Science.gov

Sample records for 10-m wind speed

  1. Wind Speed Perception and Risk

    PubMed Central

    Agdas, Duzgun; Webster, Gregory D.; Masters, Forrest J.

    2012-01-01

    Background How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human–wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. Method We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s) winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. Results Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk). The number of tropical cyclones people had experienced moderated the strength of the actual–perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. Conclusion These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters. PMID:23226230

  2. Estimation of friction velocity from the wind-wave spectrum at extremely high wind speeds

    NASA Astrophysics Data System (ADS)

    Takagaki, N.; Komori, S.; Suzuki, N.

    2016-05-01

    The equilibrium range of wind-waves at normal and extremely high wind speeds was investigated experimentally using a high-speed wind-wave tank together with field measurements at normal wind speeds. Water level fluctuations at normal and extremely high wind speeds were measured with resistance-type wave gauges, and the wind-wave spectrum and significant phase velocity were calculated. The equilibrium range constant was estimated from the wind-wave spectrum and showed the strong relationship with inverse wave age at normal and extremely high wind speeds. Using the strong relation between the equilibrium range constant and inverse wave age, a new method for estimating the wind speed at 10-m height (U 10) and friction velocity (u*) was proposed. The results suggest that U 10 and u* can be estimated from wave measurements alone at extremely high wind speeds in oceans under tropical cyclones.

  3. Maxometers (peak wind speed anemometers)

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W.; Camp, D. W.; Turner, R. E. (Inventor)

    1973-01-01

    An instrument for measuring peak wind speeds under severe environmental conditions is described, comprising an elongated cylinder housed in an outer casing. The cylinder contains a piston attached to a longitudinally movable guided rod having a pressure disk mounted on one projecting end. Wind pressure against the pressure disk depresses the movable rod. When the wind reaches its maximum speed, the rod is locked by a ball clutch mechanism in the position of maximum inward movement. Thereafter maximum wind speed or pressure readings may be taken from calibrated indexing means.

  4. Wind speed forecasting for wind energy applications

    NASA Astrophysics Data System (ADS)

    Liu, Hong

    With more wind energy being integrated into our grid systems, forecasting wind energy has become a necessity for all market participants. Recognizing the market demands, a physical approach to site-specific hub-height wind speed forecasting system has been developed. This system is driven by the outputs from the Canadian Global Environmental Multiscale (GEM) model. A simple interpolation approach benchmarks the forecasting accuracy inherited from GEM. Local, site specific winds are affected on a local scale by a variety of factors including representation of the land surface and local boundary-layer process over heterogeneous terrain which have been a continuing challenge in NWP models like GEM with typical horizontal resolution of order 15-km. In order to resolve these small scale effects, a wind energy industry standard model, WAsP, is coupled with GEM to improve the forecast. Coupling the WAsP model with GEM improves the overall forecasts, but remains unsatisfactory for forecasting winds with abrupt surface condition changes. Subsequently in this study, a new coupler that uses a 2-D RANS model of boundary-layer flow over surface condition changes with improved physics has been developed to further improve the forecasts when winds coming from a water surface to land experience abrupt changes in surface conditions. It has been demonstrated that using vertically averaged wind speeds to represent geostrophic winds for input into the micro-scale models could reduce forecast errors. The hub-height wind speed forecasts could be further improved using a linear MOS approach. The forecasting system has been evaluated, using a wind energy standard evaluation matrix, against data from an 80-m mast located near the north shore of Lake Erie. Coupling with GEM-LAM and a power conversion model using a theoretical power curve have also been investigated. For hub-height wind speeds GEM appears to perform better with a 15-Ian grid than the high resolution GEM-2.5Ian version at the

  5. Numerical wind speed simulation model

    SciTech Connect

    Ramsdell, J.V.; Athey, G.F.; Ballinger, M.Y.

    1981-09-01

    A relatively simple stochastic model for simulating wind speed time series that can be used as an alternative to time series from representative locations is described in this report. The model incorporates systematic seasonal variation of the mean wind, its standard deviation, and the correlation speeds. It also incorporates systematic diurnal variation of the mean speed and standard deviation. To demonstrate the model capabilities, simulations were made using model parameters derived from data collected at the Hanford Meteorology Station, and results of analysis of simulated and actual data were compared.

  6. Unsafe at Any (Wind) Speed?.

    NASA Astrophysics Data System (ADS)

    Schmidlin, Thomas; Hammer, Barbara; King, Paul; Ono, Yuichi; Miller, L. Scott; Thumann, Gregory

    2002-12-01

    The goal of this research was to examine the relative safety and stability of stationary motor vehicles exposed to severe winds. The focus was on private passenger vehicles. 1) The behavior of two instrumented storm-chase vehicles that were exposed to severe winds, 2) the behavior of 291 vehicles exposed to a tornado, and 3) the wind speed required to upset a sedan and a minivan exposed to winds in a wind tunnel were studied. A wind as strong as 47 m s1 (105 mph) has been measured by a storm-chase pickup truck and 44 m s1 (98 mph) by a storm chase sedan. The vehicles were not adversely affected by the wind. Also studied were 291 vehicles parked outdoors at homes struck by tornadoes, and the behavior of the vehicles was compared to the F-scale damage to the house. At sites with F1 or F2 damage, 72% of the vehicles were not moved by the wind and 96% were not tipped over. At sites with F3 or F4 damage, 50% were not moved by the wind and 82% were not tipped over. Wind tunnel tests on a sedan and minivan showed they were most vulnerable to upset (lifting of one tire from the ground) with wind directions near 45° and 135°, as measured from the front. When modeled with 5° of suspension tilt to the side, the sedan was found to be upset at wind speeds of 51-67 m s1 (115-150 mph), and the minivan was upset at wind speeds of 58-80 m s1 (130-180 mph). Although an underground shelter or sturdy building offer the best protection from severe winds, it is found that a vehicle may be a relatively stable place and may be safer than a mobile home or the outdoors. These findings may warrant changes to public recommendations made during tornado warnings and other severe storm situations.

  7. Dual-speed wind turbine generation

    SciTech Connect

    Muljadi, E; Butterfield, C P; Handman, D

    1996-10-01

    Induction generator has been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using a dual output drive train to drive two induction generators with two different rated speeds. With single-speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. Operation at maximum Cp can occur only at a single wind speed. However, if the wind speed.varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative which captures more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine is investigated. Annual energy production is compared between single-speed and dual-speed operation. One type of control algorithm for dual-speed operation is proposed. Some results from a dynamic simulation will be presented to show how the control algorithm works as the wind turbine is exposed to varying wind speeds.

  8. Mars - Wind friction speeds for particle movement

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Leach, R.; White, B.; Iversen, J.; Pollack, J.

    1976-01-01

    Wind friction threshold speeds for particle movement were determined in a low pressure boundary layer wind tunnel at an atmospheric pressure of 5.3 mb. The results imply that for comparable pressures on Mars, the minimum wind friction threshold speed is about 2.5 m/sec, which would require free-stream winds of 50 to 135 m/sec, depending on the character of the surface and the atmospheric conditions. The corresponding wind speeds at the height of the Viking lander meteorology instrument would be about a factor of two less than the free-stream wind speed. The particle size most easily moved by winds on Mars is about 160 microns; particles both larger and smaller than this (at least down to about 5 microns) require stronger winds to initiate movement.

  9. Addendum to “Wind speed trends over the contiguous United States”

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Ledolter, J.

    2010-05-01

    An earlier paper (Pryor et al., 2009) reports linear trends for annual percentiles of 10 m wind speeds from across the United States based on ordinary linear regression applied without consideration of temporal autocorrelation. Herein we show significant temporal autocorrelation in annual metrics from approximately half of all surface and upper air wind speed time series and present analyses that indicate at least some fraction of the temporal autocorrelation at the annual time scale may be due to the influence of persistent low-frequency climate modes as manifest in teleconnection indices. Treatment of the temporal autocorrelation slightly reduces the number of stations for which linear trends in10 m wind speeds are deemed significant but does not alter the trend magnitudes relative to those presented by Pryor et al. (2009). Analyses conducted accounting for the autocorrelation indicate 55% of annual 50th percentile 10 m wind speed time series, and 45% of 90th percentile annual 10 m wind speed time series derived from the National Climate Data Center DS3505 data set exhibit significant downward trends over the period 1973-2005. These trends are consistent with previously reported declines in pan evaporation but are not present in 10 m wind speeds from reanalysis products or upper air wind speeds from the radiosonde network.

  10. Deterministic prediction of surface wind speed variations

    NASA Astrophysics Data System (ADS)

    Drisya, G. V.; Kiplangat, D. C.; Asokan, K.; Satheesh Kumar, K.

    2014-11-01

    Accurate prediction of wind speed is an important aspect of various tasks related to wind energy management such as wind turbine predictive control and wind power scheduling. The most typical characteristic of wind speed data is its persistent temporal variations. Most of the techniques reported in the literature for prediction of wind speed and power are based on statistical methods or probabilistic distribution of wind speed data. In this paper we demonstrate that deterministic forecasting methods can make accurate short-term predictions of wind speed using past data, at locations where the wind dynamics exhibit chaotic behaviour. The predictions are remarkably accurate up to 1 h with a normalised RMSE (root mean square error) of less than 0.02 and reasonably accurate up to 3 h with an error of less than 0.06. Repeated application of these methods at 234 different geographical locations for predicting wind speeds at 30-day intervals for 3 years reveals that the accuracy of prediction is more or less the same across all locations and time periods. Comparison of the results with f-ARIMA model predictions shows that the deterministic models with suitable parameters are capable of returning improved prediction accuracy and capturing the dynamical variations of the actual time series more faithfully. These methods are simple and computationally efficient and require only records of past data for making short-term wind speed forecasts within practically tolerable margin of errors.

  11. Wind speeds on extrasolar worlds

    NASA Astrophysics Data System (ADS)

    Allers, Katelyn; Biller, Beth; Vos, Johanna; Williams, Peter; Berger, Edo

    2016-08-01

    We propose for photometric monitoring observations of 2MASS J10475385+2124234 and WISE J112254.73+255021.5 using Spitzer/IRAC. 2MASS J1047+21 and WISE J1122+25 are late spectral type (T6.5 and T6) radio emitters and have measured radio periods of 1.77 hrs and 1.30 hrs, respectively. Our proposed observations will not only characterize the variability of the two coolest known radio emitters but also provide a unique opportunity to measure the first wind speeds for brown dwarfs. Spitzer is currently the only facility capable of the photometric stability, continuous observations and 4.5 micron sensitivity necessary for the success of our program.

  12. Annual variations in sea surface wind speed around Japan observed by ASCAT

    NASA Astrophysics Data System (ADS)

    Takeyama, Y.; Shimada, S.; Ohsawa, T.; Kozai, K.; Kogaki, T.

    2015-12-01

    Sea surface wind speeds and these statistics can be applied for many marine industrial activities. For example, the averaged wind speed is crucial information for a site selection of an offshore wind farm. It has widely been recognized that a total amount of the offshore wind generation is strongly depended on the annual average wind speeds. A advanced scatterometer (ASCAT), which is a kind of scatterometer aboard METOP-A and B, has observed sea surface wind speeds at the height of 10 m above the sea surface approximately twice a day using active microwaves. The annual average wind speed can be calculated from the observed wind speed. For an actual use of the annual average wind speed, generalities and representativeness of the wind speed must be clarified. To investigate annual variations in sea surface wind speed around Japan (120°E to 165°E, 19°N to 49°N), the annual average wind speeds and these standard deviations are calculated from 5 years of ASCAT observations from 2010 through 2014. It is found that there are some sea areas where standard deviations are relatively higher than their surroundings. Annual average wind speed maps indicate that the high standard deviation is caused by strong winds from Eurasia in the winter of 2011 in part of North Pacific Ocean and Sea of Okhotsk. Additionally standard deviations for only winter are also higher than for summer in those sea areas. Therefore the strong wind speed in the winter of a particular year can easily affect to the annual average wind speed. Meanwhile off the coast of Niigata and Hokkaido, there are also higher standard deviation areas than their surroundings. Differences between monthly maximum wind speeds for the winter and minimum wind speeds for the summer in these areas are larger and the large differences seem to be a cause of the high standard deviations.

  13. Critical wind speed at which trees break

    NASA Astrophysics Data System (ADS)

    Virot, E.; Ponomarenko, A.; Dehandschoewercker, É.; Quéré, D.; Clanet, C.

    2016-02-01

    Data from storms suggest that the critical wind speed at which trees break is constant (≃42 m /s ), regardless of tree characteristics. We question the physical origin of this observation both experimentally and theoretically. By combining Hooke's law, Griffith's criterion, and tree allometry, we show that the critical wind speed indeed hardly depends on the height, diameter, and elastic properties of trees.

  14. Generalized extreme gust wind speeds distributions

    USGS Publications Warehouse

    Cheng, E.; Yeung, C.

    2002-01-01

    Since summer 1996, the US wind engineers are using the extreme gust (or 3-s gust) as the basic wind speed to quantify the destruction of extreme winds. In order to better understand these destructive wind forces, it is important to know the appropriate representations of these extreme gust wind speeds. Therefore, the purpose of this study is to determine the most suitable extreme value distributions for the annual extreme gust wind speeds recorded in large selected areas. To achieve this objective, we are using the generalized Pareto distribution as the diagnostic tool for determining the types of extreme gust wind speed distributions. The three-parameter generalized extreme value distribution function is, thus, reduced to either Type I Gumbel, Type II Frechet or Type III reverse Weibull distribution function for the annual extreme gust wind speeds recorded at a specific site.With the considerations of the quality and homogeneity of gust wind data collected at more than 750 weather stations throughout the United States, annual extreme gust wind speeds at selected 143 stations in the contiguous United States were used in the study. ?? 2002 Elsevier Science Ltd. All rights reserved.

  15. Rain-aerosol relationships influenced by wind speed

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Russell, Lynn M.; Lou, Sijia; Liu, Ying; Singh, Balwinder; Ghan, Steven J.

    2016-03-01

    Aerosol optical depth (AOD) has been shown to correlate with precipitation rate (R) in recent studies. The R-AOD relationships over oceans are examined in this study using 150 year simulations with the Community Earth System Model. Through partial correlation analysis, with the influence of 10 m wind speed removed, R-AOD relationships exert a change from positive to negative over the midlatitude oceans, indicating that wind speed makes a large contribution to the relationships by changing the sea-salt emissions. A simulation with prescribed sea-salt emissions shows that wind speed leads to increasing R by +0.99 mm d-1 averaged globally, offsetting 64% of the wet scavenging-induced decrease between polluted and clean conditions, defined according to percentiles of AOD. These demonstrate that wind speed is one of the major drivers of R-AOD relationships. Relative humidity at 915 hPa can also result in the positive relationships; however, its role is smaller than that of wind speed.

  16. Latitudinal dependence of solar wind speed

    NASA Technical Reports Server (NTRS)

    Fry, C. D.; Akasofu, S.-I.

    1987-01-01

    The data of King (1979, 1983) and of Hoeksema et al. (1982, 1983) are used to investigate the solar-cycle evolution of solar wind bulk speed as a function of source magnetic field strength. The effects of solar transient events are removed. The data suggest that the latitudinal gradient in background solar wind speed is steepest at solar minimum and broadest at solar maximum. The lowest and highest background speeds are found to remain fairly constant throughout the solar cycle. A function developed for the background solar wind speed is inserted into the improved kinematic code of Hakamada and Akasofu (1982), and solar wind speed and IMF are simulated for two periods in the solar cycle. The observed parameters for specific coronal hole passage are well reproduced by the analysis.

  17. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  18. Field measurements of wind speed and reconfiguration in Arundo donax (Poaceae) with estimates of drag forces.

    PubMed

    Speck, Olga

    2003-08-01

    The giant reed (Arundo donax) is well known as a species that can withstand high wind loads without mechanical damage. To examine wind impact, profiles of vertical wind speeds in the plant's natural habitat (southern France) were measured at the edge and within a stand in the main wind direction. Wind speed was recorded simultaneously at five heights. For 75 measurements of within-canopy wind speed profiles, the attenuation coefficient was 4.4 ± 0.5, a value typical for plant stands with very dense canopies. Video recordings proved that A. donax becomes streamlined with increasing wind speed, reducing the projected surface area of leaves and stem. The total projected surface area is a function of wind speed and can be characterized by a second-order polynomial regression curve. For small wind velocities up to 1 m/s, the calculated drag force is proportional to the square of the wind speed. However, when A. donax plants are subjected to higher wind speeds (1.5-10 m/s), the drag force becomes directly proportional to the wind speed. Streamlining is a potentially important adaptation for withstanding high wind loads, especially for individual plants and plants at the edge of stands, whereas in dense stands streamlining probably plays a minor role.

  19. Characterization of Wind Meandering in Low-Wind-Speed Conditions

    NASA Astrophysics Data System (ADS)

    Mortarini, Luca; Stefanello, Michel; Degrazia, Gervasio; Roberti, Debora; Trini Castelli, Silvia; Anfossi, Domenico

    2016-10-01

    Investigation of low-wind cases observed during the Urban Turbulent Project campaign (Torino, Italy) and at the Santa Maria meteorological station (Santa Maria, Brazil) provides insight into the wind-meandering phenomenon, i.e. large, non-turbulent oscillations of horizontal wind speed and temperature. Meandering and non-meandering cases are identified through analysis of the Eulerian autocorrelation functions of the horizontal wind-velocity components and temperature. When all three autocorrelation functions oscillate, meandering is present. As with weak turbulence, meandering shows no dependence on stability but is influenced by presence of buildings and depends on wind speed. We show that, while the standard deviation of the horizontal velocity is always large in low-wind conditions, the standard deviation of the vertical velocity shows very different behaviour in meandering and non-meandering conditions. In particular, the value of the ratio of the standard deviations of the vertical and horizontal velocities typifies the meandering condition.

  20. Maximum wind speeds and US hurricane losses

    NASA Astrophysics Data System (ADS)

    Murnane, R. J.; Elsner, J. B.

    2012-08-01

    There is academic, commercial, and public interest in estimating loss from hurricanes striking land and understanding how loss might change as a result of future variations in climate. Here we show that the relationship between wind speed and loss is exponential and that loss increases with wind speed at a rate of 5% per m s-1. The relationship is derived using quantile regression and a data set comprising wind speeds of hurricanes hitting the United States and normalized economic losses. We suggest that the “centercepts” for the different quantiles account for exposure-related factors such as population density, precipitation, and surface roughness, and that once these effects are accounted for, the increase in loss with wind speed is consistent across quantiles. An out-of-sample test of this relationship correctly predicts economic losses from Hurricane Irene in 2011. The exponential relationship suggests that increased wind speeds will produce significantly higher losses; however, increases in exposed property and population are expected to be a more important factor for near future losses.

  1. LIDAR wind speed measurements at a Taiwan onshore wind park

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Lin, Ta-Hui; Hsuan, Chung-Yao; Li, Yu-Cheng; Yang, Ya-Fei; Tai, Tzy-Hwan; Huang, Chien-Cheng

    2016-04-01

    Measurements of wind speed and wind direction were carried out using a Leosphere Windcube LIDAR system at a Taiwan onshore wind park. The Lidar shot a total of five laser beams to the atmosphere to collect the light-of-sight (LOS) velocity. Four beams were sent successively in four cardinal directions along a 28° scanning cone angle, followed by a fifth, vertical beam. An unchangeable sampling rate of approximately 1.2 Hz was set in the LIDAR system to collect the LOS velocity. The supervisory control and data acquisition (SCADA) data from two GE 1.5 MW wind turbines near the LIDAR deployment site were acquired for the whole measuring period from February 4 to February 16 of 2015. The SCADA data include the blade angular velocity, the wind velocity measured at hub height from an anemometer mounted on the nacelle, the wind turbine yaw angle, and power production; each parameter was recorded as averages over 1-min periods. The data analysis involving the LIDAR measurements and the SCADA data were performed to obtain the turbulent flow statistics. The results show that the turbine power production has significant dependence to the wind speed, wind direction, turbulence intensity and wind shear.

  2. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect

    Simley, E.; Pao, L. Y.; Kelley, N.; Jonkman, B.; Frehlich, R.

    2012-01-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems that are designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed the validity of physicist G.I. Taylor's 1938 frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations using the National Renewable Energy Laboratory's (NREL's) 5-megawatt turbine model to create a more realistic measurement model. A simple model of wind evolution was applied to a frozen wind field that was used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements were also evaluated using a large eddy simulation (LES) of a stable boundary layer that was provided by the National Center for Atmospheric Research. The LIDAR measurement scenario investigated consists of a hub-mounted LIDAR that scans a circle of points upwind of the turbine in order to estimate the wind speed component in the mean wind direction. Different combinations of the preview distance that is located upwind of the rotor and the radius of the scan circle were analyzed. It was found that the dominant source of measurement error for short preview distances is the detection of transverse and vertical wind speeds from the line-of-sight LIDAR measurement. It was discovered in previous studies that, in the absence of wind evolution, the dominant source of error for large preview distances

  3. Derivation of physically motivated wind speed scales

    NASA Astrophysics Data System (ADS)

    Dotzek, Nikolai

    A class of new wind speed scales is proposed in which the relevant scaling factors are derived from physical quantities like mass flux density, energy density (pressure), or energy flux density. Hence, they are called Energy- or E-scales, and can be applied to wind speeds of any intensity. It is shown that the Mach scale is a special case of an E-scale. Aside from its foundation in physical quantities which allow for a calibration of the scales, the E-scale concept can help to overcome the present plethora of scales for winds in the range from gale to hurricane intensity. A procedure to convert existing data based on the Fujita-scale or other scales (Saffir-Simpson, TORRO, Beaufort) to their corresponding E-scales is outlined. Even for the large US tornado record, the workload of conversion in case of an adoption of the E-scale would in principle remain manageable (if the necessary metadata to do so were available), as primarily the F5 events would have to be re-rated. Compared to damage scales like the "Enhanced Fujita" or EF-scale concept recently implemented in the USA, the E-scales are based on first principles. They can consistently be applied all over the world for the purpose of climatological homogeneity. To account for international variations in building characteristics, one should not adapt wind speed scale thresholds to certain national building characteristics. Instead, one worldwide applicable wind speed scale based on physical principles should rather be complemented by nationally-adapted damage descriptions. The E-scale concept can provide the basis for such a standardised wind speed scale.

  4. Wind Speed Measurement by Paper Anemometer

    ERIC Educational Resources Information Center

    Zhong, Juhua; Cheng, Zhongqi; Guan, Wenchuan

    2011-01-01

    A simple wind speed measurement device, a paper anemometer, is fabricated based on the theory of standing waves. In providing the working profile of the paper anemometer, an experimental device is established, which consists of an anemometer sensor, a sound sensor, a microphone, paper strips, a paper cup, and sonic acquisition software. It shows…

  5. Dynamic simulation of dual-speed wind turbine generation

    SciTech Connect

    Muljadi, E; Butterfield, C P

    1996-10-01

    Induction generators have been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness, and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using two induction generators with two different rated speeds. With single- speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. The operation at maximum Cp can occur only at a single wind speed. However, if the wind speed varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind-speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative to capture more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine will be investigated. One type of control algorithm for dual- speed operation is proposed. Results from a dynamic simulation will be presented to show how the control algorithm works and how power, current and torque of the system vary as the wind turbine is exposed to varying wind speeds.

  6. Mechanism of drag coefficient saturation at strong wind speeds

    NASA Astrophysics Data System (ADS)

    Takagaki, Naohisa; Komori, Satoru; Suzuki, Naoya; Iwano, Koji; Kurose, Ryoichi

    2016-09-01

    Previous studies have demonstrated the saturation of drag coefficients at strong wind speeds. But the mechanism behind this saturation has not yet been fully clarified. In this study, at normal and strong wind speeds, we use a wind-wave tank for investigating the peak enhancement factor of the wind-sea spectrum, which is an appropriate wave parameter for representing interfacial flatness. We measured the water-level fluctuation using wave gauges. At strong wind speeds, the result shows that the peak enhancement factor of the wind-sea spectrum decreases with decreasing inverse wave age and with increasing wind speed. This suggests that the distinctive wind-wave breaking occurs at strong wind speeds. It also suggests that this distinctive breaking of wind waves causes the saturation of drag coefficients at strong wind speeds.

  7. Gas transfer velocities measured at low wind speed over a lake

    USGS Publications Warehouse

    Crusius, J.; Wanninkhof, R.

    2003-01-01

    The relationship between gas transfer velocity and wind speed was evaluated at low wind speeds by quantifying the rate of evasion of the deliberate tracer, SF6, from a small oligotrophic lake. Several possible relationships between gas transfer velocity and low wind speed were evaluated by using 1-min-averaged wind speeds as a measure of the instantaneous wind speed values. Gas transfer velocities in this data set can be estimated virtually equally well by assuming any of three widely used relationships between k600 and winds referenced to 10-m height, U10: (1) a bilinear dependence with a break in the slope at ???3.7 m s-1, which resulted in the best fit; (2) a power dependence; and (3) a constant transfer velocity for U10 3.7 m s-1 which, coupled with the typical variability in instantaneous wind speeds observed in the field, leads to average transfer velocity estimates that are higher than those predicted for steady wind trends. The transfer velocities predicted by the bilinear steady wind relationship for U10 < ???3.7 m s-1 are virtually identical to the theoretical predictions for transfer across a smooth surface.

  8. Pitch-controlled variable-speed wind turbine generation

    SciTech Connect

    Muljadi, E.; Butterfield, C.P.

    2000-03-01

    Wind energy is a viable option to complement other types of pollution-free generation. In the early development of wind energy, the majority of wind turbines were operated at constant speed. Recently, the number of variable-speed wind turbines installed in wind farms has increased and more wind turbine manufacturers are making variable-speed wind turbines. This paper covers the operation of variable-speed wind turbines with pitch control. The system the authors considered is controlled to generate maximum energy while minimizing loads. The maximization of energy was only carried out on a static basis and only drive train loads were considered as a constraint. In medium wind speeds, the generator and power converter control the wind turbine to capture maximum energy from the wind. In the high wind speed region, the wind turbine is controlled to maintain the aerodynamic power produced by the wind turbine. Two methods to adjust the aerodynamic power were investigated: pitch control and generator load control, both of which are employed to control the operation of the wind turbine. The analysis and simulation shows that the wind turbine can be operated at its optimum energy capture while minimizing the load on the wind turbine for a wide range of wind speeds.

  9. Decadal predictability of regional scale wind speed and wind energy potentials over Central Europe

    NASA Astrophysics Data System (ADS)

    Moemken, Julia; Reyers, Mark; Buldmann, Benjamin; Pinto, Joaquim G.

    2016-04-01

    Regional climate predictions on timescales from one year to one decade are gaining importance since this time frame falls within the planning horizon of politics, economy, and society. In this context, decadal predictions are of particular interest for the development of renewable energies such as wind energy. The present study examines the decadal predictability of regional scale wind speed and wind energy potentials in the framework of the MiKlip consortium ("Mittelfristige Klimaprognosen"; www.fona-miklip.de). This consortium aims to develop a model system based on the Max-Planck-Institute Earth System Model (MPI-ESM) that can provide skilful decadal predictions on regional and global scales. Three generations of the decadal prediction system, which differ primarily in their ocean initialisation, are analysed here. Ensembles of uninitialised historical and yearly initialised hindcast experiments are used to assess different skill scores for 10m wind speeds and wind energy output (Eout) over Central Europe, with special focus given to Germany. With this aim, a statistical-dynamical downscaling (SDD) approach is used for the regionalisation of the global datasets. Its added value is evaluated by comparison of skill scores for MPI-ESM large-scale wind speeds and SDD simulated regional wind speeds. All three MPI-ESM ensemble generations show some forecast skill for annual mean wind speed and Eout over Central Europe on yearly and multi-yearly time scales. The forecast skill is mostly limited to the first years after initialisation. Differences between the three ensemble generations are generally small. The regionalisation preserves and sometimes increases the forecast skill of the global runs but results depend on lead time and ensemble generation. Moreover, regionalisation often improves the ensemble spread. Seasonal Eout skills are generally lower than for annual means. Skill scores are lowest during summer, and persist longest in autumn. A large-scale westerly

  10. Wind turbind speed control by automatic yawing

    NASA Astrophysics Data System (ADS)

    Hohenemser, K. H.; Swift, A. H. P.

    1983-06-01

    A yaw dynamics analysis was developed for a two-bladed horizontal axis wind turbine with passive cyclic pitch variation achieved by letting the blade pair freely oscillate about a common axis with which the blades formed a small prelag angle. This type of rotor was found capable of high yaw rates without imposing vibratory hub moments and without producing noticeable flapping amplitudes. Experiments were conducted with a tail vane stabilized 7.6 m diameter wind rotor driving a three phase alternator tuned and loaded to produce a rotor torque proportional to the square of the rotor speed. Two yaw control systems which replaced the usual blade feathering controls were investigated: an active yaw control system using a hydraulic rotor speed governor, and a passive system responding to a combination of rotor thrust and torque. Both systems limited during strong gusts rotor speed quite accurately. The passive system appeared to be more promising because of its greater reliability and because of the greater ease of adapting it to larger size wind turbines.

  11. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates.

    PubMed

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y; Sáez, A Eduardo; Betterton, Eric A

    2014-07-15

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (>4m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport.

  12. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates.

    PubMed

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y; Sáez, A Eduardo; Betterton, Eric A

    2014-07-15

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (>4m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. PMID:24769193

  13. Wind speed forecasting in the central California wind resource area

    SciTech Connect

    McCarthy, E.F.

    1997-12-31

    A wind speed forecasting program was implemented in the summer seasons of 1985 - 87 in the Central California Wind Resource Area (WRA). The forecasting program is designed to use either meteorological observations from the WRA and local upper air observations or upper air observations alone to predict the daily average windspeed at two locations. Forecasts are made each morning at 6 AM and are valid for a 24 hour period. Ease of use is a hallmark of the program as the daily forecast can be made using data entered into a programmable HP calculator. The forecasting program was the first step in a process to examine whether the electrical energy output of an entire wind power generation facility or defined subsections of the same facility could be predicted up to 24 hours in advance. Analysis of the results of the summer season program using standard forecast verification techniques show the program has skill over persistence and climatology.

  14. Model estimates hurricane wind speed probabilities

    NASA Astrophysics Data System (ADS)

    Mumane, Richard J.; Barton, Chris; Collins, Eric; Donnelly, Jeffrey; Eisner, James; Emanuel, Kerry; Ginis, Isaac; Howard, Susan; Landsea, Chris; Liu, Kam-biu; Malmquist, David; McKay, Megan; Michaels, Anthony; Nelson, Norm; O Brien, James; Scott, David; Webb, Thompson, III

    In the United States, intense hurricanes (category 3, 4, and 5 on the Saffir/Simpson scale) with winds greater than 50 m s -1 have caused more damage than any other natural disaster [Pielke and Pielke, 1997]. Accurate estimates of wind speed exceedance probabilities (WSEP) due to intense hurricanes are therefore of great interest to (re)insurers, emergency planners, government officials, and populations in vulnerable coastal areas.The historical record of U.S. hurricane landfall is relatively complete only from about 1900, and most model estimates of WSEP are derived from this record. During the 1899-1998 period, only two category-5 and 16 category-4 hurricanes made landfall in the United States. The historical record therefore provides only a limited sample of the most intense hurricanes.

  15. Spatial and Temporal Patterns of Global Onshore Wind Speed Distribution

    SciTech Connect

    Zhou, Yuyu; Smith, Steven J.

    2013-09-09

    Wind power, a renewable energy source, can play an important role in electrical energy generation. Information regarding wind energy potential is important both for energy related modeling and for decision-making in the policy community. While wind speed datasets with high spatial and temporal resolution are often ultimately used for detailed planning, simpler assumptions are often used in analysis work. An accurate representation of the wind speed frequency distribution is needed in order to properly characterize wind energy potential. Using a power density method, this study estimated global variation in wind parameters as fitted to a Weibull density function using NCEP/CFSR reanalysis data. The estimated Weibull distribution performs well in fitting the time series wind speed data at the global level according to R2, root mean square error, and power density error. The spatial, decadal, and seasonal patterns of wind speed distribution were then evaluated. We also analyzed the potential error in wind power estimation when a commonly assumed Rayleigh distribution (Weibull k = 2) is used. We find that the assumption of the same Weibull parameter across large regions can result in substantial errors. While large-scale wind speed data is often presented in the form of average wind speeds, these results highlight the need to also provide information on the wind speed distribution.

  16. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    PubMed

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  17. Effectiveness of Changing Wind Turbine Cut-in Speed to Reduce Bat Fatalities at Wind Facilities

    SciTech Connect

    Huso, Manuela M. P.; Hayes, John P.

    2009-04-01

    This report details an experiment on the effectiveness of changing wind turbine cut-in speed on reducing bat fatality from wind turbines at the Casselman Wind Project in Somerset County, Pennsylvania.

  18. Wind speed statistics for Goldstone, California, anemometer sites

    NASA Technical Reports Server (NTRS)

    Berg, M.; Levy, R.; Mcginness, H.; Strain, D.

    1981-01-01

    An exploratory wind survey at an antenna complex was summarized statistically for application to future windmill designs. Data were collected at six locations from a total of 10 anemometers. Statistics include means, standard deviations, cubes, pattern factors, correlation coefficients, and exponents for power law profile of wind speed. Curves presented include: mean monthly wind speeds, moving averages, and diurnal variation patterns. It is concluded that three of the locations have sufficiently strong winds to justify consideration for windmill sites.

  19. Ground-based Pc5 ULF wave power: Solar wind speed and MLT dependence

    NASA Astrophysics Data System (ADS)

    Pahud, D. M.; Rae, I. J.; Mann, I. R.; Murphy, K. R.; Amalraj, V.

    2009-07-01

    Using over 20 years of ground-based magnetometer data from the CANOPUS/CARISMA magnetometer array, we present a statistical characterisation of Pc5 ultra-low frequency (ULF) power in the 2-10 mHz band as a function of magnetic local time (MLT), L-shell, and solar wind speed. We examine the power across L-shells between 4.2 and 7.9, using data from the PINA, ISLL, GILL and FCHU stations, and demonstrate that there is a significant MLT dependence in both the H- and D-component median 2-10 mHz power during both fast (>500 km/s) and slow (<500 km/s) solar wind speeds. The H-component power consistently dominates over D-component power at all MLTs and during both fast and slow solar wind. At the higher-L stations (L>5.4), there are strong MLT power peaks in the morning and midnight local time sectors; the morning sector dominating midnight during fast solar wind events. At lower L-shells, there is no evidence of the midnight peak and the 2-10 mHz power is more symmetric with respect to MLT except during the fastest solar wind speeds. There is little evidence in the ground-based power of a localised MLT peak in ULF power at dusk, except at the lowest L-shell station, predominantly in the H-component. The median 2-10 mHz power increases with an approximate power law dependence on solar wind speed, at all local times across the L-shell domain studied in both components. The H-component power peaks at the latitude of the GILL station, with significantly lower power at both higher and lower L-shells. Conversely, the D-component power increases monotonically. We believe that this is evidence for 2-10 mHz power accumulating at auroral latitudes in field line resonances. Finally, we discuss how such ULF wave power characterisation might be used to derive empirical radiation belt radial diffusion coefficients based on, and driven by, the solar wind speed dependence of ULF wave power.

  20. Relationship between wind speed and gas exchange over the ocean

    NASA Technical Reports Server (NTRS)

    Wanninkhof, Rik

    1992-01-01

    A quadratic dependence of gas exchange on wind speed is employed to analyze the relationship between gas transfer and wind speed with particular emphasizing variable and/or low wind speeds. The quadratic dependence is fit through gas-transfer velocities over the ocean determined by methods based on the natural C-14 disequilibrium and the bomb C-14 inventory. The variation in the CO2 levels is related to these mechanisms, but the results show that other causes play significant roles. A weaker dependence of gas transfer on wind is suggested for steady winds, and long-term averaged winds demonstrate a stronger dependence in the present model. The chemical enhancement of CO2 exchange is also shown to play a role by increasing CO2 fluxes at low wind speeds.

  1. Calculation of wind speeds required to damage or destroy buildings

    NASA Astrophysics Data System (ADS)

    Liu, Henry

    Determination of wind speeds required to damage or destroy a building is important not only for the improvement of building design and construction but also for the estimation of wind speeds in tornadoes and other damaging storms. For instance, since 1973 the U.S. National Weather Service has been using the well-known Fujita scale (F scale) to estimate the maximum wind speeds of tornadoes [Fujita, 1981]. The F scale classifies tornadoes into 13 numbers, F-0 through F-12. The wind speed (maximum gust speed) associated with each F number is given in Table 1. Note that F-6 through F-12 are for wind speeds between 319 mi/hr (mph) and the sonic velocity (approximately 760 mph; 1 mph = 1.6 km/kr). However, since no tornadoes have been classified to exceed F-5, the F-6 through F-12 categories have no practical meaning [Fujita, 1981].

  2. Investigation of Wind Speed Persistence Over Marmara Region

    NASA Astrophysics Data System (ADS)

    Özgür, Evren; Koçak, Kasım

    2016-04-01

    Persistence is a measure of continuity of a variable over a period of time at any location. This definition implies that wind speed persistence means a positive serial correlation in a time series. In literature, there are numerous methods for measuring wind speed persistence. In this study, wind speed persistence were obtained for 19 stations located in Marmara Region by using two different methods. Daily wind speed data, taken from Turkish State Meteorological Service, were used in the study. The observation period was taken to be 1965-2014 for all stations. The methods used in the study are directional statistical method and wind speed duration curves approach. In directional statistical method, individual dates of winds are defined as directional variables; then, directional mean and variance are calculated. Wind dates are being converted to angular values and these days are being considered as a unit vector which has direction θ. In polar coordinate, the measures of directional mean and variance have been expressed as a vector with direction θmean and magnitude r. The r value can be considered as a measure of persistence. The wind speed duration curve is simply the cumulative distribution function of the wind speed in a certain period of time. In other words, it is the graphical representation of wind speed and percentage of exceedence time for a predefined threshold wind speed value in the same graphic. As a threshold wind speed, lower quartile (q0.25) value of ranked wind speed data were selected. In application, total time period was divided into five subperiods and changes of persistence in wind speeds as far as subperiods were presented. Persistence can be used in different kinds of study areas such as control of forest fires, dispersion of air pollutants, calculation of wind energy potential, ventilation of a city, etc. The results of this analysis showed that the proposed methods can be used as an alternative approach to determine whether a given time

  3. Wind speed and direction variability evaluation in a multiscale perspective

    NASA Astrophysics Data System (ADS)

    Suteanu, Cristian

    2015-04-01

    A comprehensive and effective evaluation of wind pattern variability can offer valuable information for important purposes, such as decreasing uncertainties related to wind energy availability, designing systems based on the integration of multiple wind farms to address power intermittency, or assessing implications for yaw error minimization. This paper presents a multiscale approach to wind pattern analysis taking into account wind speed as well as wind direction. First, wind speed time series are analyzed using a multiscale approach (Detrended Fluctuation Analysis). Based on the results of this step, isopersistence diagrams are constructed to reflect the scale-by-scale behaviour of the wind pattern, which offers a nuanced and comprehensive perspective on pattern variability and on the temporal change in the way in which variability depends on the time scale range. Next, wind speed patterns are analyzed by assessing orientation dependent time series obtained by projecting wind speed values for every sample on a plane that is rotated step by step by a small angle. The outcome consists of a set of orientation--time scale--persistence diagrams. The proposed methodological framework is applied to data streams of wind speed and direction. It is illustrated with application examples using data recorded in different areas in Canada and the United States.

  4. An atlas of monthly mean distributions of SSMI surface wind speed, AVHRR/2 sea surface temperature, AMI surface wind velocity, TOPEX/POSEIDON sea surface height, and ECMWF surface wind velocity during 1993

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.

    1995-01-01

    The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.

  5. Reducing the uncertainty in wind speed estimations near the coast

    NASA Astrophysics Data System (ADS)

    Floors, Rogier; Hahmann, Andrea N.; Karagali, Ioanna; Vasiljevic, Nikola; Lea, Guillaume; Simon, Elliot; Courtney, Michael; Ahsbahs, Tobias; Bay Hasager, Charlotte; Badger, Merete; Peña, Alfredo

    2016-04-01

    Many countries plan to meet renewable energy targets by installing near-shore wind farms, because of the high offshore wind speeds and good grid connectivity. Because of the strong relation between mean wind speed and the annual energy production, there is an interest in reducing uncertainty of the estimation of the wind speed in these coastal areas. The RUNE project aims to provide recommendations on the use of lidar systems and mesoscale models results to find the most effective (cost vs. accuracy) solution of estimating near-shore wind resources. Here we show some first results of the RUNE measuring campaign at the west coast of Jutland that started in December 2015. In this campaign, a long-range WindScanner system (a multi-lidar instrumentation) was used simultaneously with measurements from several vertical profiling lidars, a meteorological mast and an offshore buoy. These measurements result in a detailed picture of the flow in a transect across the coastline from approximately 5 km offshore up to 3 km inland. The wind speed obtained from a lidar in a sector-scanning mode and from two time-synchronized lidars that were separated horizontally but focused in the same point, will be compared. Furthermore it will be shown how the resulting horizontal wind speed transects compare with the wind speed measurements from the vertical profiling lidars and the meteorological mast. The behaviour of the coastal gradient in wind speed in this area is discussed. Satellite data for the wind over the RUNE measurement area were also collected. Synthetic Aperture Radar (SAR) winds from Sentinel-1 and TerraSAR-X were retrieved at different spatial resolutions. Advanced Scatterometer (ASCAT) swath winds were obtained from both METOP-A and B platforms. These were used for direct comparisons with the lidar in sector scanning mode.

  6. The Poisson Gamma distribution for wind speed data

    NASA Astrophysics Data System (ADS)

    Ćakmakyapan, Selen; Özel, Gamze

    2016-04-01

    The wind energy is one of the most significant alternative clean energy source and rapidly developing renewable energy sources in the world. For the evaluation of wind energy potential, probability density functions (pdfs) are usually used to model wind speed distributions. The selection of the appropriate pdf reduces the wind power estimation error and also allow to achieve characteristics. In the literature, different pdfs used to model wind speed data for wind energy applications. In this study, we propose a new probability distribution to model the wind speed data. Firstly, we defined the new probability distribution named Poisson-Gamma (PG) distribution and we analyzed a wind speed data sets which are about five pressure degree for the station. We obtained the data sets from Turkish State Meteorological Service. Then, we modelled the data sets with Exponential, Weibull, Lomax, 3 parameters Burr, Gumbel, Gamma, Rayleigh which are used to model wind speed data, and PG distributions. Finally, we compared the distribution, to select the best fitted model and demonstrated that PG distribution modeled the data sets better.

  7. Towards a new tool of wind speed and wind direction verification

    NASA Astrophysics Data System (ADS)

    Dorninger, Manfred

    2016-04-01

    During MesoVICT the verification of 2D-surface wind fields will receive special attention. Vector fields like wind are more complex to verify than scalar quantities. It is common approach to verify the single scalar components with traditional verification measures. This makes an overall and easy to understand interpretation of wind speed and direction verification difficult. Alternatively only wind speed is verified, which is useful for evaluating wind storms or estimating wind power. Wind direction is rarely verified. Although it is an important quantity for e.g. the correct frontal position, in the case of forest fires or during landing procedures of airplanes. In this presentation a new and simple verification procedure is introduced dealing with wind speed and direction. It is a grid-point based scheme but can be applied for spatial, for temporal as well as for ensemble forecast evaluations. In a first step differences of forecasts and observations of wind speed and direction are calculated and are filled in a specific scatter plot in a polar coordinate system. The different quadrants of the scatter plot can be interpreted in the following way (quadrants are counted anti-clockwise): I) Forecasted wind direction is rotated too anti-clockwise (directed towards the cyclone center), wind speed too high II) Forecasted wind direction is rotated too anti-clockwise, wind speed too low III) Forecasted wind direction is rotated too clockwise, wind speed too low IV) Forecasted wind direction is rotated too clockwise, wind speed too high To reduce the information of the point cloud the centre of gravity is determined and radii containing 10%, 25%, .. are defined which represent another verification measure. Several examples and possibilities of a statistical evaluation of these difference scatter plots will be presented during the conference.

  8. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    PubMed

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns. PMID:25617767

  9. Hourly Wind Speed Interval Prediction in Arid Regions

    NASA Astrophysics Data System (ADS)

    Chaouch, M.; Ouarda, T.

    2013-12-01

    The long and extended warm and dry summers, the low rate of rain and humidity are the main factors that explain the increase of electricity consumption in hot arid regions. In such regions, the ventilating and air-conditioning installations, that are typically the most energy-intensive among energy consumption activities, are essential for securing healthy, safe and suitable indoor thermal conditions for building occupants and stored materials. The use of renewable energy resources such as solar and wind represents one of the most relevant solutions to overcome the increase of the electricity demand challenge. In the recent years, wind energy is gaining more importance among the researchers worldwide. Wind energy is intermittent in nature and hence the power system scheduling and dynamic control of wind turbine requires an estimate of wind energy. Accurate forecast of wind speed is a challenging task for the wind energy research field. In fact, due to the large variability of wind speed caused by the unpredictable and dynamic nature of the earth's atmosphere, there are many fluctuations in wind power production. This inherent variability of wind speed is the main cause of the uncertainty observed in wind power generation. Furthermore, producing wind power forecasts might be obtained indirectly by modeling the wind speed series and then transforming the forecasts through a power curve. Wind speed forecasting techniques have received substantial attention recently and several models have been developed. Basically two main approaches have been proposed in the literature: (1) physical models such as Numerical Weather Forecast and (2) statistical models such as Autoregressive integrated moving average (ARIMA) models, Neural Networks. While the initial focus in the literature has been on point forecasts, the need to quantify forecast uncertainty and communicate the risk of extreme ramp events has led to an interest in producing probabilistic forecasts. In short term

  10. Reduced drag coefficient for high wind speeds in tropical cyclones.

    PubMed

    Powell, Mark D; Vickery, Peter J; Reinhold, Timothy A

    2003-03-20

    The transfer of momentum between the atmosphere and the ocean is described in terms of the variation of wind speed with height and a drag coefficient that increases with sea surface roughness and wind speed. But direct measurements have only been available for weak winds; momentum transfer under extreme wind conditions has therefore been extrapolated from these field measurements. Global Positioning System sondes have been used since 1997 to measure the profiles of the strong winds in the marine boundary layer associated with tropical cyclones. Here we present an analysis of these data, which show a logarithmic increase in mean wind speed with height in the lowest 200 m, maximum wind speed at 500 m and a gradual weakening up to a height of 3 km. By determining surface stress, roughness length and neutral stability drag coefficient, we find that surface momentum flux levels off as the wind speeds increase above hurricane force. This behaviour is contrary to surface flux parameterizations that are currently used in a variety of modelling applications, including hurricane risk assessment and prediction of storm motion, intensity, waves and storm surges.

  11. Improving the Accuracy of Wind Turbine Power Curve Validation by the Rotor Equivalent Wind Speed Concept

    NASA Astrophysics Data System (ADS)

    Scheurich, Frank; Enevoldsen, Peder B.; Paulsen, Henrik N.; Dickow, Kristoffer K.; Fiedel, Moritz; Loeven, Alex; Antoniou, Ioannis

    2016-09-01

    The measurement of the wind speed at hub height is part of the current IEC standard procedure for the power curve validation of wind turbines. The inherent assumption is thereby made that this measured hub height wind speed sufficiently represents the wind speed across the entire rotor area. It is very questionable, however, whether the hub height wind speed (HHWS) method is appropriate for rotor sizes of commercial state-of-the-art wind turbines. The rotor equivalent wind speed (REWS) concept, in which the wind velocities are measured at several different heights across the rotor area, is deemed to be better suited to represent the wind speed in power curve measurements and thus results in more accurate predictions of the annual energy production (AEP) of the turbine. The present paper compares the estimated AEP, based on HHWS power curves, of two different commercial wind turbines to the AEP that is based on REWS power curves. The REWS was determined by LiDAR measurements of the wind velocities at ten different heights across the rotor area. It is shown that a REWS power curve can, depending on the wind shear profile, result in higher, equal or lower AEP estimations compared to the AEP predicted by a HHWS power curve.

  12. A Nonlinear Dynamics Approach for Incorporating Wind-Speed Patterns into Wind-Power Project Evaluation

    PubMed Central

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind—the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns. PMID:25617767

  13. Preliminary Analysis of Wind Speed Simulations over the US Produced by Regional Climate Models

    NASA Astrophysics Data System (ADS)

    Takle, E. S.; Pryor, S. C.; Barthelmie, R. J.; Rabideau, S. L.; Arritt, R. W.; Gutowski, W. J.; Flory, D.; Team, N.

    2008-12-01

    Regional climate models (RCMs) are finding increased use for studying climate variability and change at resolutions higher than are available from routine long-term simulations with global models. Most analyses of RCM results have focused on temperature and precipitation, but little attention has been devoted to simulations of wind speed. Pryor et al. (2008) have shown that studies of long-term trends in surface wind speeds from surface observations are complicated by changes in instrumentation and changes in the near- field environment of anemometers, among other factors. Long-term RCM simulations from the NARCCAP archive offer an alternative way to study diurnal, seasonal, and long-term trends in winds without these complications. We examine both model-reported 10-m winds and also the lowest-model-level winds. The near surface wind speeds are of high importance due to their role in regulating the exchange of heat, momentum, and moisture with the Earth's surface, but they are approximated by use of extrapolations from the model lowest level. The influence of these approximations is minimized for studying trends by focusing on the lowest-model-level winds themselves. Analysis of MM5 model wind results from the NARCCAP archive show generally decreasing winds over the period 1982-2004 across the new wind-farm region of the upper Midwest except for a weak increase across a narrow band from central Minnesota to northern Kansas. Largest contribution to this decrease comes in winter when changes on the order of -0.05 m/s/yr are produced by the model. The winter decrease is partially offset in the annual average by a small increase in fall. Additional analyses of results are in progress.

  14. Variable speed generator technology options for wind turbine generators

    NASA Astrophysics Data System (ADS)

    Lipo, T. A.

    1995-05-01

    The electrical system options for variable speed operation of a wind turbine generator are treated in this paper. The key operating characteristics of each system are discussed and the major advantages and disadvantages of each are identified

  15. Variable speed generator technology options for wind turbine generators

    NASA Technical Reports Server (NTRS)

    Lipo, T. A.

    1995-01-01

    The electrical system options for variable speed operation of a wind turbine generator are treated in this paper. The key operating characteristics of each system are discussed and the major advantages and disadvantages of each are identified

  16. Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; Quinn, P. K.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S.; Radionov, V. F.

    2012-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (approx. 0.004 - 0.005), even for strong winds over 10m/s. The relationships show significant scatter (correlation coefficients typically in the range 0.3 - 0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used

  17. A comparison between a hydro-wind plant and wind speed forecasting using ARIMA models

    NASA Astrophysics Data System (ADS)

    Bayón, L.; Grau, J. M.; Ruiz, M. M.; Suárez, P. M.

    2014-10-01

    In this paper, we will present a comparison between two options for harnessing wind power. We will first analyze the behaviour of a wind farm that goes to the electricity market, having previously made a forecast of wind speed while accepting the deviation penalties that these may incur. Second, we will study the possibility of the wind farm not going to the market individually, but as part of a hydro-wind plant.

  18. Wind speed power spectrum analysis for Bushland, Texas

    SciTech Connect

    Eggleston, E.D.

    1996-12-31

    Numerous papers and publications on wind turbulence have referenced the wind speed spectrum presented by Isaac Van der Hoven in his article entitled Power Spectrum of Horizontal Wind Speed Spectrum in the Frequency Range from 0.0007 to 900 Cycles per Hour. Van der Hoven used data measured at different heights between 91 and 125 meters above the ground, and represented the high frequency end of the spectrum with data from the peak hour of hurricane Connie. These facts suggest we should question the use of his power spectrum in the wind industry. During the USDA - Agricultural Research Service`s investigation of wind/diesel system power storage, using the appropriate wind speed power spectrum became a significant issue. We developed a power spectrum from 13 years of hourly average data, 1 year of 5 minute average data, and 2 particularly gusty day`s 1 second average data all collected at a height of 10 meters. While the general shape is similar to the Van der Hoven spectrum, few of his peaks were found in the Bushland spectrum. While higher average wind speeds tend to suggest higher amplitudes in the high frequency end of the spectrum, this is not always true. Also, the high frequency end of the spectrum is not accurately described by simple wind statistics such as standard deviation and turbulence intensity. 2 refs., 5 figs., 1 tab.

  19. Plant Gas Exchange at High Wind Speeds 1

    PubMed Central

    Caldwell, Martyn M.

    1970-01-01

    High altitude Rhododendron ferrugineum L. and Pinus cembra L. seedlings were exposed to winds at 15 meters per second for 24-hour periods. Wind-sensitive stomata of Rhododendron seedlings immediately initiated a closing response which resulted in decreased photosynthesis and an even greater reduction in transpiration. Stomatal aperture and transpiration rates of P. cembra were only slightly reduced by high speed winds. However, photosynthesis was substantially reduced because of changes in needle display to available irradiation. PMID:16657501

  20. Verification of high-speed solar wind stream forecasts using operational solar wind models

    NASA Astrophysics Data System (ADS)

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.; Nikolic, Ljubomir; Vennerstrom, Susanne; Schöngassner, Florian; Hofmeister, Stefan J.

    2016-07-01

    High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluate high-speed stream forecasts made by the empirical solar wind forecast (ESWF) and the semiempirical Wang-Sheeley-Arge (WSA) model based on the in situ plasma measurements from the Advanced Composition Explorer (ACE) spacecraft for the years 2011 to 2014. While the ESWF makes use of an empirical relation between the coronal hole area observed in Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images and solar wind properties at the near-Earth environment, the WSA model establishes a link between properties of the open magnetic field lines extending from the photosphere to the corona and the background solar wind conditions. We found that both solar wind models are capable of predicting the large-scale features of the observed solar wind speed (root-mean-square error, RMSE ≈100 km/s) but tend to either overestimate (ESWF) or underestimate (WSA) the number of high-speed solar wind streams (threat score, TS ≈ 0.37). The predicted high-speed streams show typical uncertainties in the arrival time of about 1 day and uncertainties in the speed of about 100 km/s. General advantages and disadvantages of the investigated solar wind models are diagnosed and outlined.

  1. Influence of Speed Governors of Hydropower Stations on Frequency Stabilization of Fixed-Speed Wind Farm

    NASA Astrophysics Data System (ADS)

    AL Jowder, Fawzi A. Rahman

    2013-05-01

    This paper uses a small power system, consisting of two hydropower stations and a fixed-speed wind farm as sources of power, to study the influence of type of speed governor of hydropower stations on the frequency stabilization of the fixed-speed wind farm. As an example, two types of speed governors are selected which are (1) mechanical-hydraulic speed governor and (2) electrical-hydraulic speed governor. Rest of the speed governors can be also examined following the same methodology presented in the research. Two transfer functions, which correspond to the two speed governors, are developed for each hydropower station. The overall transfer function of the test power system is developed, and different study cases are presented. The frequency response analysis of the different transfer functions is used to compare the two speed governors based on their ability to stabilize the frequency deviation of the fixed-speed wind resulting from electrical or mechanical disturbances in the power systems. Time-domain simulations under a mechanical disturbance, represented by a wind gust, and an electrical disturbance, represented by three-phase to ground fault, are performed to validate the results of the frequency response analysis.

  2. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect

    Muljadi, E.; Butterfield, C.P.; Migliore, P.

    1995-11-01

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy we analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. in extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  3. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect

    Muljadi, E.; Butterfield, C.P.; Migliore, P.

    1996-10-01

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy analyzed uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. In extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  4. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect

    Muljadi, E.; Butterfield, C.P.; Migliore, P.

    1996-11-01

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up, and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy the authors analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. In extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  5. Indexed semi-Markov process for wind speed modeling.

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first

  6. Validation of solar wind high-speed stream predictions

    NASA Astrophysics Data System (ADS)

    Reiss, Martin; Temmer, Manuela; Veronig, Astrid; Nikolic, Ljubomir; Schöngassner, Florian; Vennerstrøm, Susanne

    2016-04-01

    Solar wind high-speed streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. As major contributors to space weather disturbances at times of low solar activity, prediction models of solar wind high-speed streams are becoming highly desirable. We present a verification analysis of two operational solar wind prediction models (empirical model, Wang-Sheeley-Arge like model) by comparing the model runs for the period 2011 to 2014 with in-situ plasma measurements from the ACE spacecraft located at 1 AU. We find that both prediction models achieve a similar accuracy but demonstrate the tendency to under-predict and over-predict events of solar wind high-speed streams, respectively. General advantages and disadvantages of both models are diagnosed and outlined.

  7. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NASA Astrophysics Data System (ADS)

    Diepeveen, N. F. B.; Jarquin-Laguna, A.

    2014-12-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near maximum aerodynamic efficiency for below rated wind speeds. The experiments with a small horizontal-axis wind turbine rotor, coupled to a hydraulic circuit, were conducted at the Open Jet Facility of the Delft University of Technology. In theory, the placement of a nozzle at the end of the hydraulic circuit causes the pressure and hence the rotor torque to increase quadratically with flow speed and hence rotation speed. The rotor torque is limited by a pressure relief valve. Results from the experiments proved the functionality of this passive speed control concept. By selecting the correct nozzle outlet area the rotor operates at or near the optimum tip speed ratio.

  8. Rotor equivalent wind speed for power curve measurement - comparative exercise for IEA Wind Annex 32

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Cañadillas, B.; Clifton, A.; Feeney, S.; Nygaard, N.; Poodt, M.; St. Martin, C.; Tüxen, E.; Wagenaar, J. W.

    2014-06-01

    A comparative exercise has been organised within the International Energy Agency (IEA) Wind Annex 32 in order to test the Rotor Equivalent Wind Speed (REWS) method under various conditions of wind shear and measurement techniques. Eight organisations from five countries participated in the exercise. Each member of the group has derived both the power curve based on the wind speed at hub height and the power curve based on the REWS. This yielded results for different wind turbines, located in diverse types of terrain and where the wind speed profile was measured with different instruments (mast or various lidars). The participants carried out two preliminary steps in order to reach consensus on how to implement the REWS method. First, they all derived the REWS for one 10 minute wind speed profile. Secondly, they all derived the power curves for one dataset. The main point requiring consensus was the definition of the segment area used as weighting for the wind speeds measured at the various heights in the calculation of the REWS. This comparative exercise showed that the REWS method results in a significant difference compared to the standard method using the wind speed at hub height in conditions with large shear and low turbulence intensity.

  9. MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY

    SciTech Connect

    Garrett, A; Robert Kurzeja, R; Eliel Villa-Aleman, E; Cary Tuckfield, C; Malcolm Pendergast, M

    2009-01-20

    The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper [1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology and water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions.

