height. Starting from wind-speed profiles collected at Villa Pamphili park, Rome, Italy, an empirical fit is used to determine the model parameters. The results show that the local length scale depends also on the friction velocity and that, with appropriate normalization, it reduces to a family of curves that spreads according to the planar area fraction. Another novel aspect is the estimation of the roughness sublayer depth, which can be expressed as a function of the friction velocity and morphometric quantities such as the building height and the planar area fraction. It is also found that the rate of growth with height of the Prandtl mixing length linked to the new formulation is, just above the canopy, lower than the canonical value 0.41, and approaches the latter value well above the roughness sublayer. The model performance is tested by comparison with laboratory and field data reported in the literature.

  8. Low-speed wind tunnel test results of the Canard Rotor/Wing concept

    NASA Technical Reports Server (NTRS)

    Bass, Steven M.; Thompson, Thomas L.; Rutherford, John W.; Swanson, Stephen

    1993-01-01

    The Canard Rotor/Wing (CRW), a high-speed rotorcraft concept, was tested at the National Aeronautics and Space Administration (NASA) Ames Research Center's 40- by 80-Foot Wind Tunnel in Mountain View, California. The 1/5-scale model was tested to identify certain low-speed, fixed-wing, aerodynamic characteristics of the configuration and investigate the effectiveness of two empennages, an H-Tail and a T-Tail. The paper addresses the principal test objectives and the results achieved in the wind tunnel test. These are summarized as: i) drag build-up and differences between the H-Tail and T-Tail configuration, ii) longitudinal stability of the H-Tail and T-Tail configurations in the conversion and cruise modes, iii) control derivatives for the canard and elevator in the conversion and cruise modes, iv) aerodynamic characteristics of varying the rotor/wing azimuth position, and v) canard and tail lift/trim capability for conversion conditions.

  9. Pollutant dispersion simulation for low wind speed condition by the ILS method

    NASA Astrophysics Data System (ADS)

    Carvalho, Jonas C.; de Vilhena, Marco Túllio M. B.

    A semi-analytical Lagrangian particle model to simulate the pollutant dispersion during low wind speed conditions is presented and tested. The method relies to a stochastic integral equation whose solution is obtained using ILS method, which consists in the iterative solution of Langevin equation by the Picard's iteration method. To consider the low wind speed effect, the solution for the horizontal components of the turbulent velocity takes account the Eulerian autocorrelation function as suggested by Frenkiel [1953. Advances in Applied Mechanics 3, 61-107]. The model results are shown to agree very well with the field tracer data collected during stable conditions at Idaho National Engineering Laboratory (INEL) and during convective conditions from the series of field experiments at Indian Institute of Technology (IIT). A statistical analysis reveals that the model simulates very well the experimental data and presents results comparable or even better than ones obtained with other models used as comparison. The analytical feature of the ILS method and the inclusion of the Eulerian autocorrelation function suggested by Frenkiel (1953) allow generating more accurate results.

  10. High-resolution wind speed measurements using actively heated fiber optics

    NASA Astrophysics Data System (ADS)

    Sayde, Chadi; Thomas, Christoph K.; Wagner, James; Selker, John

    2015-11-01

    We present a novel technique to simultaneously measure wind speed (U) at thousands of locations continuously in time based on measurement of velocity-dependent heat transfer from a heated surface. Measuring temperature differences between paired passive and actively heated fiber-optic (AHFO) cables with a distributed temperature sensing system allowed estimation of U at over 2000 sections along the 230 m transect (resolution of 0.375 m and 5.5 s). The underlying concept is similar to that of a hot wire anemometer extended in space. The correlation coefficient between U measured by two colocated sonic anemometers and the AHFO were 0.91 during the day and 0.87 at night. The combination of classical passive and novel AHFO provides unprecedented dynamic observations of both air temperature and wind speed spanning 4 orders of magnitude in spatial scale (0.1-1000 m) while resolving individual turbulent motions, opening new opportunities for testing basic theories for near-surface geophysical flows.

  11. Weibull Wind-Speed Distribution Parameters Derived from a Combination of Wind-Lidar and Tall-Mast Measurements Over Land, Coastal and Marine Sites

    NASA Astrophysics Data System (ADS)

    Gryning, Sven-Erik; Floors, Rogier; Peña, Alfredo; Batchvarova, Ekaterina; Brümmer, Burghard

    2016-05-01

    Wind-speed observations from tall towers are used in combination with observations up to 600 m in altitude from a Doppler wind lidar to study the long-term conditions over suburban (Hamburg), rural coastal (Høvsøre) and marine (FINO3) sites. The variability in the wind field among the sites is expressed in terms of mean wind speed and Weibull distribution shape-parameter profiles. The consequences of the carrier-to-noise-ratio ( CNR) threshold-value choice on the wind-lidar observations are revealed as follows. When the wind-lidar CNR is lower than a prescribed threshold value, the observations are often filtered out as the uncertainty in the wind-speed measurements increases. For a pulsed heterodyne Doppler lidar, use of the traditional -22 dB CNR threshold value at all measuring levels up to 600 m results in a ≈ 7 % overestimation in the long-term mean wind speed over land, and a ≈ 12 % overestimation in coastal and marine environments. In addition, the height of the profile maximum of the shape parameter of the Weibull distribution (so-called reversal height) is found to depend on the applied CNR threshold; it is found to be lower at small CNR threshold values. The reversal height is greater in the suburban (high roughness) than in the rural (low roughness) area. In coastal areas the reversal height is lower than that over land and relates to the internal boundary layer that develops downwind from the coastline. Over the sea the shape parameter increases towards the sea surface. A parametrization of the vertical profile of the shape parameter fits well with observations over land, coastal regions and over the sea. An applied model for the dependence of the reversal height on the surface roughness is in good agreement with the observations over land.

