Science.gov

Sample records for 10-stage axial-flow compressor

  1. Stage Effects on Stalling and Recovery of a High-Speed 10-Stage Axial- Flow Compressor

    DTIC Science & Technology

    1990-06-01

    17.7 Test compressor sixth stage characteristics 78.5% design corrected speed 347 17.8 Test compressor seventh stage characteristics 78.5% design...Figure 17.6 Test compressor fifth stage characteristics 78.5% design corrected speed 347 6TH STAGE PRESSURE CHARACTERISTIC 78.5% DESIGN CORRECTED SPEED...Vr) II 4 374 0 w0 -uU- M 4J 6 0 , 110 0 0 ’ 0 W0 wW LU $4 $4 w -j X 0W w) 4)O rl 0 4) Cd - 0 ) o--i0 0 r-4 - x 4) 0-H 04r fT~..I W 4 04 WEJ 0 0 0

  2. Investigation of X24C-2 10-Stage Axial-Flow Compressor. 2; Effect of Inlet-Air Pressure and Temperature of Performance

    NASA Technical Reports Server (NTRS)

    Finger, Harold B.; Schum, Harold J.; Buckner, Howard Jr.

    1947-01-01

    Effect of inlet-air pressure and temperature on the performance of the X24-2 10-Stage Axial-Flow Compressor from the X24C-2 turbojet engine was evaluated. Speeds of 80, 89, and 100 percent of equivalent design speed with inlet-air pressures of 6 and 12 inches of mercury absolute and inlet-air temperaures of approximately 538 degrees, 459 degrees,and 419 degrees R ( 79 degrees, 0 degrees, and minus 40 degrees F). Results were compared with prior investigations.

  3. Aerodynamic Design of Axial Flow Compressors

    NASA Technical Reports Server (NTRS)

    Bullock, R. O. (Editor); Johnsen, I. A.

    1965-01-01

    An overview of 'Aerodynamic systems design of axial flow compressors' is presented. Numerous chapters cover topics such as compressor design, ptotential and viscous flow in two dimensional cascades, compressor stall and blade vibration, and compressor flow theory. Theoretical aspects of flow are also covered.

  4. Axial flow positive displacement worm compressor

    NASA Technical Reports Server (NTRS)

    Murrow, Kurt David (Inventor); Giffin, Rollin George (Inventor); Fakunle, Oladapo (Inventor)

    2010-01-01

    An axial flow positive displacement compressor has an inlet axially spaced apart and upstream from an outlet. Inner and outer bodies have offset inner and outer axes extend from the inlet to the outlet through first and second sections of a compressor assembly in serial downstream flow relationship. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. The helical blades have first and second twist slopes in the first and second sections respectively. The first twist slopes are less than the second twist slopes. An engine including the compressor has in downstream serial flow relationship from the compressor a combustor and a high pressure turbine drivingly connected to the compressor by a high pressure shaft.

  5. A survey of unclassified axial-flow-compressor literature

    NASA Technical Reports Server (NTRS)

    Herzig, Howard Z; Hansen, Arthur G

    1955-01-01

    A survey of unclassified axial-flow-compressor literature is presented in the form of brief reviews of the methods, results, and conclusions of selected reports. The reports are organized into several main categories with subdivisions, and frequent references are made within the individual reviews to pertinent material elsewhere in the survey.

  6. The new performance calculation method of fouled axial flow compressor.

    PubMed

    Yang, Huadong; Xu, Hong

    2014-01-01

    Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds' law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail.

  7. The New Performance Calculation Method of Fouled Axial Flow Compressor

    PubMed Central

    Xu, Hong

    2014-01-01

    Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds' law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail. PMID:25197717

  8. Aerodynamic Design of Axial-flow Compressors. Volume III

    NASA Technical Reports Server (NTRS)

    Johnson, Irving A; Bullock, Robert O; Graham, Robert W; Costilow, Eleanor L; Huppert, Merle C; Benser, William A; Herzig, Howard Z; Hansen, Arthur G; Jackson, Robert J; Yohner, Peggy L; Dugan, Ames F , Jr

    1956-01-01

    Chapters XI to XIII concern the unsteady compressor operation arising when compressor blade elements stall. The fields of compressor stall and surge are reviewed in Chapters XI and XII, respectively. The part-speed operating problem in high-pressure-ratio multistage axial-flow compressors is analyzed in Chapter XIII. Chapter XIV summarizes design methods and theories that extend beyond the simplified two-dimensional approach used previously in the report. Chapter XV extends this three-dimensional treatment by summarizing the literature on secondary flows and boundary layer effects. Charts for determining the effects of errors in design parameters and experimental measurements on compressor performance are given in Chapters XVI. Chapter XVII reviews existing literature on compressor and turbine matching techniques.

  9. Preliminary compressor design study for an advanced multistage axial flow compressor

    NASA Technical Reports Server (NTRS)

    Marman, H. V.; Marchant, R. D.

    1976-01-01

    An optimum, axial flow, high pressure ratio compressor for a turbofan engine was defined for commercial subsonic transport service starting in the late 1980's. Projected 1985 technologies were used and applied to compressors with an 18:1 pressure ratio having 6 to 12 stages. A matrix of 49 compressors was developed by statistical techniques. The compressors were evaluated by means of computer programs in terms of various airline economic figures of merit such as return on investment and direct-operating cost. The optimum configuration was determined to be a high speed, 8-stage compressor with an average blading aspect ratio of 1.15.

  10. Unsteady Flow Field in a Multistage Axial Flow Compressor

    NASA Technical Reports Server (NTRS)

    Suryavamshi, N.; Lakshminarayana, B.; Prato, J.

    1997-01-01

    The flow field in a multistage compressor is three-dimensional, unsteady, and turbulent with substantial viscous effects. Some of the specific phenomena that has eluded designers include the effects of rotor-stator and rotor-rotor interactions and the physics of mixing of velocity, pressure, temperature and velocity fields. An attempt was made, to resolve experimentally, the unsteady pressure and temperature fields downstream of the second stator of a multistage axial flow compressor which will provide information on rotor-stator interaction effects and the nature of the unsteadiness in an embedded stator of a three stage axial flow compressor. Detailed area traverse measurements using pneumatic five hole probe, thermocouple probe, semi-conductor total pressure probe (Kulite) and an aspirating probe downstream of the second stator were conducted at the peak efficiency operating condition. The unsteady data was then reduced through an ensemble averaging technique which splits the signal into deterministic and unresolved components. Auto and cross correlation techniques were used to correlate the deterministic total temperature and velocity components (acquired using a slanted hot-film probe at the same measurement locations) and the gradients, distributions and relative weights of each of the terms of the average passage equation were then determined. Based on these measurements it was observed that the stator wakes, hub leakage flow region, casing endwall suction surface corner region, and the casing endwall region away from the blade surfaces were the regions of highest losses in total pressure, lowest efficiency and highest levels of unresolved unsteadiness. The deterministic unsteadiness was found to be high in the hub and casing endwall regions as well as on the pressure side of the stator wake. The spectral distribution of hot-wire and kulite voltages shows that at least eight harmonics of all three rotor blade passing frequencies are present at this

  11. Preliminary design study of advanced multistage axial flow core compressors

    NASA Technical Reports Server (NTRS)

    Wisler, D. C.; Koch, C. C.; Smith, L. H., Jr.

    1977-01-01

    A preliminary design study was conducted to identify an advanced core compressor for use in new high-bypass-ratio turbofan engines to be introduced into commercial service in the 1980's. An evaluation of anticipated compressor and related component 1985 state-of-the-art technology was conducted. A parametric screening study covering a large number of compressor designs was conducted to determine the influence of the major compressor design features on efficiency, weight, cost, blade life, aircraft direct operating cost, and fuel usage. The trends observed in the parametric screening study were used to develop three high-efficiency, high-economic-payoff compressor designs. These three compressors were studied in greater detail to better evaluate their aerodynamic and mechanical feasibility.

  12. Aerodynamic Design of Axial-flow Compressors. Volume 2

    NASA Technical Reports Server (NTRS)

    1956-01-01

    Available experimental two-dimensional-cascade data for conventional compressor blade sections are correlated. The two-dimensional cascade and some of the principal aerodynamic factors involved in its operation are first briefly described. Then the data are analyzed by examining the variation of cascade performance at a reference incidence angle in the region of minimum loss. Variations of reference incidence angle, total-pressure loss, and deviation angle with cascade geometry, inlet Mach number, and Reynolds number are investigated. From the analysis and the correlations of the available data, rules and relations are evolved for the prediction of the magnitude of the reference total-pressure loss and the reference deviation and incidence angles for conventional blade profiles. These relations are developed in simplified forms readily applicable to compressor design procedures.

  13. Post Stall Behavior in Axial-Flow Compressors.

    DTIC Science & Technology

    1987-08-20

    angle of attack for three stagger angles typical of modern compressor design. With the data and the improved model, it was anticipated that some...form in Fig. 6. Preceding and following the inception of 14 L EV~. .115 9 II I High T.E. a 30* BI$’Se a* 22.50 Bldc 4 T.E. * ~~~~~~ ~ L.E

  14. Analysis of effect of basic design variables on subsonic axial-flow-compressor performance

    NASA Technical Reports Server (NTRS)

    Sinnette, John T , Jr

    1948-01-01

    A blade-element theory for axial-flow compressors has been developed and applied to the analysis of the effects of basic design variables such as Mach number, blade loading, and velocity distribution on compressor performance. A graphical method that is useful for approximate design calculations is presented. The relations among several efficiencies useful in compressor design are derived and discussed. The possible gains in useful operating range obtainable by the use of adjustable stator blades are discussed and a rapid approximate method of calculating blade-angle resettings is shown by an example. The relative Mach number is shown to be a dominant factor in determining the pressure ratio.

  15. Laser anemometer measurements in a transonic axial flow compressor rotor

    NASA Technical Reports Server (NTRS)

    Strazisar, A. J.; Powell, J. A.

    1979-01-01

    A laser anemometer system employing an efficient data acquisition technique was used to make measurements upstream, within, and downstream of the compressor rotor. A fluorescent dye technique allowed measurements within endwall boundary layers. Adjustable laser beam orientation minimized shadowed regions and enabled radial velocity measurements outside of the blade row. The flow phenomena investigated include flow variations from passage to passage, the rotor shock system, three-dimensional flows in the blade wake, and the development of the outer endwall boundary layer. Laser anemometer measurements are compared to a numerical solution of the streamfunction equations and to measurements made with conventional instrumentation.

  16. Discussion of Boundary-Layer Characteristics Near the Wall of an Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mohoney, John J; Budinger, Ray E

    1952-01-01

    The boundary-layer velocity profiles in the tip region of an axial-flow compressor downstream of the guide vanes and downstream of the rotor were measured by use of total-pressure and claw-type yaw probes. These velocities were resolved into two components: one along the streamline of the flow outside the boundary layer, and the other perpendicular to it. The affinity among all profiles was thus demonstrated with the boundary-layer thickness and the deflection of the boundary layer at the wall as the generalizing parameters. By use of these results and the momentum-integral equations, boundary-layer characteristics on the walls of an axial-flow compressor were qualitatively evaluated.

  17. Enhanced capabilities and modified users manual for axial-flow compressor conceptual design code CSPAN

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.; Lavelle, Thomas M.

    1995-01-01

    Modifications made to the axial-flow compressor conceptual design code CSPAN are documented in this report. Endwall blockage and stall margin predictions were added. The loss-coefficient model was upgraded. Default correlations for rotor and stator solidity and aspect-ratio inputs and for stator-exit tangential velocity inputs were included in the code along with defaults for aerodynamic design limits. A complete description of input and output along with sample cases are included.

  18. Modification of Axial-Flow Compressor Stall Margin by Variation of Stationary Blade Setting Angles

    DTIC Science & Technology

    1991-04-01

    AD-A238 406 / FINAL TECHNICAL REPORT Modification of axial-flow compressor stall margin by variation of stationary blade setting angles by - ’ | JUL...7 1.3 A voiding Stall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2. RELATED ISOLATED AIRFOIL DYNAMIC S’IALL...Comprcssor pressure r:se ratio ....... .................. 11:3 4.3.3 Inlet correctc-i rotational speed . . ... .......... 114 4.3.4 Detection of stall in

  19. End wall flow characteristics and overall performance of an axial flow compressor stage

    NASA Technical Reports Server (NTRS)

    Sitaram, N.; Lakshminarayana, B.

    1983-01-01

    This review indicates the possible future directions for research on endwall flows in axial flow compressors. Theoretical investigations on the rotor blade endwall flows in axial flow compressors reported here include the secondary flow calculation and the development of the momentum integral equations for the prediction of the annulus wall boundary layer. The equations for secondary vorticity at the rotor exit are solved analytically. The solution includes the effects of rotation and the viscosity. The momentum integral equations derived include the effect of the blade boundary layers. The axial flow compressor facility of the Department of Aerospace Engineering at The Pennsylvania State University, which is used for the experimental investigations of the endwall flows, is described in some detail. The overall performance and other preliminary experimental results are presented. Extensive radial flow surveys are carried out at the design and various off design conditions. These are presented and interpreted in this report. The following experimental investigations of the blade endwall flows are carried out. (1) Rotor blade endwall flows: The following measurements are carried out at four flow coefficients. (a) The rotor blade static pressures at various axial and radial stations (with special emphasis near the blade tips). (b) The hub wall static pressures inside the rotor blade passage at various axial and tangential stations. (2) IGV endwall flows: The following measurements are carried out at the design flow coefficient. (a) The boundary layer profiles at various axial and tangential stations inside the blade passage and at the blade exit. (b) Casing static pressures and limiting streamline angles inside the blade passage.

  20. The effect of variable stator on performance of a highly loaded tandem axial flow compressor stage

    NASA Astrophysics Data System (ADS)

    Eshraghi, Hamzeh; Boroomand, Masoud; Tousi, Abolghasem M.; Fallah, Mohammad Toude; Mohammadi, Ali

    2016-06-01

    Increasing the aerodynamic load on compressor blades helps to obtain a higher pressure ratio in lower rotational speeds. Considering the high aerodynamic load effects and structural concerns in the design process, it is possible to obtain higher pressure ratios compared to conventional compressors. However, it must be noted that imposing higher aerodynamic loads results in higher loss coefficients and deteriorates the overall performance. To avoid the loss increase, the boundary layer quality must be studied carefully over the blade suction surface. Employment of advanced shaped airfoils (like CDAs), slotted blades or other boundary layer control methods has helped the designers to use higher aerodynamic loads on compressor blades. Tandem cascade is a passive boundary layer control method, which is based on using the flow momentum to control the boundary layer on the suction surface and also to avoid the probable separation caused by higher aerodynamic loads. In fact, the front pressure side flow momentum helps to compensate the positive pressure gradient over the aft blade's suction side. Also, in comparison to the single blade stators, tandem variable stators have more degrees of freedom, and this issue increases the possibility of finding enhanced conditions in the compressor off-design performance. In the current study, a 3D design procedure for an axial flow tandem compressor stage has been applied to design a highly loaded stage. Following, this design is numerically investigated using a CFD code and the stage characteristic map is reported. Also, the effect of various stator stagger angles on the compressor performance and especially on the compressor surge margin has been discussed. To validate the CFD method, another known compressor stage is presented and its performance is numerically investigated and the results are compared with available experimental results.

  1. Users manual for updated computer code for axial-flow compressor conceptual design

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    An existing computer code that determines the flow path for an axial-flow compressor either for a given number of stages or for a given overall pressure ratio was modified for use in air-breathing engine conceptual design studies. This code uses a rapid approximate design methodology that is based on isentropic simple radial equilibrium. Calculations are performed at constant-span-fraction locations from tip to hub. Energy addition per stage is controlled by specifying the maximum allowable values for several aerodynamic design parameters. New modeling was introduced to the code to overcome perceived limitations. Specific changes included variable rather than constant tip radius, flow path inclination added to the continuity equation, input of mass flow rate directly rather than indirectly as inlet axial velocity, solution for the exact value of overall pressure ratio rather than for any value that met or exceeded it, and internal computation of efficiency rather than the use of input values. The modified code was shown to be capable of computing efficiencies that are compatible with those of five multistage compressors and one fan that were tested experimentally. This report serves as a users manual for the revised code, Compressor Spanline Analysis (CSPAN). The modeling modifications, including two internal loss correlations, are presented. Program input and output are described. A sample case for a multistage compressor is included.

  2. Computer program for aerodynamic and blading design of multistage axial-flow compressors

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.; Gorrell, W. T.

    1981-01-01

    A code for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis codes is presented. Compressible flow, which is assumed to be steady and axisymmetric, is the basis for a two-dimensional solution in the meridional plane with viscous effects modeled by pressure loss coefficients and boundary layer blockage. The radial equation of motion and the continuity equation are solved with the streamline curvature method on calculation stations outside the blade rows. The annulus profile, mass flow, pressure ratio, and rotative speed are input. A number of other input parameters specify and control the blade row aerodynamics and geometry. In particular, blade element centerlines and thicknesses can be specified with fourth degree polynomials for two segments. The output includes a detailed aerodynamic solution and, if desired, blading coordinates that can be used for internal flow analysis codes.

  3. Performance of NACA Eight-stage Axial-flow Compressor Designed on the Basis of Airfoil Theory

    NASA Technical Reports Server (NTRS)

    Sinnette, John T; Schey, Oscar W; King, J Austin

    1943-01-01

    The NACA has conducted an investigation to determine the performance that can be obtained from a multistage axial-flow compressor based on airfoil research. A theory was developed; an eight-stage axial-flow compressor was designed, constructed, and tested. The performance of the compressor was determined for speeds from 5000 to 14,000 r.p.m with varying air flow at each speed. Most of the tests were made with air at room temperature. The performance was determined in accordance with the Committee's recommended procedure for testing superchargers. The expected performance was obtained, showing that a multistage compressor of high efficiency can be designed by the application of airfoil theory.

  4. Effect of Blade-surface Finish on Performance of a Single-stage Axial-flow Compressor

    NASA Technical Reports Server (NTRS)

    Moses, Jason J; Serovy, George, K

    1951-01-01

    A set of modified NACA 5509-34 rotor and stator blades was investigated with rough-machine, hand-filed, and highly polished surface finishes over a range of weight flows at six equivalent tip speeds from 672 to 1092 feet per second to determine the effect of blade-surface finish on the performance of a single-stage axial-flow compressor. Surface-finish effects decreased with increasing compressor speed and with decreasing flow at a given speed. In general, finishing blade surfaces below the roughness that may be considered aerodynamically smooth on the basis of an admissible-roughness formula will have no effect on compressor performance.

  5. Investigation of Axial-flow Fan and Compressor Rotors Designed for Three-dimensional Flow

    NASA Technical Reports Server (NTRS)

    Kahane, A

    1947-01-01

    An investigation has been conducted to determine whether three-dimensional flows may be utilized in axial-flow fan and compressor rotors so that the spanwise load distribution may be varied to obtain high pressure rise. Two rotors, one with approximately uniform and one with solid-body downstream tangential-velocity distributions, were designed and tested at the design blade angle. Radial surveys of total pressure, static pressure, and flow angle were made upstream and downstream of the test rotors through a quantity-coefficient range. Tests of the solid-body rotor were also conducted at a large value of tip clearance. The results indicated that the three-dimensional flows may be utilized with high efficiency and that the three-dimensional theory used in conjunction with two-dimensional cascade data is sufficiently accurate for design purposes. The tests also showed that the tip-clearance losses of rotors highly loaded at the tips are not excessive. The existing three-dimensional theory in simplified for and an illustrative rotor design are presented in appendixes.

  6. STGSTK: A computer code for predicting multistage axial flow compressor performance by a meanline stage stacking method

    NASA Technical Reports Server (NTRS)

    Steinke, R. J.

    1982-01-01

    A FORTRAN computer code is presented for off-design performance prediction of axial-flow compressors. Stage and compressor performance is obtained by a stage-stacking method that uses representative velocity diagrams at rotor inlet and outlet meanline radii. The code has options for: (1) direct user input or calculation of nondimensional stage characteristics; (2) adjustment of stage characteristics for off-design speed and blade setting angle; (3) adjustment of rotor deviation angle for off-design conditions; and (4) SI or U.S. customary units. Correlations from experimental data are used to model real flow conditions. Calculations are compared with experimental data.

  7. Numerical investigation of base-setting of stator's stagger angles for a 15-stage axial-flow compressor

    NASA Astrophysics Data System (ADS)

    Chang, Hao; Zhao, Weiguang; Jin, Donghai; Peng, Zeyan; Gui, Xingmin

    2014-02-01

    A 15-stage axial-flow compressor utilized in steel industry was studied in this paper. All the stator's stagger angles of the compressor are variable to ensure the multistage compressor operate effectively within a wide range of flow rate and meanwhile satisfy the demand for sufficient pressure ratio, adiabatic efficiency and stall margin. Three in all different base-settings of stator's stagger angles were presented and commercial CFD software was applied to obtain the overall performance characteristics. The results showed that both of the optimized base-settings improved the performances both in summer and winter conditions, although the adiabatic efficiency was somewhat decreased. Taking incidence angle and stage loading into consideration, differences among the three cases were analyzed in detail. On the basis of numerical computations, the performance could be effectively improved through adjusting the base-setting of stator's stagger angles.

  8. Windmilling of the rotor of a turbojet engine with an axial-flow compressor under flight conditions

    NASA Technical Reports Server (NTRS)

    Borgon, J.

    1983-01-01

    The concept of rotor windmilling is understood to mean rotation of the rotor caused solely by the energy of the air (not gas) streaming through the apertures between the blades (under conditions of power shut-off) under the action of dynamic pressure. The concept of windmilling is analyzed for an engine with an axial-flow compressor, showing that windmilling must be taken into account in such cases as in-flight reignition of the engine. A graph-analytic method for determining the range of windmilling is proposed.

  9. An Investigation of the Surge Behavior of a High-Speed Ten-Stage Axial Flow Compressor

    DTIC Science & Technology

    1993-05-01

    aircraft engine consisted of both a 3-stage low- prssure fan and a 10-stage high-pressure compressor along with the necessary ducting. The test compression...section built from the engine did not include the fan , but it did include the inlet case section, the high-pressure compressor, the diffuser, and...that occur as a result of the fan in the actual engine. Actual flow" path simulation and variable geometry were also incorporated into the discharge

  10. Effects of casing treatment on a small, transonic axial-flow compressor

    NASA Technical Reports Server (NTRS)

    Holman, F. F.; Kidwell, J. R.

    1975-01-01

    Improved axial compressor surge margin through effective rotor casing treatment has been identified from test results on large axial compressors. A modified scale of a large compressor was built and tested to determine if similar improvements in surge margin could be duplicated in small-size turbomachinery. In addition, the effects of rotor radial running clearance, both with and without casing treatment, were investigated and are discussed. Test results of the scale configuration are presented and compared to the parent compressor.

  11. Aerodynamic Design of Axial-Flow Compressors. VII - Blade-Element Flow in Annular Cascades

    NASA Technical Reports Server (NTRS)

    Robbins, William H.; Jackson, Robert J.; Lieblein, Seymour

    1955-01-01

    Annular blade-element data obtained primarily from single-stage compressor installations are correlated over a range of inlet Mach numbers and cascade geometry. The correlation curves are presented in such a manner that they are related directly to the low-speed two-dimensional-cascade data of part VI of this series. Thus, the data serve as both an extension and a verification of the two-dimensional-cascade data. In addition, the correlation results are applied to compressor design.

  12. Computer program for definition of transonic axial-flow compressor blade rows. [computer program for fabrication and aeroelastic analysis

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.

    1974-01-01

    A method is presented for designing axial-flow compressor blading from blade elements defined on cones which pass through the blade-edge streamline locations. Each blade-element centerline is composed of two segments which are tangent to each other. The centerline and surfaces of each segment have constant change of angle with path distance. The stacking line for the blade elements can be leaned in both the axial and tangential directions. The output of the computer program gives coordinates for fabrication and properties for aeroelastic analysis for planar blade sections. These coordinates and properties are obtained by interpolation across conical blade elements. The program is structured to be coupled with an aerodynamic design program.

  13. Modeling of the double leakage and leakage spillage flows in axial flow compressors

    NASA Astrophysics Data System (ADS)

    Du, Hui; Yu, Xianjun; Liu, Baojie

    2014-04-01

    A model to predict the double leakage and tip leakage leading edge spillage flows was developed. This model was combined by a TLV trajectory model and a TLV diameter model and formed as a function of compressor one-dimensional design parameters, i.e. the compressor massflow coefficient, ϕ and compressor loading coefficient, Ψ, and some critical blade geometrical parameters, i.e. blade solidity, σ, stagger angle, β S , blade chord length, C, and blade pitch length, S. By using this model, the double leakage and tip leakage leading edge spillage flow could be predicted even at the compressor preliminary design process. Considering the leading edge spillage flow usually indicates the inception of spike-type stall, i.e. the compressor is a tip critical design, this model could also be used as a tool to choose the critical design parameters for designers. At last, some experimental data from literature was used to validate the model and the results proved that the model was reliable.

  14. Experimental Vibration Damping Characteristics of the Third-stage Rotor of a Three-stage Transonic Axial-flow Compressor

    NASA Technical Reports Server (NTRS)

    Newman, Frederick A.

    1988-01-01

    Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynamic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall preformance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.

  15. Preliminary Analysis of Axial-Flow Compressors Having Supersonic Velocity at the Entrance of the Stator

    NASA Technical Reports Server (NTRS)

    Ferri, Antonio

    1949-01-01

    A supersonic compressor design having supersonic velocity at the entrance of the stator is analyzed on the assumption of two-dimensional flow. The rotor and stator losses assumed in the analysis are based on the results of preliminary supersonic cascade tests. The results of the analysis show that compression ratios per stage of 6 to 10 can be obtained with adiabatic efficiency between 70 and 80 percent. Consideration is also given in the analysis to the starting, stability, and range of efficient performance of this type of compressor. The desirability of employing variable-geometry stators and adjustable inlet guide vanes is indicated. Although either supersonic or subsonic axial component of velocity at the stator entrance can be used, the cascade test results suggest that higher pressure recovery can be obtained if the axial component is supersonic.