  10. Variable-Speed Wind System Design : Final Report.

    SciTech Connect

    Lauw, Hinan K.; Weigand, Claus H.; Marckx, Dallas A.; Electronic Power Conditioning, Inc.

    1993-10-01

    Almost from the onset of the development of wind energy conversion systems (WECS), it was known that variable-speed operation of the turbine would maximize energy capture. This study was commissioned to assess the cost, efficiency gain, reduction of the cost of energy (COE), and other operating implications of converting the existing hardware of a modern fixed-speed wind energy conversion system to variable-speed operation. The purpose of this study was to develop a preliminary design for the hardware required to allow variable-speed operation using a doubly-fed generator with an existing fixed-speed wind turbine design. The turbine selected for this study is the AWT-26 designed and built by Advanced Wind Turbines Inc. of Redmond, Washington. The lowest projected COE using this variable-speed generation system is projected to be $0.0499/kWh, compared to the lowest possible COE with fixed-speed generation which is projected to be $0.0546/kWh. This translates into a 8.6% reduction of the COE using this variable-speed generation option. The preliminary system design has advanced to where the printed circuit boards can be physically laid out based on the schematics and the system software can be written based on the control flow-charts. The core of hardware and software has been proven to be successful in earlier versions of VSG systems. The body of this report presents the results of the VSWG system development. Operation under normal and fault conditions is described in detail, the system performance for variable-speed operation is estimated and compared to the original fixed-speed system performance, and specifications for all system components (generator, power electronic converter, and system controller) are given. Costs for all components are estimated, and incremental system cost is compared to incremental energy production. Finally, operational features of the VSWG which are not available in the existing FSWG system are outlined.

  11. Multifractal and local correlation of simultaneous wind speed-power output from a single wind trubine

    NASA Astrophysics Data System (ADS)

    Calif, Rudy; Schmitt, François G.; Huang, Yongxiang

    2014-05-01

    The wind energy production is a nonlinear and no stationary resource, due to the intermittent statistics of atmospheric wind speed at all spatial and temporal scales ranging from large scale variations to very short scale variations. Recently, Rudy et al.[1] observed the intermittent and multifractal properties of wind energy production. Classically, IEC standard 4100 is used by the wind energy community, for modeling the interactions of wind speed with the wind turbine. However, this model reflects gaussian statistics contrary to observed wind and energy production measurements. Modeling of power curve of a single wind turbine remains a challenge. The precise understanding of the dynamics of nonlinear power curve over very short time scales, is necessary. Hence, multifractal cross-correlation methods such as Generalized Correlations Exponents (GCE), multifractal detrended cross-correlation analysis (MFXDFA), multifractal detrending moving average cross-correlation analysis (MFXDMA) are applied to simultaneous wind speed power output from a single wind turbine to determine the nature of scaling correlation behavior. Furthermore, in order to detect eventual local correlation, an application of empirical mode decomposition based on time dependent intrinsic correlation to simultaneous measurements is performed. The simultaneous wind speed-power output measurements are recorded continuously with a sampling rate f = 1Hz, during 115 days in 2006. The wind speed measurements are obtained at 31 m above the ground, and the power output is delivered by 500 kW Nordtank wind turbine positionned at the Technical University, Risœ, Denmark. References [1] Calif, R., Schmitt, F.G., Huang, Y., Multifractal description of wind power fluctuations using arbitrary order Hilbert spectral analysis, Physica, 392, 4106-4120, 2013.

  12. An Automatic Speed Control for Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1928-01-01

    Described here is an automatic control that has been used in several forms in wind tunnels at the Washington Navy Yard. The form now in use with the 8-foot tunnel at the Navy Yard is considered here. Details of the design and operation of the automatic control system are given. Leads from a Pitot tube are joined to an inverted cup manometer located above a rheostat. When the sliding weight of this instrument is set to a given notch, say for 40 m.p.h, the beam tip vibrates between two electric contacts that feed the little motor. Thus, when the wind is too strong or too weak, the motor automatically throws the rheostat slide forward and backward. If it failed to function well, the operator would notice the effect on his meniscus, and would operate the hand control by merely pressing the switch.

  13. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement.

    PubMed

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-01-01

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes. PMID:27271625

  14. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement.

    PubMed

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-01-01

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes.

  15. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement

    PubMed Central

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-01-01

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes. PMID:27271625

  16. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration...

  17. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration...

  18. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration...

  19. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration...

  20. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration...

  1. The Influence of Roughness Length on Simulated Surface air Temperature (2 m), Wind (10 m), Precipitation, and Energy and Water Fluxes in Eastern China

    NASA Astrophysics Data System (ADS)

    Zuo, J.; Lu, L.

    2012-12-01

    The heterogeneity of land cover characteristics has significant impact on the land-atmosphere water, energy, and momentum exchanges. The aerodynamic roughness length (z0) is an important surface parameter for estimating surface fluxes in numerical models. This study is to investigate the sensitivity of z0 on weather and climate in Eastern China, which has experienced dramatic growth in the urban areas over the past 30 years. Driven by ERA-40 reanalysis product as atmospheric lateral boundary conditions, Regional Atmospheric Modeling System (RAMS) was used to perform a series of one-year ensemble simulations over the eastern China. Ten sensitivity experiments were conducted by increasing and decreasing vegetation roughness length by 10%, 25%, 50%, 70%, 90%, as well as a control run by using the model's default parameterization of z0, which is derived from a look-up table based on vegetation type. Furthermore, a data assimilation run using the real time z0 map that is derived from MODIS product was carried out, which includes the heteorogenous z0 within the same vegetation type. The difference between the data assimilation run and the default run will help us to understand how remotely sensed land-surface information influences land-atmosphere interactions and mesoscale circulations. The preliminary results show that the bigger the magnitude of z0 changes, the larger the responses in surface air temperatures, wind speeds, and fluxes, except that these changes are opposite in sign with z0 changes. More localized changes occur in the Southeast China than Northeast China, as there are more vegetation cover variations in the south. In addition, z0 has larger effect on spring and summer surface air temperature, and summer sensible heat fluxes. The remote sensing product derived z0 map shows different spatial and temporal distribution when compare to the default z0 distribution, which in turn results in both spatial and seasonal differences in simulated climate variables.

  2. Reduced Wind Speed Improves Plant Growth in a Desert City

    PubMed Central

    Bang, Christofer; Sabo, John L.; Faeth, Stanley H.

    2010-01-01

    Background The often dramatic effects of urbanization on community and ecosystem properties, such as primary productivity, abundances, and diversity are now well-established. In most cities local primary productivity increases and this extra energy flows upwards to alter diversity and relative abundances in higher trophic levels. The abiotic mechanisms thought to be responsible for increases in urban productivity are altered temperatures and light regimes, and increased nutrient and water inputs. However, another abiotic factor, wind speed, is also influenced by urbanization and well known for altering primary productivity in agricultural systems. Wind effects on primary productivity have heretofore not been studied in the context of urbanization. Methodology/Principal Findings We designed a field experiment to test if increased plant growth often observed in cities is explained by the sheltering effects of built structures. Wind speed was reduced by protecting Encelia farinosa (brittlebush) plants in urban, desert remnant and outlying desert localities via windbreaks while controlling for water availability and nutrient content. In all three habitats, we compared E. farinosa growth when protected by experimental windbreaks and in the open. E. farinosa plants protected against ambient wind in the desert and remnant areas grew faster in terms of biomass and height than exposed plants. As predicted, sheltered plants did not differ from unprotected plants in urban areas where wind speed is already reduced. Conclusion/Significance Our results indicate that reductions in wind speed due to built structures in cities contribute to increased plant productivity and thus also to changes in abundances and diversity of higher trophic levels. Our study emphasizes the need to incorporate wind speed in future urban ecological studies, as well as in planning for green space and sustainable cities. PMID:20548790

  3. Laser Velocimetry In Low-Speed Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Orloff, Kenneth L.; Snyder, Philip K.; Reinath, Michael S.

    1990-01-01

    Design and performance of three-dimensional and two-dimensional backscatter laser velocimeter, both used in low-speed wind tunnels, described in report together with historical overview of development of laser velocimetry (LV). Provides measurements of airflow in wind-tunnel tests without perturbing effects of probes and probe-supporting structures. Applicable in such related fields as ventilation engineering and possibly in detection of wing vortexes from large aircraft at airports.

  4. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    SciTech Connect

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  5. Higher-than-predicted saltation threshold wind speeds on Titan.

    PubMed

    Burr, Devon M; Bridges, Nathan T; Marshall, John R; Smith, James K; White, Bruce R; Emery, Joshua P

    2015-01-01

    Titan, the largest satellite of Saturn, exhibits extensive aeolian, that is, wind-formed, dunes, features previously identified exclusively on Earth, Mars and Venus. Wind tunnel data collected under ambient and planetary-analogue conditions inform our models of aeolian processes on the terrestrial planets. However, the accuracy of these widely used formulations in predicting the threshold wind speeds required to move sand by saltation, or by short bounces, has not been tested under conditions relevant for non-terrestrial planets. Here we derive saltation threshold wind speeds under the thick-atmosphere, low-gravity and low-sediment-density conditions on Titan, using a high-pressure wind tunnel refurbished to simulate the appropriate kinematic viscosity for the near-surface atmosphere of Titan. The experimentally derived saltation threshold wind speeds are higher than those predicted by models based on terrestrial-analogue experiments, indicating the limitations of these models for such extreme conditions. The models can be reconciled with the experimental results by inclusion of the extremely low ratio of particle density to fluid density on Titan. Whereas the density ratio term enables accurate modelling of aeolian entrainment in thick atmospheres, such as those inferred for some extrasolar planets, our results also indicate that for environments with high density ratios, such as in jets on icy satellites or in tenuous atmospheres or exospheres, the correction for low-density-ratio conditions is not required. PMID:25487154

  6. Higher-than-predicted saltation threshold wind speeds on Titan

    NASA Astrophysics Data System (ADS)

    Burr, Devon M.; Bridges, Nathan T.; Marshall, John R.; Smith, James K.; White, Bruce R.; Emery, Joshua P.

    2015-01-01

    Titan, the largest satellite of Saturn, exhibits extensive aeolian, that is, wind-formed, dunes, features previously identified exclusively on Earth, Mars and Venus. Wind tunnel data collected under ambient and planetary-analogue conditions inform our models of aeolian processes on the terrestrial planets. However, the accuracy of these widely used formulations in predicting the threshold wind speeds required to move sand by saltation, or by short bounces, has not been tested under conditions relevant for non-terrestrial planets. Here we derive saltation threshold wind speeds under the thick-atmosphere, low-gravity and low-sediment-density conditions on Titan, using a high-pressure wind tunnel refurbished to simulate the appropriate kinematic viscosity for the near-surface atmosphere of Titan. The experimentally derived saltation threshold wind speeds are higher than those predicted by models based on terrestrial-analogue experiments, indicating the limitations of these models for such extreme conditions. The models can be reconciled with the experimental results by inclusion of the extremely low ratio of particle density to fluid density on Titan. Whereas the density ratio term enables accurate modelling of aeolian entrainment in thick atmospheres, such as those inferred for some extrasolar planets, our results also indicate that for environments with high density ratios, such as in jets on icy satellites or in tenuous atmospheres or exospheres, the correction for low-density-ratio conditions is not required.

  7. SSMI Wind Speed Climatology of the Time of Monsoon Wind Offset in the Western Arabian Sea

    NASA Technical Reports Server (NTRS)

    Halpern, David

    2000-01-01

    Forecasting the time of onset of monsoon wind in the western Arabian Sea, which is believed to precede the onset of rainfall along the west coast of India, is an important unsolved problem. Prior to measurements of the surface wind field by satellite, there was an absence of suitable surface wind observations. NASA scatterometer (NSCAT) surface wind vectors revealed that the time of the 1997 onset of 12 m/s southwest monsoon wind speeds in the western Arabian Sea preceded the onset of monsoon rainfall in Goa, India, by 3 - 4 days. Wind speed and direction data were necessary to establish a dynamical mechanism between times of onset of 12 m/s wind speed off Somalia and rainfall in Goa. Except for NSCAT, no satellite scatterometer wind product recorded adequately sampled 2-day 1deg x 1deg averaged wind vectors, which are the required space and time scales, to examine the wind-rain relationship in other years. However, the greater-than-95% steadiness of summer monsoon winds allows an opportunity to use satellite measurements of surface wind speed. The Special Sensor Microwave Imager (SSMI) recorded surface wind speed with adequate sampling to produce a 1-day, 1deg x 1deg data product during 1988 - 1998. SSMI data had been uniformly processed throughout the period. Times of onset of 12 m/s wind speed off Somalia determined with the SSMI data set were 21 May 1988, 24 May 1989, 17 May 1990, 28 May 1991, 8 June 1992, 28 May 1993, 30 May 1994, 7 June 1995, 29 May 1996, 12 June 1997, and 15 May 1998. Uncertainty of the 1992 and 1996 times of onset were increased because of the absence of SSMI data on 6 and 7 June 1992 and on 30 May 1996. Correlations of timing of monsoon wind onset with El Nino will be described. Variability of the time difference between times of onset of 12 m/s wind speed and Goa rainfall will be discussed. At the time of submission of the abstract, the Goa rainfall data have not arrived from the India Meteorological Department.

  8. Multifractal analysis of validated wind speed time series

    NASA Astrophysics Data System (ADS)

    García-Marín, A. P.; Estévez, J.; Jiménez-Hornero, F. J.; Ayuso-Muñoz, J. L.

    2013-03-01

    Multifractal properties of 30 min wind data series recorded at six locations in Cadiz (Southern Spain) have been studied in this work with the aim of obtaining detailed information for a range of time scales. Wind speed records have been validated, applying various quality control tests as a pre-requisite before their use, improving the reliability of the results due to the identification of incorrect values which have been discarded in the analysis. The scaling of the wind speed moments has been analysed and empirical moments scaling exponent functions K(q) have been obtained. Although the same critical moment (qcrit) has been obtained for all the places, some differences appear in other multifractal parameters like γmax and the value of K(0). These differences have been related to the presence of extreme events and zero data values in the data series analysed, respectively.

  9. An atlas of monthly mean distributions of GEOSAT sea surface height, SSMI surface wind speed, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1988

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Zlotnicki, V.; Newman, J.; Brown, O.; Wentz, F.

    1991-01-01

    Monthly mean global distributions for 1988 are presented with a common color scale and geographical map. Distributions are included for sea surface height variation estimated from GEOSAT; surface wind speed estimated from the Special Sensor Microwave Imager on the Defense Meteorological Satellite Program spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer on NOAA spacecrafts; and the Cartesian components of the 10m height wind vector computed by the European Center for Medium Range Weather Forecasting. Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.

  10. Performance of Statistical Temporal Downscaling Techniques of Wind Speed Data Over Aegean Sea

    NASA Astrophysics Data System (ADS)

    Gokhan Guler, Hasan; Baykal, Cuneyt; Ozyurt, Gulizar; Kisacik, Dogan

    2016-04-01

    Wind speed data is a key input for many meteorological and engineering applications. Many institutions provide wind speed data with temporal resolutions ranging from one hour to twenty four hours. Higher temporal resolution is generally required for some applications such as reliable wave hindcasting studies. One solution to generate wind data at high sampling frequencies is to use statistical downscaling techniques to interpolate values of the finer sampling intervals from the available data. In this study, the major aim is to assess temporal downscaling performance of nine statistical interpolation techniques by quantifying the inherent uncertainty due to selection of different techniques. For this purpose, hourly 10-m wind speed data taken from 227 data points over Aegean Sea between 1979 and 2010 having a spatial resolution of approximately 0.3 degrees are analyzed from the National Centers for Environmental Prediction (NCEP) The Climate Forecast System Reanalysis database. Additionally, hourly 10-m wind speed data of two in-situ measurement stations between June, 2014 and June, 2015 are considered to understand effect of dataset properties on the uncertainty generated by interpolation technique. In this study, nine statistical interpolation techniques are selected as w0 (left constant) interpolation, w6 (right constant) interpolation, averaging step function interpolation, linear interpolation, 1D Fast Fourier Transform interpolation, 2nd and 3rd degree Lagrange polynomial interpolation, cubic spline interpolation, piecewise cubic Hermite interpolating polynomials. Original data is down sampled to 6 hours (i.e. wind speeds at 0th, 6th, 12th and 18th hours of each day are selected), then 6 hourly data is temporally downscaled to hourly data (i.e. the wind speeds at each hour between the intervals are computed) using nine interpolation technique, and finally original data is compared with the temporally downscaled data. A penalty point system based on

  11. Uncertainties in wind speed dependent CO2 transfer velocities due to airflow distortion at anemometer sites on ships

    NASA Astrophysics Data System (ADS)

    Griessbaum, F.; Moat, B. I.; Narita, Y.; Yelland, M. J.; Klemm, O.; Uematsu, M.

    2010-06-01

    Data from platforms, research vessels and merchant ships are used to estimate ocean CO2 uptake via parameterisations of the gas transfer velocity (k) and measurements of the difference between the partial pressures of CO2 in the ocean (pCO2 sw) and atmosphere (pCO2 atm) and of wind speed. Gas transfer velocities estimated using wind speed dependent parameterisations may be in error due to air flow distortion by the ship's hull and superstructure introducing biases into the measured wind speed. The effect of airflow distortion on estimates of the transfer velocity was examined by modelling the airflow around the three-dimensional geometries of the research vessels Hakuho Maru and Mirai, using the Large Eddy Simulation code GERRIS. For airflows within ±45° of the bow the maximum bias was +16%. For wind speed of 10 m s-1 to 15 m s-1, a +16% bias in wind speed would cause an overestimate in the calculated value of k of 30% to 50%, depending on which k parameterisation is used. This is due to the propagation of errors when using quadratic or cubic parameterisations. Recommendations for suitable anemometer locations on research vessels are given. The errors in transfer velocity may be much larger for typical merchant ships, as the anemometers are generally not as well-exposed as those on research vessels. Flow distortion may also introduce biases in the wind speed dependent k parameterisations themselves, since these are obtained by relating measurements of the CO2 flux to measurements of the wind speed and the CO2 concentration difference. To investigate this, flow distortion effects were estimated for three different platforms from which wind speed dependent parameterisations are published. The estimates ranged from -4% to +14% and showed that flow distortion may have a significant impact on wind speed dependent parameterisations. However, the wind biases are not large enough to explain the differences at high wind speeds in parameterisations which are based on eddy

  12. Uncertainties in wind speed dependent CO2 transfer velocities due to airflow distortion at anemometer sites on ships

    NASA Astrophysics Data System (ADS)

    Griessbaum, F.; Moat, B. I.; Narita, Y.; Yelland, M. J.; Klemm, O.; Uematsu, M.

    2009-09-01

    Data from research vessels and merchant ships are used to estimate ocean CO2 uptake via parameterizations of the gas transfer velocity (k) and measurements of the difference between the concentration of CO2 in the ocean (pCO2sw) and atmosphere (pCO2atm) and of wind speed. Gas transfer velocities estimated using wind speed dependent parameterisations may be in error due to air flow distortion by the ship's hull and superstructure introducing biases into the measured wind speed. The effect of airflow distortion on estimates of the transfer velocity was examined by modelling the airflow around the three-dimensional geometries of the research vessels Hakuho Maru and Mirai, using the Large Eddy Simulation code GERRIS. For airflows within ±45° of the bow the maximum bias was +16%. For wind speed of 10 m s-1 to 15 m s-1, a +16% bias in wind speed would cause an overestimate in the calculated value of k of 30% to 50%, depending on which k parameterisation is used. This is due to the propagation of errors when using quadratic or cubic parameterizations. Recommendations for suitable anemometer locations on research vessels are given. The errors in transfer velocity may be much larger for typical merchant ships, as the anemometers are generally not as well-exposed as those on research vessels. Flow distortion may also introduce biases in the wind speed dependent k parameterizations themselves, since these are obtained by relating measurements of the CO2 flux to measurements of the wind speed and the CO2 concentration difference. To investigate this, flow distortion effects were estimated for three different platforms from which wind speed dependent parameterizations are published. The estimates ranged from -4% to +14% and showed that flow distortion may have a significant impact on wind speed dependent parameterizations. However, the wind biases are not large enough to explain the differences at high wind speeds in parameterizations which are based on eddy covariance and

  13. High wind speed measurements of dimethylsulfide air/sea gas transfer by eddy correlation in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W. J.; Miller, S. D.; Saltzman, E. S.; Slawksy, L.; Stacy, B.; Callaghan, A. H.

    2012-12-01

    Air/sea dimethylsulphide (DMS) fluxes and gas transfer coefficients (kDMS) were measured by eddy correlation over the western North Atlantic Ocean during June/July 2011 aboard the R/V Knorr. Atmospheric and seawater DMS were measured using atmospheric pressure chemical ionization mass spectrometry (API-CIMS). Seawater DMS was measured continuously from the ship's underway system using a porous membrane equilibrator and API-CIMS. The cruise included regions of high biological productivity, wind speeds from 0-18 m/sec and whitecap areas of 0-5%. Four stations were occupied during the cruise for periods of 24-36 hours. In general, the stations exhibited a linear relationship between kDMS and wind speed, although there were significant variations in the slope of this relationship. One of the stations showed kDMS increasing with wind speed to 10 m/sec and then levelling off at higher wind speeds. The data from this cruise suggest that gas transfer can vary substantially due to parameters other than wind speed, most likely sea state and surfactants.

  14. Hi-Q Rotor - Low Wind Speed Technology

    SciTech Connect

    Todd E. Mills; Judy Tatum

    2010-01-11

    The project objective was to optimize the performance of the Hi-Q Rotor. Early research funded by the California Energy Commission indicated the design might be advantageous over state-of-the-art turbines for collecting wind energy in low wind conditions. The Hi-Q Rotor is a new kind of rotor targeted for harvesting wind in Class 2, 3, and 4 sites, and has application in areas that are closer to cities, or 'load centers.' An advantage of the Hi-Q Rotor is that the rotor has non-conventional blade tips, producing less turbulence, and is quieter than standard wind turbine blades which is critical to the low-wind populated urban sites. Unlike state-of-the-art propeller type blades, the Hi-Q Rotor has six blades connected by end caps. In this phase of the research funded by DOE's Inventions and Innovation Program, the goal was to improve the current design by building a series of theoretical and numeric models, and composite prototypes to determine a best of class device. Development of the rotor was performed by aeronautical engineering and design firm, DARcorporation. From this investigation, an optimized design was determined and an 8-foot diameter, full-scale rotor was built and mounted using a Bergey LX-1 generator and furling system which were adapted to support the rotor. The Hi-Q Rotor was then tested side-by-side against the state-of-the-art Bergey XL-1 at the Alternative Energy Institute's Wind Test Center at West Texas State University for six weeks, and real time measurements of power generated were collected and compared. Early wind tunnel testing showed that the cut-in-speed of the Hi-Q rotor is much lower than a conventional tested HAWT enabling the Hi-Q Wind Turbine to begin collecting energy before a conventional HAWT has started spinning. Also, torque at low wind speeds for the Hi-Q Wind Turbine is higher than the tested conventional HAWT and enabled the wind turbine to generate power at lower wind speeds. Based on the data collected, the results of

  15. Observed and Aogcm Simulated Relationships Between us Wind Speeds and Large Scale Modes of Climate Variability

    NASA Astrophysics Data System (ADS)

    Schoof, J. T.; Pryor, S. C.; Barthelmie, R. J.

    2013-12-01

    associated with high frequencies are amplified relative to those in NNR. Second, we quantify the observed and AOGCM-simulated relationships between ENSO, AO, and PNA indices and zonal and meridional wind components at multiple levels for the contiguous United States. The results are presented in form of maps displaying the strength of the relationship at different timescales, from daily to annual, and at multiple atmospheric levels, from 10m to 500 mb. The results of the analysis are used to provide context for regional wind climate projections based on 21st century AOGCM simulations.

  16. Short-term wind speed predictions with machine learning techniques

    NASA Astrophysics Data System (ADS)

    Ghorbani, M. A.; Khatibi, R.; FazeliFard, M. H.; Naghipour, L.; Makarynskyy, O.

    2016-02-01

    Hourly wind speed forecasting is presented by a modeling study with possible applications to practical problems including farming wind energy, aircraft safety and airport operations. Modeling techniques employed in this paper for such short-term predictions are based on the machine learning techniques of artificial neural networks (ANNs) and genetic expression programming (GEP). Recorded values of wind speed were used, which comprised 8 years of collected data at the Kersey site, Colorado, USA. The January data over the first 7 years (2005-2011) were used for model training; and the January data for 2012 were used for model testing. A number of model structures were investigated for the validation of the robustness of these two techniques. The prediction results were compared with those of a multiple linear regression (MLR) method and with the Persistence method developed for the data. The model performances were evaluated using the correlation coefficient, root mean square error, Nash-Sutcliffe efficiency coefficient and Akaike information criterion. The results indicate that forecasting wind speed is feasible using past records of wind speed alone, but the maximum lead time for the data was found to be 14 h. The results show that different techniques would lead to different results, where the choice between them is not easy. Thus, decision making has to be informed of these modeling results and decisions should be arrived at on the basis of an understanding of inherent uncertainties. The results show that both GEP and ANN are equally credible selections and even MLR should not be dismissed, as it has its uses.

  17. Drag Corrections in High-Speed Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Ludwieg, H.

    1947-01-01

    In the vicinity of a body in a wind tunnel the displacement effect of the wake, due to the finite dimensions of the stream, produces a pressure gradient which evokes a change of drag. In incompressible flow this change of drag is so small, in general, that one does not have to take it into account in wind-tunnel measurements; however, in compressible flow it beoomes considerably larger, so that a correction factor is necessary for measured values. Correction factors for a closed tunnel and an open jet with circular cross sections are calculated and compared with the drag - corrections already bown for high-speed tunnnels.

  18. An Improved Wind Speed Retrieval Algorithm For The CYGNSS Mission

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Clarizia, M. P.

    2015-12-01

    The NASA spaceborne Cyclone Global Navigation Satellite System (CYGNSS) mission is a constellation of 8 microsatellites focused on tropical cyclone (TC) inner core process studies. CYGNSS will be launched in October 2016, and will use GPS-Reflectometry (GPS-R) to measure ocean surface wind speed in all precipitating conditions, and with sufficient frequency to resolve genesis and rapid intensification. Here we present a modified and improved version of the current baseline Level 2 (L2) wind speed retrieval algorithm designed for CYGNSS. An overview of the current approach is first presented, which makes use of two different observables computed from 1-second Level 1b (L1b) delay-Doppler Maps (DDMs) of radar cross section. The first observable, the Delay-Doppler Map Average (DDMA), is the averaged radar cross section over a delay-Doppler window around the DDM peak (i.e. the specular reflection point coordinate in delay and Doppler). The second, the Leading Edge Slope (LES), is the leading edge of the Integrated Delay Waveform (IDW), obtained by integrating the DDM along the Doppler dimension. The observables are calculated over a limited range of time delays and Doppler frequencies to comply with baseline spatial resolution requirements for the retrieved winds, which in the case of CYGNSS is 25 km. In the current approach, the relationship between the observable value and the surface winds is described by an empirical Geophysical Model Function (GMF) that is characterized by a very high slope in the high wind regime, for both DDMA and LES observables, causing large errors in the retrieval at high winds. A simple mathematical modification of these observables is proposed, which linearizes the relationship between ocean surface roughness and the observables. This significantly reduces the non-linearity present in the GMF that relate the observables to the wind speed, and reduces the root-mean square error between true and retrieved winds, particularly in the high wind

  19. Adaptive torque control of variable speed wind turbines

    NASA Astrophysics Data System (ADS)

    Johnson, Kathryn E.

    Wind is a clean, renewable resource that has become more popular in recent years due to numerous advances in technology and public awareness. Wind energy is quickly becoming cost competitive with fossil fuels, but further reductions in the cost of wind energy are necessary before it can grow into a fully mature technology. One reason for higher-than-necessary cost of the wind energy is uncertainty in the aerodynamic parameters, which leads to inefficient controllers. This thesis explores an adaptive control technique designed to reduce the negative effects of this uncertainty. The primary focus of this work is a new adaptive controller that is designed to resemble the standard non-adaptive controller used by the wind industry. The standard controller was developed for variable speed wind turbines operating below rated power. The new adaptive controller uses a simple, highly intuitive gain adaptation law intended to seek out the optimal gain for maximizing the turbine's energy capture. It is designed to work even in real, time-varying winds. The adaptive controller has been tested both in simulation and on a real turbine, with numerous experimental results provided in this work. Simulations have considered the effects of erroneous wind measurements and time-varying turbine parameters, both of which are concerns on the real turbine. The adaptive controller has been found to operate as desired under realistic operating conditions, and energy capture has increased on the real turbine as a result. Theoretical analyses of the standard and adaptive controllers were performed, as well, providing additional insight into the system. Finally, a few extensions were made with the intent of making the adaptive control idea even more appealing in the commercial wind turbine market.

  20. An atlas of monthly mean distributions of SSMI surface wind speed, ARGOS buoy drift, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1991

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.

    1993-01-01

    The following monthly mean global distributions for 1991 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free-drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components of the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.

  1. An atlas of monthly mean distributions of SSMI surface wind speed, ARGOS buoy drift, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1990

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.

    1993-01-01

    The following monthly mean global distributions for 1990 are proposed with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (US) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components on the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation values are displayed. Annual mean distributions are displayed.

  2. 11. INTERIOR VIEW OF 8FOOT HIGH SPEED WIND TUNNEL. SAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF 8-FOOT HIGH SPEED WIND TUNNEL. SAME CAMERA POSITION AS VA-118-B-10 LOOKING IN THE OPPOSITE DIRECTION. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  3. Neptune's Wind Speeds Obtained by Tracking Clouds in Voyager Images.

    PubMed

    Hammel, H B; Beebe, R F; De Jong, E M; Hansen, C J; Howell, C D; Ingersoll, A P; Johnson, T V; Limaye, S S; Magalhaes, J A; Pollack, J B; Sromovsky, L A; Suomi, V E; Swift, C E

    1989-09-22

    Images of Neptune obtained by the narrow-angle camera of the Voyager 2 spacecraft reveal large-scale cloud features that persist for several months or longer. The features' periods of rotation about the planetary axis range from 15.8 to 18.4 hours. The atmosphere equatorward of -53 degrees rotates with periods longer than the 16.05-hour period deduced from Voyager's planetary radio astronomy experiment (presumably the planet's internal rotation period). The wind speeds computed with respect to this radio period range from 20 meters per second eastward to 325 meters per second westward. Thus, the cloud-top wind speeds are roughly the same for all the planets ranging from Venus to Neptune, even though the solar energy inputs to the atmospheres vary by a factor of 1000.

  4. Efficient Low-Speed Flight in a Wind Field

    NASA Technical Reports Server (NTRS)

    Feldman, Michael A.

    1996-01-01

    A new software tool was needed for flight planning of a high altitude, low speed unmanned aerial vehicle which would be flying in winds close to the actual airspeed of the vehicle. An energy modeled NLP (non-linear programming) formulation was used to obtain results for a variety of missions and wind profiles. The energy constraint derived included terms due to the wind field and the performance index was a weighted combination of the amount of fuel used and the final time. With no emphasis on time and with no winds the vehicle was found to fly at maximum lift to drag velocity, V(sub md). When flying in tail winds the velocity was less than V(sub md), while flying in head winds the velocity was higher than V(sub md). A family of solutions was found with varying times of flight and varying fuel amounts consumed which will aid the operator in choosing a flight plan depending on a desired landing time. At certain parts of the flight, the turning terms in the energy constraint equation were found to be significant. An analysis of a simpler vertical plane cruise optimal control problem was used to explain some of the characteristics of the vertical plane NLP results.

  5. Laboratory implementation of variable-speed wind turbine generation

    SciTech Connect

    Zinger, D S; Miller, A A; Muljadi, E; Butterfield, C P; Robinson, M C

    1996-07-01

    To improve the performance of wind turbines, various control schemes such as variable speed operation have been proposed. Testing of these control algorithms on a full scale system is very expensive. To test these systems simulation, we developed programs and small scale laboratory experiments. We used this system to verify a control method that attempts to keep the turbine operating at its peak power coefficient. Both the simulations and the experiments verified the principle of operation of this control scheme.

  6. Wind Tunnel Studies in Aerodynamic Phenomena at High Speed

    NASA Technical Reports Server (NTRS)

    Caldwell, F W; Fales, E N

    1921-01-01

    A great amount of research and experimental work has been done and fair success obtained in an effort to place airplane and propeller design upon an empirical basis. However, one can not fail to be impressed by the apparent lack of data available toward establishing flow phenomena upon a rational basis, such that they may be interpreted in terms of the laws of physics. With this end in view it was the object of the authors to design a wind tunnel differing from the usual type especially in regard to large power and speed of flow. This report describes the wind tunnel at Mccook Field and gives the results of experiments conducted in testing the efficiency of the wind tunnel.

  7. Ulysses Composition, Plasma and Magnetic Field Observations of High Speed Solar wind Streams

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1997-01-01

    During 1992-3 as the Ulysses spacecraft passed in and out of the southern high speed solar wind stream, the Solar Wind Ion Spectrometer, SWICS made continuous composition and temperature measurements of all major solar wind ions.

  8. Wind farm induced changes in wind speed and surface fluxes over the North Sea

    NASA Astrophysics Data System (ADS)

    Chatterjee, Fabien; van Lipzig, Nicole; Meyers, Johan

    2016-04-01

    Offshore wind farm deployment in the North Sea is foreseen to expand dramatically in the coming years. The strong expansion of offshore wind parks is likely to affect the regional climatology on the North Sea. We assess this impact by conducting a regional climate model simulation over future wind farms built near the German coast. In order to achieve this, the wind farm parameterisation of Fitch et al. 2012, where wind farms are parameterised as elevated sources of turbulent kinetic energy and sinks of momentum ( Blahak et al 2010 and Fitch et al 2012) is implemented in COSMO-CLM at a 1.5 km resolution. As a first step, COSMO-CLM's ability to reproduce wind profiles over the North Sea is evaluated using wind speed data from the FINO1 meteorological mast, toghether with QuikScat scatterometer data, for a time period of 2000-2008. Subsequently, the impact of windfarms on the regional climate over a period of ten years (1999-2008) is assessed. A large scale wind farm can create wakes which depending on the wind direction could affect the power production of a neighbouring farm. Furthermore, wind farms decelerate the flow and create a vertical circulation in the inflow region. As a result, changes in vertical fluxes of moisture are observed. This leads to enhanced low level cloud cover which may trigger changes in precipitation.

  9. Latitudinal properties of the solar wind from studies of ionic comet tails. [statistical analysis of solar wind speed variations

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.

    1976-01-01

    A statistical analysis is presented of the orientations of ionic comet tails in the solar wind. The analysis indicates that the radial solar wind speed is not necessarily higher near the solar poles than near the equator. The results refer to a long-term, global flow pattern and do not refer to short-term variations of solar wind speed.

  10. Nonlinear Alfven waves in high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Abraham-Shrauner, B.; Feldman, W. C.

    1977-01-01

    A nonlinear proton distribution function that is an exact stationary solution of the nonlinear Vlasov equation and Maxwell's equations and which supports a single nonlinear transverse Alfven (ion cyclotron) wave that is circularly polarized and nondispersive is proposed for most of the observations during high-speed solar wind streams. This nonlinear distribution removes the strong Alfven wave instability, inconsistent with the persistence of the observed proton distribution functions in high-speed streams, found by the linear stability analysis. Model temperature anisotropies and drift velocities of the two spatially inhomogeneous bi-Maxwellian components are consistent with typical proton velocity distributions measured in high-speed streams at 1 AU. Two derived relations for each of the wave number and the phase velocity of the wave are obeyed within experimental uncertainties by two typical proton measurements. Our model also predicts that the alpha particle bulk flow velocity exceeds the proton particle bulk flow velocity, as is observed.

  11. On the variability of the Charnock constant and the functional dependence of the drag coefficient on wind speed: Part II-Observations

    NASA Astrophysics Data System (ADS)

    Bye, John A. T.; Wolff, Jörg-Olaf; Lettmann, Karsten A.

    2014-07-01

    An analytical expression for the 10 m drag law in terms of the 10 m wind speed at the maximum in the 10 m drag coefficient, and the Charnock constant is presented, which is based on the results obtained from a model of the air-sea interface derived in Bye et al. (2010). This drag law is almost independent of wave age and over the mid-range of wind speeds (5-17 ms-1) is very similar to the drag law based on observed data presented in Foreman and Emeis (2010). The linear fit of the observed data which incorporates a constant into the traditional definition of the drag coefficient is shown to arise to first-order as a consequence of the momentum exchange across the air-sea boundary layer brought about by wave generation and spray production which are explicitly represented in the theoretical model.

  12. The Impacts of Wind Speed Trends and Long-term Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Cross, B.; Kohfeld, K. E.; Cooper, A.; Bailey, H. J.; Rucker, M.

    2013-12-01

    The use of wind power is growing rapidly in the Pacific Northwest (PNW ) due to environmental concerns, decreasing costs of implementation, strong wind speeds, and a desire to diversify electricity sources to minimize the impacts of streamflow variability on electricity prices and system flexibility. In hydroelectric dominated systems, like the PNW, the benefits of wind power can be maximized by accounting for the relationship between long term variability in wind speeds and reservoir inflows. Clean energy policies in British Columbia make the benefits of increased wind power generation during low streamflow periods particularly large, by preventing the overbuilding of marginal hydroelectric projects. The goal of this work was to quantify long-term relationships between wind speed and streamflow behavior in British Columbia. Wind speed data from the North American Regional Reanalysis (NARR) and cumulative usable inflows (CUI) from BC Hydro were used to analyze 10m wind speed and density (WD) trends, WD-CUI correlations, and WD anomalies during low and high inflow periods in the PNW (40°N to 65°N, 110°W to 135°W) from 1979-2010. Statistically significant positive wind speed and density trends were found for most of the PNW, with the largest increases along the Pacific Coast. CUI-WD correlations were weakly positive for most regions, with the highest values along the US coast (r ~0.55), generally weaker correlations to the north, and negative correlations (r ~ -0.25) along BC's North Coast. When considering seasonal relationships, the Spring freshet was coincident with lower WD anomalies west of the Rocky Mountains and higher WDs to the east. A similar but opposite pattern was observed for low inflow winter months. When considering interannual variability, lowest inflow years experienced positive WD anomalies (up to 40% increases) for the North Coast. In highest inflow years, positive WD anomalies were widespread in the US and for smaller patches of central BC

  13. Gas exchange-wind speed relation measured with sulfur hexafluoride on a lake

    NASA Technical Reports Server (NTRS)

    Wanninkhof, R.; Broecker, W. S.; Ledwell, J. R.

    1985-01-01

    Gas-exchange processes control the uptake and release of various gases in natural systems such as oceans, rivers, and lakes. Not much is known about the effect of wind speed on gas exchange in such systems. In the experiment described here, sulfur hexafluoride was dissolved in lake water, and the rate of escape of the gas with wind speed (at wind speeds up to 6 meters per second) was determined over a 1-month period. A sharp change in the wind speed dependence of the gas-exchange coefficient was found at wind speeds of about 2.4 meters per second, in agreement with the results of wind-tunnel studies. However the gas-exchange coefficients at wind speeds above 3 meters per second were smaller than those observed in wind tunnels and are in agreement with earlier lake and ocean results.

  14. Long-term Enhancements in Solar Wind Speed

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Cuzzi, Jeff (Technical Monitor)

    1995-01-01

    Long-term enhancements in solar wind speed over timescales on the order of a year appear to be a common feature throughout the heliosphere over heliocentric distances that range from less than 0.72 AU to greater than 60. The origin of these events remains to be determined, but they are almost certainly associated with long-term variations at the solar wind source, in contrast with smaller-scale structures such as CIRs, MIRs, and GMIRs which are dynamical in origin. We present a survey of the long-term speed enhancements observed at the Pioneer Venus Orbiter (PVO), IMP 8, Voyager 2, and Pioneer 10 between 1974 and 1994 and compare this with published reports of smaller-scale events such as MIRs. We examine several of these long-term speed enhancements in detail to identify and characterize aspects of their structure, then describe how that structure evolves with heliocentric distance. Finally we discuss some of the implications of these events.

  15. Zonal winds near Venus' cloud top level - An analytic model of the equatorial wind speed

    NASA Technical Reports Server (NTRS)

    Leovy, Conway B.

    1987-01-01

    A consequence of the presently hypothesized maintenance of the equatorial wind speed near the cloud top level of Venus by a balance between the semidiurnal tide's pumping and the Hadley circulation's vertical advection (both integrated across the thermal driving region) is that the maximum equatorial zonal wind speed is proportional to the product of the buoyancy frequency and the magnitude of the driving region's thickness. The proportionality constant is characterized as a weakly increasing function of the heating rate, and a decreasing function of the product of an inverse length, expressing the mean zonal wind shear, and the driving region thickness. For the class of solutions thus treated, there is a threshold heating rate value below which no equilibrium satisfies the prescribed balance.

  16. Relationship between gas exchange, wind speed, and radar backscatter in a large wind-wave tank

    NASA Technical Reports Server (NTRS)

    Wanninkhof, Richard H.; Bliven, L. F.

    1991-01-01

    The relationships between the gas exchange, wind speed, friction velocity, and radar backscatter from the water surface was investigated using data obtained in a large water tank in the Delft (Netherlands) wind-wave tunnel, filled with water supersaturated with SF6, N2O, and CH4. Results indicate that the gas-transfer velocities of these substances were related to the wind speed with a power law dependence. Microwave backscatter from water surface was found to be related to gas transfer velocities by a relationship in the form k(gas) = a 10 exp (b A0), where k is the gas transfer velocity for the particular gas, the values of a and b are obtained from a least squares fit of the average backscatter cross section and gas transfer at 80 m, and A0 is the directional (azimuthal) averaged return.

  17. Estimation of rotor effective wind speeds using autoregressive models on Lidar data

    NASA Astrophysics Data System (ADS)

    Giyanani, A.; Bierbooms, W. A. A. M.; van Bussel, G. J. W.

    2016-09-01

    Lidars have become increasingly useful for providing accurate wind speed measurements in front of the wind turbine. The wind field measured at distant meteorological masts changes its structure or was too distorted before it reaches the turbine. Thus, one cannot simply apply Taylor's frozen turbulence for representing this distant flow field at the rotor. Wind turbine controllers can optimize the energy output and reduce the loads significantly, if the wind speed estimates were known in advance with high accuracy and low uncertainty. The current method to derive wind speed estimations from aerodynamic torque, pitch angle and tip speed ratio after the wind field flows past the turbine and have their limitations, e.g. in predicting gusts. Therefore, an estimation model coupled with the measuring capability of nacelle based Lidars was necessary for detecting extreme events and for estimating accurate wind speeds at the rotor disc. Nacelle-mounted Lidars measure the oncoming wind field from utpo 400m(5D) in front of the turbine and appropriate models could be used for deriving the rotor effective wind speed from these measurements. This article proposes an auto-regressive model combined with a method to include the blockage factor in order to estimate the wind speeds accurately using Lidar measurements. An Armax model was used to determine the transfer function that models the physical evolution of wind towards the wind turbine, incorporating the effect of surface roughness, wind shear and wind variability at the site. The model could incorporate local as well as global effects and was able to predict the rotor effective wind speeds with adequate accuracy for wind turbine control actions. A high correlation of 0.86 was achieved as the Armax modelled signal was compared to a reference signal. The model could also be extended to estimate the damage potential during high wind speeds, gusts or abrupt change in wind directions, allowing the controller to act appropriately

  18. Winding Losses in High-Speed Machines using Form-Wound Windings

    NASA Astrophysics Data System (ADS)

    Zhang, Wanjun

    Understanding the ac loss phenomena in form-wound windings is critical for achieving high efficiency in ac machines that employ this type of winding. Accurate calculation of these losses using finite element (FE) analysis typically requires a fine mesh size in the conductors and small time steps, requiring considerable computational resources to accomplish. This research program presents the development of a closed-form 2D analytical model that is capable of calculating the ac losses in form-wound windings with promising accuracy and short computation times. This model is valuable for carrying out rapid assessments of the ac losses in machines for a wide range of operating conditions, making it practical to evaluate large numbers of candidate designs. Significant attention is devoted to exploring alternative approaches for reducing these ac losses that are influenced by many winding design factors including the conductor locations and thicknesses, number of conductors per slot, and phase arrangement. In addition, experimental tests have been carried out using three identical stators with form-wound, "pseudo" Litz and true Litz windings, all configured with the same winding function. The availability of these stators makes it possible to experimentally segregate the winding losses, explore winding losses under different operating conditions, and, finally, build confidence in the proposed model. The results of this investigation highlight the advantages of form-wound windings for low-frequency operation while also clearly demonstrating the risks that they present for unacceptably high ac losses at elevated frequencies. This work also demonstrates that careful attention to the design details of form-wound windings can lead to promising reductions of the ac winding losses under demanding operating conditions associated with high-speed operation.

  19. Stability analysis of a variable-speed wind turbine

    SciTech Connect

    Bir, G.S.; Wright, A.D.; Butterfield, C.P.

    1996-10-01

    This paper examines the elastomechanical stability of a four-bladed wind turbine over a specific rotor speed range. Stability modes, frequencies, and dampings are extracted using a specialized modal processor developed at NREL that post-processes the response data generated by the ADAMS simulation code. The processor can analyze a turbine with an arbitrary number of rotor blades and offers a novel capability of isolating stability modes that become locked at a single frequency. Results indicate that over a certain rotor speed range, the tower lateral mode and the rotor regressive in-plane mode coalesce, resulting in a self-excited instability. Additional results show the effect of tower and nacelle parameters on the stability boundaries.

  20. Coupling between SST and wind speed over mesoscale eddies in the South China Sea

    NASA Astrophysics Data System (ADS)

    Sun, Shuangwen; Fang, Yue; Liu, Baochao; ᅟ, Tana

    2016-11-01

    The coupling between sea surface temperature (SST) and sea surface wind speed over mesoscale eddies in the South China Sea (SCS) was studied using satellite measurements. Positive correlations between SST anomalies (SSTA) and wind speed anomalies were found over both cyclonic and anticyclonic eddies. In contrast to the open oceans, the spatial patterns of the coupling over mesoscale eddies in the SCS depend largely on the seasonal variations of the background SST gradient, wind speed, and wind directional steadiness. In summer, the maximum SSTA location coincides with the center of eddy-induced sea surface height anomalies. In winter, the eddy-induced SSTA show a clear dipole pattern. The spatial patterns of wind speed anomalies over eddies are similar to those of the SSTA in both seasons. Wind speed anomalies are linearly correlated with SSTA over anticyclonic and cyclonic eddies. The coupling coefficients between SSTA and wind speed anomalies in the SCS are comparable to those in the open oceans.

  1. Coupling between SST and wind speed over mesoscale eddies in the South China Sea

    NASA Astrophysics Data System (ADS)

    Sun, Shuangwen; Fang, Yue; Liu, Baochao; ᅟ, Tana

    2016-09-01

    The coupling between sea surface temperature (SST) and sea surface wind speed over mesoscale eddies in the South China Sea (SCS) was studied using satellite measurements. Positive correlations between SST anomalies (SSTA) and wind speed anomalies were found over both cyclonic and anticyclonic eddies. In contrast to the open oceans, the spatial patterns of the coupling over mesoscale eddies in the SCS depend largely on the seasonal variations of the background SST gradient, wind speed, and wind directional steadiness. In summer, the maximum SSTA location coincides with the center of eddy-induced sea surface height anomalies. In winter, the eddy-induced SSTA show a clear dipole pattern. The spatial patterns of wind speed anomalies over eddies are similar to those of the SSTA in both seasons. Wind speed anomalies are linearly correlated with SSTA over anticyclonic and cyclonic eddies. The coupling coefficients between SSTA and wind speed anomalies in the SCS are comparable to those in the open oceans.

  2. Evaluating the effects of land use and cover change on the decrease of surface wind speed over China in recent 30 years using a statistical downscaling method

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Zha, Jinlin; Zhao, Deming

    2016-03-01

    The long-term decrease of surface wind speed (SWS) has been revealed by previous studies in China in recent decades, but the reasons for the SWS decrease remain uncertain. In this paper, we evaluated the effects of land use and cover change (LUCC) on the SWS decrease during 1980-2011 over the Eastern China Plain (ECP) region using a combined method of statistical downscaling and observation minus reanalysis data, which was used to improve the climate prediction of general circulation models and to evaluate the influence of LUCC on climate change. To exclude the potential influence of LUCC on SWS observation, a statistical downscaling model (SDM) was established during 1980-1992 because a lower extent of LUCC occurred during this period than in later periods. The skill of the SDM was checked by comparing the results of different predictor combinations. Then, SDM was used to improve the wind speed data at 10 m above the surface in the ERA-Interim reanalysis data (V10m-ERA) during 1993-2011, which decreased the error in the reanalysis wind speed as far as possible. Then, the difference between the station observed SWS (V10m-OBV) and the downscaled SWS (V10m-SDM) during 1993-2011 (SWSD) was considered the quantitative estimation of the influence of the LUCC on SWS in this period. The V10m-SDM can capture both the large-scale and local characteristics in the observation, and their patterns are very similar. V10m-SDM has better performance in the spatial-temporal changes than does V10m-ERA with respect to V10m-OBV. The impact of LUCC on the SWS was pronounced, the SWSD was -0.24 m s-1 in 1993, and the SWSD reached -0.56 m s-1 in 2011. LUCC could induce a 0.17 m s-1 wind speed decrease per 10 year in the ECP region during 1993-2011. Furthermore, each 10 % rise of the urbanization rate could cause an approximately 0.12 m s-1 decrease in wind speed. Additionally, pressure-gradient force was eliminated as the primary cause of the observed long-term decrease of SWS in ECP by

  3. Effective wind speed estimation: Comparison between Kalman Filter and Takagi-Sugeno observer techniques.

    PubMed

    Gauterin, Eckhard; Kammerer, Philipp; Kühn, Martin; Schulte, Horst

    2016-05-01

    Advanced model-based control of wind turbines requires knowledge of the states and the wind speed. This paper benchmarks a nonlinear Takagi-Sugeno observer for wind speed estimation with enhanced Kalman Filter techniques: The performance and robustness towards model-structure uncertainties of the Takagi-Sugeno observer, a Linear, Extended and Unscented Kalman Filter are assessed. Hence the Takagi-Sugeno observer and enhanced Kalman Filter techniques are compared based on reduced-order models of a reference wind turbine with different modelling details. The objective is the systematic comparison with different design assumptions and requirements and the numerical evaluation of the reconstruction quality of the wind speed. Exemplified by a feedforward loop employing the reconstructed wind speed, the benefit of wind speed estimation within wind turbine control is illustrated.

  4. Effective wind speed estimation: Comparison between Kalman Filter and Takagi-Sugeno observer techniques.

    PubMed

    Gauterin, Eckhard; Kammerer, Philipp; Kühn, Martin; Schulte, Horst

    2016-05-01

    Advanced model-based control of wind turbines requires knowledge of the states and the wind speed. This paper benchmarks a nonlinear Takagi-Sugeno observer for wind speed estimation with enhanced Kalman Filter techniques: The performance and robustness towards model-structure uncertainties of the Takagi-Sugeno observer, a Linear, Extended and Unscented Kalman Filter are assessed. Hence the Takagi-Sugeno observer and enhanced Kalman Filter techniques are compared based on reduced-order models of a reference wind turbine with different modelling details. The objective is the systematic comparison with different design assumptions and requirements and the numerical evaluation of the reconstruction quality of the wind speed. Exemplified by a feedforward loop employing the reconstructed wind speed, the benefit of wind speed estimation within wind turbine control is illustrated. PMID:26725505

  5. Wind Speed Estimation and Wake model Re-calibration for Downregulated Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Göçmen Bozkurt, Tuhfe; Giebel, Gregor; Kjølstad Poulsen, Niels; Réthoré, Pierre-Elouan; Mirzaei, Mahmood

    2014-05-01

    In recent years, the wind farm sizes have increased tremendously and with increasing installed capacity, the wind farms are requested to downregulate from their maximum possible power more frequently, especially in the offshore environment. Determination of the possible (or available) power is crucial not only because the reserve power has considerable market value but also for wind farm developers to be properly compensated for the loss during downregulation. While the available power calculation is straightforward for a single turbine, it gets rather complicated for the whole wind farm due to the change in the wake characteristics. In fact, the wake losses generated by the upstream turbine(s) decrease during downregulation and the downstream turbines therefore see more wind compared to the normal operation case. Currently, the Transmission System Operators (TSOs) have no real way to determine exactly the available power of a whole wind farm which is downregulated. Therefore, the PossPOW project aims to develop a verified and internationally accepted way to determine the possible power of a down-regulated offshore wind farm. The first phase of the project is to estimate the rotor effective wind speed. Since the nacelle anemometers are not readily available and are known to have reliability issues, the proposed method is to use power, pitch angle and rotational speed as inputs and combine it with a generic Cp model to estimate the wind speed. The performance of the model has been evaluated for both normal operation and downregulation periods using two different case studies: Horns Rev-I wind farm and NREL 5MW single turbine. During downregulation, the wake losses are not as severe and the velocity deficits at the downstream turbines are smaller as if also the wake is "downregulated". On the other hand, in order to calculate the available power, the wakes that would have been produced normally (if the turbines were not curtailed) are of importance, not the

  6. Smoothing Control of Wind Farm Output by Using Kinetic Energy of Variable Speed Wind Power Generators

    NASA Astrophysics Data System (ADS)

    Sato, Daiki; Saitoh, Hiroumi

    This paper proposes a new control method for reducing fluctuation of power system frequency through smoothing active power output of wind farm. The proposal is based on the modulation of rotaional kinetic energy of variable speed wind power generators through power converters between permanent magnet synchronous generators (PMSG) and transmission lines. In this paper, the proposed control is called Fluctuation Absorption by Flywheel Characteristics control (FAFC). The FAFC can be easily implemented by adding wind farm output signal to Maximum Power Point Tracking control signal through a feedback control loop. In order to verify the effectiveness of the FAFC control, a simulation study was carried out. In the study, it was assumed that the wind farm consisting of PMSG type wind power generator and induction machine type wind power generaotors is connected with a power sysem. The results of the study show that the FAFC control is a useful method for reducing the impacts of wind farm output fluctuation on system frequency without additional devices such as secondary battery.

  7. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, Eduard

    1998-01-01

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  8. Variable Speed Wind Turbine Generator with Zero-sequence Filter

    DOEpatents

    Muljadi, Eduard

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  9. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, E.

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

  10. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight

    USGS Publications Warehouse

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey. Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight. Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for

  11. Substorm probabilities are best predicted from solar wind speed

    NASA Astrophysics Data System (ADS)

    Newell, P. T.; Liou, K.; Gjerloev, J. W.; Sotirelis, T.; Wing, S.; Mitchell, E. J.

    2016-08-01

    Most measures of magnetospheric activity - including auroral power (AP), magnetotail stretching, and ring current intensity - are best predicted by solar wind-magnetosphere coupling functions which approximate the frontside magnetopause merging rate. However radiation belt fluxes are best predicted by a simpler function, namely the solar wind speed, v. Since most theories of how these high energy electrons arise are associated with repeated rapid dipolarizations such as associated with substorms, this apparent discrepancy could be reconciled under the hypothesis that the frequency of substorms tracks v rather than the merging rate - despite the necessity of magnetotail flux loading prior to substorms. Here we investigate this conjecture about v and substorm probability. Specifically, a continuous list of substorm onsets compiled from SuperMAG covering January 1, 1997 through December 31, 2007 are studied. The continuity of SuperMAG data and near continuity of solar wind measurements minimize selection bias. In fact v is a much better predictor of onset probability than is the overall merging rate, with substorm odds rising sharply with v. Some loading by merging is necessary, and frontside merging does increase substorm probability, but nearly as strongly as does v taken alone. Likewise, the effects of dynamic pressure, p, are smaller than simply v taken by itself. Changes in the solar wind matter, albeit modestly. For a given level of v (or Bz), a change in v (or Bz) will increase the odds of a substorm for at least 2 h following the change. A decrease in driving elevates substorm probabilities to a greater extent than does an increase, partially supporting external triggering. Yet current v is the best single predictor of subsequently observing a substorm. These results explain why geomagnetically quiet years and active years are better characterized by low or high v (respectively) than by the distribution of merging estimators. It appears that the flow of energy

  12. A Novel Empirical Mode Decomposition With Support Vector Regression for Wind Speed Forecasting.

    PubMed

    Ren, Ye; Suganthan, Ponnuthurai Nagaratnam; Srikanth, Narasimalu

    2016-08-01

    Wind energy is a clean and an abundant renewable energy source. Accurate wind speed forecasting is essential for power dispatch planning, unit commitment decision, maintenance scheduling, and regulation. However, wind is intermittent and wind speed is difficult to predict. This brief proposes a novel wind speed forecasting method by integrating empirical mode decomposition (EMD) and support vector regression (SVR) methods. The EMD is used to decompose the wind speed time series into several intrinsic mode functions (IMFs) and a residue. Subsequently, a vector combining one historical data from each IMF and the residue is generated to train the SVR. The proposed EMD-SVR model is evaluated with a wind speed data set. The proposed EMD-SVR model outperforms several recently reported methods with respect to accuracy or computational complexity.

  13. Effects of turbulence on power generation for variable-speed wind turbines

    SciTech Connect

    Muljadi, E.; Butterfield, C.P.; Buhl, M.L. Jr.

    1996-11-01

    One of the primary advantages of variable-speed wind turbines over fixed-speed turbines should be improved aerodynamic efficiency. With variable-speed generation, in order to maintain a constant ratio of wind speed to tip speed, the wind turbine changes rotor speed as the wind speed changes. In this paper we compare a stall-controlled, variable-speed wind turbine to a fixed-speed turbine. The focus of this paper is to investigate the effects of variable speed on energy capture and its ability to control peak power. We also show the impact of turbulence on energy capture in moderate winds. In this report, we use a dynamic simulator to apply different winds to a wind turbine model. This model incorporates typical inertial and aerodynamic performance characteristics. From this study we found a control strategy that makes it possible to operate a stall-controlled turbine using variable speed to optimize energy capture and to control peak power. We also found that turbulence does not have a significant impact on energy capture.

  14. The Impacts of Wind Speed Trends and 30-Year Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest.

    PubMed

    Cross, Benjamin D; Kohfeld, Karen E; Bailey, Joseph; Cooper, Andrew B

    2015-01-01

    In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979-2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC's North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast. PMID:26271035

  15. The Impacts of Wind Speed Trends and 30-Year Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest

    PubMed Central

    Cross, Benjamin D.; Kohfeld, Karen E.; Bailey, Joseph; Cooper, Andrew B.