  12. Commissioning of 30 kVA variable-speed, direct-drive wind power plant

    NASA Astrophysics Data System (ADS)

    Yildirim, Deniz

    Most wind turbines in service today employ induction generators together with a step-up mechanical gear so that the operational speed is close to the synchronous speed of two or four-pole generators. Because of the torque-speed characteristic of induction generators, the range of speed change is rather small; therefore, the operational speed can be considered to be nearly constant. Mechanical gears are subject to wear and tear, reduce reliability of the drive train and add to its weight. The maximum power that can be extracted from wind varies with its speed. Therefore, a direct-drive system, where a wind turbine is directly coupled to the generator shaft, is desirable along with a variable-speed operation. The variable-speed, direct-drive train described in this thesis consists of a lowspeed, permanent-magnet generator (60 to 120rpm), a resonant rectifier and a pulsewidth-modulated inverter. It supplies 30 kVA/20kW apparent/real power to the utility system at leading and unity power factors for a given DC link voltage. The amplitude and phase (leading, unity) of the AC current delivered to the utility system are controllable and the voltage/current wave forms at the point of common coupling satisfy standard IEEE-519. The overall efficiency of the drive train is about 83% (excluding the generator), whereby the rectifier has an efficiency of 86% and the inverter efficiency is around 95%. Using two different approaches (computer-aided and three-voltmeter methods), the losses of inductors are measured for the frequency range of 0 to 6 kHz. Measurement errors of both methods are less than 10% when measuring a few watts. The AC resistance increase of a Litz-wire inductor without a core is smallest among all of the inductors being tested. Stranding of individual (uninsulated) wires to obtain a flexible cable results in more losses than using a solid cable having the same cross-sectional area as that of a stranded cable. Nonsinusoidal voltages and currents in a power

  13. Binocular videogrammetric system for three-dimensional measurement in low-speed wind tunnel

    NASA Astrophysics Data System (ADS)

    Zhu, Ye; Gu, Yonggang; Zhai, Chao

    2014-11-01

    In order to avoid the defects of contact measurement, such as limited range, complex constructing and disability of 3-D parameter acquisition, we built a binocular videogrammetric system for measuring 3-D geometry parameters of wind tunnel test models, for instance, displacement, rotation angle and vibration, in low-speed wind tunnel. The system is based on the principles of close-range digital photogrammetry. As a non-contact system, it acquires parameters without interference in the experiments, and it has adjustable range and simple structure. It is worth mentioning that this is a Realtime measurement system, so that it can greatly compress the experiment period, furthermore, it is also able to provide some specific experiments with parameters for online adjustment. In this system, images are acquired through two industrial digital cameras and a PCI-E image acquisition card, and they are processed in a PC. The two cameras are triggered by signals come from a function signal generator, so that images of different cameras will have good temporal synchronization to ensure the accuracy of 3-D reconstruction. A two-step stereo calibration technique using planar pattern developed by Zhengyou Zhang is used to calibrate these cameras. Results of wind tunnel test indicate that the system can provide displacement accuracy better than 0.1% and rotation angle accuracy better than 0.1 degree, besides, the vibration frequency accuracy is superior to 0.1Hz in the low-frequency range.

  14. AE Geomagnetic Index Predictability for High Speed Solar Wind Streams: A Wavelet Decomposition Technique

    NASA Technical Reports Server (NTRS)

    Guarnieri, Fernando L.; Tsurutani, Bruce T.; Hajra, Rajkumar; Echer, Ezequiel; Gonzalez, Walter D.; Mannucci, Anthony J.

    2014-01-01

    High speed solar wind streams cause geomagnetic activity at Earth. In this study we have applied a wavelet interactive filtering and reconstruction technique on the solar wind magnetic field components and AE index series to allowed us to investigate the relationship between the two. The IMF Bz component was found as the most significant solar wind parameter responsible by the control of the AE activity. Assuming magnetic reconnection associated to southward directed Bz is the main mechanism transferring energy into the magnetosphere, we adjust parameters to forecast the AE index. The adjusted routine is able to forecast AE, based only on the Bz measured at the L1 Lagrangian point. This gives a prediction approximately 30-70 minutes in advance of the actual geomagnetic activity. The correlation coefficient between the observed AE data and the forecasted series reached values higher than 0.90. In some cases the forecast reproduced particularities observed in the signal very well.The high correlation values observed and the high efficacy of the forecasting can be taken as a confirmation that reconnection is the main physical mechanism responsible for the energy transfer during HILDCAAs. The study also shows that the IMF Bz component low frequencies are most important for AE prediction.

  15. Quasi-periodic (~mHz) dayside auroral brightennings associated with high-speed solar wind

    NASA Astrophysics Data System (ADS)

    Liou, K.