  16. Study of aerodynamic noise in low supersonic operation of an axial flow compressor

    NASA Technical Reports Server (NTRS)

    Arnoldi, R. A.

    1972-01-01

    A study of compressor noise is presented, based upon supersonic, part-speed operation of a high hub/tip ratio compressor designed for spanwise uniformity of aerodynamic conditions, having straight cylindrical inlet and exit passages for acoustic simplicity. Acoustic spectra taken in the acoustically-treated inlet plenum, are presented for five operating points at each of two speeds, corresponding to relative rotor tip Mach numbers of about 1.01 and 1.12 (60 and 67 percent design speed). These spectra are analyzed for low and high frequency broadband noise, blade passage frequency noise, combination tone noise and "haystack' noise (a very broad peak somewhat below blade passage frequency, which is occasionally observed in engines and fan test rigs). These types of noise are related to diffusion factor, total pressure ratio, and relative rotor tip Mach number. Auxiliary measurements of fluctuating wall static pressures and schlieren photographs of upstream shocks in the inlet are also presented and related to the acoustic and performance data.

  17. Application of radial-equilibrium condition to axial-flow compressor and turbine design

    NASA Technical Reports Server (NTRS)

    Wu, Chung-Hua; Wolfenstein, Lincoln

    1950-01-01

    Basic general equations governing the three-dimensional compressible flow of gas through a compressor or turbine are given in terms of total enthalpy, entropy, and velocity components of the gas. Two methods of solution are obtained for the simplified, steady axially symmetric flow; one involves the use of a number of successive planes normal to the axis of the machine and short distances apart, and the other involves only three stations for a stage in which an appropriate radial-flow path is used. Methods of calculation for the limiting cases of zero and infinite blade aspect ratios and an approximate method of calculation for finite blade aspect ratio are also given. In these methods, the blade loading and the shape of the annular passage wall may be arbitrarily specified.

  18. Effect of Various Blade Modifications on Performance of a 16-Stage Axial-Flow Compressor. II - Effect on Over-All Performance Characteristics of Increasing Twelfth through Fifteenth Stage Stator-Blade Angles 3 deg

    NASA Technical Reports Server (NTRS)

    Hatch, James E.; Medeiros, Arthur A.

    1952-01-01

    The stator-blade angles in the twelfth through fifteenth stages of a 16-stage axial-flow compressor were increased 3O. The over-all performance of this modified compressor is compared to the performance of the compressor with original blade angles. The matching characteristics of the modified compressor and a two-stage turbine were obtained and compared to those of the compressor with original blade angles and the same turbine.

  19. Effect of Various Blade Modifications on Performance of a 16-Stage Axial-Flow Compressor. III - Effect on Over-All Performance Characteristics on Increasing Stator-Blade Angles in Inlet Stages

    NASA Technical Reports Server (NTRS)

    Medeiros, Arthur A.; Hatch, James E.

    1952-01-01

    The stator-blade angles in the first four stages of a 16-stage axial-flow compressor were increased in order to decrease the angles of attack of these stages, and thereby to improve part-speed performance. The performance of this modified compressor was compared with that of the same compressor with original blade angles.

  20. Performance Characteristics of an Axial-flow Transonic Compressor Operating up to Tip Relative Inlet Mach Number of 1.34

    NASA Technical Reports Server (NTRS)

    Creagh, John W R

    1956-01-01

    Performance data are presented for a transonic axial-flow compressor rotor designed to operate at a tip speed of 1300 ft/sec with maximum relative tip Mach number of 1.37. The compressor had an inlet diameter of 16 inches, a hub-tip diameter ratio of 0.5 and design specific weight flow of 31.1 (lb/sec/(sq ft frontal area). Experimental values of relative total-pressure-loss coefficient were considerably higher than the assumed values. This disparity, hub choking, and application of the simple radial-equilibrium concept are discussed. The data of this report are used to extend previously presented correlation plots of compressor design parameters to higher Mach numbers.

  1. Investigation of Performance of Axial-Flow Compressor of XT-46 Turbine-Propeller Engine. I - Preliminary Investigation at 50-,70-, and 100-Percent Design Equivalent Speed

    NASA Technical Reports Server (NTRS)

    Creagh, John W.R.; Sandercrock, Donald M.

    1950-01-01

    An investigation is being conducted to determine the performance of the 12-stage axial-flow compressor of the XT-46 turbine-propeller engine. This compressor was designed to produce a pressure ratio of 9 at an adiabatic efficiency of 0.86. The design pressure ratios per stage were considerably greater than any employed in current aircraft gas-turbine engines using this type of compressor. The compressor performance was evaluated at two stations. The station near the entrance section of the combustors indicated a peak pressure ratio of 6.3 at an adiabatic efficiency of 0.63 for a corrected weight flow of 23.1 pounds per second. The other, located one blade-chord downstream of the last stator row, indicated a peak pressure ratio of 6.97 at an adiabatic efficiency of 0.81 for a corrected weight flow of 30.4 pounds per second. The difference in performance obtained at the two stations is attributed to shock waves in the vicinity of the last stator row. These shock waves and the accompanying flow choking, together with interstage circulatory flows, shift the compressor operating curves into the region where surge would normally occur. The inability of the compressor to meet design pressure ratio is probably due to boundary-layer buildup in the last stages, which cause axial velocities greater than design values that, in turn, adversely affect the angles of attack and turning angles in these blade rows.

  2. Effect of Various Blade Modifications on Performance of A16-Stage Axial-Flow Compressor. V - Effect on Over-All Performance Characteristics of a 20-Percent Reduction in Solidity of the Fourteenth Through Sixteenth Stage Rotors

    NASA Technical Reports Server (NTRS)

    Medeiros, Arthur A.; Hatch, James E.

    1952-01-01

    The performance of a 16-stage axial-flow compressor, in which the mean-radius solidity was reduced from 1.28 to 1.02 in the fourteenth through sixteenth stage rotors was determined. The performance of this modification was compared with that of the compressor with original rotors. The reduced solidity resulted in slightly improved performance.

  3. Preliminary Results of an Altitude-Wind-Tunnel Investigation of an Axial-Flow Gas Turbine-Propeller Engine. 4; Compressor and Turbine Performance Characteristics

    NASA Technical Reports Server (NTRS)

    Wallner, Lewis E.; Saari, Martin J.

    1948-01-01

    As part of an investigation of the performance and operational characteristics of the axial-flow gas turbine-propeller engine, conducted in the Cleveland altitude wind tunnel, the performance characteristics of the compressor and the turbine were obtained. The data presented were obtained at a compressor-inlet ram-pressure ratio of 1.00 for altitudes from 5000 to 35,000 feet, engine speeds from 8000 to 13,000 rpm, and turbine-inlet temperatures from 1400 to 2100 R. The highest compressor pressure ratio obtained was 6.15 at a corrected air flow of 23.7 pounds per second and a corrected turbine-inlet temperature of 2475 R. Peak adiabatic compressor efficiencies of about 77 percent were obtained near the value of corrected air flow corresponding to a corrected engine speed of 13,000 rpm. This maximum efficiency may be somewhat low, however, because of dirt accumulations on the compressor blades. A maximum adiabatic turbine efficiency of 81.5 percent was obtained at rated engine speed for all altitudes and turbine-inlet temperatures investigated.

  4. Comparison of the effect of two damper sizes on the performance of a low-solidity axial-flow transonic compressor rotor

    NASA Technical Reports Server (NTRS)

    Lewis, G. W., Jr.; Urasek, D. C.

    1972-01-01

    The experimental performance of a 20-inch-diameter axial-flow transonic compressor rotor with small dampers is presented. The compressor rotor was tested earlier with large dampers which were twice in size, and comparisons of overall performance and radial distributions of selected flow and performance parameters are made. The rotor with small dampers experienced lower losses in the damper region which resulted in locally higher values of temperature rise efficiency and total pressure ratio. However, there was no appreciable effect on overall efficiency and pressure ratio. A greater stall margin was measured for the rotor with small dampers at design speed, but at 70 and 90 percent of design speed the rotor with large dampers had somewhat greater flow range.

  5. Coexisting state of surge and rotating stall in a two-stage axial flow compressor using a double-phase-locked averaging technique

    NASA Astrophysics Data System (ADS)

    Sakata, Yuu; Ohta, Yutaka

    2017-02-01

    The interaction between surge and rotating stall in an axial flow compressor was investigated from the viewpoint of an unsteady inner flow structure. The aim of this study was to identify the key factor that determines the switching phenomenon of a surge cycle. The main feature of the tested compressor is a shock tube connected in series to the compressor outlet through a diaphragm, slits, and a concentric duplex pipe: this system allows surge and rotating stall to be generated by connecting the shock tube with the compressor, or enables the compression plane wave injection. The unsteady characteristics and the internal flow velocity fluctuations were measured in detail, and the stall cell structure was averaged and visualized along the movement of the operation point under a coexisting state of surge. A coefficient of the cell scale fluctuation was calculated using the result of the averaging, and it confirmed that the processes of inner flow structure change differed from each other according to the next cycle of the surge. The result suggests that the key factor that determines the next cycle is the transformation of the internal flow structure, particularly between the stall cell and the entire circumferential stall, in both the recovering and stalling processes.

  6. Performance of High-pressure-ratio Axial-flow Compressor Using Highly Cambered NACA 65-series Blower Blades at High Mach Numbers

    NASA Technical Reports Server (NTRS)

    Voit, Charles H; Guentert, Donald C; Dugan, James F

    1950-01-01

    A complete stage of an axial-flow compressor was designed and built to investigate the possibility of obtaining a high pressure ratio with an acceptable efficiency through the use of the optimum combination of high blade loading and high relative inlet Mach number. Over-all stage performance was investigated over a range of flows at equivalent tip speeds of 418 to 836 feet per second. At design speed (836 ft/sec), a peak total-pressure ration of 1.445 was obtained with an adiabatic efficiency of 0.89. For design angle of attack at the mean radius, a total-pressure ratio of 1.392 was obtained.

  7. Performance of Axial-Flow Supersonic Compressor of the XJ55-FF-1 Turbojet Engine. IV - Analysis of Compressor Operation over a Range of Equivalent Tip Speeds from 801 to 1614 Feet Per Second

    NASA Technical Reports Server (NTRS)

    Graham, Robert C.; Hartmann, Melvin J.

    1949-01-01

    An investigation was conducted to determine the performance characteristics of the axial-flow supersonic compressor of the XJ55-FF-1 turbojet engine. An analysis of the performance of the rotor was made based on detailed flow measurements behind the rotor. The compressor apparently did not obtain the design normal-shock configuration in this investigation. A large redistribution of mass occurred toward the root of the rotor over the entire speed range; this condition was so acute at design speed that the tip sections were completely inoperative. The passage pressure recovery at maximum pressure ratio at 1614 feet per second varied from a maximum of 0.81 near the root to 0.53 near the tip, which indicated very poor efficiency of the flow process through the rotor. The results, however, indicated that the desired supersonic operation may be obtained by decreasing the effective contraction ratio of the rotor blade passage.

  8. Measurement and Analysis of the Periodic Variation of Total Pressure in an Axial-Flow Compressor Stage.

    DTIC Science & Technology

    1980-11-01

    interaction has been established through the work of Meyer (1958), Lefcort (1965), Smith (1966), Kerrebrock and Mikolajczak (1970), Brandone and...pressure side of a chopping blade can also be seen in terms of a so- called "slip velocity" (Kerrebrock and Mikolajczak (1970)) as demon- strated in the... Mikolajczak (1970). They used this wake transport model to explain the shape of measured transonic compressor stator exit stagnation-temperature profiles

  9. An experimental study on the effects of tip clearance on flow field and losses in an axial flow compressor rotor

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Zhang, J.; Murthy, K. N. S.

    1987-01-01

    Detailed measurement of the flow field in the tip region of a compressor rotor was carried out using a Laser Doppler Velocimeter (LDV) and a Kiel probe at two different tip clearance heights. At both clearance sizes, the relative stagnation pressure and the axial and tangential components of relative velocities were measured upstream, inside the passage and downstream of the rotor, up to about 20 percent of the blade span from the annulus wall. The velocities, outlet angles, losses, momentum thickness, and force defect thickness are compared for the two clearances. A detailed interpretation of the effect of tip clearance on the flow field is given. There are substantial differences in flow field, on momentum thickness, and performance as the clearance is varied. The losses increase linearly within the passage and their values increase in direct proportion to tip clearance height. No discernable vortex (discrete) is observed downstream of the rotor.

  10. Performance of Typical Rear-Stage Axial-Flow Compressor Rotor Blade Row at Three Different Blade Setting Angles

    NASA Technical Reports Server (NTRS)

    Kussoy, Marvin I.; Bachkin, Daniel

    1959-01-01

    A comparison of the performance of a single-stage rotor run at three different blade setting angles is presented. The rotor was of a design typical for a last stage of a multistage compressor. At each setting angle, the rotor blade row was operated from 53 to 100 percent of equivalent maximum speed (850 ft/sec tip speed) at constant inlet pressure. Hot-wire anemometry was used to observe rotating-stall and surge patterns in time unsteady flow. Results indicated that an increase in peak pressure ratio and an increase in maximum equivalent weight flow were obtained at each speed investigated when the blade setting angle was decreased. An increase in peak efficiency was achieved with decrease in blade setting angle for part of the range of speeds investigated. However, the peak efficiencies for the three blade setting angles were approximately the same at the maximum speed investigated. The flow ranges for all three configurations were about the same at minimum speed and decreased at almost the same rate when the rotative speed was increased through part of the range of speeds investigated. At maximum speed, the flow range for the smallest setting angle was considerably less than the flow range for the other two configurations. A decrease in efficiency and flow range for the smallest blade setting angle at maximum speed can be attributed primarily to a Mach number effect. In addition, because of the difference in projected axial chord lengths at the casing wall, some effect on performance could be expected from the change in three-dimensional flow occurring at the tip. Rotating-stall characteristics for the two smaller blade setting angles were essentially the same. Only surge could be detected for the largest blade setting angle in the unstable-flow region of operation.

  11. Effect of Various Blade Modifications on Performance of a 16-Stage High-pressure-ratio Axial-flow Compressor.Angles 3 deg. 1; Effect on Over-all Performance Characteristics of Decreasing Twelfth Through Fifteenth State Stator-blade Angles 3 deg

    NASA Technical Reports Server (NTRS)

    Medeiros, Arthur A.; Hatch, James E.; Dugan, James F., Jr.

    1952-01-01

    The stator-blade angles in the twelfth to fifteenth stages of a 16-stage high-pressure-ratio axial-flow compressor were decreased 3 deg The over-all performance of this compressor is compared with the performance of the same compressor with standard blade angles. The matching characteristics of the modified compressor and a two-stage turbine were also obtained and compared with those of the compressor with the original blade angles and the same turbine.

  12. Experimental Investigation of the Flow Field in a Transonic, Axial Flow Compressor with Respect to the Development of Blockage and Loss

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.

    1996-01-01

    A detailed experimental investigation to understand and quantify the development of loss and blockage in the flow field of a transonic, axial flow compressor rotor has been undertaken. Detailed laser anemometer measurements were acquired upstream, within, and downstream of a transonic, axial compressor rotor operating at design and off-design conditions. The rotor was operated at 100%, 85%, 80%, and 60% of design speed which provided inlet relative Mach numbers at the blade tip of 1.48, 1.26, 1.18, and 0.89 respectively. At design speed the blockage is evaluated ahead of the rotor passage shock, downstream of the rotor passage shock, and near the trailing edge of the blade row. The blockage is evaluated in the core flow area as well as in the casing endwall region. Similarly at pm speed conditions for the cases of (1) where the rotor passage shock is much weaker than that at design speed and (2) where there is no rotor passage shock, the blockage and loss are evaluated and compared to the results at design speed. Specifically, the impact of the rotor passage shock on the blockage and loss development, pertaining to both the shock/boundary layer interactions and the shock/tip clearance flow interactions, is discussed. In addition, the blockage evaluated from the experimental data is compared to (1) an existing correlation of blockage development which was based on computational results, and (2) computational results on a limited basis. The results indicate that for this rotor the blockage in the endwall region is 2-3 times that of the core flow region and the blockage in the core flow region more than doubles when the shock strength is sufficient to separate the suction surface boundary layer. The distribution of losses in the care flow region indicate that the total loss is primarily comprised of the shock loss when the shock strength is not sufficient to separate the suction surface boundary layer. However, when the shock strength is sufficient to separate the

  13. ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF ROTATING STALL PHENOMENA IN TURBINE ENGINE COMPRESSORS.

    DTIC Science & Technology

    AXIAL FLOW COMPRESSORS, STALLING), TURBOJET ENGINES , AXIAL FLOW COMPRESSOR BLADES , LIFT, HYSTERESIS, TURBULENCE, INLET GUIDE VANES , RINGS, STABILITY, THREE DIMENSIONAL FLOW, VISCOSITY, VORTICES, FLUIDICS.

  14. Axial flow rotary engine

    SciTech Connect

    Loran, W.; Robinson, M.A.

    1989-07-18

    This paper describes an internal combustion engine. It comprises: a housing having an intake port at one end thereof and an exhaust port at the other end thereof; a compression chamber in the housing near the one end; compressor means in the compression chamber; a compressor transfer port opening through the downstream outlet wall; an expansion chamber in the housing near the other end thereof to receive combusted gases; work means in the expansion chamber driven by expanding, combusted gases; means rotating the compressor outlet wall at the same rotational drive speed as the expander inlet wall; an expansion chamber inlet port opening extending through the upstream inlet wall; a cylindrical combustion chamber block rotatable in the housing intermediate the compression chamber and the expansion chamber; at least two combustion chambers in the block; means rotating the block at a reduced speed relative to the speed of rotation of the compressor outlet wall and the expander inlet wall; means for igniting the charge of compressed gas during the intermediate portion of each revolution of the combustion chamber block. The combustion chambers being substantially hemispherical; the speed of rotation of the compressor outlet wall is in the same ratio to the speed of rotation of the combustion chamber block as the number of combustion chambers in the block is to the number of combustion chambers less one.

  15. Nonuniform Energy Transfer in Axial Flow Compressors.

    DTIC Science & Technology

    1980-06-01

    Kerrebrock and -4- Mikolajczak (REF 8) showed that blade boundary layer fluid due to a slip velocity of the resulting wake will tend to be separated from the... Mikolajczak (REF B) report circumferential temperature variations at the exit of a stator row downstream of a transonic rotor to be on the order of 10...Turbomachines. AbPIL Transact. 2. of Basic Engr. Sept. 1966 8. Kerrebrock, J., & Mikolajczak , A.,: Intra-Stator Transport of Rotor Wakes and Its Effect

  16. Aerodynamics of advanced axial-flow turbomachinery

    NASA Technical Reports Server (NTRS)

    Serovy, G. K.; Kavanagh, P.; Kiishi, T. H.

    1980-01-01

    A multi-task research program on aerodynamic problems in advanced axial-flow turbomachine configurations was carried out at Iowa State University. The elements of this program were intended to contribute directly to the improvement of compressor, fan, and turbine design methods. Experimental efforts in intra-passage flow pattern measurements, unsteady blade row interaction, and control of secondary flow are included, along with computational work on inviscid-viscous interaction blade passage flow techniques. This final report summarizes the results of this program and indicates directions which might be taken in following up these results in future work. In a separate task a study was made of existing turbomachinery research programs and facilities in universities located in the United States. Some potentially significant research topics are discussed which might be successfully attacked in the university atmosphere.

  17. Equilibrium operating performance of axial-flow turbojet engines by means of idealized analysis

    NASA Technical Reports Server (NTRS)

    Sanders, John C; Chapin, Edward C

    1950-01-01

    A method of predicting equilibrium operating performance of turbojet engines has been developed, with the assumption of simple model processes for the components. Results of the analysis are plotted in terms of dimensionless parameters comprising critical engine dimensions and over-all operating variables. This investigation was made of an engine in which the ratio of axial inlet-air velocity to compressor-tip velocity is constant, which approximates turbojet engines with axial-flow compressors. Experimental correlation of the theory with data from several existing axial-flow-type engines was good and showed close correlation between calculated and measured performance.

  18. Effect of Various Blade Modifications in Performance of a 16-Stage Axial-flow Compressor. IV - Effect on Over-all Performance Characteristics of Decreasing Twelfth through Fifteenth Stage Stator-blade Angles 3 deg and Increasing Stator Angles in the Inlet Stages

    NASA Technical Reports Server (NTRS)

    Hatch, James E.; Medeiros, Arthur A.

    1952-01-01

    The performance of a 16-stage axial-flow compressor, in which two modifications of unloaded inlet stages were combined with loaded exit stages, has been determined. In the first modification the exit stages were loaded by decreasing the twelfth through fifteenth stage stator angles 3 deg. as compared with the blade angles in the original compressor, and the inlet stages were unloaded by increasing the blade angles the following amounts: guide vanes and first-stage stator, 6 deg; second- and third-stage stators, 4 deg.; and fourth-stage stators, 3 deg. The over-all performance of this configuration was compared with that of the compressor with the original blade angles. The peak efficiency was increased at all speeds below design and the weight flow was higher at speeds below 80 percent of design, the same at 80 percent of design, and lower at speeds abovce 80 percent of design. The maximum reduction in weight flow occurred at design speed. The surge limit line was higher at speeds between 75 and 90 percent of design when presented on a pressure ratio against weight flow basis. The second configuration was the same as the first with the exception that the second-, third-, and fourth-stage stator blade angles were the same as in the compressor with the original blade angles. A comparison of the performance of this configuration with that of the compressor with the original blade angles showed the same general trends of changes in performance as the first configuration. Comparisons were made of compressor configurations to show the effects upon the performance of decreased loading in the inlet stages. Below 75 percent of design speed, decreased loading results in increased weight flow and peak efficiency; above 80 percent of design speed, decreased loading in the inlet stages results in decreased weight flow and small changes in peak efficiencies. Between 75 and 90 percent of design the changes in surge weight flow and pressure ratio were such that the surge limit

  19. The Slotted Blade Axial-Flow Blower

    DTIC Science & Technology

    1955-09-01

    YORK 18, NEW YORK w is|’ .THE SLOTTED BLADE AXIAL-FLOW BLOVER AUG 0 1 13941J F Dr. H. E. Sheets, Member ASME Chief Research and Development Engineer ... blades of an axial flow blower. The subject of boundary-layer control has attracted considerable attention in respect to the isolated airfoil (1)1 but... blades . Flow through airfoils displays a region of laminar flow beginning at the leading edge. Further downstream, at approximately the location of the

  20. Supersonic axial-flow fan flutter

    NASA Technical Reports Server (NTRS)

    Ramsey, John K.

    1988-01-01

    Lane's (1957) analytical formulation of the unsteady pressure distribution on an oscillating two-dimensional flat plate cascade in supersonic axial flow has been developed into a computer code. This unsteady aerodynamic code has shown good agreement with other published data. This code has also been incorporated into an existing aeroelastic code to analyze the NASA Lewis supersonic through-flow fan design.

  1. Turbulence Effects of Axial Flow Hydrokinetic Turbines

    NASA Astrophysics Data System (ADS)

    Hill, C.; Chamorro, L. P.; Neary, V. S.; Morton, S.; Sotiropoulos, F.

    2011-12-01

    Axial flow hydrokinetic turbines provide a method for extracting the kinetic energy available in unidirectional (river), bidirectional (tidal) and marine currents; however, a deep understanding of the wake dynamics, momentum recovery, geomorphologic effects, and ecological interaction with these hydrokinetic turbines is required to guarantee their economical and environmental viability. The St. Anthony Falls Laboratory (SAFL) at the University of Minnesota (UMN) has performed physical modeling experiments using a 1:10 scale axial flow tidal turbine in the SAFL Main Channel, a 2.75m x 1.8m x 80m open channel test facility. A sophisticated control system allows synchronous measurements of turbine torque and rotational speed along with high resolution 3-D velocity measurements within the channel. Using acoustic Doppler velocimeters (ADVs), high resolution 3-D velocity profile data were collected up to 15 turbine diameters downstream of the turbine location. These data provide valuable information on the wake characteristics (turbulence, Reynolds stresses, etc.) resulting from a rotating axial flow hydrokinetic machine. Regions of high turbulence and shear zones that persist in the near wake regions are delineated along with the velocity deficit and momentum recovery within the wake downstream of the device. Synchronous ADV data shed light on the rotational and meandering characteristics of the wake and its potential impacts on the local geomorphology and hydrodynamic environment. This dataset on single hydrokinetic turbine flow characteristics is the basis for further work on the optimal arrangement and performance environment for arrays of similar hydrokinetic devices.

  2. Axial flow positive displacement worm gas generator

    NASA Technical Reports Server (NTRS)

    Murrow, Kurt David (Inventor); Giffin, Rollin George (Inventor); Fakunle, Oladapo (Inventor)

    2010-01-01

    An axial flow positive displacement engine has an inlet axially spaced apart and upstream from an outlet. Inner and outer bodies have offset inner and outer axes extend from the inlet to the outlet through first, second, and third sections of a core assembly in serial downstream flow relationship. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. The first twist slopes are less than the second twist slopes and the third twist slopes are less than the second twist slopes. A combustor section extends axially downstream through at least a portion of the second section.

  3. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    DOEpatents

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  4. Preliminary Results of an Altitude-Wind-Tunnel Investigation of an Axial-Flow Gas Turbine-Propeller Engine. 1; Performance Characteristics

    NASA Technical Reports Server (NTRS)

    Saari, Martin J.; Wallner, Lewis E.

    1948-01-01

    A preliminary investigation of an axial-flow gas turbine-propeller engine was conduxted. Performance data were obtained for engine speeds from 8000 to 13,000 rpm and altitudes from 5000 to 35,000 feet and compressor inlet ram pressure ratios from 1.00 to 1.17.