    2015-01-01

    In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979–2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC’s North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast. PMID:26271035

  16. The Impacts of Wind Speed Trends and 30-Year Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest.

    PubMed

    Cross, Benjamin D; Kohfeld, Karen E; Bailey, Joseph; Cooper, Andrew B

    2015-01-01

    In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979-2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC's North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast.

  17. Low Wind Speed Turbine Developments in Convoloid Gearing: Final Technical Report, June 2005 - October 2008

    SciTech Connect

    Genesis Partners LP

    2010-08-01

    This report presents the results of a study conducted by Genesis Partners LP as part of the United States Department of Energy Wind Energy Research Program to develop wind technology that will enable wind systems to compete in regions having low wind speeds. The purpose of the program is to reduce the cost of electricity from large wind systems in areas having Class 4 winds to 3 cents per kWh for onshore systems or 5 cents per kWh for offshore systems. This work builds upon previous activities under the WindPACT project, the Next Generation Turbine project, and Phase I of the Low Wind Speed Turbine (LWST) project. This project is concerned with the development of more cost-effective gearing for speed increasers for wind turbines.

  18. Trends in 100m Wind Speed using Global High-Resolution Downscaled Analysis

    NASA Astrophysics Data System (ADS)

    McGraw, Z.

    2015-12-01

    The strength and variability of the wind energy resource are expected to be susceptible to the complex changes undergoing Earth's climate system. A variety of physical mechanisms for long-term wind speed changes has been proposed, including modified temperature gradients, shifting storm tracks and altered land use. This study is an analysis of multi-decadal wind speed trends within a high-resolution downscaled global analysis provided by our collaborators at Vestas Wind Systems A/S. We have sought to identify the regions and landscape types that most exhibit long-term changes to wind speed and identify the mechanisms responsible.

  19. Chaos and periodicity in solar wind speed: cycle 23

    NASA Astrophysics Data System (ADS)

    Sarkar, Tushnik; Ray, Rajdeep; Khondekar, Mofazzal H.; Ghosh, Koushik; Banerjee, Subrata

    2015-06-01

    The solar wind speed time series data from 1st January, 1997 to 28th October, 2003 has been pre-processed using simple exponential smoothing, discrete wavelet transform for denoising to investigate the underneath dynamics of it. Recurrence plot and recurrence quantification analysis has revealed that the time series is non-stationary one with deterministic chaotic behavior. The Hilbert-Huang Transform has been used in search of the underlying periods of the data series. Present investigation has revealed the periods of 21 days, 32.5 days, 43.6 days, 148.86 days, 180.7 days, 355.5 days, 403.2 days, 413.6 days, 490.72 days, 729.6 days, 1086.76 days, 1599.4 days and 1892.6 days.

  20. Retrieving hurricane wind speeds using cross-polarization C-band measurements

    NASA Astrophysics Data System (ADS)

    van Zadelhoff, G.-J.; Stoffelen, A.; Vachon, P. W.; Wolfe, J.; Horstmann, J.; Belmonte Rivas, M.

    2014-02-01

    Hurricane-force wind speeds can have a large societal impact and in this paper microwave C-band cross-polarized (VH) signals are investigated to assess if they can be used to derive extreme wind-speed conditions. European satellite scatterometers have excellent hurricane penetration capability at C-band, but the vertically (VV) polarized signals become insensitive above 25 m s-1. VV and VH polarized backscatter signals from RADARSAT-2 SAR imagery acquired during severe hurricane events were compared to collocated SFMR wind measurements acquired by NOAA's hurricane-hunter aircraft. From this data set a geophysical model function (GMF) at strong-to-extreme/severe wind speeds (i.e., 20 m s-1 < U10 < 45 m s-1) is derived. Within this wind speed regime, cross-polarized data showed no distinguishable loss of sensitivity and as such, cross-polarized data can be considered a good candidate for the retrieval of strong-to-severe wind speeds from satellite instruments. The upper limit of 45 m s-1 is defined by the currently available collocated data. The validity of the derived relationship between wind speed and VH backscatter has been evaluated by comparing the cross-polarized signals to two independent wind-speed data sets (i.e., short-range ECMWF numerical weather prediction (NWP) model forecast winds and the NOAA best estimate 1-minute maximum sustained winds). Analysis of the three comparison data sets confirm that cross-polarized signals from satellites will enable the retrieval of strong-to-severe wind speeds where VV or horizontal (HH) polarization data has saturated. The VH backscatter increases exponentially with respect to wind speed (linear against VH [dB]) and a near-real-time assessment of maximum sustained wind speed is possible using VH measurements. VH measurements thus would be an extremely valuable complement on next-generation scatterometers for hurricane forecast warnings and hurricane model initialization.

  1. Multiple and variable speed electrical generator systems for large wind turbines

    NASA Astrophysics Data System (ADS)

    Andersen, T. S.; Hughes, P. S.; Kirschbaum, H. S.; Mutone, G. A.

    A cost effective method to achieve increased wind turbine generator energy conversion and other operational benefits through variable speed operation is presented. Earlier studies of multiple and variable speed generators in wind turbines were extended for evaluation in the context of a specific large sized conceptual design. System design and simulation have defined the costs and performance benefits which can be expected from both two speed and variable speed configurations.

  2. A conceptual framework for evaluating variable speed generator options for wind energy applications

    NASA Astrophysics Data System (ADS)

    Reddoch, T. W.; Lipo, T. A.; Hinrichsen, E. N.; Hudson, T. L.; Thomas, R. J.

    1995-05-01

    Interest in variable speed generating technology has accelerated as greater emphasis on overall efficiency and superior dynamic and control properties in wind-electric generating systems are sought. This paper reviews variable speed technology options providing advantages and disadvantages of each. Furthermore, the dynamic properties of variable speed systems are contrasted with synchronous operation. Finally, control properties of variable speed systems are examined.

  3. A conceptual framework for evaluating variable speed generator options for wind energy applications

    NASA Technical Reports Server (NTRS)

    Reddoch, T. W.; Lipo, T. A.; Hinrichsen, E. N.; Hudson, T. L.; Thomas, R. J.

    1995-01-01

    Interest in variable speed generating technology has accelerated as greater emphasis on overall efficiency and superior dynamic and control properties in wind-electric generating systems are sought. This paper reviews variable speed technology options providing advantages and disadvantages of each. Furthermore, the dynamic properties of variable speed systems are contrasted with synchronous operation. Finally, control properties of variable speed systems are examined.

  4. Comparisons of wind speed retrieval methods on C-band multi-polarization SAR measurements

    NASA Astrophysics Data System (ADS)

    Ren, Lin; Yang, Jingsong; Zheng, Gang; Wang, Juan; Wang, Difeng

    2014-10-01

    This paper compares the wind speed retrieval methods on C-band multi-polarization SAR measurements to find out the most appropriate one for each polarization data. The RADARSAT-2 SAR quad-polarization (VV+HH+VH+HV) data and NDBC buoy wind data were collocated. For VVpolarization, the retrieved wind speed are compared among four geophysical model function (GMF). For HH polarization, the retrieved wind speed are compared among four polarization ratio model (PR) based on CMOD5 GMF. For VH polarization, the retrieved wind speed are compared between two linear models. Comparisons show all of three polarimetric SAR data have the ability of retrieving wind speed. Based on the error analysis, the commendatory methods are proposed for each polarization.

  5. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    NASA Astrophysics Data System (ADS)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  6. Coronal Holes and Solar Wind High-Speed Streams: I. Forecasting the Solar Wind Parameters

    NASA Astrophysics Data System (ADS)

    Vršnak, Bojan; Temmer, Manuela; Veronig, Astrid M.

    2007-02-01

    We analyze the relationship between the coronal hole (CH) area/position and physical characteristics of the associated corotating high-speed stream (HSS) in the solar wind at 1 AU. For the analysis we utilize the data in the period DOY 25 125 of 2005, characterized by a very low coronal mass ejection (CME) activity. Distinct correlations between the daily averaged CH parameters and the solar wind characteristics are found, which allows us to forecast the solar wind velocity v, proton temperature T, proton density n, and magnetic field strength B, several days in advance in periods of low CME activity. The forecast is based on monitoring fractional areas A, covered by CHs in the meridional slices embracing the central meridian distance ranges [-40°,-20°], [-10°,10°], and [20°,40°]. On average, the peaks in the daily values of n, B, T, and v appear delayed by 1, 2, 3, and 4 days, respectively, after the area A attains its maximum in the central-meridian slice. The peak values of the solar wind parameters are correlated to the peak values of A, which provides also forecasting of the peak values of n, B, T, and v. The most accurate prediction can be obtained for the solar wind velocity, for which the average relative difference between the calculated and the observed peak values amounts to overline{\\vertδ\\vert}≈10 %. The forecast reliability is somewhat lower in the case of T, B, and n ( overline{\\vertδ\\vert}≈20 , 30, and 40%, respectively). The space weather implications are discussed, including the perspectives for advancing the real-time calculation of the Sun Earth transit times of coronal mass ejections and interplanetary shocks, by including more realistic real-time estimates of the solar wind characteristics.

  7. Flow-Visualization Techniques Used at High Speed by Configuration Aerodynamics Wind-Tunnel-Test Team

    NASA Technical Reports Server (NTRS)

    Lamar, John E. (Editor)

    2001-01-01

    This paper summarizes a variety of optically based flow-visualization techniques used for high-speed research by the Configuration Aerodynamics Wind-Tunnel Test Team of the High-Speed Research Program during its tenure. The work of other national experts is included for completeness. Details of each technique with applications and status in various national wind tunnels are given.

  8. Interplanetary gas. XX - Does the radial solar wind speed increase with latitude

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Harrington, R. S.; Roosen, R. G.

    1975-01-01

    The astrometric technique used to derive solar wind speeds from ionic comet-tail orientations has been used to test the suggestion that the radial solar wind speed is higher near the solar poles than near the equator. We find no evidence for the suggested latitude variation.

  9. Effect of wind speed on performance of a solar-pv array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thousands of solar photovoltaic (PV) arrays have been installed over the past few years, but the effect of wind speed on the predicted performance of PV arrays is not usually considered by installers. An increase in wind speed will cool the PV array, and the electrical power of the PV modules will ...

  10. Generation and Validation of Spatial Distribution of Hourly Wind Speed Time-Series using Machine Learning

    NASA Astrophysics Data System (ADS)

    Veronesi, F.; Grassi, S.

    2016-09-01

    Wind resource assessment is a key aspect of wind farm planning since it allows to estimate the long term electricity production. Moreover, wind speed time-series at high resolution are helpful to estimate the temporal changes of the electricity generation and indispensable to design stand-alone systems, which are affected by the mismatch of supply and demand. In this work, we present a new generalized statistical methodology to generate the spatial distribution of wind speed time-series, using Switzerland as a case study. This research is based upon a machine learning model and demonstrates that statistical wind resource assessment can successfully be used for estimating wind speed time-series. In fact, this method is able to obtain reliable wind speed estimates and propagate all the sources of uncertainty (from the measurements to the mapping process) in an efficient way, i.e. minimizing computational time and load. This allows not only an accurate estimation, but the creation of precise confidence intervals to map the stochasticity of the wind resource for a particular site. The validation shows that machine learning can minimize the bias of the wind speed hourly estimates. Moreover, for each mapped location this method delivers not only the mean wind speed, but also its confidence interval, which are crucial data for planners.

  11. Nonparametric Stochastic Model for Uncertainty Quantifi cation of Short-term Wind Speed Forecasts

    NASA Astrophysics Data System (ADS)

    AL-Shehhi, A. M.; Chaouch, M.; Ouarda, T.

    2014-12-01

    Wind energy is increasing in importance as a renewable energy source due to its potential role in reducing carbon emissions. It is a safe, clean, and inexhaustible source of energy. The amount of wind energy generated by wind turbines is closely related to the wind speed. Wind speed forecasting plays a vital role in the wind energy sector in terms of wind turbine optimal operation, wind energy dispatch and scheduling, efficient energy harvesting etc. It is also considered during planning, design, and assessment of any proposed wind project. Therefore, accurate prediction of wind speed carries a particular importance and plays significant roles in the wind industry. Many methods have been proposed in the literature for short-term wind speed forecasting. These methods are usually based on modeling historical fixed time intervals of the wind speed data and using it for future prediction. The methods mainly include statistical models such as ARMA, ARIMA model, physical models for instance numerical weather prediction and artificial Intelligence techniques for example support vector machine and neural networks. In this paper, we are interested in estimating hourly wind speed measures in United Arab Emirates (UAE). More precisely, we predict hourly wind speed using a nonparametric kernel estimation of the regression and volatility functions pertaining to nonlinear autoregressive model with ARCH model, which includes unknown nonlinear regression function and volatility function already discussed in the literature. The unknown nonlinear regression function describe the dependence between the value of the wind speed at time t and its historical data at time t -1, t - 2, … , t - d. This function plays a key role to predict hourly wind speed process. The volatility function, i.e., the conditional variance given the past, measures the risk associated to this prediction. Since the regression and the volatility functions are supposed to be unknown, they are estimated using

  12. An examination of loads and responses of a wind turbine undergoing variable-speed operation

    SciTech Connect

    Wright, A.D.; Buhl, M.L. Jr.; Bir, G.S.

    1996-11-01

    The National Renewable Energy Laboratory has recently developed the ability to predict turbine loads and responses for machines undergoing variable-speed operation. The wind industry has debated the potential benefits of operating wind turbine sat variable speeds for some time. Turbine system dynamic responses (structural response, resonance, and component interactions) are an important consideration for variable-speed operation of wind turbines. The authors have implemented simple, variable-speed control algorithms for both the FAST and ADAMS dynamics codes. The control algorithm is a simple one, allowing the turbine to track the optimum power coefficient (C{sub p}). The objective of this paper is to show turbine loads and responses for a particular two-bladed, teetering-hub, downwind turbine undergoing variable-speed operation. The authors examined the response of the machine to various turbulent wind inflow conditions. In addition, they compare the structural responses under fixed-speed and variable-speed operation. For this paper, they restrict their comparisons to those wind-speed ranges for which limiting power by some additional control strategy (blade pitch or aileron control, for example) is not necessary. The objective here is to develop a basic understanding of the differences in loads and responses between the fixed-speed and variable-speed operation of this wind turbine configuration.

  13. Wind Speed Measurement from Bistatically Scattered GPS Signals

    NASA Technical Reports Server (NTRS)

    Garrison, James L.; Komjathy, Attila; Zavorotny, Valery U.; Katzberg, Stephen J.

    1999-01-01

    Instrumentation and retrieval algorithms are described which use the forward, or bistatically scattered range-coded signals from the Global Positioning System (GPS) radio navigation system for the measurement of sea surface roughness. This roughness is known to be related directly to the surface wind speed. Experiments were conducted from aircraft along the TOPEX ground track, and over experimental surface truth buoys. These flights used a receiver capable of recording the cross correlation power in the reflected signal. The shape of this power distribution was then compared against analytical models derived from geometric optics. Two techniques for matching these functions were studied. The first recognized the most significant information content in the reflected signal is contained in the trailing edge slope of the waveform. The second attempted to match the complete shape of the waveform by approximating it as a series expansion and obtaining the nonlinear least squares estimate. Discussion is also presented on anomalies in the receiver operation and their identification and correction.

  14. Control algorithms for effective operation of variable-speed wind turbines

    SciTech Connect

    Not Available

    1993-10-01

    This report describes a computer code, called ASYM and provides results from its application in simulating the control of the 34-m Test Bed vertical-axis wind turbine (VAWT) in Bushland, Texas. The code synthesizes dynamic wind speeds on a second-by-second basis in the time domain. The wind speeds conform to a predetermined spectral content governed by the hourly average wind speed that prevails at each hour of the simulation. The hourly average values are selected in a probabilistic sense through the application of Markov chains, but their cumulative frequency of occurrence conforms to a Rayleigh distribution that is governed by the mean annual wind speed of the site selected. The simulated wind speeds then drive a series of control algorithms that enable the code to predict key operational parameters such as number of annual starts and stops, annual energy production, and annual fatigue damage at a critically stressed joint on the wind turbine. This report also presents results from the application of ASYM that pertain to low wind speed cut-in and cut-out conditions and controlled operation near critical speed ranges that excite structural vibrations that can lead to accelerated fatigue damage.

  15. Variation of the average 'freezing-in' temperature of oxygen ions with solar wind speed

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Vogt, C.

    1980-01-01

    Observations of the average oxygen ionization equilibrium as a function of speed of the solar wind are presented. At low solar wind speeds they indicate a coronal temperature at the freezing-in point of (1.6 + or - 0.2) x 10 to the 6th K. At speeds above 450 km/sec the apparent temperature starts to rise rapidly. This rise is tentatively interpreted in terms of a lack of thermodynamic equilibrium in the source region.

  16. Numerical Study of the High-Speed Leg of a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nayani, Sudheer; Sellers, William L., III; Brynildsen, Scott E.; Everhart, Joel L.

    2015-01-01

    The paper describes the numerical study of the high-speed leg of the NASA Langley 14 by 22-foot Low Speed Wind Tunnel. The high-speed leg consists of the Settling Chamber, Contraction, Test Section, and First Diffuser. Results are shown comparing two different exit boundary conditions and two different methods of determining the surface geometry.

  17. Short wind waves on the ocean: Long-wave and wind-speed dependences

    NASA Astrophysics Data System (ADS)

    Plant, William J.

    2015-09-01

    This second paper of our set on short wind waves on the ocean utilizes the wavenumber-frequency spectrum of short wave heights, F(k,f), derived in our previous paper to investigate kinematic effects on the dependence of the frequency spectrum, F(f), and the wavenumber spectrum, F(k), on long-wave height. We show that the model predicts that neither F(f) nor F(k) are exactly power law functions of their independent variables and that F(f) varies with significant wave height much more than F(k) does. After calibrating the model against wave gauges, we also investigate the dependence of mean-square-slopes (mss), mean-square heights (msh) and root-mean-square orbital velocities (rmsv) of short ocean waves on wind speed and maximum frequency or wavenumber. We use data from the wire wave gauges on University of Miami's Air-Sea Interaction Spar (ASIS) buoy for calibration purposes. Frequency spectra from the wave gauges begin to be affected by noise at about 2.5 Hz. Therefore, above 1 Hz, we utilize F(f) from the modeled F(k,f) to extend the frequency dependence up to 180 Hz. We set modeled spectral densities by matching measured spectra at 1 Hz. Using the calibrated F(f,k), we are able to estimate the average value of the total mss, for long and short waves, and its upwind and crosswind components up to 180 Hz for a variety of wind speeds. The average mss values are in good agreement with the measurements of Cox and Munk [1954], although the upwind and crosswind components agree less well.

  18. Reconstruction of Helio-Latitudinal Structure of the Solar Wind Proton Speed and Density

    NASA Astrophysics Data System (ADS)

    Sokół, Justyna M.; Swaczyna, Paweł; Bzowski, Maciej; Tokumaru, Munetoshi

    2015-09-01

    The modeling of the heliosphere requires continuous three-dimensional solar wind data. The in-situ out-of-ecliptic measurements are very rare, so that other methods of solar wind detection are needed. We use the remote-sensing data of the solar wind speed from observations of interplanetary scintillation (IPS) to reconstruct spatial and temporal structures of the solar wind proton speed from 1985 to 2013. We developed a method of filling the data gaps in the IPS observations to obtain continuous and homogeneous solar wind speed records. We also present a method to retrieve the solar wind density from the solar wind speed, utilizing the invariance of the solar wind dynamic pressure and energy flux with latitude. To construct the synoptic maps of the solar wind speed we use the decomposition into spherical harmonics of each of the Carrington rotation map. To fill the gaps in time we apply the singular spectrum analysis to the time series of the coefficients of spherical harmonics. We obtained helio-latitudinal profiles of the solar wind proton speed and density over almost three recent solar cycles. The accuracy in the reconstruction is, due to computational limitations, about 20 %. The proposed methods allow us to improve the spatial and temporal resolution of the model of the solar wind parameters presented in our previous paper (Sokół et al., Solar Phys. 285, 167, 2013) and give a better insight into the time variations of the solar wind structure. Additionally, the solar wind density is reconstructed more accurately and it fits better to the in-situ measurements from Ulysses.

  19. A hybrid wavelet transform based short-term wind speed forecasting approach.

    PubMed

    Wang, Jujie

    2014-01-01

    It is important to improve the accuracy of wind speed forecasting for wind parks management and wind power utilization. In this paper, a novel hybrid approach known as WTT-TNN is proposed for wind speed forecasting. In the first step of the approach, a wavelet transform technique (WTT) is used to decompose wind speed into an approximate scale and several detailed scales. In the second step, a two-hidden-layer neural network (TNN) is used to predict both approximated scale and detailed scales, respectively. In order to find the optimal network architecture, the partial autocorrelation function is adopted to determine the number of neurons in the input layer, and an experimental simulation is made to determine the number of neurons within each hidden layer in the modeling process of TNN. Afterwards, the final prediction value can be obtained by the sum of these prediction results. In this study, a WTT is employed to extract these different patterns of the wind speed and make it easier for forecasting. To evaluate the performance of the proposed approach, it is applied to forecast Hexi Corridor of China's wind speed. Simulation results in four different cases show that the proposed method increases wind speed forecasting accuracy.

  20. Recent recovery of surface wind speed after decadal decrease: a focus on South Korea

    NASA Astrophysics Data System (ADS)

    Kim, JongChun; Paik, Kyungrock

    2015-09-01

    We investigate the multi-decadal variability of observed surface wind speed around South Korea. It is found that surface wind speed exhibits decreasing trend from mid-1950s until 2003, which is similar with the trends reported for other parts of the world. However, the decreasing trend ceases and becomes unclear since then. It is revealed that decreasing wind speed until 2003 is strongly associated with the decreasing trend of the spatial variance in both atmospheric pressure and air temperature across the East Asia for the same period. On the contrary, break of decreasing trend in surface wind speed since 2003 is associated with increasing spatial variance in surface temperature over the East Asia. Ground observation shows that surface wind speed and air temperature exhibit highly negative correlations for both summer and winter prior to 2003. However, since 2003, the correlations differ between seasons. We suggest that mechanisms behind the recent wind speed trend are different between summer and winter. This is on the basis of an interesting finding that air temperature has decreased while surface temperature has increased during winter months since 2003. We hypothesize that such contrasting temperature trends indicate more frequent movement of external cold air mass into the region since 2003. We also hypothesize that increasing summer wind speed is driven by intrusion of warm air mass into the region which is witnessed via increasing spatial variance in surface temperature across East Asia and the fact that both air and surface temperature rise together.

  1. Ulysses at 50 deg south: Constant immersion in the high-speed solar wind

    NASA Technical Reports Server (NTRS)

    Phillips, J. L.; Balogh, A.; Bame, S. J.; Goldstein, B. E.; Gosling, J. T.; Hoeksema, J. T.; Mccomas, D. J.; Neugebauer, M.; Sheeley, N. R., Jr.; Wang, Y.-M.

    1994-01-01

    We present speed observations from the Ulysses solar wind plasma experiment through 50 deg south latitude. The pronounced speed modulation arising from solar rotation and the tilt of the heliomagnetic current sheet has nearly disappeared. Ulysses is now observing wind speeds in the 700 to 800 km/s range, with a magnetic polarity indicating an origin in the large south polar coronal hole. The strong compressions, rarefractions, and shock waves previously seen have weakened or disappeared. Occasional coronal mass ejections characterized by low plasma density caused by radial expansion have been observed. The coronal configuration was simple and stable in 1993, indicating that the observed solar wind changes were caused by increasing spacecraft latitude. Trends in prevailing speed with increasing latitude support previous findings. A decrease in peak speed southward of 40 deg latitude may indicate that the fastest solar wind comes from the equatorial extensions of the polar coronal holes.

  2. Stability Augmentation of Wind Farm using Variable Speed Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Rosyadi, Marwan; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    This paper presents a new control strategy of variable speed permanent magnet wind generator for stability augmentation of wind farm including fixed speed wind turbine with Induction Generator (IG). A new control scheme is developed for two levels back-to-back converters of Permanent Magnet Synchronous Generator (PMSG), by which both active and reactive powers delivered to the grid can be controlled easily. To avoid the converter damage, the DC link protection controller is also proposed in order to protect the dc link circuit during fault condition. To evaluate the control capability of the proposed controllers, simulations are performed on two model systems composed of wind farms connected to an infinite bus. From transient and steady state analyses by using PSCAD/EMTDC, it is concluded that the proposed control scheme is very effective to improve the stability of wind farm for severe network disturbance and randomly fluctuating wind speed.

  3. Flight measurement and analysis of AAFE RADSCAT wind speed signature of the ocean

    NASA Technical Reports Server (NTRS)

    Schroeder, L. C.; Jones, W. L.; Schaffner, P. R.; Mitchell, J. L.

    1984-01-01

    The advanced aerospace flight experiment radiometer scatterometer (AAFE RADSCAT) which was developed as a research tool to evaluate the use of microwave frequency remote sensors to provide wind speed information at the ocean surface is discussed. The AAFE RADSCAT helped establish the feasibility of the satellite scatterometer for measuring both wind speed and direction. The most important function of the AAFE RADSCAT was to provide a data base of ocean normalized radar cross section (NRCS) measurements as a function of surface wind vector at 13.9 GHz. The NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions. The obtained data base was used to model the relationship between k sub u band radar signature and ocean surface wind vector. The models developed therefrom are compared with those used for inversion of the SEASAT-A satellite scatterometer (SASS) radar measurements to wind speeds.

  4. Wind speed affects prey-catching behaviour in an orb web spider

    NASA Astrophysics Data System (ADS)

    Turner, Joe; Vollrath, Fritz; Hesselberg, Thomas

    2011-12-01

    Wind has previously been shown to influence the location and orientation of spider web sites and also the geometry and material composition of constructed orb webs. We now show that wind also influences components of prey-catching behaviour within the web. A small wind tunnel was used to generate different wind speeds. Araneus diadematus ran more slowly towards entangled Drosophila melanogaster in windy conditions, which took less time to escape the web. This indicates a lower capture probability and a diminished overall predation efficiency for spiders at higher wind speeds. We conclude that spiders' behaviour of taking down their webs as wind speed increases may therefore not be a response only to possible web damage.

  5. A Hybrid Approach for Short-Term Forecasting of Wind Speed

    PubMed Central

    Tatinati, Sivanagaraja; Veluvolu, Kalyana C.

    2013-01-01

    We propose a hybrid method for forecasting the wind speed. The wind speed data is first decomposed into intrinsic mode functions (IMFs) with empirical mode decomposition. Based on the partial autocorrelation factor of the individual IMFs, adaptive methods are then employed for the prediction of IMFs. Least squares-support vector machines are employed for IMFs with weak correlation factor, and autoregressive model with Kalman filter is employed for IMFs with high correlation factor. Multistep prediction with the proposed hybrid method resulted in improved forecasting. Results with wind speed data show that the proposed method provides better forecasting compared to the existing methods. PMID:24453872

  6. On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    The aa index can be decomposed into two separate components: the leading sporadic component due to solar activity as measured by sunspot number and the residual or recurrent component due to interplanetary disturbances, such as coronal holes. For the interval 1964-2006, a highly statistically important correlation (r = 0.749) is found between annual averages of the aa index and the solar wind speed (especially between the residual component of aa and the solar wind speed, r = 0.865). Because cyclic averages of aa (and the residual component) have trended upward during cycles 11-23, cyclic averages of solar wind speed are inferred to have also trended upward.

  7. Flux-tube geometry and solar wind speed during an activity cycle

    NASA Astrophysics Data System (ADS)

    Pinto, R. F.; Brun, A. S.; Rouillard, A. P.

    2016-07-01

    Context. The solar wind speed at 1 AU shows cyclic variations in latitude and in time which reflect the evolution of the global background magnetic field during the activity cycle. It is commonly accepted that the terminal (asymptotic) wind speed in a given magnetic flux-tube is generally anti-correlated with its total expansion ratio, which motivated the definition of widely used semi-empirical scaling laws relating one to the other. In practice, such scaling laws require ad hoc corrections (especially for the slow wind in the vicinities of streamer/coronal hole boundaries) and empirical fits to in situ spacecraft data. A predictive law based solely on physical principles is still missing. Aims: We test whether the flux-tube expansion is the controlling factor of the wind speed at all phases of the cycle and at all latitudes (close to and far from streamer boundaries) using a very large sample of wind-carrying open magnetic flux-tubes. We furthermore search for additional physical parameters based on the geometry of the coronal magnetic field which have an influence on the terminal wind flow speed. Methods: We use numerical magneto-hydrodynamical simulations of the corona and wind coupled to a dynamo model to determine the properties of the coronal magnetic field and of the wind velocity (as a function of time and latitude) during a whole 11-yr activity cycle. These simulations provide a large statistical ensemble of open flux-tubes which we analyse conjointly in order to identify relations of dependence between the wind speed and geometrical parameters of the flux-tubes which are valid globally (for all latitudes and moments of the cycle). Results: Our study confirms that the terminal (asymptotic) speed of the solar wind depends very strongly on the geometry of the open magnetic flux-tubes through which it flows. The total flux-tube expansion is more clearly anti-correlated with the wind speed for fast rather than for slow wind flows, and effectively controls the

  8. Identification and Attribution of Global Wind Speed Trends at 100m

    NASA Astrophysics Data System (ADS)

    McGraw, Zachary; Smith, Ronald; Storelvmo, Trude

    2016-04-01

    Recent studies have found evidence that global climate change significantly alters the strength of large-scale wind patterns. Any enduring trends over large regions are potentially of value to understand due to their implications for the wind energy industry. In this study we identify and evaluate global wind speed trends at the wind turbine hub height (~100m) through the use of CMIP5 models, standard reanalyses (ERA-Interim, NCEP2) and a uniquely high-resolution analysis dataset (Vestas Mesoscale Library). By analyzing how wind speeds change across the globe throughout the period 1900-2100 (with emphasis on the satellite era, 1979-2014), we assess the significance of multi-decadal wind speed trends in the context of natural spatial and temporal variability. Our results show substantial differences in regional trends between different datasets though several regions including the Southern Hemisphere mid-latitudes and the Caribbean show consistently substantial changing wind speeds during the satellite era. Wind speed trends tend to diminish over large time scales and follow spatial patterns that link multi-decadal trends to the evolving behaviors of internal variability modes, especially those of ENSO and the Southern Annular Mode (SAM).

  9. An Analysis of Peak Wind Speed Data from Collocated Mechanical and Ultrasonic Anemometers

    NASA Technical Reports Server (NTRS)

    Short, David A.; Wells, Leonard A.; Merceret, Francis J.; Roeder, William P.

    2005-01-01

    This study focuses on a comparison of peak wind speeds reported by mechanical and ultrasonic anemometers at Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC) on the east central coast of Florida and Vandenberg Air Force Base (VAFB) on the central coast of California. The legacy mechanical wind instruments on CCAFS/KSC and VAFB weather towers are being changed from propeller-and-vane (CCAFS/KSC) and cup-and-vane (VAFB) sensors to ultrasonic sensors under the Range Standardization and Automation (RSA) program. The wind tower networks on KSC/CCAFS and VAFB have 41 and 27 towers, respectively. Launch Weather Officers, forecasters, and Range Safety analysts at both locations need to understand the performance of the new wind sensors for a myriad of reasons that include weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The Legacy sensors measure wind speed and direction mechanically. The ultrasonic RSA sensors have no moving parts. Ultrasonic sensors were originally developed to measure very light winds (Lewis and Dover 2004). The technology has evolved and now ultrasonic sensors provide reliable wind data over a broad range of wind speeds. However, because ultrasonic sensors respond more quickly than mechanical sensors to rapid fluctuations in speed, characteristic of gusty wind conditions, comparisons of data from the two sensor types have shown differences in the statistics of peak wind speeds (Lewis and Dover 2004). The 45th Weather Squadron (45 WS) and the 30 WS requested the Applied Meteorology Unit (AMU) to compare data from RSA and Legacy sensors to determine if there are significant differences in peak wind speed information from the two systems.

  10. Solar Wind Speed Structure in the Inner Corona at 3-12R(sub)O

    NASA Technical Reports Server (NTRS)

    Woo, R.

    1995-01-01

    Estimates of solar wind speed obtained by Armstrong et al. [1986] based on 1983 VLA multiple-station intensity scintillation measurements inside 12 R(sub)O have been compared with white light coronagraph measurements.

  11. Ulysses at 50{degrees} south: Constant immersion in the high-speed solar wind

    SciTech Connect

    Phillips, J.L.; Bame, S.J.; Gosling, J.T.; McComas, D.J.; Balogh, A.; Goldstein, B.E.; Neugebauer, M.; Hoeksema, J.T.; Sheeley, N.R. Jr.; Wang, Y.M.

    1994-06-15

    The authors present speed observations from the Ulysses solar wind plasma experiment through 50{degrees} south latitude. The pronounced speed modulation arising from solar rotation and the tilt of the heliomagnetic current sheet has nearly disappeared. Ulysses is now observing wind speeds in the 700 to 800 km s{sup {minus}1} range, with a magnetic polarity indicating an origin in the large south polar coronal hole. The strong compressions, rarefactions, and shock waves previously seen have weakened or disappeared. Occasional coronal mass ejections characterized by low plasma density caused by radial expansion have been observed. The coronal configuration was simple and stable in 1993, indicating that the observed solar wind changes were caused by increasing latitude support previous findings. A decrease in peak speed southward of 40{degrees} latitude may indicate that the fastest solar wind comes from the equatorial extensions of the polar coronal holes. 16 refs., 4 figs.

  12. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  13. Future hub-height wind speed distributions from statistically downscaled CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Devis, A.; Demuzere, M.; van Lipzig, N.

    2013-12-01

    In order to realistically estimate wind-power yields, we need to know the hub-height wind speed under future climate conditions. Climate conditions of the upper atmosphere are commonly simulated using general circulation models (GCMs). However their typical resolutions are too coarse to assess the climate at the height of a wind turbine. This study simulates the hub-height wind speed probability distributions (PDFs) over Europe under future climate conditions. The analysis is based on the simulations of the CMIP5 earth system models, which are the latest development of GCMs. They include more components and feedbacks and their runs are performed at higher resolutions. In a first step, the ensemble of GCMs is evaluated on their representation of the wind speed PDFs in the lower atmosphere using ERA-Interim data. The evaluation indicates that GCMs are skillful down to their lowest model levels apart for the south of Europe, which is affected by a large scale winter bias and for certain coastal and orographical regions. Secondly, a statistical approach is developed which downscales the GCM output to the wind speed PDF at the height of the wind turbine hub. Since the evaluation analysis shows that GCMs are also skillful at the lower model levels, the statistical downscaling uses GCM variables describing the lower atmosphere, instead of the commonly used large scale circulation variables of the upper atmosphere. By doing so less uncertainty will be added trough the downscaling implementation. The downscaling methodology is developed for an observational site in the Netherlands, using hub-height wind speed observations and ERA-Interim data for the period 1989-2009. The statistical approach is based on a regression analysis of the parameters of the PDFs. Results indicate that the predictor selection is very much defined by the stability conditions of the atmospheric boundary layer. During convective summer-day conditions, the observed hub-height wind speed can skillfully

  14. Single-particle correlated time-of-flight velocimeter for remote wind-speed measurement.

    PubMed

    Bartlett, K G; She, C Y

    1977-11-01

    A new technique of single-particle correlation for wind-speed measurement by determining aerosol time of flight is discussed. Using this technique, single-ended remote measurement of atmospheric wind speeds has been demonstrated at ranges up to 100 m under natural aerosol conditions with less than 0.2-W continuous-wave laser power with a measurement time of approximately 1 sec.

  15. Comparison Between Sea Surface Wind Speed Estimates From Reflected GPS Signals and Buoy Measurements

    NASA Technical Reports Server (NTRS)

    Garrison, James L.; Katzberg, Steven J.; Zavorotny, Valery U.

    2000-01-01

    Reflected signals from the Global Positioning System (GPS) have been collected from an aircraft at approximately 3.7 km altitude on 5 different days. Estimation of surface wind speed by matching the shape of the reflected signal correlation function against analytical models was demonstrated. Wind speed obtained from this method agreed with that recorded from buoys to with a bias of less than 0.1 m/s, and with a standard derivation of 1.3 meters per second.

  16. 2. Wind speed change in central Europe: the projections based on regional climate models

    NASA Astrophysics Data System (ADS)

    Siedlecki, M.

    2010-09-01

    This work presents dynamically downscaled near-surface wind speed fields and examines the impact of climate changes on wind speed across central Europe. The analysis is based on regional model simulation (5 RCM simulations taken from the project PRUDENCE and CLM regional climate model from M&D group) forced by IPCC emission scenario SRES - A2. Each model provided data from two 30-year simulations: a control run under present day climate conditions for the period 1961-90 and a simulation under conditions projected for the period 2021-2050. The research domain covered region from 42°N to 62°N and from 6°E to 36°E. The model ensemble shows a possible increase in future mean wind speed during winter season, especially over zonal belt from North German to North Poland where the future mean wind speed is 0.4 m/s higher than in the control period. The projected climate change in summer over most research domain shows a decrease of mean wind speed (about 0.2 m/s). The Jutland Peninsula and North German is the region with the highest simulated wind speed. The simulated changes are more pronounced in 95th percentile than in the mean. In winter, the values of the 95th percentile will increase over the North German, Jutland Peninsula and North Poland but the highest change is projected over east coast of Baltic Sea (1m/s).

  17. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting

    PubMed Central

    Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian

    2014-01-01

    Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an “optimal” weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds. PMID:27382627

  18. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting.

    PubMed

    Men, Zhongxian; Yee, Eugene; Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian

    2014-01-01

    Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an "optimal" weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds.

  19. Consideration of tip speed limitations in preliminary analysis of minimum COE wind turbines

    NASA Astrophysics Data System (ADS)

    Cuerva-Tejero, A.; Yeow, T. S.; Lopez-Garcia, O.; Gallego-Castillo, C.

    2014-12-01

    A relation between Cost Of Energy, COE, maximum allowed tip speed, and rated wind speed, is obtained for wind turbines with a given goal rated power. The wind regime is characterised by the corresponding parameters of the probability density function of wind speed. The non-dimensional characteristics of the rotor: number of blades, the blade radial distributions of local solidity, twist, angle, and airfoil type, play the role of parameters in the mentioned relation. The COE is estimated using a cost model commonly used by the designers. This cost model requires basic design data such as the rotor radius and the ratio between the hub height and the rotor radius. Certain design options, DO, related to the technology of the power plant, tower and blades are also required as inputs. The function obtained for the COE can be explored to find those values of rotor radius that give rise to minimum cost of energy for a given wind regime as the tip speed limitation changes. The analysis reveals that iso-COE lines evolve parallel to iso-radius lines for large values of limit tip speed but that this is not the case for small values of the tip speed limits. It is concluded that., as the tip speed limit decreases, the optimum decision for keeping minimum COE values can be: a) reducing the rotor radius for places with high weibull scale parameter or b) increasing the rotor radius for places with low weibull scale parameter.

  20. A Diagnostic Diagram to Understand the Marine Atmospheric Boundary Layer at High Wind Speeds

    NASA Astrophysics Data System (ADS)

    Kettle, Anthony

    2014-05-01

    Long time series of offshore meteorological measurements in the lower marine atmospheric boundary layer show dynamical regimes and variability that are forced partly by interaction with the underlying sea surface and partly by the passage of cloud systems overhead. At low wind speeds, the dynamics and stability structure of the surface layer depend mainly on the air-sea temperature difference and the measured wind speed at a standard height. The physical processes are mostly understood and the quantified through Monin-Obukhov (MO) similarity theory. At high wind speeds different dynamical regimes become dominant. Breaking waves contribute to the atmospheric loading of sea spray and water vapor and modify the character of air-sea interaction. Downdrafts and boundary layer rolls associated with clouds at the top of the boundary layer impact vertical heat and momentum fluxes. Data from offshore meteorological monitoring sites will typically show different behavior and the regime shifts depending on the local winds and synoptic conditions. However, the regular methods to interpret time series through spectral analysis give only a partial view of dynamics in the atmospheric boundary layer. Also, the spectral methods have limited use for boundary layer and mesoscale modellers whose geophysical diagnostics are mostly anchored in directly measurable quantities: wind speed, temperature, precipitation, pressure, and radiation. Of these, wind speed and the air-sea temperature difference are the most important factors that characterize the dynamics of the lower atmospheric boundary layer and they provide a dynamical and thermodynamic constraint to frame observed processes, especially at high wind speeds. This was recognized in the early interpretation of the Froya database of gale force coastal winds from mid-Norway (Andersen, O.J. and J. Lovseth, Gale force maritime wind. The Froya data base. Part 1: Sites and instrumentation. Review of the data base, Journal of Wind

  1. Can Satellite Sampling of Offshore Wind Speeds Realistically Represent Wind Speed Distributions? Part II: Quantifying Uncertainties Associated with Distribution Fitting Methods.

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Nielsen, M.; Barthelmie, R. J.; Mann, J.

    2004-05-01

    Remote sensing tools represent an attractive proposition for measuring wind speeds over the oceans because, in principle, they also offer a mechanism for determining the spatial variability of flow. Presented here is the continuation of research focused on the uncertainties and biases currently present in these data and quantification of the number of independent observations (scenes) required to characterize various parameters of the probability distribution of wind speeds. Theoretical and empirical estimates are derived of the critical number of independent observations (wind speeds derived from analysis of remotely sensed scenes) required to obtain probability distribution parameters with an uncertainty of ±10% and a confidence level of 90% under the assumption of independent samples, and it is found that approximately 250 independent observations are required to fit the Weibull distribution parameters. Also presented is an evaluation of Weibull fitting methods and determination of the fitting method based on the first and third moments to exhibit the “best” performance for pure Weibull distributions. Further examined is the ability to generalize parameter uncertainty bounds presented previously by Barthelmie and Pryor for distribution parameter estimates from sparse datasets; these were found to be robust and hence generally applicable to remotely sensed wind speed data series.


  2. Observed drag coefficients in high winds in the near offshore of the South China Sea

    DOE PAGES

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; Liu, Feng; Song, Qingtao; Huang, Jian; Huang, Huijun; Mao, Weikang; Liu, Chunxia

    2015-07-14

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a heightmore » of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.« less

  3. Observed drag coefficients in high winds in the near offshore of the South China Sea

    SciTech Connect

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; Liu, Feng; Song, Qingtao; Huang, Jian; Huang, Huijun; Mao, Weikang; Liu, Chunxia

    2015-07-14

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a height of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.

  4. Comparison of Drop and Wind-Tunnel Experiments on Bomb Drag at High Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Gothert, B.

    1948-01-01

    The drag coefficients of bombs at high velocities velocity of fall was 97 percent of the speed of sound) (the highest are determined by drop tests and compared with measurements taken in the DVL high-speed closed wind tunnel and the open jet at AVA - Gottingen.

  5. Abe Silverstein 10- by 10-Foot Supersonic Wind Tunnel Validated for Low-Speed (Subsonic) Operation

    NASA Technical Reports Server (NTRS)

    Hoffman, Thomas R.

    2001-01-01

    The NASA Glenn Research Center and Lockheed Martin Corporation tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Objectives of the test were to determine and document the similarities and uniqueness of the tunnels and to validate that Glenn's 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility. Results from two of Glenn's wind tunnels compare very favorably and show that the 10x10 SWT is a viable low-speed wind tunnel. The Subsonic Comparison Test was a joint effort by NASA and Lockheed Martin using the Lockheed Martin's Joint Strike Fighter Concept Demonstration Aircraft model. Although Glenn's 10310 and 836 SWT's have many similarities, they also have unique characteristics. Therefore, test data were collected for multiple model configurations at various vertical locations in the test section, starting at the test section centerline and extending into the ceiling and floor boundary layers.

  6. Fixed-Speed and Variable-Slip Wind Turbines Providing Spinning Reserves to the Grid: Preprint

    SciTech Connect

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2012-11-01

    As the level of wind penetration increases, wind turbine technology must move from merely generating power from wind to taking a role in supporting the bulk power system. Wind turbines should have the capability to provide inertial response and primary frequency (governor) response so they can support the frequency stability of the grid. To provide governor response, wind turbines should be able to generate less power than the available wind power and hold the rest in reserve, ready to be accessed as needed. This paper explores several ways to control wind turbine output to enable reserve-holding capability. This paper focuses on fixed-speed (also known as Type 1) and variable-slip (also known as Type 2) turbines.

  7. Wind speed and direction predictions by WRF and WindSim coupling over Nygårdsfjell

    NASA Astrophysics Data System (ADS)

    Bilal, M.; Solbakken, K.; Birkelund, Y.

    2016-09-01

    In this study, the performance of the mesoscale meteorological Weather Research and Forecast (WRF) model coupled with the microscale computational fluid dynamics based model WindSim is investigated and compared to the performance of WRF alone. The two model set-ups, WRF and WRF-WindSim, have been tested on three high-wind events in February, June and October, over a complex terrain at the Nygårdsfjell wind park in Norway. The wind speeds and wind directions are compared to measurements and the results are evaluated based on root mean square error, bias and standard deviation error. Both model set-ups are able to reproduce the high wind events. For the winter month February the WRF-WindSim performed better than WRF alone, with the root mean square error (RMSE) decreasing from 2.86 to 2.38 and standard deviation error (STDE) decreasing from 2.69 to 2.37. For the two other months no such improvements were found. The best model performance was found in October where the WRF had a RMSE of 1.76 and STDE of 1.68. For June, both model set-ups underestimate the wind speed. Overall, the adopted coupling method of using WRF outputs as virtual climatology for coupling WRF and WindSim did not offer a significant improvement over the complex terrain of Nygårdsfjell. However, the proposed coupling method offers high degree of simplicity when it comes to its application. Further testing is recommended over larger number of test cases to make a significant conclusion.

  8. Adaptive pitch control for variable speed wind turbines

    DOEpatents

    Johnson, Kathryn E.; Fingersh, Lee Jay

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  9. Worldwide influence of Lamb Weather Types on Temperature, Precipitation and Wind Speed

    NASA Astrophysics Data System (ADS)

    Cortesi, Nicola; Torralba, Veronica; Bretonnière, Pierre-Antoine; Gonzalez-Reviriego, Nube; Peña-Angulo, Dhais; Doblas-Reyes, Francisco Javier

    2016-04-01

    One of the main objectives of synoptic climatology is the detection of large-scale atmospheric drivers determining local climate variability. Especially in the extra-tropical regions, synoptic circulation plays an important role in driving local climate; for example, it is known that Atlantic weather fronts are responsible of a high amount of winter precipitation in Europe. In this research, the Weather Type catalogue developed by Lamb to classify the continuum of the atmospheric circulation in 10-26 classes was obtained individually at each grid point of the mean sea level pressure Era-Interim dataset (spatial resolution 0.7°), spanning the whole world. Although the analysis was performed globally, Tropical and Polar regions were excluded, the former because the Coriolis effect is weak at 0-23° N-S (nullifying the vorticity index), and the latter due to the spatial distortion of the Lamb grid at very high latitudes. Each resulting Weather Type was related to the local observed average daily 2-m Temperature, Precipitation and 10-m Wind speed anomalies from Era-Interim during last 30 years (1985-2014) to identify the Weather Types that behave as climate drivers at seasonal and yearly time scale. While some countries and regions have already been analysed in detail individually at higher spatial and/or temporal resolutions, this study provides a global view, filling the existing gap in literature, particularly in the Southern Hemisphere (South Africa, South America, Australia) and over oceans, providing a bigger picture of the influence of Weather Types on climate.

  10. Probability density function selection based on the characteristics of wind speed data

    NASA Astrophysics Data System (ADS)

    Yürüşen, N. Y.; Melero, Julio J.

    2016-09-01

    The probabilistic approach has an important place in the wind energy research field as it provides cheap and fast initial information for experts with the help of simulations and estimations. Wind energy experts have been using the Weibull distribution for wind speed data for many years. Nevertheless, there exist cases, where the Weibull distribution is inappropriate with data presenting bimodal or multimodal behaviour which are unfit in high, null and low winds that can cause serious energy estimation errors. This paper presents a procedure for dealing with wind speed data taking into account non-Weibull distributions or data treatment when needed. The procedure detects deviations from the unimodal (Weibull) distribution and proposes other possible distributions to be used. The deviations of the used distributions regarding real data are addressed with the Root Mean Square Error (RMSE) and the annual energy production (AEP).

  11. CONSTRAINING HIGH-SPEED WINDS IN EXOPLANET ATMOSPHERES THROUGH OBSERVATIONS OF ANOMALOUS DOPPLER SHIFTS DURING TRANSIT

    SciTech Connect

    Miller-Ricci Kempton, Eliza; Rauscher, Emily

    2012-06-01

    Three-dimensional (3D) dynamical models of hot Jupiter atmospheres predict very strong wind speeds. For tidally locked hot Jupiters, winds at high altitude in the planet's atmosphere advect heat from the day side to the cooler night side of the planet. Net wind speeds on the order of 1-10 km s{sup -1} directed towards the night side of the planet are predicted at mbar pressures, which is the approximate pressure level probed by transmission spectroscopy. These winds should result in an observed blueshift of spectral lines in transmission on the order of the wind speed. Indeed, Snellen et al. recently observed a 2 {+-} 1 km s{sup -1} blueshift of CO transmission features for HD 209458b, which has been interpreted as a detection of the day-to-night (substellar to anti-stellar) winds that have been predicted by 3D atmospheric dynamics modeling. Here, we present the results of a coupled 3D atmospheric dynamics and transmission spectrum model, which predicts the Doppler-shifted spectrum of a hot Jupiter during transit resulting from winds in the planet's atmosphere. We explore four different models for the hot Jupiter atmosphere using different prescriptions for atmospheric drag via interaction with planetary magnetic fields. We find that models with no magnetic drag produce net Doppler blueshifts in the transmission spectrum of {approx}2 km s{sup -1} and that lower Doppler shifts of {approx}1 km s{sup -1} are found for the higher drag cases, results consistent with-but not yet strongly constrained by-the Snellen et al. measurement. We additionally explore the possibility of recovering the average terminator wind speed as a function of altitude by measuring Doppler shifts of individual spectral lines and spatially resolving wind speeds across the leading and trailing terminators during ingress and egress.

  12. Remote measurement of wind speed by laser Doppler systems.

    PubMed

    Hughes, A J; Pike, E R

    1973-03-01

    Several types of laser Doppler velocimeter are considered for remote measurement of wind velocity. Particular attention is given to the range dependence of the mean power SNR when scattering is from natural aerosols. Numerical estimates for two systems are presented, indicating that CO(2) laser systems have considerably greater sensitivity than visible laser systems at ranges greater than a few meters.

  13. Observations of the solar wind speed near the sun

    NASA Astrophysics Data System (ADS)

    Grall, R. R.; Coles, Wm. A.; Klinglesmith, M. T.

    1996-07-01

    Two-antenna scintillation (IPS) observations can provide accurate measurements of the velocity with which electron density fluctuations drift past the line of sight. These fluctuations can be used as tracers for the solar plasma and allow us to estimate the solar wind velocity near the Sun where spacecraft have not yet penetrated. We present recent IPS measurements made with the EISCAT and VLBA arrays. We have found that by using baselines which are several times the scale size of the diffraction pattern we are able to partially deconvolve the line of sight integration which affects remote sensing data. The long baselines allow the fast and slow components of the solar wind to be separated and their velocities estimated individually. In modeling IPS it is important that the scattering be ``weak'' because the model then requires only 1 spatial parameter instead of 3. EISCAT can only operate near 933MHz which limits the observation to outside of 18Rsolar, however the VLBA has higher frequency receivers which allow it to observe inside of 15Rsolar. The density variance δNe2 in the fast wind is a factor of 10-15 less than in the slow (Coles et al., 1995) making it necessary to consider the entire line of sight, particularly when the fast wind occupies the center portion. Using the point of closest approach and the average velocity to characterize the observation can lead to an incorrect interpretation of the data. We have compared our IPS observations with maps made from the Yohkoh soft X ray, HAO's white-light electron density, and Stanford magnetic field measurements as well as with the IMP8 and Ulysses spacecraft data to assist in placing the fast and slow wind. Here we have selected those observation from 1994 which were dominated by the southern coronal hole and have estimated a velocity acceleration profile for the fast solar wind between 7 and 100Rsolar which is presented in Figure 1. The observations suggest that the fast solar wind is fully developed by ~7

  14. Efficacy of spatial averaging of infrasonic pressure in varying wind speeds.

    PubMed

    DeWolf, Scott; Walker, Kristoffer T; Zumberge, Mark A; Denis, Stephane

    2013-06-01

    Wind noise reduction (WNR) is important in the measurement of infrasound. Spatial averaging theory led to the development of rosette pipe arrays. The efficacy of rosettes decreases with increasing wind speed and only provides a maximum of ~20 dB WNR due to a maximum size limitation. An Optical Fiber Infrasound Sensor (OFIS) reduces wind noise by instantaneously averaging infrasound along the sensor's length. In this study two experiments quantify the WNR achieved by rosettes and OFISs of various sizes and configurations. Specifically, it is shown that the WNR for a circular OFIS 18 m in diameter is the same as a collocated 32-inlet pipe array of the same diameter. However, linear OFISs ranging in length from 30 to 270 m provide a WNR of up to ~30 dB in winds up to 5 m/s. The measured WNR is a logarithmic function of the OFIS length and depends on the orientation of the OFIS with respect to wind direction. OFISs oriented parallel to the wind direction achieve ~4 dB greater WNR than those oriented perpendicular to the wind. Analytical models for the rosette and OFIS are developed that predict the general observed relationships between wind noise reduction, frequency, and wind speed. PMID:23742329

  15. Direct observation of the latitudinal extent of a high-speed stream in the solar wind

    NASA Technical Reports Server (NTRS)

    Schwenn, R.; Montgomery, M. D.; Rosenbauer, H.; Miggenrieder, H.; Muehlhaeuser, K. H.; Bame, S. J.; Feldman, W. C.; Hansen, R. T.

    1978-01-01

    The latitudinal boundaries of stationary fast solar wind streams emerging from equatorward extensions of the sun's polar coronal holes are studied. Simultaneous data from the Helios 1 and Imp spacecraft at different heliographic latitudes are compared. The measured latitudinal speed gradient of 30 km/s/deg shows that large angular speed gradients occur at the leading edges of fast streams and also with respect to latitude. The data indicate that longitudinal speed gradients are steeper near 0.3 AU than at 1.0 AU. Generally, regions with large angular speed gradients are observed to separate fast streams from the surrounding slower plasma. This suggests the existence of mechanisms which diminish longitudinal speed gradients as the plasma travels toward 1.0 AU. It also seems that the distribution of solar wind speeds on a near-sun spherical surface has large mesalike high-speed regions. Comparisons of Helios 1 and Imp data with corona observations supports the hypothesis that high-speed solar wind streams emerge from coronal holes.

  16. Dependence of velocity fluctuations on solar wind speeds: A simple analysis with IPS method

    NASA Technical Reports Server (NTRS)

    Misawa, H.; Kojima, M.

    1995-01-01

    A number of theoretical works have suggested that MHD plasma fluctuations in solar winds should play an important role particularly in the acceleration of high speed winds inside or near 0.1 AU from the sun. Since velocity fluctuations in solar winds are expected to be caused by the MHD plasma fluctuations, measurements of the velocity fluctuations give clues to reveal the acceleration process of solar winds. We made interplanetary scintillation (IPS) observations at the region out of 0.1 AU to investigate dependence of velocity fluctuations on flow speeds. For evaluating the velocity fluctuation of a flow, we selected the IPS data-set acquired at 2 separate antennas which located in the projected flow direction onto the baseline plane, and tried to compare skewness of the observed cross correlation function(CCF) with skewness of modeled CCFs in which velocity fluctuations were parametrized. The integration effect of IPS along a ray path was also taken into account in the estimation of modeled CCFs. Although this analysis method is significant to derive only parallel fluctuation components to the flow directions, preliminary analyses show following results: (1) High speed winds (Vsw greater than or equal to 500 km/s out of 0.3 AU) indicate enhancement of velocity fluctuations near 0.1 AU; and (2) Low speed winds (Vsw less than or equal to 400 Km/s out of 0.3 AU) indicate small velocity fluctuations at any distances.

  17. The Relationship between Wind Speed and Precipitation in the Pacific ITCZ.

    NASA Astrophysics Data System (ADS)

    Back, Larissa E.; Bretherton, Christopher S.

    2005-10-01

    The relationship between wind speed and precipitation in the Pacific ITCZ is analyzed using 4 yr of daily Special Sensor Microwave Imager (SSM/I) and Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) satellite passive microwave retrievals averaged over 2.5° boxes. Throughout the ITCZ, at high-column relative humidities (conditions under which deep convection is likely to occur), faster winds are associated with substantially more precipitation, explaining a small, but highly statistically significant fraction of daily rainfall variability. The slope of this relationship varies geographically and rapidly increases as the atmosphere becomes moister. Analysis of other data sources, including vector mean winds computed from QuikSCAT and area-averaged radar-derived precipitation estimates from Kwajalein Island, shows that the wind speed precipitation correlation is robust.This relation provides a test of large-scale forecast models and insight into conceptual models of deep convection. The observed increases in precipitation are much greater than evaporation changes associated with the increased wind speed; this implies a convergence feedback by which evaporation induces moisture convergence that feeds increases in precipitation. The authors study whether the 40-yr ECMWF Re-Analysis (ERA-40) and NCEP NCAR reanalysis show the observed wind speed precipitation correlation and explore mechanisms for convergence feedback using column-integrated moist static energy budgets computed from the reanalyses.

  18. Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Huang, Yong; Wang, WanBo; Wang, XunNian; Li, HuaXing

    2014-06-01

    The present paper described an experimental investigation of separation control of an Unmanned Aerial Vehicle (UAV) at high wind speeds. The plasma actuator was based on Dielectric Barrier Discharge (DBD) and operated in a steady manner. The flow over a wing of UAV was performed with smoke flow visualization in the ϕ0.75 m low speed wind tunnel to reveal the flow structure over the wing so that the locations of plasma actuators could be optimized. A full model of the UAV was experimentally investigated in the ϕ3.2 m low speed wind tunnel using a six-component internal strain gauge balance. The effects of the key parameters, including the locations of the plasma actuators, the applied voltage amplitude and the operating frequency, were obtained. The whole test model was made of aluminium and acted as a cathode of the actuator. The results showed that the plasma acting on the surface of UAV could obviously suppress the boundary layer separation and reduce the model vibration at the high wind speeds. It was found that the maximum lift coefficient of the UAV was increased by 2.5% and the lift/drag ratio was increased by about 80% at the wind speed of 100 m/s. The control mechanism of the plasma actuator at the test configuration was also analyzed.