    2013-12-01

    It has been reported that dayside auroral pulsations of a few mHz frequency can occur when variations of solar wind dynamic pressure at the same frequency appear. Magnetospheric compression/decompression is attributed to the auroral pulsations. Here we report another type of dayside auroral pulsations not associated with solar wind dynamic pressure changes by using global auroral images acquired from the Ultraviolet Imager (UVI) on board the Polar satellite. From one periodic (~2 - 8 mHz) auroral event that occurred on February 8, 2000, it is found that the auroral enhancements covered most of the day (~05 - 16 MLT) sector and did not show a latitudinal dependence. Based on in situ particle data from DMSP SSJ/4, the brightennings were associated mainly with enhanced particle precipitations from the central plasma sheet (i.e., diffuse aurora). There was no geomagnetic pulsation on the ground and in the dawn sector of the magnetosheath as indicated by the Geotail measurements. While the auroral pulsations occurred during high solar wind speed (> 600 km/s), they commenced when the interplanetary magnetic field turned northward, suggesting the Kelvin-Helmholtz instability being a source of the pulsations. We will present detail analysis results and discuss other possible mechanisms in the context of current theories.

  16. Effects of the interaction and evolution of interplanetary shocks on ``background'' solar wind speeds

    NASA Astrophysics Data System (ADS)

    Wu, Chin-Chun; Feng, X. S.; Wu, S. T.; Dryer, M.; Fry, C. D.

    2006-12-01

    Solar wind speed plays an important role in the study of space weather prediction. Some workers have used it for measuring the arrival time of solar disturbances at 1 AU. The purpose of this work is to extend our previous study (Wu et al., 2005c) of some Halloween 2003 events by presenting additional physical effects of multiple shock interactions on the solar wind profile during a complex compound event. In order to achieve this goal, we track a group of specific solar events' plasma and magnetic field output as they propagate into interplanetary space. A one-dimensional, time-dependent adaptive grid MHD code is used to study the evolution and interaction of shocks from Sun through the heliosphere. The MHD simulation results demonstrate that the solar wind speed might increase about ≈25% after two shocks collide with each other. This kind of interaction can affect the accuracy of the identification of the solar source that causes the interplanetary event (e.g., magnetic cloud, coronal mass ejection, interplanetary shock, or some other interplanetary discontinuity.) In this study we further simulate part of the famous Halloween 2003 events that contain at least four major solar events (flares) during 28 October to 1 November 2003. These major events, simulated by pressure pulses, generated shocks that matched well with ACE (Advanced Composition Explorer) observations as reported by Wu et al. (2005c) in our previous study. The present work presents new details concerning the interplay (such as sunward and antisunward traveling compression and rarefaction waves) between fast forward and fast reverse interplanetary shocks.

  17. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    SciTech Connect

    Lee, Gwang-Se; Cheong, Cheolung

    2014-12-15

    Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs), few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF) wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF) noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.

  18. On the relation between coronal heating, flux tube divergence, and the solar wind proton flux and flow speed

    NASA Technical Reports Server (NTRS)

    Sandbaek, Onulf; Leer, Egil; Hansteen, Viggo H.

    1994-01-01

    A one-fluid solar wind model is used to investigate some relations between coronal heating, the flux tube divergence near the Sun, and the solar wind proton flux and flow speed. The effects of energy addition to the supersonic region of the flow are also studied. We allow for a mechanical energy flux that heats the corona, and an Alfven wave energy flux that adds energy, mainly to the supersonic flow, both as momentum and as heat. We find that the mechanical energy flux determines the solar wind mass flux, and in order to keep an almost constant proton flux at the orbit of Earth with changing flow geometry, that the mechanical energy flux must vary linearly with the magnetic field in the inner corona. This thermally driven wind generally has a low asymptotic flow speed. When Alfven waves are added to the thermally driven flow, the asymptotic flow speed is increased and is determined by the ratio of the Alfven wave and the mechanical energy fluxes at the coronal base. Flow speeds characteristic of recurrent high-speed solar wind streams can be obtained only when the Alfven wave energy flux, deposited in the supersonic flow, is larger than the mechanical energy flux heating the corona.

  19. OCCURRENCE OF HIGH-SPEED SOLAR WIND STREAMS OVER THE GRAND MODERN MAXIMUM

    SciTech Connect

    Mursula, K.; Holappa, L.; Lukianova, R.

    2015-03-01

    In the declining phase of the solar cycle (SC), when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind (SW) streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity (GA) in the near-Earth space. Here, using a novel definition of GA at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculate the annually averaged SW speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onward. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each of SCs 16-23. For most cycles the HSS activity clearly reaches a maximum in one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of SC 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.

  20. Occurrence of High-speed Solar Wind Streams over the Grand Modern Maximum

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Lukianova, R.; Holappa, L.

    2015-03-01

    In the declining phase of the solar cycle (SC), when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind (SW) streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity (GA) in the near-Earth space. Here, using a novel definition of GA at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculate the annually averaged SW speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onward. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each of SCs 16-23. For most cycles the HSS activity clearly reaches a maximum in one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of SC 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.

  1. LIDAR Wind Speed Measurement Analysis and Feed-Forward Blade Pitch Control for Load Mitigation in Wind Turbines: January 2010--January 2011

    SciTech Connect

    Dunne, F.; Simley, E.; Pao, L.Y.