  5. Preliminary Results of an Altitude-Wind-Tunnel Investigation of an Axial-Flow Gas Turbine-Propeller Engine. 3; Pressure and Temperature Distributions

    NASA Technical Reports Server (NTRS)

    Geisenheyner, Robert M.; Berdysz, Joseph J.

    1948-01-01

    Performance properties and operational characteristics of an axial-flow gas turbine-propeller engine were determined. Data are presented for a range of simulated altitudes from 5,000 to 35,0000 feet, compressor inlet- ram pressure ratios from 1.00 to 1.17, and engine speeds from 8000 to 13,000 rpm.

  6. PRELIMINARY DESIGN ANALYSIS OF AXIAL FLOW TURBINES

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1994-01-01

    A computer program has been developed for the preliminary design analysis of axial-flow turbines. Rapid approximate generalized procedures requiring minimum input are used to provide turbine overall geometry and performance adequate for screening studies. The computations are based on mean-diameter flow properties and a stage-average velocity diagram. Gas properties are assumed constant throughout the turbine. For any given turbine, all stages, except the first, are specified to have the same shape velocity diagram. The first stage differs only in the value of inlet flow angle. The velocity diagram shape depends upon the stage work factor value and the specified type of velocity diagram. Velocity diagrams can be specified as symmetrical, zero exit swirl, or impulse; or by inputting stage swirl split. Exit turning vanes can be included in the design. The 1991 update includes a generalized velocity diagram, a more flexible meanline path, a reheat model, a radial component of velocity, and a computation of free-vortex hub and tip velocity diagrams. Also, a loss-coefficient calibration was performed to provide recommended values for airbreathing engine turbines. Input design requirements include power or pressure ratio, mass flow rate, inlet temperature and pressure, and rotative speed. The design variables include inlet and exit diameters, stator angle or exit radius ratio, and number of stages. Gas properties are input as gas constant, specific heat ratio, and viscosity. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, blading angles, and last stage absolute and relative Mach numbers. This program is written in FORTRAN 77 and can be ported to any computer with a standard FORTRAN compiler which supports NAMELIST. It was originally developed on an IBM 7000 series computer running VM and has been implemented on IBM PC computers and compatibles running MS-DOS under Lahey FORTRAN, and

  7. Effects of Inlet Icing on Performance of Axial-flow Turbojet Engine in Natural Icing Conditions

    NASA Technical Reports Server (NTRS)

    Acker, Loren W; Kleinknecht, Kenneth S

    1950-01-01

    A flight investigation in natural icing conditions was conducted to determine the effect of inlet ice formations on the performance of axial-flow turbojet engines. The results are presented for icing conditions ranging from a liquid-water content of 0.1 to 0.9 gram per cubic meter and water-droplet size from 10 to 27 microns at ambient-air temperature from 13 to 26 degrees F. The data show time histories of jet thrust, air flow, tail-pipe temperature, compressor efficiency, and icing parameters for each icing encounter. The effect of inlet-guide-vane icing was isolated and shown to account for approximately one-half the total reduction in performance caused by inlet icing.

  8. Optimal design of multi-conditions for axial flow pump

    NASA Astrophysics Data System (ADS)

    Shi, L. J.; Tang, F. P.; Liu, C.; Xie, R. S.; Zhang, W. P.

    2016-11-01

    Passage components of the pump device will have a negative flow state when axial pump run off the design condition. Combined with model tests of axial flow pump, this paper use numerical simulation and numerical optimization techniques, and change geometric design parameters of the impeller to optimal design of multi conditions for Axial Flow Pump, in order to improve the efficiency of non-design conditions, broad the high efficient district and reduce operating cost. The results show that, efficiency curve of optimized significantly wider than the initial one without optimization. The efficiency of low flow working point increased by about 2.6%, the designed working point increased by about 0.5%, and the high flow working point increased the most, about 7.4%. The change range of head is small, so all working point can meet the operational requirements. That will greatly reduce operating costs and shorten the period of optimal design. This paper adopted the CFD simulation as the subject analysis, combined with experiment study, instead of artificial way of optimization design with experience, which proves the reliability and efficiency of the optimization design of multi-operation conditions of axial-flow pump device.

  9. Performance analysis of axial-flow mixing impellers

    SciTech Connect

    Wu, J.; Pullum, L.

    2000-03-01

    Theoretical formulations for impeller performance were evaluated based on a blade-element theory. These enable the calculation of the head and power vs. flow-rate curves of axial-flow impellers. The technique uses the life and drag coefficients of the blade section of an impeller to calculate the spanwise swirl-velocity distribution. Using the angular-momentum equation, it is possible to calculate the corresponding spanwise distribution of the energy head of the impeller. Integration of these distributions of head and torque gives the impeller's performance. Parameters including the flow number, the power number, the thrust force number, and the swirl velocity can be found at the impeller operating point, determined using the head curve and an experimentally calibrated resistance curve. A laser Doppler velocimetry (LDV) system was used to measure the velocity distribution for different axial flow impellers in mixing tanks. Calculated flow and power numbers agreed well with the experimental results. Using the blade's spanwise head distribution and a set of calibrated flow-resistance data, it is also possible to estimate an impeller's outlet axial-velocity distribution. Predictions compared well with LDV experimental data. The effect of impeller-blade angle, number of blades, blade camber, and blade thickness on the performance of axial-flow impellers was investigated using the Agitator software.

  10. Water ingestion into jet engine axial compressors

    NASA Technical Reports Server (NTRS)

    Tsuchiya, T.; Murthy, S. N. B.

    1982-01-01

    An axial flow compressor has been tested with water droplet ingestion under a variety of conditions. The results illustrate the manner in which the compressor pressure ratio, efficiency and surging characteristics are affected. A model for estimating the performance of a compressor during water ingestion has been developed and the predictions obtained compare favorably with the test results. It is then shown that with respect to five droplet-associated nonlinearly-interacting processes (namely, droplet-blade interactions, blade performance changes, centrifugal action, heat and mass transfer processes and droplet break-up), the initial water content and centrifugal action play the most dominant roles.

  11. Rotor wake characteristics of a transonic axial flow fan

    NASA Technical Reports Server (NTRS)

    Hathaway, M. D.; Gertz, J.; Epstein, A.; Strazisar, A. J.

    1985-01-01

    State of the art turbomachinery flow analysis codes are not capable of predicting the viscous flow features within turbomachinery blade wakes. Until efficient 3D viscous flow analysis codes become a reality there is therefore a need for models which can describe the generation and transport of blade wakes and the mixing process within the wake. To address the need for experimental data to support the development of such models, high response pressure measurements and laser anemometer velocity measurements were obtained in the wake of a transonic axial flow fan rotor.

  12. Miniaturization of a magnetically levitated axial flow blood pump.

    PubMed

    Cheng, Shanbao; Olles, Mark W; Olsen, Don B; Joyce, Lyle D; Day, Steven W

    2010-10-01

    This article introduces a unique miniaturization process of a magnetically levitated axial flow blood pump from a functional prototype to a pump suitable for animal trials. Through COMSOL three-dimensional finite element analysis and experimental verification, the hybrid magnetic bearings of the pump have been miniaturized, the axial spacing between magnetic components has been reduced, and excess material in mechanical components of the pump was reduced. Experimental results show that the pump performance was virtually unchanged and the smaller size resulted in the successful acute pump implantation in calves.

  13. Development of a miniature intraventricular axial flow blood pump.

    PubMed

    Yamazaki, K; Umezu, M; Koyanagi, H; Outa, E; Ogino, S; Otake, Y; Shiozaki, H; Fujimoto, T; Tagusari, O; Kitamura, M

    1993-01-01

    A new intraventricular axial flow blood pump has been designed and developed as a totally implantable left ventricular assist device (LVAD). This pump consists of an impeller combined with a guide-vane, a tube housing, and a DC motor. The pump is introduced into the LV cavity through the LV apex, and the outlet cannula is passed antegrade across the aortic valve. Blood is withdrawn from the LV through the inlet ports at the pump base, and discharged to the ascending aorta. Our newly developed axial flow pump system has the following advantages: 1) it is a simple and compact system, 2) minimal blood stasis both in the device and the LV cavity, 3) minimal blood contacting surface of the pump, 4) easy accessibility with a less invasive surgical procedure, and 5) low cost. A pump flow > 5 L/min was obtained against 100 mmHg differential pressure in the mock circulatory system. The pump could produce a passive pulsatile flow effect with a beating heart more efficiently than other non-pulsatile pumps because of minimal pressure drop and inertia along the bypass tract. Anatomic fit studies using dissected hearts of dilated cardiomyopathy (DCM) cadavers showed that this pump could smoothly pass through the aortic valve without any interference with mitral valve function. Recently, a dynamic pressure groove bearing and a miniature lip seal have been developed. The dynamic pressure groove bearing has a simple structure and acts as a pressure resistant sealing mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Aeroelastic flutter in axial flow-The continuum theory

    NASA Astrophysics Data System (ADS)

    Balakrishnan, A. V.; Tuffaha, A. M.

    2012-11-01

    We present a mathematical continuum model for aeroelastic flutter of a Goland type structure subject to axial airflow. The model consists of a linearized Euler full potential equation for the airflow and a second order linear structure equation in two degrees of freedom plunge and pitch (bending and torsion). These are coupled through velocity matching type conditions and Kutta type condition describing the pressure jump. The approach mimics the approach used to study aeroelastic flutter in the normal flow case [?], which deals with aircraft applications. We layout the theoretical framework for determining the aeroelastic modes and the flutter point of the structure at any given mode. We will focus on the torsion aeroelastic modes and consider bending modes in future work. The importance of studying aeroelastic flutter in the axial flow case has come to attention in the recent years in light of non aircraft applications of which we mention two: the problem of snoring or apnea, which can be characterized as palattal flutter and secondly power generation from structures placed in axial flow.

  15. Advanced two-stage compressor program design of inlet stage

    NASA Technical Reports Server (NTRS)

    Bryce, C. A.; Paine, C. J.; Mccutcheon, A. R. S.; Tu, R. K.; Perrone, G. L.

    1973-01-01

    The aerodynamic design of an inlet stage for a two-stage, 10/1 pressure ratio, 2 lb/sec flow rate compressor is discussed. Initially a performance comparison was conducted for an axial, mixed flow and centrifugal second stage. A modified mixed flow configuration with tandem rotors and tandem stators was selected for the inlet stage. The term conical flow compressor was coined to describe a particular type of mixed flow compressor configuration which utilizes axial flow type blading and an increase in radius to increase the work input potential. Design details of the conical flow compressor are described.

  16. A new blade element method for calculating the performance of high and intermediate solidity axial flow fans

    NASA Technical Reports Server (NTRS)

    Borst, H. V.

    1978-01-01

    A method is presented to design and predict the performance of axial flow rotors operating in a duct. The same method is suitable for the design of ducted fans and open propellers. The unified method is based on the blade element approach and the vortex theory for determining the three dimensional effects, so that two dimensional airfoil data can be used for determining the resultant force on each blade element. Resolution of this force in the thrust and torque planes and integration allows the total performance of the rotor, fan or propeller to be predicted. Three different methods of analysis, one based on a momentum flow theory; another on the vortex theory of propellers; and a third based on the theory of ducted fans, agree and reduce cascade airfoil data to single line as a function of the loading and induced angle of attack at values of constant inflow angle. The theory applies for any solidity from .01 to over 1 and any blade section camber. The effects of the duct and blade number can be determined so that the procedure applies over the entire range from two blade open propellers, to ducted helicopter tail rotors, to axial flow compressors with or without guide vanes, and to wind tunnel drive fans.

  17. Investigation of Rotating Stall Phenomena in Axial Flow Compressors. Volume I. Basic Studies of Rotating Stall

    DTIC Science & Technology

    1976-06-01

    as a function inlet swirl still controls the stability of a given flow configuration. The three- dimensional theory has not been completed at this time ...A. STIBIH Project Engineer FUR T1E CCKW Tech Area Manager , Con:re drs Copies of this report should not be returned unless return isrequired by...York 14221 30660334 I CONTROLLING OFFICE NAME ANO ADORESS I’ RFPORT nATI U.S. Air Force Aero-Propilsion Laboratory June 1976 Air Force Systems Cofr

  18. Extension of Useful Operating Range of Axial-Flow Compressors by Use of Adjustable Stator Blades

    DTIC Science & Technology

    1948-01-01

    wmprcssor. AIRCRAFT ENGINE RESEARCH LABORATORY, NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS , CLEVELAND, OHIO, December%9, 1944. APPENDIX A ENTRANCE...ADVISORYCOMbl_E FOR AERONAUTICS either stator blades m rotor bIades can be prevented by the adjustment of the proper row of stator blades : in the first...section, Reynokls number, solidity, blade -a@e setting, and degree of turbulence. Experiments on- airfoil cascades with retarded flow (reference 6, p. 75, and

  19. An Experimental and Analytical Study of TIP Clearance Effects in Axial Flow Compressors

    DTIC Science & Technology

    1991-12-01

    LSMSC Flow ............... 221 B .7.1 T he Q 3D Program ............................................................ 221 B.7.1.1 Comparison of Build 1II...to rotor R applicable to stator streak line S at tip radius at or on wallW at zero clearance 0 2D two dimensional, planar or cascade blade element 3D ...which accounts for three dimensional losses due to clearance or near wall influences. In this type of formulation G) = ) M+(0 =2D 3D 1(14) and it is

  20. Effect of Water on Axial Flow Compressors. Part I. Analysis and Predictions.

    DTIC Science & Technology

    1981-06-01

    Office) 1S. SECURITY CLASS. (of thill report) NASA -Lewis Research Center Unclassifed 21000 Brookpark Road Un___assifed Clevel and, Ohio 44135...droplet surface c blade chord length Cp specific heat at constant pressure cw specific heat of water cs humid heat for air-water mixture D droplet...calculated value D pertaining to design point g pertaining to gas phase i pertaining to ideal process I pertaining to liquid phase m pertaining to

  1. Computer Program for Aerodynamic and Blading Design of Multistage Axial-Flow Compressors.

    DTIC Science & Technology

    1981-12-01

    reference 1. In M2+ 1 ) equation form it is [M sin a+d sec(a+ X) tan(of (7) Vi A( rVo ) D=l- F c(r+r 2 )Vj (2) A velocity gradient procedure is used to...mdl - T / dl station path, the solution for Vm is dlnP d( rVo ) V2 / . \\! +V2.2b(l-,10 ) a-ldl 4+ ( &7 A two-step procedure is used in the program...aVm a( rVO ) 0 an r an When steady flow is assumed and the local friction force is ignored, equation (CI) reduces to =6a0) + fn[0) + ,[ V, a( rVo ) VH= Vx

  2. Water Ingestion into Axial Flow Compressors. Part III. Experimental Results and Discussion

    DTIC Science & Technology

    1981-10-01

    specifications, or other data, is not to be re- garded by implication or otherwise as in any manner licensing the holder or any other person or corporation , or...arises a large change In gas phase and liquid phase (a) mass flow and (b) temperatura and also a change in gas phase composition. In regime (iii) one

  3. Stepped Tip Gap Effects on a Transonic Axial-Flow Compressor Rotor

    DTIC Science & Technology

    1997-06-01

    Along Vortex Trajectory [Extracted from Suder and Celestina [86] ] ........................... 20 Figure 10. Static Pressure of ADLARF Rotor (Peak...Suder and Celestina [86] , Puterbaugh [71] , Puterbaugh and Brendel [72] , Cybyk et al. [24] , and Sellin et al. [81] provide detailed characterization...like flow forming coincident with the smaller secondary normal shock (Figure 4). Suder and Celestina [86] used a Navier-Stokes solver to detail the

  4. Measurements of inlet flow distortions in an axial flow fan (6 and 9 blade rotor)

    NASA Technical Reports Server (NTRS)

    Barr, L. C.

    1978-01-01

    A large quantity of experimental data on inlet flow distortions in an axial flow fan were obtained. The purpose of the study was to determine the effects of design and operating variables and the type of distortion on the response of an axial flow turbomachinery rotor. Included are background information and overall trends observed in distortion attenuation and unsteady total pressure losses.

  5. Chaotic Dynamics of Articulated Cylinders in Confined Axial Flow

    NASA Astrophysics Data System (ADS)

    Païdoussis, M. P.; Botez, R. M.

    1993-10-01

    A study is presented of the dynamics of an articulated system of cylinders in confined axial flow. The Articulated system is composed of rigid cylindrical segments, interconnected by rotational springs; it is cantilevered, hanging vertically in the centre of a cylindrical pipe, with fluid flowing downwards in the narrow annular passage. For sufficiently high flow velocity, the system generally loses stability sequentially by diverge (pitchfork bifurcation) and flutter (Hopf bifurcation). Once this occurs, the articulated system interacts with the outer pipe, which acts a constraint to free motions. In the present study, which is mainly concerned with possible chaotic motions in this system, the analytical model is highly simplified. Thus, motions are considered to be planar, and the equations of the articulated system are taken to be linear, other than the terms associated with interaction with the outer pipe, which is modelled by either a trilinear or a cubic spring. A linear eigenvalue analysis is first undertaken, and then the nonlinear behaviour of the constrained model is explored numerically for systems of two and three articulations. Phase-plane plots, power spectral densities and bifurcation diagrams indicate in some cases a clear period-doubling cascade leading to chaos, while in others chaos arises via the quasiperiodic route. Poincaré maps and Lyapunov exponent calculations confirm the existence of chaos. Some analytical work is also presented, involving centre manifold theory, in which the post-Hopf limit-cycle amplitude is calculated and compared with that obtained numerically.

  6. Fluid dynamics aspects of miniaturized axial-flow blood pump.

    PubMed

    Kang, Can; Huang, Qifeng; Li, Yunxiao

    2014-01-01

    Rotary blood pump (RBP) is a kind of crucial ventricular assist device (VAD) and its advantages have been evidenced and acknowledged in recent years. Among the factors that influence the operation performance and the durability of various rotary blood pumps, medium property and the flow features in pump's flow passages are conceivably significant. The major concern in this paper is the fluid dynamics aspects of such a kind of miniaturized pump. More specifically, the structural features of axial-flow blood pump and corresponding flow features are analyzed in detail. The narrow flow passage between blade tips and pump casing and the rotor-stator interaction (RSI) zone may exert a negative effect on the shear stress distribution in the blood flow. Numerical techniques are briefly introduced in view of their contribution to facilitating the optimal design of blood pump and the visualization of shear stress distribution and multiphase flow analysis. Additionally, with the development of flow measurement techniques, the high-resolution, effective and non-intrusive flow measurement techniques catering to the measurement of the flows inside rotary blood pumps are highly anticipated.

  7. Geomorphological impact of an axial-flow hydrokinetic turbine model

    NASA Astrophysics Data System (ADS)

    Hill, C.; Chamorro, L. P.; Sotiropoulos, F.; Guala, M.

    2012-12-01

    MHK devices in river or tidal environments are expected to impact the local geomorphology in the short and long terms, yet to what extent is unknown. A series of experiments in the SAFL main channel were performed on an erodible sediment layer at the threshold of motion aimed at quantifying the local effect of an axial-flow turbine model on erosional and depositional processes. Full planimetric, time resolved measurements of bed elevations z = z(x, y, t) were obtained using a 2D sheet laser scanner mounted on a computer controlled data acquisition carriage. Measurement resolution was 2 mm x 2 mm in the streamwise (x) and spanwise (y) directions, and approximately 70 s temporally. Approximately 180 topographic scans were obtained in about 3.8 hours while simultaneously monitoring mean approach velocities using an acoustic Doppler profiler located approximately 2 rotor diameters, dT, upstream of the turbine. Three synchronized acoustic Doppler velocimeters (ADVs) located 6dT downstream of the turbine at locations coincident with the turbine axis of symmetry and at the lateral blade tips at hub height obtained instantaneous three component velocity measurements u, v, w in the wake of the turbine. The 1:10 scale axial-flow hydrokinetic turbine model operated at a constant tip speed ratio ωdT/2U = 6.3 while measuring instantaneous torque (ω is the rotor angular velocity and U is the mean incoming velocity at the hub height). The sediment layer consisted of coarse sand with mean diameter d50 = 1.8 mm. Using laser scanning measurements, the sediment layer was observed to be stable under the given hydraulic conditions (total discharge of Qw = 1.765 m3s-1 and water depth of h = 1.15 m) during the baseline case (no turbine), ensuring that the mean shear stress was below the critical value for the duration of the experiment. Maintaining the same flow conditions, three additional experiments were performed: a) effect of turbine support (base and tower) only, b) effect of

  8. A computational study of tip desensitization in axial flow turbines

    NASA Astrophysics Data System (ADS)

    Tallman, James A.

    This study investigates the use of modified blade tip geometries as a means of reducing the leakage flow and vortex in axial flow turbine rotors. Computational Fluid Dynamics (CFD) was used as a tool to compute the flowfield of a low-speed, single stage, experimental turbine. The results from three separate baseline turbine rotor computations all showed good agreement with experimental measurements, validating the numerical procedure's ability to predict complex turbine rotor flowfields. This agreement was, in part, due to an advanced, multi-block method of discretizing the turbine rotor into a computational mesh, which was developed as part of the study. After validating the numerical procedure, three different classifications of tip geometry modification were investigated through CFD simulation: chamfering of the suction side of the blade tip, rounding of the blade tip edge, and squealer-type cavities. Chamfering of the blade tip was shown to cause the leakage flow inside the gap to turn toward the camber direction of the blade. This turning led to reduced mass flow through the gap and a smaller leakage vortex. Rounding of the suction side edge of the blade tip resulted in a considerable reduction in the size and strength of the leakage vortex, while rounding of the pressure side edge of the blade tip greatly increased the mass flow rate through the gap. Rounded squealer cavities acted to reduce the mass flow through the gap and proved advantageous over traditional, square squealer cavities. Final, detailed computations using a very refined mesh reconfirmed the findings of more rapid, preliminary computations. Detailed, three-dimensional analysis of the computed flowfields revealed the physics behind the modified tip geometries' reduction of the leakage flow and vortex.

  9. Induction of ventricular collapse by an axial flow blood pump.

    PubMed

    Amin, D V; Antaki, J F; Litwak, P; Thomas, D; Wu, Z J; Watach, M

    1998-01-01

    An important consideration for clinical application of rotary blood pump based ventricular assist is the avoidance of ventricular collapse due to excessive operating speed. Because healthy animals do not typically demonstrate this phenomenon, it is difficult to evaluate control algorithms for avoiding suction in vivo. An acute hemodynamic study was thus conducted to determine the conditions under which suction could be induced. A 70 kg calf was implanted with an axial flow assist device (Nimbus/UoP IVAS; Nimbus Inc., Rancho Cordova, CA) cannulated from the left ventricular apex to ascending aorta. On initiation of pump operation, several vasoactive interventions were performed to alter preload, afterload, and contractility of the left ventricle. Initially, dobutamine increased contractility and heart rate ([HR] = 139; baseline = 70), but ventricular collapse was not achievable, even at the maximal pump speed of 15,000 rpm. Norepinephrine decreased HR (HR = 60), increased contractility, and increased systemic vascular resistance ([SVR] = 24; baseline = 15), resulting in ventricular collapse at a pump speed of 14,000 rpm. Isoproterenol (beta agonist) increased HR (HR = 103) and decreased SVR (SVR = 12), but ventricular collapse was not achieved. Inferior vena cava occlusion reduced preload, and ventricular collapse was achieved at speeds as low as 11,000 rpm. Esmolol (beta1 antagonist) decreased HR (HR = 55) and contractility, and ventricular collapse was achieved at 11,500 rpm. Episodes of ventricular collapse were characterized initially by the pump output exceeding the venous return and the aortic valve remaining closed throughout the cardiac cycle. If continued, the mitral valve would remain open throughout the cardiac cycle. Using these unique states of the mitral and aortic valves, the onset of ventricular collapse could reliably be identified. It is hoped that the ability to detect the onset of ventricular collapse, rather than the event itself, will assist in

  10. Particle classification in Taylor vortex flow with an axial flow

    NASA Astrophysics Data System (ADS)

    Ohmura, N.; Suemasu, T.; Asamura, Y.

    2005-01-01

    Particle classification phenomenon in Taylor vortex flow with an axial flow was investigated experimentally and numerically. The flow-visualization experiment by a laser-induced fluorescence method clearly revealed that there existed two distinct mixing regions at low Reynolds numbers. The tracer near the vortex cell boundary was rapidly transported axially owing to the bypass flow effect. On the other hand, the fluid element was confined to the vortex core region without being exchanged with the outer flow region. In order to observe particle classification phenomenon, polymethyl methacrylate (PMMA) particles suspended in the same aqueous solution of glycerol as the working fluid were fed into the top of the apparatus. Particle size was initially ranging from 10 to 80 µm. The ratio of the particle density to the fluid density was 1.04-1.05, which means the density difference between particle and fluid is very small. The suspended solution was withdrawn using a hypodermic needle every a certain time period at 30 mm above the bottom of apparatus. The fluid was sampled both near the outer wall and in vortex core. The particles sampled at 42 min having the size of 20-50 µm were mainly observed in the vortex core region. On the other hand, a large population of particles having the size of about 50-80 µm could be seen in the outer region of vortex. It was found that large particles located near the outer edge of vortices were quickly transported axially owing to the bypass flow effect. Numerical simulation also revealed that the loci of particles depended on the particle size.

  11. Comparison of NACA 65-series compressor-blade pressure distributions and performance in a rotor and in cascade

    NASA Technical Reports Server (NTRS)

    Westphal, Willard R; Godwin, William R

    1957-01-01

    An investigation has been conducted to compare the performance of NACA 65-series compressor blades in two-dimensional cascade with that in an axial flow compressor. Blade pressure distributions were obtained by the use of a mercury-seal pressure-transfer device. The comparison indicated that cascade data accurately predicted the turning angle and blade pressure distribution obtained in the compressor at design conditions.