  19. WIND SPEED AND ATMOSPHERIC STABILITY TRENDS FOR SELECTED UNITED STATES SURFACE STATIONS

    SciTech Connect

    Buckley, R; Allen H. Weber, A

    2006-11-01

    Recently it has been suggested that global warming and a decrease in mean wind speeds over most land masses are related. Decreases in near surface wind speeds have been reported by previous investigators looking at records with time spans of 15 to 30 years. This study focuses on United States (US) surface stations that have little or no location change since the late 1940s or the 1950s--a time range of up to 58 years. Data were selected from 62 stations (24 of which had not changed location) and separated into ten groups for analysis. The group's annual averages of temperature, wind speed, and percentage of Pasquill-Gifford (PG) stability categories were fitted with linear least squares regression lines. The results showed that the temperatures have increased for eight of the ten groups as expected. Wind speeds have decreased for nine of the ten groups. The mean slope of the wind speed trend lines for stations within the coterminous US was -0.77 m s{sup -1} per century. The percentage frequency of occurrence for the neutral (D) PG stability category decreased, while that for the unstable (B) and the stable (F) categories increased in almost all cases except for the group of stations located in Alaska.

  20. A reward semi-Markov process with memory for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first

  1. Wind speed effects on leaf energy balance, transpiration and water use efficiency

    NASA Astrophysics Data System (ADS)

    Schymanski, S. J.; Or, D.

    2014-12-01

    Transpiration and heat exchange rates by plant leaves involve coupled physiological processes of significant ecohydrological importance. Prediction of the effects of changing environmental conditions such as irradiance, temperature, humidity and wind speed requires a thorough understanding of these processes. The common assumption that leaf temperature equals air temperature may introduce significant bias into estimates of transpiration rates and water use efficiency (WUE, the amount of carbon gained by photosynthesis per unit of water lost by transpiration). Theoretical considerations and observations suggest that leaf temperatures may deviate substantially from air temperature under typical environmental conditions, leading to greatly modified transpiration rates compared to isothermal conditions. In particular, effects of wind on gas exchange must consider feedbacks with leaf temperature. Systematic quantification of the effects of wind speed on leaf heat and gas exchange rates yield some surprising insights. We found a range of conditions where increased wind speed can suppress transpiration rates. The result reflects unintuitive feedbacks between sensible heat flux, leaf temperature, leaf-to-air vapour pressure deficit and latent heat flux. Modelling results suggest that with high wind speeds the same leaf conductance (for water vapour and carbon dioxide) can be maintained with less evaporative losses. This leads to positive relation between water use efficiency and wind speed across a wide range of conditions. The presentation will report results from a lab experiment allowing separation of the different leaf energy balance components under fully controlled conditions (wind speed, temperature, humidity, irradiance) and put them into perspective with a detailed leaf energy balance model and the commonly used Penman-Monteith equation.

  2. Long-term wind speed variations for three midwestern U.S. cities.

    PubMed

    Abhishek, A; Lee, Joo-Youp; Keener, Tim C; Yang, Y Jeffery

    2010-09-01

    Long-term wind speed variations were investigated for three midwestern cities including Indianapolis, IN; Cincinnati, OH; and Little Rock, AR in the continental United States. These cities were chosen because their topography is relatively flat and unaffected by large mountain ranges or other topographical features, they represent important regional economic centers, and they have all undergone major air quality management efforts over the past 35 yr to attempt to meet the National Ambient Air Quality Standards. The hourly data were obtained from the National Climatic Data Center from 1943 to 2008 for Indianapolis and Little Rock and from 1948 to 2008 for Cincinnati. The analysis included calculating the frequency of calms and wind speeds over five different bins for the respective cities. The results indicate a significant increase in the frequency of calms (statistical significance > 99.999%) and a decrease in the overall frequency of other wind speeds for all three cities. Increasing trend in calms is more predominant during the ozone season (April through October). The results from regression analysis, significance testing, and spatial correlation analysis support the argument that a common "midwestern" large-scale atmospheric forcing is influencing surface wind speed in this area. It was found that for all three cities the Pacific North American (PNA) teleconnection pattern has the highest relative association with the trends in wind speed. The results support large-scale continental effects (like teleconnections) as a hypothesis to be examined more closely along with already established evidence of the influence of the Pacific and Atlantic teleconnection anomalies. Reduced wind speed may have implications on air quality management efforts in the region. Increases in the frequency of calms would affect ozone distribution patterns and may suggest a need to make changes to their ozone mitigation strategy. Weaker winds would ventilate pollutants from these areas

  3. Long-term wind speed variations for three midwestern U.S. cities.

    PubMed

    Abhishek, A; Lee, Joo-Youp; Keener, Tim C; Yang, Y Jeffery

    2010-09-01

    Long-term wind speed variations were investigated for three midwestern cities including Indianapolis, IN; Cincinnati, OH; and Little Rock, AR in the continental United States. These cities were chosen because their topography is relatively flat and unaffected by large mountain ranges or other topographical features, they represent important regional economic centers, and they have all undergone major air quality management efforts over the past 35 yr to attempt to meet the National Ambient Air Quality Standards. The hourly data were obtained from the National Climatic Data Center from 1943 to 2008 for Indianapolis and Little Rock and from 1948 to 2008 for Cincinnati. The analysis included calculating the frequency of calms and wind speeds over five different bins for the respective cities. The results indicate a significant increase in the frequency of calms (statistical significance > 99.999%) and a decrease in the overall frequency of other wind speeds for all three cities. Increasing trend in calms is more predominant during the ozone season (April through October). The results from regression analysis, significance testing, and spatial correlation analysis support the argument that a common "midwestern" large-scale atmospheric forcing is influencing surface wind speed in this area. It was found that for all three cities the Pacific North American (PNA) teleconnection pattern has the highest relative association with the trends in wind speed. The results support large-scale continental effects (like teleconnections) as a hypothesis to be examined more closely along with already established evidence of the influence of the Pacific and Atlantic teleconnection anomalies. Reduced wind speed may have implications on air quality management efforts in the region. Increases in the frequency of calms would affect ozone distribution patterns and may suggest a need to make changes to their ozone mitigation strategy. Weaker winds would ventilate pollutants from these areas

  4. Solar Wind Speed Structure in the Inner Corona at 3-12 Ro

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1995-01-01

    Estimates of solar wind speed obtained by Armstrong et al. [1986] based on 1983 VLA multiple-station intensity scintillation measurements inside 12 R(sub o) have been correlated with the electron density structure observed in white-light coronagraph measurements. The observed large- scale and apparently systematic speed variations are found to depend primarily on changes in heliographic latitude and longitude, which leads to the first results on large-scale speed structure in the acceleration region of the solar wind. Over an equatorial hole, solar wind speed is relatively steady, with peak-to-peak variations of 50 km/s and an average of 230 km/s. In contrast, the near-Sun flow speed across the streamer belt shows regular large-scale variations in the range of 100-300 km/s. Based on four groups of data, the gradient is 36 km/s per degree in heliocentric coordinates (corresponding to a rise of 260 km/s over a spatial distance on the Sun of two arcmin) with a standard deviation of 2.4 km/s per degree. The lowest speeds most likely coincide with the stalks of coronal streamers observed in white-light measurements. The detection of significant wind shear over the streamer belt is consistent with in situ and scintillation measurements showing that the density spectrum has a power-law form characteristic of fully developed turbulence over a much broader range of scales than in neighboring regions.

  5. The speeds of coronal mass ejections in the solar wind at mid heliographic latitudes: Ulysses

    SciTech Connect

    Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L.; Goldstein, B.E.; Neugebauer, M.

    1994-06-15

    Six CMEs have been detected in the Ulysses plasma observations poleward of S31{degrees}. The most striking aspect of these mid-latitude CMEs was their high speeds; the overall average speed of these CMEs was {approximately}740 km s{sup {minus}1}, which was comparable to that of the rest of the solar wind at these latitudes. This average CME speed is much higher than average CME speeds observed in the solar wind in the ecliptic or in the corona close to the Sun. The evidence indicates that the CMEs were not pushed up to high speeds in interplanetary space by interaction with trailing high-speed plasma. Rather, they simply seem to have received the same basic acceleration as the rest of the solar wind at these mid-latitudes. These results suggest that the basic acceleration process for many CMEs at all latitudes is essentially the same as for the normal solar wind. Frequently most of this acceleration must occur well beyond 6 solar radii from Sun`sj center. 18 refs., 4 figs.

  6. Variability of the vertical profile of wind speed: characterization at various time scales and analytical approximation

    NASA Astrophysics Data System (ADS)

    Jourdier, Bénédicte; Plougonven, Riwal; Drobinski, Philippe; Dupont, Jean-Charles

    2014-05-01

    Wind measurements are key for the wind resource assessment. But as wind turbines get higher, wind measurement masts are often lower than the future wind turbine hub height. Therefore one of the first steps in the energy yield assessment is the vertical extrapolation of wind measurements. Such extrapolation is often done by approximating the vertical profile of wind speed with an analytical expression: either a logarithmic law which has a theoretical basis in Monin-Obukhov similarity theory; or a power law which is empirical. The present study analyzes the variability of the wind profile and how this variability affects the results of the vertical extrapolation methods. The study is conducted with data from the SIRTA observatory, 20km south of Paris (France). A large set of instrumentation is available, including sonic anemometers at 10 and 30 meters, a LIDAR measuring wind speeds from 40 to 200 meters and a SODAR measuring wind speeds starting from 100m up to 1km. The comparison between the instruments enables to characterize the measurements uncertainties. The observations show that close to the ground the wind is stronger during daytime and weaker at night while higher, around 150 m, the wind is weaker during daytime and stronger at night. Indeed the wind shear has a pronounced diurnal cycle. The vertical extrapolation methods currently used in the industry do not usually take into account the strong variability of the wind profile. The often fit the parameters of the extrapolation law, not on each time step, but on time-averaged profiles. The averaging period may be the whole measurement period or some part of it: there may be one constant parameter computed on the wind profile that was averaged on the whole year of measures, or the year of measures may be divided into a small number of cases (for example into night or daytime data, or into 4 seasons) and the parameter is adjusted for each case. The study analyzes thoroughly the errors generated by both

  7. Study of wind speed attenuation at Kavaratti Island using land-based, offshore, and satellite measurements

    NASA Astrophysics Data System (ADS)

    Joseph, Antony; Rivonkar, Pradhan; Balakrishnan Nair, T. M.

    2012-06-01

    The role of dense coconut palms in attenuating the wind speed at Kavaratti Island, which is located in the southeastern Arabian Sea, is examined based on land-based and offshore wind measurements (U10) using anchored-buoy-mounted and satellite-borne sensors (QuikSCAT scatterometer and TMI microwave imager) during an 8-year period (2000-2007). It is found that round the year monthly-mean wind speed measurements from the Port Control Tower (PCT) located within the coconut palm farm at the Kavaratti Island are weaker by 15-61% relative to those made from the nearby offshore region. Whereas wind speed attenuation at the island is ~15-40% in the mid-June to mid-October south-west monsoon period, it is ~41-61% during the rest of the year. Wind direction measurements from all the devices overlapped, except in March-April during which the buoy measurements deviated from the other measurements by ~20°. U10 wind speed measurements from PCT during the November 2009 tropical cyclone "Phyan" indicated approximately 50-80% attenuation relative to those from the seaward boundary of the island's lagoon (and therefore least influenced by the coconut palms). The observed wind speed attenuation can be understood through the theory of free turbulent flow jets embodied in the boundary-layer fluid dynamics, according to which both the axial and transverse components of the efflux of flows discharged through the inter-leaves porosity (orifice) undergo increasing attenuation in the downstream direction with increasing distance from the orifice. Thus, the observed wind speed attenuation at Kavaratti Island is attributable to the decline in wind energy transmission from the seaward boundary of the coconut palm farm with distance into the farm. Just like mangrove forests function as bio-shields against forces from oceanic waves and stormsurges through their large above-ground aerial root systems and standing crop, and thereby playing a distinctive role in ameliorating the effects of

  8. Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range

    NASA Astrophysics Data System (ADS)

    Yong, Hyungseok; Chung, Jihoon; Choi, Dukhyun; Jung, Daewoong; Cho, Minhaeng; Lee, Sangmin

    2016-09-01

    Triboelectric nanogenerators are aspiring energy harvesting methods that generate electricity from the triboelectric effect and electrostatic induction. This study demonstrates the harvesting of wind energy by a wind-rolling triboelectric nanogenerator (WR-TENG). The WR-TENG generates electricity from wind as a lightweight dielectric sphere rotates along the vortex whistle substrate. Increasing the kinetic energy of a dielectric converted from the wind energy is a key factor in fabricating an efficient WR-TENG. Computation fluid dynamics (CFD) analysis is introduced to estimate the precise movements of wind flow and to create a vortex flow by adjusting the parameters of the vortex whistle shape to optimize the design parameters to increase the kinetic energy conversion rate. WR-TENG can be utilized as both a self-powered wind velocity sensor and a wind energy harvester. A single unit of WR-TENG produces open-circuit voltage of 11.2 V and closed-circuit current of 1.86 μA. Additionally, findings reveal that the electrical power is enhanced through multiple electrode patterns in a single device and by increasing the number of dielectric spheres inside WR-TENG. The wind-rolling TENG is a novel approach for a sustainable wind-driven TENG that is sensitive and reliable to wind flows to harvest wasted wind energy in the near future.

  9. Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range

    PubMed Central

    Yong, Hyungseok; Chung, Jihoon; Choi, Dukhyun; Jung, Daewoong; Cho, Minhaeng; Lee, Sangmin

    2016-01-01

    Triboelectric nanogenerators are aspiring energy harvesting methods that generate electricity from the triboelectric effect and electrostatic induction. This study demonstrates the harvesting of wind energy by a wind-rolling triboelectric nanogenerator (WR-TENG). The WR-TENG generates electricity from wind as a lightweight dielectric sphere rotates along the vortex whistle substrate. Increasing the kinetic energy of a dielectric converted from the wind energy is a key factor in fabricating an efficient WR-TENG. Computation fluid dynamics (CFD) analysis is introduced to estimate the precise movements of wind flow and to create a vortex flow by adjusting the parameters of the vortex whistle shape to optimize the design parameters to increase the kinetic energy conversion rate. WR-TENG can be utilized as both a self-powered wind velocity sensor and a wind energy harvester. A single unit of WR-TENG produces open-circuit voltage of 11.2 V and closed-circuit current of 1.86 μA. Additionally, findings reveal that the electrical power is enhanced through multiple electrode patterns in a single device and by increasing the number of dielectric spheres inside WR-TENG. The wind-rolling TENG is a novel approach for a sustainable wind-driven TENG that is sensitive and reliable to wind flows to harvest wasted wind energy in the near future. PMID:27653976

  10. Wind Plant Capacity Credit Variations: A Comparison of Results Using Multiyear Actual and Simulated Wind-Speed Data

    SciTech Connect

    Milligan, M.

    1997-06-01

    Although it is widely recognized that variations in annual wind energy capture can be significant, it is not clear how significant this effect is on accurately calculating the capacity credit of a wind plant. An important question is raised concerning whether one year of wind data is representative of long-term patters. This report calculates the range of capacity credit measures based on 13 years of actual wind-speed data. The results are compared to those obtained with synthetic data sets that are based on one year of data. Although the use of synthetic data sets is a considerable improvement over single-estimate techniques, this report finds that the actual inter-annual variation in capacity credit is still understated by the synthetic data technique.

  11. Wind plant capacity credit variations: A comparison of results using multiyear actual and simulated wind-speed data

    SciTech Connect

    Milligan, M.R.

    1997-12-31

    Although it is widely recognized that variations in annual wind energy capture can be significant, it is not clear how significant this effect is on accurately calculating the capacity credit of a wind plant. An important question is raised concerning whether one year of wind data is representative of long-term patterns. This paper calculates the range of capacity credit measures based on 13 years of actual wind-speed data. The results are compared to those obtained with synthetic data sets that are based on one year of data. Although the use of synthetic data sets is a considerable improvement over single-estimate techniques, this paper finds that the actual inter-annual variation in capacity credit is still understated by the synthetic data technique.

  12. Wind Plant Capacity Credit Variations: A Comparison of Results Using Multiyear Actual and Simulated Wind-Speed Data

    SciTech Connect

    Milligan, Michael

    1997-06-01

    Although it is widely recognized that variations in annual wind energy capture can be significant, it is not clear how significant this effect is on accurately calculating the capacity credit of a wind plant. An important question is raised concerning whether one year of wind data is representative of long-term patterns. This paper calculates the range of capacity credit measures based on 13 years of actual wind-speed data. The results are compared to those obtained with synthetic data sets that are based on one year of data. Although the use of synthetic data sets is a considerable improvement over single-estimate techniques, this paper finds that the actual inter- annual variation in capacity credit is still understated by the synthetic data technique.

  13. High speed video shooting with continuous-wave laser illumination in laboratory modeling of wind - wave interaction

    NASA Astrophysics Data System (ADS)

    Kandaurov, Alexander; Troitskaya, Yuliya; Caulliez, Guillemette; Sergeev, Daniil; Vdovin, Maxim

    2014-05-01

    Three examples of usage of high-speed video filming in investigation of wind-wave interaction in laboratory conditions is described. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 m, cross section of air channel 0.4 x 0.4 m, wind velocity up to 24 m/s) and at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m, wind velocity up to 10 m/s). A combination of PIV-measurements, optical measurements of water surface form and wave gages were used for detailed investigation of the characteristics of the wind flow over the water surface. The modified PIV-method is based on the use of continuous-wave (CW) laser illumination of the airflow seeded by particles and high-speed video. During the experiments on the Wind - wave stratified flume of IAP RAS Green (532 nm) CW laser with 1.5 Wt output power was used as a source for light sheet. High speed digital camera Videosprint (VS-Fast) was used for taking visualized air flow images with the frame rate 2000 Hz. Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved using conditional in phase averaging like in [1]. In the experiments on the LASIF more powerful Argon laser (4 Wt, CW) was used as well as high-speed camera with higher sensitivity and resolution: Optronics Camrecord CR3000x2, frame rate 3571 Hz, frame size 259×1696 px. In both series of experiments spherical 0.02 mm polyamide particles with inertial time 7 ms were used for seeding airflow. New particle seeding system based on utilization of air pressure is capable of injecting 2 g of particles per second for 1.3 - 2.4 s without flow disturbance. Used in LASIF this system provided high particle density on PIV-images. In combination with high-resolution camera it allowed us to obtain momentum fluxes directly from

  14. Comparison of Solar Wind Speeds Using Wavelet Transform and Fourier Analysis in IPS Data

    NASA Astrophysics Data System (ADS)

    Aguilar-Rodriguez, E.; Mejia-Ambriz, J. C.; Jackson, B. V.; Buffington, A.; Romero-Hernandez, E.; Gonzalez-Esparza, J. A.; Rodriguez-Martinez, M.; Hick, P.; Tokumaru, M.; Manoharan, P. K.

    2015-09-01

    The power spectra of intensity fluctuations in interplanetary scintillation (IPS) observations can be used to estimate solar-wind speeds in the inner heliosphere. We obtain and then compare IPS spectra from both wavelet and Fourier analyses for 12 time series of the radio source 3C48; these observations were carried out at Japan's Solar-Terrestrial Environment Laboratory (STEL) facility, at 327 MHz. We show that wavelet and Fourier analyses yield very similar power spectra. Thus, when fitting a model to spectra to determine solar-wind speeds, both yield comparable results. Although spectra from wavelet and Fourier closely match each other for solar-wind speed purposes, those from the wavelet analysis are slightly cleaner, which is reflected in an apparent level of intensity fluctuations that is enhanced, being ≈ 13 % higher. This is potentially useful for records that show a low signal-to-noise ratio.

  15. On the high correlation between long-term averages of solar wind speed and geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Feynman, J.; Gosling, J. T.

    1977-01-01

    Six-month and yearly averages of solar-wind speed from 1962 to 1975 are shown to be highly correlated with geomagnetic activity as measured by averages of the Ap index. On the same time scale the correlation between the southward component of the interplanetary magnetic field and geomagnetic activity is poor. Previous studies with hourly averages gave opposite results. The better correlation with the southward component on an hourly time scale is explained by its large variation compared with the relatively constant solar-wind speed. However, on a yearly time scale the magnitude of the variations in both parameters are about the same. This problem can be solved by invoking an energy transfer mechanism which is proportional to the first power of the southward component and a higher power of the solar-wind speed.

  16. Fuzzy logic based intelligent control of a variable speed cage machine wind generation system

    SciTech Connect

    Simoes, M.G.; Bose, B.K.; Spiegel, R.J.

    1997-01-01

    The paper describes a variable speed wind generation system where fuzzy logic principles are used for efficiency optimization and performance enhancement control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which pumps power to a utility grid or can supply to an autonomous system. The generation system has fuzzy logic control with vector control in the inner loops. A fuzzy controller tracks the generator speed with the wind velocity to extract the maximum power. A second fuzzy controller programs the machine flux for light load efficiency improvement, and a third fuzzy controller gives robust speed control against wind gust and turbine oscillatory torque. The complete control system has been developed, analyzed, and validated by simulation study. Performances have then been evaluated in detail.

  17. Mesoscale Near-Surface Wind Speed Variability Mapping with Synthetic Aperture Radar

    PubMed Central

    Young, George; Sikora, Todd; Winstead, Nathaniel

    2008-01-01

    Operationally-significant wind speed variability is often observed within synthetic aperture radar-derived wind speed (SDWS) images of the sea surface. This paper is meant as a first step towards automated distinguishing of meteorological phenomena responsible for such variability. In doing so, the research presented in this paper tests feature extraction and pixel aggregation techniques focused on mesoscale variability of SDWS. A sample of twenty eight SDWS images possessing varying degrees of near-surface wind speed variability were selected to serve as case studies. Gaussian high- and low-pass, local entropy, and local standard deviation filters performed well for the feature extraction portion of the research while principle component analysis of the filtered data performed well for the pixel aggregation. The findings suggest recommendations for future research.

  18. Dual stator winding variable speed asynchronous generator: magnetic equivalent circuit with saturation, FEM analysis and experiments

    NASA Astrophysics Data System (ADS)

    Tutelea, L. N.; Muntean, N.; Deaconu, S. I.; Cunţan, C. D.

    2016-02-01

    The authors carried out a theoretical and experimental study of dual stator winding squirrel cage asynchronous generator (DSWA) behaviour in the presence of saturation regime (non-sinusoidal) due to the variable speed operation. The main aims are the determination of the relations of calculating the equivalent parameters of the machine windings, FEM validation of parameters and characteristics with free FEMM 4.2 computing software and the practice experimental tests for verifying them. Issue is limited to three phase range of double stator winding cage-asynchronous generator of small sized powers, the most currently used in the small adjustable speed wind or hydro power plants. The tests were carried out using three-phase asynchronous generator having rated power of 6 [kVA].

  19. Desirable airfoil characteristics for large variable-speed horizontal axis wind turbines

    SciTech Connect

    Giguere, P.; Selig, M.S.

    1997-08-01

    In an effort to define the desirable airfoil characteristics for large variable-speed wind turbines, a systematic study was performed using a series of airfoils designed to have similar aerodynamic properties, except for the amount of lift, which varied over a wide range. For several airfoil combinations, blade shapes were designed for a 750-kW wind turbine with a 48.8-m diameter rotor using the optimization code PROPGA together with PROPID, which is an inverse design method for horizontal-axis wind turbines. Roughness effects, including the consideration of dirty-blade performance in the blade-shape optimization process, were also considered and are discussed. The results and conclusions reveal practical design implications that should aid in the aerodynamic blade design of not only large but also other sizes of variable-speed wind turbines.

  20. Nature and Variability of Coronal Streamers and Their Relationship to the Slow Speed Wind

    NASA Technical Reports Server (NTRS)

    Strachan, Leonard

    2004-01-01

    NASA Grant NAGS12781 is a study on the "Nature and Variability of Coronal Streamers and their Relationship to the Slow Speed Wind." The two main goals of this study are to identify: I ) Where in the streamer structure does the solar wind originate, and 2 ) What coronal conditions are responsible for the variability of the slow speed wind. These goals are to be accomplished by carrying out the following activities: I ) Developing models for inferring the plasma outflow velocities in the extended solar corona based on UV spectroscopic and white light coronagraph data. 2 ) Producing UVCS Carrington Maps for the period around solar minimum 1996-1998. 3) Producing electron density profiles from the corresponding LASCO-C2 observations. 4) Identifying and selecting in situ data sets to be used for characterizing the solar wind from the streamers observed with UVCS. 5) Developing new visualization tools for using the UVCS synoptic data.

  1. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.

    1978-01-01

    Work was continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes (perhaps through changes in Reynold's number and freestream turbulence levels) on airfoil data and wall contours. Mechanical design analyses for the transonic self-streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility, which will eventually allow on-line computer operation of the wind tunnel, was outlined.

  2. Relationships among daily mean and maximum wind speeds, with application to data quality assurance

    NASA Astrophysics Data System (ADS)

    Graybeal, Daniel Y.

    2006-01-01

    A growing number of climate change and variability studies, as well as applied research toward improving engineering design climatographies, require high-quality, long-term, extreme-value climate data sets for accurate and reliable estimates and assessments. As part of a historical weather data rescue project of the US government, new data quality control procedures are being developed and applied for daily maximum wind speeds. Not only are existing quality assurance procedures mostly lacking for such data but the climatological relationships upon which such quality checks may be based are also grossly underexploited. Therefore, this study seeks to elucidate relationships among peak-gust, fastest-mile, and fastest 5-min wind speeds, utilizing the peak gust factor model but generalizing it for these and other extreme wind-speed elements. The relationship between peak-gust factor and daily mean wind speed is also adapted for quality assurance and for a wider range of climates than previously studied. Fastest-interval wind-speed factors are found to follow Gaussian, gamma, or Weibull probability distributions, included within mixed models to handle zeros. Resistant prediction interval estimates about a resistant regression were developed for quality assurance of peak-gust factor, given the daily mean wind speed. Flagging thresholds were estimated using parametric bootstrapping. Flag rates from 0.05 to 0.5% are in line with rates reported in the literature, from work with similar data sets; overall Type I and Type II error rates are in the range 0.03-0.3%. The approach outlined lends itself straightforwardly to application in data quality assurance.

  3. A storm severity index based on return levels of wind speeds

    NASA Astrophysics Data System (ADS)

    Becker, Nico; Nissen, Katrin M.; Ulbrich, Uwe

    2015-04-01

    European windstorms related to extra-tropical cyclones cause considerable damages to infrastructure during the winter season. Leckebusch et al. (2008) introduced a storm severity index (SSI) based on the exceedances of the local 98th percentile of wind speeds. The SSI is based on the assumption that (insured) damage usually occurs within the upper 2%-quantile of the local wind speed distribution (i.e. if the 98th percentile is exceeded). However, critical infrastructure, for example related to the power network or the transportation system, is usually designed to withstand wind speeds reaching the local 50-year return level, which is much higher than the 98th percentile. The aim of this work is to use the 50-year return level to develop a modified SSI, which takes into account only extreme wind speeds relevant to critical infrastructure. As a first step we use the block maxima approach to estimate the spatial distribution of return levels by fitting the generalized extreme value (GEV) distribution to the wind speeds retrieved from different reanalysis products. We show that the spatial distributions of the 50-year return levels derived from different reanalyses agree well within large parts of Europe. The differences between the reanalyses are largely within the range of the uncertainty intervals of the estimated return levels. As a second step the exceedances of the 50-year return level are evaluated and compared to the exceedances of the 98th percentiles for different extreme European windstorms. The areas where the wind speeds exceed the 50-year return level in the reanalysis data do largely agree with the areas where the largest damages were reported, e.g. France in the case of "Lothar" and "Martin" and Central Europe in the case of "Kyrill". Leckebusch, G. C., Renggli, D., & Ulbrich, U. (2008). Development and application of an objective storm severity measure for the Northeast Atlantic region. Meteorologische Zeitschrift, 17(5), 575-587.

  4. Slotted-wall research with disk and parachute models in a low-speed wind tunnel

    SciTech Connect

    Macha, J.M.; Buffington, R.J.; Henfling, J.L. ); Every, D. Van; Harris, J.L. )

    1990-01-01

    An experimental investigation of slotted-wall blockage interference has been conducted using disk and parachute models in a low speed wind tunnel. Test section open area ratio, model geometric blockage ratio, and model location along the length of the test section were systematically varied. Resulting drag coefficients were compared to each other and to interference-free measurements obtained in a much larger wind tunnel where the geometric blockage ratio was less than 0.0025. 9 refs., 10 figs.

  5. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    PubMed

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.

  6. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    PubMed

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  7. Influence of wind speed averaging on estimates of dimethylsulfide emission fluxes

    SciTech Connect

    Chapman, E. G.; Shaw, W. J.; Easter, R. C.; Bian, X.; Ghan, S. J.

    2002-12-03

    The effect of various wind-speed-averaging periods on calculated DMS emission fluxes is quantitatively assessed. Here, a global climate model and an emission flux module were run in stand-alone mode for a full year. Twenty-minute instantaneous surface wind speeds and related variables generated by the climate model were archived, and corresponding 1-hour-, 6-hour-, daily-, and monthly-averaged quantities calculated. These various time-averaged, model-derived quantities were used as inputs in the emission flux module, and DMS emissions were calculated using two expressions for the mass transfer velocity commonly used in atmospheric models. Results indicate that the time period selected for averaging wind speeds can affect the magnitude of calculated DMS emission fluxes. A number of individual marine cells within the global grid show DMS emissions fluxes that are 10-60% higher when emissions are calculated using 20-minute instantaneous model time step winds rather than monthly-averaged wind speeds, and at some locations the differences exceed 200%. Many of these cells are located in the southern hemisphere where anthropogenic sulfur emissions are low and changes in oceanic DMS emissions may significantly affect calculated aerosol concentrations and aerosol radiative forcing.

  8. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems

    PubMed Central

    Ranganayaki, V.; Deepa, S. N.

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  9. Linear retrieval and global measurements of wind speed from the Seasat SMMR

    NASA Technical Reports Server (NTRS)

    Pandey, P. C.

    1983-01-01

    Retrievals of wind speed (WS) from Seasat Scanning Multichannel Microwave Radiometer (SMMR) were performed using a two-step statistical technique. Nine subsets of two to five SMMR channels were examined for wind speed retrieval. These subsets were derived by using a leaps and bound procedure based on the coefficient of determination selection criteria to a statistical data base of brightness temperatures and geophysical parameters. Analysis of Monsoon Experiment and ocean station PAPA data showed a strong correlation between sea surface temperature and water vapor. This relation was used in generating the statistical data base. Global maps of WS were produced for one and three month periods.

  10. The nature of multiple solutions for surface wind speed over the oceans from scatterometer measurements

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1975-01-01

    The satellite SEASAT-A will carry a radar scatterometer in order to measure microwave backscatter from the sea surface. From pairs of radar measurements at angles separated by 90 deg in azimuth the surface wind speed and direction may be inferred, though not uniquely. The character of the solutions for wind speed and direction is displayed, as well as the nature of the ambiguities of these solutions. An economical procedure for handling such data is described, plus a criterion for the need for conventional (surface) data in order to resolve the ambiguities of solutions.

  11. Low-turbulence high-speed wind tunnel for the determination of cascade shock losses

    NASA Technical Reports Server (NTRS)

    Slovisky, J. A.; Roberts, W. B.; Sandercock, D. M.

    1979-01-01

    A low turbulence high-speed wind tunnel, using anti-turbulence screening and a 100:1 contraction ratio, has been found suitable for high-speed smoke flow visualization. The location and strength of normal, oblique, and curved shock waves generated by transonic or supersonic wind tunnel flow over airfoils or through axial compressor cascades is determined by combined shadowgraph and smokelines visualization techniques without the interference effects caused by intrusive probes. The Reynolds number based on chord varied between 50,000 and 1,000,000. Preliminary results are compared with the relevant theory and data gathered using a total pressure probe.

  12. a New Method to Detect Regions Endangered by High Wind Speeds

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Ehrensperger, S.; Krauß, T.

    2016-06-01

    In this study we evaluate whether the methodology of Boosted Regression Trees (BRT) suits for accurately predicting maximum wind speeds. As predictors a broad set of parameters derived from a Digital Elevation Model (DEM) acquired within the Shuttle Radar Topography Mission (SRTM) is used. The derived parameters describe the surface by means of quantities (e.g. slope, aspect) and quality (landform classification). Furthermore land cover data from the CORINE dataset is added. The response variable is maximum wind speed, measurements are provided by a network of weather stations. The area of interest is Switzerland, a country which suits perfectly for this study because of its highly dynamic orography and various landforms.

  13. Control strategy for a variable-speed wind energy conversion system

    NASA Technical Reports Server (NTRS)

    Jacob, A.; Veillette, D.; Rajagopalan, V.

    1979-01-01

    A control concept for a variable-speed wind energy conversion system is proposed, for which a self-exited asynchronous cage generator is used along with a system of thyristor converters. The control loops are the following: (1) regulation of the entrainment speed as function of available mechanical energy by acting on the resistance couple of the asynchronous generator; (2) control of electric power delivered to the asynchronous machine, functioning as a motor, for start-up of the vertical axis wind converter; and (3) limitation of the slip value, and by consequence, of the induction currents in the presence of sudden variations of input parameters.

  14. Speed and Torque Control Strategies for Loss Reduction of Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Argent, Michael; McDonald, Alasdair; Leithead, Bill; Giles, Alexander

    2016-09-01

    This paper builds on the work into modelling the generator losses for Vertical Axis Wind Turbines from their intrinsic torque cycling to investigate the effects of aerodynamic inefficiencies caused by the varying rotational speed resulting from different torque control strategies to the cyclic torque. This is achieved by modelling the wake that builds up from the rotation of the VAWT rotor to investigate how the wake responds to a changing rotor speed and how this in turn affects the torque produced by the blades as well as the corresponding change in generator losses and any changes to the energy extracted by the wind turbine rotor.

  15. Estimating wind speed from spatial grain size sorting in ripples on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.

    2007-12-01

    The landscape initially seen by the Mars Exploration Rover Opportunity at Meridiani Planum is dominated by aeolian (wind-blown) ripples with concentrated surface lags of hematitic spherules and fragments. These ripples exhibit profound spatial grain size sorting, with well-sorted coarse-grained crests and poorly sorted, generally finer-grained troughs - they were the most common bed form encountered by Opportunity in its traverse from Eagle Crater to Endurance Crater. Similar bed features have been sporadically studied in the terrestrial literature, but not in detail. We measured wind speed and sediment flux profiles in White Sands National Monument, New Mexico, during conditions under which such coarse-grained ripples were forming. Data show that these bed features formed by the different transport modes of coarse- and fine-grain fractions in an initially bi-modal sediment distribution. Fine grains were transported via saltation, while coarse grains moved only by creep due to ballistic impacts of finer grains, as originally envisioned by Bagnold. We use this observation to place tight constraints on formative wind conditions of coarse-grained ripples on Mars: wind speed must have exceeded the threshold for saltation of fine grains, but was less than the saltation threshold for coarse grains. Estimated wind speeds are only moderately greater than those associated with modern dust storms. When combined with the observation of sand grains on Opportunity's solar panel following a dust storm, results indicate that modern winds may occasionally be strong enough to cause significant sediment transport on the Martian surface.

  16. An experimental study of several wind tunnel wall configurations using two V/STOL model configurations. [low speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Binion, T. W., Jr.

    1975-01-01

    Experiments were conducted in the low speed wind tunnel using two V/STOL models, a jet-flap and a jet-in-fuselage configuration, to search for a wind tunnel wall configuration to minimize wall interference on V/STOL models. Data were also obtained on the jet-flap model with a uniform slotted wall configuration to provide comparisons between theoretical and experimental wall interference. A test section configuration was found which provided some data in reasonable agreement with interference-free results over a wide range of momentum coefficients.

  17. First and second order semi-Markov chains for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Prattico, F.; Petroni, F.; D'Amico, G.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [3] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [1], by using two models, first

  18. Wind Speed and Mortality Rate of a Marine Fish, the Northern Anchovy (Engraulis mordax).

    PubMed

    Peterman, R M; Bradford, M J

    1987-01-16

    Large variability in recruitment of marine fishes creates challenging management problems. In northern anchovy (Engraulis mordax), there is a significant linear relation between larval mortality rate and the frequency of calm, low wind speed periods during the spawning season, possibly because calm winds permit maintenance of concentrated patches of larval food. Neither cannibalism on larvae nor offshore transport contributed significantly to interannual variation in early larval mortality. These results are consistent with the hypothesis that wind-driven turbulent mixing affects variability in survival of young fish larvae. However, abundance of recruits does not necessarily reflect abundance of larvae surviving through this early stage. PMID:17750387

  19. Aerodynamic Characteristics of High Speed Trains under Cross Wind Conditions

    NASA Astrophysics Data System (ADS)

    Chen, W.; Wu, S. P.; Zhang, Y.

    2011-09-01

    Numerical simulation for the two models in cross-wind was carried out in this paper. The three-dimensional compressible Reynolds-averaged Navier-Stokes equations(RANS), combined with the standard k-ɛ turbulence model, were solved on multi-block hybrid grids by second order upwind finite volume technique. The impact of fairing on aerodynamic characteristics of the train models was analyzed. It is shown that, the flow separates on the fairing and a strong vortex is generated, the pressure on the upper middle car decreases dramatically, which leads to a large lift force. The fairing changes the basic patterns around the trains. In addition, formulas of the coefficient of aerodynamic force at small yaw angles up to 24° were expressed.

  20. Error Correction Method for Wind Speed Measured with Doppler Wind LIDAR at Low Altitude

    NASA Astrophysics Data System (ADS)

    Liu, Bingyi; Feng, Changzhong; Liu, Zhishen

    2014-11-01

    For the purpose of obtaining global vertical wind profiles, the Atmospheric Dynamics Mission Aeolus of European Space Agency (ESA), carrying the first spaceborne Doppler lidar ALADIN (Atmospheric LAser Doppler INstrument), is going to be launched in 2015. DLR (German Aerospace Center) developed the A2D (ALADIN Airborne Demonstrator) for the prelaunch validation. A ground-based wind lidar for wind profile and wind field scanning measurement developed by Ocean University of China is going to be used for the ground-based validation after the launch of Aeolus. In order to provide validation data with higher accuracy, an error correction method is investigated to improve the accuracy of low altitude wind data measured with Doppler lidar based on iodine absorption filter. The error due to nonlinear wind sensitivity is corrected, and the method for merging atmospheric return signal is improved. The correction method is validated by synchronous wind measurements with lidar and radiosonde. The results show that the accuracy of wind data measured with Doppler lidar at low altitude can be improved by the proposed error correction method.

  1. Predicting extreme wind speeds on a tropical island for multi-peril catastrophe modelling

    NASA Astrophysics Data System (ADS)

    Thornton, James; Moncoulon, David; Millinship, Ian; Raven, Emma

    2013-04-01

    Catastrophe models are important tools used by the reinsurance industry for assessing and managing risk. Here, we present the methods used to develop high-resolution wind hazard maps for the Indian Ocean island of La Réunion. As the recent Cyclone Dumile (January 2013) reminded us, the island is at considerable risk from the extreme weather associated with tropical cyclones. It also contains a significant proportion of the total value insured in French overseas territories. The wind maps, alongside flood and storm surge maps, were ultimately combined with exposure information in a multi-peril catastrophe model to provide probabilistic estimates of insured loss. Our wind mapping methodology used established extreme value theory statistics to estimate the annual probability of extreme wind speeds, including those exceeding the observed maxima of our 19 year record, at meteorological stations. This gave approximate wind speeds for a range of return periods at these specific locations. Since the spatial density of the stations was insufficient to resolve the numerous potential effects of the complex island topography, geographically weighted regression (GWR) models were then developed to interpolate these cyclonic wind speeds across the entire island. Factors known to affect local wind speed such as elevation, surface roughness and coastal proximity were explicitly accounted for. Using this advanced interpolation method, wind hazard maps were produced for six return periods between 1 in 10 and 1 in 1000 years. Our maps compared favourably with those of historical events, and also showed patterns of wind speed in agreement with the findings of other studies investigating the effects of topography. Leave-one-out cross-validation (LOOCV) further confirmed the satisfactory performance of the models in providing a robust and comprehensive description of wind patterns during cyclone passage. Uncertainty increased with return period as more extrapolation of the limited

  2. A New Height Error Revision Method of Predicting Long-Term Wind Speed with MCP Algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Yujue; Hu, Fei

    2013-04-01

    Wind energy technology is one of the fastest in growing rate in new and renewable energy technologies. It is very important to select stronger windy sites in a country for the purpose of producing more electricity. Measure-Correlate-Predict (MCP) algorithms are used to predict the wind resource at target site for wind power development. MCP method model bases on a relationship between wind data (speed and direction) measured at the target site and concurrent wind data at reference site nearby. The model is then used with long-term data from the reference site to predict the long-term wind speed and direction distributions at the target site. MCP method is in order to be able to determine the annual energy capture of a wind farm located at the target site. Over the last 15 years well over a half dozen of MCP methods in the literature. The MCP algorithms differ in terms of overall approach, model definition, use of direction sectors, and length of the data. Such as 1)a linear regression model; 2)a model using distributions of ratios of wind speeds at two sites; 3)a vector regression method; 4)a method based on the ratio of standard deviations of two data sets, etc. Unfortunately, none of these MCP algorithms can predict wind speed from two sites at different altitudes. If the target site is much higher or lower than the reference site, the result accuracy will be much poorer. Inner Mongolia grassland is known as one of the regions that rich in wind resource in China. The data we use is from three wind measurements, consisting of nearly one year of six layers in XiLinGuoLe of Inner Mongolia . Firstly, we use the maximum likelihood method to estimate k, shape parameter and c, scale parameter of the Weibull function for different time periods. And then we find out that c has a power law function of height, and that k varies as the form of a quadratic function of height and obtains the max value in the height of 10 to100 meters. Finally, we add the height distribution

  3. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2008-01-01

    The peak winds near the surface are an important forecast element for Space Shuttle landings. As defined in the Shuttle Flight Rules (FRs), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMTJ) developed a personal computer based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak-wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center. However, the shuttle must land at Edwards Air Force Base (EAFB) in southern California when weather conditions at Kennedy Space Center in Florida are not acceptable, so SMG forecasters requested that a similar tool be developed for EAFB. Marshall Space Flight Center (MSFC) personnel archived and performed quality control of 2-minute average and 10-minute peak wind speeds at each tower adjacent to the main runway at EAFB from 1997- 2004. They calculated wind climatologies and probabilities of average peak wind occurrence based on the average speed. The climatologies were calculated for each tower and month, and were stratified by hour, direction, and direction/hour. For the probabilities of peak wind occurrence, MSFC calculated empirical and modeled probabilities of meeting or exceeding specific 10-minute peak wind speeds using probability density functions. The AMU obtained and reformatted the data into Microsoft Excel PivotTables, which allows users to display different values with point-click-drag techniques. The GUT was then created from the PivotTables using Visual Basic for Applications code. The GUI is run through a macro within Microsoft Excel and allows forecasters to quickly display and

  4. An Investigation of the Drag of Windshields in the 8-foot High-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Robinson, Russell G; Delano, James B

    1942-01-01

    Report presents the results of tests made to determine the drag of closed-cockpit and transport-type windshields. The tests were made at speeds corresponding to a Mach number range of approximately 0.25 to 0.58 in the NACA 8-foot high-speed wind tunnel. This speed range corresponds to a test Reynolds number range of 2,510,000 to 4,830,000 based on the mean aerodynamic chord of the full-span model (17.29 in.). The shapes of the windshield proper, the hood, and the tail fairing were systematically varied to include common types and refined design.

  5. Numerical Study of the High-Speed Leg of a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nayani, Sudheer; Sellers, William L, III; Brynildsen, Scott E.; Everhart, Joel L.

    2015-01-01

    The paper describes a numerical study of the high-speed leg of the NASA Langley 14 x 22-ft Low-Speed Wind Tunnel. The high-speed leg consists of the settling chamber, contraction, test section, and first diffuser. Results are shown comparing two different sources of surface geometry, and two different unstructured grid solvers for the flow characteristics. Numerical simulations of the flow on the tunnel centerline, boundary layer profiles on the floor, and wall static pressures have been compared with experiment. Flow angularities along the test section length have also been determined.

  6. Modeling Heteroscedasticity of Wind Speed Time Series in the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Kim, H. Y.; Marpu, P. R.; Ouarda, T.

    2014-12-01

    There has been a growing interest in wind resources in the Gulf region, not only for evaluating wind energy potential, but also for understanding and forecasting changes in wind, as a regional climate variable. In particular, time varying variance—the second order moment—or heteroscedasticity in wind time series is important to investigate since high variance causes turbulence, which affects wind power potential and may lead to structural changes in wind turbines. Nevertheless, the conditional variance of wind time series has been rarely explored, especially in the Gulf region. Therefore, the seasonal autoregressive integrated moving average-generalized autoregressive conditional heteroscedasticity (SARIMA-GARCH) model is applied to observed wind data in the United Arab Emirates (UAE). This model allows considering apparent seasonality which is present in wind time series and the heteroscedasticity in residuals indicated with the Engle test, to understand and forecast changes in the conditional variance of wind time series. In this study, the autocorrelation function of daily average wind speed time series obtained from seven stations within the UAE—Al Aradh, Al Mirfa, Al Wagan, East of Jebel Haffet, Madinat Zayed, Masdar City, Sir Bani Yas Island—is inspected to fit a SARIMA model. The best SARIMA model is selected according to the minimum Akaike Information Criteria (AIC) and based on residuals of the model. Then, the GARCH model is applied to the remaining residuals to capture the conditional variance of the SARIMA model. Results indicate that the SARIMA-GARCH model provides a good fir to wind data in the UAE.

  7. A GIS wind resource map with tabular printout of monthly and annual wind speeds for 2,000 towns in Iowa

    SciTech Connect

    Brower, M.C.; Factor, T.

    1997-12-31

    The Iowa Wind Energy Institute, under a grant from the Iowa Energy Center, undertook in 1994 to map wind resources in Iowa. Fifty-meter met towers were erected at 13 locations across the state deemed promising for utility-scale wind farm development. Two years of summarized wind speed, direction, and temperature data were used to create wind resource maps incorporating effects of elevation, relative exposure, terrain roughness, and ground cover. Maps were produced predicting long-term mean monthly and annual wind speeds on a one-kilometer grid. The estimated absolute standard error in the predicted annual average wind speeds at unobstructed locations is 9 percent. The relative standard error between points on the annual map is estimated to be 3 percent. These maps and tabular data for 2,000 cities and towns in Iowa are now available on the Iowa Energy Center`s web site (http.//www.energy.iastate.edu).

  8. Process model for ammonia volatilization from anaerobic swine lagoons incorporating varying wind speeds and biogas bubbling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia volatilization from treatment lagoons varies widely with the total ammonia concentration, pH, temperature, suspended solids, atmospheric ammonia concentration above the water surface, and wind speed. Ammonia emissions were estimated with a process-based mechanistic model integrating ammonia ...

  9. Hurricane Imaging Radiometer Wind Speed and Rain Rate Retrievals during the 2010 GRIP Flight Experiment

    NASA Technical Reports Server (NTRS)

    Sahawneh, Saleem; Farrar, Spencer; Johnson, James; Jones, W. Linwood; Roberts, Jason; Biswas, Sayak; Cecil, Daniel

    2014-01-01

    Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes.

  10. Microwave Remote Sensing of Ocean Surface Wind Speed and Rain Rates over Tropical Storms

    NASA Technical Reports Server (NTRS)

    Swift, C. T.; Dehority, D. C.; Black, P. G.; Chien, J. Z.

    1984-01-01

    The value of using narrowly spaced frequencies within a microwave band to measure wind speeds and rain rates over tropical storms with radiometers is reviewed. The technique focuses on results obtained in the overflights of Hurricane Allen during 5 and 8 of August, 1980.

  11. The NACA High-Speed Wind Tunnel and Tests of Six Propeller Sections

    NASA Technical Reports Server (NTRS)

    Stack, John

    1934-01-01

    This report gives a description of the high-speed wind tunnel of the National Advisory Committee for Aeronautics. The operation of the tunnel is also described and the method of presenting the data is given. An account of an investigation of the aerodynamic properties of six propeller sections is included.

  12. Evaluation of spray drift using low speed wind tunnel measurements and dispersion modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work was to evaluate the EPA’s proposed Test Plan for the validation testing of pesticide spray drift reduction technologies (DRTs) for row and field crops, focusing on the evaluation of ground application systems using the low-speed wind tunnel protocols and processing the dat...

  13. Guidelines for the inclusion of low wind speed conditions into risk assessments.

    PubMed

    Lines, I G; Daycock, J H; Deaves, D M

    2001-05-30

    Although they are not often considered in risk assessments or safety cases, low wind speed conditions are likely to produce many of the worst case dispersion scenarios, especially for situations where dense vapour clouds would form close to the ground. The results of previous review and validation studies, undertaken by the authors for the UK Health and Safety Executive, have been drawn together in this paper to provide guidelines for the practical application of appropriate modelling of scenarios involving low wind speeds within quantified risk assessments. The production of these guidelines has been achieved by using example risk assessments covering the storage of chlorine, bromine, LPG and Liquid Oxygen, for each of which sensitivity studies were also undertaken. These demonstrated that the inclusion of low wind speeds has varying effects, depending on the material considered, which could be as much as 1-2 orders of magnitude. Most importantly, it also showed that, when low wind speeds are included, it is not only their dispersion effects but also their effects on source term and impact on the population, which need to be considered to ensure that the calculated risks are neither overly conservative nor optimistic.

  14. Effect of windbreaks on wind speed and canker incidence and severity on grapefruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For fresh grapefruit the goal is to maximize pack-out by minimizing canker lesions on fruit. The objective of these trials was to determine the relationship between wind speed and incidence and severity of canker on 5 to 7 yr-old Ruby Red grapefruit trees located in two trial blocks (~4.5 ha) surrou...

  15. Conceptions of Tornado Wind Speed and Land Surface Interactions among Undergraduate Students in Nebraska

    ERIC Educational Resources Information Center

    Van Den Broeke, Matthew S.; Arthurs, Leilani

    2015-01-01

    To ascertain novice conceptions of tornado wind speed and the influence of surface characteristics on tornado occurrence, 613 undergraduate students enrolled in introductory science courses at a large state university in Nebraska were surveyed. Our findings show that students lack understanding of the fundamental concepts that (1) tornadoes are…

  16. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  17. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The report gives results of a demonstration of the successful application of fuzzy logic to enhance the performance and control of a variable-speed wind generation system. A squirrel cage induction generator feeds the power to either a double-sided pulse-width modulation converte...

  18. Influence of wind speed averaging on estimates of dimethylsulfide emission fluxes

    DOE PAGES

    Chapman, E. G.; Shaw, W. J.; Easter, R. C.; Bian, X.; Ghan, S. J.

    2002-12-03

    The effect of various wind-speed-averaging periods on calculated DMS emission fluxes is quantitatively assessed. Here, a global climate model and an emission flux module were run in stand-alone mode for a full year. Twenty-minute instantaneous surface wind speeds and related variables generated by the climate model were archived, and corresponding 1-hour-, 6-hour-, daily-, and monthly-averaged quantities calculated. These various time-averaged, model-derived quantities were used as inputs in the emission flux module, and DMS emissions were calculated using two expressions for the mass transfer velocity commonly used in atmospheric models. Results indicate that the time period selected for averaging wind speedsmore » can affect the magnitude of calculated DMS emission fluxes. A number of individual marine cells within the global grid show DMS emissions fluxes that are 10-60% higher when emissions are calculated using 20-minute instantaneous model time step winds rather than monthly-averaged wind speeds, and at some locations the differences exceed 200%. Many of these cells are located in the southern hemisphere where anthropogenic sulfur emissions are low and changes in oceanic DMS emissions may significantly affect calculated aerosol concentrations and aerosol radiative forcing.« less

  19. Prediction of Wind Speeds Based on Digital Elevation Models Using Boosted Regression Trees

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Etienne, C.; Tian, J.; Krauß, T.

    2015-12-01

    In this paper a new approach is presented to predict maximum wind speeds using Gradient Boosted Regression Trees (GBRT). GBRT are a non-parametric regression technique used in various applications, suitable to make predictions without having an in-depth a-priori knowledge about the functional dependancies between the predictors and the response variables. Our aim is to predict maximum wind speeds based on predictors, which are derived from a digital elevation model (DEM). The predictors describe the orography of the Area-of-Interest (AoI) by various means like first and second order derivatives of the DEM, but also higher sophisticated classifications describing exposure and shelterness of the terrain to wind flux. In order to take the different scales into account which probably influence the streams and turbulences of wind flow over complex terrain, the predictors are computed on different spatial resolutions ranging from 30 m up to 2000 m. The geographic area used for examination of the approach is Switzerland, a mountainious region in the heart of europe, dominated by the alps, but also covering large valleys. The full workflow is described in this paper, which consists of data preparation using image processing techniques, model training using a state-of-the-art machine learning algorithm, in-depth analysis of the trained model, validation of the model and application of the model to generate a wind speed map.

  20. Level-crossing statistics of the horizontal wind speed in the planetary surface boundary layer.

    PubMed

    Edwards, Paul J.; Hurst, Robert B.

    2001-09-01

    The probability density of the times for which the horizontal wind remains above or below a given threshold speed is of some interest in the fields of renewable energy generation and pollutant dispersal. However there appear to be no analytic or conceptual models which account for the observed power law form of the distribution of these episode lengths over a range of over three decades, from a few tens of seconds to a day or more. We reanalyze high resolution wind data and demonstrate the fractal character of the point process generated by the wind speed level crossings. We simulate the fluctuating wind speed by a Markov process which approximates the characteristics of the real (non-Markovian) wind and successfully generates a power law distribution of episode lengths. However, fundamental questions concerning the physical basis for this behavior and the connection between the properties of a continuous-time stochastic process and the fractal statistics of the point process generated by its level crossings remain unanswered. (c) 2001 American Institute of Physics.

  1. Two Machine Learning Approaches for Short-Term Wind Speed Time-Series Prediction.

    PubMed

    Ak, Ronay; Fink, Olga; Zio, Enrico

    2016-08-01

    The increasing liberalization of European electricity markets, the growing proportion of intermittent renewable energy being fed into the energy grids, and also new challenges in the patterns of energy consumption (such as electric mobility) require flexible and intelligent power grids capable of providing efficient, reliable, economical, and sustainable energy production and distribution. From the supplier side, particularly, the integration of renewable energy sources (e.g., wind and solar) into the grid imposes an engineering and economic challenge because of the limited ability to control and dispatch these energy sources due to their intermittent characteristics. Time-series prediction of wind speed for wind power production is a particularly important and challenging task, wherein prediction intervals (PIs) are preferable results of the prediction, rather than point estimates, because they provide information on the confidence in the prediction. In this paper, two different machine learning approaches to assess PIs of time-series predictions are considered and compared: 1) multilayer perceptron neural networks trained with a multiobjective genetic algorithm and 2) extreme learning machines combined with the nearest neighbors approach. The proposed approaches are applied for short-term wind speed prediction from a real data set of hourly wind speed measurements for the region of Regina in Saskatchewan, Canada. Both approaches demonstrate good prediction precision and provide complementary advantages with respect to different evaluation criteria. PMID:25910257

  2. Application of extreme learning machine for estimation of wind speed distribution

    NASA Astrophysics Data System (ADS)

    Shamshirband, Shahaboddin; Mohammadi, Kasra; Tong, Chong Wen; Petković, Dalibor; Porcu, Emilio; Mostafaeipour, Ali; Ch, Sudheer; Sedaghat, Ahmad

    2016-03-01

    The knowledge of the probabilistic wind speed distribution is of particular significance in reliable evaluation of the wind energy potential and effective adoption of site specific wind turbines. Among all proposed probability density functions, the two-parameter Weibull function has been extensively endorsed and utilized to model wind speeds and express wind speed distribution in various locations. In this research work, extreme learning machine (ELM) is employed to compute the shape ( k) and scale ( c) factors of Weibull distribution function. The developed ELM model is trained and tested based upon two widely successful methods used to estimate k and c parameters. The efficiency and accuracy of ELM is compared against support vector machine, artificial neural network and genetic programming for estimating the same Weibull parameters. The survey results reveal that applying ELM approach is eventuated in attaining further precision for estimation of both Weibull parameters compared to other methods evaluated. Mean absolute percentage error, mean absolute bias error and root mean square error for k are 8.4600 %, 0.1783 and 0.2371, while for c are 0.2143 %, 0.0118 and 0.0192 m/s, respectively. In conclusion, it is conclusively found that application of ELM is particularly promising as an alternative method to estimate Weibull k and c factors.

  3. Two Machine Learning Approaches for Short-Term Wind Speed Time-Series Prediction.

    PubMed

    Ak, Ronay; Fink, Olga; Zio, Enrico

    2016-08-01

    The increasing liberalization of European electricity markets, the growing proportion of intermittent renewable energy being fed into the energy grids, and also new challenges in the patterns of energy consumption (such as electric mobility) require flexible and intelligent power grids capable of providing efficient, reliable, economical, and sustainable energy production and distribution. From the supplier side, particularly, the integration of renewable energy sources (e.g., wind and solar) into the grid imposes an engineering and economic challenge because of the limited ability to control and dispatch these energy sources due to their intermittent characteristics. Time-series prediction of wind speed for wind power production is a particularly important and challenging task, wherein prediction intervals (PIs) are preferable results of the prediction, rather than point estimates, because they provide information on the confidence in the prediction. In this paper, two different machine learning approaches to assess PIs of time-series predictions are considered and compared: 1) multilayer perceptron neural networks trained with a multiobjective genetic algorithm and 2) extreme learning machines combined with the nearest neighbors approach. The proposed approaches are applied for short-term wind speed prediction from a real data set of hourly wind speed measurements for the region of Regina in Saskatchewan, Canada. Both approaches demonstrate good prediction precision and provide complementary advantages with respect to different evaluation criteria.

  4. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE PAGES

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    2016-05-12

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and strongermore » entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m−2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over

  5. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    NASA Astrophysics Data System (ADS)

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    2016-05-01

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and stronger entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning-afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m-2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from buoyancy

  6. Towards an improved wind speed scale and damage description adapted for Central Europe

    NASA Astrophysics Data System (ADS)

    Feuerstein, Bernold; Groenemeijer, Pieter; Dirksen, Erik; Hubrig, Martin; Holzer, Alois M.; Dotzek, Nikolai

    2011-06-01

    We propose an updated wind speed scale description adapted for Central Europe considering wind impact to buildings as well as to vegetation. The scale is motivated by the need of a broadly applicable, accurate and consistent tornado or downburst intensity rating system based on a standardised wind speed scale for the purpose of climatological homogeneity. The description comprises building and vegetation damage characteristics, which can be found in Central Europe - but similar in other parts of the world, occurring with the various classes of the Fujita- and T-scales. The scale description is supplemented by photographs of typical damage. For practical application, an ensemble-based use of a decision matrix for specific building structures and vegetation types is suggested.