    2011-10-01

    This report examines the accuracy of measurements that rely on Doppler LIDAR systems to determine their applicability to wind turbine feed-forward control systems and discusses feed-forward control system designs that use preview wind measurements. Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feed-forward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. The first half of this report examines the accuracy of different measurement scenarios that rely on coherent continuous-wave or pulsed Doppler LIDAR systems to determine their applicability to feed-forward control. In particular, the impacts of measurement range and angular offset from the wind direction are studied for various wind conditions. A realistic case involving a scanning LIDAR unit mounted in the spinner of a wind turbine is studied in depth with emphasis on choices for scan radius and preview distance. The effects of turbulence parameters on measurement accuracy are studied as well. Continuous-wave and pulsed LIDAR models based on typical commercially available units were used in the studies present in this report. The second half of this report discusses feed-forward control system designs that use preview wind measurements. Combined feedback/feed-forward blade pitch control is compared to industry standard feedback control when simulated in realistic turbulent above-rated winds. The feed-forward controllers are designed to reduce fatigue loads, increasing turbine lifetime and therefore reducing the cost of energy. Three feed-forward designs are studied: non-causal series expansion, Preview Control, and optimized FIR filter. The input to the feed-forward controller is a measurement of

  2. Determination of transport wind speed in the gaussian plume diffusion equation for low-lying point sources

    NASA Astrophysics Data System (ADS)

    Wang, I. T.

    A general method for determining the effective transport wind speed, overlineu, in the Gaussian plume equation is discussed. Physical arguments are given for using the generalized overlineu instead of the often adopted release-level wind speed with the plume diffusion equation. Simple analytical expressions for overlineu applicable to low-level point releases and a wide range of atmospheric conditions are developed. A non-linear plume kinematic equation is derived using these expressions. Crosswind-integrated SF 6 concentration data from the 1983 PNL tracer experiment are used to evaluate the proposed analytical procedures along with the usual approach of using the release-level wind speed. Results of the evaluation are briefly discussed.

  3. Multiyear study of the dependence of sea salt aerosol on wind speed and sea ice conditions in the coastal Arctic

    NASA Astrophysics Data System (ADS)

    May, N. W.; Quinn, P. K.; McNamara, S. M.; Pratt, K. A.

    2016-08-01

    Thinning of Arctic sea ice gives rise to ice fracturing and leads (areas of open water surrounded by sea ice) that are a potential source of sea salt aerosol. Atmospheric particle inorganic ion concentrations, local sea ice conditions, and meteorology at Barrow, AK, from 2006 to 2009, were combined to investigate the dependence of submicron (aerodynamic diameter < 1 µm) and supermicron (aerodynamic diameter 1-10 µm) sea salt mass concentrations on sea ice coverage and wind speed. Consistent with a wind-dependent source, supermicron sea salt mass concentrations increased in the presence of nearby leads and wind speeds greater than 4 m s-1. Increased supermicron and submicron sea salt chloride depletion was observed for periods of low winds or a lack of nearby open water, consistent with transported sea salt influence. Sea salt aerosol produced from leads has the potential to alter cloud formation, as well as the chemical composition of the Arctic atmosphere and snowpack.

  4. The effects of the variations in sea surface temperature and atmospheric stability in the estimation of average wind speed by SEASAT-SASS

    NASA Technical Reports Server (NTRS)

    Liu, W. T.

    1984-01-01

    The average wind speeds from the scatterometer (SASS) on the ocean observing satellite SEASAT are found to be generally higher than the average wind speeds from ship reports. In this study, two factors, sea surface temperature and atmospheric stability, are identified which affect microwave scatter and, therefore, wave development. The problem of relating satellite observations to a fictitious quantity, such as the neutral wind, that has to be derived from in situ observations with models is examined. The study also demonstrates the dependence of SASS winds on sea surface temperature at low wind speeds, possibly due to temperature-dependent factors, such as water viscosity, which affect wave development.

  5. A wind-tunnel investigation of parameters affecting helicopter directional control at low speeds in ground effect

    NASA Technical Reports Server (NTRS)

    Yeager, W. T., Jr.; Young, W. H., Jr.; Mantay, W. R.

    1974-01-01

    An investigation was conducted in the Langley full-scale tunnel to measure the performance of several helicopter tail-rotor/fin configurations with regard to directional control problems encountered at low speeds in ground effect. Tests were conducted at wind azimuths of 0 deg to 360 deg in increments of 30 deg and 60 deg and at wind speeds from 0 to 35 knots. The results indicate that at certain combinations of wind speed and wind azimuth, large increases in adverse fin force require correspondingly large increases in the tail-rotor thrust, collective pitch, and power required to maintain yaw trim. Changing the tail-rotor direction of rotation to top blade aft for either a pusher tail rotor (tail-rotor wake blowing away from fin) or a tractor tail rotor (tail-rotor wake blowing against fin) will alleviate this problem. For a pusher tail rotor at 180 deg wind azimuth, increases in the fin/tail-rotor gap were not found to have any significant influence on the overall vehicle directional control capability. Changing the tail rotor to a higher position was found to improve tail-rotor performance for a fin-off configuration at a wind azimuth of 180 deg. A V-tail configuration with a pusher tail rotor with top blade aft direction of rotation was found to be the best configuration with regard to overall directional control capability.

  6. Reply to "Comment on 'Critical wind speed at which trees break' ".

    PubMed

    Virot, E; Ponomarenko, A; Dehandschoewercker, É; Quéré, D; Clanet, C

    2016-12-01

    In the preceding comment [A. Albrecht et al., Phys. Rev. E 94, 067001 (2016)10.1103/PhysRevE.94.067001], Albrecht et al. argue that important biomechanical ingredients are missing in our model about the wind speed at which trees break [Phys. Rev. E 93, 023001 (2016)10.1103/PhysRevE.93.023001]. Here we wish to emphasize that our model is an idealization, which primarily aims at evidencing the dominant ingredients of the problem. Since it captures both observed trends and orders of magnitude, we believe that the essential parameters in tree breakage have been identified, a useful step to make further progress and more detailed descriptions.