  12. Effects of shaft supporting structure on performance test of axial flow fan

    NASA Astrophysics Data System (ADS)

    Ma, R.; Liu, S. L.; Li, M. X.; Zheng, S. Y.

    2016-05-01

    CFD numerical simulation combined with theoretical analysis are used to research and discuss the obstructing effect, caused by the supporting structure of torsion meter and connecting shaft, on the outlet airflow of axial-flow fan in type-C ducted inlet device. The relations between axial flow fan's total pressure efficiency and flow rate are studied when the distance between supporting structure and outlet section is different, which may provide a reference for the proper design of the performance test device.

  13. High pressure compressor component performance report

    NASA Technical Reports Server (NTRS)

    Cline, S. J.; Fesler, W.; Liu, H. S.; Lovell, R. C.; Shaffer, S. J.

    1983-01-01

    A compressor optimization study defined a 10 stage configuration with a 22.6:1 pressure ratio, an adiabatic efficiency goal of 86.1%, and a polytropic efficiency of 90.6%; the corrected airflow is 53.5 kg/s. Subsequent component testing included three full scale tests: a six stage rig test, a 10 stage rig test, and another 10 stage rig test completed in the second quarter of 1982. Information from these tests is used to select the configuration for a core engine test and an integrated core/low spool test. The test results will also provide data base for the flight propulsion system. The results of the test series with both aerodynamic and mechanical performance of each compressor build are presented. The second 10 stage compressor adiabatic efficiency was 0.848 at a cruise operating point versus a test goal of 0.846.

  14. Dimension Determination of Precursive Stall Events in a Single Stage High Speed Compressor

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Qammar, Helen K.; Hartley, Tom T.

    1996-01-01

    This paper presents a study of the dynamics for a single-stage, axial-flow, high speed compressor core, specifically, the NASA Lewis rotor stage 37. Due to the overall blading design for this advanced core compressor, each stage has considerable tip loading and higher speed than most compressor designs, thus, the compressor operates closer to the stall margin. The onset of rotating stall is explained as bifurcations in the dynamics of axial compressors. Data taken from the compressor during a rotating stall event is analyzed. Through the use of a box-assisted correlation dimension methodology, the attractor dimension is determined during the bifurcations leading to rotating stall. The intent of this study is to examine the behavior of precursive stall events so as to predict the entrance into rotating stall. This information may provide a better means to identify, avoid or control the undesirable event of rotating stall formation in high speed compressor cores.

  15. Vibrations of a Compressor Blade with Slip at the Root.

    DTIC Science & Technology

    1980-04-01

    c iris , 63 AFWAL-TR-80-4003 2 7 2 7T Y*coS~t W [coswt f Y* Cos 2 wt dt + sinwt UjT* sin(,tcosuwt dt] 0 0 - (2wt + sin 2wt )coswt C(A)coswt (106) 2Tr...Winter Annual Meeting, New York, December 1976. 13. M. P. Hanson, "Vibration Damper for Axial-Flow Compressor Blading," Proc. S.E.S.A., Vol. XIV, No

  16. Study on cavitation influence for pump head in an axial flow pump

    NASA Astrophysics Data System (ADS)

    Hosono, K.; Kajie, Y.; Saito, S.; Miyagawa, K.

    2015-12-01

    The size of axial flow pumps used in drainage pump stations has recently decreased, and their rotation speeds have increased, causing an increase in the risk of cavitation. Therefore, to provide highly reliable pumps, it is important to understand the internal flow of pumps under cavitating conditions. In this study, high-speed camera measurements and computational fluid dynamics analysis were performed to understand the cavitation performance of an axial flow pump. The mechanism that causes the head to change as a result of cavitation under low net positive suction head values is shown to be the balance between the increasing angular momentum and the loss indicated by the changing streamlines.

  17. A 10-stage reconnection demonstration launcher

    SciTech Connect

    Cnare, E.C.; Widner, M.M.; Duggin, B.W.

    1989-01-01

    A small-scale, 10-stage cylindrical reconnection launcher has been designed, fabricated, and tested. Ten-gram projectiles are accelerated from rest to 317 m/s through the 0.44 m launcher assembly with a projectile kinetic energy to capacitor stored energy efficiency of 9%. Comparison of test results and computer code predictions will be presented. Results of these studies have substantiated launcher scaling at small size and have provided a useful test bed for launcher components and diagnostics. 5 refs., 6 figs.

  18. A 10-stage reconnection demonstration launcher

    SciTech Connect

    Cnare, E.G.; Widner, M.M.; Duggins, B.W. )

    1991-01-01

    This paper reports on a small-scale, 10-stage cylindrical reconnection launcher that has been designed, fabricated, and tested. Ten-gram projectiles are accelerated from rest to 317 m/s through the 0.44 m launcher assembly with a projectile kinetic energy to capacitor stored energy efficiency of 9%. Comparison of test results and computer code predictions are presented. Results of these studies have substantiated launcher scaling at small size and have provided a useful test bed for launcher components and diagnostics.

  19. Numerical and experimental study on aerodynamic performance of small axial flow fan with splitter blades

    NASA Astrophysics Data System (ADS)

    Zhu, Lifu; Jin, Yingzi; Li, Yi; Jin, Yuzhen; Wang, Yanping; Zhang, Li

    2013-08-01

    To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-ɛ turbulence model and SIMPLE algorithm were applied to the steady simulation calculation of the flow field, and its result was used as the initial field of the large eddy simulation to calculate the unsteady pressure field. The FW-H noise model was adopted to predict aerodynamic noise in the six monitoring points. Fast Fourier transform algorithm was applied to process the pressure signal. Experiment of noise testing was done to further investigate the aerodynamic noise of fans. And then the results obtained from the numerical simulation and experiment were described and analyzed. The results show that the static characteristics of small axial fan with splitter blades are similar with the prototype fan, and the static characteristics are improved within a certain range of flux. The power spectral density at the six monitoring points of small axial flow fan with splitter blades have decreased to some extent. The experimental results show sound pressure level of new fan has reduced in most frequency bands by comparing with prototype fan. The research results will provide a proof for parameter optimization and noise prediction of small axial flow fans with high performance.

  20. [Research on the feasibility of a magnetic-coupling-driven axial flow blood pump].

    PubMed

    Yu, Xiaoqing; Ding, Wenxiang; Wang, Wei; Chen, En; Jiang, Zuming; Zou, Wenyan

    2004-02-01

    A new-designed axial flow blood pump, dived by magnetic coupling and using internal hollow brushless DC motor and inlet and outlet in line with impeller, was tested in mimic circuit. The results showed good performance of the new pump and indicated that its hydrodynamic characteristic can meet the demands of clinical extracorporeal circulation and auxiliary circulation.

  1. Graphic Analysis of American and British Axial-Flow Turbojet Engine Performance Trends (Current and Future)

    NASA Technical Reports Server (NTRS)

    Cesaro, Richard S.; Lazar, James

    1951-01-01

    This report presents a compilation of static sea-level data on existing or designed American and British axial-flow turbojet engines in terms of basic engine parameters such as thrust and air flow. In the data presented, changes in the over-U engine performance with time sre examined as well as the relation of the various engine parameters to each other.

  2. Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Cheng, Larry

    2015-01-01

    This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design.

  3. Effects of diffusion factor, aspect ratio and solidity on overall performance of 14 compressor middle stages. [the effects of varying both diffusion through the rotor and compressor blades and blade aspect ratio

    NASA Technical Reports Server (NTRS)

    Britsch, W. R.; Osborn, W. M.; Laessig, M. R.

    1979-01-01

    A series of high hub tip radius ratio compressor stages representative of the middle and latter stages of axial flow compressors is discussed. The effects of aspect ratio, diffusion factor, and solidity on rotor and stage performance are determined. Fourteen middle stages are tested to study the effects on performance of varying both diffusion through the rotor and stator blades and blade aspect ratio. The design parameters in the streamline analysis program, the blade geometry program, and the blade coordinate program are presented.

  4. Preliminary Results of an Altitude-Wind-Tunnel Investigation of an Axial-Flow Gas Turbine-Propeller Engine. 5; Combustion-Chamber Characterisitcs

    NASA Technical Reports Server (NTRS)

    Geisenheyner, Robert M.; Berdysz, Joseph J.

    1948-01-01

    An investigation to determine the performance and operational characteristics of an axial-flow gas turbine-propeller engine was conducted in the Cleveland altitude wind tunnel. As part of this investigation, the combustion-chamber performance was determined at pressure altitudes from 5000 to 35,000 feet, compressor-inlet ram-pressure ratios of 1.00 and 1.09, and engine speeds from 8000 to 13,000 rpm. Combustion-chamber performance is presented as a function of corrected engine speed and corrected horsepower. For the range of corrected engine speeds investigated, overall total-pressure-loss ratio, cycle efficiency, and the fractional loss in cycle efficiency resulting from pressure losses in the combustion chambers were unaffected by a change in altitude or compressor-inlet ram-pressure ratio. For the range of corrected horsepowers investigated, the total-pressure-loss ratio and the fractional loss in cycle efficiency resulting from pressure losses in the combustion chambers decreased with an increase in corrected horsepower at a constant corrected engine speed. The combustion efficiency remained constant for the range of corrected horsepowers investigated at all corrected engine speeds.

  5. Preliminary Results of Altitude-Wind-Tunnel Investigation of X24C-4B Turbojet Engine. IV - Performance of Modified Compressor. Part 4; Performance of Modified Compressor

    NASA Technical Reports Server (NTRS)

    Thorman, H. Carl; Dupree, David T.

    1947-01-01

    The performance of the 11-stage axial-flow compressor, modified to improve the compressor-outlet velocity, in a revised X24C-4B turbojet engine is presented and compared with the performance of the compressor in the original engine. Performance data were obtained from an investigation of the revised engine in the MACA Cleveland altitude wind tunnel. Compressor performance data were obtained for engine operation with four exhaust nozzles of different outlet area at simulated altitudes from 15,OOO to 45,000 feet, simulated flight Mach numbers from 0.24 to 1.07, and engine speeds from 4000 to 12,500 rpm. The data cover a range of corrected engine speeds from 4100 to 13,500 rpm, which correspond to compressor Mach numbers from 0.30 to 1.00.

  6. Development of a magnetic fluid shaft seal for an axial-flow blood pump.

    PubMed

    Sekine, Kazumitsu; Mitamura, Yoshinori; Murabayashi, Shun; Nishimura, Ikuya; Yozu, Ryouhei; Kim, Dong-Wook

    2003-10-01

    A rotating impeller in a rotary blood pump requires a supporting system in blood, such as a pivot bearing or magnetic suspension. To solve potential problems such as abrasive wear and complexity of a supporting system, a magnetic fluid seal was developed for use in an axial-flow blood pump. Sealing pressures at motor speeds of up to 8,000 rpm were measured with the seal immersed in water or bovine blood. The sealing pressure was about 200 mm Hg in water and blood. The calculated theoretical sealing pressure was about 230 mm Hg. The seal remained perfect for 743 days in a static condition and for 180+ days (ongoing test) at a motor speed of 7,000 rpm. Results of measurement of cell growth activity indicated that the magnetic fluid has no negative cytological effects. The specially designed magnetic fluid shaft seal is useful for an axial-flow blood pump.

  7. Development of the Nimbus/Pittsburgh axial flow left ventricular assist system.

    PubMed

    Butler, K; Thomas, D; Antaki, J; Borovetz, H; Griffith, B; Kameneva, M; Kormos, R; Litwak, P

    1997-07-01

    Nimbus, Inc. and the University of Pittsburgh's School of Medicine have been collaborators developing rotary blood pump technology since 1992. Currently, a major focus is on an implantable left ventricular assist system (LVAS) that utilizes an electric powered axial flow blood pump. In addition to the blood pump, a major development item is the electronic controller and the control algorithm for modulating the pump speed in response to varying physiologic demands. Methods being used in developing the axial flow LVAS include the use of computational fluid dynamic modeling of the interior flow field of the pump, flow visualization of the flow field using laser based imaging, and computer simulation of blood pump-physiological interactions as well as an extensive in vivo test program. Results to date include successful in vivo tests of blood pumps with nonlubricated bearings and demonstrations of auto speed control using electrical current as the observable parameter.

  8. Estimation of collection efficiency depended on feed particle concentration for axial flow cyclone dust collector

    NASA Astrophysics Data System (ADS)

    Ogawa, Akira

    1999-09-01

    A cyclone dust collector is applied in many industries. Especially the axial flow cyclone is the most simple construction and it keeps high reliability for maintenance. On the other hand, the collection efficiency of the cyclone depends not only on the inlet gas velocity but also on the feed particle concentration. The collection efficiency increases with increasing feed particle concentration. However until now the problem of how to estimate the collection efficiency depended on the feed particle concentration is remained except the investigation by Muschelknautz & Brunner[6]. Therefore in this paper one of the estimate method for the collection efficiency of the axial flow cyclones is proposed. The application to the geometrically similar type of cyclone of the body diameters D 1=30, 50, 69 and 99 mm showed in good agreement with the experimental results of the collection efficiencies which were described in detail in the paper by Ogawa & Sugiyama[8].

  9. Off-pump replacement of the INCOR implantable axial-flow pump.

    PubMed

    Nakashima, Kuniki; Kirsch, Matthias E W; Vermes, Emmanuelle; Rosanval, Odile; Loisance, Daniel

    2009-02-01

    Owing to the actual increase of mechanical circulatory support durations, total or partial replacement of ventricular assist devices (VADs) will most certainly have to be performed with increasing frequency. Herein we report the case of a patient in whom an INCOR (Berlin Heart AG, Berlin) implantable axial-flow pump was replaced without the use of cardiopulmonary bypass (CPB), underscoring some of the unique features provided by this system.

  10. Prediction of overall and blade-element performance for axial-flow pump configurations

    NASA Technical Reports Server (NTRS)

    Serovy, G. K.; Kavanagh, P.; Okiishi, T. H.; Miller, M. J.

    1973-01-01

    A method and a digital computer program for prediction of the distributions of fluid velocity and properties in axial flow pump configurations are described and evaluated. The method uses the blade-element flow model and an iterative numerical solution of the radial equilbrium and continuity conditions. Correlated experimental results are used to generate alternative methods for estimating blade-element turning and loss characteristics. Detailed descriptions of the computer program are included, with example input and typical computed results.

  11. Initial Acute Animal Experiment Using a New Miniature Axial Flow Pump in Series With the Natural Heart.

    PubMed

    Okamoto, Eiji; Yano, Tetsuya; Shiraishi, Yasuyuki; Miura, Hidekazu; Yambe, Tomoyuki; Mitamura, Yoshinori

    2015-08-01

    We have advocated an axial flow blood pump called "valvo pump" that is implanted at the aortic valve position, and we have developed axial flow blood pumps to realize the concept of the valvo pump. The latest model of the axial flow blood pump mainly consists of a stator, a directly driven impeller, and a hydrodynamic bearing. The axial flow blood pump has a diameter of 33 mm and length of 74 mm, and the length of anatomical occupation is 33 mm. The axial flow blood pump is anastomosed to the aorta with polytetrafluoroethylene (PTFE) cuffs worn on the inflow and outflow ports. Dp-Q curves of the axial flow blood pump are flatter than those of ordinary axial flow pumps, and pump outflow of 5 L/min was obtained against a pressure difference of 50 mm Hg at a rotational speed of 9000 rpm in vitro. The axial flow blood pump was installed in a goat by anastomosing with the thoracic descending aorta using PTFE cuffs, and it was rotated at a rotational speed of 8000 rpm. Unlike in case of the ventricular assistance in parallel with the natural heart, pulsatilities of aortic pressure and aortic flow were preserved even when the pump was on, and mean aortic flow was increased by 1.5 L/min with increase in mean aortic pressure of 30 mm Hg. In conclusion, circulatory assistance in series with the natural heart using the axial flow blood pump was able to improve hemodynamic pulsatility, and it would contribute to improvement of end-organ circulation. .

  12. Performance of NACA Eight-Stage Axial-Flow Compressor Designed on the Basis of Airfoil Theory

    DTIC Science & Technology

    1944-08-01

    TEE BASIS OF AIRFOIL THEORY By John T. Slnnette, Jr., Oscar W. Schey, and J. Austin King Aircraft Engine Research Laboratory Cleveland, Ohio FILE...efficiency can he designed by the proper application of airfoil theory. Aircraft Engine Research laboratory, Hational Advisory Committee for Aeronautlos...Basis of Airfoil Theory AUTHORS): Sinnette, John T.; Schey, Oscar W.; and others ORIGINATING AGENCY: Aircraft Engine Research Laboratory, Cleveland

  13. Three dimensional mean velocity and turbulence characteristics in the annulus wall region of an axial flow compressor rotor passage

    NASA Technical Reports Server (NTRS)

    Davino, R.; Lakshminarayana, B.

    1982-01-01

    The experiment was performed using the rotating hot-wire technique within the rotor blade passage and the stationary hot-wire technique for the exitflow of the rotor blade passage. The measurements reveal the effect of rotation and subsequent flow interactions upon the rotor blade flowfield and wake development in the annulus-wall region. The flow near the rotor blade tips is found to be highly complex due to the interaction of the annulus-wall boundary layer, the blade boundary layers, the tip leakage flow, and the secondary flow. Within the blade passage, this interaction results in an appreciable radial inward flow as well as a defect in the mainstream velocity near the mid-passage. Turbulence levels within this region are very high. This indicates a considerable extent of flow mixing due to the viscous flow interactions. The size and strength of this loss core is found to grow with axial distance from the blade trailing edge. The nature of the rotor blade exit-flow was dominated by the wake development.

  14. Stability of a pair of co-rotating vortices with axial flow

    NASA Astrophysics Data System (ADS)

    Roy, Clément; Schaeffer, Nathanaël; Le Dizès, Stéphane; Thompson, Mark

    2008-09-01

    The three-dimensional linear temporal stability properties of a flow composed of two corotating q-vortices (also called Batchelor vortices) are predicted by numerical stability analysis. As for the corresponding counter-rotating case, when the axial flow parameter is increased, different instability modes are observed and identified as a combination of resonant Kelvin modes of azimuthal wavenumbers m and m +2 within each vortex. In particular, we show that the sinuous mode, which is the dominant instability mode without axial flow, is stabilized in the presence of a moderate axial flow. Different types of mode with a large amplitude in the critical layer are also identified. For small separation distances (above the merging threshold), unstable eigenmodes, corresponding to axial wavenumbers that cannot be easily identified with simple resonant interactions of Kelvin modes, are also observed. Their growth rate is a substantial fraction of the growth rates of low-order resonant modes. The effects of the Reynolds number and vortex separation distance on the growth rate parameter map are considered. Finally, we analyze the similarities and differences between the stability characteristics of co- and counter-rotating vortex pairs.

  15. Large eddy simulation of tip-leakage flow in an axial flow fan

    NASA Astrophysics Data System (ADS)

    Park, Keuntae; Choi, Haecheon; Choi, Seokho; Sa, Yongcheol; Kwon, Oh-Kyoung

    2016-11-01

    An axial flow fan with a shroud generates a complicated tip-leakage flow by the interaction of the axial flow with the fan blades and shroud near the blade tips. In this study, large eddy simulation is performed for tip-leakage flow in a forward-swept axial flow fan inside an outdoor unit of an air-conditioner, operating at the design condition of the Reynolds number of 547,000 based on the radius of blade tip and the tip velocity. A dynamic global model is used for a subgrid-scale model, and an immersed boundary method in a non-inertial reference frame is adopted. The present simulation clearly reveals the generation and evolution of tip-leakage vortex near the blade tip by the leakage flow. At the inception of the leakage vortex near the leading edge of the suction-side of the blade tip, the leakage vortex is composed of unsteady multiple vortices containing high-frequency fluctuations. As the leakage vortex develops downstream along a slant line toward the following blade, large and meandering movements of the leakage vortex are observed. Thus low-frequency broad peaks of velocity and pressure occur near the pressure surface. Supported by the KISTI Supercomputing Center (KSC-2016-C3-0027).

  16. Hydraulic Performance Comparison for Axial Flow Impeller and Mixed Flow Impeller with Same Specific Speed

    NASA Astrophysics Data System (ADS)

    Pan, Zhongyong; Ni, Yongyan; Yuan, Jianping; Ji, Pei

    2015-12-01

    An axial flow impeller and a mixed flow impeller with same specific speed were experimentally investigated, and the suction performance was studied with the help of CFD simulations. The results show that the axial impeller is roughly better than the mixed flow one. Especially under the design condition and a low flow rate condition range near the designed one, the axial flow impeller is more stable and therefore more suitable to be used in a water jet propulsion, while under these conditions the mixed flow impeller displays significant discrepancies. On the other hand, though its efficiency at the best efficiency point is lower than that of the axial flow one, the mixed flow impeller has a larger range of high efficiency conditions and is more convenient to be controlled to satisfy the irrigation and drainage systems that ought to be adjusted to varied flow rate conditions under a fixed head. In addition, the numerical investigation at the rated point shows that the axial impeller has a much better suction performance than the mixed flow impeller, which contradicts with the experience knowledge and therefore details need to be further studied.

  17. A hydrodynamically suspended, magnetically sealed mechanically noncontact axial flow blood pump: design of a hydrodynamic bearing.

    PubMed

    Mitamura, Yoshinori; Kido, Kazuyuki; Yano, Tetsuya; Sakota, Daisuke; Yambe, Tomoyuki; Sekine, Kazumitsu; OKamoto, Eiji

    2007-03-01

    To overcome the drive shaft seal and bearing problem in rotary blood pumps, a hydrodynamic bearing, a magnetic fluid seal, and a brushless direct current (DC) motor were employed in an axial flow pump. This enabled contact-free rotation of the impeller without material wear. The axial flow pump consisted of a brushless DC motor, an impeller, and a guide vane. The motor rotor was directly connected to the impeller by a motor shaft. A hydrodynamic bearing was installed on the motor shaft. The motor and the hydrodynamic bearing were housed in a cylindrical casing and were waterproofed by a magnetic fluid seal, a mechanically noncontact seal. Impeller shaft displacement was measured using a laser sensor. Axial and radial displacements of the shaft were only a few micrometers for motor speed up to 8500 rpm. The shaft did not make contact with the bearing housing. A flow of 5 L/min was obtained at 8000 rpm at a pressure difference of 100 mm Hg. In conclusion, the axial flow blood pump consisting of a hydrodynamic bearing, a magnetic fluid seal, and a brushless DC motor provided contact-free rotation of the impeller without material wear.

  18. Effects of various axial flow profiles on the magneto-Rayleigh-Taylor instability in Z-pinch implosions

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Ding, N.

    2006-06-01

    The stabilizing effect of different axial flow profiles on the magneto-Rayleigh-Taylor (MTR) instability in Z-pinch implosions is investigated with a compressible skin-current model. The numerical results show that the mitigation effect of the axial flow on the MRT instability is caused by the radial velocity shear, and it is highly susceptible to the shear value nearby the plasma outer surface. By adjusting the flow profile, the mitigation effect can be improved markedly.

  19. The WISGSK: A computer code for the prediction of a multistage axial compressor performance with water ingestion

    NASA Technical Reports Server (NTRS)

    Tsuchiya, T.; Murthy, S. N. B.

    1982-01-01

    A computer code is presented for the prediction of off-design axial flow compressor performance with water ingestion. Four processes were considered to account for the aero-thermo-mechanical interactions during operation with air-water droplet mixture flow: (1) blade performance change, (2) centrifuging of water droplets, (3) heat and mass transfer process between the gaseous and the liquid phases and (4) droplet size redistribution due to break-up. Stage and compressor performance are obtained by a stage stacking procedure using representative veocity diagrams at a rotor inlet and outlet mean radii. The Code has options for performance estimation with (1) mixtures of gas and (2) gas-water droplet mixtures, and therefore can take into account the humidity present in ambient conditions. A test case illustrates the method of using the Code. The Code follows closely the methodology and architecture of the NASA-STGSTK Code for the estimation of axial-flow compressor performance with air flow.

  20. Modeling Improvements and Users Manual for Axial-flow Turbine Off-design Computer Code AXOD

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1994-01-01

    An axial-flow turbine off-design performance computer code used for preliminary studies of gas turbine systems was modified and calibrated based on the experimental performance of large aircraft-type turbines. The flow- and loss-model modifications and calibrations are presented in this report. Comparisons are made between computed performances and experimental data for seven turbines over wide ranges of speed and pressure ratio. This report also serves as the users manual for the revised code, which is named AXOD.

  1. Investigations on an axial flow fan stage subjected to circumferential inlet flow distortion and swirl

    NASA Astrophysics Data System (ADS)

    Govardhan, M.; Viswanath, K.

    1997-12-01

    The combined effects of swirl and circumferential inlet flow distortion on the flow field of an axial flow fan stage are reported in this paper. The study involves measurements at the inlet of the rotor and exit of the rotor and stator at design and off design flow conditions. The study indicated that at the design flow condition, swirl had caused deterioration of the performance in addition to that caused by distortion. Pressure rise imparted in the distortion zone is higher than in the free zone. The attenuation of distortion is high in the presence of swirl.

  2. The Unsteady Response of an Axial Flow Turbo-Machinery Rotor to Inlet Flow Distortions.

    DTIC Science & Technology

    1978-10-12

    the rotor inflow velocity. Distorted inlet flow is a very realistic and prevalent problem in jet air - craft engines, and the consequences of...Turbomachinery In designing the blading of a compressor or turbine, the air flow is assumed to be steady. The existence of a uniform, steady flow is...surface of the air - k- foil. When this occurs in a compressor, surge can occur. Surge will result in very large fluctuating forces on the blades which

  3. Air-structure coupling features analysis of mining contra-rotating axial flow fan cascade

    NASA Astrophysics Data System (ADS)

    Chen, Q. G.; Sun, W.; Li, F.; Zhang, Y. J.