  7. An estimate of the maximum speed of the solar wind, 1938-1989

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Feynman, J.; Garrett, H. B.

    1990-01-01

    In an effort to estimate the highest flow velocity that the solar wind has exhibited at earth during the past 50 years, geomagnetic storms that occurred from 1938 to 1989 were surveyed, and the storms that were preceded by a major proton flare were selected. For each identified flare-storm pair, the average speed ('transit speed') of the associated interplanetary shock from the interval between the flare onset and the sudden commencement of the geomagnetic storm was calculated. In each case, the maximum solar wind flow speed was inferred from an empirical relationship (derived for a sample of recent events) between the shock transit speed and the peak flow velocity of the associated transient stream, obtaining a distribution of maximum solar wind speeds, which presumably corresponds to a sample of the most energetic events of this 50-yr period. Results show no evidence for bulk flow velocities greater than the about 2000 km/sec value deduced by Zastenker et al. (1978) and Grunwaldt (1975) for the August 4, 1972 event.

  8. IPS observations at 140 MHz to study solar wind speeds and density fluctuations by MEXART

    NASA Astrophysics Data System (ADS)

    Chang, Oyuki; Gonzalez-Esparza, J. A.; Mejia-Ambriz, J.

    2016-03-01

    The interplanetary scintillation (IPS) technique is a remote-sensing method for monitoring the inner heliosphere. These observations supply information on solar wind conditions covering heliocentric ranges that no other technique can provide. The Mexican Array Radio Telescope (MEXART) is a single-station instrument operating at 140 MHz, fully dedicated to performing solar-wind studies employing the IPS technique. We present solar-wind parameters (scintillation indices and solar-wind speeds), using the initial measurements from this array of four IPS sources (3C273, 3C283, 3C286, 3C298) detected during October-December 2014. We report the transit of an IPS radio source (3C298), observed at 140 MHz, from weak- to strong-scattering regions at around 0.36 AU, and sky projection maps of solar wind conditions associated presumably with the passing of one or more Coronal Mass Ejections (CMEs). These results show the progress to operate the full array in the near future. The MEXART observations will complement the solar wind IPS studies using other frequencies, and the tracking of solar wind disturbances by other stations located at different longitudes. These solar wind measurements, provided in real time, can have space-weather forecasting applications.

  9. Venera-11 and Venera 12: Preliminary estimates for the wind speed and turbulence in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Kerzhanovich, V. V.; Makarov, M. Y.; Marov, F.; Roshdestvenskiy, M. K.; Sorokin, V. P.

    1979-01-01

    The methods and results of measurements for wind speed and atmospheric turbulence in the clouds of Venus are described, and compared with earlier results. The distribution of wind speed obtained from the data of Venera 12 is in good conformity with the data of the preceding Venera and Pioneer probes, indicating the existence of a constant and powerful zonal movement of the troposphere.

  10. The influence of wind speed on surface layer stability and turbulent fluxes over southern Indian peninsula station

    NASA Astrophysics Data System (ADS)

    Patil, M. N.; Waghmare, R. T.; Dharmaraj, T.; Chinthalu, G. R.; Siingh, Devendraa; Meena, G. S.

    2016-09-01

    Surface to atmosphere exchange has received much attention in numerical weather prediction models. This exchange is defined by turbulent parameters such as frictional velocity, drag coefficient and heat fluxes, which have to be derived experimentally from high-frequency observations. High-frequency measurements of wind speed, air temperature and water vapour mixing ratio (eddy covariance measurements), were made during the Integrated Ground Observation Campaign (IGOC) of Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) at Mahabubnagar, India (16∘44'N, 77∘59'E) in the south-west monsoon season. Using these observations, an attempt was made to investigate the behaviour of the turbulent parameters, mentioned above, with respect to wind speed. We found that the surface layer stability derived from the Monin-Obukhov length scale, is well depicted by the magnitude of wind speed, i.e., the atmospheric boundary layer was under unstable regime for wind speeds >4 m s-1; under stable regime for wind speeds <2 m s-1 and under neutral regime for wind speeds in the range of 2-3 m s-1. All the three stability regimes were mixed for wind speeds 3-4 m s-1. The drag coefficient shows scatter variation with wind speed in stable as well as unstable conditions.

  11. Solar wind suprathermal electron Stahl widths across high-speed stream structures

    SciTech Connect

    Skoug, Ruth M; Steinberg, John T; Goodrich, Katherine A; Anderson, Brett R

    2011-01-03

    Suprathermal electrons (100-1500 eV) observed in the solar wind typically show a strahl distribution, that is, a beam directed away from the Sun along the magnetic field direction. The strahl width observed at 1 AU is highly variable, ranging from 10-70 degrees. The obsenred finite width of the strahl results from the competition between beam focusing as the interplanetary magnetic field strength drops with distance from the Sun, and pitch-angle scattering as the beam interacts with the solar wind plasma in transit from the sun. Here we examine strahl width, observed with ACE SWEPAM across high-speed stream structures to investigate variations in electron scattering as a function of local plasma characteristics. We find that narrow strahls (less than 20 degrees wide), indicating reduced scattering, are observed within high-speed streams. Narrow strahls are also observed in both very low temperature solar wind, in association with ICMEs. Case studies of high-speed streams typically show the strahl narrowing at the leading edge of the stream. In some cases, the strahl narrows at the reverse shock or pressure wave, in other cases at the stream interface. The narrowing can either occur discontinuously or gradually over a period of hours. Within the high-speed wind, the strahl remains narrow for a period of hours to days, and then gradually broadens. The strahl width is roughly constant at all energies across these structures. For some fraction of high-speed streams, counterstreaming is associated with passage of the corotating interaction region. In these cases, we find the widths of the two counterstreaming beams frequently differ by more than 40 degrees. This dramatic difference in strahl width contrasts with observations in the solar wind as a whole, in which counterstreaming strahls typically differ in width by less than 20 degrees.

  12. The internal plasma state of the high speed solar wind at 1 AU

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Abraham-Shrauner, B.; Asbridge, J. R.; Bame, S. J.

    1976-01-01

    The character of particle velocity distributions in the high speed solar wind is described. It is found that electron distribution shapes differ from simple bi-Maxwellians in that a hot strongly beamed high energy electron component is always present, and is observed to move relative to a distinct low energy electron component along the magnetic field direction away from the sun. The velocity difference between hot and cold electron components appears, at times, to be strongly correlated with the local Alfven speed. Proton velocity distributions are also best represented by two relatively convecting unresolved components. Evidence is presented which supports the idea that the two-component proton structure observed in high speed regions is intimately related to fine scale velocity variations at 1 AU, and probably to prominent spatial and/or temporal structures present throughout that part of the corona from which the solar wind evolves.

  13. Nature and Variability of Coronal Streamers and their Relationship to the Slow Speed Wind

    NASA Technical Reports Server (NTRS)

    Strachan, Leonard

    2005-01-01

    NASA Grant NAG5-12781 is a study on the "Nature and Variability of Coronal Streamers and their Relationship to the Slow Speed Wind." The two main goals of this study are to identify: 1) Where in the streamer structure does the solar wind originate, and 2) What coronal conditions are responsible for the variability of the slow speed wind. To answer the first question, we examined the mostly closed magnetic field regions in streamer cores to search for evidence of outflow. Preliminary results from the OVI Doppler dimming ratios indicates that most of the flow originates from the edges of coronal streamers but this idea should be confirmed by a comparison of the coronal plasma properties with in situ solar wind data. To answer the second question, the work performed thus far suggests that solar minimum streamers have larger perpendicular velocity distributions than do solar maximum streamers. If it can be shown that solar minimum streamers also produce higher solar wind speeds then this would suggest that streamers and coronal holes have similar solar wind acceleration mechanisms. The key to both questions lie in the analysis of the in situ solar wind data sets. This work was not able to be completed during the period of performance and therefore the grant was formally extended for an additional year at no cost to NASA. We hope to have final results and a publication by the end of the calendar year 2004. The SAO personnel involved in the research are Leonard Strachan (PI), Mari Paz Miralles, Alexander Panasyuk, and a Southern University student Michael Baham.

  14. Application of stochastic methods for wind speed forecasting and wind turbines design at the area of Thessaly, Greece

    NASA Astrophysics Data System (ADS)

    Dimitriadis, Panayiotis; Lazaros, Lappas; Daskalou, Olympia; Filippidou, Ariadni; Giannakou, Marianna; Gkova, Eleni; Ioannidis, Romanos; Polydera, Angeliki; Polymerou, Eleni; Psarrou, Eleftheria; Vyrini, Alexandra; Papalexiou, Simon; Koutsoyiannis, Demetris

    2015-04-01

    Several methods exist for estimating the statistical properties of wind speed, most of them being deterministic or probabilistic, disregarding though its long-term behaviour. Here, we focus on the stochastic nature of wind. After analyzing several historical timeseries at the area of interest (AoI) in Thessaly (Greece), we show that a Hurst-Kolmogorov (HK) behaviour is apparent. Thus, disregarding the latter could lead to unrealistic predictions and wind load situations, causing some impact on the energy production and management. Moreover, we construct a stochastic model capable of preserving the HK behaviour and we produce synthetic timeseries using a Monte-Carlo approach to estimate the future wind loads in the AoI. Finally, we identify the appropriate types of wind turbines for the AoI (based on the IEC 61400 standards) and propose several industrial solutions. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  15. Multisensor satellite data integration for sea surface wind speed and direction determination

    NASA Technical Reports Server (NTRS)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  16. Experimental investigation of aerodynamic devices for wind turbine rotational speed control. Phase 1

    SciTech Connect

    Miller, L.S.

    1995-02-01

    An investigation was undertaken to identify the aerodynamic performance of five separate trailing-edge control devices, and to evaluate their potential for wind turbine overspeed and power modulation applications. A modular two-dimensional wind tunnel model was constructed and evaluated during extensive wind tunnel testing. Aerodynamic lift, drag, suction, and pressure coefficient data were acquired and analyzed for various control configurations and angles of attack. To further interpret their potential performance, the controls were evaluated numerically using a generic wind turbine geometry and a performance analysis computer program. Results indicated that the Spoiler-Flap control configuration was best softed for turbine braking applications. It exhibited a large negative suction coefficient over a broad angle-of-attack range, and good turbine braking capabilities, especially at low tip-speed ratio.

  17. Experimental investigation of aerodynamic devices for wind turbine rotational speed control, phase 1

    NASA Astrophysics Data System (ADS)

    Miller, L. S.

    1995-02-01

    An investigation was undertaken to identify the aerodynamic performance of five separate trailing-edge control devices, and to evaluate their potential for wind turbine overspeed and power modulation applications. A modular two-dimensional wind tunnel model was constructed and evaluated during extensive wind tunnel testing. Aerodynamic lift, drag, suction, and pressure coefficient data were acquired and analyzed for various control configurations and angles of attack. To further interpret their potential performance, the controls were evaluated numerically using a generic wind turbine geometry and a performance analysis computer program. Results indicated that the Spoiler-Flap control configuration was best suited for turbine braking applications. It exhibited a large negative suction coefficient over a broad angle-of-attack range, and good turbine braking capabilities, especially at low tip-speed ratio.

  18. Ulysses observations of a recurrent high speed solar wind stream and the heliomagnetic streamer belt

    SciTech Connect

    Bame, S.J.; Gosling, J.T.; McComas, D.J.; Phillips, J.L. ); Goldstein, B.E.; Neugebauer, M. ); Harvey, J.W.

    1993-11-05

    Near-ecliptic solar wind observations by Ulysses on its way to the polar regions of the Sun, compared with those from IMP 8 at 1 AU, showed that high-speed streams decay and broaden with heliocentric distance from IMP 8 to Ulysses, as expected. In July 1992 while travelling south at [approximately]13[degrees]S and 5.3 AU, Ulysses encountered a recurrent high-speed stream, that may also have been observed at IMP 8. The stream has been observed a total of 14 times, once in each solar rotation through June 1993 at [approximately]34[degrees]S. The source of the high-speed stream is an equatorward extension of the south polar coronal hole. From July 1992 through June 1993, averages of solar wind peak speed increased while density decreased with heliographic latitude. Both the stream and a low-speed, high-density flow, presumably associated with the heliomagnetic (coronal) streamer belt encircling the heliomagnetic equator, crossed Ulysses with the solar rotation period until April 1993 when the spacecraft was at [approximately]29[degrees]S heliographic latitude. After this time, as the spacecraft climbed to higher latitudes, the central portion of the streamer belt with lowest speed and highest density disappeared. Therefore, at its maximum inclination, the belt was tilted at [approximately]29[degrees] to the heliographic equator at this point in the solar cycle. 11 refs., 5 figs.

  19. A wave tank study of the dependence of X band cross sections on wind speed and water temperature

    NASA Technical Reports Server (NTRS)

    Keller, Mary Ruth; Keller, William C.; Plant, William J.

    1992-01-01

    The effects of varying the water temperature, wind speed, and wind stress on the values of backscatter were investigated using measurements of normalized radar cross sections of wind-generated waves, made at X band for both vertical and horizontal polarization for incidence angles 10, 28, 48, and 68 deg. The experiment was conducted using the Naval Research Laboratory wind-wave tank. Measurements made for a wide range of wind speeds and water temperatures are compared with results of backscattering models currently in use.

  20. ON THE ORIGIN OF THE SLOW SPEED SOLAR WIND: HELIUM ABUNDANCE VARIATIONS

    SciTech Connect

    Rakowski, Cara E.; Laming, J. Martin

    2012-07-20

    The first ionization potential (FIP) effect is the by now well-known enhancement in abundance over photospheric values of Fe and other elements with FIP below about 10 eV observed in the solar corona and slow speed solar wind. In our model, this fractionation is achieved by means of the ponderomotive force, arising as Alfven waves propagate through or reflect from steep density gradients in the solar chromosphere. This is also the region where low FIP elements are ionized, and high FIP elements are largely neutral leading to the fractionation as ions interact with the waves but neutrals do not. Helium, the element with the highest FIP and consequently the last to remain neutral as one moves upward, can be depleted in such models. Here, we investigate this depletion for varying loop lengths and magnetic field strengths. Variations in this depletion arise as the concentration of the ponderomotive force at the top of the chromosphere varies in response to Alfven wave frequency with respect to the resonant frequency of the overlying coronal loop, the magnetic field, and possibly also the loop length. We find that stronger depletions of He are obtained for weaker magnetic field, at frequencies close to or just above the loop resonance. These results may have relevance to observed variations of the slow wind solar He abundance with wind speed, with slower slow speed solar wind having a stronger depletion of He.

  1. Gust wind tunnel study on ballast pick-up by high-speed trains

    NASA Astrophysics Data System (ADS)

    Navarro-Medina, F.; Sanz-Andres, A.; Perez-Grande, I.

    2012-01-01

    This paper describes the experimental setup, procedure, and results obtained, concerning the dynamics of a body lying on a floor, attached to a hinge, and exposed to an unsteady flow, which is a model of the initiation of rotational motion of ballast stones due to the wind generated by the passing of a high-speed train. The idea is to obtain experimental data to support the theoretical model developed in Sanz-Andres and Navarro-Medina (J Wind Eng Ind Aerodyn 98, 772-783, (2010), aimed at analyzing the initial phase of the ballast train-induced-wind erosion (BATIWE) phenomenon. The experimental setup is based on an open circuit, closed test section, low-speed wind tunnel, with a new sinusoidal gust generator mechanism concept, designed and built at the IDR/UPM. The tunnel's main characteristic is the ability to generate a flow with a uniform velocity profile and sinusoidal time fluctuation of the speed. Experimental results and theoretical model predictions are in good agreement.

  2. Investigation of load reduction for a variable speed, variable pitch, and variable coning wind turbine

    SciTech Connect

    Pierce, K.

    1997-12-31

    A two bladed, variable speed and variable pitch wind turbine was modeled using ADAMS{reg_sign} to evaluate load reduction abilities of a variable coning configuration as compared to a teetered rotor, and also to evaluate control methods. The basic dynamic behavior of the variable coning turbine was investigated and compared to the teetered rotor under constant wind conditions as well as turbulent wind conditions. Results indicate the variable coning rotor has larger flap oscillation amplitudes and much lower root flap bending moments than the teetered rotor. Three methods of control were evaluated for turbulent wind simulations. These were a standard IPD control method, a generalized predictive control method, and a bias estimate control method. Each control method was evaluated for both the variable coning configuration and the teetered configuration. The ability of the different control methods to maintain the rotor speed near the desired set point is evaluated from the RMS error of rotor speed. The activity of the control system is evaluated from cycles per second of the blade pitch angle. All three of the methods were found to produce similar results for the variable coning rotor and the teetered rotor, as well as similar results to each other.

  3. Direct Adaptive Control of Utility-Scale Wind Turbine for Speed Regulation

    SciTech Connect

    Frost, S. A.; Balas, M. J.; Wright, A. D.

    2009-01-01

    The accurate modeling of wind turbines is an extremely challenging problem due to the tremendous complexity of the machines and the turbulent and unpredictable conditions in which they operate. Adaptive control techniques are well suited to nonlinear applications, such as wind turbines, which are difficult to accurately model and which have effects from poorly known operating environments. In this paper, we extended the direct model reference adaptive control (DMRAC) approach to track a reference point and to reject persistent disturbances. This approach was then used to design an adaptive collective pitch controller for a high-fidelity simulation of a variable-speed horizontal axis wind turbine. The objective of the adaptive pitch controller was to regulate generator speed in Region 3 and to reject step disturbances. The control objective was accomplished by collectively pitching the turbine blades. The turbine simulation models the controls advanced research turbine (CART) of the National Renewable Energy Laboratory in Golden, Colorado. The CART is a utility-scale wind turbine that has a well-developed and extensively verified simulator. This novel application of adaptive control was compared in simulations with a classical proportional integrator (PI) collective pitch controller. In the simulations, the adaptive pitch controller showed improved speed regulation in Region 3 when compared with the PI pitch controller.

  4. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2009-01-01

    The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.

  5. The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.; Leftwich, Megan C.

    2016-05-01

    This work visualizes the flow surrounding a scaled model vertical axis wind turbine at realistic operating conditions. The model closely matches geometric and dynamic properties—tip speed ratio and Reynolds number—of a full-size turbine. The flow is visualized using particle imaging velocimetry (PIV) in the midplane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Time-averaged results show an asymmetric wake behind the turbine, regardless of tip speed ratio, with a larger velocity deficit for a higher tip speed ratio. For the higher tip speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04U_∞. Phase-averaged vorticity fields—achieved by syncing the PIV system with the rotation of the turbine—show distinct structures form from each turbine blade. There were distinct differences in results by tip speed ratios of 0.9, 1.3, and 2.2 of when in the cycle structures are shed into the wake—switching from two pairs to a single pair of vortices being shed—and how they convect into the wake—the middle tip speed ratio vortices convect downstream inside the wake, while the high tip speed ratio pair is shed into the shear layer of the wake. Finally, results show that the wake structure is much more sensitive to changes in tip speed ratio than to changes in Reynolds number.

  6. Pose Measurement Method and Experiments for High-Speed Rolling Targets in a Wind Tunnel

    PubMed Central

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-01-01

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°. PMID:25615732

  7. Solar wind iron abundance variations at solar wind speeds up to 600 km s sup -1, 1972 to 1976

    NASA Technical Reports Server (NTRS)

    Mitchell, D. G.; Roelof, E. C.; Bame, S. J.

    1982-01-01

    The Fe/H ratios in the peaks of high speed streams (HSS) were analyzed during the decline of Solar Cycle 20 and the following minimum (October 1972 to December 1976). The response of the 50 to 200 keV ion channel of the APL/JHU energetic particle experiment (EPE) on IMP-7 and 8 was utilized to solar wind iron ions at high solar wind speeds (V or = 600 km/sec). Fe measurements with solar wind H and He parameters were compared from the Los Alamos National Laboratory (LANL) instruments on the same spacecraft. In general, the Fe distribution parameters (bulk velocity, flow direction, temperature) are found to be similar to the LANL He parameters. Although the average Fe/H ration in many steady HSS peaks agrees within observational uncertainties with the nominal coronal ratio of 4.7 x 0.00001, abundance variations of a factor of up to 6 are obtained across a given coronal-hole associated HSS.

  8. Electron heating within interaction zones of simple high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Lemons, D. S.

    1978-01-01

    In the present paper, electron heating within the high-speed portions of three simple stream-stream interaction zones is studied to further our understanding of the physics of heat flux regulation in interplanetary space. To this end, the thermal signals present in the compressions at the leading edges of the simple high-speed streams are analyzed, showing that the data are inconsistent with the Spitzer conductivity. Instead, a polynomial law is found to apply. Its implication concerning the mechanism of interplanetary heat conduction is discussed, and the results of applying this conductivity law to high-speed flows inside of 1 AU are studied. A self-consistent model of the radial evolution of electrons in the high-speed solar wind is proposed.

  9. Remote measurement of wind speed using a dual beam backscatter laser Doppler velocimeter.

    PubMed

    Bartlett, K G; She, C Y

    1976-08-01

    Measurements of atmospheric wind speeds at distances up to 60 m using a dual beam laser Doppler velocimeter with digital autocorrelation analysis, an unfocused argon ion laser (0.10-0.35 W) at 5145 A, and a 20-cm collecting telescope are reported. Criteria affecting the field performance of this system and an expression giving the power and range dependence of the data accumulation rate are presented. Major improvement of the system's performance can be made by focusing the laser beams and properly restricting the field of the collecting telescope. The potential of this technique for remote wind measurement at ranges of several hundred meters is discussed.

  10. IPS observations of the solar wind speed out of the ecliptic

    NASA Technical Reports Server (NTRS)

    Coles, W. A.; Rickett, B. J.

    1976-01-01

    Interplanetary scintillation observations from 1971-1975 show that the average solar wind speed increases away from the solar equator, with a mean gradient of 2.1 km/s per degree. These results are compared with spacecraft observations over the + or - 7 deg attainable in the ecliptic and with those deduced from comet tails. The role of temporal variations, especially those caused by latitude dependent solar wind streams, is emphasized, and this points to the need for extensive ecliptic and ground-based observations during an out-of-the-ecliptic spacecraft mission.

  11. An Analysis of Peak Wind Speed Data from Collocated Mechanical and Ultrasonic Anemometers

    NASA Technical Reports Server (NTRS)

    Short, David A.; Wells, Leonard; Merceret, Francis J.; Roeder, William P.

    2007-01-01

    This study compared peak wind speeds reported by mechanical and ultrasonic anemometers at Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC) on the east central coast of Florida and Vandenberg Air Force Base (VAFB) on the central coast of California. Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at CCAFS/KSC and VAFB for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The legacy CCAFS/KSC and VAFB weather tower wind instruments are being changed from propeller-and-vane (CCAFS/KSC) and cup-and-vane (VAFB) sensors to ultrasonic sensors under the Range Standardization and Automation (RSA) program. Mechanical and ultrasonic wind measuring techniques are known to cause differences in the statistics of peak wind speed as shown in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between the RSA ultrasonic and legacy mechanical sensors to determine if there are significant differences. Note that the instruments were sited outdoors under naturally varying conditions and that this comparison was not designed to verify either technology. Approximately 3 weeks of mechanical and ultrasonic wind data from each range from May and June 2005 were used in this study. The CCAFS/KSC data spanned the full diurnal cycle, while the VAFB data were confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on five different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The ten towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The ultrasonic sensors were collocated at the same vertical levels as the mechanical sensors and

  12. Solar Wind Helium Abundance as a Function of Speed and Heliographic Latitude: Variation through a Solar Cycle

    NASA Technical Reports Server (NTRS)

    Kasper, J. C.; Stenens, M. L.; Stevens, M. L.; Lazarus, A. J.; Steinberg, J. T.; Ogilvie, Keith W.

    2006-01-01

    We present a study of the variation of the relative abundance of helium to hydrogen in the solar wind as a function of solar wind speed and heliographic latitude over the previous solar cycle. The average values of A(sub He), the ratio of helium to hydrogen number densities, are calculated in 25 speed intervals over 27-day Carrington rotations using Faraday Cup observations from the Wind spacecraft between 1995 and 2005. The higher speed and time resolution of this study compared to an earlier work with the Wind observations has led to the discovery of three new aspects of A(sub He), modulation during solar minimum from mid-1995 to mid-1997. First, we find that for solar wind speeds between 350 and 415 km/s, A(sub He), varies with a clear six-month periodicity, with a minimum value at the heliographic equatorial plane and a typical gradient of 0.01 per degree in latitude. For the slow wind this is a 30% effect. We suggest that the latitudinal gradient may be due to an additional dependence of coronal proton flux on coronal field strength or the stability of coronal loops. Second, once the gradient is subtracted, we find that A(sub He), is a remarkably linear function of solar wind speed. Finally, we identify a vanishing speed, at which A(sub He), is zero, is 259 km/s and note that this speed corresponds to the minimum solar wind speed observed at one AU. The vanishing speed may be related to previous theoretical work in which enhancements of coronal helium lead to stagnation of the escaping proton flux. During solar maximum the A(sub He), dependences on speed and latitude disappear, and we interpret this as evidence of two source regions for slow solar wind in the ecliptic plane, one being the solar minimum streamer belt and the other likely being active regions.

  13. Orbiting observatory SOHO finds source of high-speed "wind" blowing from the Sun

    NASA Astrophysics Data System (ADS)

    1999-02-01

    "The search for the source of the solar wind has been like the hunt for the source of the Nile," said Dr. Don Hassler of the Southwest Research Institute, Boulder, Colorado, lead author of the paper in Science. "For 30 years, scientists have observed high-speed solar wind coming from regions in the solar atmosphere with open magnetic field lines, called coronal holes. However, only recently, with the observations from SOHO, have we been able to measure the detailed structure of this source region". The solar wind comes in two varieties : high-speed and low-speed. The low-speed solar wind moves at "only" 1.5 million kilometres per hour, while the high-speed wind is even faster, moving at speeds as high as 3 million kilometres per hour. As it flows past Earth, the solar wind changes the shape and structure of the Earth's magnetic field. In the past, the solar wind didn't affect us directly, but as we become increasingly dependent on advanced technology, we become more susceptible to its effects. Researchers are learning that variations in the solar wind flow can cause dramatic changes in the shape of the Earth's magnetic field, which can damage satellites and disrupt communications and electrical power systems. The nature and origin of the solar wind is one of the main mysteries ESA's solar observatory SOHO was designed to solve. It has long been thought that the solar wind flows from coronal holes; what is new is the discovery that these outflows are concentrated in specific patches at the edges of the honeycomb-shaped magnetic fields. Just below the surface of the Sun there are large convection cells, and each cell has a magnetic field associated with it. "If one thinks of these cells as paving stones in a patio, then the solar wind is breaking through like grass around the edges, concentrated in the corners where the paving stones meet", said Dr. Helen Mason, University of Cambridge, England, and co-author of the paper to appear in Science. "However, at speeds

  14. North-south asymmetry in global distribution of the solar wind speed during 1985-2013

    NASA Astrophysics Data System (ADS)

    Tokumaru, Munetoshi; Fujiki, Ken'ichi; Iju, Tomoya

    2015-05-01

    Interplanetary scintillation (IPS) observations made between 1985 and 2013 are used to investigate the north-south (N-S) asymmetry in global distribution of the solar wind speed. The IPS observations clearly demonstrate that the global distribution of the solar wind speed systematically changes with the solar activity. This change is found to closely correlate with that in polar magnetic fields of the Sun, while fast wind data at solar minima systematically deviate from this correlation. The IPS observations show that notable N-S asymmetry of polar solar winds occurs at the solar maxima, and small but significant N-S asymmetry exists at the solar minima. The observed asymmetry at the solar maxima is consistent with the time lag in the reversal of polar magnetic fields between north and south hemispheres. We also find that significant N-S asymmetry of the polar fast wind lasts for the period between Cycles 23 and 24 solar maxima, starting from predominance of the fast wind over the north pole and ending with that over the south pole. The N-S asymmetry revealed from IPS observations is found to be generally consistent with Ulysses observations. We compare IPS observations with magnetic field data of the Sun and find that the ratio of the quadrupole to dipole coefficients exhibits a similar time variation to that of the N-S asymmetry revealed from IPS observations. This suggests that higher-order multipole moments play an important role in determining the N-S asymmetry of the solar wind when the dipole moment weakens.

  15. Large-scale Advanced Prop-fan (LAP) high speed wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Campbell, William A.; Wainauski, Harold S.; Arseneaux, Peter J.

    1988-01-01

    High Speed Wind Tunnel testing of the SR-7L Large Scale Advanced Prop-Fan (LAP) is reported. The LAP is a 2.74 meter (9.0 ft) diameter, 8-bladed tractor type rated for 4475 KW (6000 SHP) at 1698 rpm. It was designated and built by Hamilton Standard under contract to the NASA Lewis Research Center. The LAP employs thin swept blades to provide efficient propulsion at flight speeds up to Mach .85. Testing was conducted in the ONERA S1-MA Atmospheric Wind Tunnel in Modane, France. The test objectives were to confirm that the LAP is free from high speed classical flutter, determine the structural and aerodynamic response to angular inflow, measure blade surface pressures (static and dynamic) and evaluate the aerodynamic performance at various blade angles, rotational speeds and Mach numbers. The measured structural and aerodynamic performance of the LAP correlated well with analytical predictions thereby providing confidence in the computer prediction codes used for the design. There were no signs of classical flutter throughout all phases of the test up to and including the 0.84 maximum Mach number achieved. Steady and unsteady blade surface pressures were successfully measured for a wide range of Mach numbers, inflow angles, rotational speeds and blade angles. No barriers were discovered that would prevent proceeding with the PTA (Prop-Fan Test Assessment) Flight Test Program scheduled for early 1987.

  16. Low-speed wind tunnel performance of high-speed counterrotation propellers at angle-of-attack

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Gazzaniga, John A.

    1989-01-01

    The low-speed aerodynamic performance characteristics of two advanced counterrotation pusher-propeller configurations with cruise design Mach numbers of 0.72 were investigated in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. The tests were conducted at Mach number 0.20, which is representative of the aircraft take-off/landing flight regime. The investigation determined the effect of nonuniform inflow on the propeller performance characteristics for several blade angle settings and a range of rotational speeds. The inflow was varied by yawing the propeller model to angle-of-attack by as much as plus or minus 16 degrees and by installing on the counterrotation propeller test rig near the propeller rotors a model simulator of an aircraft engine support pylon and fuselage. The results of the investigation indicated that the low-speed performance of the counterrotation propeller configurations near the take-off target operating points were reasonable and were fairly insensitive to changes in model angle-of-attack without the aircraft pylon/fuselage simulators installed on the propeller test rig. When the aircraft pylon/fuselage simulators were installed, small changes in propeller performance were seen at zero angle-of-attack, but fairly large changes in total power coefficient and very large changes of aft-to-forward-rotor torque ratio were produced when the propeller model was taken to angle-of-attack. The propeller net efficiency, though, was fairly insensitive to any changes in the propeller flowfield conditions near the take-off target operating points.

  17. The Impact of Wind Speed Changes on the Surface Stress in the Weak-wind Stable Boundary Layer

    NASA Astrophysics Data System (ADS)

    Thomas, C. K.

    2015-12-01

    The behaviour of turbulent transport in the weak-wind stably stratified boundary layer is examined in terms of the non-stationarity of the wind field based upon field observations. Extensive sonic anemometer measurements from horizontal networks and vertical towers ranging from 12 to 20 m height were collected from three field programs in moderately sloped terrain with a varying degree of surface heterogeneity, namely the Shallow Cold Pool (SCP) and the Flow Over Snow Surfaces (FLOSS) II experiments in Colorado (USA), and the Advanced Canopy Resolution Experiment (ARCFLO) in Oregon (USA). The relationship of the friction velocity to the stratification and small non-stationary submeso motions is studied from several points of view and nominally quantified. The relationship of the turbulence to the stratification is less systematic than expected due to the important submeso-scale motions. Consequently, the roles of the wind speed and stratification are not adequately accommodated by a single non-dimensional combination, such as the bulk Richardson number. Howver, cause and effect relationships are difficult to isolate because the non-stationary momentum flux significantly modifies the profile of the non-stationary mean flow. The link between the turbulence and accelerations at the surface is examined in terms of the changing vertical structure of the wind profile and sudden increases of downward transport of momentum. The latter may be significant in explaining the small-scale weak turbulence during stable stratification and deviations from conventional flux-profile relationships.

  18. The influence of non-logarithmic wind speed profiles on potential power output at Danish offshore sites

    NASA Astrophysics Data System (ADS)

    Motta, M.; Barthelmie, R. J.; Vølund, P.

    2005-04-01

    Detailed knowledge of mean wind speed profiles is essential for properly assessing the power output of a potential wind farm. Since atmospheric stratification plays a crucial role in affecting wind speed profiles, obtaining a detailed picture of the climatology of stability conditions at a given site is very important. In the present study, long time series from offshore measurement sites around Denmark are analysed, with the aim of quantifying the role of atmospheric stability in wind speed profiles and in our ability to model them. A simple method for evaluating stability is applied, and the resulting statistics of the atmospheric stratification is thoroughly studied. A significant improvement in the mean wind speed profile prediction is obtained by applying a stability correction to the logarithmic profiles suitable for neutral conditions. These results are finally used to estimate power densities at different heights. Copyright

  19. Seasonality, Interannual Variability, and Linear Tendency of Wind Speeds in the Northeast Brazil from 1986 to 2011

    PubMed Central

    Santos e Silva, Cláudio Moisés

    2013-01-01

    Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: filling of missing data, descriptive statistical calculations, boxplots, cluster analysis, and trend analysis using the Mann-Kendall statistical method. The seasonal variability of the average wind speeds of each group presented higher values for winter and spring and lower values in the summer and fall. The groups G1, G2, and G5 showed higher annual averages in the interannual variability of wind speeds. These observed peaks were attributed to the El Niño and La Niña events, which change the behavior of global wind circulation and influence wind speeds over the region. Trend analysis showed more significant negative values for the G3, G4, and G5 groups for all seasons of the year and in the annual average for the period under study. PMID:24250267

  20. A new algorithm for sea-surface wind-speed retrieval based on the L-band radiometer onboard Aquarius

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Zhang, Jie; Fan, Chenqing; Wang, Jing

    2015-09-01

    Aquarius is the second satellite mission to focus on the remote sensing of sea-surface salinity from space and it has mapped global sea-surface salinity for nearly 3 years since its launch in 2011. However, benefiting from the high atmospheric transparency and moderate sensitivity to wind speed of the L-band brightness temperature (TB), the Aquarius L-band radiometer can actually provide a new technique for the remote sensing of wind speed. In this article, the sea-surface wind speeds derived from TBs measured by Aquarius' L-band radiometer are presented, the algorithm for which is developed and validated using multisource wind speed data, including WindSat microwave radiometer and National Data Buoy Center buoy data, and the Hurricane Research Division of the Atlantic Oceanographic and Meteorological Laboratory wind field product. The error analysis indicates that the performance of retrieval algorithm is good. The RMSE of the Aquarius wind-speed algorithm is about 1 and 1.5 m/s for global oceans and areas of tropical hurricanes, respectively. Consequently, the applicability of using the Aquarius L-band radiometer as a near all-weather wind-speed measuring method is verified.

  1. Seasonality, interannual variability, and linear tendency of wind speeds in the northeast Brazil from 1986 to 2011.

    PubMed

    Torres Silva dos Santos, Alexandre; Moisés Santos e Silva, Cláudio

    2013-01-01

    Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: filling of missing data, descriptive statistical calculations, boxplots, cluster analysis, and trend analysis using the Mann-Kendall statistical method. The seasonal variability of the average wind speeds of each group presented higher values for winter and spring and lower values in the summer and fall. The groups G1, G2, and G5 showed higher annual averages in the interannual variability of wind speeds. These observed peaks were attributed to the El Niño and La Niña events, which change the behavior of global wind circulation and influence wind speeds over the region. Trend analysis showed more significant negative values for the G3, G4, and G5 groups for all seasons of the year and in the annual average for the period under study.

  2. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.

    PubMed

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-08-01

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932

  3. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.

    PubMed

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-08-01

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps.

  4. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction

    PubMed Central

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C.; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-01-01

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932

  5. Direct radiative effects of sea salt for the Mediterranean region under conditions of low to moderate wind speeds

    NASA Astrophysics Data System (ADS)

    Lundgren, K.; Vogel, B.; Vogel, H.; Kottmeier, Ch.

    2013-02-01

    ABSTRACT This study deals with the direct radiative effect of sea salt on the regional scale, within both the shortwave and longwave ranges. The COSMO-ART model system has been extended and applied for a large part of Europe and adjacent waters within this investigation. For the radiation calculations, we determined the sea salt optical properties based on Mie calculations, giving the optical properties for the three sea salt modes and eight spectral intervals. The simulated sea salt aerosol optical depth is found to show strong dependence on the 10 m wind speed under cloud-free conditions. This relation is best represented by a power law fit and compares well with satellite observations. For clear-sky conditions, the simulated sea salt direct radiative effects on the shortwave and longwave radiative budgets are approximately of the same order of magnitude, but with opposite signs. This causes the net radiative effect to approach zero, which leads to a low impact on the temperature for this area.

  6. A Free-flight Wind Tunnel for Aerodynamic Testing at Hypersonic Speeds

    NASA Technical Reports Server (NTRS)

    Seiff, Alvin

    1954-01-01

    The supersonic free-flight wind tunnel is a facility at the Ames Laboratory of the NACA in which aerodynamic test models are gun-launched at high speed and directed upstream through the test section of a supersonic wind tunnel. In this way, test Mach numbers up to 10 have been attained and indications are that still higher speeds will be realized. An advantage of this technique is that the air and model temperatures simulate those of flight through the atmosphere. Also the Reynolds numbers are high. Aerodynamic measurements are made from photographic observation of the model flight. Instruments and techniques have been developed for measuring the following aerodynamic properties: drag, initial lift-curve slope, initial pitching-moment-curve slope, center of pressure, skin friction, boundary-layer transition, damping in roll, and aileron effectiveness. (author)

  7. Small parametric model for nonlinear dynamics of large scale cyclogenesis with wind speed variations

    NASA Astrophysics Data System (ADS)

    Erokhin, Nikolay; Shkevov, Rumen; Zolnikova, Nadezhda; Mikhailovskaya, Ludmila

    2016-07-01

    It is performed a numerical investigation of a self consistent small parametric model (SPM) for large scale cyclogenesis (RLSC) by usage of connected nonlinear equations for mean wind speed and ocean surface temperature in the tropical cyclone (TC). These equations may describe the different scenario of temporal dynamics of a powerful atmospheric vortex during its full life cycle. The numerical calculations have shown that relevant choice of SPMTs incoming parameters allows to describe the seasonal behavior of regional large scale cyclogenesis dynamics for a given number of TC during the active season. It is shown that SPM allows describe also the variable wind speed variations inside the TC. Thus by usage of the nonlinear small parametric model it is possible to study the features of RLSCTs temporal dynamics during the active season in the region given and to analyze the relationship between regional cyclogenesis parameters and different external factors like the space weather including the solar activity level and cosmic rays variations.

  8. Analysis and Modelling of Extreme Wind Speed Distributions in Complex Mountainous Regions

    NASA Astrophysics Data System (ADS)

    Laib, Mohamed; Kanevski, Mikhail

    2016-04-01

    Modelling of wind speed distributions in complex mountainous regions is an important and challenging problem which interests many scientists from several fields. In the present research, high frequency (10 min) Swiss wind speed monitoring data (IDAWEB service, Meteosuisse) are analysed and modelled with different parametric distributions (Weibull, GEV, Gamma, etc.) using maximum likelihood method. In total, 111 stations placed in different geomorphological units and at different altitude (from 203 to 3580 meters) are studied. Then, this information is used for training machine learning algorithms (Extreme Learning Machines, Support vector machine) to predict the distribution at new places, potentially useful for aeolian energy generation. An important part of the research deals with the construction and application of a high dimensional input feature space, generated from digital elevation model. A comprehensive study was carried out using feature selection approach to get the best model for the prediction. The main results are presented as spatial patterns of distributions' parameters.

  9. Proton-driven electromagnetic instabilities in high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Abraham-Shrauner, B.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.

    1979-01-01

    Electromagnetic instabilities of the field-aligned, right-hand circularly polarized magnetosonic wave and the left-hand circularly polarized Alfven wave driven by two drifted proton components are analyzed for model parameters determined from Imp 7 solar wind proton data measured during high-speed flow conditions. Growth rates calculated using bi-Lorentzian forms for the main and beam proton as well as core and halo electron velocity distributions do not differ significantly from those calculated using bi-Maxwellian forms. Using distribution parameters determined from 17 measured proton spectra, we show that considering the uncertainties the magnetosonic wave may be linearly stable and the Alfven wave is linearly unstable. Because proton velocity distribution function shapes are observed to persist for times long compared to the proton gyroperiod, the latter result suggests that linear stability theory fails for proton-driven ion cyclotron waves in the high-speed solar wind.

  10. Tone Noise of Three Supersonic Helical Tip Speed Propellers in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Jeracki, R. J.; Blaha, B. J.

    1979-01-01

    Three supersonic helical tip speed propellers were tested in the NASA Lewis 8- by 6-foot wind tunnel. This is a perforated-wall wind tunnel but it does not have acoustic damping material on its walls. The propellers were tested at tunnel through flow Mach numbers of 0.6, 0.7, 0.75, 0.8, and 0.85 with different rotational speeds and blade setting angles. The three propellers, which had approximately the same aerodynamic performance, incorporated different plan forms and different amounts of sweep and yielded different near field noise levels. The acoustically designed propeller had 45 deg of tip sweep and was significantly quieter at M = 0.8 cruise than the straight bladed propeller. The intermediate 30 deg tip sweep propeller, which was swept for aerodynamic purposes, exhibited noise that was between the other two propellers. Noise trends with varying helical tip Mach number and blade loading were also observed.

  11. The power spectrum of the solar wind speed for periods greater than 10 days

    NASA Technical Reports Server (NTRS)

    Fenimore, E. E.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gosling, J. T.

    1978-01-01

    The use of the more than 11 years of solar wind speed data obtained by Vela 2-6 and Imp 6-8 to study the power spectrum of speed variations in the range near the solar rotational frequency is discussed. The broad bands of power near periods of 27 days (corresponding to the rotational period of the sun), 13.5 days, and higher harmonics are characterized, and it is suggested that the described individual peaks in both the solar wind and the geomagnetic spectra are probably not due to differential rotation. The alternate explanation is that the multipeak nature of the power spectra are explained by a wave packet concept in which recurring highspeed streams are described as a series of pulses (separated by a constant period) that last for a varying number of solar rotations.

  12. Variable speed wind turbine control by discrete-time sliding mode approach.

    PubMed

    Torchani, Borhen; Sellami, Anis; Garcia, Germain

    2016-05-01

    The aim of this paper is to propose a new design variable speed wind turbine control by discrete-time sliding mode approach. This methodology is designed for linear saturated system. The saturation constraint is reported on inputs vector. To this end, the back stepping design procedure is followed to construct a suitable sliding manifold that guarantees the attainment of a stabilization control objective. It is well known that the mechanisms are investigated in term of the most proposed assumptions to deal with the damping, shaft stiffness and inertia effect of the gear. The objectives are to synthesize robust controllers that maximize the energy extracted from wind, while reducing mechanical loads and rotor speed tracking combined with an electromagnetic torque. Simulation results of the proposed scheme are presented. PMID:26804750

  13. Variable speed wind turbine control by discrete-time sliding mode approach.

    PubMed

    Torchani, Borhen; Sellami, Anis; Garcia, Germain

    2016-05-01

    The aim of this paper is to propose a new design variable speed wind turbine control by discrete-time sliding mode approach. This methodology is designed for linear saturated system. The saturation constraint is reported on inputs vector. To this end, the back stepping design procedure is followed to construct a suitable sliding manifold that guarantees the attainment of a stabilization control objective. It is well known that the mechanisms are investigated in term of the most proposed assumptions to deal with the damping, shaft stiffness and inertia effect of the gear. The objectives are to synthesize robust controllers that maximize the energy extracted from wind, while reducing mechanical loads and rotor speed tracking combined with an electromagnetic torque. Simulation results of the proposed scheme are presented.

  14. MHD-IPS analysis of relationship among solar wind density, temperature, and flow speed

    NASA Astrophysics Data System (ADS)

    Hayashi, Keiji; Tokumaru, Munetoshi; Fujiki, Ken'ichi

    2016-08-01

    The solar wind properties near the Sun are a decisive factor of properties in the rest of heliosphere. As such, determining realistic plasma density and temperature near the Sun is very important in models for solar wind, specifically magnetohydrodynamics (MHD) models. We had developed a tomographic analysis to reconstruct three-dimensional solar wind structures that satisfy line-of-sight-integrated solar wind speed derived from the interplanetary scintillation (IPS) observation data and nonlinear MHD equations simultaneously. In this study, we report a new type of our IPS-MHD tomography that seeks three-dimensional MHD solution of solar wind, matching additionally near-Earth and/or Ulysses in situ measurement data for each Carrington rotation period. In this new method, parameterized relation functions of plasma density and temperature at 50 Rs are optimized through an iterative forward model minimizing discrepancy with the in situ measurements. Satisfying three constraints, the derived 50 Rs maps of plasma quantities provide realistic observation-based information on the state of solar wind near the Sun that cannot be well determined otherwise. The optimized plasma quantities exhibit long-term variations over the solar cycles 21 to 24. The differences in plasma quantities derived from the optimized and original IPS-MHD tomography exhibit correlations with the source-surface magnetic field strength, which can in future give new quantitative constrains and requirements to models of coronal heating and acceleration.

  15. Simulation and study of power quality issues in a fixed speed wind farm substation.

    PubMed

    Magesh, T; Chellamuthu, C

    2015-01-01

    Power quality issues associated with the fixed speed wind farm substation located at Coimbatore district are investigated as the wind generators are tripping frequently. The investigations are carried out using two power quality analyzers, Fluke 435 and Dranetz PX5.8, with one of them connected at group control breaker of the 110 kV feeder and the other at the selected 0.69 kV generator busbar during the period of maximum power generation. From the analysis of the recorded data it is found that sag, swell, and transients are the major events which are responsible for the tripping of the generators. In the present study, simulation models for wind, turbine, shaft, pitch mechanism, induction generator, and grid are developed using DIgSILENT. Using the turbine characteristics, a two-dimensional lookup table is designed to generate a reference pitch angle necessary to simulate the power curve of the passive stall controlled wind turbine. Various scenarios and their effects on the performance of the wind farm are studied and validated with the recorded data and waveforms. The simulation model will be useful for the designers for planning and development of the wind farm before implementation.

  16. Effect of the tip speed ratio in the power production of aligned wind turbines

    NASA Astrophysics Data System (ADS)

    Carrasquillo, Kenneth; Santoni, Christian; Rotea, Mario; Li, Yaoyu; Leonardi, Stefano

    2014-11-01

    The increased demand for wind energy had led to a constant increase in the size of wind turbines and subsequently of the wind farms. A drawback of using large arrays of wind turbines is the decrease in efficiency due to the wake interference. For example, the second row of turbines extracts about 15% less power than the first row. Previous studies indicated that the power production of the entire wind farm is not maximized if the turbines work at their optimum tip speed ratio (TSR). In fact, reducing the TSR on the upwind turbines with respect to an optimum value, the momentum deficit decreases and the downwind turbines power production increases. Although the power production on the upwind turbines decreases, the power production of the entire wind plant may increase. Large Eddy Simulations of the turbulent flow over three NREL5MW aligned turbines have been performed. The most downwind turbine is kept at maximum power production with TSR =7.5, while the TSR of the other two turbines is varied. The effect of the TSR on power production and its fluctuations will be discussed. The UTDWF code is used to perform the simulations, which is based on a finite difference scheme with the Line Actuator to model the turbine blades and the Immersed Boundary Method for the tower and nacelle. The numerical simulations were performed on XSEDE TACC under Grant No. CTS070066. This work was supported by the NSF, Grant IIA-1243482 (WINDINSPIRE).

  17. Simulation and study of power quality issues in a fixed speed wind farm substation.

    PubMed

    Magesh, T; Chellamuthu, C

    2015-01-01

    Power quality issues associated with the fixed speed wind farm substation located at Coimbatore district are investigated as the wind generators are tripping frequently. The investigations are carried out using two power quality analyzers, Fluke 435 and Dranetz PX5.8, with one of them connected at group control breaker of the 110 kV feeder and the other at the selected 0.69 kV generator busbar during the period of maximum power generation. From the analysis of the recorded data it is found that sag, swell, and transients are the major events which are responsible for the tripping of the generators. In the present study, simulation models for wind, turbine, shaft, pitch mechanism, induction generator, and grid are developed using DIgSILENT. Using the turbine characteristics, a two-dimensional lookup table is designed to generate a reference pitch angle necessary to simulate the power curve of the passive stall controlled wind turbine. Various scenarios and their effects on the performance of the wind farm are studied and validated with the recorded data and waveforms. The simulation model will be useful for the designers for planning and development of the wind farm before implementation. PMID:25950016

  18. Simulation and Study of Power Quality Issues in a Fixed Speed Wind Farm Substation

    PubMed Central

    Magesh, T.; Chellamuthu, C.

    2015-01-01

    Power quality issues associated with the fixed speed wind farm substation located at Coimbatore district are investigated as the wind generators are tripping frequently. The investigations are carried out using two power quality analyzers, Fluke 435 and Dranetz PX5.8, with one of them connected at group control breaker of the 110 kV feeder and the other at the selected 0.69 kV generator busbar during the period of maximum power generation. From the analysis of the recorded data it is found that sag, swell, and transients are the major events which are responsible for the tripping of the generators. In the present study, simulation models for wind, turbine, shaft, pitch mechanism, induction generator, and grid are developed using DIgSILENT. Using the turbine characteristics, a two-dimensional lookup table is designed to generate a reference pitch angle necessary to simulate the power curve of the passive stall controlled wind turbine. Various scenarios and their effects on the performance of the wind farm are studied and validated with the recorded data and waveforms. The simulation model will be useful for the designers for planning and development of the wind farm before implementation. PMID:25950016

  19. Influence of the Solar Wind Speed on the Propagation of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Yashiro, S.; Tokumaru, M.; Fujiki, K.; Iju, T.; Akiyama, S.; Makela, P. A.; Gopalswamy, N.

    2015-12-01

    We investigate the influence of the solar wind (SW) on the propagation of a set of 191 coronal mass ejections (CMEs) near the Sun during the period 1996-2013. The CMEs were observed by LASCO on board SOHO and their source regions were identified using the CME-associated eruptive features (flares, filament eruptions, dimmings) in X-ray, EUV, microwave, and Hα observations. The SW speeds above the CME source regions were estimated from the interplanetary scintillation (IPS) observations from the Solar Terrestrial Environ Laboratory, Nagoya University. We considered only CMEs from close to the limb in order to avoid the projection effects. We also considered CMEs with at least 10 height-time measurements in order to avoid the large uncertainty in the acceleration measurements. We confirm the well-known CME-SW relationship that the CMEs propagating faster (slower) than the ambient solar wind are likely to decelerate (accelerate). The correlation between the acceleration and the difference of the CME and the SW speeds is high with a correlation coefficient of -0.74, slightly lower compared to the one for CMEs associated with interplanetary radio bursts (Gopalswamy et al. 2001, JGR, 106, 29219). There are many accelerating CMEs in our sample with a speed similar to the ambient solar wind speed. This could be due to selection effect because accelerating CMEs tend to remain visible longer than decelerating ones. We also found that CMEs originating from around the sources of the fast solar wind tend to be faster, indicating that the open magnetic fields above the CME source regions affect the CME propagation.

  20. Wind speeds in two tornadic storms and a tornado, deduced from Doppler Spectra

    SciTech Connect

    Zrnic, D.; Istok, M.

    1980-12-01

    Doppler spectra of a tornado were collected with a radar having a large unambiguous velocity range, +- 91 m s/sup -1/. Thus for the first time a presentation of nonaliased spectra was possible, showing direct measurement of radial velocities. By fitting the tornado model spectrum to data, the radius of maximum winds and tornado center location are deduced. Tornado spectral signature is defined as a double peak, symmetric with respect to the mean wind spectrum. Histograms of maximum measured wind speeds (from spectrum skirts) for two tornadic storms are obtained, and the histograms of velocity difference (between the left and right spectrum skirt) suggest that smaller scale turbulence (<500 m) is principally responsible for spectrum broadness.

  1. Influence of time scale wind speed data on sustainability analysis for irrigating greenhouse crops

    NASA Astrophysics Data System (ADS)

    Díaz Méndez, Rodrigo; García Llaneza, Joaquín; Peillón, Manuel; Perdigones, Alicia; Sanchez, Raul; Tarquis, Ana M.; Garcia, Jose Luis

    2014-05-01

    Appropriate water supply at crop/farm level, with suitable costs, is becoming more and more important. Energy management is closely related to water supply in this context, being wind energy one of the options to be considered, using wind pumps for irrigation water supply. Therefore, it is important to characterize the wind speed frequency distribution to study the technical feasibility to use its energy for irrigation management purpose. The general objective of this present research is to analyze the impact of time scale recorded wind speed data in the sustainability for tomato (Solanum lycopersicum L.) grown under greenhouse at Cuban conditions using drip irrigation system. For this porpoise, a daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. Several factors were included: wind velocity (W, m/s) in function of the time scale averaged, flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors. Three-hourly wind velocity (W3h, m/s) data from 1992 till 2008 was available for this study. The original data was grouped in six and twelve hourly data (W6h and W12h respectively) as well as daily data (W24h). For each time scale the daily estimation balance was applied. A comparison of the results points out a need for at least three-hourly data to be used mainly in the months in which mean wind speed are close or below the pumps threshold speed to start-up functioning. References Manuel Esteban Peillon Mesa, Ana Maria Tarquis Alfonso, José Luis García Fernández, and Raúl Sánchez Calvo. The use of wind pumps for irrigating greenhouse tomato crops: a case study in Cuba. Geophysical

  2. Analysis And Synthesis Of Model Reference Controller For Variable Speed Wind Generators Inertial Support

    NASA Astrophysics Data System (ADS)

    Bećirović, Elvisa; Osmić, Jakub; Kušljugić, Mirza; Perić, Nedjeljko

    2015-01-01

    Model Reference Controller (MRC) for contribution of Variable Speed Wind Generators (VSWG) in inertial response of Electrical Power System (EPS) is presented and analyzed in this paper. MRC is synthesized based on a model of Generating Unit With non-Reheat Steam Turbine (GUNRST) thus enabling VSWG to emulate GUNRST response during the initial stage of dynamic frequency response ie inertial phase. Very important property of conventional steam generating units is that its contribution to inertial phase response is independent from the initial generating power. By using MRC in VSWG it is accomplished that in most common wind speed region (3-12 m/s) VSWG inertial support is almost independent from wind speed. Since in most EPSs VSWG replaces conventional steam generators, application of MRC algorithm provides that the characteristics of EPS in terms of inertial response are preserved, regardless of the growing trend of introducing VSWG. Evaluation analysis of the proposed MRC is performed on modified nine bus power system when VSWG with MRC is connected to one of the power system buses.

  3. Modeling the Threshold Wind Speed for Saltation Initiation over Heterogeneous Sand Beds

    NASA Astrophysics Data System (ADS)

    Turney, F. A.; Martin, R. L.; Kok, J. F.

    2015-12-01

    Initiation of aeolian sediment transport is key to understanding the formation of dunes, emission of dust into the atmosphere, and landscape erosion. Previous models of the threshold wind speed required for saltation initiation have assumed that the particle bed is monodisperse and homogeneous in arrangement, thereby ignoring what is in reality a distribution of particle lifting thresholds, influenced by variability in soil particle sizes and bed geometry. To help overcome this problem, we present a numerical model that determines the distribution of threshold wind speeds required for particle lifting for a given soil size distribution. The model results are evaluated against high frequency wind speed and saltation data from a recent field campaign in Oceano Dunes in Southern California. The results give us insight into the range of lifting thresholds present during incipient sediment transport and the simplifications that are often made to characterize the process. In addition, this study provides a framework for moving beyond the 'fluid threshold' paradigm, which is known to be inaccurate, especially for near-threshold conditions.

  4. Comparison of wind speed measurements over the oceans with the Special Sensor Microwave/Imager and the Geosat altimeter

    NASA Technical Reports Server (NTRS)

    Mognard, Nelly M.; Katsaros, Kristina B.

    1992-01-01

    In order to compare wind speed estimates from the Geosat altimeter and the Special Sensor Microwave/Imager (SSM/I), 25 colocated passes, within 2 hours of each other, were selected and the SSM/I estimates of wind speed and atmospheric parameters extracted along the Geosat track. Both instruments and their algorithms are described. A statistical comparison of wind speed estimates is presented and the effects of the atmospheric parameters from Geosat are analyzed. Quasi-simultaneous measurements by Geosat and SSM/I, along a Geosat track in the North-East Pacific, are also presented.

  5. Wind speeds in lower atmosphere of Venus: Status report on possible measurement via differential VLBI tracking of entry probes

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.

    1972-01-01

    The potential of very-long-baseline interferometry (VLBI) is examined for use in the determination of wind speeds in Venus' lower atmosphere via the differential tracking of entry probes. A simplified mathematical model is presented in detail. An incomplete error analysis based on this model permits an educated guess to be made: an uncertainty in wind speed determination of no more than about 100/t m/sec, where t l is the corresponding time resolution in seconds, is an achievable goal, without the use of transponders on the miniprobes. If transponders are available on all probes, there should be little difficulty in estimating wind speeds with useful precision.

  6. Spatiotemporal patterns in methane flux and gas transfer velocity at low wind speeds: Implications for upscaling studies on small lakes

    NASA Astrophysics Data System (ADS)

    Schilder, J.; Bastviken, D.; Hardenbroek, M.; Heiri, O.

    2016-06-01

    Lakes contribute significantly to the global natural emissions of methane (CH4) and carbon dioxide. However, to accurately incorporate them into the continental carbon balance more detailed surveys of lacustrine greenhouse gas emissions are needed, especially in respect to spatiotemporal variability and to how this affects the upscaling of results. We investigated CH4 flux from a small, wind-shielded lake during 10 field trips over a 14 month period. We show that floating chambers may be used to calibrate the relationship between gas transfer velocity (k) and wind speed at 10 m height (U10) to the local system, in order to obtain more accurate estimates of diffusive CH4 flux than by applying general models predicting k based on U10. We confirm earlier studies indicating strong within-lake spatial variation in this relationship and in ebullitive CH4 flux within the lake basin. However, in contrast to the pattern reported in other studies, ebullitive CH4 flux was highest in the central parts of the lake. Our results indicate positive relationships between k and U10 at very low U10 (0-3 m s-1), which disagrees with earlier suggestions that this relationship may be negligible at low U10 values. We estimate annually averaged open water CH4 emission from Lake Gerzensee to be 3.6-5.8 mmol m-2 d-1. Our data suggest that estimates of greenhouse gas emissions from aquatic systems to the atmosphere based on the upscaling of short-term and small-scale measurements can be improved if both spatial and temporal variabilities of emissions are taken into account.