  7. Reconstruction of Interplanetary Magnetic Field and Solar Wind Speed for the Last 135 Years Revisited

    NASA Astrophysics Data System (ADS)

    Osherovich, V. A.; Fainberg, J.

    2007-12-01

    We reconstruct the magnitude of the interplanetary magnetic field B and solar wind speed v at 1 AU using 1) yearly values of sunspot numbers and geomagnetic index aa; 2) available spacecraft measurements of v and B since 1964. We compare our results with the reconstruction done by Stamper et al. (1999) and also with the reconstruction by Svalgaard et al. (2003). References Stamper, R., M. Lockwood and M.N. Wild, Solar causes of the long-term increase in geomagnetic activity, J. Geophys. Res., Vol.104 (A12), 24325, 1999. Svalgaard, Leif, E. W. Cliver and P. Lesager, In; Solar variability as an input to the Earth's environment. International Solar Cycle Studies (ISCS) Symposium, 23 - 28 June 2003, Tatranska Lomnica, Slovak Republic. Ed.:A. Wilson. ESA SP-535, Noorwijk: ESA Publications Division, IBSN 92-9092-845-X, 2003, p. 15 - 23

  8. Low-speed wind-tunnel tests of an advanced eight-bladed propeller

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Gentry, G. L., Jr.; Dunham, D. M.

    1985-01-01

    As part of a research program on advanced turboprop aircraft aerodynamics, a low-speed wind-tunnel investigation was conducted to document the basic performance and force and moment characteristics of an advanced eight-bladed propeller. The results show that in addition to the normal force and pitching moment produced by the propeller/nacelle combination at angle of attack, a significant side force and yawing moment are also produced. Furthermore, it is shown that for test conditions wherein compressibility effects can be ignored, accurate simulation of propeller performance and flow fields can be achieved by matching the nondimensional power loading of the model propeller to that of the full-scale propeller.

  9. Low-speed wind-tunnel results for symmetrical NASA LS(1)-0013 airfoil

    NASA Technical Reports Server (NTRS)

    Ferris, James C.; Mcghee, Robert J.; Barnwell, Richard W.

    1987-01-01

    A wind-tunnel test has been conducted in the Langley Low-Turbulence Pressure Tunnel to evaluate the performance of a symmetrical NASA LS(1)-0013 airfoil which is a 13-percent-thick, low-speed airfoil. The airfoil contour was obtained from the thickness distribution of a 13-percent-thick, high-performance airfoil developed for general aviation airplanes. The tests were conducted at Mach numbers from 0.10 tp 0.37 over a Reynolds number range from about 0.6 to 12.0 X 10 to the 6th power. The angle of attack varied from about -8 to 20 degrees. The results indicate that the aerodynamic characteristics of the present airfoil are similar to, but slightly better than, those of the NACA 0012 airfoil.

  10. Tracer dispersion simulation in low wind speed conditions with a new 2D Langevin equation system

    NASA Astrophysics Data System (ADS)

    Anfossi, D.; Alessandrini, S.; Trini Castelli, S.; Ferrero, E.; Oettl, D.; Degrazia, G.

    The simulation of atmospheric dispersion in low wind speed conditions (LW) is still recognised as a challenge for modellers. Recently, a new system of two coupled Langevin equations that explicitly accounts for meandering has been proposed. It is based on the study of turbulence and dispersion properties in LW. The new system was implemented in the Lagrangian stochastic particle models LAMBDA and GRAL. In this paper we present simulations with this new approach applying it to the tracer experiments carried out in LW by Idaho National Engineering Laboratory (INEL, USA) in 1974 and by the Graz University of Technology and CNR-Torino near Graz in 2003. To assess the improvement obtained with the present model with respect to previous models not taking into account the meandering effect, the simulations for the INEL experiments were also performed with the old version of LAMBDA. The results of the comparisons clearly indicate that the new approach improves the simulation results.

  11. Reply to "Comment on `Critical wind speed at which trees break' "

    NASA Astrophysics Data System (ADS)

    Virot, E.; Ponomarenko, A.; Dehandschoewercker, É.; Quéré, D.; Clanet, C.

    2016-12-01

    In the preceding comment [A. Albrecht et al., Phys. Rev. E 94, 067001 (2016), 10.1103/PhysRevE.94.067001], Albrecht et al. argue that important biomechanical ingredients are missing in our model about the wind speed at which trees break [Phys. Rev. E 93, 023001 (2016), 10.1103/PhysRevE.93.023001]. Here we wish to emphasize that our model is an idealization, which primarily aims at evidencing the dominant ingredients of the problem. Since it captures both observed trends and orders of magnitude, we believe that the essential parameters in tree breakage have been identified, a useful step to make further progress and more detailed descriptions.

  12. Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval

    NASA Astrophysics Data System (ADS)

    Rae, I. J.; Donovan, E. F.; Mann, I. R.; Fenrich, F. R.; Watt, C. E. J.; Milling, D. K.; Lester, M.; Lavraud, B.; Wild, J. A.; Singer, H. J.; RèMe, H.; Balogh, A.