    2013-12-01

    The interaction between contra-rotating axial flow fan blade and working gas has been studied by means of establishing air-structure coupling control equation and combining Computational Fluid Dynamics (CFD) and Computational solid mechanics (CSM). Based on the single flow channel model, the Finite Volume Method was used to make the field discrete. Additionally, the SIMPLE algorithm, the Standard k-ε model and the Arbitrary Lagrangian-Eulerian dynamic grids technology were utilized to get the airflow motion by solving the discrete governing equations. At the same time, the Finite Element Method was used to make the field discrete to solve dynamic response characteristics of blade. Based on weak coupling method, data exchange from the fluid solver and the solid solver was processed on the coupling interface. Then interpolation was used to obtain the coupling characteristics. The results showed that the blade's maximum amplitude was on the tip of the last-stage blade and aerodynamic force signal could reflect the blade working conditions to some extent. By analyzing the flow regime in contra-rotating axial flow fan, it could be found that the vortex core region was mainly in the blade surface, the hub and the blade clearance. In those regions, the turbulence intensity was very high. The last-stage blade's operating life is shorter than that of the pre-stage blade due to the fatigue fracture occurs much more easily on the last-stage blade which bears more stress.

  4. Tests of a 2-Stage, Axial-Flow, 2-Phase Turbine

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1982-01-01

    A two phase flow turbine with two stages of axial flow impulse rotors was tested with three different working fluid mixtures at a shaft power of 30 kW. The turbine efficiency was 0.55 with nitrogen and water of 0.02 quality and 94 m/s velocity, 0.57 with Refrigerant 22 of 0.27 quality and 123 m/s velocity, and 0.30 with steam and water of 0.27 quality and 457 m/s velocity. The efficiencies with nitrogen and water and Refrigerant 22 were 86 percent of theoretical. At that fraction of theoretical, the efficiencies of optimized two phase turbines would be in the low 60 percent range with organic working fluids and in the mid 50 percent range with steam and water. The recommended turbine design is a two stage axial flow impulse turbine followed by a rotary separator for discharge of separate liquid and gas streams and recovery of liquid pressure.

  5. Large-eddy simulations of a flexible cylinder in axial flow

    NASA Astrophysics Data System (ADS)

    Karami, Behrouz; Balaras, Elias; Bardet, Philippe

    2015-11-01

    A slender cylinder immersed in axial flow shows different behavior for different flow and material properties. Several studies have pointed to the importance of the dimensionless velocity, U = (ρA / EI)0.5Uo D , relating the fluid and structural inertia. However, it is not clear how this behavior changes for different Reynolds numbers and flow regimes, while keeping U constant. In this study a slender cylinder immersed in axial flow is considered as an one-dimensional beam. The fluid-structure interaction is simulated using an immersed-boundary method for a series of Re numbers. A non-linear Euler-Bernouli hypothesis is utilized to account for the deflection and rotation of the cylinder. It is observed that for small dimensionless velocities the cylinder oscillates with small amplitude around its axis. Increasing U results in buckling of the cylinder. For higher U beam looses its quasi steady buckled state and flutters. It is investigated that how this behavior changes for different Re and different flow regimes (laminar vs turbulent boundary layers). Overall buckling occurs at higher U at laminar flow conditions. The results are in agreement both qualitatively and quantitatively with experiments in the literature.

  6. Deformation of a soft helical filament in an axial flow at low Reynolds number.

    PubMed

    Jawed, Mohammad K; Reis, Pedro M

    2016-02-14

    We perform a numerical investigation of the deformation of a rotating helical filament subjected to an axial flow, under low Reynolds number conditions, motivated by the propulsion of bacteria using helical flagella. Given its slenderness, the helical rod is intrinsically soft and deforms due to the interplay between elastic forces and hydrodynamic loading. We make use of a previously developed and experimentally validated computational tool framework that models the elasticity of the filament using the discrete elastic rod method and the fluid forces are treated using Lighthill's slender body theory. Under axial flow, and in the absence of rotation, the initially helical rod is extended. Above a critical flow speed its configuration comprises a straight portion connected to a localized helix near the free end. When the rod is also rotated about its helical axis, propulsion is only possible in a finite range of angular velocity, with an upper bound that is limited by buckling of the soft helix arising due to viscous stresses. A systematic exploration of the parameter space allows us to quantify regimes for successful propulsion for a number of specific bacteria.

  7. The Co-axial Flow of Injectable Solid Hydrogels with Encapsulated Cells

    NASA Astrophysics Data System (ADS)

    Stewart, Brandon; Pochan, Darrin; Sathaye, Sameer

    2013-03-01

    Hydrogels are quickly becoming an important biomaterial that can be used for the safe, localized injection of cancer drugs, the injection of stem cells into areas of interest or other biological applications. Our peptides can be self-assembled in a syringe where they form a gel, sheared by injection and, once in the body, immediately reform a localized pocket of stiff gel. My project has been designed around looking at the possibility of having a co-axial strand, in which one gel can surround another. This co-axial flow can be used to change the physical properties of our gel during injection, such as stiffening our gel using hyaluronic acid or encapsulating cells in the gel and surrounding the gel with growth medium or other biological factors. Rheology on hyaluron stiffened gels and cells encapsulated in gels was performed for comparison to the results from co-axial flow. Confocal microscopy was used to examine the coaxial gels after flow and to determine how the co-axial nature of the gels is affected by the concentration of peptide.

  8. An intraventricular axial flow blood pump integrated with a bearing purge system.

    PubMed

    Yamazaki, K; Kormos, R; Mori, T; Umezu, M; Kameneva, M; Antaki, J; Outa, E; Litwak, P; Kerrigan, J; Tomczak, J

    1995-01-01

    The future development of implantable axial flow blood pumps must address two major issues: mechanically induced hemolysis and shaft seal reliability. The recent revisions to our miniature intraventricular axial flow left ventricular assist device (LVAD) were aimed particularly at addressing these concerns. To improve hemocompatibility, a new impeller has been designed according to the following criteria: 1) gradual pressure rise along the blade chord; 2) minimized local fluid acceleration to prevent cavitation; 3) minimum surface roughness; and 4) radius edges. Subsequent in vitro hemolysis tests conducted with bovine and ovine blood have demonstrated very low hemolysis (normalized index of hemolysis = 0.0051 +/- 0.0047 g/100 L) with this new impeller design. To address the need for a reliable seal, we have developed a purged seal system consisting of a miniature lip seal and ceramic pressure groove journal bearing that also acts as a purge pump. Several spiral grooves formed on the bearing surface provide viscous pumping of the purge fluid, generating more than 3,000 mmHg at 10,000 rpm. This purge flow flushes the lip seal and prevents blood backflow into the bearing. We have found this purge pump to offer several advantages because it is simple, compact, durable, does not require separate actuation, and offers a wide range of flow, depending upon the groove design. In vivo animal tests demonstrated the potential of the purged seal system.

  9. Research on the unstable operating region of axial-flow and mixed flow pump

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Liu, C.; Luo, C.; Zhou, J. R.; Jin, Y.

    2012-11-01

    The unstable operating region affected safety of pump start-up and limited the range of stable operating. When there are three flowrates points matching along with one lift, the hydraulic unstable operating region happened. The range region of unstable operation region is from peak to bottom of performance curve when the axial flow pump was test on the closed test rig. There are two factors, rotating stall and bad inlet condition, which cause the unstable operating region. The unstable operating regions of different pumping system are presented. The unsteady CFD calculations were done to present the internal flow pattern and hydraulic pressure when axial flow pump and mixed flow pump were operated on the unstable operating region. The frequency spectrum is given of one of the force components in radial direction, as measured in the whriling frame of reference. It is important to prevent and avoid unstable operating region along with the construction of South to North water transfer of China and reconstruction of large scale pumping station.

  10. A miniature intraventricular axial flow blood pump that is introduced through the left ventricular apex.

    PubMed

    Yamazaki, K; Umezu, M; Koyanagi, H; Kitamura, M; Eishi, K; Kawai, A; Tagusari, O; Niinami, H; Akimoto, T; Nojiri, C

    1992-01-01

    A new intraventricular axial flow blood pump has been designed and developed as an implantable left ventricular assist device (LVAD). The pump consists of a tube housing (10 cm in length and 14 mm in diameter), a three-vane impeller combined with a guide vane, and a DC motor. This pump is introduced into the LV cavity through the LV apex, and the outlet cannula is passed antegrade across the aortic valve. Blood is withdrawn from the LV through the inlet ports at the pump base, and discharged into the ascending aorta. A pump flow of > 8 L/min was obtained against 90 mmHg differential pressure in the mock circulatory system. In an acute dog model, this pump could produce a sufficient output of 200 ml/kg/min. In addition, the pump flow profile demonstrated a pulsatile pattern, although the rotation speed was fixed. This is mainly due to the changes in flow rate during a cardiac cycle--that is, during systole, the flow rate increases to the maximum, while the differential pressure between the LV and the aorta decreases to the minimum. Thus, this simple and compact axial flow blood pump can be a potential LVAD, with prompt accessibility and need for less invasive surgical procedures.

  11. Performance Evaluation of Axial Flow AG-1 FC and Prototype FM (High Strength) HEPA Filters - 13123

    SciTech Connect

    Giffin, Paxton K.; Parsons, Michael S.; Wilson, John A.; Waggoner, Charles A.

    2013-07-01

    High efficiency particulate air (HEPA) filters are routinely used in DOE nuclear containment activities. The Nuclear Air Cleaning Handbook (NACH) stipulates that air cleaning devices and equipment used in DOE nuclear applications must meet the American Society of Mechanical Engineers (ASME) Code on Nuclear Air and Gas Treatment (AG-1) standard. This testing activity evaluates two different axial flow HEPA filters, those from AG-1 Sections FC and FM. Section FM is under development and has not yet been added to AG-1 due to a lack of qualification data available for these filters. Section FC filters are axial flow units that utilize a fibrous glass filtering medium. The section FM filters utilize a similar fibrous glass medium, but also have scrim backing. The scrim-backed filters have demonstrated the ability to endure pressure impulses capable of completely destroying FC filters. The testing activities presented herein will examine the total lifetime loading for both FC and FM filters under ambient conditions and at elevated conditions of temperature and relative humidity. Results will include loading curves, penetration curves, and testing condition parameters. These testing activities have been developed through collaborations with representatives from the National Nuclear Security Administration (NNSA), DOE Office of Environmental Management (DOE-EM), New Mexico State University, and Mississippi State University. (authors)

  12. Hydrogen turbines for space power systems: A simplified axial flow gas turbine model

    NASA Technical Reports Server (NTRS)

    Hudson, Steven L.

    1988-01-01

    Hydrogen cooled, turbine powered space weapon systems require a relatively simple, but reasonably accurate hydrogen gas expansion turbine model. Such a simplified turbine model would require little computational time and allow incorporation into system level computer programs while providing reasonably accurate volume/mass estimates. This model would then allow optimization studies to be performed on multiparameter space power systems and provide improved turbine mass and size estimates for the various operating conditions (when compared to empirical and power law approaches). An axial flow gas expansion turbine model was developed for these reasons and is in use as a comparative bench mark in space power system studies at Sandia. The turbine model is based on fluid dynamic, thermodynamic, and material strength considerations, but is considered simplified because it does not account for design details such as boundary layer effects, shock waves, turbulence, stress concentrations, and seal leakage. Although the basic principles presented here apply to any gas or vapor axial flow turbine, hydrogen turbines are discussed because of their immense importance on space burst power platforms.

  13. Supersonic compressor

    DOEpatents

    Lawlor, Shawn P.; Novaresi, Mark A.; Cornelius, Charles C.

    2008-02-26

    A gas compressor based on the use of a driven rotor having an axially oriented compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which forms a supersonic shockwave axially, between adjacent strakes. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the gas compression ramp on a strake, the shock capture lip on the adjacent strake, and captures the resultant pressure within the stationary external housing while providing a diffuser downstream of the compression ramp.

  14. Hydride compressor

    DOEpatents

    Powell, James R.; Salzano, Francis J.

    1978-01-01

    Method of producing high energy pressurized gas working fluid power from a low energy, low temperature heat source, wherein the compression energy is gained by using the low energy heat source to desorb hydrogen gas from a metal hydride bed and the desorbed hydrogen for producing power is recycled to the bed, where it is re-adsorbed, with the recycling being powered by the low energy heat source. In one embodiment, the adsorption-desorption cycle provides a chemical compressor that is powered by the low energy heat source, and the compressor is connected to a regenerative gas turbine having a high energy, high temperature heat source with the recycling being powered by the low energy heat source.

  15. Application of the Multistage Axial-Flow Compressor Time-Dependent Mathematical Modeling Technique to the TF41-A-1 Modified (Block 76) Compressor

    DTIC Science & Technology

    1979-09-01

    J85 -13 engine test (Ref. 8). Similar results were obtained, except that the J85 -13 engine was even less tolerant of tip radial distortion than the...Effects on the Stall Limits of a J85 -GE-13 Turbojet Engine ." NASA-TMX-2290, February 1974. 29 No. 1 ~0 w~ ! ~ :3 0 . - ~ I I ’ .l.a’" I F...r~ e~ ~ o .r.I 1.0 0.9 0.8 /--Range of J85 -13 Engine Test / D a t a £or Flow Range from 77 to 98 percent (Ref. 8

  16. Measurements of the unsteady flow field within the stator row of a transonic axial-flow fan. 1: Measurement and analysis technique

    NASA Technical Reports Server (NTRS)

    Suder, K. L.; Hathaway, M. D.; Okiishi, T. H.; Strazisar, A. J.; Adamczyk, J. J.

    1987-01-01

    This two-part paper presents laser anemometer measurements of the unsteady velocity field within the stator row of a transonic axial-flow fan. The objective is to provide additional insight into unsteady blade-row interactions within high speed compressors which affect stage efficiency, energy transfer, and other design considerations. Part 1 describes the measurement and analysis techniques used for resolving the unsteady flow field features. The ensemble-average and variance of the measured velocities are used to identify the rotor wake generated and unresolved unsteadiness, respectively. (Rotor wake generated unsteadiness refers to the unsteadiness generated by the rotor wake velocity deficit and the term unresolved unsteadiness refers to all remaining contributions to unsteadiness such as vortex shedding, turbulence, mass flow fluctuations, etc.). A procedure for calculating auto and cross correlations of the rotor wake generated and unresolved unsteady velocity fluctuations is described. These unsteady-velocity correlations have significance since they also result from a decomposition of the Navier-Stokes equations. This decomposition of the Navier-Stokes equations resulting in the velocity correlations used to describe the unsteady velocity field will also be outlined in this paper.

  17. Measurements of the unsteady flow field within the stator row of a transonic axial-flow fan. I - Measurement and analysis technique

    NASA Technical Reports Server (NTRS)

    Suder, K. L.; Strazisar, A. J.; Adamczyk, J. J.; Hathaway, M. D.; Okiishi, T. H.

    1987-01-01

    This two-part paper presents laser anemometer measurements of the unsteady velocity field within the stator row of a transonic axial-flow fan. The objective is to provide additional insight into unsteady blade-row interactions within highspeed compressors which affect stage efficiency, energy transfer, and other design considerations. Part 1 describes the measurement and analysis techniques used for resolving the unsteady flow field features. The ensemble-average and variance of the measured velocities are used to identify the rotor wake generated and unresolved unsteadiness, respectively. (Rotor wake generated unsteadiness refers to the unsteadiness generated by the rotor wake velocity deficit and the term unresolved unsteadiness refers to all remaining contributions to unsteadiness such as vortex shedding, turbulence, mass flow fluctutions, etc.). A procedure for calculating auto and cross correlations of the rotor wake generated and unresolved unsteady velocity fluctuations is described. These unsteady-velocity correlations have significance since they also result from a decomposition of the Navier-Stokes equations. This decomposition of the Navier-Stokes equations resulting in the velocity correlations used to describe the unsteady velocity field will also be outlined in this paper.

  18. Compressor surge prevention

    SciTech Connect

    McLeister, L.

    1995-09-01

    One of the more difficult challenges facing compressor and control engineers is designing compressor control and anti-surge packages that maximize efficiency while maintaining safe compressor operating conditions. This paper focuses specifically on centrifugal compressor anti-surge philosophies. The conditions that precipitate surge in centrifugal compressors will be explored along with risk reduction techniques. Axial and reciprocating compressors have slightly different characteristics and are topics for another discussion.

  19. Effects of perforation number of blade on aerodynamic performance of dual-rotor small axial flow fans

    NASA Astrophysics Data System (ADS)

    Hu, Yongjun; Wang, Yanping; Li, Guoqi; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong

    2015-04-01

    Compared with single rotor small axial flow fans, dual-rotor small axial flow fans is better regarding the static characteristics. But the aerodynamic noise of dual-rotor small axial flow fans is worse than that of single rotor small axial flow fans. In order to improve aerodynamic noise of dual-rotor small axial flow fans, the pre-stage blades with different perforation numbers are designed in this research. The RANS equations and the standard k-ɛ turbulence model as well as the FW-H noise model are used to simulate the flow field within the fan. Then, the aerodynamic performance of the fans with different perforation number is compared and analyzed. The results show that: (1) Compared to the prototype fan, the noise of fans with perforation blades is reduced. Additionally, the noise of the fans decreases with the increase of the number of perforations. (2) The vorticity value in the trailing edge of the pre-stage blades of perforated fans is reduced. It is found that the vorticity value in the trailing edge of the pre-stage blades decreases with the increase of the number of perforations. (3) Compared to the prototype fan, the total pressure rising and efficiency of the fans with perforation blades drop slightly.

  20. Axial type self-bearing motor for axial flow blood pump.

    PubMed

    Okada, Yohji; Masuzawa, Toru; Matsuda, Ken-Ichi; Ohmori, Kunihiro; Yamane, Takashi; Konishi, Yoshiaki; Fukahori, Shinya; Ueno, Satoshi; Kim, Seung-Jong

    2003-10-01

    An axial self-bearing motor is proposed which can drive an axial blood pump without physical contact. It is a functional combination of the bi-directional disc motor and the axial active magnetic bearing, where it actively controls single degree-of-freedom motion, while other motions such as lateral vibration are passively stable. For application to a blood pump, the proposed self-bearing motor has the advantages of simple structure and small size. Through the finite element method (FEM) analysis and the experimental test, its good feasibility is verified. Finally, the axial flow pump is fabricated using the developed magnetically suspended motor. The pump test is carried out and the results are discussed in detail.

  1. Performance of a highly loaded two stage axial-flow fan

    NASA Technical Reports Server (NTRS)

    Ruggeri, R. S.; Benser, W. A.

    1974-01-01

    A two-stage axial-flow fan with a tip speed of 1450 ft/sec (442 m/sec) and an overall pressure ratio of 2.8 was designed, built, and tested. At design speed and pressure ratio, the measured flow matched the design value of 184.2 lbm/sec (83.55kg/sec). The adiabatic efficiency at the design operating point was 85.7 percent. The stall margin at design speed was 10 percent. A first-bending-mode flutter of the second-stage rotor blades was encountered near stall at speeds between 77 and 93 percent of design, and also at high pressure ratios at speeds above 105 percent of design. A 5 deg closed reset of the first-stage stator eliminated second-stage flutter for all but a narrow speed range near 90 percent of design.

  2. Negative viscosity from negative compressibility and axial flow shear stiffness in a straight magnetic field

    DOE PAGES

    Li, J. C.; Diamond, P. H.

    2017-03-23

    Here, negative compressibility ITG turbulence in a linear plasma device (CSDX) can induce a negative viscosity increment. However, even with this negative increment, we show that the total axial viscosity remains positive definite, i.e. no intrinsic axial flow can be generated by pure ITG turbulence in a straight magnetic field. This differs from the case of electron drift wave (EDW) turbulence, where the total viscosity can turn negative, at least transiently. When the flow gradient is steepened by any drive mechanism, so that the parallel shear flow instability (PSFI) exceeds the ITG drive, the flow profile saturates at a level close to the value above which PSFI becomes dominant. This saturated flow gradient exceeds the PSFI linear threshold, and grows withmore » $$\

  3. Laser anemometer measurements in a transonic axial-flow fan rotor

    NASA Technical Reports Server (NTRS)

    Strazisar, Anthony J.; Wood, Jerry R.; Hathaway, Michael D.; Suder, Kenneth L.

    1989-01-01

    Laser anemometer surveys were made of the 3-D flow field in NASA rotor 67, a low aspect ratio transonic axial-flow fan rotor. The test rotor has a tip relative Mach number of 1.38. The flowfield was surveyed at design speed at near peak efficiency and near stall operating conditions. Data is presented in the form of relative Mach number and relative flow angle distributions on surfaces of revolution at nine spanwise locations evenly spaced from hub to tip. At each spanwise location, data was acquired upstream, within, and downstream of the rotor. Aerodynamic performance measurements and detailed rotor blade and annulus geometry are also presented so that the experimental results can be used as a test case for 3-D turbomachinery flow analysis codes.

  4. Hub vortex instability and wake dynamics in axial flow wind turbines

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Howard, Kevin; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis

    2014-11-01

    The near wake region of an axial flow wind turbine has two distinct shear layers: an outer tip vortex shear layer, which rotates in the same direction as the rotor, and an inner counter-rotating hub vortex shear layer. Recent simulations (Kang et al., J. Fluid Mech. 744, 376 (2014)), corroborated with experiments (Chamorro et al., J. Fluid Mech. 716, 658 (2013)), showed that the hub vortex can undergo spiral vortex breakdown immediately downstream of the turbine. The precessing hub vortex core intercepts and interacts with the tip vortex shear layer causing the large-scale wake meandering motions in the far wake to intensify. These results were obtained for an axial flow hydrokinetic turbine in a turbulent open channel flow. Here we integrate high-resolution LES with experiments to show that a hub vortex instability also occurs in the near wake of a wind turbine in a wind tunnel. We show that the interactions of the hub vortex with the outer flow have significant effects on the wake meandering amplitude and frequency. Our results reinforce the conclusions of Kang et al. (2014) that the hub vortex must be included in wake models to simulate wake interactions at the power plant scale and optimize turbine siting for realistic terrain and wind conditions. This work was supported by DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), the NSF (IIP-1318201), the IREE early career award (UMN) and NSF CAREER: Geophysical Flow Control (CBET-1351303). Computational resources were provided by MSI.

  5. Parameter estimation and actuator characteristics of hybrid magnetic bearings for axial flow blood pump applications.

    PubMed

    Lim, Tau Meng; Cheng, Shanbao; Chua, Leok Poh

    2009-07-01

    Axial flow blood pumps are generally smaller as compared to centrifugal pumps. This is very beneficial because they can provide better anatomical fit in the chest cavity, as well as lower the risk of infection. This article discusses the design, levitated responses, and parameter estimation of the dynamic characteristics of a compact hybrid magnetic bearing (HMB) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet brushless and sensorless motor. It is levitated by two HMBs at both ends in five degree of freedom with proportional-integral-derivative controllers, among which four radial directions are actively controlled and one axial direction is passively controlled. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMB system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air-in both the radial and axial directions. Experimental estimation showed that the dynamic characteristics of the HMB system are dominated by the frequency-dependent stiffness coefficients. By injecting a multifrequency excitation force signal onto the rotor through the HMBs, it is noticed in the experimental results the maximum displacement linear operating range is 20% of the static eccentricity with respect to the rotor and stator gap clearance. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamic properties under normal operating conditions with fluid.

  6. Long-term animal experiments with an intraventricular axial flow blood pump.

    PubMed

    Yamazaki, K; Kormos, R L; Litwak, P; Tagusari, O; Mori, T; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Mukuo, H; Umezu, M; Tomioka, J; Outa, E; Griffith, B P; Koyanagai, H

    1997-01-01

    A miniature intraventricular axial flow blood pump (IVAP) is undergoing in vivo evaluation in calves. The IVAP system consists of a miniature (phi 13.9 mm) axial flow pump that resides within the left ventricular (LV) chamber and a brushless DC motor. The pump is fabricated from titanium alloy, and the pump weight is 170 g. It produces a flow rate of over 5 L/min against 100 mmHg pressure at 9,000 rpm with an 8 W total power consumption. The maximum total efficiency exceeds 17%. A purged lip seal system is used in prototype no. 8, and a newly developed "Cool-Seal" (a low temperature mechanical seal) is used in prototype no. 9. In the Cool-Seal system, a large amount of purge flow is introduced behind the seal faces to augment convective heat transfer, keeping the seal face temperature at a low level for prevention of heat denaturation of blood proteins. The Cool-Seal system consumes < 10 cc purge fluid per day and has greatly extended seal life. The pumps were implanted in three calves (26, 30, and 168 days of support). The pump was inserted through a left thoracotomy at the fifth intercostal space. Two pursestring sutures were placed on the LV apex, and the apex was cored with a myocardial punch. The pump was inserted into the LV with the outlet cannula smoothly passing through the aortic valve without any difficulty. Only 5 min elapsed between the time of chest opening and initiation of pumping. Pump function remained stable throughout in all experiments. No cardiac arrhythmias were detected, even at treadmill exercise tests. The plasma free hemoglobin level remained in the acceptable range. Post mortem examination did not reveal any interference between the pump and the mitral apparatus. No major thromboembolism was detected in the vital organs in Cases 1 or 2, but a few small renal infarcts were detected in Case 3.

  7. Empirical expressions for estimating length and weight of axial-flow components of VTOL powerplants

    NASA Technical Reports Server (NTRS)

    Sagerser, D. A.; Lieblein, S.; Krebs, R. P.

    1971-01-01

    Simplified equations are presented for estimating the length and weight of major powerplant components of VTOL aircraft. The equations were developed from correlations of lift and cruise engine data. Components involved include fan, fan duct, compressor, combustor, turbine, structure, and accessories. Comparisons of actual and calculated total engine weights are included for several representative engines.