  7. Statistical analysis of low frequency vibrations in variable speed wind turbines

    NASA Astrophysics Data System (ADS)

    Escaler, X.; Mebarki, T.

    2013-12-01

    The spectral content of the low frequency vibrations in the band from 0 to 10 Hz measured in full scale wind turbines has been statistically analyzed as a function of the whole range of steady operating conditions. Attention has been given to the amplitudes of the vibration peaks and their dependency on rotating speed and power output. Two different wind turbine models of 800 and 2000 kW have been compared. For each model, a sample of units located in the same wind farm and operating during a representative period of time have been considered. A condition monitoring system installed in each wind turbine has been used to register the axial acceleration on the gearbox casing between the intermediate and the high speed shafts. The average frequency spectrum has permitted to identify the vibration signature and the position of the first tower natural frequency in both models. The evolution of the vibration amplitudes at the rotor rotating frequency and its multiples has shown that the tower response is amplified by resonance conditions in one of the models. So, it is concluded that a continuous measurement and control of low frequency vibrations is required to protect the turbines against harmful vibrations of this nature.

  8. Outdoor temperature, precipitation, and wind speed affect physical activity levels in children: a longitudinal cohort study

    PubMed Central

    Edwards, Nicholas M.; Myer, Gregory D.; Kalkwarf, Heidi J.; Woo, Jessica G.; Khoury, Philip R.; Hewett, Timothy E.; Daniels, Stephen R.

    2015-01-01

    Objective Evaluate effects of local weather conditions on physical activity in early childhood. Methods Longitudinal prospective cohort study of 372 children, 3 years old at enrollment, drawn from a major US metropolitan community. Accelerometer-measured (RT3) physical activity was collected every 4 months over 5 years and matched with daily weather measures: day length, heating/cooling degrees (degrees mean temperature < 65°F or ≥ 65°F, respectively), wind, and precipitation. Mixed regression analyses, adjusted for repeated measures, were used to test the relationship between weather and physical activity. Results Precipitation and wind speed were negatively associated with total physical activity and moderate-vigorous physical activity (P<0.0001). Heating and cooling degrees were negatively associated with total physical activity and moderate-vigorous physical activity and positively associated with inactivity (all P<0.0001), independent of age, sex, race, BMI, day length, wind, and precipitation. For every 10 additional heating degrees there was a five-minute daily reduction in moderate-vigorous physical activity. For every additional 10 cooling degrees there was a 17-minute reduction in moderate-vigorous physical activity. Conclusions Inclement weather (higher/lower temperature, greater wind speed, more rain/snow) is associated with less physical activity in young children. These deleterious effects should be considered when planning physical activity research, interventions, and policies. PMID:25423667

  9. Algorithm Determines Wind Speed and Direction from Venturi-Sensor Data

    NASA Technical Reports Server (NTRS)

    Zysko, Jan A.; Perotti, Jose M.; Randazzo, John

    2004-01-01

    An algorithm computes the velocity of wind from the readings of an instrument like the one described in another Tech Brief. To recapitulate: The sensor has no moving parts and is a compact, rugged means of measuring wind vectors having magnitudes of as much as 300 mph (134 m/s). The sensor includes a Venturi gap bounded by a curved upper and a curved lower surface that are axisymmetric with respect to a vertical axis and mirror-symmetric with respect to a horizontal midplane. One of the curved surfaces is instrumented with multiple ports for measuring dynamic pressures. The sensor also incorporates auxiliary sensors for measuring temperature, relative humidity, and static atmospheric pressure. The design and operation of the sensor are based on the concepts of (1) using Bernoulli's equation (which expresses the relationship among variations of speed, density, and pressure along a streamline) to calculate the speed of the wind from differences among the pressure readings at the various ports; and (2) calculating the direction of the wind from the angular positions of ports selected according to comparisons among their pressure readings. The present algorithm performs these calculations.

  10. Connecting the surface of the Sun to the Heliosphere : wind speed and magnetic field geometry

    NASA Astrophysics Data System (ADS)

    Pinto, Rui

    2016-07-01

    The large-scale solar wind speed distribution varies in time in response to the cyclic variations of the strength and geometry of the magnetic field of the corona. Based on this idea, semi-empirical predictive laws for the solar wind speed (such as in the widely-used WSA law) use simple parameters describing the geometry of the coronal magnetic field. In practice, such scaling laws require ad-hoc corrections and empirical fits to in-situ spacecraft data, and a predictive law based solely on physical principles is still missing. I will discuss improvements to this kind of laws based on the analysis of very large samples of wind acceleration profiles in open flux-tubes (both from MHD simulations and potential-field extrapolations), and possible strategies for corona and heliosphere model coupling. I will, furthermore present an ongoing modelling effort to determine the magnetic connectivity, paths and propagation delays of any type of disturbance (slow/fast solar wind, waves, energetic particles, ballistic propagation) between the solar surface and any point in the interplanetary space at any time. This is a key point for the exploitation of data from Solar Orbiter and Solar Probe Plus, and more generally for establishing connections between remote and in-situ spacecraft data. This is work is supported by the FP7 project #606692 (HELCATS).

  11. Error estimates for ocean surface winds: Applying Desroziers diagnostics to the Cross-Calibrated, Multi-Platform analysis of wind speed

    NASA Astrophysics Data System (ADS)

    Hoffman, Ross N.; Ardizzone, Joseph V.; Leidner, S. Mark; Smith, Deborah K.; Atlas, Robert M.

    2013-04-01

    The cross-calibrated, multi-platform (CCMP) ocean surface wind project [Atlas et al., 2011] generates high-quality, high-resolution, vector winds over the world's oceans beginning with the 1987 launch of the SSM/I F08, using Remote Sensing Systems (RSS) microwave satellite wind retrievals, as well as in situ observations from ships and buoys. The variational analysis method [VAM, Hoffman et al., 2003] is at the center of the CCMP project's analysis procedures for combining observations of the wind. The VAM was developed as a smoothing spline and so implicitly defines the background error covariance by means of several constraints with adjustable weights, and does not provide an explicit estimate of the analysis error. Here we report on our research to develop uncertainty estimates for wind speed for the VAM inputs and outputs, i.e., for the background (B), the observations (O) and the analysis (A) wind speed, based on the Desroziers et al. [2005] diagnostics (DD hereafter). The DD are applied to the CCMP ocean surface wind data sets to estimate wind speed errors of the ECMWF background, the microwave satellite observations and the resulting CCMP analysis. The DD confirm that the ECMWF operational surface wind speed error standard deviations vary with latitude in the range 0.7-1.5 m/s and that the cross-calibrated Remote Sensing Systems (RSS) wind speed retrievals standard deviations are in the range 0.5-0.8 m/s. Further the estimated CCMP analysis wind speed standard deviations are in the range 0.2-0.4 m/s. The results suggests the need to revise the parameterization of the errors due to the FGAT (first guess at the appropriate time) procedure. Errors for wind speeds < 16 m/s are homogeneous, but for the relatively rare, but critical higher wind speed situations, errors are much larger. Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, A cross-calibrated, multi-platform ocean surface wind velocity product for

  12. Improved Speed Control System for the 87,000 HP Wind Tunnel Drive

    NASA Technical Reports Server (NTRS)

    Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.

    1995-01-01

    This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.

  13. Latitudinal variation of speed and mass flux in the acceleration region of the solar wind inferred from spectral broadening measurements

    NASA Technical Reports Server (NTRS)

    Woo, Richard; Goldstein, Richard M.

    1994-01-01

    Spectral broadening measurements conducted at S-band (13-cm wavelength) during solar minimum conditions in the heliocentric distance range of 3-8 R(sub O) by Mariner 4, Pioneer 10, Mariner 10, Helios 1, Helios 2, and Viking have been combined to reveal a factor of 2.6 reduction in bandwidth from equator to pole. Since spectral broadening bandwidth depends on electron density fluctuation and solar wind speed, and latitudinal variation of the former is available from coherence bandwidth measurements, the remote sensing spectral broadening measurements provide the first determination of the latitudinal variation of solar wind speed in the acceleration region. When combined with electron density measurements deduced from white-light coronagraphs, this result also leads to the first determination of the latitudinal variation of mass flux in the acceleration region. From equator to pole, solar wind speed increases by a factor of 2.2, while mass flux decreases by a factor of 2.3. These results are consistent with measurements of solar wind speed by multi-station intensity scintillation measurements, as well as measurements of mass flux inferred from Lyman alpha observations, both of which pertain to the solar wind beyond 0.5 AU. The spectral broadening observations, therefore, strengthen earlier conclusions about the latitudinal variation of solar wind speed and mass flux, and reinforce current solar coronal models and their implications for solar wind acceleration and solar wind modeling.

  14. Extended Statistical Short-Range Guidance for Peak Wind Speed Analyses at the Shuttle Landing Facility: Phase II Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.

    2003-01-01

    This report describes the results from Phase II of the AMU's Short-Range Statistical Forecasting task for peak winds at the Shuttle Landing Facility (SLF). The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The 45th Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A seven year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. A PC-based Graphical User Interface (GUI) tool was created to display the data quickly.

  15. High-resolution daily gridded datasets of air temperature and wind speed for Europe

    NASA Astrophysics Data System (ADS)

    Brinckmann, S.; Krähenmann, S.; Bissolli, P.

    2015-08-01

    New high-resolution datasets for near surface daily air temperature (minimum, maximum and mean) and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001-2010 for the purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project, which aims to develop decadal climate predictions. The main input data sources are hourly SYNOP observations, partly supplemented by station data from the ECA&D dataset (http://www.ecad.eu). These data are quality tested to eliminate erroneous data and various kinds of inhomogeneities. Grids in a resolution of 0.044° (5 km) are derived by spatial interpolation of these station data into the CORDEX area. For temperature interpolation a modified version of a regression kriging method developed by Krähenmann et al. (2011) is used. At first, predictor fields of altitude, continentality and zonal mean temperature are chosen for a regression applied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new method based on the concept used for temperature was developed, involving predictor fields of exposure, roughness length, coastal distance and ERA Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of the final daily grid data, cross validation is performed. Explained variance ranges from 70 to 90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final daily grid data amounts to 1-2 °C and 1-1.5 m s-1 (depending on season and parameter) for daily temperature parameters and daily mean wind speed, respectively. The datasets presented in this article are published at http://dx.doi.org/10.5676/DWD_CDC/DECREG0110v1.

  16. High-resolution daily gridded data sets of air temperature and wind speed for Europe

    NASA Astrophysics Data System (ADS)

    Brinckmann, Sven; Krähenmann, Stefan; Bissolli, Peter

    2016-10-01

    New high-resolution data sets for near-surface daily air temperature (minimum, maximum and mean) and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001-2010 for the purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project, which aims to develop decadal climate predictions. The main input data sources are SYNOP observations, partly supplemented by station data from the ECA&D data set (http://www.ecad.eu). These data are quality tested to eliminate erroneous data. By spatial interpolation of these station observations, grid data in a resolution of 0.044° (≈ 5km) on a rotated grid with virtual North Pole at 39.25° N, 162° W are derived. For temperature interpolation a modified version of a regression kriging method developed by Krähenmann et al.(2011) is used. At first, predictor fields of altitude, continentality and zonal mean temperature are used for a regression applied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new method based on the concept used for temperature was developed, involving predictor fields of exposure, roughness length, coastal distance and ERA-Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of the final daily grid data, cross validation is performed. Variance explained by the regression ranges from 70 to 90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final daily grid data amounts to 1-2 K and 1-1.5 ms-1 (depending on season and parameter) for daily temperature parameters

  17. High Resolution Mapping of Wind Speed Using Active Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sayde, C.; Thomas, C. K.; Wagner, J.; Selker, J. S.

    2013-12-01

    We present a novel approach to continuously measure wind speed simultaneously at thousands of locations using actively heated fiber optics with a distributed temperature sensing system (DTS). Analogous to a hot-wire anemometer, this approach is based on the principal of velocity-dependent heat transfer from a heated surface: The temperature difference between the heated surface and ambient air is a function of the convective cooling of the air flowing past the surface. By knowing the thermal properties of the heated surface, the heating input, and ambient temperature, wind speed can be calculated. In our case, the heated surface consists of a thin stainless steel tube that can exceed several km in length. A fiber optic is enclosed within the stainless steel tube to report the heated tube temperature, which in this case was sampled every 0.125 m. Ambient temperature were measured by an independent fiber optic cable located proximally to the stainless steel tube. We will present the theoretical bases of measuring wind speed using heated fiber optic as well as validation of this method in the field. In the field testing, more than 5000 simultaneous wind speed measurements were obtained every 5.5 second at 3 elevations (2m, 1m, and 0.5 m) every 0.125 m along a 230 m transects located across a shallow gulley in Nunn, CO. This method, which provides both air temperature and wind speed spanning four orders of magnitude in spatial scale (0.1 - 1,000m) opens up many important opportunities for testing basic theories in micro-meteorology regarding spatial scales of turbulent length scales as a function of distance from the earth, development of internal boundary layers, applicability of Taylors hypothesis, etc. The equipment employed, including the heating system, which is available to all US scientists, was provided by CTEMPs.org thanks to the generous grant support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or

  18. On the Relationship Between High Speed Solar Wind Streams and Radiation Belt Electron Fluxes

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua

    2011-01-01

    Both past and recent research results indicate that solar wind speed has a close connection to radiation belt electron fluxes [e.g., Paulikas and Blake, 1979; Reeves et aI., 2011]: a higher solar wind speed is often associated with a higher level of radiation electron fluxes. But the relationship can be very complex [Reeves et aI., 2011]. The study presented here provides further corroboration of this viewpoint by emphasizing the importance of a global perspective and time history. We find that all the events during years 2010 and 2011 where the >0.8 MeV integral electron flux exceeds 10(exp 5) particles/sq cm/sr/s (pfu) at GEO orbit are associated with the high speed streams (HSS) following the onset of the Stream Interaction Region (SIR), with most of them belonging to the long-lasting Corotating Interaction Region (CIR). Our preliminary results indicate that during HSS events, a maximum speed of 700 km/s and above is a sufficient but not necessary condition for the > 0.8 MeV electron flux to reach 10(exp 5) pfu. But in the exception cases of HSS events where the electron flux level exceeds the 10(exp 5) pfu value but the maximum solar wind speed is less than 700 km/s, a prior impact can be noted either from a CME or a transient SIR within 3-4 days before the arrival of the HSS - stressing the importance of time history. Through superposed epoch analysis and studies providing comparisons with the CME events and the HSS events where the flux level fails to reach the 10(exp 5) pfu, we will present the quantitative assessment of behaviors and relationships of various quantities, such as the time it takes to reach the flux threshold value from the stream interface and its dependence on different physical parameters (e.g., duration of the HSS event, its maximum or average of the solar wind speed, IMF Bz, Kp). The ultimate goal is to apply what is derived to space weather forecasting.

  19. Zonal Wind Speeds, Vortex Characteristics, and Wave Dynamics in Saturn's Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Blalock, John J.; Draham, R. L.; Holmes, J. A.; Sayanagi, K. M.

    2013-10-01

    We examine images returned from Cassini spacecraft's ISS camera between 2007 and 2012 to analyze zonal wind speeds, vortex characteristics, and wave dynamics in Saturn's northern hemisphere. Our analysis focused on datasets that provided near-simultaneous coverage in the near-infrared continuum band at 752 nm (CB2 filter) and the methane bands at 727 and 890 nm (MT2 and MT3 filters). We measure the zonal wind speeds by analyzing cloud motions using one-dimensional correlation method similar to Limaye (1986). Our goal is to determine the vertical wind shear on Saturn in a manner similar to that done for Jupiter by Li et al (2006). Because the images captured in the methane bands are sensitive to higher altitudes than those in the continuum band, we are able to measure wind speeds at different altitudes. Next, we study the characteristics of multiple northern hemisphere vortices using methods similar to the analysis of a long-lived cyclonic spot in the southern hemisphere of Saturn (del Rio-Gatztelurrutia et al, 2010). We analyze the interactions and evolutions of the vortices, and compare them with the Voyager-era northern hemisphere study (Sromovsky et al, 1983). Finally, we analyze the dynamics of the wave propagating at 45 degree N planetocentric latitude in the northern flank of an eastward zonal jet that peaks at 42 degree N. This new wave is located to the north of the Ribbon wave at 42 degree N originally found during Voyager (Sromovsky et al, 1983; Godfrey and Moore, 1986); the Ribbon wave was not present in our 2007-2012 images. We calculate the Fourier components of the new wave, and compare our findings with previous analyses and prediction of the Ribbon wave (Sromovsky et al, 1983; Godfrey and Moore, 1986; Sanchez-Lavega, 2002; Sayanagi et al, 2010).

  20. The impact of forest edge structure on longitudinal patterns of deposition, wind speed, and turbulence

    NASA Astrophysics Data System (ADS)

    Wuyts, Karen; Verheyen, Kris; De Schrijver, An; Cornelis, Wim M.; Gabriels, Donald

    The impact of forest edge structure on edge patterns of wind speed, turbulence, and atmospheric deposition was studied by means of a model forest in a wind tunnel. Tests were conducted with eight structure configurations, encompassing combinations of stem densities, crown depths, and edge transitions (steep or gradual edge). Mean wind speed and its standard deviation (as a measure for turbulence) were determined within and at the top of the canopy; deposition was simulated using Cl - aerosols. Edge patterns of wind speed, turbulence, and deposition were closely related and were significantly affected by stem density and, particularly, by edge transition. In the dense forests, the edge effect on deposition extended less deeply into the forest than in the sparse forests, so the deposition in the forest edge zone was lowered with 40%. Gradual edges were able to limit the level by which deposition is enhanced at the edge in comparison with the forest interior deposition, and consequently, they reduced the deposition in the forest edge zone with 66%. Even when the deposition on the trees of the gradually ascending vegetation in front of the forest edge was taken into account, gradual edges were still advantageous in comparison with steep edges. A lower crown depth decreased the enhancement of deposition at the edge relative to the interior, but only at steep edges. We conclude that an adjusted layout of forest edges should be able to mitigate the edge effects on atmospheric deposition, through reducing the deposition enhancement at the edge or the penetration depth of the edge effect.

  1. In situ measurements of wind and current speed and relationship between output power and turbulence

    NASA Astrophysics Data System (ADS)

    Duran Medina, Olmo; Schmitt, François G.; Sentchev, Alexei; Calif, Rudy

    2015-04-01

    In a context of energy transition, wind and tidal energy are sources of clean energy with the potential of partially satisfying the growing demand. The main problem of this type of energy, and other types of renewable energy remains the discontinuity of the electric power produced in different scales, inducing large fluctuations also called intermittency. This intermittency of wind and tidal energy is inherent to the turbulent nature of wind and marine currents. We consider this intermittent power production in strong relation with the turbulent intermittency of the resource. The turbulence theory is multifractal energy cascades models, a classic in physics of turbulence. From earlier studies in atmospheric sciences, we learn that wind speed and the aggregate power output are intermittent and multifractal over a wide range of scales [Calif and Schmitt 2014]. We want to extend this study to a marine current turbine and compare the scaling properties for those renewable energy sources. We consider here coupling between simultaneous velocity time series and output power from a wind turbine and a marine current turbine. Wind turbine data were obtained from Denmark and marine current data from Western Scheldt, Belgium where a prototype of a vertical and horizontal marine current turbines are tested. After an estimation of their Fourier density power spectra, we study their scaling properties in Kolmogorov's theory and the framework of fully developed turbulence. Hence, we employ a Hilbert-based methodology, namely arbitrary-order Hilbert spectral analysis [Calif et al. 2013a, 2013b] to characterize the intermittent property of the wind and marine current velocity in order to characterize the intermittent nature of the fluid. This method is used in order to obtain the spectrum and the corresponding power law for non-linear and non-stationary time series. The goal is to study the non-linear transfer characteristics in a multi-scale and multi-intensity framework.

  2. Estimates of oceanic surface wind speed and direction using orthogonal beam scatterometer measurements and comparison of recent sea scattering theories

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Fung, A. K.; Dome, G. J.; Birrer, I. J.

    1978-01-01

    The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed.

  3. Transport of airborne pollen into the city of Thessaloniki: the effects of wind direction, speed and persistence

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Gioulekas, Dimitrios; Lazopoulou, Chariklia; Balafoutis, Christos; Vokou, Despina

    2005-01-01

    We examined the effect of the wind vector analyzed into its three components (direction, speed and persistence), on the circulation of pollen from differe nt plant taxa prominent in the Thessaloniki area for a 4-year period (1996- 1999). These plant taxa were Ambrosia spp., Artemisia spp., Chenopodiaceae, spp., Cupressaceae, Olea europaea, Pinaceae, Platanus spp., Poaceae, Populus spp., Quercus spp., and Urticaceae. Airborne pollen of Cupressaceae, Urticaceae, Quercus spp. and O. europaea make up approximately 70% of the total average annual pollen counts. The set of data that we worked with represented days without precipitation and time intervals during which winds blew from the same direction for at least 4 consecutive hours. We did this in order to study the effect of the different wind components independently of precipitation, and to avoid secondary effects produced by pollen resuspension phenomena. Factorial regression analysis among the summed bi-hourly pollen counts for each taxon and the values of wind speed and persistence per wind direction gave significant results in 22 cases (combinations of plant taxa and wind directions). The pollen concentrations of all taxa correlated significantly with at least one of the three wind components. In seven out of the 22 taxon-wind direction combinations, the pollen counts correlated positively with wind persistence, whereas this was the case for only two of the taxon-wind speed combinations. In seven cases, pollen counts correlated with the interaction effect of wind speed and persistence. This shows the importance of wind persistence in pollen transport, particularly when weak winds prevail for a considerable part of the year, as is the case for Thessaloniki. Medium/long-distance pollen transport was evidenced for Olea (NW, SW directions), Corylus (NW, SW), Poaceae (SW) and Populus (NW).

  4. Towards the modelling of pedestrian wind speed using high-resolution digital surface models and statistical methods

    NASA Astrophysics Data System (ADS)

    Johansson, Lars; Onomura, Shiho; Lindberg, Fredrik; Seaquist, Jonathan

    2016-04-01

    Wind is a complex phenomenon and a critical factor in assessing climatic conditions and pedestrian comfort within cities. To obtain spatial information on near-ground wind speed, 3D computational fluid dynamics (CFD) modelling is often used. This is a computationally intensive method which requires extensive computer resources and is time consuming. By using a simpler 2D method, larger areas can be processed and less time is required. This study attempts to model the relationship between near-ground wind speed and urban geometry using 2.5D raster data and variable selection methods. Such models can be implemented in a geographic information system (GIS) to assess the spatial distribution of wind speed at street level in complex urban environments at scales from neighbourhood to city. Wind speed data, 2 m above ground, is obtained from simulations by CFD modelling and used as a response variable. A number of derivatives calculated from high-resolution digital surface models (DSM) are used as potential predictors. A sequential variable selection algorithm followed by all-possible subset regression was used to select candidate models for further evaluation. The results show that the selected models explain general spatial wind speed pattern characteristics but the prediction errors are large, especially so in areas with high wind speeds. However, all selected models did explain 90 % of the wind speed variability (R 2 ≈ 0.90). Predictors adding information on width and height ratio and alignment of street canyons with respect to wind direction are suggested for improving model performance. To assess the applicability of any derived model, the results of the CFD model should be thoroughly evaluated against field measurements.

  5. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    SciTech Connect

    Erdman, W.; Behnke, M.

    2005-11-01

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  6. Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey A.; Leo, Laura S.; Sabatino, Silvana Di; Fernando, Harindra J. S.; Pardyjak, Eric R.; Fairall, Christopher W.

    2016-06-01

    Measurements of small-scale turbulence made in the atmospheric boundary layer over complex terrain during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured on four towers deployed along the east lower slope (2-4°) of Granite Mountain near Salt Lake City in Utah, USA. The multi-level (up to seven) observations made during a 30-day long MATERHORN field campaign in September-October 2012 allowed the study of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence statistics (e.g., fluxes, variances, spectra, and cospectra) and their variations in katabatic flow. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along-slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The momentum flux is directed downward (upward) whereas the along-slope heat flux is downslope (upslope) below (above) the wind maximum. This suggests that the position of the jet-speed maximum can be obtained by linear interpolation between positive and negative values of the momentum flux (or the along-slope heat flux) to derive the height where the flux becomes zero. It is shown that the standard deviations of all wind-speed components (and therefore of the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind-speed maximum. We report several cases when the destructive effect of vertical heat flux is completely cancelled by the generation of turbulence due to the along-slope heat flux. Turbulence above the wind-speed

  7. The Generation of Smooth High Speed Solar Wind From Plume-Interplume Mixing

    NASA Technical Reports Server (NTRS)

    Suess, Steve; Parhi, Shyam; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Ulysses has shown that fast solar wind is extremely smooth, with a variance of less than 5%, in contrast to slow wind with a variance of approximately 30%. Now UVCS has produced the surprising result that the flow speed within coronal holes, the source of fast wind, is not at all smooth. Specifically, Giordano et al. (ApJ, v531, L79-L82, 2000) report that at 1.7 R(sub SUN) the interplume flow speed is typically more than twice the plume flow speed. Other less direct evidence supports this same result, with speeds from less than 300 to over 1000 km/s reported at approximately 5 R(sub SUN). This presents the paradox of how strongly differing plume and interplume flow speeds can exist near the Sun and be absent far from the Sun. The only answer is that plume and interplume material or momentum must be strongly mixed and that the mixing must occur mainly inside 0.3 AU to be consistent with Helios observations of smooth fast wind. Pressure balance structures (PBSs) and He abundance anomalies (Reisenfeld, et al., GRL, v26(13), 1805-1808, 1999) have been identified as interplanetary remnants of plumes, implying momentum mixing is the dominant coronal process. One possible source for plume/interplume momentum mixing is MHD Kelvin-Helmholtz (KH) shear instabilities occurring on the velocity shear interfaces. The velocity shear is a source of free energy and KH fluctuations could, through nonlinear cascade, provide the forcing required for the plasma oscillations (Cranmer, ApJ, v532, 1197-1208, 2000) reported to exist in coronal holes. The physical properties in coronal holes are now sufficiently well known that we can show plume/interplume shear interfaces become unstable to the KH instability at 5 - 10 R(sub SUN). The KH dispersion relation can be used to analyze marginal stability, the most unstable wavelengths, and linear growth rates. Numerical simulations can be used to verify results from the linear analysis and study the nonlinear development of KH modes. Here we

  8. A Comparison of Wind Speed Data from Mechanical and Ultrasonic Anemometers

    NASA Technical Reports Server (NTRS)

    Short, D.; Wells, L.; Merceret, F.; Roeder, W. P.

    2006-01-01

    This study compared the performance of mechanical and ultrasonic anemometers at the Eastern Range (ER; Kennedy Space Center and Cape Canaveral Air Force Station on Florida's Atlantic coast) and the Western Range (WR; Vandenberg Air Force Base on California's Pacific coast). Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at the ER and WR for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The current ER and WR weather tower wind instruments are being changed from the current propeller-and-vane (ER) and cup-and-vane (WR) sensors to ultrasonic sensors through the Range Standardization and Automation (RSA) program. The differences between mechanical and ultrasonic techniques have been found to cause differences in the statistics of peak wind speed in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between RSA and current sensors to determine if there are significant differences. Approximately 3 weeks of Legacy and RSA wind data from each range were used in the study, archived during May and June 2005. The ER data spanned the full diurnal cycle, while the WR data was confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on 5 different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The 10 towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The RSA sensors were collocated at the same vertical levels as the present sensors and typically within 15 ft horizontally of each another. Data from a total of 53 RSA ultrasonic sensors, collocated with present sensors were compared. The 1-minute average wind speed/direction and the 1

  9. Observations During GRIP from HIRAD: Ocean Surface Wind Speed and Rain Rate

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Jones, L.; Ruf, C. S.; Uhlhorn, E. W.; Bailey, M. C.; Buckley, C. D.; Simmons, D. E.; Johnstone, S.; Peterson, A.; Schultz, L. A.; Biewas, S.; Johnson, J. W.; Shah, G.; Feingstein, D.; Cleveland, W. H.; Johnson, J.; Hood, R. E.

    2011-01-01

    HIRAD (Hurricane Imaging Radiometer) flew on the WB-57 during NASA's GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be inferred. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years. The advantage of HIRAD over SFMR is that HIRAD can observe a +/- 60-degree swath, rather than a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. To the extent possible, comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  10. Application of Rapid Prototyping Methods to High-Speed Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Springer, A. M.

    1998-01-01

    This study was undertaken in MSFC's 14-Inch Trisonic Wind Tunnel to determine if rapid prototyping methods could be used in the design and manufacturing of high speed wind tunnel models in direct testing applications, and if these methods would reduce model design/fabrication time and cost while providing models of high enough fidelity to provide adequate aerodynamic data, and of sufficient strength to survive the test environment. Rapid prototyping methods utilized to construct wind tunnel models in a wing-body-tail configuration were: fused deposition method using both ABS plastic and PEEK as building materials, stereolithography using the photopolymer SL-5170, selective laser sintering using glass reinforced nylon, and laminated object manufacturing using plastic reinforced with glass and 'paper'. This study revealed good agreement between the SLA model, the metal model with an FDM-ABS nose, an SLA nose, and the metal model for most operating conditions, while the FDM-ABS data diverged at higher loading conditions. Data from the initial SLS model showed poor agreement due to problems in post-processing, resulting in a different configuration. A second SLS model was tested and showed relatively good agreement. It can be concluded that rapid prototyping models show promise in preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.

  11. Bivariate ensemble model output statistics approach for joint forecasting of wind speed and temperature

    NASA Astrophysics Data System (ADS)

    Baran, Sándor; Möller, Annette

    2016-06-01

    Forecast ensembles are typically employed to account for prediction uncertainties in numerical weather prediction models. However, ensembles often exhibit biases and dispersion errors, thus they require statistical post-processing to improve their predictive performance. Two popular univariate post-processing models are the Bayesian model averaging (BMA) and the ensemble model output statistics (EMOS). In the last few years, increased interest has emerged in developing multivariate post-processing models, incorporating dependencies between weather quantities, such as for example a bivariate distribution for wind vectors or even a more general setting allowing to combine any types of weather variables. In line with a recently proposed approach to model temperature and wind speed jointly by a bivariate BMA model, this paper introduces an EMOS model for these weather quantities based on a bivariate truncated normal distribution. The bivariate EMOS model is applied to temperature and wind speed forecasts of the 8-member University of Washington mesoscale ensemble and the 11-member ALADIN-HUNEPS ensemble of the Hungarian Meteorological Service and its predictive performance is compared to the performance of the bivariate BMA model and a multivariate Gaussian copula approach, post-processing the margins with univariate EMOS. While the predictive skills of the compared methods are similar, the bivariate EMOS model requires considerably lower computation times than the bivariate BMA method.

  12. Ion energy equation for the high-speed solar wind: Ulysses observations

    SciTech Connect

    Feldman, W.C.; Barraclough, B.L.; Gosling, J.T.; McComas, D.J.; Riley, P.; Goldstein, B.E.; Balogh, A.

    1998-07-01

    Ulysses data in the high-speed solar wind that cover a wide range of latitudes centered on the solar poles were studied to test whether a polytrope law can be used to close the ion energy equation. Three approaches were taken. We determined the correlation between proton temperature and density (1) in the free expansion of the high-speed solar wind between 1.5 and 4.8 AU, (2) in steepened microstreams at high latitudes, and (3) at the edges of the equatorial band of solar wind variability. Strong correlations were observed in all data subsets that are consistent with a single polytrope relation, T{sub p}=aN{sub p}{sup ({gamma}{sup {asterisk}}{minus}1)}, where our best estimate for {gamma}{sup {asterisk}} is between 1.5 and 1.7. The best fitting relation is T{sub p}=(2.0{plus_minus}0.13){times}10{sup 5} N{sub p}{sup 0.57}. {copyright} 1998 American Geophysical Union

  13. Where in the Streamer Belt does the Slow Speed Wind Originate?

    NASA Astrophysics Data System (ADS)

    Strachan, L.; Suleiman, R.; Panasyuk, A. V.; Biesecker, D. A.; Kohl, J. L.

    2001-05-01

    The Ulysses high latitude mission showed that the slow speed wind at solar minimum appears to come from equatorial regions in the heliosphere that are dominated by helmet streamers. However, there are few coronal measurements of the detailed latitudinal variation of the outflow velocity across a streamer. Such measurements are needed to identify the region of the streamer that gives rise to the slow speed wind. For this study we use UVCS and LASCO observations of a solar minimum streamer to make a detailed model of the outflow velocities for O+5 as a function of position angle from the streamer axis. This new work goes beyond using the OVI line ratios to define the boundaries between fast and slow wind. We constrain the coronal plasma parameters (velocities, temperature anisotropies, densities, etc.) using OVI and Ly-alpha line profiles, and white light polarized brightness data. We will discuss various possibilities for the latitudinal profile for the coronal outflow in the streamer belt. This work is supported by NASA Grant NAG5-7822 to the Smithsonian Astrophysical Observatory, by the Italian Space Agency, and by the ESA PRODEX program (Swiss contribution).

  14. Cross-polarization geophysical model function for C-band radar backscattering from the ocean surface and wind speed retrieval

    NASA Astrophysics Data System (ADS)

    Hwang, Paul A.; Stoffelen, Ad; Zadelhoff, Gerd-Jan; Perrie, William; Zhang, Biao; Li, Haiyan; Shen, Hui

    2015-02-01

    The wind speed sensitivity of cross-polarization (cross-pol) radar backscattering cross section (VH) from the ocean surface increases toward high winds. The signal saturation problem of VH, if it exists, occurs at a much higher wind speed compared to the copolarization (copol: VV or HH) sea returns. These properties make VH a better choice over VV or HH for monitoring severe weather. Combined with high spatial resolution of the synthetic aperture radar (SAR), the development of hurricane wind retrieval using VH is advancing rapidly. This paper describes a cross-pol C-band radar backscattering geophysical model function (GMF) with incidence angle dependence for the full wind speed range in the available data sets (up to 56 m/s). The GMF is derived from RADARSAT-2 (R2) dual-polarization (dual-pol) ScanSAR modes with 300 and 500 km swaths. The proposed GMF is compared to other published algorithms. The result shows that the simulated VH cross section and the retrieved wind speed with the proposed GMF is in better agreement with measurements. With careful treatment of noise, the VH-retrieved wind speeds may extend to mild or moderate conditions. The higher fraction of non-Bragg contribution in VH can be exploited for analysis of surface wave breaking.

  15. Wind speed retrieval from Ku-band Tropical Rainfall Mapping Mission precipitation radar data at low incidence angles

    NASA Astrophysics Data System (ADS)

    Ren, Lin; Yang, Jingsong; Zheng, Gang; Wang, Juan

    2016-01-01

    A Ku-band low incidence backscatter model (KuLMOD) for retrieving wind speeds from Tropical Rainfall Mapping Mission (TRMM) precipitation radar (PR) data is proposed. The data set consisted of TRMM PR observations and collocated National Data Buoy Center (NDBC) and Tropical Ocean Global Atmosphere program buoy-measured wind and wave data. The TRMM PR data properties were analyzed with regard to their dependence on spatial resolution, wind speed, relative wind direction, and significant wave height. The KuLMOD model was developed using incidence angles (0.5 to 6.5 deg) and wind speeds (1.5 to 16.5 m/s) as inputs. The model coefficients were derived by fitting the collocated data. The KuLMOD-derived normalized radar cross section, σ0, was compared with those obtained from the TRMM PR observations and a quasi-specular theoretical model and showed good agreement. With the KuLMOD, the wind speeds were retrieved from the TRMM PR data using the least squares method and validated with the buoy measurements, yielding a root mean square error of 1.45 m/s. The retrieval accuracies for the different incidence angles, wind speeds, and spatial resolutions were obtained.

  16. Frequency Regulation and Oscillation Damping Contributions of Variable-Speed Wind Generators in the U.S. Eastern Interconnection (EI)

    DOE PAGES

    Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; Liu, Yilu

    2014-05-16

    The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluatedmore » the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.« less

  17. Frequency Regulation and Oscillation Damping Contributions of Variable-Speed Wind Generators in the U.S. Eastern Interconnection (EI)

    SciTech Connect

    Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; Liu, Yilu

    2014-05-16

    The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluated the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.

  18. Understanding the Benefits and Limitations of Increasing Maximum Rotor Tip Speed for Utility-Scale Wind Turbines

    NASA Astrophysics Data System (ADS)

    Ning, A.; Dykes, K.

    2014-06-01

    For utility-scale wind turbines, the maximum rotor rotation speed is generally constrained by noise considerations. Innovations in acoustics and/or siting in remote locations may enable future wind turbine designs to operate with higher tip speeds. Wind turbines designed to take advantage of higher tip speeds are expected to be able to capture more energy and utilize lighter drivetrains because of their decreased maximum torque loads. However, the magnitude of the potential cost savings is unclear, and the potential trade-offs with rotor and tower sizing are not well understood. A multidisciplinary, system-level framework was developed to facilitate wind turbine and wind plant analysis and optimization. The rotors, nacelles, and towers of wind turbines are optimized for minimum cost of energy subject to a large number of structural, manufacturing, and transportation constraints. These optimization studies suggest that allowing for higher maximum tip speeds could result in a decrease in the cost of energy of up to 5% for land-based sites and 2% for offshore sites when using current technology. Almost all of the cost savings are attributed to the decrease in gearbox mass as a consequence of the reduced maximum rotor torque. Although there is some increased energy capture, it is very minimal (less than 0.5%). Extreme increases in tip speed are unnecessary; benefits for maximum tip speeds greater than 100-110 m/s are small to nonexistent.

  19. An analysis of maximum horizontal wind speeds and associated parameters recorded at NASA's 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Alexander, M. B.

    1978-01-01

    Continuous horizontal wind speed measurements were processed and classified as a function of tower level (10, 18, 60, and 150 meters) and period of reference day, month, season: winter (October through March) and summer (April through September), and annual. Tabulations were made of the daily maximum horizontal wind speed, time of ocurrence, and five associated parameters: mean horizontal wind speed, maximum vertical gusts (i.e., updraft and downdraft), and mean and instantaneous directions. Analyses using these data included means, extremes, standard deviations, and frequency distributions. Comparisons of intensity of maximum horizontal wind speeds determined in this year of data are made with maximum values recorded at Kennedy Space Center during another non-hurricane-occurrence year (1967) and with values during 1966 through 1972 when six hurricanes affected the area after the Ground Winds Tower facility became operational. Wind flow in the lowest 150 meters of the atmosphere was measured for the identification of hazards involved in wind shear encounter relative to ascent and descent of the space shuttle and conventional aircraft.

  20. Experimental study of snow accretion on overhead transmission lines using a wind tunnel and a high-speed camera

    NASA Astrophysics Data System (ADS)

    Yasui, Mitsuru; Kagami, Jun; Ando, Hitoshi; Hamada, Yutaka

    1995-05-01

    The experimental study of snow accretion on overhead power transmission lines was carried out to obtain data on accretion rates using the artificial snow accretion test equipment and a high speed camera. We evaluated the accretion rate relative to temperature and wind velocity under simulated conditions of natural snowing and strong winds.

  1. Wind-tunnel modelling of the tip-speed ratio influence on the wake evolution

    NASA Astrophysics Data System (ADS)

    Stein, Victor P.; Kaltenbach, Hans-Jakob

    2016-09-01

    Wind-tunnel measurements on the near-wake evolution of a three bladed horizontal axis wind turbine model (HAWT) in the scale 1:O(350) operating in uniform flow conditions and within a turbulent boundary layer at different tip speed ratios are presented. Operational conditions are chosen to exclude Reynolds number effects regarding the turbulent boundary layer as well as the rotor performance. Triple-wire anemometry is used to measure all three velocity components in the mid-vertical and mid-horizontal plane, covering the range from the near- to the far-wake region. In order to analyse wake properties systematically, power and thrust coefficients of the turbine were measured additionally. It is confirmed that realistic modelling of the wake evolution is not possible in a low-turbulence uniform approach flow. Profiles of mean velocity and turbulence intensity exhibit large deviations between the low-turbulence uniform flow and the turbulent boundary layer, especially in the far-wake region. For nearly constant thrust coefficients differences in the evolution of the near-wake can be identified for tip speed ratios in the range from 6.5 to 10.5. It is shown that with increasing downstream distances mean velocity profiles become indistinguishable whereas for turbulence statistics a subtle dependency on the tip speed ratio is still noticeable in the far-wake region.

  2. Occurrence of high-speed solar wind streams over the Grand Modern Maximum

    NASA Astrophysics Data System (ADS)

    Mursula, Kalevi; Lukianova, Renata; Holappa, Lauri

    2015-04-01

    In the declining phase of the solar cycle, when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity in the near-Earth space. Here, using a novel definition of geomagnetic activity at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculate the annually averaged solar wind speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onwards. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each solar cycle 16-23. For most cycles the HSS activity clearly maximizes during one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of solar cycle 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.

  3. Effect of blade loading and rotor speed on the optimal aerodynamic performance of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Bryson, Christopher; Hussain, Fazle; Barhorst, Alan

    2015-11-01

    Optimization of wind turbine torque as a function of angle of attack - over the entire speed range from start-up to cut-off - is studied by considering the full trigonometric relations projecting lift and drag to thrust and torque. Since driving force and thrust are geometrically constrained, one cannot be changed without affecting the other. Increasing lift to enhance torque simultaneously increases thrust, which subsequently reduces the inflow angle with respect to the rotor plane via an increased reduction in inflow velocity. Reducing the inflow angle redirects the lift force away from the driving force generating the torque, which may reduce overall torque. Similarly, changes in the tip-speed ratio (TSR) affect the inflow angle and thus the optimal torque. Using the airfoil data from the NREL 5 MW reference turbine, the optimal angle of attack over the operational TSR range (4 to 15) was computed using a BEM model to incorporate the dynamic coupling, namely the interdependency of blade loading and inflow angle. The optimal angle of attack is close to minimum drag during start-up phase (high TSR) and continuously increases toward maximum lift at high wind speeds (low TSR).

  4. Dependence of the Normalized Radar Cross Section of Water Waves on Bragg Wavelength-Wind Speed Sensitivity

    NASA Technical Reports Server (NTRS)

    Long, David G.; Collyer, R. Scott; Reed, Ryan; Arnold, David V.

    1996-01-01

    Measurements of the normalized radar cross section (sigma(sup o)) made by the YSCAT ultrawideband scatterometer during an extended deployment on the Canada Centre for Inland Waters(CCIW) Research Tower located at Lake Ontario are analyzed and compared with anemometer wind measurements to study the sensitivity of (sigma(sup o)) to the wind speed as a function of the Bragg wavelength. This paper concentrates on upwind and downwind azimuth angles in the wind speed range of 4.5-12 m/s. While YSCAT collected measurements of sigma(sup o) at a variety of frequencies and incidence angles, this paper focuses on frequencies of 2.0, 3.05, 5.30, 10.02, and 14.0 GHz and incidence angles within the Bragg regime, 30-50 deg. Adopting a power law model to describe the relationship between sigma(sup o) and wind speed, both wind speed exponents and upwind/downwind (u/d) ratios of sigma(sup o) are found using least squares linear regression. The analysis of the wind speed exponents and u/d ratios show that shorter Bragg wavelengths (Lambda less than 4 cm) are the most sensitive to wind speed and direction. Additionally, vertical polarization (V-pol) sigma(sup o) is shown to be more sensitive to wind speed than horizontal polarization (H-pol) sigma(sup o), while the H-pol u/d ratio is larger than the V-pol u/d ratio.

  5. Experimental study of the performance of clustered parachutes in a low speed wind tunnel

    SciTech Connect

    Baca, B.K.

    1984-04-01

    Increased interest in the use of clustered parachutes for high performance decelerator applications has led to a survey of cluster parachute data and theory. This examination indicted that very little well-documented data exists that is suitable for broad application to this type of problem. In order to remedy this situation, a low speed wind tunnel test program was devised to measure the effects of variations in four important parameters on the terminal drag of clustered parachutes. These parameters were canopy number, canopy type, riser length, and reefing. Wind tunnel blockage by the clustered parachutes was also studied and that effect was accounted for in the data reduction. Compensations for drag loss due to forebody wake were also made. In addition to drag data, information on stability and riser configuration was obtained. Possible explanations for various observed phenomena were proposed.

  6. Proposal of a new autocorrelation function in low wind speed conditions

    NASA Astrophysics Data System (ADS)

    Moor, L. P.; Degrazia, G. A.; Stefanello, M. B.; Mortarini, L.; Acevedo, O. C.; Maldaner, S.; Szinvelski, C. R. P.; Roberti, D. R.; Buligon, L.; Anfossi, D.

    2015-11-01

    In this study a new mathematical expression to describe the observed meandering autocorrelation functions in low-wind speed is proposed. The analysis utilizes a large number of best fit curves to show that the proposed theoretical function well reproduces the general form and the negative lobes characterizing the experimental meandering autocorrelation function. Further, the good agreement of the measured autocorrelation curves with the proposed algebraic autocorrelation function allows to calculate the magnitudes of the meandering period and of the loop parameter. The results agree with the values presented and discussed in the literature. Therefore, the new formulation describing experimental meandering autocorrelation functions can be used to simulate the dispersion of contaminant during low wind episodes and to determine relevant meandering parameters.

  7. The Split Window Microwave Radiometer (SWMR) for hurricane wind speed measurement from space

    NASA Technical Reports Server (NTRS)

    Swift, Calvin T.; Black, P. G.

    1992-01-01

    The monitoring of hurricanes demands considerable resources each year by the National Oceanic and Atmospheric Administration. Even with the extensive use of satellite and airborne probing of those storms, there is still much uncertainty involved in predicting landfall for timely evacuation of people subject to the threat. The concept of the Split Window Microwave Radiometer (SWMR) is to add an additional capability of remotely measuring surface winds to hopefully improve prediction capabilities or at least define the severity of the storm while it is far from land. Some of the present science and observational needs are addressed in this report as are remote sensing limitations which impact the design of a minimal system which can be launched into low earth orbit by a low cost launch system. This study has concluded that wind speed and rain rate maps of hurricanes can be generated with an X-Band radiometer system with an antenna whose aperture is 2 m on a side.

  8. 9- by 15-Foot Low Speed Wind Tunnel Acoustic Improvements Expanded Overview

    NASA Technical Reports Server (NTRS)

    Stephens, David

    2016-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 8x6 SWT was completed in 1949 and acoustically treated to mitigate community noise issues in 1950. This treatment included the addition of a large muffler downstream of the 8x6 SWT test section and diffuser. The 9x15 LSWT was designed for performance testing of V/STOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel been used principally for acoustic and performance testing of aircraft propulsion systems. The present document describes an anticipated acoustic upgrade to be completed in 2017.

  9. Infrared thermography for detection of laminar-turbulent transition in low-speed wind tunnel testing

    NASA Astrophysics Data System (ADS)

    Joseph, Liselle A.; Borgoltz, Aurelien; Devenport, William

    2016-05-01

    This work presents the details of a system for experimentally identifying laminar-to-turbulent transition using infrared thermography applied to large, metal models in low-speed wind tunnel tests. Key elements of the transition detection system include infrared cameras with sensitivity in the 7.5- to 14.0-µm spectral range and a thin, insulating coat for the model. The fidelity of the system was validated through experiments on two wind-turbine blade airfoil sections tested at Reynolds numbers between Re = 1.5 × 106 and 3 × 106. Results compare well with measurements from surface pressure distributions and stethoscope observations. However, the infrared-based system provides data over a much broader range of conditions and locations on the model. This paper chronicles the design, implementation and validation of the infrared transition detection system, a subject which has not been widely detailed in the literature to date.

  10. A Climate Model Investigation of Lower-Atmospheric Wind Speed Biases over Wind Farm Development Regions of the Continental United States

    NASA Astrophysics Data System (ADS)

    Collier, J. C.; Zhang, G. J.

    2009-12-01

    There has been a growing concern over the long-term stability of the lower-atmospheric wind resource in the U.S. -- and across the rest of the world. There is speculation, supported by a number of modeling studies, that a warming climate may reduce wind speeds in wind power development regions. Such studies have been largely inconclusive however, primarily due to contradictory results from simulations of future climate and trends assessed from long-term records of data, whose methods of measurement have been inconsistent. It is well known that global climate models are relatively unreliable in their simulations of low-level wind magnitude, compared to those of other atmospheric variables. Studies of the long-term projection of lower-atmospheric wind under climate change scenarios generally rely on some form of physical and/or statistical downscaling of other model output variables. It is of interest, particularly for further model improvement however, to address the underlying causes of poor wind climate simulation so that these models can be more valuable in long-term projections of wind resource and sensitivity studies. One of the models used in the most recent IPCC report is the National Center for Atmospheric Research's Community Climate System Model. The output from various control and climate change scenario simulations at T85 resolution used in the report is archived and available for analysis. Initial analysis of lower atmospheric wind speed simulation from this model's control run indeed shows biases over high wind resource areas including the northern Plains and upper Midwest. In these regions, where wind is predominantly westerly, zonal wind speeds are biased high in the model by as much as 20% when compared to long-term records. This project aims to understand the nature of such biases and investigate their possible causes. Multiple, carefully-designed simulations of the atmospheric component of this model, the Community Atmosphere Model, are carried

  11. The Generation of Smooth High Speed Solar Wind from Plume-Interplume Mixing

    NASA Technical Reports Server (NTRS)

    Parhi, Shyamsundar; Suess, Steven T.; Sulkanen, Martin E.

    1998-01-01

    Plumes and rays are magnetic field aligned density striations in coronal holes with different values of plasma beta. The overall plasma beta is very small in the low corona but exceeds unity beyond 15-20 solar radius. High speed solar wind reported beyond 0.3 AU is relatively smooth and uniform and known to originate from the much filamented coronal hole. Thus the obvious question is how to generate a smooth solar wind from seemingly filamentary structure. Hence one has to find a mechanism to substantiate this apparent observed (Ulysses) phenomenon. To do this we model plumes as jets (or wakes) of plasma emitted from the solar surface. The shear between a jet and its ambient is known to become unstable to the MHD Kelvin-Helmholtz ("KH") instability if the Alfven Mach number of the jet is greater than one and the uniform external magnetic field is small. Starting with a simple configuration we consider a jet of half thickness R, having uniform density and uniform internal magnetic field. The external medium has also a uniform density and uniform magnetic field. The jet is perturbed at the boundary with a linear amplitude and fixed frequency. We simulate the coronal jet using the 3D ZEUS code. The first results indicate the slab jet is unstable to the MHD KH instability at 5-10 solar radius for some angle of wave propagation. The propagating instability may smooth the filamented flow. It may also produce the entrained Alfvenic fluctuations observed by Ulysses in the high speed wind. We are at present determining the parameters which induce large growth rate. This may clarify the mystery behind the emergence of fast smooth solar wind from very filamentary structures in coronal holes. Also, using the dispersion relation already available for such a flow we obtain some general description of the instability criteria for the KH instability at a jet interface.

  12. The Acoustic Environment of the NASA Glenn 9- by 15-foot Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Stephens, David B.

    2015-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel is an acoustic testing facility with a long history of aircraft propulsion noise research. Due to interest in renovating the facility to support future testing of advanced quiet engine designs, a study was conducted to document the background noise level in the facility and investigate the sources of contaminating noise. The anechoic quality of the facility was also investigated using an interrupted noise method. The present report discusses these aspects of the noise environment in this facility.

  13. Error propagation equations for estimating the uncertainty in high-speed wind tunnel test results

    SciTech Connect

    Clark, E.L.

    1994-07-01

    Error propagation equations, based on the Taylor series model, are derived for the nondimensional ratios and coefficients most often encountered in high-speed wind tunnel testing. These include pressure ratio and coefficient, static force and moment coefficients, dynamic stability coefficients, and calibration Mach number. The error equations contain partial derivatives, denoted as sensitivity coefficients, which define the influence of free-steam Mach number, M{infinity}, on various aerodynamic ratios. To facilitate use of the error equations, sensitivity coefficients are derived and evaluated for five fundamental aerodynamic ratios which relate free-steam test conditions to a reference condition.

  14. NASA Lewis 9- by 15-foot low-speed wind tunnel user manual

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1993-01-01

    This manual describes the 9- by 15-Foot Low-Speed Wind Tunnel at the Lewis Research Center and provides information for users who wish to conduct experiments in this atmospheric facility. Tunnel variables such as pressures, temperatures, available tests section area, and Mach number ranges (0.05 to 0.20) are discussed. In addition, general support systems such as air systems, hydraulic system, hydrogen system, laser system, flow visualization system, and model support systems are described. Instrumentation and data processing and acquisition systems are also discussed.

  15. Effects of Latitudinally Dependent Solar Wind Speed on Diffusion Coefficients of Cosmic Rays in the Presence of Adiabatic Focusing

    NASA Astrophysics Data System (ADS)

    He, H.-Q.; Schlickeiser, R.

    2015-02-01

    The solar wind is observed to display high speeds in high heliolatitude coronal holes and low speeds near the ecliptic plane. The heliospheric magnetic field associated with the solar wind plays a very important role in the transport and modulation of charged energetic particles, including galactic cosmic rays (GCRs) and solar energetic particles (SEPs), in the three-dimensional heliosphere. In previous studies, a constant solar wind speed, which is independent of heliolatitude, was assumed and commonly used in modulation modeling of cosmic rays. In this work, we investigate the realistic latitudinally dependent solar wind speed and utilize the theoretical models in hyperbolic and piecewise polynomial forms to explore the important effects on the heliospheric magnetic field and the diffusion coefficients (parallel, perpendicular, and drift scale) of cosmic rays in the presence of adiabatic focusing. Comparisons of the diffusion coefficients derived from standard Parker field and modified magnetic fields are presented. Since the structures and properties of different solar wind sources (coronal streamer belt, polar coronal hole, and transition region between them) differ from each other in essence, we suggest that the latitudinally dependent solar wind speed and the corresponding heliospheric magnetic field and diffusion coefficients with adiabatic focusing should be employed in the global modeling studies of GCRs and SEPs in the heliosphere.

  16. Wind tunnel performance results of swirl recovery vanes as tested with an advanced high speed propeller

    NASA Technical Reports Server (NTRS)

    Gazzaniga, John A.; Rose, Gayle E.

    1992-01-01

    Tests of swirl recovery vanes designed for use in conjunction with advanced high speed propellers were carried out at the NASA Lewis Research Center. The eight bladed 62.23 cm vanes were tested with a 62.23 cm SR = 7A high speed propeller in the NASA Lewis 2.44 x 1.83 m Supersonic Wind Tunnel for a Mach number range of 0.60 to 0.80. At the design operating condition for cruise of Mach 0.80 at an advance ratio of 3.26, the vane contribution to the total efficiency approached 2 percent. At lower off-design Mach numbers, the vane efficiency is even higher, approaching 4.5 percent for the Mach 0.60 condition. Use of the swirl recovery vanes essentially shifts the peak of the high speed propeller efficiency to a higher operating speed. This allows a greater degree of freedom in the selection of rpm over a wider operating range. Another unique result of the swirl recovery vane configuration is their essentially constant torque split between the propeller and the swirl vanes over a wide range of operating conditions for the design vane angle.

  17. Atlantic Tropical Cyclone Monitoring with AMSU-A: Estimation of Maximum Sustained Wind Speeds

    NASA Technical Reports Server (NTRS)

    Spencer, Roy; Braswell, William D.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    The first Advanced Microwave Sounding Unit temperature sounder (AMSU-A) was launched on the NOAA-15 satellite on 13 May 1998. The AMSU-A's higher spatial and radiometric resolutions provide more useful information on the strength of the middle and upper tropospheric warm cores associated with tropical cyclones than have previous microwave temperature sounders. The gradient wind relationship suggests that the temperature gradient near the core of tropical cyclones increases nonlinearly with wind speed. We recast the gradient wind equation to include AMSU-A derived variables. Stepwise regression is used to determine which of these variables is most closely related to maximum sustained winds (V(sub max)). The satellite variables investigated include the radially averaged gradients at two spatial resolutions of AMSU-A channels 1 through 10 T(sub b) data (delta(sub r)T(sub b)), the squares of these gradients, a channel 15 based scattering index (SI-89), and area averaged T(sub b). Calculations of Tb and delta(sub r)T(sub b) from mesoscale model simulations of Andrew reveal the effects of the AMSU spatial sampling on the cyclone warm core presentation. Stepwise regression of 66 AMSU-A terms against National Hurricane Center (NHC) V(sub max) estimates from the 1998 and 1999 Atlantic hurricane season confirms the existence of a nonlinear relationship between wind speed and radially averaged temperature gradients near the cyclone warm core. Of six regression terms, four are dominated by temperature information, and two are interpreted as correcting for hydrometeor contamination. Jackknifed regressions were performed to estimate the algorithm performance on independent data. For the 82 cases that had in situ measurements of V(sub max), the average error standard deviation was 4.7 m/s. For 108 cases without in situ wind data, the average error standard deviation was 7.5 m/s. Operational considerations, including the detection of weak cyclones and false alarm reduction are

  18. Effect of Tip-Speed Constraints on the Optimized Design of a Wind Turbine

    SciTech Connect

    Dykes, K.; Resor, B.; Platt, A.; Guo, Y.; Ning, A.; King, R.; Parsons, T.; Petch, D.; Veers, P.

    2014-10-01

    This study investigates the effect of tip-velocity constraints on system levelized cost of energy (LCOE). The results indicate that a change in maximum tip speed from 80 to 100~m/s could produce a 32% decrease in gearbox weight (a 33% reduction in cost) which would result in an overall reduction of 1%-9% in system LCOE depending on the design approach. Three 100~m/s design cases were considered including a low tip-speed ratio/high-solidity rotor design, a high tip-speed ratio/ low-solidity rotor design, and finally a flexible blade design in which a high tip-speed ratio was used along with removing the tip deflection constraint on the rotor design. In all three cases, the significant reduction in gearbox weight caused by the higher tip-speed and lower overall gear ratio was counterbalanced by increased weights for the rotor and/or other drivetrain components and the tower. As a result, the increased costs of either the rotor or drivetrain components offset the overall reduction in turbine costs from down-sizing the gearbox. Other system costs were not significantly affected, whereas energy production was slightly reduced in the 100~m/s case low tip-speed ratio case and increased in the high tip-speed ratio case. This resulted in system cost of energy reductions moving from the 80~m/s design to the 100~m/s designs of 1.2% for the low tip-speed ratio, 4.6% for the high tip-speed ratio, and 9.5% for the final flexible case (the latter result is optimistic because the impact of deflection of the flexible blade on power production was not modeled). Overall, the results demonstrate that there is a trade-off in system design between the maximum tip velocity and the overall wind plant cost of energy, and there are many trade-offs within the overall system in designing a turbine for a high maximum tip velocity.