    2005-12-01

    We present an interval of extremely long-lasting narrow-band Pc5 pulsations during the recovery phase of a large geomagnetic storm. These pulsations occurred continuously for many hours and were observed throughout the magnetosphere and in the dusk-sector ionosphere. The subject of this paper is the favorable radial alignment of the Cluster, Polar, and geosynchronous satellites in the dusk sector during a 3-hour subset of this interval that allows extensive analysis of the global nature of the pulsations and the tracing of their energy transfer from the solar wind to the ground. Virtually monochromatic large-amplitude pulsations were observed by the CANOPUS magnetometer chain at dusk for several hours, during which the Cluster spacecraft constellation traversed the dusk magnetopause. The solar wind conditions were very steady, the solar wind speed was fast, and time series analysis of the solar wind dynamic pressure shows no significant power concentrated in the Pc5 band. The pulsations are observed in both geosynchronous electron and magnetic field data over a wide range of local times while Cluster is in the vicinity of the magnetopause providing clear evidence of boundary oscillations with the same periodicity as the ground and geosynchronous pulsations. Furthermore, the Polar spacecraft crossed the equatorial dusk magnetosphere outside of geosynchronous orbit (L ˜ 6-9) and observed significant electric and magnetic perturbations around the same quasi-stable central frequency (1.4-1.6 mHz). The Poynting vector observed by the Polar spacecraft associated with these pulsations has strong field-aligned oscillations, as expected for standing Alfvén waves, as well as a nonzero azimuthal component, indicating a downtail component to the energy propagation. In the ionosphere, ground-based magnetometers observed signatures characteristic of a field-line resonance, and HF radars observed flows as a direct consequence of the energy input. We conclude that the most

  13. Shelter Index and a simple wind speed parameter to characterize vegetation control of sand transport threshold and Flu

    NASA Astrophysics Data System (ADS)

    Gillies, J. A.; Nield, J. M.; Nickling, W. G.; Furtak-Cole, E.

    2014-12-01

    Wind erosion and dust emissions occur in many dryland environments from a range of surfaces with different types and amounts of vegetation. Understanding how vegetation modulates these processes remains a research challenge. Here we present results from a study that examines the relationship between an index of shelter (SI=distance from a point to the nearest upwind vegetation/vegetation height) and particle threshold expressed as the ratio of wind speed measured at 0.45 times the mean plant height divided by the wind speed at 17 m when saltation commences, and saltation flux. The results are used to evaluate SI as a parameter to characterize the influence of vegetation on local winds and sediment transport conditions. Wind speed, wind direction, saltation activity and point saltation flux were measured at 35 locations in defined test areas (~13,000 m2) in two vegetation communities: mature streets of mesquite covered nebkhas and incipient nebkhas dominated by low mesquite plants. Measurement positions represent the most open areas, and hence those places most susceptible to wind erosion among the vegetation elements. Shelter index was calculated for each measurement position for each 10° wind direction bin using digital elevation models for each site acquired using terrestrial laser scanning. SI can show the susceptibility to wind erosion at different time scales, i.e., event, seasonal, or annual, but in a supply-limited system it can fail to define actual flux amounts due to a lack of knowledge of the distribution of sediment across the surface of interest with respect to the patterns of SI.

  14. Underwater Ambient Noise and Sperm Whale Click Detection during Extreme Wind Speed Conditions

    NASA Astrophysics Data System (ADS)

    Newcomb, Joal J.; Wright, Andrew J.; Kuczaj, Stan; Thames, Rachel; Hillstrom, Wesley R.; Goodman, Ralph

    2004-11-01

    The Littoral Acoustic Demonstration Center (LA DC) deployed three Environmental Acoustic Recording System (EARS) buoys in the northern Gulf of Mexico during the summers of 2001 (LADC 01) and 2002 (LADC 02). The hydrophone of each buoy was approximately 50m from the bottom in water depths of 645m to 1034m. During LADC 01 Tropical Storm Barry passed within 93nmi east of the EARS buoys. During LADC 02 Tropical Storm Isidore and Hurricane Lili passed within approximately 73nmi and 116nmi, respectively, west of the EARS buoys. The proximity of these storm systems to the EARS buoys, in conjunction with wind speed data from three nearby NDBC weather buoys, allows for the direct comparison of underwater ambient noise levels with high wind speeds. These results are compared to the G. M. Wenz spectra at frequencies from 1kHz to 5.5kHz. In addition, the impact of storm conditions on sperm whale clicks was assessed. In particular, although the time period during the closest approach of TS Barry tended to produce lower click rates, this time period did not have the greatest incidence of non-detection at all the EARS buoys. It follows that storm-related masking noise could not have been responsible for all the observed trends. The data suggest that sperm whales may have left the vicinity of the deepest EARS buoy (nearest TS Barry's storm track) during the storm and possibly moved into the shallower waters around the other EARS buoys. It also appears that sperm whales may not have returned to the deepest EARS area, or did not resume normal behavior immediately after the storm, as the click rate did not recover to pre-storm levels during the period after TS Barry had dissipated. Results of these analyses and the ambient noise analysis will be presented. (Research supported by ONR).

  15. Correlations of global sea surface temperatures with the solar wind speed

    NASA Astrophysics Data System (ADS)

    Zhou, Limin; Tinsley, Brian; Chu, Huimin; Xiao, Ziniu

    2016-11-01

    A significant correlation between the solar wind speed (SWS) and sea surface temperature (SST) in the region of the North Atlantic Ocean has been found for the Northern Hemisphere winter from 1963 to 2010, based on 3-month seasonal averages. The correlation is dependent on Bz (the interplanetary magnetic field component parallel to the Earth's magnetic dipole) as well as the SWS, and somewhat stronger in the stratospheric quasi-biennial oscillation (QBO) west phase than in the east phase. The correlations with the SWS are stronger than those with the F10.7 parameter representing solar UV inputs to the stratosphere. SST responds to changes in tropospheric dynamics via wind stress, and to changes in cloud cover affecting the radiative balance. Suggested mechanisms for the solar influence on SST include changes in atmospheric ionization and cloud microphysics affecting cloud cover, storm invigoration, and tropospheric dynamics. Such changes modify upward wave propagation to the stratosphere, affecting the dynamics of the polar vortex. Also, direct solar inputs, including energetic particles and solar UV, produce stratospheric dynamical changes. Downward propagation of stratospheric dynamical changes eventually further perturbs tropospheric dynamics and SST.