  8. Supersonic compressor

    DOEpatents

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    2016-04-12

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  9. Performance and Cavitation Damage of an Axial-Flow Pump in 1500 deg F (1089 K) Liquid Sodium

    DTIC Science & Technology

    1969-04-01

    A low-head-rise axial-flow pump was operated in liquid sodium at temperatures to 1500 degrees F ( 1089 K) for 558 hr to investigate pump performance... 1089 K) sodium at 3450 rpm. Post-test blade inspection indicated that there was slight cavitation damage and that the Ni-Cr-base superalloy (Rene

  10. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics.

    PubMed

    Su, Boyang; Chua, Leok P; Lim, Tau M; Zhou, Tongming

    2010-09-01

    Generally, there are two types of impeller design used in the axial flow blood pumps. For the first type, which can be found in most of the axial flow blood pumps, the magnet is embedded inside the impeller hub or blades. For the second type, the magnet is embedded inside the cylindrical impeller shroud, and this design has not only increased the rotating stability of the impeller but has also avoided the flow interaction between the impeller blade tip and the pump casing. Although the axial flow blood pumps with either impeller design have been studied individually, the comparisons between these two designs have not been conducted in the literature. Therefore, in this study, two axial flow blood pumps with and without impeller shrouds were numerically simulated with computational fluid dynamics and compared with each other in terms of hydraulic and hematologic performances. For the ease of comparison, these two models have the same inner components, which include a three-blade straightener, a two-blade impeller, and a three-blade diffuser. The simulation results showed that the model with impeller shroud had a lower static pressure head with a lower hydraulic efficiency than its counterpart. It was also found that the blood had a high possibility to deposit on the impeller shroud inner surface, which greatly enhanced the possibility of thrombus formation. The blood damage indices in both models were around 1%, which was much lower than the 13.1% of the axial flow blood pump of Yano et al. with the corresponding experimental hemolysis of 0.033 g/100 L.

  11. Recent advances in transonic axial compressor aerodynamics

    NASA Astrophysics Data System (ADS)

    Biollo, Roberto; Benini, Ernesto

    2013-01-01

    Transonic axial flow compressors are fundamental components in aircraft engines as they make it possible to maximize pressure ratios per stage unit. This is achieved through a careful combination of both tangential flow deflections and, above all, by taking advantage of shock wave formation around the rotor blades. The resulting flow field is really complex as it features highly three-dimensional inviscid/viscous structures, strong shock-boundary layer interaction and intense tip clearance effects which negatively influence compressor efficiency. Complications are augmented at part load operation, where stall-related phenomena occur. Therefore, considerable research efforts are being spent, both numerically and experimentally, to improve efficiency and stall margin at peak efficiency and near stall operation. The present work aims at giving a complete review of the most recent advances in the field of aerodynamic design and operation of such machines. A great emphasis has been given to highlight the most relevant contribution in this field and to suggest the prospects for future developments.

  12. Analysis of Effects of Inlet Pressure Losses on Performance of Axial-Flow Type Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Sanders, Newell D; Palasics, John

    1948-01-01

    The experimentally determined performance characteristics of an axial-flow turbojet engine have been used to estimate the effects of inlet total-pressure losses on net thrust and specific fuel consumption at a constant engine speed. At low altitudes and flight Mach numbers, inlet pressure losses cause an increase in engine discharge temperature and it is possible that the maximum allowable turbine temperature maybe exceeded. An inlet absolute total-pressure loss of 10 percent will result in a thrust loss of 14 percent and a 15-percent increase in specific fuel consumption based on net thrust. At high altitudes and flight Mach numbers, choking conditions exist in the exhaust nozzle and the inlet pressure losses do not affect the discharge temperatures. Under these conditions, a 10-percent loss in inlet absolute total pressure produces a 22-percent loss in net thrust and a 16-percent increase in specific fuel consumption. If the exhaust-nozzle-outlet area is adjusted to compensate for the effect of inlet losses on discharge temperature in the nonchoking cases (low altitude and Mach numbers), the thrust and fuel consumption will be changed in a manner similar to the results obtained in the choking cases.

  13. Development of the Valvo pump: an axial flow pump implanted at the heart valve position.

    PubMed

    Mitamura, Y; Nakamura, H; Okamoto, E; Yozu, R; Kawada, S; Kim, D W

    1999-06-01

    Pulsatile artificial hearts having a relatively large volume are difficult to implant in a small patient, but rotary blood pumps can be easily implanted. The objective of this study was to show the feasibility of using the Valvo pump, an axial flow pump implanted at the heart valve position, in such cases. The Valvo pump consists of an impeller and a motor. The motor is waterproofed with a ferrofluidic seal. A blood flow of 5 L/min was obtained at a pressure difference of 13.3 kPa (100 mm Hg) at 7,000 rpm. The normalized index of hemolysis (NIH) was 0.030 +/- 0.003 (n = 3) for a blood flow of 5 L/min at a pressure difference of 13.3 kPa. The pressure resistance of the ferrofluidic seal was 37.5 kPa in a static condition and 26.3 kPa at 10,000 rpm. The seal exhibited no leaks for 41+ days against 20.0 kPa. The results showed that the Valvo pump can maintain systemic circulation with an acceptable level of hemolysis.

  14. Sealing properties of mechanical seals for an axial flow blood pump.

    PubMed

    Tomioka, J; Mori, T; Yamazaki, K; Koyanagi, H

    1999-08-01

    A miniature intraventricular axial flow blood pump for left ventricular support is under development. One of the key technologies required for such pumps is sealing of the motor shaft. In this study, to prevent blood backflow into the motor side, mechanical seals were developed and their sealing properties investigated. In the experimental apparatus, the mechanical seal separated the bovine blood on the chamber side from the cooling water on the motor side. A leakage of the blood was measured by inductively coupled plasma (ICP) light emission analysis. The rate of hemolysis was measured by the cyanmethemoglobin method. Frictional torque acting on the shaft was measured by a torque transducer. In the experiments, the rotational speed of the shaft was changed from 1,000 to 10,000 rpm, and the contact force of the seal faces was changed from 1.96 to 4.31 N. To estimate lubrication regimes, the Stribeck curve, a diagram of the coefficient of friction against the bearing characteristic G number, was drawn. The results of the experiments showed that both the leakage of blood and the rate of hemolysis were very small. The friction loss was also very small. The mechanical seal was operated in various lubrication regimes, from a fluid lubrication regime to a mixed lubrication regime.

  15. Hydrodynamics and sediment transport in a meandering channel with a model axial-flow hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Hill, Craig; Kozarek, Jessica; Sotiropoulos, Fotis; Guala, Michele

    2016-02-01

    An investigation into the interactions between a model axial-flow hydrokinetic turbine (rotor diameter, dT = 0.15 m) and the complex hydrodynamics and sediment transport processes within a meandering channel was carried out in the Outdoor StreamLab research facility at the University of Minnesota St. Anthony Falls Laboratory. This field-scale meandering stream with bulk flow and sediment discharge control provided a location for high spatiotemporally resolved measurements of bed and water surface elevations around the model turbine. The device was installed within an asymmetric, erodible channel cross section under migrating bed form and fixed outer bank conditions. A comparative analysis between velocity and topographic measurements, with and without the turbine installed, highlights the local and nonlocal features of the turbine-induced scour and deposition patterns. In particular, it shows how the cross-section geometry changes, how the bed form characteristics are altered, and how the mean flow field is distorted both upstream and downstream of the turbine. We further compare and discuss how current energy conversion deployments in meander regions would result in different interactions between the turbine operation and the local and nonlocal bathymetry compared to straight channels.

  16. Impact of Periodic Unsteadiness on Performance and Heat Load in Axial Flow Turbomachines

    NASA Technical Reports Server (NTRS)

    Sharma, Om P.; Stetson, Gary M.; Daniels, William A,; Greitzer, Edward M.; Blair, Michael F.; Dring, Robert P.

    1997-01-01

    Results of an analytical and experimental investigation, directed at the understanding of the impact of periodic unsteadiness on the time-averaged flows in axial flow turbomachines, are presented. Analysis of available experimental data, from a large-scale rotating rig (LSRR) (low speed rig), shows that in the time-averaged axisymmetric equations the magnitude of the terms representing the effect of periodic unsteadiness (deterministic stresses) are as large or larger than those due to random unsteadiness (turbulence). Numerical experiments, conducted to highlight physical mechanisms associated with the migration of combustor generated hot-streaks in turbine rotors, indicated that the effect can be simulated by accounting for deterministic stress like terms in the time-averaged mass and energy conservation equations. The experimental portion of this program shows that the aerodynamic loss for the second stator in a 1-1/2 stage turbine are influenced by the axial spacing between the second stator leading edge and the rotor trailing edge. However, the axial spacing has little impact on the heat transfer coefficient. These performance changes are believed to be associated with the change in deterministic stress at the inlet to the second stator. Data were also acquired to quantify the impact of indexing the first stator relative to the second stator. For the range of parameters examined, this effect was found to be of the same order as the effect of axial spacing.

  17. Axial flow reversal and its significance in air-sparged hydrocyclone (ASH) flotation

    SciTech Connect

    Miller, J.D.; Das, A.; Yin, D.

    1995-12-31

    In recent years the potential of air-sparged hydrocyclone (ASH) flotation for fine coal cleaning has been demonstrated both in pilot plant testing and in a plant-site demonstration program. Further improvements in the ASH technology will depend, to some extent, on improved understanding of the complex multiphase fluid flow. Froth transport plays a very important role in determining the efficiency of fine coal cleaning by ASH flotation. It should be noted that the surface of zero axial velocity is of particular significance in froth transport because the location of this surface actually accounts for the amount of froth being transported to the overflow. In this regard, the axial flow reversal has been examined based on specially designed tracer experiments. On the basis of these experimental results, modeling efforts were made to characterize the flow pattern in the ASH. The theoretical predictions based on turbulent fluid dynamic considerations were found to describe experimental observations regarding the surface of zero axial velocity. These results that define the surface of zero axial velocity together with froth phase features established from X-ray CT measurements provide an excellent description of the flow characteristics in ASH flotation and explain the effect of various process variables, such as dimensionless area (A*), dimensionless flowrate (Q*), inlet pressure, percent solids, etc., on flotation recovery. On this basis it is expected that further advances in the design and operation of the ASH system can be made, leading to more efficient use of the ASH technology for fine coal cleaning.

  18. Noninvasive miniaturized mass-flow meter using a curved cannula for implantable axial flow blood pump.

    PubMed

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2011-01-01

    Blood flow should be measured to monitor conditions of patients with implantable artificial hearts continuously and noninvasively. We have developed a noninvasive miniaturized mass-flow meter using a curved cannula for an axial flow blood pump. The mass-flow meter utilized centrifugal force generated by the mass-flow rate in the curved cannula. Two strain gauges served as sensors. Based on the numerical analysis, the first gauge, attached to the curved area, measured static pressure and centrifugal force, and the second, attached to the straight area, measured static pressure for static pressure compensation. The mass-flow rate was determined by the differences in output from the two gauges. To compensate for the inertia force under the pulsatile flow, a 0.75-Hz low-pass filter was added to the electrical circuit. In the evaluation tests, numerical analysis and an actual measurement test using bovine blood were performed to evaluate the measurement performances. As a result, in the numerical analysis, the relationship between the differential pressure caused by centrifugal force and the flow rate was verified. In the actual measurement test, measurement error was less than ± 0.5 L/min, and the time delay was 0.12 s. We confirmed that the developed mass-flow meter was able to measure mass-flow rate continuously and noninvasively.

  19. Investigation of boundary layer and turbulence characteristics inside the passages of an axial flow inducer

    NASA Technical Reports Server (NTRS)

    Anand, A.; Gorton, C.; Lakshminarayana, B.; Yamaoka, H.

    1973-01-01

    A study of the boundary layer and turbulence characteristics inside the passages of an axial flow inducer is reported. The first part deals with the analytical and experimental investigation of the boundary layer characteristics in a four bladed flat plate inducer passage operated with no throttle. An approximate analysis for the prediction of radial and chordwise velocity profiles across the passage is carried out. The momentum integral technique is used to predict the gross properties of the boundary layer. Equations are given for the exact analysis of the turbulent boundary layer characteristics using the turbulent field method. Detailed measurement of boundary layer profiles, limiting streamline angle and skin friction stress on the rotating blade is also reported. Part two of this report deals with the prediction of the flow as well as blade static pressure measurements in a three bladed inducer with cambered blades operated at a flow coefficient of 0.065. In addition, the mean velocity and turbulence measurements carried out inside the passage using a rotating triaxial probe is reported.

  20. In vivo evaluation of a peripheral vascular access axial flow blood pump.

    PubMed

    Wampler, R K; Moise, J C; Frazier, O H; Olsen, D B

    1988-01-01

    More than 80 acute and chronic calf in vivo studies were utilized to develop a 3 L/min axial flow blood pump designed for intraarterial ventricular assist. The 7 mm diameter transvalvular inlet cannula of the cable driven pump receives blood from the left ventricle. The pump then discharges blood into the descending aorta. In the calf, the pump was introduced into the renal aorta. Safety and effectiveness of the device were demonstrated in three control and 21 implanted animals. Blood chemistry results showed an average plasma free hemoglobin of 3 mg/dl for control and 6.7 mg/dl for implanted animals. Platelets were 1.04 X 10(6) and 0.65 X 10(6), respectively, for control and implanted animals. Fibrinogen, BUN, creatinine, and bilirubin were essentially the same for both groups of animals. The hardware was typically free of deposits, and histopathologic examination revealed minimal injury to intracardiac structures, aortic valve leaflets, and aortic intima. The data indicates that the device may provide full support for a failing left ventricle with minimal trauma or risk.

  1. Intrinsic Axial Flows in CSDX and Dynamical Symmetry Breaking in ITG Turbulence

    NASA Astrophysics Data System (ADS)

    Li, Jiacong; Diamond, P. H.; Hong, R.; Thakur, S. C.; Xu, X. Q.; Tynan, G. R.

    2016-10-01

    Toroidal plasma rotation can enhance confinement when combined with weak magnetic shear. Also, external rotation drive in future fusion devices (e.g. ITER) will be weak. Together, these two considerations drive us to study intrinsic rotations with weak magnetic shear. In particular, a global transition is triggered in CSDX when magnetic field B exceeds a critical strength threshold. At the transition an ion feature emerges in the core turbulence. Recent studies show that a dynamical symmetry breaking mechanism in drift wave turbulence can drive intrinsic axial flows in CSDX, as well as enhance intrinsic rotations in tokamaks. Here, we focus on what happens when ion features emerge in CSDX, and how ion temperature gradient (ITG) driven turbulence drives intrinsic rotations with weak magnetic shear. The effect of dynamical symmetry breaking in ITG turbulence depends on the stability regime. In a marginally stable regime, dynamical symmetry breaking results in an augmented turbulence viscosity (chi-phi). However, when ITG is far from the stability boundary, a negative increment in turbulent viscosity is induced. This material is based upon work supported by the U.S. Department of Energy, Office of Fusion Energy Sciences, under Award No. DE-FG02-04ER54738.

  2. Progress in the development of a transcutaneously powered axial flow blood pump ventricular assist system.

    PubMed

    Parnis, S M; Conger, J L; Fuqua, J M; Jarvik, R K; Inman, R W; Tamez, D; Macris, M P; Moore, S; Jacobs, G; Sweeney, M J; Frazier, O H

    1997-01-01

    Development of the Jarvik 2000 intraventricular assist system for long-term support is ongoing. The system integrates the Jarvik 2000 axial flow blood pump with a microprocessor based automatic motor controller to provide response to physiologic demands. Nine devices have been evaluated in vivo (six completed, three ongoing) with durations in excess of 26 weeks. Instrumented experiments include implanted transit-time ultrasonic flow probes and dual micromanometer LV/AoP catheters. Treadmill exercise and heart pacing studies are performed to evaluate control system response to increased heart rates. Pharmacologically induced cardiac dysfunction studies are performed in awake and anesthetized calves to demonstrate control response to simulated heart failure conditions. No deleterious effects or events were encountered during any physiologic studies. No hematologic, renal, hepatic, or pulmonary complications have been encountered in any study. Plasma free hemoglobin levels of 7.0 +/- 5.1 mg/dl demonstrate no device related hemolysis throughout the duration of all studies. Pathologic analysis at explant showed no evidence of thromboembolic events. All pump surfaces were free of thrombus except for a minimal ring of fibrin, (approximately 1 mm) on the inflow bearing. Future developments for permanent implantation will include implanted physiologic control systems, implanted batteries, and transcutaneous energy and data transmission systems.

  3. Axial flow cyclone for segregation and collection of ultrafine particles: theoretical and experimental study.

    PubMed

    Hsu, Yu-Du; Chein, Hung Min; Chen, Tzu Ming; Tsai, Chuen-Jinn

    2005-03-01

    In this study, an axial flow cyclone was designed, fabricated, and evaluated at different conditions of air flow rates (Q0) and low-pressure environments (P), especially for the segregation and collection of ultrafine particles. An evaporation/condensation type of aerosol generation system consisting of tube furnace and mixing chamber was employed to produce test aerosols. The test aerosol was then classified by a differential mobility analyzer (DMA) and number concentration was measured by a condensation nuclei counter (CNC) and an electrometer upstream and downstream of the cyclone, respectively. The s-shaped curve of the collection efficiency in submicron particle size range was obtained to be similar to the traditional cyclone found in the literatures when the particles were largerthan 40 nm at Q0 = 1.07, 0.455 L(STP)/min, and P = 4.8-500 Torr. The curve was found to be fitted very well by a semiempirical equation described in this paper. For particles smaller than 40 nm, however, the collection efficiency was unusually increased as the particle diameter was decreased due to the fact that the diffusion deposition becomes the dominant collection mechanism in the low-pressure conditions. A model composed of centrifugal force and diffusion deposition is presented and used to fit the experimental data. The cyclone was demonstrated to separate and collect ultrafine particles effectively in the tested vacuum conditions.

  4. An experimental investigation on the tip leakage noise in axial-flow fans with rotating shroud

    NASA Astrophysics Data System (ADS)

    Canepa, Edward; Cattanei, Andrea; Mazzocut Zecchin, Fabio; Milanese, Gabriele; Parodi, Davide

    2016-08-01

    The tip leakage noise generated by a shrouded rotor of an axial-flow fan has been experimentally studied. The measurements have been taken at high flow rate and at the design point in a hemi-anechoic chamber, at constant rotational speed and during speed ramps. A test plenum designed according to ISO 10302 has been employed to modify the operating conditions and different inlet configurations, ducted and unducted with standard and reduced tip gap, have been considered. The basic features of the inflow have been studied by means of aerodynamic measurements taken upstream of the rotor. To separate the noise generating mechanisms from the acoustic propagation effects, the acoustic response function of the test configuration has been computed employing the spectral decomposition method, and then it has been compared with the velocity-scaled, constant-Strouhal number SPL. In this way, the noise components related to the tip leakage flow have been identified and their connection with geometry have been highlighted. The broadband part of the spectra and the peaks related to the tip leakage flow are affected by the same propagation effects, but show a different dependence on the rotational speed and on the operating point. The upstream geometry affects the radiated noise much more than the performance and even a strong reduction in the tip-gap cannot completely eliminate the related noise.

  5. Progress on development of the Nimbus-University of Pittsburgh axial flow left ventricular assist system.

    PubMed

    Thomas, D C; Butler, K C; Taylor, L P; Le Blanc, P; Rintoul, T C; Petersen, T V; Griffith, B P; Kormos, R L; Borovetz, H S; Litwak, P; Kameneva, M V; Choi, S; Burgreen, G W; Wu, Z; Antaki, J F

    1998-01-01

    Nimbus Inc. (Rancho Cordova, CA) and the University of Pittsburgh have completed the second year of development of a totally implanted axial flow blood pump under the National Institutes of Health Innovative Ventricular Assist System Program. The focus this year has been on completing pump hydraulic development and addressing the development of the other key system components. Having demonstrated satisfactory pump hydraulic and biocompatibility performance, pump development has focused on design features that improve pump manufacturability. A controller featuring full redundancy has been designed and is in the breadboard test phase. Initial printed circuit layout of this circuit has shown it to be appropriately sized at 5 x 6 cm to be compatible with implantation. A completely implantable system requires the use of a transcutaneous energy transformer system (TETS) and a diagnostic telemetry system. The TETS power circuitry has been redesigned incorporating an improved, more reliable operating topography. A telemetry circuit is undergoing characterization testing. Closed loop speed control algorithms are being tested in vitro and in vivo with good success. Eleven in vivo tests were conducted with durations from 1 to 195 days. Endurance pumps have passed the 6 month interval with minimal bearing wear. All aspects of the program continue to function under formal quality assurance.

  6. In vivo evaluation of the Nimbus axial flow ventricular assist system. Criteria and methods.

    PubMed

    Antaki, J F; Butler, K C; Kormos, R L; Kawai, A; Konishi, H; Kerrigan, J P; Borovetz, H S; Maher, T R; Kameneva, M V; Griffith, B P

    1993-01-01

    Continuing in vivo trials are being conducted at the University of Pittsburgh using the Nimbus axial flow blood pump (AxiPump). To date, 14 sheep experiments have been performed to address several issues related to short-term support. Six acute experiments (< 6 hr) have been performed to assess hemodynamics related to speed regulation and to determine anatomic placement of the pump and cannulae. Eight short-term survival studies lasting up to 6 days have been performed to evaluate biocompatibility and system reliability, and to establish clinical management protocols. The AxiPump has been used as a left ventricular assist device (LVAD), right ventricular assist device (RVAD), and biventricular assist device (BiVAD) with left ventricular and right atrial cannulation. The AxiPump has demonstrated the ability to assume complete support of either the pulmonary or systemic circulation, or both. We have determined that sufficient surgical access may be obtained through left lateral thoracotomy for both LVAD and RVAD insertion. In the absence of post operative anticoagulation therapy, we have detected subclinical renal cortical infarctions in 6 of 8 short-term animals. Thrombus deposition has been observed at the ventricular cannula tip in 4 of 8 cases--necessitating design changes. Two short-term experiments have been terminated because of bleeding--one due to inflow cannula obstruction and one due to cannula failure. Plasma free hemoglobin levels were all below 15 mg/dl, except for one case complicated by inflow obstruction.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Continued development of the Nimbus/University of Pittsburgh (UOP) axial flow left ventricular assist system.

    PubMed

    Thomas, D C; Butler, K C; Taylor, L P; Le Blanc, P; Griffith, B P; Kormos, R L; Borovetz, H S; Litwak, P; Kameneva, M V; Choi, S; Burgreen, G W; Wagner, W R; Wu, Z; Antaki, J F

    1997-01-01

    Nimbus and the University of Pittsburgh (UOP) have continued the development of a totally implanted axial flow blood pump under the National Institutes of Health (NIH) Innovative Ventricular Assist System (IVAS) program. This 62 cc device has an overall length of 84 mm and an outer diameter of 34.5 mm. The inner diameter of the blood pump is 12 mm. It is being designed to be a totally implanted permanent device. A key achievement during the past year was the completion of the Model 2 pump design. Ten of these pumps have been fabricated and are being used to conduct in vitro and in vivo experiments to evaluate the performance of different materials and hydraulic components. Efforts for optimizing the closed loop speed control have continued using mathematical modeling, computer simulations, and in vitro and in vivo testing. New hydraulic blade designs have been tested using computational fluid dynamics (CFD) and flow visualization. A second generation motor was designed with improved efficiency. To support the new motor, a new motor controller fabricated as a surface mount PC board has been completed. The program is now operating under a formal QA system.

  8. Twisted cardiovascular cages for intravascular axial flow blood pumps to support the Fontan physiology.

    PubMed

    Throckmorton, Amy L; Downs, Emily A; Hazelwood, John A; Monroe, Jonathan O; Chopski, Steven G

    2012-05-01

    Failing single ventricle physiology represents an ongoing challenge in mechanical assist device development, requiring pressure augmentation in the cavopulmonary circuit, reduction of systemic venous pressure, and increased cardiac output to achieve hemodynamic stabilization. To meet these requirements, we are developing a percutaneously-placed, axial flow blood pump to support ailing single ventricle physiology in adolescents and adults. We have modified the outer cage of the device to serve as both a protective and functional design component. This study examined the performance of 3 cage geometries with varying directions of filament twist using numerical simulations and hydraulic experiments. All 3 cage and pump models performed in acceptable ranges to support Fontan patients. The cage design employing filaments that are twisted in the opposite direction to the impeller blades and in the direction of the diffuser blades (against-with) demonstrated superior performance by generating a pressure rise range of 5-38 mmHg of flow rates of 0.5-6 l/min at rotational speeds of 5000-7000 rpm. The blood damage indices for all of the cages were found to be well below 2%, and the scalar stress levels were below 200 Pa. This study represents ongoing progress in the development of the impeller and cage assembly. Validation of the results will continue in experiments with blood bag evaluation as well as by particle image velocimetry measurements.

  9. Novel method and apparatus for controlling aerodynamic performance of an operating axial-flow fluid machine

    SciTech Connect

    Langebrake, C.O.

    1980-07-11

    This invention is an improved method and arrangement for controlling the aerodynamic performance of an axial-flow fluid machine during its operation. In one form of the invention, the improved control is effected by providing the machine with at least one annular row of tandem airfoils, each consisting of a trailing vane and a fixed leading vane. The trailing vane and leading vane of the typical airfoil cooperatively define a gap whose width affects the boundary-layer flow over the airfoil and thus the gas-exist angle of the mainstream flow leaving the airfoil. The trailing vanes are affixed to a ring which is mounted for independent, arcuate movement about the axis of rotor rotation, so as to translate the trailing vanes circumferentially to alter the widths of their associated gaps. External means are provided for adjusting the position of the ring during operation of the machine in order to vary the gas-exist angles for the row of tandem airfoils and thereby control selected operating characteristics of the machine, such as suction volume or compression ratio.