  19. Potential errors in using one anemometer to characterize the wind power over an entire rotor disk

    NASA Technical Reports Server (NTRS)

    Simon, R. L.

    1982-01-01

    Wind data collected at four levels on a 90-m tower in a prospective wind farm area are used to evaluate how well the 10-m wind speed data with and without intermittent vertical profile measurements compare with the 90-m tower data. If a standard, or even predictable, wind speed profile existed, there would be no need for a large, expensive tower. This cost differential becomes even more significant if several towers are needed to study a prospective wind farm.

  20. The minimum free-stream wind speed for initiating motion of surface material on Mars

    NASA Technical Reports Server (NTRS)

    Wood, G. P.; Weaver, W. R.; Henry, R. M.

    1974-01-01

    Estimates of the minimum free-stream wind speed that is required for initiating the motion of surficial material on Mars have ranged from 30 to about 200 meters per second. Thus the best value for this quantity is not well established. Graphical comparison of much of the pertinent data taken in the laboratory and in the field on Earth provides a minimum value for the Bagnold coefficient of 0.08 and this in turn provides a minimum value for the threshold friction velocity of 1.3 meters per second for initiating motion of particulate matter on Mars at low elevations where the pressure is 7 millibars. The most appropriate value of the ratio of friction velocity to free-stream velocity for putative unstable condition appears to be 0.026. Thus the minimum free-stream wind speed for initiating motion is obtained as 50 meters per second. If the surface material on Mars, however, is less cohesive than that on earth, the minimum value may be smaller.

  1. Wind-Speed Profile and Roughness Sublayer Depth Modelling in Urban Boundary Layers

    NASA Astrophysics Data System (ADS)

    Pelliccioni, Armando; Monti, Paolo; Leuzzi, Giovanni

    2016-08-01

    We propose a new formulation for the wind-speed profile in the urban boundary layer, which can be viewed as a generalisation of the commonly used logarithmic law. The model is based on the assumption that the role played by the classical aerodynamic roughness length and the displacement height in the logarithmic law is taken by a sole variable, the local length scale, which follows a pattern of exponential decrease with height. Starting from wind-speed profiles collected at Villa Pamphili park, Rome, Italy, an empirical fit is used to determine the model parameters. The results show that the local length scale depends also on the friction velocity and that, with appropriate normalization, it reduces to a family of curves that spreads according to the planar area fraction. Another novel aspect is the estimation of the roughness sublayer depth, which can be expressed as a function of the friction velocity and morphometric quantities such as the building height and the planar area fraction. It is also found that the rate of growth with height of the Prandtl mixing length linked to the new formulation is, just above the canopy, lower than the canonical value 0.41, and approaches the latter value well above the roughness sublayer. The model performance is tested by comparison with laboratory and field data reported in the literature.

  2. High-resolution wind speed measurements using actively heated fiber optics

    NASA Astrophysics Data System (ADS)

    Sayde, Chadi; Thomas, Christoph K.; Wagner, James; Selker, John

    2015-11-01

    We present a novel technique to simultaneously measure wind speed (U) at thousands of locations continuously in time based on measurement of velocity-dependent heat transfer from a heated surface. Measuring temperature differences between paired passive and actively heated fiber-optic (AHFO) cables with a distributed temperature sensing system allowed estimation of U at over 2000 sections along the 230 m transect (resolution of 0.375 m and 5.5 s). The underlying concept is similar to that of a hot wire anemometer extended in space. The correlation coefficient between U measured by two colocated sonic anemometers and the AHFO were 0.91 during the day and 0.87 at night. The combination of classical passive and novel AHFO provides unprecedented dynamic observations of both air temperature and wind speed spanning 4 orders of magnitude in spatial scale (0.1-1000 m) while resolving individual turbulent motions, opening new opportunities for testing basic theories for near-surface geophysical flows.

  3. Low-speed wind tunnel test results of the Canard Rotor/Wing concept

    NASA Technical Reports Server (NTRS)

    Bass, Steven M.; Thompson, Thomas L.; Rutherford, John W.; Swanson, Stephen

    1993-01-01

    The Canard Rotor/Wing (CRW), a high-speed rotorcraft concept, was tested at the National Aeronautics and Space Administration (NASA) Ames Research Center's 40- by 80-Foot Wind Tunnel in Mountain View, California. The 1/5-scale model was tested to identify certain low-speed, fixed-wing, aerodynamic characteristics of the configuration and investigate the effectiveness of two empennages, an H-Tail and a T-Tail. The paper addresses the principal test objectives and the results achieved in the wind tunnel test. These are summarized as: i) drag build-up and differences between the H-Tail and T-Tail configuration, ii) longitudinal stability of the H-Tail and T-Tail configurations in the conversion and cruise modes, iii) control derivatives for the canard and elevator in the conversion and cruise modes, iv) aerodynamic characteristics of varying the rotor/wing azimuth position, and v) canard and tail lift/trim capability for conversion conditions.

  4. AE Geomagnetic Index Predictability for High Speed Solar Wind Streams: A Wavelet Decomposition Technique

    NASA Technical Reports Server (NTRS)

    Guarnieri, Fernando L.; Tsurutani, Bruce T.; Hajra, Rajkumar; Echer, Ezequiel; Gonzalez, Walter D.; Mannucci, Anthony J.

    2014-01-01

    High speed solar wind streams cause geomagnetic activity at Earth. In this study we have applied a wavelet interactive filtering and reconstruction technique on the solar wind magnetic field components and AE index series to allowed us to investigate the relationship between the two. The IMF Bz component was found as the most significant solar wind parameter responsible by the control of the AE activity. Assuming magnetic reconnection associated to southward directed Bz is the main mechanism transferring energy into the magnetosphere, we adjust parameters to forecast the AE index. The adjusted routine is able to forecast AE, based only on the Bz measured at the L1 Lagrangian point. This gives a prediction approximately 30-70 minutes in advance of the actual geomagnetic activity. The correlation coefficient between the observed AE data and the forecasted series reached values higher than 0.90. In some cases the forecast reproduced particularities observed in the signal very well.The high correlation values observed and the high efficacy of the forecasting can be taken as a confirmation that reconnection is the main physical mechanism responsible for the energy transfer during HILDCAAs. The study also shows that the IMF Bz component low frequencies are most important for AE prediction.

  5. Binocular videogrammetric system for three-dimensional measurement in low-speed wind tunnel

    NASA Astrophysics Data System (ADS)

    Zhu, Ye; Gu, Yonggang; Zhai, Chao

    2014-11-01

    In order to avoid the defects of contact measurement, such as limited range, complex constructing and disability of 3-D parameter acquisition, we built a binocular videogrammetric system for measuring 3-D geometry parameters of wind tunnel test models, for instance, displacement, rotation angle and vibration, in low-speed wind tunnel. The system is based on the principles of close-range digital photogrammetry. As a non-contact system, it acquires parameters without interference in the experiments, and it has adjustable range and simple structure. It is worth mentioning that this is a Realtime measurement system, so that it can greatly compress the experiment period, furthermore, it is also able to provide some specific experiments with parameters for online adjustment. In this system, images are acquired through two industrial digital cameras and a PCI-E image acquisition card, and they are processed in a PC. The two cameras are triggered by signals come from a function signal generator, so that images of different cameras will have good temporal synchronization to ensure the accuracy of 3-D reconstruction. A two-step stereo calibration technique using planar pattern developed by Zhengyou Zhang is used to calibrate these cameras. Results of wind tunnel test indicate that the system can provide displacement accuracy better than 0.1% and rotation angle accuracy better than 0.1 degree, besides, the vibration frequency accuracy is superior to 0.1Hz in the low-frequency range.

  6. Quasi-periodic (~mHz) dayside auroral brightennings associated with high-speed solar wind

    NASA Astrophysics Data System (ADS)

    Liou, K.

    2013-12-01

    It has been reported that dayside auroral pulsations of a few mHz frequency can occur when variations of solar wind dynamic pressure at the same frequency appear. Magnetospheric compression/decompression is attributed to the auroral pulsations. Here we report another type of dayside auroral pulsations not associated with solar wind dynamic pressure changes by using global auroral images acquired from the Ultraviolet Imager (UVI) on board the Polar satellite. From one periodic (~2 - 8 mHz) auroral event that occurred on February 8, 2000, it is found that the auroral enhancements covered most of the day (~05 - 16 MLT) sector and did not show a latitudinal dependence. Based on in situ particle data from DMSP SSJ/4, the brightennings were associated mainly with enhanced particle precipitations from the central plasma sheet (i.e., diffuse aurora). There was no geomagnetic pulsation on the ground and in the dawn sector of the magnetosheath as indicated by the Geotail measurements. While the auroral pulsations occurred during high solar wind speed (> 600 km/s), they commenced when the interplanetary magnetic field turned northward, suggesting the Kelvin-Helmholtz instability being a source of the pulsations. We will present detail analysis results and discuss other possible mechanisms in the context of current theories.

  7. Weibull Wind-Speed Distribution Parameters Derived from a Combination of Wind-Lidar and Tall-Mast Measurements Over Land, Coastal and Marine Sites

    NASA Astrophysics Data System (ADS)

    Gryning, Sven-Erik; Floors, Rogier; Peña, Alfredo; Batchvarova, Ekaterina; Brümmer, Burghard

    2016-05-01

    Wind-speed observations from tall towers are used in combination with observations up to 600 m in altitude from a Doppler wind lidar to study the long-term conditions over suburban (Hamburg), rural coastal (Høvsøre) and marine (FINO3) sites. The variability in the wind field among the sites is expressed in terms of mean wind speed and Weibull distribution shape-parameter profiles. The consequences of the carrier-to-noise-ratio ( CNR) threshold-value choice on the wind-lidar observations are revealed as follows. When the wind-lidar CNR is lower than a prescribed threshold value, the observations are often filtered out as the uncertainty in the wind-speed measurements increases. For a pulsed heterodyne Doppler lidar, use of the traditional -22 dB CNR threshold value at all measuring levels up to 600 m results in a ≈ 7 % overestimation in the long-term mean wind speed over land, and a ≈ 12 % overestimation in coastal and marine environments. In addition, the height of the profile maximum of the shape parameter of the Weibull distribution (so-called reversal height) is found to depend on the applied CNR threshold; it is found to be lower at small CNR threshold values. The reversal height is greater in the suburban (high roughness) than in the rural (low roughness) area. In coastal areas the reversal height is lower than that over land and relates to the internal boundary layer that develops downwind from the coastline. Over the sea the shape parameter increases towards the sea surface. A parametrization of the vertical profile of the shape parameter fits well with observations over land, coastal regions and over the sea. An applied model for the dependence of the reversal height on the surface roughness is in good agreement with the observations over land.

  8. On the relation between coronal heating, flux tube divergence, and the solar wind proton flux and flow speed

    NASA Technical Reports Server (NTRS)

    Sandbaek, Onulf; Leer, Egil; Hansteen, Viggo H.

    1994-01-01

    A one-fluid solar wind model is used to investigate some relations between coronal heating, the flux tube divergence near the Sun, and the solar wind proton flux and flow speed. The effects of energy addition to the supersonic region of the flow are also studied. We allow for a mechanical energy flux that heats the corona, and an Alfven wave energy flux that adds energy, mainly to the supersonic flow, both as momentum and as heat. We find that the mechanical energy flux determines the solar wind mass flux, and in order to keep an almost constant proton flux at the orbit of Earth with changing flow geometry, that the mechanical energy flux must vary linearly with the magnetic field in the inner corona. This thermally driven wind generally has a low asymptotic flow speed. When Alfven waves are added to the thermally driven flow, the asymptotic flow speed is increased and is determined by the ratio of the Alfven wave and the mechanical energy fluxes at the coronal base. Flow speeds characteristic of recurrent high-speed solar wind streams can be obtained only when the Alfven wave energy flux, deposited in the supersonic flow, is larger than the mechanical energy flux heating the corona.

  9. Occurrence of High-speed Solar Wind Streams over the Grand Modern Maximum

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Lukianova, R.; Holappa, L.

    2015-03-01

    In the declining phase of the solar cycle (SC), when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind (SW) streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity (GA) in the near-Earth space. Here, using a novel definition of GA at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculate the annually averaged SW speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onward. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each of SCs 16-23. For most cycles the HSS activity clearly reaches a maximum in one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of SC 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.

  10. OCCURRENCE OF HIGH-SPEED SOLAR WIND STREAMS OVER THE GRAND MODERN MAXIMUM

    SciTech Connect

    Mursula, K.; Holappa, L.; Lukianova, R.

    2015-03-01

    In the declining phase of the solar cycle (SC), when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind (SW) streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity (GA) in the near-Earth space. Here, using a novel definition of GA at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculate the annually averaged SW speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onward. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each of SCs 16-23. For most cycles the HSS activity clearly reaches a maximum in one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of SC 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.

  11. A climatology of Brazilian surface wind speed trends using in-situ and climate reanalysis datasets from 1980-2014

    NASA Astrophysics Data System (ADS)

    Gilliland, J. M.; Keim, B. D.

    2015-12-01

    Wind speed trends have been extensively researched for the Northern Hemisphere and Australia. The general consensus among scientists is that wind speeds have declined over the past century. However, a minimal amount of research has focused on understanding how wind speeds changed across Brazil based on temporal and geographical perspectives. Therefore, this study provides a climatological assessment of wind speed trends across Brazil using in-situ and climatic model datasets from 1980-2014. Seasonal and annual trends are determined across the study area using linear and quantile regression. Geographical Information Systems is used to interpret and understand how wind speed trends have changed across Brazil. Preliminary results show two distinct wind speed trend patterns exist across Brazil. The largest wind speed magnitude increases occurred along northeastern and coastal Brazil, where as decreasing wind speeds have been observed for central and southeastern Brazil. Furthermore, quantile regression also shows the largest seasonal and annual wind trend fluctuations occur at lower (5%) and upper percentiles (95%) for both in-situ and climate model datasets. As a result, these findings indicate possible alterations in atmospheric and oceanic circulations could be affecting wind speed trends across Brazil and warrants further investigation and research.

  12. Remote Sensing of Solar Wind Speeds using Observations of IPS at 140 and 327 MHz: MEXART and STELab

    NASA Astrophysics Data System (ADS)

    Mejia-Ambriz, J.; Jackson, B. V.; Buffington, A.; Gonzalez-Esparza, A.; Tokumaru, M.

    2013-12-01

    The radio signals from compact radio sources are scattered by the solar wind. This effect is observed by radio telescopes as intensity fluctuations of the sources and known as Interplanetary Scintillation (IPS). IPS can be used as a technique to explore solar wind speeds in the inner heliosphere. The Mexican Array Radio Telescope (MEXART) at 140 MHz and the stations of Solar Terrestrial Environment Laboratory (STELab) at 327 MHz are instruments dedicated to studies of IPS. There exist two techniques to estimate solar wind speeds using analyses from IPS: From multi-station and single-station measurements. In this work we analyze data from one of the radio arrays of STELab and from MEXART to obtain solar wind speeds using the single-station technique. These observations correspond to the minimum and maximum periods of the 24th solar cycle. We compare the speeds we obtain from the single-site technique with speeds from those reported by the multi-station technique provided by STELab. We find that most speeds obtained using both techniques agree within the limits of the errors of each measurement. Large newly-commissioned radio telescopes (LOFAR, in Europe, and MWA in Western Australia) intend IPS surveys at other frequencies, and the single station technique is being used and tested at other locations as well. The conclusions of this work contribute to the understanding of the implementation of the single-station technique for measuring velocities with other radio systems.

  13. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    SciTech Connect

    Lee, Gwang-Se; Cheong, Cheolung

    2014-12-15

    Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs), few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF) wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF) noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.

  14. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    NASA Astrophysics Data System (ADS)

    Lee, Gwang-Se; Cheong, Cheolung

    2014-12-01

    Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs), few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF) wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF) noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson's acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson's analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.

  15. Derivation of atmospheric extinction profiles and wind speed over the ocean from a satellite-borne lidar.

    PubMed

    Weinman, J A

    1988-10-01

    A simulated analysis is presented that shows that returns from a single-frequency space-borne lidar can be combined with data from conventional visible satellite imagery to yield profiles of aerosol extinction coefficients and the wind speed at the ocean surface. The optical thickness of the aerosols in the atmosphere can be derived from visible imagery. That measurement of the total optical thickness can constrain the solution to the lidar equation to yield a robust estimate of the extinction profile. The specular reflection of the lidar beam from the ocean can be used to determine the wind speed at the sea surface once the transmission of the atmosphere is known. The impact on the retrieved aerosol profiles and surface wind speed produced by errors in the input parameters and noise in the lidar measurements is also considered.

  16. Determination of transport wind speed in the gaussian plume diffusion equation for low-lying point sources

    NASA Astrophysics Data System (ADS)

    Wang, I. T.

    A general method for determining the effective transport wind speed, overlineu, in the Gaussian plume equation is discussed. Physical arguments are given for using the generalized overlineu instead of the often adopted release-level wind speed with the plume diffusion equation. Simple analytical expressions for overlineu applicable to low-level point releases and a wide range of atmospheric conditions are developed. A non-linear plume kinematic equation is derived using these expressions. Crosswind-integrated SF 6 concentration data from the 1983 PNL tracer experiment are used to evaluate the proposed analytical procedures along with the usual approach of using the release-level wind speed. Results of the evaluation are briefly discussed.

  17. Multiyear study of the dependence of sea salt aerosol on wind speed and sea ice conditions in the coastal Arctic

    NASA Astrophysics Data System (ADS)

    May, N. W.; Quinn, P. K.; McNamara, S. M.; Pratt, K. A.

    2016-08-01

    Thinning of Arctic sea ice gives rise to ice fracturing and leads (areas of open water surrounded by sea ice) that are a potential source of sea salt aerosol. Atmospheric particle inorganic ion concentrations, local sea ice conditions, and meteorology at Barrow, AK, from 2006 to 2009, were combined to investigate the dependence of submicron (aerodynamic diameter < 1 µm) and supermicron (aerodynamic diameter 1-10 µm) sea salt mass concentrations on sea ice coverage and wind speed. Consistent with a wind-dependent source, supermicron sea salt mass concentrations increased in the presence of nearby leads and wind speeds greater than 4 m s-1. Increased supermicron and submicron sea salt chloride depletion was observed for periods of low winds or a lack of nearby open water, consistent with transported sea salt influence. Sea salt aerosol produced from leads has the potential to alter cloud formation, as well as the chemical composition of the Arctic atmosphere and snowpack.

  18. Dual-core photonic crystal fiber Doppler velocimeter for small horizontal axis wind turbine blade rotational speed measurement

    NASA Astrophysics Data System (ADS)

    Huang, Xue-Feng; Li, Sheng-Ji; Wang, Wei-Chih

    2014-03-01

    The blades are crucial components of a wind turbine, and its steady and reliable operation is directly related to the power output. Thus, condition monitoring and fault diagnosis of the wind turbine blades is highly beneficial to the operational cost. This paper presents a study of small horizontal axis wind turbine blade rotational speed measurement by laser Doppler velocimeter based on dual-core photonic crystal fiber (DC-PCF). The theory on the DC-PCF Doppler velocimeter is presented, and the measurement system is designed and tested. Experimental results show that the DC-PCF Doppler velocimeter has been proved to work successfully. The uncertainty of the rotational speed is about 0 ~ 4 rpm. The accuracy can meet the requirements for monitoring the rotational operation of the wind turbine.

  19. LIDAR Wind Speed Measurement Analysis and Feed-Forward Blade Pitch Control for Load Mitigation in Wind Turbines: January 2010--January 2011

    SciTech Connect

    Dunne, F.; Simley, E.; Pao, L.Y.

    2011-10-01

    This report examines the accuracy of measurements that rely on Doppler LIDAR systems to determine their applicability to wind turbine feed-forward control systems and discusses feed-forward control system designs that use preview wind measurements. Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feed-forward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. The first half of this report examines the accuracy of different measurement scenarios that rely on coherent continuous-wave or pulsed Doppler LIDAR systems to determine their applicability to feed-forward control. In particular, the impacts of measurement range and angular offset from the wind direction are studied for various wind conditions. A realistic case involving a scanning LIDAR unit mounted in the spinner of a wind turbine is studied in depth with emphasis on choices for scan radius and preview distance. The effects of turbulence parameters on measurement accuracy are studied as well. Continuous-wave and pulsed LIDAR models based on typical commercially available units were used in the studies present in this report. The second half of this report discusses feed-forward control system designs that use preview wind measurements. Combined feedback/feed-forward blade pitch control is compared to industry standard feedback control when simulated in realistic turbulent above-rated winds. The feed-forward controllers are designed to reduce fatigue loads, increasing turbine lifetime and therefore reducing the cost of energy. Three feed-forward designs are studied: non-causal series expansion, Preview Control, and optimized FIR filter. The input to the feed-forward controller is a measurement of

  20. An 80m Coastal Wind Power Assessment Using QuikSCAT

    NASA Astrophysics Data System (ADS)

    Capps, S.; Zender, C.

    2008-12-01

    Steadier and faster offshore winds provide a potentially higher and more continuous source of energy. Companies are actively pursuing technology which allows for wind turbines to be placed in deeper waters (>100 m) farther away from the coast. Typical hub heights of modern wind turbines are near 80 m. We use wind profile correction methods and bathymetric contours to highlight coastal regions where extraction of wind power at 80 m is feasible. Observed (2000--2006) 10 m surface winds from NASA's SeaWinds scatterometer measurements onboard QuikSCAT are extrapolated to 80 m using Monin- Obukhov similarity theory. A Weibull probability distribution function (PDF) is fitted to these twice-daily wind speed observations. 80 m wind power density is calculated using the full and truncated (between cut-in and cut-out speeds of typical wind turbines) PDF. Mean 2000--2006 80-10 m wind speed differences range from <2 m s-1 for unstable boundary layers to >3 m s-1 for stably stratified boundary layers over coastal waters near Nova Scotia and east of Argentina. Near Japan, climatological 80 m wind power densities are double 10 m wind power densities. Boreal wintertime wind power densities calculated for usable wind speeds are 15% and 17% lower than full PDF wind power densities for gap wind regions near Vladivostok and Japan, respectively.

  1. Comparison of the 10x10 and the 8x6 Supersonic Wind Tunnels at the NASA Glenn Research Center for Low-Speed (Subsonic) Operation

    NASA Technical Reports Server (NTRS)

    Hoffman, Thomas R.; Johns, Albert L.; Bury, Mark E.

    2002-01-01

    NASA Glenn Research Center and Lockheed Martin tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Test objectives were to determine and document similarities and uniqueness of the tunnels and to verify that the 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility when compared to the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). Conclusions are that the data from the two facilities compares very favorably and that the 10-by 10-Foot Supersonic Wind Tunnel at NASA Glenn Research Center is a viable low-speed wind tunnel.

  2. Design and performance evaluation of a fuzzy-logic-based variable-speed wind generation system

    SciTech Connect

    Simoes, M.G.; Bose, B.K.; Spiegel, R.J.

    1997-07-01

    Artificial intelligence techniques, such as fuzzy logic, neural network, and genetic algorithm, are recently showing a lot of promise in the application of power electronic systems. The paper describes the control strategy development, design, and experimental performance evaluation of a fuzzy-logic-based variable-speed wind generation system that uses a cage-type induction generator and double-sided pulsewidth-modulated (PWM) converters. The system can feed a utility grid maintaining unity power factor at all conditions or can supply an autonomous load. The fuzzy-logic-based control of the system helps to optimize efficiency and enhance performance. A complete 3.5-kW generation system has been developed, designed, and thoroughly evaluated by laboratory tests, in order to validate the predicted performance improvements. The system gives excellent performance and can easily be translated to a larger size in the field.

  3. Wind tunnel investigation of rotor lift and propulsive force at high speed: Data analysis

    NASA Technical Reports Server (NTRS)

    Mchugh, F.; Clark, R.; Soloman, M.

    1977-01-01

    The basic test data obtained during the lift-propulsive force limit wind tunnel test conducted on a scale model CH-47b rotor are analyzed. Included are the rotor control positions, blade loads and six components of rotor force and moment, corrected for hub tares. Performance and blade loads are presented as the rotor lift limit is approached at fixed levels of rotor propulsive force coefficients and rotor tip speeds. Performance and blade load trends are documented for fixed levels of rotor lift coefficient as propulsive force is increased to the maximum obtainable by the model rotor. Test data is also included that defines the effect of stall proximity on rotor control power. The basic test data plots are presented in volumes 2 and 3.

  4. The proton temperature and the total hourly variance of the magnetic field components in different solar wind speed regions

    NASA Technical Reports Server (NTRS)

    Tu, Chuan-Yi; Freeman, John W.; Lopez, R. E.

    1989-01-01

    A comparison has been made between the predictions of the theory for radial variations of both Alfvenic fluctuations and solar wind proton temperatures proposed by Tu (1987, 1988) and the statistical results of hourly averaged plasma and magnetic field data observed by Helios 1 and 2 from launch through 1980 for different solar wind speed regimes. The comparison shows that for speed ranges between 500-800 km/s, the radial variation of the proton temperature between 0.3 and 1 AU can be explained by heating from the cascade energy which is determined by the radial variation of the total variance of magnetic field vector.

  5. Correlation and Taylor scale variability in the interplanetary magnetic field fluctuations as a function of solar wind speed

    NASA Astrophysics Data System (ADS)

    Weygand, James M.; Matthaeus, W. H.; Dasso, S.; Kivelson, M. G.

    2011-08-01

    Simultaneous multiple point measurements of the magnetic field from 11 spacecraft are employed to determine the correlation scale and the magnetic Taylor microscale of the solar wind as functions of the mean magnetic field direction and solar wind speed. We find that the Taylor scale is independent of direction relative to the mean magnetic field in both the slow (<450 km/s) and the fast (>600 km/s) solar wind, but the Taylor scale is longer along the mean magnetic field direction in the intermediate (600 km/s ≥ speed ≥ 450 km/s) solar wind. The correlation scale, on the other hand, varies with angle from the mean magnetic field direction. In the slow solar wind the ratio of the parallel correlation scale to the perpendicular correlation scale is 2.55 ± 0.76, decreases to 2.15 ± 0.18 in the intermediate solar wind, and becomes 0.71 ± 0.29 in the fast solar wind. Thus, solar wind turbulence is anisotropic, dominated by quasi two-dimensional turbulence in both the slow and intermediate solar wind, and by slab type turbulence in the fast solar wind. The correlation and Taylor scales may be used to estimate effective magnetic Reynolds numbers separately for each angular channel. To within the uncertainty, no dependence on the solid angle relative to the mean magnetic field could be identified for the Reynolds number. These results may be useful in magnetohydrodynamic modeling of the solar wind and can contribute to our understanding of solar and galactic cosmic ray diffusion in the heliosphere.

  6. A wind-tunnel investigation of parameters affecting helicopter directional control at low speeds in ground effect

    NASA Technical Reports Server (NTRS)

    Yeager, W. T., Jr.; Young, W. H., Jr.; Mantay, W. R.

    1974-01-01

    An investigation was conducted in the Langley full-scale tunnel to measure the performance of several helicopter tail-rotor/fin configurations with regard to directional control problems encountered at low speeds in ground effect. Tests were conducted at wind azimuths of 0 deg to 360 deg in increments of 30 deg and 60 deg and at wind speeds from 0 to 35 knots. The results indicate that at certain combinations of wind speed and wind azimuth, large increases in adverse fin force require correspondingly large increases in the tail-rotor thrust, collective pitch, and power required to maintain yaw trim. Changing the tail-rotor direction of rotation to top blade aft for either a pusher tail rotor (tail-rotor wake blowing away from fin) or a tractor tail rotor (tail-rotor wake blowing against fin) will alleviate this problem. For a pusher tail rotor at 180 deg wind azimuth, increases in the fin/tail-rotor gap were not found to have any significant influence on the overall vehicle directional control capability. Changing the tail rotor to a higher position was found to improve tail-rotor performance for a fin-off configuration at a wind azimuth of 180 deg. A V-tail configuration with a pusher tail rotor with top blade aft direction of rotation was found to be the best configuration with regard to overall directional control capability.

  7. Underwater Ambient Noise and Sperm Whale Click Detection during Extreme Wind Speed Conditions

    NASA Astrophysics Data System (ADS)

    Newcomb, Joal J.; Wright, Andrew J.; Kuczaj, Stan; Thames, Rachel; Hillstrom, Wesley R.; Goodman, Ralph

    2004-11-01

    The Littoral Acoustic Demonstration Center (LA DC) deployed three Environmental Acoustic Recording System (EARS) buoys in the northern Gulf of Mexico during the summers of 2001 (LADC 01) and 2002 (LADC 02). The hydrophone of each buoy was approximately 50m from the bottom in water depths of 645m to 1034m. During LADC 01 Tropical Storm Barry passed within 93nmi east of the EARS buoys. During LADC 02 Tropical Storm Isidore and Hurricane Lili passed within approximately 73nmi and 116nmi, respectively, west of the EARS buoys. The proximity of these storm systems to the EARS buoys, in conjunction with wind speed data from three nearby NDBC weather buoys, allows for the direct comparison of underwater ambient noise levels with high wind speeds. These results are compared to the G. M. Wenz spectra at frequencies from 1kHz to 5.5kHz. In addition, the impact of storm conditions on sperm whale clicks was assessed. In particular, although the time period during the closest approach of TS Barry tended to produce lower click rates, this time period did not have the greatest incidence of non-detection at all the EARS buoys. It follows that storm-related masking noise could not have been responsible for all the observed trends. The data suggest that sperm whales may have left the vicinity of the deepest EARS buoy (nearest TS Barry's storm track) during the storm and possibly moved into the shallower waters around the other EARS buoys. It also appears that sperm whales may not have returned to the deepest EARS area, or did not resume normal behavior immediately after the storm, as the click rate did not recover to pre-storm levels during the period after TS Barry had dissipated. Results of these analyses and the ambient noise analysis will be presented. (Research supported by ONR).

  8. A 10m telescope for submillimetre astronomy

    NASA Astrophysics Data System (ADS)

    Baars, J. W. M.; Mezger, P. G.

    1982-08-01

    Several atmospheric transmission windows between 350 micro m and 3 mm wavelength which allow astronomical observations from a sufficiently high and dry mountain site are examined. The design of a telescope for themm wavelength region, which will exhibit full performance at 350 micro m is outlined. The diameter of the reflector is approximately 10 m, the surface accuracy is 15 micro m and the pointing accuracy 1". Extensive use of carbon fiber reinforced plastic enables a light and stiff construction without significant thermal deformations.

  9. A cm scale electret-based electrostatic wind turbine for low-speed energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Perez, M.; Boisseau, S.; Gasnier, P.; Willemin, J.; Geisler, M.; Reboud, J. L.

    2016-04-01

    This paper presents a small-scale airflow energy harvester built on an axial turbine architecture and exploiting an electret-based electrostatic converter. When the airflow velocity is high enough, the windmill starts rotating and creates a periodic relative motion between a stator and a rotor which induces variations of capacitance. These ones are directly converted into electricity thanks to the use of Teflon electrets charged at -1400 V which polarize the variable capacitors. We focus our study on a 4-blade axial turbine with a diameter of D = 40 mm, a depth of W = 10 mm, for a total volume of 12.6 cm3. This windmill has been tested with various blade angles and different types of electrostatic converters and output powers up to 90 μW at 1.5 m s-1 (7.5 μW cm-3) and 1.8 mW at 10 m s-1 (111 μW cm-3) have been obtained so far. The coefficient of power reaches C p = 5.8% and among the small-scale airflow energy harvesters previously reported, this one has the lowest cut-in speed (1.5 m s-1).

  10. Shelter Index and a simple wind speed parameter to characterize vegetation control of sand transport threshold and Flu

    NASA Astrophysics Data System (ADS)

    Gillies, J. A.; Nield, J. M.; Nickling, W. G.; Furtak-Cole, E.

    2014-12-01

    Wind erosion and dust emissions occur in many dryland environments from a range of surfaces with different types and amounts of vegetation. Understanding how vegetation modulates these processes remains a research challenge. Here we present results from a study that examines the relationship between an index of shelter (SI=distance from a point to the nearest upwind vegetation/vegetation height) and particle threshold expressed as the ratio of wind speed measured at 0.45 times the mean plant height divided by the wind speed at 17 m when saltation commences, and saltation flux. The results are used to evaluate SI as a parameter to characterize the influence of vegetation on local winds and sediment transport conditions. Wind speed, wind direction, saltation activity and point saltation flux were measured at 35 locations in defined test areas (~13,000 m2) in two vegetation communities: mature streets of mesquite covered nebkhas and incipient nebkhas dominated by low mesquite plants. Measurement positions represent the most open areas, and hence those places most susceptible to wind erosion among the vegetation elements. Shelter index was calculated for each measurement position for each 10° wind direction bin using digital elevation models for each site acquired using terrestrial laser scanning. SI can show the susceptibility to wind erosion at different time scales, i.e., event, seasonal, or annual, but in a supply-limited system it can fail to define actual flux amounts due to a lack of knowledge of the distribution of sediment across the surface of interest with respect to the patterns of SI.

  11. Q fever infection in dairy cattle herds: increased risk with high wind speed and low precipitation.

    PubMed

    Nusinovici, S; Frössling, J; Widgren, S; Beaudeau, F; Lindberg, A

    2015-11-01

    Ruminants are considered the main reservoir for transmission of Coxiella burnetii (Cb) to humans. The implementation of effective control measures against Cb in ruminants requires knowledge about potential risk factors. The objectives of this study were (i) to describe the spatial distribution of Q fever-infected dairy cattle herds in Sweden, (ii) to quantify the respective contributions of wind and animal movements on the risk of infection, while accounting for other sources of variation, and (iii) to investigate the possible protective effect of precipitation. A total of 1537 bulk milk samples were collected and tested for presence of Cb antibodies. The prevalence of test-positive herds was higher in the south of Sweden. For herds located in areas with high wind speed, open landscape, high animal densities and high temperature, the risk of being infected reached very high values. Because these factors are difficult to control, vaccination could be an appropriate control measure in these areas. Finally, the cumulated precipitation over 1 year was identified as a protective factor.

  12. MEASUREMENT OF INTERMITTENCY OF ANISOTROPIC MAGNETOHYDRODYNAMIC TURBULENCE IN HIGH-SPEED SOLAR WIND

    SciTech Connect

    Luo, Q. Y.; Wu, D. J.; Yang, L.

    2011-06-01

    We investigate the intermittency of anisotropic magnetohydrodynamic (MHD) turbulence in high-speed solar wind. Using the data recorded by the Ulysses spacecraft, we apply the Castaing function to model the probability density functions of the fluctuating magnetic field and calculate the magnetic structure functions (SFs) S{sup p} of the order p in the coordinates (r, {Theta}), with r being the length scale and {Theta} the direction of the local mean field. The scaling exponent {zeta}, from S{sup p} (r, {Theta}){proportional_to}r {sup {zeta}(p,{Theta})}, has an anomalous nonlinear dependence on p, implying the intermittent scaling of solar wind turbulence, which has been observed for decades. Furthermore, we study the anisotropy of solar wind turbulence introduced by the strong mean magnetic field. From S{sup p} ({Theta} = 0){proportional_to}S{sup p} ({Theta} = {pi}/2), we obtain r{sub perpendicular{proportional_to}r {sup {alpha}}p||} with {alpha}{sub p} = {zeta}{sub ||}/{zeta}{sub perpendicular} denoting the perpendicular-parallel spatial correlation of the moment of the pth order. For the magnetic field difference {delta}B, we find {alpha}{sub 2} = 1.78 {+-} 0.26, consistent with recent theories and observations. However, when the contribution from the intermittent fluctuations begins to dominate the scaling, {alpha} is not a constant but increases with p, e.g., {alpha}{sub 5} = 1.97 {+-} 0.41 and {alpha}{sub 8} {approx} 2.42 {+-} 0.64. This complication of the perpendicular-parallel spatial correlation due to the intermittency raises new questions for MHD turbulence theory.

  13. The AEI 10 m prototype interferometer

    NASA Astrophysics Data System (ADS)

    Goßler, S.; Bertolini, A.; Born, M.; Chen, Y.; Dahl, K.; Gering, D.; Gräf, C.; Heinzel, G.; Hild, S.; Kawazoe, F.; Kranz, O.; Kühn, G.; Lück, H.; Mossavi, K.; Schnabel, R.; Somiya, K.; Strain, K. A.; Taylor, J. R.; Wanner, A.; Westphal, T.; Willke, B.; Danzmann, K.

    2010-04-01

    A 10 m prototype interferometer facility is currently being set up at the AEI in Hannover, Germany. The prototype interferometer will be housed inside a 100 m3 ultra-high vacuum envelope. Seismically isolated optical tables inside the vacuum system will be interferometrically interconnected via a suspension platform interferometer. Advanced isolation techniques will be used, such as inverted pendulums and geometrical anti-spring filters in combination with multiple-cascaded pendulum suspensions, containing an all-silica monolithic last stage. The light source is a 35 W Nd:YAG laser, geometrically filtered by passing it through a photonic crystal fibre and a rigid pre-modecleaner cavity. Laser frequency stabilisation will be achieved with the aid of a high finesse suspended reference cavity in conjunction with a molecular iodine reference. Coating thermal noise will be reduced by the use of Khalili cavities as compound end mirrors. Data acquisition and control of the experiments is based on the AdvLIGO digital control and data system. The aim of the project is to test advanced techniques for GEO 600 as well as to conduct experiments in macroscopic quantum mechanics. Reaching standard quantum-limit sensitivity for an interferometer with 100 g mirrors and subsequently breaching this limit, features most prominently among these experiments. In this paper we present the layout and current status of the AEI 10 m Prototype Interferometer project.

  14. Three dimensional transport speed of wind-drifted ash plumes using ground-based radar

    NASA Astrophysics Data System (ADS)

    Donnadieu, Franck; Valade, Sébastien; Moune, Séverine

    2011-09-01

    The main utilization of mobile ground-based Doppler radars is to quantify the dynamics of eruptive activity by aiming directly at the emission source. We show that they can also provide information on the initial lateral transport speed of weak ash plumes bent over by crosswind. The method is illustrated by measurements made with a transportable volcano Doppler radar (VOLDORAD) at Arenal volcano, Costa Rica. The near-source displacements of the plume are tracked through echo onsets induced by ash entering successive probed volumes in the radar beam. A constant transport velocity is commonly reached within a few seconds of the initial ash emission, as wind advection and buoyancy take over momentum. The plume azimuth and upraise angles are constrained by comparing the amplitude decrease of the radar echoes as a function of distance from the source with results from a simple geometric plume model. The three dimensional vector of the ash cloud transport speed is then reconstructed with an accuracy of a few percent. This method may have applications for volcano monitoring, for determining pyroclast fluxes, for the modeling of tephra dispersal, and for remote measurements of volcanic gas fluxes.

  15. Variability of daily winter wind speed distribution over Northern Europe during the past millennium in regional and global climate simulations

    NASA Astrophysics Data System (ADS)

    Bierstedt, Svenja; Hünicke, Birgit; Zorita, Eduardo; Wagner, Sebastian; José Gomez-Navarro, Juán

    2016-04-01

    We analyse the variability of the probability distribution of daily wind speed in wintertime over Northern and Central Europe in a series of global and regional climate simulations covering the last centuries, and in reanalysis products covering approximately the last 60 years. The focus of the study lies on identifying the link of the variations in the wind speed distribution to the regional near-surface temperature, to the meridional temperature gradient and to the North Atlantic Oscillation. The climate simulations comprise three simulations, each conducted with a global climate model that includes a different version of the atmospheric model ECHAM. Two of these global simulations have been downscaled with the regional climate models MM5 and CCLM. The reanalysis products are the global NCEP/NCAR meteorological reanalysis version 1 and a regional reanalysis conducted with a regional atmospheric model driven at its domain boundaries by the NCEP/NCAR reanalysis. Our main result is that the link between the daily wind distribution and the regional climate drivers is strongly model dependent. The global models tend to behave similarly, although they show some discrepancies. The two regional models also tend to behave similarly to each other, but surprisingly the results derived from each regional model strongly deviates from the results derived from its driving global model. The links between wind speed and large-scale drivers derived from the reanalysis data sets overall tend to resemble those of the global models. In addition, considering multi-centennial time scales, we find in two global simulations a long term tendency for the probability distribution of daily wind speed to widen through the last centuries. The cause for this widening is likely the effect of the deforestation prescribed in these simulations. We conclude that no clear systematic relationship between the mean temperature, the temperature gradient and/or the North Atlantic Oscillation, with the

  16. Effect of wind direction and speed on the dispersion of nucleation and accumulation mode particles in an urban street canyon.

    PubMed

    Kumar, Prashant; Fennell, Paul; Britter, Rex

    2008-08-25

    There have been many studies concerning dispersion of gaseous pollutants from vehicles within street canyons; fewer address the dispersion of particulate matter, particularly particle number concentrations separated into the nucleation (10-30 nm or N10-30) or accumulation (30-300 nm or N30-300) modes either separately or together (N10-300). This study aimed to determine the effect of wind direction and speed on particle dispersion in the above size ranges. Particle number distributions (PNDs) and concentrations (PNCs) were measured in the 5-2738 nm range continuously (and in real-time) for 17 days between 7th and 23rd March 2007 in a regular (aspect ratio approximately unity) street canyon in Cambridge (UK), using a newly developed fast-response differential mobility spectrometer (sampling frequency 0.5 Hz), at 1.60 m above the road level. The PNCs in each size range, during all wind directions, were better described by a proposed two regime model (traffic-dependent and wind-dependent mixing) than by simply assuming that the PNC was inversely proportional to the wind speed or by fitting the data with a best-fit single power law. The critical cut-off wind speed (Ur,crit) for each size range of particles, distinguishing the boundary between these mixing regimes was also investigated. In the traffic-dependent PNC region (UrUrwind speed and direction. In the wind speed dependent PNC region (UrUr>Ur,critUr,crit), concentrations were inversely proportional to Ur irrespective of any particle size range and wind directions. The wind speed demarcating the two regimes (Ur,critUr,crit) was 1.23+/-0.55 m s(-1) for N10-300, (1.47+/-0.72 m s(-1)) for N10-30 but smaller (0.78+/-0.29 m s(-1)) for N30-300.

  17. Luminescence intensity in coral skeletons from Mona Island in the Caribbean Sea and its link to precipitation and wind speed.

    PubMed

    Nyberg, Johan

    2002-04-15

    This study investigates the potential of using changes of interannual luminescence intensity in hermatypic Montastraea coral skeletons in the northeastern Caribbean as a proxy of precipitation and (trade) wind speed. In order to find wavelength pairs that are well suited to detect variations in the concentration of incorporated terrestrial humic substances in coral skeletons, and thus to reconstruct past run-off and rainfall, three-dimensional excitation-emission matrix fluorescence spectra of seawater samples were investigated on their relationships to local precipitation. Three prominent excitation-emission peaks at 310/430, 425/480 and 390/530 nm were identified. The fluorescence intensities of the wavelength pair 310/430 nm showed a weak relationship, while the wavelength pairs at 425/480 and 390/530 nm showed strong relationships with local precipitation. Variations in luminescence intensities from scans on the coral surface along the growth axis using the wavelengths identified were then compared with instrumental records of regional precipitation and wind speed. In the coral skeleton as well, the wavelength pairs at 425/480 and 390/530 nm were more strongly correlated with regional precipitation and wind speed. This indicates that these two wavelength pairs are well suited to reconstruct past precipitation and wind speed. In order to evaluate the use as a proxy of trade wind variability in the Caribbean, tropical Atlantic region, variations in luminescence intensity were compared with a record of trade wind variability from the southern Caribbean. The two records are strongly correlated, which suggests that luminescence intensity in coral skeletons, at least from Mona Island, can be used as proxy of trade wind variability and precipitation.

  18. Statistical Short-Range Guidance for Peak Wind Speed Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station: Phase I Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.; Merceret, Francis J. (Technical Monitor)

    2002-01-01

    This report describes the results of the ANU's (Applied Meteorology Unit) Short-Range Statistical Forecasting task for peak winds. The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The Keith Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A 7 year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. In all climatologies, the average and peak wind speeds were highly variable in time. This indicated that the development of a peak wind forecasting tool would be difficult. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. The climatologies and PDFs provide tools with which to make peak wind forecasts that are critical to safe operations.

  19. Preliminary assessment of the variability of UK offshore wind speed as a function of distance to the coast

    NASA Astrophysics Data System (ADS)

    Soler-Bientz, Rolando; Watson, Simon

    2016-09-01

    In the UK, there is an interest in the expected offshore wind resource given ambitious national plans to expand offshore capacity. There is also an increasing interest in alternative datasets to evaluate wind seasonal and inter-annual cycles which can be very useful in the initial stages of the design of wind farms in order to identify prospective areas where local measurements can then be applied to determine small-scale variations in the marine wind climate. In this paper we analyse both MERRA2 reanalysis data and measured offshore mast data to determine patterns in wind speed variation and how they change as a function of the distance from the coast. We also identify an empirical expression to estimate wind speed based on the distance from the coast. From the analysis, it was found that the variations of the seasonal cycles seem to be almost independent of the distance to the nearest shore and that they are an order of magnitude larger than the variations of the diurnal cycles. It was concluded that the diurnal variations decreased to less than a half for places located more than 100km from the nearest shore and that the data from the MERRA2 reanalysis grid points give an under-prediction of the average values of wind speed for both the diurnal and seasonal cycles. Finally, even though the two offshore masts were almost the same nearest distance from the coast and were geographically relatively close, they exhibited significantly different behaviour in terms of the strength of their diurnal and seasonal cycles which may be due to the distance from the coast for the prevailing wind direction being quite different for the two sites.

  20. Changes in sea-level pressure over South Korea associated with high-speed solar wind events

    NASA Astrophysics Data System (ADS)

    Cho, Il-Hyun; Kwak, Young-Sil; Marubashi, Katsuhide; Kim, Yeon-Han; Park, Young-Deuk; Chang, Heon-Young

    2012-09-01

    We explore a possibility that the daily sea-level pressure (SLP) over South Korea responds to the high-speed solar wind event. This is of interest in two aspects: first, if there is a statistical association this can be another piece of evidence showing that various meteorological observables indeed respond to variations in the interplanetary environment. Second, this can be a very crucial observational constraint since most models proposed so far are expected to preferentially work in higher latitude regions than the low latitude region studied here. We have examined daily solar wind speed V, daily SLP difference ΔSLP, and daily log(BV2) using the superposed epoch analysis in which the key date is set such that the daily solar wind speed exceeds 800 km s-1. We find that the daily ΔSLP averaged out of 12 events reaches its peak at day +1 and gradually decreases back to its normal level. The amount of positive deviation of ΔSLP is +2.5 hPa. The duration of deviation is a few days. We also find that ΔSLP is well correlated with both the speed of solar wind and log(BV2). The obtained linear correlation coefficients and chance probabilities with one-day lag for two cases are r ≃ 0.81 with P > 99.9%, and r ≃ 0.84 with P > 99.9%, respectively. We conclude by briefly discussing future direction to pursue.

  1. Radial forces analysis and rotational speed test of radial permanent magnetic bearing for horizontal axis wind turbine applications

    NASA Astrophysics Data System (ADS)

    Kriswanto, Jamari

    2016-04-01

    Permanent magnet bearings (PMB) are contact free bearings which utilize the forces generated by the magnets. PMB in this work is a type of radial PMB, which functions as the radial bearings of the Horizontal Axis Wind Turbine (HAWT) rotor shaft. Radial PMB should have a greater radial force than the radial force HAWT rotor shaft (bearing load). This paper presents a modeling and experiments to calculate the radial force of the radial PMB. This paper also presents rotational speed test of the radial PMB compared to conventional bearings for HAWT applications. Modeling using COMSOL Multiphysics 4.3b with the magnetic fields physics models. Experiments were conducted by measuring the displacement of the rotor to the stator for a given load variation. Results of the two methods showed that the large displacement then the radial force would be greater. Radial forces of radial PMB is greater than radial forces of HAWT rotor shaft. The rotational speed test results of HAWT that used radial PMB produced higher rotary than conventional bearings with an average increase of 87.4%. Increasing rotational speed occured because radial PMB had no friction. HAWT that used radial PMB rotated at very low wind speeds are 1.4 m/s with a torque of 0.043 Nm, while the HAWT which uses conventional bearing started rotating at a wind speed of 4.4 m/s and required higher torque of 0.104 N.

  2. Remote-Sensing of Solar Wind Speeds from IPS Observations at 140 and 327 MHz Using MEXART and STEL

    NASA Astrophysics Data System (ADS)

    Mejia-Ambriz, J. C.; Jackson, B. V.; Gonzalez-Esparza, J. A.; Buffington, A.; Tokumaru, M.; Aguilar-Rodriguez, E.

    2015-09-01

    Interplanetary scintillation (IPS) is used to probe solar wind speeds in the inner heliosphere by applying either of two generalized data-analysis techniques: model fitting to power spectra (MFPS) from a single station, or cross-correlation functions (CCF) produced by cross-correlating two simultaneous IPS time series from separate stations. The MEXican Array Radio Telescope (MEXART), observing at 140 MHz, is starting to use an MFPS technique. Here we report the first successful solar wind speed determinations with IPS observations by MEXART. Three stations of the Solar-Terrestrial Environment Laboratory (STEL), observing at 327 MHz, use a CCF, and an MFPS technique is also used at one of these sites. We here analyze data from MEXART and from one antenna of STEL to obtain solar wind speeds using an MFPS technique from a single station. The IPS observations were carried out with radio source 3C48 during Solar Cycle 24. The MFPS method we describe here is tested by comparing its obtained speeds with those from the STEL CCF technique. We find that the speeds from the two techniques generally agree within the estimated errors.

  3. IPS Observations at 140 MHz to Study Solar Wind Speeds and Density Fluctuations by MEXART.

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, A.; Chang, O.; Mejia-Ambriz, J. C.

    2015-12-01

    The interplanetary scintillation (IPS) technique is a remote-sensing method for monitoring the inner heliosphere. These observations supply information on solar wind conditions covering heliocentric ranges that no other technique can provide. The Mexican Array Radio Telescope (MEXART) is a single-station instrument operating at 140 MHz, fully dedicated to perform solar-wind studies employing the IPS technique. We present MEXART solar-wind measurements (scintillation indices and solar-wind speeds), reporting the first observations of four IPS sources (3C273, 3C283, 3C286, 3C298) detected by MEXART during October-December 2014. We present the first MEXART measurements of the transit of an IPS radio source (3C298) from weak to strong scattering regions, and the initial MEXART heliographic maps of solar wind conditions. The MEXART observations will complement the solar wind IPS studies using other frequencies, and the tracking of solar wind disturbances by other stations located at different longitudes. These solar wind measurements, provided in real time, can have space weather forecasting applications.

  4. Effect of winding layer and speed on kenaf/glass fiber hybrid reinforced acrylonitrile butadiene styrene (ABS) composites

    NASA Astrophysics Data System (ADS)

    Khoni, Norizzahthul Ainaa Abdul; Sharifah Shahnaz S., B.; Ghazali, Che Mohd Ruzaidi

    2016-07-01

    The usage of natural fiber is becoming significant in composite industries due to their good performance. Single and continuous natural fibers have relatively high mechanical properties; especially their young modulus can be as high as glass fibers. Filament winding is a method to produce technically aligned composites which have high fibers content. The properties of filament winding can be tailored to meet the end product requirements. This research studied the compression properties of kenaf/glass fibers hybrid reinforced composites. Kenaf/glass fibers hybrid composite samples were fabricated by filament winding technique and their properties were compared with the properties of neat kenaf fiber and glass fibers composites. The kenaf/glass fiber hybrid composites exhibited higher strength compared to the neat glass fibers composites. Composites of helical pattern, which produced at low winding speed showed better compression resistance than hoop pattern winding, which produced at high winding speed. As predicted, kenaf composite showed highest water absorption; followed by kenaf/glass fiber hybrid composites while neat glass fiber has lowest water absorption capability.

  5. Numerical Study on the Effect of Swept Blade on the Aerodynamic Performance of Wind Turbine at High Tip Speed Ratio

    NASA Astrophysics Data System (ADS)

    Zuo, H. M.; Liu, C.; Yang, H.; Wang, F.

    2016-09-01

    The current situation is that the development of high speed wind energy saturates gradually, therefore, it is highly necessary to develop low speed wind energy. This paper, based on a specific straight blade and by using Isight, a kind of multidiscipline optimization software, which integrates ICEM (Integrated Computer Engineering and Manufacturing) and CFD (Computational Fluid Dynamics) software, optimizes the blade stacking line (the centers of airfoil from blade root to tip) and acquires the optimization swept blade shape. It is found that power coefficient Cp of swept blade is 3.2% higher than that of straight blade at the tip speed ratio of 9.82, that the thrust of swept blade receives is obviously less than that of straight blade. Inflow angle of attack and steam line on the suction of the swept and straight blade are also made a comparison.

  6. Low Speed Technology for Small Turbine Development Reaction Injection Molded 7.5 Meter Wind Turbine Blade

    SciTech Connect

    David M. Wright; DOE Project Officer - Keith Bennett

    2007-07-31

    An optimized small turbine blade (7.5m radius) was designed and a partial section molded with the RIM (reaction-injection molded polymer) process for mass production. The intended market is for generic three-bladed wind turbines, 100 kilowatts or less, for grid-assist end users with rural and semi-rural sites, such as the farm/ranch market, having low to moderate IEC Class 3-4 wind regimes. This blade will have substantial performance improvements over, and be cheaper than, present-day 7.5m blades. This is made possible by the injection-molding process, which yields high repeatability, accurate geometry and weights, and low cost in production quantities. No wind turbine blade in the 7.5m or greater size has used this process. The blade design chosen uses a RIM skin bonded to a braided infused carbon fiber/epoxy spar. This approach is attractive to present users of wind turbine blades in the 5-10m sizes. These include rebladeing California wind farms, refurbishing used turbines for the Midwest farm market, and other manufacturers introducing new turbines in this size range.

  7. The Relation Between Wind Speed and Air-Sea Temperature Difference in the Marine Atmospheric Boundary Layer off Northwest Europe

    NASA Astrophysics Data System (ADS)

    Kettle, A. J.

    2014-12-01

    Wind speed and atmospheric stability have an important role in determining the turbulence in the marine atmospheric boundary layer (MABL) as well as the surface wave field. The understanding of MABL dynamics in northwest Europe is complicated by fetch effects, the proximity of coastlines, shallow topography, and larger scale circulation patterns (e.g., cold air outbreaks). Numerical models have difficulty simulating the marine atmospheric boundary layer in coastal areas and partially enclosed seas, and this is partly due to spatial resolution problems at coastlines. In these offshore environments, the boundary layer processes are often best understood directly from time series measurements from fixed platforms or buoys, in spite of potential difficulties from platform flow distortion as well as the spatial sparseness of the data sets. This contribution presents the results of time series measurements from offshore platforms in the North Sea and Norwegian Sea in terms of a summary diagnostic - wind speed versus air-sea temperature difference (U-ΔT) - with important implications for understanding atmospheric boundary layer processes. The U-ΔT diagram was introduced in earlier surveys of data from coastal (Sletringen; O.J. Andersen and J. Løvseth, J. Wind Eng. Ind. Aerodyn., 57, 97-109, 1995) and offshore (Statfjord A; K.J. Eidsvik, Boundary-Layer Meteorol., 32, 103-132, 1985) sites in northwest Europe to summarize boundary layer conditions at a given location. Additional information from a series of measurement purpose-built offshore measurement and oil/gas production platforms from the southern North Sea to the Norwegian Sea illustrates how the wind characteristics vary spatially over large distances, highlighting the influence of cold air outbreaks, in particular. The results are important for the offshore wind industry because of the way that wind turbines accrue fatigue damage in different conditions of atmospheric stability and wind speed.

  8. Leaky magnetohydrodynamic waveguide model for the acceleration of high-speed solar wind streams in coronal holes

    SciTech Connect

    Davila, J.M.

    1985-04-01

    It is well established observationally that high-speed solar wind streams originate in coronal hole regions in the solor corona. Models of the solar wind flow based on this observation indicate that heat conduction alone cannot account for the observed properties of the wind and that other sources of heat and/or momentum must be sought. One suggested source for this additional momentum is ''wave pressure'' generated by magnetohydrodynamic (MHD) waves. Theories of wave-driven winds exist, but they are not consistent with the observed fact that high-speed streams originate in discrete magnetic structures in the solar corona. The waves assumed responsible for acceleration of the high-speed solar wind streams should have periods of approximately a hundred seconds if they are driven by photospheric turbulence. But MHD waves with periods this large have wavelengths lambda> or approx. =d, where d is the characteristic tranverse size of the coronal hole. Current theories for the acceleration of the solar wind by MHD waves are valid only if the wavelength of the disturbance is much smaller than the characteristic transverse size of the coronal structure. This limit is not appropriate for the propagation of disturbances with periods Proughly-equal100 s in the acceleration region of the solar wind. In this paper the effect of coronal hole magnetic structure on the propagation of MHD waves of all periods is considered. It is found that for the wave-period range discussed above the coronal hole structure acts as a ''leaky'' MHD waveguide, i.e., wave flux which enters at the base of the coronal hole is only weakly guided by the coronal hole structure. A significant amount of wave energy leaks through the side of the coronal hole into the surrounding corona.

  9. Techniques for studying gravity waves and turbulence: Vertical wind speed power spectra from the troposphere and stratosphere obtained under light wind conditions

    NASA Technical Reports Server (NTRS)

    Ecklund, W. L.; Balsley, B. B.; Crochet, M.; Carter, D. A.; Riddle, A. C.; Garello, R.

    1983-01-01

    A joint France/U.S. experiment was conducted near the mouth of the Rhone river in southern France as part of the ALPEX program. This experiment used 3 vertically directed 50 MHz radars separated by 4 to 6 km. The main purpose of this experiment was to study the spatial characteristics of gravity waves. The good height resolution (750 meters) and time resolution (1 minute) and the continuous operation over many weeks have yielded high resolution vertical wind speed power spectra under a variety of synoptic conditions. Vertical spectra obtained during very quiet (low wind) conditions in the troposphere and lower stratosphere from a single site are presented.