  16. Towards an automatic system for monitoring of CN2 and wind speed profiles with GeMS

    NASA Astrophysics Data System (ADS)

    Masciadri, Elena; Neichel, Benoit; Guesalaga, Andres; Turchi, Alessio

    2016-07-01

    Wide Field Adaptive Optics (WFAO) systems represent the more sophisticated AO systems available today at large telescopes. One critical aspect for these WFAO systems in order to deliver an optimised performance is the knowledge of the vertical spatiotemporal distribution of the CN2 and the wind speed. Previous studies (Cortes et al., 2012[1]) already proved the ability of GeMS (the Gemini Multi-Conjugated AO system) in retrieving CN2 and wind vertical stratification using the telemetry data. To assess the reliability of the GeMS wind speed estimates a preliminary study (Neichel et al., 2014[2]) compared wind speed retrieved from GeMS with that obtained with the atmospherical model Meso-Nh on a small sample of nights providing promising results. The latter technique is very reliable for the wind speed vertical stratification. The model outputs gave, indeed, an excellent agreement with a large sample of radiosoundings ( 50) both in statistical terms and on individual flights (Masciadri et al., 2013[3]). Such a tool can therefore be used as a valuable reference in this exercise of cross calibrating GeMS on-sky wind estimates with model predictions. The main results of Neichel et al. (2014) analysis showed that, on a great number of cases, GeMS could reconstruct very good wind speed estimates. At the same time it has been put in evidence, on a number of cases, not negligible discrepancies from the atmospherical model. However we observed that these discrepancies strongly decreased or even disappear if GeMS data reduction is done with the a priori knowledge of the wind speed stratification provided by the model Meso-Nh. Basically the a priori knowledge helped the data reduction of GeMS acquisitions. In this contribution we achieved a two-fold results: (1) we extended analysis on a much richer statistical sample ( 43 nights), we confirmed the preliminary results and we found an even better correlation between GeMS observations and the atmospherical model with basically

  17. Variability of daily winter wind speed distribution over Northern Europe during the past millennium in regional and global climate simulations

    NASA Astrophysics Data System (ADS)

    Bierstedt, Svenja; Hünicke, Birgit; Zorita, Eduardo; Wagner, Sebastian; José Gomez-Navarro, Juán

    2016-04-01

    We analyse the variability of the probability distribution of daily wind speed in wintertime over Northern and Central Europe in a series of global and regional climate simulations covering the last centuries, and in reanalysis products covering approximately the last 60 years. The focus of the study lies on identifying the link of the variations in the wind speed distribution to the regional near-surface temperature, to the meridional temperature gradient and to the North Atlantic Oscillation. The climate simulations comprise three simulations, each conducted with a global climate model that includes a different version of the atmospheric model ECHAM. Two of these global simulations have been downscaled with the regional climate models MM5 and CCLM. The reanalysis products are the global NCEP/NCAR meteorological reanalysis version 1 and a regional reanalysis conducted with a regional atmospheric model driven at its domain boundaries by the NCEP/NCAR reanalysis. Our main result is that the link between the daily wind distribution and the regional climate drivers is strongly model dependent. The global models tend to behave similarly, although they show some discrepancies. The two regional models also tend to behave similarly to each other, but surprisingly the results derived from each regional model strongly deviates from the results derived from its driving global model. The links between wind speed and large-scale drivers derived from the reanalysis data sets overall tend to resemble those of the global models. In addition, considering multi-centennial time scales, we find in two global simulations a long term tendency for the probability distribution of daily wind speed to widen through the last centuries. The cause for this widening is likely the effect of the deforestation prescribed in these simulations. We conclude that no clear systematic relationship between the mean temperature, the temperature gradient and/or the North Atlantic Oscillation, with the

  18. Acoustical evaluation of the NASA Lewis 9 by 15 foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Woodward, Richard P.

    1992-01-01

    The test section of the NASA Lewis 9- by 15-Foot Low Speed Wind Tunnel was acoustically treated to allow the measurement of acoustic sources located within the tunnel test section under simulated free field conditions. The treatment was designed for high sound absorption at frequencies above 250 Hz and to withstand tunnel airflow velocities up to 0.2 Mach. Evaluation tests with no tunnel airflow were conducted in the test section to assess the performance of the installed treatment. This performance would not be significantly affected by low speed airflow. Time delay spectrometry tests showed that interference ripples in the incident signal resulting from reflections occurring within the test section average from 1.7 dB to 3.2 dB wide over a 500 to 5150 Hz frequency range. Late reflections, from upstream and downstream of the test section, were found to be insignificant at the microphone measuring points. For acoustic sources with low directivity characteristics, decay with distance measurements in the test section showed that incident free field behavior can be measured on average with an accuracy of +/- 1.5 dB or better at source frequencies from 400 Hz to 10 kHz. The free field variations are typically much smaller with an omnidirectional source.