  10. Mini hemoreliable axial flow LVAD with magnetic bearings: part 1: historical overview and concept advantages.

    PubMed

    Goldowsky, Michael

    2002-01-01

    Intec has been developing an ultra-miniature axial flow left ventricular assist device (LVAD) turbo pump that incorporates non-contacting magnetic bearings specifically designed to eliminate thrombus. The patent pending pump is similar in size to the Jarvik 2000, being 1.0 inch in diameter and having a volume of 25cc. This paper provides two decades of historical background regarding blood pumps and discusses new advances made possible by our contactless design. Design details are left for parts two and three. This LVAD is presently the smallest magnetically suspended turbo pump. It was made possible by use of new 1/2-inch diameter fringing ring magnetic bearings. These axial field bearings are 10 times smaller than equal capacity radial field conventional magnetic bearings currently in development in turbo pumps. Our LVAD is physiologically controllable, without the use of invasive sensors, by directly measuring pump differential pressure with the magnetic bearings. This mechanism will allow attainment of cyclic, closed-loop control of impeller revolutions per minute to achieve a high degree of pressure pulsatility. Pulsatile flow is important in obtaining long-term hemodynamic reliability without thrombus being generated in either the pump or body.

  11. Interaction between an axial-flow model hydrokinetic turbine and an erodible channel

    NASA Astrophysics Data System (ADS)

    Hill, Craig; Musa, Mirko; Chamorro, Leonardo P.; Guala, Michele

    2013-11-01

    Laboratory experiments were carried out to examine the effect of relatively large-scale bedforms on the performance of a model axial-flow hydrokinetic turbine. The turbine rotor, dT = 0 . 15 m, was attached to a miniature DC motor, and allowed for voltage data acquisition at 200 Hz along with 3D hub-height inflow velocity, Uhub, approximately 7dT upstream of the turbine. Spatio-temporal bed elevations were acquired along three longitudinal sections and at least one transverse transect within the flume providing the temporally-averaged scour and deposition patterns characterizing the turbine near-field region. Turbine-turbine interaction was investigated under aligned configurations in the streamwise direction with variable spacing both in clear water scour and live bed transport conditions. Effects from both migrating bedforms and the upstream turbine were observed in the long-term and short-term voltage fluctuations of the downstream turbine. Combined measurements of inflow velocity, bed topography and turbine voltage were used to obtain joint statistics and correlations, which provided an indication of the variability in environmental exposure and performance that hydrokinetic turbines will encounter in natural erodible rivers.

  12. Acoustic Characterization of Axial Flow Left Ventricular Assist Device Operation In Vitro and In Vivo.

    PubMed

    Yost, Gardner L; Royston, Thomas J; Bhat, Geetha; Tatooles, Antone J

    2016-01-01

    The use of left ventricular assist devices (LVADs), implantable pumps used to supplement cardiac output, has become an increasingly common and effective treatment for advanced heart failure. Although modern continuous-flow LVADs improve quality of life and survival more than medical management of heart failure, device malfunction remains a common concern. Improved noninvasive methods for assessment of LVAD function are needed to detect device complications. An electronic stethoscope was used to record sounds from the HeartMate II axial flow pump in vitro and in vivo. The data were then uploaded to a computer and analyzed using two types of acoustic analysis software. Left ventricular assist device acoustics were quantified and were related to pump speed, acoustic environment, and inflow and outflow graft patency. Peak frequency values measured in vivo were found to correlate strongly with both predicted values and in vitro measurements (r > 0.999). Plots of the area under the acoustic spectrum curve, obtained by integrating over 50 Hz increments, showed strong correlations between in vivo and in vitro measurements (r > 0.966). Device thrombosis was found to be associated with reduced LVAD acoustic amplitude in two patients who underwent surgical device exchange.

  13. WITHDRAWN: Modeling of Transient Phenomena in an Axial Flow Blood Pump

    NASA Astrophysics Data System (ADS)

    Wood, Houston

    2005-11-01

    A fully implantable axial flow Ventricular Assist Device (VAD) has been developed with a magnetically suspended impeller (LEV-VAD). The LEV-VAD's flow path design provides a single pass blood path with minimal turbulence. The pump design included the extensive use of CFD modeling and experimental validation under steady-state flow conditions. This CFD study explores transient flow phenomena in the pump simulating in vivo flow conditions. The LEV-VAD operates under transient conditions due to the pulsatile inlet flow rate induced by the patient's native heart and the spinning of the impeller. This study considered: (1) Time varying boundary conditions (TVBC); (2) Stationary-rotating blades interaction or transient sliding interfaces (TSI). The LEV-VAD performance and pressure-flow correlations were investigated under transient flow conditions. The fluid forces acting on the impeller were calculated to facilitate the suspension system and motor design. The transient simulations illustrate the LEV-VAD's response to dynamic flow conditions and demonstrated the ability to deliver flows from 2 to 10 LPM at rotational speeds varying from 5,000 to 8,000 RPM for physiological pressures corresponding to adult CHF patients.

  14. Parametric modeling and stagger angle optimization of an axial flow fan

    NASA Astrophysics Data System (ADS)

    Li, M. X.; Zhang, C. H.; Liu, Y.; Y Zheng, S.

    2013-12-01

    Axial flow fans are widely used in every field of social production. Improving their efficiency is a sustained and urgent demand of domestic industry. The optimization of stagger angle is an important method to improve fan performance. Parametric modeling and calculation process automation are realized in this paper to improve optimization efficiency. Geometric modeling and mesh division are parameterized based on GAMBIT. Parameter setting and flow field calculation are completed in the batch mode of FLUENT. A control program is developed in Visual C++ to dominate the data exchange of mentioned software. It also extracts calculation results for optimization algorithm module (provided by Matlab) to generate directive optimization control parameters, which as feedback are transferred upwards to modeling module. The center line of the blade airfoil, based on CLARK y profile, is constructed by non-constant circulation and triangle discharge method. Stagger angles of six airfoil sections are optimized, to reduce the influence of inlet shock loss as well as gas leak in blade tip clearance and hub resistance at blade root. Finally an optimal solution is obtained, which meets the total pressure requirement under given conditions and improves total pressure efficiency by about 6%.

  15. Counter-rotating type axial flow pump unit in turbine mode for micro grid system

    NASA Astrophysics Data System (ADS)

    Kasahara, R.; Takano, G.; Murakami, T.; Kanemoto, T.; Komaki, K.

    2012-11-01

    Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. This serial research proposes the hybrid power system combined the wind power unit with the pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In the pumping mode, the pump should operate unsteadily at not only the normal but also the partial discharge. The operation may be unstable in the rising portion of the head characteristics at the lower discharge, and/or bring the cavitation at the low suction head. To simultaneously overcome both weak points, the authors have proposed a superior pump unit that is composed of counter-rotating type impellers and a peculiar motor with double rotational armatures. This paper discusses the operation at the turbine mode of the above unit. It is concluded with the numerical simulations that this type unit can be also operated acceptably at the turbine mode, because the unit works so as to coincide the angular momentum change through the front runners/impellers with that thorough the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.

  16. A computational study of the interaction noise from a small axial-flow fan.

    PubMed

    Lu, H Z; Huang, Lixi; So, R M C; Wang, J

    2007-09-01

    Small axial-flow fans used for computer cooling and many other appliances feature a rotor driven by a downstream motor held by several cylindrical struts. This study focuses on the aerodynamic mechanism of rotor-strut interaction for an isolated fan. The three-dimensional, unsteady flow field is calculated using FLUENT, and the sound radiation predicted by acoustic analogy is compared with measurement data. Striking differences are found between the pressure oscillations in various parts of the structural surfaces during an interaction event. The suction surface of the blade experiences a sudden increase in pressure when the blade trailing edge sweeps past a strut, while the process of pressure decrease on the pressure side of the blade is rather gradual during the interaction. The contribution of the latter towards the total thrust force on the structure is cancelled out significantly by that on the strut. In terms of the acoustic contributions from the rotor and strut, the upstream rotor dominates and this feature differs from the usual rotor-stator interaction acoustics in which the downstream part is responsible for most of the noise. It is therefore argued that the dominant interaction mechanism is potential flow in nature.

  17. The flow field investigations of no load conditions in axial flow fixed-blade turbine

    NASA Astrophysics Data System (ADS)

    Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.

    2014-03-01

    During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.

  18. Algebraic stress model for axial flow in a bare rod-bundle

    SciTech Connect

    de Lemos, M.J.S.

    1987-01-01

    The problem of predicting transport properties for momentum and heat across the boundaries of interconnected channels has been the subject of many investigations. In the particular case of axial flow through rod-bundles, transport coefficients for channel faces aligned with rod centers are known to be considerably higher than those calculated by simple isotropic theories. And yet, it was been found that secondary flows play only a minor role in this overall transport, being turbulence highly enhanced across that hypothetical surface. In order to numerically predict the correct amount of the quantity being transported, the approach taken by many investigators was then to artificially increase the diffusion coefficient obtained via a simple isopropic theory (usually the standard k-epsilon model) and numerically match the correct experimentally observed mixing rates. The present paper reports an attempt to describe the turbulent stresses by means of an Algebraic Stress Model for turbulence. Relative turbulent kinetic energy distribution in all three directions are presented and compared with experiments in a square lattice. The strong directional dependence of transport terms are then obtained via a model for the Reynolds stresses. The results identify a need for a better representation of the mean-flow field part of the pressure-strain correlation term.

  19. Optimization of an axial flow heart pump with active and passive magnetic bearings.

    PubMed

    Glauser, Matthias; Jiang, Wei; Li, Guoxin; Lin, Zongli; Allaire, Paul E; Olson, Don

    2006-05-01

    Optimization of a magnetically suspended left ventricular assist device (LVAD) is crucial. We desire a totally implantable, long-life LVAD that delivers the necessary flow rate, pressure rise, and blood compatibility. By using a novel combination of passive and active magnetic bearings (AMBs), we have developed an axial flow LVAD prototype, the LEV-VAD, which provides an unobstructed blood flow path, preventing stagnation regions for the blood. Our current effort is focused on the optimization of the magnetic suspension system to allow for control of the AMB, minimizing its size and power consumption. The properties of the passive magnetic bearings and AMBs serve as parameter space, over which a cost function is minimized, subject to constraints such as suspension stability and sufficient disturbance rejection capabilities. The design process is expected to lead to the construction of a small prototype pump along with the necessary robust controller for the AMB. Sensitivity of the LVAD performance with respect to various design parameters is examined in-depth and an optimized, more compact LVAD prototype is designed.

  20. A dedicated compressor monitoring system employing current signature analysis

    SciTech Connect

    Castleberry, K.N.; Smith, S.F.

    1993-04-15

    The use of motor current signature analysis (CSA) has been established as a useful method for periodic monitoring of electrically driven equipment. CSA is, moreover, especially well suited as the basis for a dedicated continuous monitoring system in an industrial setting. This paper presents just such an application that has been developed and installed in the US government uranium enrichment plant at Portsmouth, Ohio. The system, which is designed to detect specific axial-flow compressor problems in 1700-hp gaseous diffusion compressors, is described in detail along with an explanation of detected fault conditions and the required signal manipulations. Amplitude demodulation and subsequent digital processing of motor signals sensed from area control room ammeter loops are used to accomplish the desired monitoring task. Using modified off-the-shelf multiplexing equipment, a 386-type personal computer, and special digital signal processing hardware, the system is presently configured to monitor ten compressors but is expandable to monitor more than 100. Within its first few days of operation in September 1992, the system detected a compressor problem that, when corrected, resulted in a cost avoidance of about $150,000, which more than paid for the hardware and software development costs. Finally, plans to expand system coverage in the coming year are also discussed.

  1. Numerical analysis of head degrade law under cavitation condition of contra-rotating axial flow waterjet pump

    NASA Astrophysics Data System (ADS)

    Huang, D.; Pan, Z. Y.

    2015-01-01

    In order to study the flow-head characteristic curve, the SST turbulence model, homogeneous multiphase model and Rayleigh-Plesset equation were applied to simulate the cavitation characteristics in contra-rotating axial flow waterjet pump under different conditions based on ANSYS CFX software. The distribution of cavity, pressure coefficient of the blade at the design point under different cavitation conditions were obtained. The analysis results of flow field show that the vapour volume distribution on the impeller indicates that the vapour first appears at the leading edge of blade and then extends to the outlet of impeller with the reduction of Net Positive Suction Head Allowance (NPSHA). The present study illustrates that the main reason for the decline of the pump performance is the development of cavitation, and the simulation can truly reflect the cavitation performance of the contra-rotating axial flow waterjet pump.

  2. A prediction model for the vortex shedding noise from the wake of an airfoil or axial flow fan blades

    NASA Astrophysics Data System (ADS)

    Lee, C.; Chung, M. K.; Kim, Y.-H.

    1993-06-01

    An analytical model is presented for predicting the vortex shedding noise generated from the wake of axial flow fan blades. The downstream wake of a fan blade is assumed to be dominated by the von Karman vortex street, and the strength and the shedding frequency of the wake vortex are determined from the wake structure model. The fluctuating pressure and lift on the blade surface, which are induced from the vortices in the wake, are analyzed by incorporating the wake model for the von Karman vortex street with thin airfoil theory. The predicted vortex shedding frequency and the overall sound pressure level compare favorably with the measured results for the vortex shedding noise from axial flow fans.

  3. A Guide to Axial-Flow Turbine Off-Design Computer Program AXOD2

    NASA Technical Reports Server (NTRS)

    Chen, Shu-Cheng S.

    2014-01-01

    A Users Guide for the axial flow turbine off-design computer program AXOD2 is composed in this paper. This Users Guide is supplementary to the original Users Manual of AXOD. Three notable contributions of AXOD2 to its predecessor AXOD, both in the context of the Guide or in the functionality of the code, are described and discussed in length. These are: 1) a rational representation of the mathematical principles applied, with concise descriptions of the formulas implemented in the actual coding. Their physical implications are addressed; 2) the creation and documentation of an Addendum Listing of input namelist-parameters unique to AXOD2, that differ from or are in addition to the original input-namelists given in the Manual of AXOD. Their usages are discussed; and 3) the institution of proper stoppages of the code execution, encoding termination messaging and error messages of the execution to AXOD2. These measures are to safe-guard the integrity of the code execution, such that a failure mode encountered during a case-study would not plunge the code execution into indefinite loop, or cause a blow-out of the program execution. Details on these are discussed and illustrated in this paper. Moreover, this computer program has since been reconstructed substantially. Standard FORTRAN Langue was instituted, and the code was formatted in Double Precision (REAL*8). As the result, the code is now suited for use in a local Desktop Computer Environment, is perfectly portable to any Operating System, and can be executed by any FORTRAN compiler equivalent to a FORTRAN 9095 compiler. AXOD2 will be available through NASA Glenn Research Center (GRC) Software Repository.

  4. The Three Dimensional Flow Field at the Exit of an Axial-Flow Turbine Rotor

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Ristic, D.; Chu, S.

    1998-01-01

    A systematic and comprehensive investigation was performed to provide detailed data on the three dimensional viscous flow phenomena downstream of a modem turbine rotor and to understand the flow physics such as origin, nature, development of wakes, secondary flow, and leakage flow. The experiment was carried out in the Axial Flow Turbine Research Facility (AFTRF) at Penn State, with velocity measurements taken with a 3-D LDV System. Two radial traverses at 1% and 10% of chord downstream of the rotor have been performed to identify the three-dimensional flow features at the exit of the rotor blade row. Sufficient spatial resolution was maintained to resolve blade wake, secondary flow, and tip leakage flow. The wake deficit is found to be substantial, especially at 1% of chord downstream of the rotor. At this location, negative axial velocity occurs near the tip, suggesting flow separation in the tip clearance region. Turbulence intensities peak in the wake region, and cross- correlations are mainly associated with the velocity gradient of the wake deficit. The radial velocities, both in the wake and in the endwall region, are found to be substantial. Two counter-rotating secondary flows are identified in the blade passage, with one occupying the half span close to the casino and the other occupying the half span close to the hub. The tip leakage flow is well restricted to 10% immersion from the blade tip. There are strong vorticity distributions associated with these secondary flows and tip leakage flow. The passage averaged data are in good agreement with design values.

  5. In vitro pulsatility analysis of axial-flow and centrifugal-flow left ventricular assist devices.

    PubMed

    Stanfield, J Ryan; Selzman, Craig H

    2013-03-01

    Recently, continuous-flow ventricular assist devices (CF-VADs) have supplanted older, pulsatile-flow pumps, for treating patients with advanced heart failure. Despite the excellent results of the newer generation devices, the effects of long-term loss of pulsatility remain unknown. The aim of this study is to compare the ability of both axial and centrifugal continuous-flow pumps to intrinsically modify pulsatility when placed under physiologically diverse conditions. Four VADs, two axial- and two centrifugal-flow, were evaluated on a mock circulatory flow system. Each VAD was operated at a constant impeller speed over three hypothetical cardiac conditions: normo-tensive, hypertensive, and hypotensive. Pulsatility index (PI) was compared for each device under each condition. Centrifugal-flow devices had a higher PI than that of axial-flow pumps. Under normo-tension, flow PI was 0.98 ± 0.03 and 1.50 ± 0.02 for the axial and centrifugal groups, respectively (p < 0.01). Under hypertension, flow PI was 1.90 ± 0.16 and 4.21 ± 0.29 for the axial and centrifugal pumps, respectively (p = 0.01). Under hypotension, PI was 0.73 ± 0.02 and 0.78 ± 0.02 for the axial and centrifugal groups, respectively (p = 0.13). All tested CF-VADs were capable of maintaining some pulsatile-flow when connected in parallel with our mock ventricle. We conclude that centrifugal-flow devices outperform the axial pumps from the basis of PI under tested conditions.

  6. Forced motion and acoustic radiation of an elastic cylinder in axial flow

    NASA Astrophysics Data System (ADS)

    Manela, A.; Miloh, T.

    2012-07-01

    We study the forced motion and far-field acoustic radiation of an elastic cylinder subject to uniform axial flow and actuated at its upstream end by small-amplitude periodic displacement and rotation. The linearized problem is analysed under subcritical conditions of low nondimensional stream-flow velocity, u

  7. Computational design and experimental testing of a novel axial flow LVAD.

    PubMed

    Untaroiu, Alexandrina; Wood, Houston G; Allaire, Paul E; Throckmorton, Amy L; Day, Steven; Patel, Sonna M; Ellman, Peter; Tribble, Curt; Olsen, Don B

    2005-01-01

    Thousands of cardiac failure patients per year in the United States could benefit from long-term mechanical circulatory support as destination therapy. To provide an improvement over currently available devices, we have designed a fully implantable axial-flow ventricular assist device with a magnetically levitated impeller (LEV-VAD). In contrast to currently available devices, the LEV-VAD has an unobstructed blood flow path and no secondary flow regions, generating substantially less retrograde and stagnant flow. The pump design included the extensive use of conventional pump design equations and computational fluid dynamics (CFD) modeling for predicting pressure-flow curves, hydraulic efficiencies, scalar fluid stress levels, exposure times to such stress, and axial fluid forces exerted on the impeller for the suspension design. Flow performance testing was completed on a plastic prototype of the LEV-VAD for comparison with the CFD predictions. Animal fit trials were completed to determine optimum pump location and cannulae configuration for future acute and long-term animal implantations, providing additional insight into the LEV-VAD configuration and implantability. Per the CFD results, the LEV-VAD produces 6 l/min and 100 mm Hg at a rotational speed of approximately 6300 rpm for steady flow conditions. The pressure-flow performance predictions demonstrated the VAD's ability to deliver adequate flow over physiologic pressures for reasonable rotational speeds with best efficiency points ranging from 25% to 30%. The CFD numerical estimations generally agree within 10% of the experimental measurements over the entire range of rotational speeds tested. Animal fit trials revealed that the LEV-VAD's size and configuration were adequate, requiring no alterations to cannulae configurations for future animal testing. These acceptable performance results for LEV-VAD design support proceeding with manufacturing of a prototype for extensive mock loop and initial acute

  8. Design and transient computational fluid dynamics study of a continuous axial flow ventricular assist device.

    PubMed

    Song, Xinwei; Untaroiu, Alexandrina; Wood, Houston G; Allaire, Paul E; Throckmorton, Amy L; Day, Steven W; Olsen, Donald B

    2004-01-01

    A ventricular assist device (VAD), which is a miniaturized axial flow pump from the point of view of mechanism, has been designed and studied in this report. It consists of an inducer, an impeller, and a diffuser. The main design objective of this VAD is to produce an axial pump with a streamlined, idealized, and nonobstructing blood flow path. The magnetic bearings are adapted so that the impeller is completely magnetically levitated. The VAD operates under transient conditions because of the spinning movement of the impeller and the pulsatile inlet flow rate. The design method, procedure, and iterations are presented. The VAD's performance under transient conditions is investigated by means of computational fluid dynamics (CFD). Two reference frames, rotational and stationary, are implemented in the CFD simulations. The inlet and outlet surfaces of the impeller, which are connected to the inducer and diffuser respectively, are allowed to rotate and slide during the calculation to simulate the realistic spinning motion of the impeller. The flow head curves are determined, and the variation of pressure distribution during a cardiac cycle (including systole and diastole) is given. The axial oscillation of impeller is also estimated for the magnetic bearing design. The transient CFD simulation, which requires more computer resources and calculation efforts than the steady simulation, provides a range rather than only a point for the VAD's performance. Because of pulsatile flow phenomena and virtual spinning movement of the impeller, the transient simulation, which is realistically correlated with the in vivo implant scenarios of a VAD, is essential to ensure an effective and reliable VAD design.

  9. Development of an axial flow ventricular assist device: in vitro and in vivo evaluation.

    PubMed

    Mizuguchi, K; Damm, G; Benkowsky, R; Aber, G; Bacak, J; Svjkovsky, P; Glueck, J; Takatani, S; Nosé, Y; Noon, G P

    1995-07-01

    A collaborative effort between Baylor College of Medicine and NASA/Johnson Space Center is underway to develop an axial flow ventricular assist device (VAD). We evaluated inducer/impeller component designs in a series of in vitro hemolysis tests. As a result of computational fluid dynamic analysis, a flow inducer was added to the front of the pump impeller. According to the surface pressure distribution, the flow inducer blades were connected to the impeller long blades. This modification eliminated high negative pressure areas at the leading edge of the impeller. Comparative studies were performed between inducer blade sections that flowed smoothly into the impeller blades (continuous blades) and those that formed discrete separate pumping sections (discontinuous blades). The inducer/impeller with continuous blades showed significantly (p < 0.003) lower hemolysis with a normalized index of hemolysis (NIH) of 0.018 +/- 0.007 g/100 L (n = 3), compared with the discontinuous model, which demonstrated an NIH of 0.050 +/- 0.007 g/100 L (n = 3). The continuous blade model was evaluated in vivo for 2 days with no problems. One of the pumps evaluated ran for 5 days in vivo although thrombus formation was recognized on the flow straightener and the inducer/impeller. As a result of this study, the pump material was changed from polyether polyurethane to polycarbonate. The fabrication method was also changed to a computer numerically controlled (CNC) milling process with a final vapor polish. These changes resulted in an NIH of 0.0029 +/- 0.0009 g/100 L (n = 4), which is a significant (p < .0001) value 6 times less than that of the previous model.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Long-term durability test of axial-flow ventricular assist device under pulsatile flow.

    PubMed

    Nishida, Masahiro; Kosaka, Ryo; Maruyama, Osamu; Yamane, Takashi; Shirasu, Akio; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2017-03-01

    A long-term durability test was conducted on a newly developed axial-flow ventricular assist device (VAD) with hydrodynamic bearings. The mock circulatory loop consisted of a diaphragm pump with a mechanical heart valve, a reservoir, a compliance tank, a resistance valve, and flow paths made of polymer or titanium. The VAD was installed behind the diaphragm pump. The blood analog fluid was a saline solution with added glycerin at a temperature of 37 °C. A pulsatile flow was introduced into the VAD over a range of flow rates to realize a positive flow rate and a positive pressure head at a given impeller rotational speed, yielding a flow rate of 5 L/min and a pressure of 100 mmHg. Pulsatile flow conditions were achieved with the diastolic and systolic flow rates of ~0 and 9.5 L/min, respectively, and an average flow rate of ~5 L/min at a pulse rate of 72 bpm. The VAD operation was judged by not only the rotational speed of the impeller, but also the diastolic, systolic, and average flow rates and the average pressure head of the VAD. The conditions of the mock circulatory loop, including the pulse rate of the diaphragm pump, the fluid temperature, and the fluid viscosity were maintained. Eight VADs were tested with testing periods of 2 years, during which they were continuously in operation. The VAD performance factors, including the power consumption and the vibration characteristics, were kept almost constant. The long-term durability of the developed VAD was successfully demonstrated.

  11. Installation effects on the tonal noise generated by axial flow fans

    NASA Astrophysics Data System (ADS)

    Canepa, Edward; Cattanei, Andrea; Mazzocut Zecchin, Fabio

    2015-03-01

    The paper presents the results of experiments on a low-speed axial-flow fan flush mounted on flat panels typically employed in tests on automotive cooling fans. The experiments have been conducted in a hemi-anechoic chamber and were aimed at evaluating the installation effects of the whole test configuration, including chamber floor and size and shape of the mounting panel. The largest panels cause important SPL variations in a narrow, low frequency range. Their effect on the propagation function has been verified by means of parametric BEM computations. A regular wavy trend associated with reflections from the floor is also present. In both cases, the tonal noise is more strongly affected than the broadband one. The analysis is performed by means of an existing spectral decomposition technique and a new one, which allows to consider different noise generating mechanisms and also to separate the emitted tonal and broadband noise from the associated propagation effects. In order to better identify the features of the noise at the blade passing frequency (BPF) harmonics, the phase of the acoustic pressure is also analysed. Measurements are taken during speed ramps, which allow to obtain both constant-Strouhal number SPL data and constant-speed data. The former data set is employed in the new technique, while the latter may be employed in the standard spectral decomposition techniques. Based on both the similarity theory and the analysis of the Green's function of the problem, a theoretical description of the structure of the received SPL spectrum is given. Then, the possibility of discriminating between tonal and broadband noise generating mechanisms is analysed and a theoretical base for the new spectral decomposition technique is provided.