  10. Inlet Unstart Propulsion Integration Wind Tunnel Test Program Completed for High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert

    2000-01-01

    One of the propulsion system concepts to be considered for the High-Speed Civil Transport (HSCT) is an underwing, dual-propulsion, pod-per-wing installation. Adverse transient phenomena such as engine compressor stall and inlet unstart could severely degrade the performance of one of these propulsion pods. The subsequent loss of thrust and increased drag could cause aircraft stability and control problems that could lead to a catastrophic accident if countermeasures are not in place to anticipate and control these detrimental transient events. Aircraft system engineers must understand what happens during an engine compressor stall and inlet unstart so that they can design effective control systems to avoid and/or alleviate the effects of a propulsion pod engine compressor stall and inlet unstart. The objective of the Inlet Unstart Propulsion Airframe Integration test program was to assess the underwing flow field of a High-Speed Civil Transport propulsion system during an engine compressor stall and subsequent inlet unstart. Experimental research testing was conducted in the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Glenn Research Center at Lewis Field. The representative propulsion pod consisted of a two-dimensional, bifurcated inlet mated to a live turbojet engine. The propulsion pod was mounted below a large flat plate that acted as a wing simulator. Because of the plate s long length (nominally 10-ft wide by 18-ft long), realistic boundary layers could form at the inlet cowl plane. Transient instrumentation was used to document the aerodynamic flow-field conditions during an unstart sequence. Acquiring these data was a significant technical challenge because a typical unstart sequence disrupts the local flow field for about only 50 msec. Flow surface information was acquired via static pressure taps installed in the wing simulator, and intrusive pressure probes were used to acquire flow-field information. These data were extensively analyzed to

  11. The Paradox of Filamented Coronal Hole Flow but Uniform High Speed Wind

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Parhi, Shyamsundar; Moore, Ronald L.

    1998-01-01

    Plumes and rays in coronal holes are nearly radially aligned density striations that follow the ambient magnetic field. They have long been known, but have gained new interest with growing awareness that coronal hole flow is inherently filamentary. In retrospect, filamentary flow should have been no surprise. This is because,Beta much less than 1 in coronal holes inside approximately 10 Solar radius, allowing the flow to be filamentary down to the smallest scale of photospheric magnetic activity. While the magnetic field itself is locally smooth across any height above ca. 50,000 km, SOHO/MDI has shown that the photospheric magnetic field is a complex array of rapidly evolving small bipoles that are constantly emerging, evolving, and cancelling. The resulting activity is manifested in microflares, concentrated in the magnetic network, that produce Impulsive injections at the footpoints of coronal field lines. The uneven distribution of this activity in space and time is the source of coronal hole filamentation. What is surprising is that the radial flow speed also exhibits filamentary structure. It is not well described as smooth, spherically symmetric, diverging flow, but instead ranges from 300 to over 1000 km/s at 5.5 Solar radius among field-aligned filaments like those seen in plumes and rays [Feldman et al., JGR, Dec. 1997]. This is completely unlike the constant high speed solar wind reported beyond 0.3 AU. Consequently, plumes and filamentary structure must be strongly mixed, and the mixing must be far along by 0.3 AU to be consistent with Helios observations. The paradox is what causes the mixing? Existing models of coronal heating and solar wind acceleration hardly address this issue. One possibility we are investigating is the MHD Kelvin-Helmholtz instability, to which the shear between plumes and interplume corona is expected to become unstable at 5-10 Solar radius. This instability can be simulated and followed far into the nonlinear regime and may

  12. Wind height distribution influence on offshore wind farm feasibility study

    NASA Astrophysics Data System (ADS)

    Benassai, Guido; Della Morte, Renata; Matarazzo, Antonio; Cozzolino, Luca

    2015-04-01

    The economic feasibility of offshore wind power utilization depends on the favourable wind conditions offshore as compared to sites on land. The higher wind speeds have to compensate the additional cost of offshore developments. However, not only the mean wind speed is different, but the whole flow regime, as can be seen in the vertical wind speed profile. The commonly used models to describe this profile have been developed mainly for land sites, so they have to be verified on the basis of field data. Monin-Obukhov theory is often used for the description of the wind speed profile at a different height with respect to a measurement height. Starting from the former, , the profile is predicted using two parameters, Obukhov length and sea surface roughness. For situations with near-neutral and stable atmospheric stratification and long (>30km) fetch, the wind speed increase with height is larger than what is predicted from Monin-Obukhov theory. It is also found that this deviation occurs at wind speeds important for wind power utilization, mainly at 5-9 ms-1. In the present study the influence of these aspects on the potential site productivity of an offshore wind farm were investigated, namely the deviation from the theory of Monin-Obukhov due to atmospheric stability and the influence of the fetch length on the Charnock model. Both these physical effects were discussed and examined in view of a feasibility study of a site for offshore wind farm in Southern Italy. Available data consisted of time histories of wind speeds and directions collected by National Tidegauge Network (Rete Mareografica Nazionale) at the height of 10m a.s.l. in ports. The theory of Monin-Obukhov was used to extrapolate the data to the height of the wind blades, while the Charnock model was used to extend the wind speed on the sea surface from the friction velocity on the ground. The models described were used to perform calculations for a feasibility study of an offshore wind farm in Southern

  13. Modelling the 2013 Typhoon Haiyan storm surge: Effect of waves, offshore winds, tide phase, and translation speed

    NASA Astrophysics Data System (ADS)

    Bilgera, P. H. T.

    2015-12-01

    Super Typhoon Haiyan, with wind speeds exceeding 300 km h-1 (160 knots) generated a storm surge in San Pedro Bay reaching heights of more than 6m in Tacloban City. Delft Dashboard (DDB), an open-source standalone Matlab based graphical user interface linked to the FLOW and WAVE modeling software of Deltares, was used to develop a coupled flow and wave storm surge model to understand the Typhoon Haiyan storm surge development and propagation. Various experiments were designed to determine the effect of waves, the occurrence of offshore winds prior to the surge, tidal phase, and typhoon translation speed on the surge height. Wave coupling decreased the surge height by about 0.5m probably due to energy dissipation from white capping, bottom friction, and depth-induced breaking. Offshore-directed winds before the arrival of the storm eye resulted to receding of the water level in San Pedro and Cancabato Bay, corroborated by eyewitness and tide gauge data. The experiment wherein the offshore winds were removed resulted to no water receding and a surge with a smaller and gentler surge front, pointing to the importance of the initial water level drawdown in contributing to the destructive power of the wave front. With regard to tides, the effect in Tacloban was actually neither linear nor additive to the surge, with higher surge coincident to low tides and lower surge coincident to high tides. Lastly, the model run with typhoon having a slower translation speed than Haiyan was found to generate higher surges.

  14. Assessing trophic linkages in and around offshore wind farms using two high-speed optical sensors

    NASA Astrophysics Data System (ADS)

    Dudeck, Tim; Hufnagl, Marc; Auch, Dominik; Eckhardt, André; Möller, Klas-Ove; van Beusekom, Justus; Walter, Bettina; Möllmann, Christian; Floeter, Jens

    2016-04-01

    In search for clean, renewable energy sources European countries have built and planned numerous Offshore Wind Farms (OWF) in the North Sea region. While some research has been carried out on their influence on marine mammals and bottom-dwelling organisms, less is known about fish and lower trophic levels in these areas. Yet, marine mammals purposely seek these structures and there are indications that there are higher chances of fish encounters. However, the local bottom-up effects probably driving these aggregations of higher trophic level organisms are poorly understood. In this study we show preliminary results of primary and secondary production in and around German OWFs in the North Sea using a Laser Optical Particle Counter and a Video Plankton Recorder. With the two sensors working simultaneously on the TRIAXUS system at high speed, we were able to investigate and ground-truth size-spectrum changes on a very high spatial resolution making it possible to detect OWF effects from local to larger scales. Our results show new possibilities in OWF research and the necessity to collect highly resolved field data for meaningful results in these dynamic environments. Furthermore, the use of size spectra simplifies the integration of energy flow through low and medium trophic levels into biogeochemical models by using only a single automatically measurable variable such as size.

  15. Long-term evolution in the global distribution of solar wind speed and density fluctuations during 1997-2009

    NASA Astrophysics Data System (ADS)

    Tokumaru, Munetoshi; Kojima, Masayoshi; Fujiki, Ken'ichi

    2012-06-01

    Interplanetary scintillation (IPS) observations made with the 327-MHz multistation system of the Solar-Terrestrial Environment Laboratory (STEL) are analyzed to investigate the global distribution of solar wind speed and density fluctuations (ΔNe) and their evolution during 1997-2009. This study aims at elucidating the evolution of ΔNe distribution during the cycle 23 and subsequent extended minimum, which is useful for improving understanding of the heliospheric response to the peculiar solar activity. The computer-assisted tomography (CAT) method is used in the present study to deconvolve the line-of-sight integration of STEL IPS observations. This CAT method enables retrieval of the quasi-stationary large-scale structure of the background solar wind. The results show that the high (low)-latitude region is dominated by reduced (enhanced) ΔNe plasma, being closely associated with the fast (slow) solar wind. The solar wind speed data show a distinct change with solar activity, and an excellent positive (negative) correlation is revealed between the fast (slow) wind area and the polar field strength of the Sun. In contrast, the ΔNe data do not show such a solar cycle variation, but instead reveal a significant increase in the fractional area of low-ΔNe region in 2004 preceded by a constant value with a small amount of fluctuation. This change is observed for all latitudes, distinctly after 2007 for low latitudes. Our finding is consistent with the long-term variation of the solar wind density revealed from in situ measurements at the Earth orbit, if ΔNe ∝ Ne (where Ne is the solar wind electron density), and also consistent with the coronal hole distribution during the last solar cycle. It is found that ΔNe is inversely correlated with the solar wind speed V. We obtain the best fit power law function ΔNe ∝ V-0.36±0.14 for V > 350 km/s, which is basically consistent with our earlier result. This fact suggests that the fractional density fluctuations

  16. Observations During GRIP from HIRAD: Images of C-Band Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Jones, W. L.; Ruf, C. S.; Uhlhorn, E. W.; Biswas, S.; May, C.; Shah, G.; Black, P.; Buckley, C. D.

    2012-01-01

    HIRAD (Hurricane Imaging Radiometer) flew on the WB-57 during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be inferred. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years. The advantage of HIRAD over SFMR is that HIRAD can observe a +/- 60-degree swath, rather than a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. To the extent possible, comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eyewall, location of vortex wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  17. Variable-Speed Wind Power Plant Operating With Reserve Power Capability: Preprint

    SciTech Connect

    Singh, M.; Gevorgian, V.; Muljadi, E.; Ela, E.

    2013-10-01

    As the level of wind penetration increases, wind turbine technology must move from merely generating power from wind to taking a role in supporting the bulk power system. Wind turbines should have the capability to provide inertial response and primary frequency (governor) response. Wind turbine generators with this capability can support the frequency stability of the grid. To provide governorresponse, wind turbines should be able to generate less power than the available wind power and hold the rest in reserves, ready to be accessed as needed. In this paper, we explore several ways to control wind turbine output to enable reserve-holding capability. The focus of this paper is on doubly-fed induction generator (also known as Type 3) and full-converter (also known as Type 4) windturbines.

  18. Modeling wind speed and snow accumulation gradients across complex terrain from typically collected meteorological data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mountain winds exhibit strong gradients over short distances due to the influence of terrain. In winter, the acceleration of wind over wind-exposed slopes and its consequent deceleration over lee slopes strongly influences snow distribution. The heterogeneous snow distribution effects soil moistur...

  19. High-speed solar wind streams and polar mesosphere winter echoes at Troll, Antarctica

    NASA Astrophysics Data System (ADS)

    Kirkwood, S.; Osepian, A.; Belova, E.; Lee, Y.-S.

    2015-06-01

    A small, 54 MHz wind-profiler radar, MARA, was operated at Troll, Antarctica (72° S, 2.5° E), continuously from November 2011 to January 2014, covering two complete Antarctic winters. Despite very low power, MARA observed echoes from heights of 55-80 km (polar mesosphere winter echoes, PMWE) on 60% of all winter days (from March to October). This contrasts with previous reports from radars at high northern latitudes, where PWME have been reported only by very high power radars or during rare periods of unusually high electron density at PMWE heights, such as during solar proton events. Analysis shows that PWME at Troll were not related to solar proton events but were often closely related to the arrival of high-speed solar wind streams (HSS) at the Earth, with PWME appearing at heights as low as 56 km and persisting for up to 15 days following HSS arrival. This demonstrates that HSS effects penetrate directly to below 60 km height in the polar atmosphere. Using local observations of cosmic-noise absorption (CNA), a theoretical ionization/ion-chemistry model and a statistical model of precipitating energetic electrons associated with HSS, the electron density conditions during the HSS events are estimated. We find that PMWE detectability cannot be explained by these variations in electron density and molecular-ion chemistry alone. PWME become detectable at different thresholds depending on solar illumination and height. In darkness, PWME are detected only when the modelled electron density is above a threshold of about 1000 cm-3, and only above 75 km height, where negative ions are few. In daylight, the electron density threshold falls by at least 2 orders of magnitude and PWME are found primarily below 75 km height, even in conditions when a large proportion of negative ions is expected. There is also a strong dawn-dusk asymmetry with PWME detected very rarely during morning twilight but often during evening twilight. This behaviour cannot be explained if PMWE

  20. Acceleration and heating of heavy ions in high speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Gomberoff, L.; Gratton, F. T.; Gnavi, G.

    1995-01-01

    Left hand polarized Alfven waves generated in coronal holes propagate in the direction of high speed solar wind streams, accelerating and heating heavy ions. As the solar wind expands, the ratio between the frequency of the Alfven waves and the proton gyrofrequency increases, due to the decrease of the interplanetary magnetic field, and encounter first the local ion gyrofrequency of the species with the largest M(sub l) = m(sub l)/z(sub l)m(sub p) (m(sub l) is the mass of species l, m(sub p) is the proton mass and z(sub l) is the degree of ionization of species l). It is shown that the Alfven waves experience there strong absorption and cannot propagate any further until the ions are accelerated and heated. Once this occurs, the Alfven waves continue to propagate until they meet the gyrofrequency of the next species giving rise to a similar phenomenon. In order to show this contention, we use the linear dispersion relation of ion cyclotron waves in a multicomponent plasma consisting of oxygen ions, alpha particles and protons. We assume that at any distance from the sun, the Alfven waves follow the local dispersion relation of electromagnetic ion cyclotron waves. To illustrate the results, we solve the dispersion relation for oxygen ions and alpha particles drifting relative to the protons. The dispersion relation has three branches. The first branch starts at zero frequency and goes to the Doppler-shifted oxygen ion gyrofrequency. The second branch starts close to the oxygen gyrofrequency, and goes to the Doppler-shifted alpha particle gyrofrequency. The third branch starts close to the alpha particle gyrofrequency, and goes to the proton gyrofrequency. The Alfven waves propagate following the first branch of the dispersion relation. When they reach the Doppler-shifted oxygen ion gyrofrequency, the ions are accelerated and heated to some definite values. When these values are reached, the dispersion relation changes, and it is now the first branch of the

  1. Flight kinematics of the barn swallow (Hirundo rustica) over a wide range of speeds in a wind tunnel.

    PubMed

    Park, K J; Rosén, M; Hedenström, A

    2001-08-01

    Two barn swallows (Hirundo rustica) flying in the Lund wind tunnel were filmed using synchronised high-speed cameras to obtain posterior, ventral and lateral views of the birds in horizontal flapping flight. We investigated wingbeat kinematics, body tilt angle, tail spread and angle of attack at speeds of 4-14 ms(-1). Wingbeat frequency showed a clear U-shaped relationship with air speed with minima at 8.9 ms(-1)(bird 1) and 8.7 ms(-1) (bird 2). A method previously used by other authors of estimating the body drag coefficient (C(D,par)) by obtaining agreement between the calculated minimum power (V(min)) and the observed minimum wingbeat frequency does not appear to be valid in this species, possibly due to upstroke pauses that occur at intermediate and high speeds, causing the apparent wingbeat frequency to be lower. These upstroke pauses represent flap-gliding, which is possibly a way of adjusting the force generated to the requirements at medium and high speeds, similar to the flap-bound mode of flight in other species. Body tilt angle, tail spread and angle of attack all increase with decreasing speed, thereby providing an additional lift surface and suggesting an important aerodynamic function for the tail at low speeds in forward flight. Results from this study indicate the high plasticity in the wingbeat kinematics and use of the tail that birds have available to them in order to adjust the lift and power output required for flight.

  2. Physically-based modeling of speed sensors for fault diagnosis and fault tolerant control in wind turbines

    NASA Astrophysics Data System (ADS)

    Weber, Wolfgang; Jungjohann, Jonas; Schulte, Horst

    2014-12-01

    In this paper, a generic physically-based modeling framework for encoder type speed sensors is derived. The consideration takes into account the nominal fault-free and two most relevant fault cases. The advantage of this approach is a reconstruction of the output waveforms in dependence of the internal physical parameter changes which enables a more accurate diagnosis and identification of faulty incremental encoders i.a. in wind turbines. The objectives are to describe the effect of the tilt and eccentric of the encoder disk on the digital output signals and the influence of the accuracy of the speed measurement in wind turbines. Simulation results show the applicability and effectiveness of the proposed approach.

  3. A Comparison of Solar Wind Speeds from a Source Surface Model and Comet Ion-Tail Observations

    NASA Astrophysics Data System (ADS)

    Jones, G.; Morrill, J.; Hammer, D.; Lawrence, G.; Wang, Y.

    2005-05-01

    During February 2003 Comet C/2002 V1 (NEAT) passed through the field-of-view (FOV) of the LASCO C3 coronagraph onboard SOHO. The comet passed within 0.1 AU (about 20 solar radii) of the Sun and displayed complex dust and ion tails. Observations of the comet's ion tail orientation have been used to estimate the solar wind speed while in the C3 FOV. We have used the Wang-Sheeley model to estimate the solar wind speed in the vicinity of the comet for comparison with the ion-tail results. The comet's orbit combined with solar rotation produced a comet track along the source surface at nearly constant Carrington longitude and heliographic latitudes ranging from 70 North to 40 South. Photospheric magnetic field maps from Carrington Rotation 1999 measured at three observatories (Wilcox, Kitt Peak, and Mt. Wilson) were used as inputs to the Wang-Sheeley model and each gave different placements of the current sheet. Two of the model results (Wilcox and Kitt Peak) placed the current sheet at similar latitudes (40-45 degrees North) while the third (Mt. Wilson) placed the current sheet at lower latitudes (20 degrees) and appeared to agreed with the current sheet placement implied by the ion-tail results. In this presentation we will discuss the methods of solar wind speed determination from ion-tail observations, present the comparison of solar wind speeds derived from the ion tail measurements with values derived from magnetic field observations, and discuss differences in photospheric magnetic field maps that could affect the location of the current sheet.

  4. Sensitivity of regional dust modelling to the wind speed and the emissions schemes: Impact on the hourly dust previsibility

    NASA Astrophysics Data System (ADS)

    Menut, L.

    2008-12-01

    The mineral dust emissions are highly sensitive to the surface characteristics and the wind speed. For global and climatological studies, the associated potential uncertainty may lead to large errors in the dust amount budget. The wind speed having really an hourly variability, this study first quantify the impact of using two meteorological datasets to model hourly dust emissions, over several months. Coupled to a sensitivity analysis on the emissions schemes themselves, quantification of the variabitily due to meteorological and emissions input parameters is quantified. The same modelling system was used for daily forecast in the framework of the AMMA experiment. Each day, the model CHIMERE-DUST forecasted dust concentrations over the whole North-Atlantic, Europe and northern Africa. First , an evaluation of the model is performed in analysis mode: hourly comparisons are done between surface AERONET optical thickness measurements, OMI satellite (aerosol index) measurements and concentrations and modelled optical thicknesses with CHIMERE-DUST. The accuracy and spread between measurements and model are quantified and discussed in term of the most important dust events observed during the first short observation period of the AMMA experiment, over the western Africa. Using the same comparisons criteria, the second step consist in the same type of calculations but with the 'forecasted' meteorological and dust concentrations fields. The model skill is evaluate in term of capability to forecast (i) the surface wind speed (the key process for dust emissions), (ii) the dust emissions (depending on the wind speed as well as numerous others uncertain parameters, including threshold values on the friction velocity) and (iii) the transport of aerosols from source to remote areas (depending of horizontal transport, convection etc.).

  5. Physicochemical properties of aerosols over the northeast Atlantic: Evidence for wind-speed-related submicron sea-salt aerosol production

    SciTech Connect

    O'Dowd, C.D.; Smith, M.H. )

    1993-01-20

    Physicochemical characteristics of submicron aerosol particles over the Northeast Atlantic (63[degrees]N, 8[degrees]W) during October/November 1989 have been examined using a thermal analytical technique and are classified according 10 air mass origin. Aerosol associated with anthropogenically influenced air masses contained typically 80% sulphate particles by number, the remainder being soot carbon and sea salt. For Arctic air masses the contribution of sulphate to the total aerosol was reduced to around 65%, due to low concentrations relative 10 sea salt which is dependent on wind speed. In situations with clean maritime air and high wind speeds, sulphate aerosol accounted for less than 25% of the total accumulation mode particles, the remainder consisting predominantly of sea salt. Arctic air masses and clean maritime air during periods of high winds were consistently acidic with inferred molar ratios of NH[sub 4][sup +]/SO[sub 4][sup =] near 0.2. The continental and modified maritime aerosol encountered was found to have molar ratios of about 0.8. Soot carbon was present in all air masses to a similar degree (5-13%). In clean air masses, submicron sea salt aerosol concentrations showed a strong exponential increase with wind speed (correlation coefficients cc [ge] 0.8), down to a dry particle radius of 0.05 [mu]m. Under these clean air' conditions and high winds the sea salt aerosol dominated all particle sizes for r > 0.05 [mu]m and accounted for approximately 75% of the total concentration, suggesting that under these conditions, sea salt aerosol would comprise the primary source cloud condensation nuclei (CCN) in stratiform clouds. 30 refs., 8 figs., 4 tabs.

  6. Study on Busemann Biplane Airfoil in Low-Speed Smoke Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Kashitani, Masashi; Yamaguchi, Yutaka; Kai, Yoshiharu; Hirata, Kenichi; Kusunose, Kazuhiro

    The Busemann biplane airfoil is considered one of the candidates for reducing sonic boom. In aircraft designs utilizing the biplane concept, high-lift devices must be used for takeoff and landing in low-speed conditions. In this work, flow visualizations were performed around a Busemann biplane airfoil equipped with leading and trailing edge flaps in a smoke wind tunnel. The lift coefficient of the biplane airfoil was estimated by utilizing a method based on measurements of smoke line patterns. The aspect ratio of the baseline Busemann biplane model was 0.75, the thickness ratio of the single element was 5%, and the wave cancellation condition was designed for Mach number 1.7. The length of each of the flap chords was 30% of the baseline. The Reynolds number, which is based on the chord length of the airfoil, is about 2.8×105. The results of the study are summarized as follows. For the baseline Busemann airfoil without flaps, the lift coefficient increases linearly as the angle of attack increases. The slope of the lift coefficient cl is 0.062 (1/deg.), which is in good agreement with reference data. This indicates that measuring smoke line patterns is a valid method for estimating the lift coefficient of biplane airfoils. Based on the visualization of the flow around the biplane model equipped with deflected leading and trailing edge flaps, confirmed that the separation bubble is smaller than in the baseline model due to the effective increase in camber. When the deflection angle of the trailing edge flap is increased, the lift coefficient also increases. The trend of the increasing cl is similar to that of conventional monoplane airfoil models with trailing edge flaps. Therefore, such flaps can be considered effective high-lift devices for Busemann biplane airfoils.

  7. Global trends in significant wave height and marine wind speed from the ERA-20CM

    NASA Astrophysics Data System (ADS)

    Aarnes, Ole Johan; Breivik, Øyvind

    2016-04-01

    The ERA-20CM is one of the latest additions to the ERA-series produced at the European Center for Medium-Range Weather Forecasts (ECMWF). This 10 member ensemble is generated with a version of the Integrated Forecast System (IFS), a coupled atmosphere-wave model. The model integration is run as a AMIP (Atmospheric Model Intercomparison Project) constrained by CMIP5 recommended radiative forcing and different realizations of sea-surface temperature (SST) and sea-ice cover (SIC) prescribed by the HadISST2 (Met Office Hadley Center). While the ERA-20CM is unable to reproduce the actual synoptic conditions, it is designed to offer a realistic statistical representation of the past climate, spanning the period 1899-2010. In this study we investigate global trends in significant wave height and marine wind speed based on ERA-20CM, using monthly mean data, upper percentiles and monthly/annual maxima. The aim of the study is to assess the quality of the trends and how these estimates are affected by different SST and SIC. Global trends are compared against corresponding estimates obtained with ERA-Interim (1979-2009), but also crosschecked against ERA-20C - an ECMWF pilot reanalysis of the 20th-century, known to most trustworthy in the Northern Hemisphere extratropics. Over the period 1900-2009, the 10 member ensemble yields trends mainly within +/- 5% per century. However, significant trends of opposite signs are found locally. Certain areas, like the eastern equatorial Pacific, highly affected by the El Niño Southern Oscillation, show stronger trends. In general, trends based on statistical quantities further into the tail of the distribution are found less reliable.

  8. [Wind-attenuation effect of Sonneratia apetala and Kandelia obovata plantations].

    PubMed

    Chen, Yu-Jun; Liao, Bao-Wen; Li, Mei; Chen, Bu-Feng; Chen, Yuan-Hai; Zhong, Cai-Rong; Li, Hua-Liang; Lin, Wei-Hai

    2012-04-01

    A field monitoring was conducted to examine the wind-attenuation effect of mangrove plantations at the Sanjiang Bay of Dongzhai Harbor, Hainan Province of South China. The wind speed and wind direction were measured at a site 50 m away from the offshore forest fringes of Sonneratia apetala and Kandelia obovata plantations and 2 m above the ground. Both the S. apetala and the K. obovata plantations had obvious effect in attenuating the speed of the wind from northerly to the shore, with the mean wind speed decreased by > 85% and the better effect of K. obovata plantation. With the increase of the wind speed, the wind-attenuation effect of the plantations presented a trend of decreasing first and remained stable then. At 50 m away from the offshore forest fringe of S. apetala plantation, the wind-attenuation rate was higher than 89.8% when the mean wind speed was lower than 5 m x s(-1), tended to be stable when the mean wind speed was 10 m x s(-1), and turned to be 58.9%-63.6% when the mean wind speed was higher than 15 m x s(-1). The S. apetala plantation had better wind attenuation effect in warmer season than in colder season. Under the extremely adverse weather like typhoon, the mean wind speed and extreme wind speed at 50 m away from the offshore forest fringe of S. apetala plantation were decreased by 59.4% and 53.2%, respectively.

  9. Slotted-wall research with disk and parachute models in the DSMA low-speed wind tunnel

    SciTech Connect

    Van Every, D.; Harris, J.L. )

    1990-06-01

    A test program investigated the effects of wall open area ratio (OAR) and model axial position on the measured drag of disk and parachute models in a low-speed wind tunnel. The data and discussion presented in this report provide new insight into the nature of slotted-wall interference for bluff bodies in steady flow and give the first quantitative information on nonsteady wall interference and airflow response during the inflation of a parachute. The report concludes that a fixed OAR of between 5% and 15% should eliminate wall interference during inflation and greatly reduce steady-flow interference for geometric blockages up to 15%. Preliminary arguments suggest that an optimum OAR may be found that alleviates wall interference for large models at low speeds while providing for acceptable testing of smaller models in the transonic speed range. 10 refs., 36 figs., 14 tabs.

  10. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    NASA Astrophysics Data System (ADS)

    Yang, Ben; Qian, Yun; Berg, Larry K.; Ma, Po-Lun; Wharton, Sonia; Bulaevskaya, Vera; Yan, Huiping; Hou, Zhangshuan; Shaw, William J.

    2016-07-01

    We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. The parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.

  11. Solar heat gain in a desert rodent: unexpected increases with wind speed and implications for estimating the heat balance of free-living animals.

    PubMed

    Walsberg, G E; Wolf, B O

    1995-01-01

    We quantified metabolic power consumption as a function of wind speed in the presence and absence of simulated solar radiation in rock squirrels, Spermophilus variegatus, a diurnal rodent inhabiting arid regions of Mexico and the western United States. In the absence of solar radiation, metabolic rate increased 2.2-fold as wind speed increased from 0.25 to 4.0m.s-1. Whole-body thermal resistance declined 56% as wind speed increased over this range, indicating that body insulation in this species is much more sensitive to wind disruption than in other mammals. In the presence of 950W.m-2 simulated solar radiation, metabolic rate increased 2.3-fold as wind speed was elevated from 0.25 to 4.0m.s-1. Solar heat gain, calculated as the reduction in metabolic heat production associated with the addition of solar radiation, increased with wind speed from 1.26mW.g-1 at 0.25m.s-1 to 2.92mW.g-1 at 4.0m.s-1. This increase is opposite to theoretical expectations. Both the unexpected increase in solar heat gain at elevated wind speeds and the large-scale reduction of coat insulation suggests that assumptions often used in heat-transfer analyses of animals can produce important errors.

  12. Development of a Convection Risk Index to forecast severe weather, and application to predict maximum wind speeds

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. A. E.; Wanik, D. W.; Scerbo, D.; Anagnostou, E. N.

    2015-12-01

    We have developed a tool, the Convection Risk Index (CRI), to represent the severity, timing and location of convection for select geographic areas. The CRI is calculated from the Convection Risk Matrix (CRM), a tabulation of numerous meteorological parameters which are categorized into four broad factors that contribute to convection (surface and lower level moisture, atmospheric instability, vertical wind shear, and lift); each of these factors have historically been utilized by meteorologists to predict the likelihood for development of thunderstorms. The CRM ascribes a specific threshold value to each parameter in such a way that it creates a unique tool used to calculate the risk for seeing the development of thunderstorms. The parameters were combined using a weighted formula and which when calculated, yields the Convection Risk Index 1 to 4 scale, with 4 being the highest risk for seeing strong convection. In addition, we also evaluated the performance of the parameters in the CRM and CRI for predicting the maximum wind speed in areas where we calculated the CRI using nonparametric tree-based model, Bayesian additive trees (BART). The use of the CRI and the predicted wind speeds from BART can be used to better inform emergency preparedness efforts in government and industry.We have developed a tool, the Convection Risk Index (CRI), to represent the severity, timing and location of convection for select geographic areas. The CRI is calculated from the Convection Risk Matrix (CRM), a tabulation of numerous meteorological parameters which are categorized into four broad factors that contribute to convection (surface and lower level moisture, atmospheric instability, vertical wind shear, and lift); each of these factors have historically been utilized by meteorologists to predict the likelihood for development of thunderstorms. The CRM ascribes a specific threshold value to each parameter in such a way that it creates a unique tool used to calculate the risk for

  13. Tests of models equipped with TPS in low speed ONERA F1 pressurized wind tunnel

    NASA Astrophysics Data System (ADS)

    Leynaert, J.

    1992-09-01

    The particular conditions of tests of models equipped with a turbofan powered simulator (TPS) at high Reynolds numbers in a pressurized wind tunnel are presented. The high-pressure air supply system of the wind tunnel, the equipment of the balance with the high-pressure traversing flow and its calibration, and the thrust calibration method of the TPS and its verification in the wind tunnel are described.

  14. Analytical and experimental investigation of a wound-rotor variable-speed, constant-frequency generator for small wind energy systems

    NASA Astrophysics Data System (ADS)

    Higashi, K. K.; Minges, G. P.; Price, G. D.

    1982-10-01

    The use of a wound rotor variable speed, constant frequency generator with small wind systems was investigated. The main initial objective was to demonstrate proof of concept under controlled conditions. The feasibility of this application was confirmed and it was shown that improved performance could be expected over a constant speed, constant frequency generator systems. The ability to maintain a constant tip speed ratio near the maximum rotor performance coefficient over a wide range of wind speeds is noted. A substantial increase in annual energy output can be expected from VSCF operation. Controlled start up and shutdown can also reduce the high transient torques and concomitant inrush currents common to induction generator systems.

  15. Validation of Wind Speed Maps From Satellite Sar Through Footprint Analysis of In-situ Data From An Offshore Meteorological Mast In Denmark

    NASA Astrophysics Data System (ADS)

    Hasager, C. B.; Nielsen, M.; Furevik, B.

    At the Horns Rev site in the North Sea, Denmark a 62 m tall meteorological mast is collecting meteorological data for offshore wind power prediction. These data are analysed with a footprint method of area-averaging prior to comparison to wind speed maps derived from ERS SAR satellite scenes. The SAR wind speed maps are cal- culated from the algorithm CMOD-IFR2. The needed input of wind direction to the algorithm is calculated either by Fast Fourier Transform that solve for the wind direc- tion in the case of wind streaks in the SAR scene, or taken from mast observations. The sensitivity of SAR wind speeds to wind direction is assessed. The validation method- ology of comparing footprint values to SAR wind speed maps is very accurate as the geolocation, the actual flux source area as well as the averaging time is as precisely determined as physically possible. This ensures a correct comparison between spatial snap-shots (SAR) and time-averages (mast). Results from the 16 cases investigated are very good. The work is funded by WEMSAR ERK6-CT-00017, the ERS SAR scenes are from ESA AO3-153 and the in-situ data are from ELSAM/ELTRA.

  16. Influence of Sub-Daily Variation on Multi-Fractal Detrended Fluctuation Analysis of Wind Speed Time Series.

    PubMed

    Wang, Xianxun; Mei, Yadong; Li, Weinan; Kong, Yanjun; Cong, Xiangyu

    2016-01-01

    Using multi-fractal detrended fluctuation analysis (MF-DFA), the scaling features of wind speed time series (WSTS) could be explored. In this paper, we discuss the influence of sub-daily variation, which is a natural feature of wind, in MF-DFA of WSTS. First, the choice of the lower bound of the segment length, a significant parameter of MF-DFA, was studied. The results of expanding the lower bound into sub-daily scope shows that an abrupt declination and discrepancy of scaling exponents is caused by the inability to keep the whole diel process of wind in one single segment. Additionally, the specific value, which is effected by the sub-daily feature of local meteo-climatic, might be different. Second, the intra-day temporal order of wind was shuffled to determine the impact of diel variation on scaling exponents of MF-DFA. The results illustrate that disregarding diel variation leads to errors in scaling. We propose that during the MF-DFA of WSTS, the segment length should be longer than 1 day and the diel variation of wind should be maintained to avoid abnormal phenomena and discrepancy in scaling exponents. PMID:26741491

  17. Influence of Sub-Daily Variation on Multi-Fractal Detrended Fluctuation Analysis of Wind Speed Time Series

    PubMed Central

    Li, Weinan; Kong, Yanjun; Cong, Xiangyu

    2016-01-01

    Using multi-fractal detrended fluctuation analysis (MF-DFA), the scaling features of wind speed time series (WSTS) could be explored. In this paper, we discuss the influence of sub-daily variation, which is a natural feature of wind, in MF-DFA of WSTS. First, the choice of the lower bound of the segment length, a significant parameter of MF-DFA, was studied. The results of expanding the lower bound into sub-daily scope shows that an abrupt declination and discrepancy of scaling exponents is caused by the inability to keep the whole diel process of wind in one single segment. Additionally, the specific value, which is effected by the sub-daily feature of local meteo-climatic, might be different. Second, the intra-day temporal order of wind was shuffled to determine the impact of diel variation on scaling exponents of MF-DFA. The results illustrate that disregarding diel variation leads to errors in scaling. We propose that during the MF-DFA of WSTS, the segment length should be longer than 1 day and the diel variation of wind should be maintained to avoid abnormal phenomena and discrepancy in scaling exponents. PMID:26741491

  18. Influence of Sub-Daily Variation on Multi-Fractal Detrended Fluctuation Analysis of Wind Speed Time Series.

    PubMed

    Wang, Xianxun; Mei, Yadong; Li, Weinan; Kong, Yanjun; Cong, Xiangyu

    2016-01-01

    Using multi-fractal detrended fluctuation analysis (MF-DFA), the scaling features of wind speed time series (WSTS) could be explored. In this paper, we discuss the influence of sub-daily variation, which is a natural feature of wind, in MF-DFA of WSTS. First, the choice of the lower bound of the segment length, a significant parameter of MF-DFA, was studied. The results of expanding the lower bound into sub-daily scope shows that an abrupt declination and discrepancy of scaling exponents is caused by the inability to keep the whole diel process of wind in one single segment. Additionally, the specific value, which is effected by the sub-daily feature of local meteo-climatic, might be different. Second, the intra-day temporal order of wind was shuffled to determine the impact of diel variation on scaling exponents of MF-DFA. The results illustrate that disregarding diel variation leads to errors in scaling. We propose that during the MF-DFA of WSTS, the segment length should be longer than 1 day and the diel variation of wind should be maintained to avoid abnormal phenomena and discrepancy in scaling exponents.

  19. Effect of Lunar Phases, Tides, and Wind Speed on the Abundance of Diptera Calliphoridae in a Mangrove Swamp.

    PubMed

    Batista-da-Silva, J A

    2014-02-01

    Abiotic factors, such as lunar phases and tides, have a significant effect on insect development. Reproduction and immature development are usually interlinked to these abiotic factors. The tide is at its highest levels at full moon or new moon, hindering the feeding of the immature or causing their drowning. The oviposition by adult females is also compromised on these days because much of the available food is submerged. Another important abiotic factor is the wind, which displaces odoriferous particles in the air. Wind speed and direction are important elements to indicate potential sources of food for insects. I report on the effects of lunar phases, tides, and wind speed on the Calliphoridae fauna in mangrove swamps. The different species collected were identified, and the predominant species in the area were quantified. A total of 1,710 flies were collected over a 1-year period. Six Calliphoridae flies, Chloroprocta idioidea (Robineau-Desvoidy), Chrysomya megacephala (Fabricius), Chrysomya albiceps (Wiedemann), Chrysomya putoria (Wiedemann), Cochliomyia macellaria (Fabricius), and Lucilia eximia (Wiedemann) were collected. Data indicated that lunar phases have a significant effect on the abundance of C. albiceps (r = 0.39, p < 0.01), and that the variation of the tides also affected the abundance of C. putoria (r = 0.40, p < 0.00), C. macellaria (r = 0.41, p < 0.00), and C. idioidea (r = 0.31, p < 0.04). The wind speed, however, did not affect these species.

  20. Observations of C-Band Brightness Temperature and Ocean Surface Wind Speed and Rain Rate in Hurricanes Earl And Karl (2010)

    NASA Technical Reports Server (NTRS)

    Miller, Timothy; James, Mark; Roberts, Brent J.; Biswax, Sayak; Uhlhorn, Eric; Black, Peter; Linwood Jones, W.; Johnson, Jimmy; Farrar, Spencer; Sahawneh, Saleem

    2012-01-01

    Ocean surface emission is affected by: a) Sea surface temperature. b) Wind speed (foam fraction). c) Salinity After production of calibrated Tb fields, geophysical fields wind speed and rain rate (or column) are retrieved. HIRAD utilizes NASA Instrument Incubator Technology: a) Provides unique observations of sea surface wind, temp and rain b) Advances understanding & prediction of hurricane intensity c) Expands Stepped Frequency Microwave Radiometer capabilities d) Uses synthetic thinned array and RFI mitigation technology of Lightweight Rain Radiometer (NASA Instrument Incubator) Passive Microwave C-Band Radiometer with Freq: 4, 5, 6 & 6.6 GHz: a) Version 1: H-pol for ocean wind speed, b) Version 2: dual ]pol for ocean wind vectors. Performance Characteristics: a) Earth Incidence angle: 0deg - 60deg, b) Spatial Resolution: 2-5 km, c) Swath: approx.70 km for 20 km altitude. Observational Goals: WS 10 - >85 m/s RR 5 - > 100 mm/hr.

  1. Improving the predictions of solar wind speed and interplanetary magnetic field at the Earth

    NASA Astrophysics Data System (ADS)

    Tran, Tham

    2009-09-01

    The Wang-Sheeley-Arge (WSA) model, an advanced version of the potential field source surface (PFSS) model, is widely used to predict the solar wind speed (SWS) and the interplanetary magnetic field (IMF) polarities at the Earth. The results, however, do not always match the observations. To improve the predictive capability of this model we made the following changes: (1) We used the high resolution magnetograms produced by the Michelson Doppler Imager (MDI) aboard the Solar and Heliospheric Observer (SOHO) spacecraft. We properly calibrated the magnetic field strength of the MDI observations using the Mt. Wilson (MWO) FeI magnetograms so that each MDI level 1.8 magnetogram can be converted to the same basis as the saturation-corrected long-duration MWO Fel magnetogram. (2) The WSA model requires a map of full solar surface magnetic field, and traditionally a synoptic chart is used. However, the synoptic chart does not represent the full solar surface at a particular time. Therefore, we suggest to use a new format called heliospheric (or snapshot) map in the model. (3) We implement a better estimate of the polar field that is not observable during some part of the year due to the solar tilted angle B0. The magnetic field near the solar poles is very important because it may be the dominant part of the solar magnetic field far away from the Sun, especially during the period of solar minimum. (4) The WSA model assumes that the solar photospheric magnetic field is nearly radial, so that its radial component can be obtained directly from the line-of-sight (LOS) of the observed field. This approach produces very strong radial magnetic field near the solar poles. We solve this problem by first obtaining the spherical harmonic coefficients directly from the LOS magnetic data and then reconstructing the radial magnetic chart. (5) Finally, changing the radius of the source surface, rss, in the PFSS analysis strongly affects the predicted SWS and IMF at the Earth. Our

  2. Self streamlining wind tunnel: Low speed testing and transonic test section design

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.; Goodyer, M. J.

    1977-01-01

    Comprehensive aerodynamic data on an airfoil section were obtained through a wide range of angles of attack, both stalled and unstalled. Data were gathered using a self streamlining wind tunnel and were compared to results obtained on the same section in a conventional wind tunnel. The reduction of wall interference through streamline was demonstrated.

  3. In-situ erosion of cohesive sediment in a large shallow lake experiencing long-term decline in wind speed

    NASA Astrophysics Data System (ADS)

    Wu, Tingfeng; Timo, Huttula; Qin, Boqiang; Zhu, Guangwei; Janne, Ropponen; Yan, Wenming

    2016-08-01

    In order to address the major factors affecting cohesive sediment erosion using high-frequency in-situ observations in Lake Taihu, and the response of this erosion to long-term decline in wind speed, high-frequency meteorological, hydrological and turbidity sensors were deployed to record continuous field wind-induced wave, current and sediment erosion processes; Statistical analyses and mathematic modeling spanning 44 years were also conducted. The results revealed that the unconsolidated surficial cohesive sediment frequently experiences the processes of erosion, suspension and deposition. Wind waves, generated by the absorption of wind energy, are the principal force driving this cycle. When the wavelength-to-water depth ratio (L/D) is 2-3, wave propagation is affected by lakebed friction and surface erosion occurs. When L/D > 3, the interaction between wave and lakebed increases to induce massive erosion. However, influenced by rapid urbanization in the Lake Taihu basin, wind speed has significantly decreased, by an average rate of -0.022 m s-1 a-1, from 1970 to 2013. This has reduced the erodible area, represented by simulated L/D, at a rate of -16.9 km2 a-1 in the autumn and winter, and -8.1 km2 a-1 in the spring and summer. This significant decrease in surface erosion area, and the near disappearance of areas experiencing massive erosion, imply that Lake Taihu has become calmer, which can be expected to have adverse effects on the lake ecosystem by increasing eutrophication and nuisance cyanobacteria blooms.

  4. Estimating expected change of wind speed and solar radiation in the Carpathian basin using fine resolution regional climate models

    NASA Astrophysics Data System (ADS)

    Bartholy, J.; Pongracz, R.; Dobor, L.; Miklos, E.; Gelybo, G. Y.

    2009-04-01

    Spatial resolution of global climate models (GCMs) are inappropriate to describe regional climate processes; therefore, GCM outputs may be misleading to compose regional climate change scenarios for the 21st century. In order to provide better estimations for regional climate parameters, fine resolution regional climate models (RCM) can be used. RCMs are limited area models nested in GCMs, i.e., the initial and the boundary conditions of RCMs are provided by the GCM outputs. In order to estimate the regional climate change expected in the Carpathian basin, outputs from several RCMs are summarized and analyzed for the periods of 2071-2100 (in case of A2 and B2 emission scenarios) and 1961-1990 (representing the current baseline climatic conditions). The RCM output variables with 50 km resolution horizontal are available from the completed European project PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects). Wind speed and solar radiation are both important meteorological parameters in terms of renewable energy potentials. The results suggest that in the Carpathian basin wind speed is likely to increase in all months by the end of the 21st century in case of both scenarios, which increases the wind energy potential in the region. Solar radiation is projected to increase in the summer half-year, and slightly decrease in winter. Thus, solar energy use during summer may become a more efficient renewable source in the future.

  5. The design of a low-speed wind tunnel for studying the flow field of insects' flight

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-yan; Zhang, Peng-fei; Ma, Yun; Ning, Jian-guo

    2015-03-01

    In this paper, low-speed smoke wind tunnel has been designed and fabricated for the insects' flow field visualization. The test section and the contraction section of the tunnel are optimized and determined as to size by the method of computational fluid dynamics. And fairing devices are equipped in different sections to reduce the turbulence intensity and increase the flow uniformity in the experimental sections. For the smoke visualization of small insects, the smokeemitting equipment has been specially designed and carefully debugged. Composed of wind tunnel, light source and high-speed camera, experimental platform for visualization and filming of insect flight flow field has been established. Besides, the feasible and stable method for insect fixing has been designed. With the smoke wind tunnel, flow filed visualization experiment for the honeybee's flapping was conducted and smoke flow filed in the experiment was recorded and analyzed. Near-filed and far-filed vortex structure when the honeybee fly can be recorded clearly. The experimental results indicate that the experimental platform is appropriate for flow filed study on insects flapping.

  6. Three Dimensional Wind Speed and Flux Measurement over a Rain-fed Soybean Field Using Orthogonal and Non-orthogonal Sonic Anemometer Designs

    NASA Astrophysics Data System (ADS)

    Thomas, T.; Suyker, A.; Burba, G. G.; Billesbach, D.

    2014-12-01

    The eddy covariance method for estimating fluxes of trace gases, energy and momentum in the constant flux layer above a plant canopy fundamentally relies on accurate measurements of the vertical wind speed. This wind speed is typically measured using a three dimensional ultrasonic anemometer. These anemometers incorporate designs with transducer sets that are aligned either orthogonally or non-orthogonally. Previous studies comparing the two designs suggest differences in measured 3D wind speed components, in particular vertical wind speed, from the non-orthogonal transducer relative to the orthogonal design. These differences, attributed to additional flow distortion caused by the non-orthogonal transducer arrangement, directly affect fluxes of trace gases, energy and momentum. A field experiment is being conducted over a rain-fed soybean field at the AmeriFlux site (US-Ne3) near Mead, Nebraska. In this study, ultrasonic anemometers featuring orthogonal transducer sets (ATI Vx Probe) and non-orthogonal transducer sets (Gill R3-100) collect high frequency wind vector and sonic temperature data. Sensible heat and momentum fluxes and other key sonic performance data are evaluated based on environmental parameters including wind speed, wind direction, temperature, and angle of attack. Preliminary field experiment results are presented.

  7. Analysis of Change in the Wind Speed Ratio according to Apartment Layout and Solutions

    PubMed Central

    Hyung, Won-gil; Kim, Young-Moon; You, Ki-Pyo

    2014-01-01

    Apartment complexes in various forms are built in downtown areas. The arrangement of an apartment complex has great influence on the wind flow inside it. There are issues of residents' walking due to gust occurrence within apartment complexes, problems with pollutant emission due to airflow congestion, and heat island and cool island phenomena in apartment complexes. Currently, the forms of internal arrangements of apartment complexes are divided into the flat type and the tower type. In the present study, a wind tunnel experiment and computational fluid dynamics (CFD) simulation were performed with respect to internal wind flows in different apartment arrangement forms. Findings of the wind tunnel experiment showed that the internal form and arrangement of an apartment complex had significant influence on its internal airflow. The wind velocity of the buildings increased by 80% at maximum due to the proximity effects between the buildings. The CFD simulation for relaxing such wind flows indicated that the wind velocity reduced by 40% or more at maximum when the paths between the lateral sides of the buildings were extended. PMID:24688430

  8. Analysis of change in the wind speed ratio according to apartment layout and solutions.

    PubMed

    Hyung, Won-gil; Kim, Young-Moon; You, Ki-Pyo

    2014-01-01

    Apartment complexes in various forms are built in downtown areas. The arrangement of an apartment complex has great influence on the wind flow inside it. There are issues of residents' walking due to gust occurrence within apartment complexes, problems with pollutant emission due to airflow congestion, and heat island and cool island phenomena in apartment complexes. Currently, the forms of internal arrangements of apartment complexes are divided into the flat type and the tower type. In the present study, a wind tunnel experiment and computational fluid dynamics (CFD) simulation were performed with respect to internal wind flows in different apartment arrangement forms. Findings of the wind tunnel experiment showed that the internal form and arrangement of an apartment complex had significant influence on its internal airflow. The wind velocity of the buildings increased by 80% at maximum due to the proximity effects between the buildings. The CFD simulation for relaxing such wind flows indicated that the wind velocity reduced by 40% or more at maximum when the paths between the lateral sides of the buildings were extended.

  9. Sea spray aerosol production measured in-situ and in a laboratory high-speed wind-wave tunnel

    NASA Astrophysics Data System (ADS)

    Savelyev, I.; Frick, G.; Anguelova, M. D.; Haus, B. K.

    2012-12-01

    This presentation overviews a series of experiments recently conducted in the open ocean onboard of Research Platform FLIP, as well as in the high speed Air-Sea Interaction Saltwater Tank (ASIST). In both experiments vertical profiles of size-dependent aerosol concentrations (0.01 - 47 μm range) were measured in close proximity to the air-sea interface using Scattering Aerosol Spectrometer and Differential Mobility Analyzer. Within ~7 days of useful open ocean measurements wind speed U10 varied in ~ 3 - 18 m/s range with significant wave height reaching up to ~ 5 m, whereas U10 wind speed equivalent in ASIST varied up to 40 m/s in addition to mechanically superimposed waves of arbitrary amplitudes. In both cases air-sea interface processes were observed with visible and infrared cameras and other standard instrumentation. This study seeks to evaluate the extent to which laboratory data can complement and aid in the analysis of open ocean measurements. The overall goal is to develop better understanding of underlying physical processes of spray production and its near-surface dynamics, which is needed for uncertainty reduction of existing sea spray source function formulations.

  10. Determining the solar wind speed above active regions using remote radio-wave observations

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.; Bougeret, J.-L.

    1983-01-01

    A new technique has made it possible to measure the velocity of portions of the solar wind during its flow outward from the sun. This analysis utilizes spacecraft (ISEE-3) observations of radio emission generated in regions of the solar wind associated with solar active regions. By tracking the source of these radio waves over periods of days, it is possible to measure the motion of the emission regions. Evidence of solar wind acceleration during this outward flow, consistent with theoretical models, has also been obtained.

  11. Nonlinear analysis of wind-induced vibration of high-speed railway catenary and its influence on pantograph-catenary interaction

    NASA Astrophysics Data System (ADS)

    Song, Yang; Liu, Zhigang; Wang, Hongrui; Lu, Xiaobing; Zhang, Jing

    2016-06-01

    The wind-induced vibration of the high-speed catenary and the dynamic behaviour of the pantograph-catenary under stochastic wind field are firstly analysed. The catenary model is established based on nonlinear cable and truss elements, which can fully describe the nonlinearity of each wire and the initial configuration. The model of the aerodynamic forces acting on the messenger/contact wire is deduced by considering the effect of the vertical and horizontal fluctuating winds. The vertical and horizontal fluctuating winds are simulated by employing the Davenport and Panofsky spectrums, respectively. The aerodynamic coefficients of the contact/messenger wire are calculated through computational fluid dynamics. The wind-induced vibration response of catenary is analysed with different wind speeds and angles. Its frequency-domain characteristics are discussed using Auto Regression model. Finally, a pantograph model is introduced and the contact force of the pantograph-catenary under stochastic wind is studied. The results show that both the wind speed and the attack angle exert a significant effect on the wind-induced vibration. The existence of the groove on the contact wire cross-section leads to a significant change of the aerodynamic coefficient, which affects largely the aerodynamic forces applied on the catenary wires, as well as the vibration response. The vibration frequency with high spectral power mainly concentrates on the predominant frequency of the fluctuating wind and the natural frequency of catenary. The increase in the wind speed results in a significant deterioration of the current collection. The numerical example shows that a relatively stable current collection can be ensured when the wind flows at the relatively horizontal direction.

  12. Comparison of the Aerodynamic Characteristics of Similar Models in Two Size Wind Tunnels at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Springer, Anthony M.

    1998-01-01

    The aerodynamic characteristics of two similar models of a lifting body configuration were run in two transonic wind tunnels, one a 16 foot the other a 14-inch and are compared. The 16 foot test used a 2% model while the 14-inch test used a 0.7% scale model. The wind tunnel model configurations varied only in vertical tail size and an aft sting shroud. The results from these two tests compare the effect of tunnel size, Reynolds number, dynamic pressure and blockage on the longitudinal aerodynamic characteristics of the vehicle. The data accuracy and uncertainty are also presented. It was concluded from these tests that the data resultant from a small wind tunnel compares very well to that of a much larger wind tunnel in relation to total vehicle aerodynamic characteristics.

  13. Deriving a relationship between wind speed and marine aerosol optical depth using CALIPSO and AMSR-E data

    NASA Astrophysics Data System (ADS)

    Kiliyanpilakkil, V.; Meskhidze, N.

    2010-12-01

    The number concentration, size distribution and chemical composition of marine aerosols were suggested to be some of the major uncertainties in model-predicted indirect radiative forcing. The influence of wind speed on marine aerosol optical depth (AOD) was comprehensively studied using remote sensing techniques during the last several decades. However, assessment of optical properties of “clean marine aerosols” using the satellite data was hindered by the presence of mineral dust, smoke from wildfires, and anthropogenic pollution. Up until very recently there was no simple way to distinguish the maritime contribution to aerosol optical turbidity from the background aerosols of the continental origin. In this study we constrain wind speed dependence of marine aerosols using four years of satellite retrievals of aerosol optical properties from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite and the wind speed data from the Advanced Microwave Scanning Radiometer (AMSR-E) onboard the AQUA satellite. We have collocated Level 2, version 3.01 CALIOP 5 km horizontal resolution layer AOD with the Level 3, version 5 gridded (0.25°×0.25°) AMSR-E-derived 10 meter daily surface wind speed (U10). CALIOP is capable of providing the high resolution vertical information about different aerosol subtypes such as clean continental, marine, desert dust, polluted continental, polluted dust, and biomass burning.

    Here we only used CALIOP derived marine aerosol subtypes for single layer aerosols below 2 km height. The regression statistics for the dependency of maritime aerosol optical properties on U10 was calculated for selected 15 regions covering all the major parts of the global oceans for the time period of June 2006 to June 2010. Collocated AOD measurements for selected regions were merged together and the resultant dataset was sorted

  14. Noise model based ν-support vector regression with its application to short-term wind speed forecasting.

    PubMed

    Hu, Qinghua; Zhang, Shiguang; Xie, Zongxia; Mi, Jusheng; Wan, Jie

    2014-09-01

    Support vector regression (SVR) techniques are aimed at discovering a linear or nonlinear structure hidden in sample data. Most existing regression techniques take the assumption that the error distribution is Gaussian. However, it was observed that the noise in some real-world applications, such as wind power forecasting and direction of the arrival estimation problem, does not satisfy Gaussian distribution, but a beta distribution, Laplacian distribution, or other models. In these cases the current regression techniques are not optimal. According to the Bayesian approach, we derive a general loss function and develop a technique of the uniform model of ν-support vector regression for the general noise model (N-SVR). The Augmented Lagrange Multiplier method is introduced to solve N-SVR. Numerical experiments on artificial data sets, UCI data and short-term wind speed prediction are conducted. The results show the effectiveness of the proposed technique.

  15. Difference in the wind speeds required for initiation versus continuation of sand transport on mars: implications for dunes and dust storms.

    PubMed

    Kok, Jasper F

    2010-02-19

    Much of the surface of Mars is covered by dunes, ripples, and other features formed by the blowing of sand by wind, known as saltation. In addition, saltation loads the atmosphere with dust aerosols, which dominate the Martian climate. We show here that saltation can be maintained on Mars by wind speeds an order of magnitude less than required to initiate it. We further show that this hysteresis effect causes saltation to occur for much lower wind speeds than previously thought. These findings have important implications for the formation of dust storms, sand dunes, and ripples on Mars.

  16. Tone noise of three supersonic helical tip speed propellers in a wind tunnel at 0.8 Mach number

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Blaha, B. J.; Jeracki, R. J.

    1978-01-01

    Three supersonic helical tip speed propellers were tested in the NASA Lewis 8- by 6-foot wind tunnel. Noise data were obtained while these propellers were operating at a simulated cruise condition. The walls of this tunnel were not acoustically treated and therefore this was not an ideal location for taking noise data, but it was thought that the differences in noise among the three propellers would be meaningful. The straight bladed propeller which did not incorporate sweep was the noisiest with the aerodynamically swept propeller only slightly quieter. However, the acoustically swept propeller was significantly quieter than the straight propeller, thereby indicating the merit of this design technique.

  17. Non-linear control of variable-speed wind turbines with permanent magnet synchronous generators: a robust backstepping approach

    NASA Astrophysics Data System (ADS)

    Şeker, Murat; Zergeroğlu, Erkan; Tatlicioğlu, Enver

    2016-01-01

    In this study, a robust backstepping approach for the control problem of the variable-speed wind turbine with a permanent magnet synchronous generator is presented. Specifically, to overcome the negative effects of parametric uncertainties in both mechanical and electrical subsystems, a robust controller with a differentiable compensation term is proposed. The proposed methodology ensures the generator velocity tracking error to uniformly approach a small bound where practical tracking is achieved. Stability of the overall system is ensured by Lyapunov-based arguments. Comparative simulation studies with a standard proportional-integral-type controller are performed to illustrate the effectiveness, feasibility and efficiency of the proposed controller.

  18. Variable speed generator application on the MOD-5A 7.3 mW wind turbine generator

    NASA Astrophysics Data System (ADS)

    Barton, Robert S.

    1995-05-01

    This paper describes the application of a Scherbiustat type variable speed subsystem in the MOD-5A Wind Turbine Generator. As designed by General Electric Company, Advanced Energy Programs Department, under contract DEN3-153 with NASA Lewis Research Center and DOE, the MOD-5A utilizes the subsystem for both starting assistance in a motoring mode and generation in a controlled airgap torque mode. Reactive power control is also provided. The Scherbiustat type arrangement of a wound rotor machine with a cycloconverter in the rotor circuit was selected after an evaluation of variable speed technologies that followed a system evaluation of drivetrain cost and risk. The paper describes the evaluation factors considered, the results of the evaluations and summarizes operating strategy and performance simulations.

  19. Encoderless Model Predictive Control of Doubly-Fed Induction Generators in Variable-Speed Wind Turbine Systems