  19. Luminescence intensity in coral skeletons from Mona Island in the Caribbean Sea and its link to precipitation and wind speed.

    PubMed

    Nyberg, Johan

    2002-04-15

    This study investigates the potential of using changes of interannual luminescence intensity in hermatypic Montastraea coral skeletons in the northeastern Caribbean as a proxy of precipitation and (trade) wind speed. In order to find wavelength pairs that are well suited to detect variations in the concentration of incorporated terrestrial humic substances in coral skeletons, and thus to reconstruct past run-off and rainfall, three-dimensional excitation-emission matrix fluorescence spectra of seawater samples were investigated on their relationships to local precipitation. Three prominent excitation-emission peaks at 310/430, 425/480 and 390/530 nm were identified. The fluorescence intensities of the wavelength pair 310/430 nm showed a weak relationship, while the wavelength pairs at 425/480 and 390/530 nm showed strong relationships with local precipitation. Variations in luminescence intensities from scans on the coral surface along the growth axis using the wavelengths identified were then compared with instrumental records of regional precipitation and wind speed. In the coral skeleton as well, the wavelength pairs at 425/480 and 390/530 nm were more strongly correlated with regional precipitation and wind speed. This indicates that these two wavelength pairs are well suited to reconstruct past precipitation and wind speed. In order to evaluate the use as a proxy of trade wind variability in the Caribbean, tropical Atlantic region, variations in luminescence intensity were compared with a record of trade wind variability from the southern Caribbean. The two records are strongly correlated, which suggests that luminescence intensity in coral skeletons, at least from Mona Island, can be used as proxy of trade wind variability and precipitation.

  20. Statistical Short-Range Guidance for Peak Wind Speed Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station: Phase I Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.; Merceret, Francis J. (Technical Monitor)

    2002-01-01

    This report describes the results of the ANU's (Applied Meteorology Unit) Short-Range Statistical Forecasting task for peak winds. The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The Keith Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A 7 year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. In all climatologies, the average and peak wind speeds were highly variable in time. This indicated that the development of a peak wind forecasting tool would be difficult. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. The climatologies and PDFs provide tools with which to make peak wind forecasts that are critical to safe operations.

  1. A cm scale electret-based electrostatic wind turbine for low-speed energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Perez, M.; Boisseau, S.; Gasnier, P.; Willemin, J.; Geisler, M.; Reboud, J. L.

    2016-04-01

    This paper presents a small-scale airflow energy harvester built on an axial turbine architecture and exploiting an electret-based electrostatic converter. When the airflow velocity is high enough, the windmill starts rotating and creates a periodic relative motion between a stator and a rotor which induces variations of capacitance. These ones are directly converted into electricity thanks to the use of Teflon electrets charged at -1400 V which polarize the variable capacitors. We focus our study on a 4-blade axial turbine with a diameter of D = 40 mm, a depth of W = 10 mm, for a total volume of 12.6 cm3. This windmill has been tested with various blade angles and different types of electrostatic converters and output powers up to 90 μW at 1.5 m s-1 (7.5 μW cm-3) and 1.8 mW at 10 m s-1 (111 μW cm-3) have been obtained so far. The coefficient of power reaches C p = 5.8% and among the small-scale airflow energy harvesters previously reported, this one has the lowest cut-in speed (1.5 m s-1).

  2. 3-D MHD Model of the Solar Wind-Interplanetary Space Combining System 1:Variation of Solar Wind Speed Associated with the Photospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Nakamizo, A.; Tanaka, T.

    2006-12-01

    Existing global models of the solar-wind/IMF expanding to the Earth's orbit are basically grounded in the idea of "source surface." It is widely accepted that the sector structure and the solar wind speed are primarily controlled by the magnetic field at the source surface and the so-called "expansion factor." On the other hand, 3-D MHD model is still off from practical use because both of scientific and technical problems. One of the former problems is the reproduction of supersonic solar-wind. From the viewpoint of the physics of the solar wind, coronal heating and outward acceleration mechanisms are invoked to explain the supersonic evolution of the solar wind. Since the mechanism responsible for the heating/acceleration is still one of the primary subjects of the physics of the solar wind, many MHD models have taken into account their effects by incorporating additional source terms corresponding to promising candidates such as thermal conductions, radiation losses and wave pressures. However there are few MHD models considering the effect of the expansion factor, which determines the solar-wind speed in the series of source surface models. In this study we newly incorporate the flux tube expansion rate into the MHD equation system including heat source function in the energy equation. Appling the unstructured grid system, we achieved the dense grid spacing at the inner boundary, which enable us to adopt realistic solar magnetic fields, and a size of simulation space of 1AU. Photospheric magnetic field data is used as the inner boundary condition.The simulation results are summarized as: (1) The variation of solar wind speed is well controlled by the structure of magnetic fields at and little above the solar surface and (2) Far above the solar surface, the interface between high and low speed flows evolves to a structure suggestive of CIRs. Comparing the data from simulation with the actual solar wind data obtained by spacecrafts, we will discuss the future

  3. Preliminary assessment of the variability of UK offshore wind speed as a function of distance to the coast

    NASA Astrophysics Data System (ADS)

    Soler-Bientz, Rolando; Watson, Simon

    2016-09-01

    In the UK, there is an interest in the expected offshore wind resource given ambitious national plans to expand offshore capacity. There is also an increasing interest in alternative datasets to evaluate wind seasonal and inter-annual cycles which can be very useful in the initial stages of the design of wind farms in order to identify prospective areas where local measur