  12. Altitude-Wind-Tunnel investigation of Westinghouse 19B-2, 19B-8, and 19XB-1 Jet-Propulsion Engines IV : analysis of compressor performance

    NASA Technical Reports Server (NTRS)

    Dietz, Robert O; Kuenzig, John K

    1948-01-01

    Investigations were conducted in the NACA Cleveland altitude wind tunnel to determine the performance and operational characteristics of the 19B-2, 19B-6, and 19XB-1 Turbojet Engines. One objective of the investigations was to determine the effect of altitude, flight Mach number, and tail-pipe-nozzle area on the performance characteristics of the six-stage and ten-stage axial-flow compressors of the 19B-8 and 19XB-1 engines, respectively. The data were obtained over a range of simulated altitudes and flight Mach numbers. At each simulated flight condition the engine was run over its full operable range of speeds. Performance characteristics of the 19B-8 and 19XB-1 compressors for the range of operation obtainable in the turbojet-engine installation are presented. Compressor characteristics are presented as functions of air flow corrected to sea-level conditions, compressor Mach number, and compressor load coefficient.

  13. Passive magnetic bearing in the 3rd generation miniature axial flow pump-the valvo pump 2.

    PubMed

    Okamoto, Eiji; Ishida, Yuya; Yano, Tetsuya; Mitamura, Yoshinori

    2015-06-01

    The new miniature axial flow pump (valvo pump 2) that is installed at the base of the ascending aorta consists of a six-phase stator, an impeller in which four neodymium magnets are incorporated, and passive magnetic bearings that suspend the impeller for axial levitation. The impeller is sustained by hydrodynamic force between the blade tip of the impeller and the inner housing of the stator. The passive magnetic bearing consists of a ring neodymium magnet and a columnar neodymium magnet. The ring neodymium magnet is set in the stationary side and the columnar neodymium magnet is incorporated in the impeller shaft. Both neodymium magnets are coaxially mounted, and the anterior and posterior passive magnetic bearings suspend the impeller by repulsion force against the hydrodynamic force that acts to move the impeller in the inflow port direction. The passive magnetic bearing was evaluated by a tensile test, and the levitation force of 8.5 N and stiffness of 2.45 N/mm was obtained. Performance of the axial flow pump was evaluated by an in vitro experiment. The passive magnetic bearing showed sufficient levitation capacity to suspend the impeller in an axial direction. In conclusion, the passive magnetic bearing is promising to be one of levitation technology for the third-generation axial flow blood pump.

  14. Three Dimensional Viscous Flow Field in an Axial Flow Turbine Nozzle Passage

    NASA Technical Reports Server (NTRS)

    Ristic, D.; Lakshminarayana, B.

    1997-01-01

    The objective of this investigation is experimental and computational study of three dimensional viscous flow field in the nozzle passage of an axial flow turbine stage. The nozzle passage flow field has been measured using a two sensor hot-wire probe at various axial and radial stations. In addition, two component LDV measurements at one axial station (x/c(sum m) = 0.56) were performed to measure the velocity field. Static pressure measurements and flow visualization, using a fluorescent oil technique, were also performed to obtain the location of transition and the endwall limiting streamlines. A three dimensional boundary layer code, with a simple intermittency transition model, was used to predict the viscous layers along the blade and endwall surfaces. The boundary layers on the blade surface were found to be very thin and mostly laminar, except on the suction surface downstream of 70% axial chord. Strong radial pressure gradient, especially close to the suction surface, induces strong cross flow components in the trailing edge regions of the blade. On the end-walls the boundary layers were much thicker, especially near the suction corner of the casing surface, caused by secondary flow. The secondary flow region near the suction-casing surface corner indicates the presence of the passage vortex detached from the blade surface. The corner vortex is found to be very weak. The presence of a closely spaced rotor downstream (20% of the nozzle vane chord) introduces unsteadiness in the blade passage. The measured instantaneous velocity signal was filtered using FFT square window to remove the periodic unsteadiness introduced by the downstream rotor and fans. The filtering decreased the free stream turbulence level from 2.1% to 0.9% but had no influence on the computed turbulence length scale. The computation of the three dimensional boundary layers is found to be accurate on the nozzle passage blade surfaces, away from the end-walls and the secondary flow region. On

  15. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  16. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, John F.

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  17. Effect of casing treatment on overall and blade element performance of a compressor rotor

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Kovich, G.; Blade, R. J.

    1971-01-01

    An axial flow compressor rotor was tested at design speed with six different casing treatments across the rotor tip. Radial surveys of pressure, temperature, and flow angle were taken at the rotor inlet and outlet. Surveys were taken at several weight flows for each treatment. All the casings treatments decreased the weight flow at stall over that for the solid casing. Radial surveys indicate that the performance over the entire radial span of the blade is affected by the treatment across the rotor tip.

  18. Performance of tandem-bladed transonic compressor rotor with tip speed of 1375 feet per second

    NASA Technical Reports Server (NTRS)

    Urasek, D. C.; Janetzke, D. C.

    1972-01-01

    The design and experimental performance of a 20-inch diameter tandem-bladed axial-flow transonic compressor rotor is presented. Radial surveys were made of the flow conditions. At design speed the peak efficiency was 0.88 and occurred at an equivalent weight flow of 63 pounds per second. At peak efficiency the total pressure and total temperature ratios were 1.77 and 1.20, respectively. The stall margin at design speed was 10 percent based on weight flows and total pressure ratios at peak efficiency and near stall.

  19. Design geometry and design/off-design performance computer codes for compressors and turbines

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1995-01-01

    This report summarizes some NASA Lewis (i.e., government owned) computer codes capable of being used for airbreathing propulsion system studies to determine the design geometry and to predict the design/off-design performance of compressors and turbines. These are not CFD codes; velocity-diagram energy and continuity computations are performed fore and aft of the blade rows using meanline, spanline, or streamline analyses. Losses are provided by empirical methods. Both axial-flow and radial-flow configurations are included.

  20. Three dimensional flow field inside compressor rotor, including blade boundary layers

    NASA Technical Reports Server (NTRS)

    Galmes, J. M.; Pouagere, M.; Lakshminarayana, B.

    1982-01-01

    The Reynolds stress equation, pressure strain correlation, and dissipative terms and diffusion are discussed in relation to turbulence modelling using the Reynolds stress model. Algebraic modeling of Reynolds stresses and calculation of the boundary layer over an axial cylinder are examined with regards to the kinetic energy model for turbulence modelling. The numerical analysis of blade and hub wall boundary layers, and an experimental study of rotor blade boundary layer in an axial flow compressor rotor are discussed. The Patankar-Spalding numerical method for two dimensional boundary layers is included.

  1. Development of Lorentz force-type self-bearing motor for an alternative axial flow blood pump design.

    PubMed

    Lim, Tau Meng; Zhang, Dongsheng

    2006-05-01

    A Lorentz force-type self-bearing motor was developed to provide delivery of both motoring torque and levitation force for an alternative axial flow blood pump design with an enclosed impeller. The axial flow pumps currently available introduce electromagnetic coupling from the motor's stator to the impeller by means of permanent magnets (PMs) embedded in the tips of the pump's blades. This design has distinct disadvantages, for example, pumping efficiency and electromagnetic coupling transmission are compromised by the constrained or poor geometry of the blades and limited pole width of the PMs, respectively. In this research, a Lorentz force-type self-bearing motor was developed. It is composed of (i) an eight-pole PM hollow-cylindrical rotor assembly supposedly to house and enclose the impeller of an axial flow blood pump, and (ii) a six-pole stator with two sets of copper wire and different winding configurations to provide the motoring torque and levitating force for the rotor assembly. MATLAB's xPC Target interface hardware was used as the rapid prototyping tool for the development of the controller for the self-bearing motor. Experimental results on a free/simply supported rotor assembly validated the design feasibility and control algorithm effectiveness in providing both the motoring torque and levitation force for the rotor. When levitated, a maximum orbital displacement of 0.3 mm corresponding to 1050 rpm of the rotor was measured by two eddy current probes placed in the orthogonal direction. This design has the advantage of eliminating the trade-off between motoring torques, levitating force, and pumping efficiency of previous studies. It also indicated the benefits of enclosed-impeller design as having good dynamic response, linearity, and better reliability. The nonmechanical contact feature between rotating and stationary parts will further reduce hemolysis and thromboembolitic tendencies in a typical blood pump application.

  2. Stereoscopic PIV on multiple color-coded light sheets and its application to axial flow in flapping robotic insect wings

    NASA Astrophysics Data System (ADS)

    Pick, Simon; Lehmann, Fritz-Olaf

    2009-12-01

    Non-scanning volume flow measurement techniques such as 3D-PTV, holographic and tomographic particle image velocimetry (PIV) permit reconstructions of all three components (3C) of velocity and vorticity vectors in a fluid volume (3D). In this study, we present a novel 3D3C technique termed Multiple-Color-Plane Stereo Particle-Image-Velocimetry (color PIV), which allows instantaneous measurements of 3C velocity vectors in six parallel, colored light sheets. We generated the light sheets by passing white light of two strobes through dichroic color filters and imaged the slices by two 3CCD color cameras in Stereo-PIV configuration. The stereo-color images were processed by custom software routines that sorted each colored fluid particle into one of six gray-scale images according to its hue, saturation, and luminance. We used conventional Stereo PIV cross-correlation algorithms to compute a 3D planar vector field for each light sheet and subsequently interpolated a volume flow map from the six vector fields. As a first application, we quantified the wake and axial flow in the vortical structures of a robotic insect (fruit fly) model wing. In contrast to previous findings, the measured data indicate strong axial flow components on the upper wing surface, including axial flow in the leading-edge vortex core. Collectively, color PIV is robust against mechanical misalignments, avoids laser safety issues, and computes instantaneous 3D vector fields in a fraction of the time typical for other 3D systems. Color PIV might thus be of value for volume measurements of highly unsteady flows.

  3. Preliminary Results of Altitude-Wind-Tunnel Investigation of X34C-4B Turbojet Engine. III - Compressor Performance. 3; Compressor Performance

    NASA Technical Reports Server (NTRS)

    Dupree, David T.; Thorman, H. Carl

    1947-01-01

    The performance of the 11-stage axial-flow compressor in the X24C-4B turbojet engine was analyzed on the basis of results obtained from an investigation of the complete engine in the NACA Cleveland altitude wind tunnel. The engine was operated with four, exhaust nozzles of different outlet area over a range of engine speeds from 6000 to 12,500 rpm, corrected engine speeds from approximately 6100 to 13,600 rpm, and compressor Mach numbers from 0.45 to 1.00. Data are presented for engine operation over a range of simulated altitudes from 15,000 to 45,000 feet and simulated flight Mach numbers from 0.24 to 1.08.

  4. Turbine modeling technique to generate off-design performance data for both single and multistage axial-flow turbines

    NASA Technical Reports Server (NTRS)

    Converse, G. L.

    1981-01-01

    This technique is applicable to larger axial flow turbines which may or may not incorporate variable geometry in the first stage stator. A user specified option will also permit the calculation of design point cooling flow levels and the corresponding change in turbine efficiency. The modeling technique was incorporated into a time sharing computer program in order to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and example cases, it is suitable as a user's manual.

  5. Summary of design and blade-element performance data for 12 axial-flow pump rotor configurations

    NASA Technical Reports Server (NTRS)

    Miller, M. J.; Okiishi, T. H.; Serovy, G. K.; Sandercock, D. M.; Britsch, W. R.

    1973-01-01

    A collection of noncavitating blade-element performance data for 12 axial-flow pump rotor configurations is presented in tabular form. Rotor design philosophy, test apparatus and procedure, and data reduction and evaluation are discussed. A data storage and recall computer program is described. All but one of the rotor configurations considered were composed of double-circular-arc blade sections and were designed for high inlet relative flow angles. Hub-tip radius ranged from 0.40 to 0.90.

  6. Effect of argon on the performance of a fast-axial flow CO{sub 2} laser

    SciTech Connect

    Jelvani, S; Amiri, Kh; Pazokian, H; Montazerolghaem, M; Mollabashi, M; Naeimi, S A; Esmaeilpour, D

    2011-01-31

    The performance characteristics of a fast-axial flow (FAF) cw CO{sub 2} laser are described. The dependences of the output power, efficiency, and discharge voltage on the discharge current of a FAF cw CO{sub 2} laser with optimised composition of the CO{sub 2}:N2:He=1:4.4:7.6 gas mixture with a small amount of argon are studied experimentally at two pressures of 50 and 60 mbar in open and closed cycle regimes of the laser system. (lasers)

  7. Altitude-wind-tunnel Investigation of Operational Characteristics of Westinghouse X24C-4B Axial Flow Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Hawkins, W Kent; Meyer, Carl L

    1948-01-01

    An investigation has been conducted in the NACA Cleveland altitude wind tunnel to evaluate the operational characteristics of a 3000-pound-thrust axial-flow turbojet engine over a range of simulated altitudes from 2000 to 50,000 feet and simulated flight Mach numbers from 0 to 1.04 throughout the operable range of engine speeds. Operational characteristics investigated include engine operating range, acceleration, deceleration, starting, altitude and flight-Mach-number compensation of the fuel-control system, and operation of the lubrication system at high and low ambient-air temperatures.

  8. Altitude Investigation of Gas Temperature Distribution at Turbine of Three Similar Axial-Flow Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Prince, W.R.; Schulze, F.W.

    1952-01-01

    An investigation of the effect of inlet pressure, corrected engine speed, and turbine temperature level on turbine-inlet gas temperature distributions was conducted on a J40-WE-6, interim J40-WE-6, and prototype J40-WE-8 turbojet engine in the altitude wind tunnel at the NAC.4 Lewis laboratory. The engines were investigated over a range of simulated pressure altitudes from 15,000 to 55,000 feet, flight Mach numbers from 0.12 to 0.64, and corrected engine speeds from 7198 to 8026 rpm, The gas temperature distribution at the turbine of the three engines over the range of operating conditions investigated was considered satisfactory from the standpoint of desired temperature distribution with one exception - the distribution for the J40-WE-6 engine indicated a trend with decreasing engine-inlet pressure for the temperature to exceed the desired in the region of the blade hub. Installation of a compressor-outlet mixer vane assembly remedied this undesirable temperature distribution, The experimental data have shown that turbine-inlet temperature distributions are influenced in the expected manner by changes in compressor-outlet pressure or mass-flow distribution and by changes in combustor hole-area distribution. The similarity between turbine-inlet and turbine-outlet temperature distribution indicated only a small shift in temperature distribution imposed by the turbine rotors. The attainable jet thrusts of the three engines were influenced in different degrees and directions by changes in temperature distributions with change in engine-inlet pressure. Inability to match the desired temperature distribution resulted, for the J40-WE-6 engine, in an 11-percent thrust loss based on an average turbine-inlet temperature of 1500 F at an engine-inlet pressure of 500 pounds per square foot absolute. Departure from the desired temperature distribution in the Slade tip region results, for the prototype J40-WE-8 engine, in an attainable thrust increase of 3 to 4 percent as

  9. Compressor blade setting angle accuracy study, volume 1

    NASA Technical Reports Server (NTRS)

    Holman, F. F.; Kidwell, J. R.

    1976-01-01

    The aerodynamic test of a small, single stage, highly loaded, axial flow transonic compressor is covered. The stage was modified by fabricating a 24 blade rotor with mis-set blades in a repeating pattern - two degrees closed from nominal, two degrees open from nominal and nominal. The unit was instrumented to determine overall performance and average blade element data. High-response, dynamic pressure probes were installed to record pressure patterns at selected points in the flowpath. Testing was conducted at speeds from 70 to 94% of design equivalent speed with a conventional casing and also with circumferential grooves over the rotor tip. Testing indicated severe performance penalties were incurred as a result of the mis-set blading. Lower flow, pressure ratio, and efficiency were observed for the stage with or without casing treatment. Periodic pressure variations were detected at every location where high response pressure sensors were located and were directly related to blading geometry.

  10. High ratio recirculating gas compressor

    DOEpatents

    Weinbrecht, John F.

    1989-01-01

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor.

  11. High ratio recirculating gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1989-08-22

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

  12. Small axial compressor technology, volume 1

    NASA Technical Reports Server (NTRS)

    Holman, F. F.; Kidwell, J. R.; Ware, T. C.

    1976-01-01

    A scaled single-stage, highly-loaded, axial-flow transonic compressor was tested at speeds from 70 to 110% design equivalent speed to evaluate the effects of scaling compromises and the individual and combined effects of rotor tip running clearance and rotor shroud casing treatment on the overall and blade element performance. At design speed and 1% tip clearance the stage demonstrated an efficiency of 83.2% at 96.4% design flow and a pressure ratio of 1.865. Casing treatment increased design speed surge margin 2.0 points to 12.8%. Overall performance was essentially unchanged. An increase in rotor running clearance to 2.2%, with smooth casing, reduced design speed peak efficiency 5.7 points, flow by 7.4%, pressure ratio to 1.740, and surge margin to 5.4%. Reinstalling casing treatment regained 3.5 points in design speed peak efficiency, 4.7% flow, increased pressure ratio to 1.800 and surge margin to 8.7%.

  13. Wave Augmented Diffusers for Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Skoch, Gary J.

    1998-01-01

    A conceptual device is introduced which would utilize unsteady wave motion to slow and turn flows in the diffuser section of a centrifugal compressor. The envisioned device would substantially reduce the size of conventional centrifugal diffusers by eliminating the relatively large ninety degree bend needed to turn the flow from the radial/tangential to the axial direction. The bend would be replaced by a wall and the flow would instead exit through a series of rotating ports located on a disk, adjacent to the diffuser hub, and fixed to the impeller shaft. The ports would generate both expansion and compression waves which would rapidly transition from the hub/shroud (axial) direction to the radial/tangential direction. The waves would in turn induce radial/tangential and axial flow. This paper presents a detailed description of the device. Simplified cycle analysis and performance results are presented which were obtained using a time accurate, quasi-one-dimensional CFD code with models for turning, port flow conditions, and losses due to wall shear stress. The results indicate that a periodic wave system can be established which yields diffuser performance comparable to a conventional diffuser. Discussion concerning feasibility, accuracy, and integration follow.

  14. The effect of active control on the performance and wake characteristics of an axial-flow Marine Hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Hill, Craig; Vanness, Katherine; Stewart, Andy; Polagye, Brian; Aliseda, Alberto

    2016-11-01

    Turbulence-induced unsteady forcing on turbines extracting power from river, tidal, or ocean currents will affect performance, wake characteristics, and structural integrity. A laboratory-scale axial-flow turbine, 0 . 45 m in diameter, incorporating rotor speed sensing and independent blade pitch control has been designed and tested with the goal of increasing efficiency and/or decreasing structural loading. Laboratory experiments were completed in a 1 m wide, 0.75 m deep open-channel flume at moderate Reynolds number (Rec =6104 -2105) and turbulence intensity (T . I . = 2 - 10 %). A load cell connecting the hub to the shaft provided instantaneous forces and moments on the device, quantifying turbine performance under unsteady inflow and for different controls. To mitigate loads, blade pitch angles were controlled via individual stepper motors, while a six-axis load cell mounted at the root of one blade measured instantaneous blade forces and moments, providing insights into variable loading due to turbulent inflow and blade-tower interactions. Wake characteristics with active pitch control were compared to fixed blade pitch and rotor speed operation. Results are discussed in the context of optimization of design for axial-flow Marine Hydrokinetic turbines.

  15. Modeling pressure drop using generalized scaffold characteristics in an axial-flow bioreactor for soft tissue regeneration.

    PubMed

    Podichetty, Jagdeep T; Bhaskar, Prasana R; Khalf, Abdurizzagh; Madihally, Sundararajan V

    2014-06-01

    The goal of this study was to better understand how analytical permeability models based on scaffold architecture can facilitate a non-invasive technique to real time monitoring of pressure drop in bioreactors. In particular, we evaluated the permeability equations for electrospun and freeze dried scaffolds via pressure drop comparison in an axial-flow bioreactor using computational fluid dynamic (CFD) and experimentation. The polycaprolactone-cellulose acetate fibers obtained by co-axial electrospinning technique and Chitosan-Gelatin scaffolds prepared using freeze-drying techniques were utilized. Initially, the structural properties (fiber size, pore size and porosity) and mechanical properties (elastic modulus and Poisson's ratio) of scaffolds in phosphate buffered saline at 37 °C were evaluated. The CFD simulations were performed by coupling fluid flow, described by Brinkman equation, with structural mechanics using a moving mesh. The experimentally obtained pressure drop values for both 1 mm thick and 2 mm thick scaffolds agreed with simulation results. To evaluate the effect of permeability and elastic modulus on pressure drop, CFD predictions were extended to a broad range of permeabilities spanning synthetic scaffolds and tissues, elastic moduli, and Poisson's ratio. Results indicated an increase in pressure drop with increase in permeability. Scaffolds with higher elastic modulus performed better and the effect of Poisson's ratio was insignificant. Flow induced deformation was negligible in axial-flow bioreactor. In summary, scaffold permeabilities can be calculated using scaffold microarchitecture and can be used in non-invasive monitoring of tissue regeneration.

  16. Mechanical circulatory support of a univentricular Fontan circulation with a continuous axial-flow pump in a piglet model.

    PubMed

    Wei, Xufeng; Sanchez, Pablo G; Liu, Yang; Li, Tieluo; Watkins, A Claire; Wu, Zhongjun J; Griffith, Bartley P

    2015-01-01

    Despite the significant contribution of the Fontan procedure to the therapy of complex congenital heart diseases, many patients progress to failure of their Fontan circulation. The use of ventricular assist devices to provide circulatory support to these patients remains challenging. In the current study, a continuous axial-flow pump was used to support a univentricular Fontan circulation. A modified Fontan circulation (atrio-pulmonary connection) was constructed in six Yorkshire piglets (8-14 kg). A Dacron conduit (12 mm) with two branches was constructed to serve as a complete atrio-pulmonary connection without the use of cardiopulmonary bypass. The Impella pump was inserted into the conduit through an additional Polytetrafluoroethylene (PTFE) graft in five animals. Hemodynamic data were collected for 6 hours under the supported Fontan circulation. The control animal died after initiating the Fontan circulation independent of resuscitation. Four pump supported animals remained hemodynamically stable for 6 hours with pump speeds between 18,000 rpm and 22,000 rpm (P1-P3). Oxygen saturation was maintained between 95% and 100%. Normal organ perfusion was illustrated by blood gas analysis and biochemical assays. A continuous axial-flow pump can be used for temporal circulatory support to the failing Fontan circulation as "bridge" to heart transplantation or recovery.

  17. Protecting multicase compressors

    SciTech Connect

    Staroselsky, N. ); Carter, D. )

    1990-03-01

    This article addresses three fundamental issues pertaining to multistage compressor control: antisurge control for each stage, deadtime in the recycle network, and control loop interactions. The article also discusses a control system upgrade for a specific wet gas compressor at the petroleum refinery in Robinson, Ill.

  18. Supersonic gas compressor

    DOEpatents

    Lawlor, Shawn P.; Novaresi, Mark A.; Cornelius, Charles C.

    2007-11-13

    A gas compressor based on the use of a driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by the use of a pre-swirl compressor, and using a bypass stream to bleed a portion of the intermediate pressure gas after passing through the pre-swirl compressor back to the inlet of the pre-swirl compressor. Inlet guide vanes to the compression ramp enhance overall efficiency.

  19. Investigation of a 1500 ft/sec, Transonic, High-through-Flow, Single- Stage Axial-Flow Compressor with Low Hub/Tip Ratio

    DTIC Science & Technology

    1976-10-01

    420 N MN H1C0~ .4 . o.-N L00 1010I MNO17 .~ MC)’’W.l *’r nrM M M M I I. ’~atJt.~ W 1> -0A44440.41 0 0 wO~ 0 M ,0 ,.ý.ý 10 T’C 11- -In4 tN4 =-0-.CY I 01... tN4 .c0𔃾. n cf .. NONMN4’J*.44 TofN,41~D 4 NOJ or644- 4--4 to 4. 4 4*044- ki a V4 U.MA44lLW44-0 . 4 of%.J~NN4 .9 "WýO49 N w- 0- 0411tw-U*.OS- of

  20. Design of a 1500 Ft/Sec, Transonic, High-through-Flow, Single-Stage Axial-Flow Compressor with Low Hub/Tip Ratio

    DTIC Science & Technology

    1976-10-01

    Task 13 , (Fonnerly Aerospace Research LabILF) Wr nt2 IVRIc*IT-PArrF.RSON- AFB OH 45433 1I. CONtTROLILING OFFICE NAME ANb ADDRESSUR COM4PONENTS BRAINMI...under Project 7065, Task 13 , Work Unit 27. The effort was conducted by Dr. Arthur J. Wennerstrom and Capt George R. Frost (ARL/LF, sub- sequently AFAPL...Deviation Distributions 273 13 Rotor Untwist Distribution 274 S14 Meridional Distribution of Computing Stations 275 S15a Axial Distribution of Total

  1. Unsteady design-point flow phenomena in transonic compressors

    NASA Technical Reports Server (NTRS)

    Gertz, J. B.; Epstein, A. H.

    1986-01-01

    High-frequency response probes which had previously been used exclusively in the MIT Blowndown Facility were successfully employed in two conventional steady state axial flow compressor facilities to investigate the unsteady flowfields of highly loaded transonic compressors at design point operation. Laser anemometry measurements taken simultaneously with the high response data were also analyzed. The time averaged high response data of static and total pressure agreed quite well with the conventional steady state instrumentation except for flow angle which showed a large spread in values at all radii regardless of the type of instrumentation used. In addition, the time resolved measurements confirmed earlier test results obtained in the MIT Blowdown Facility for the same compressor. The results of these tests have further revealed that the flowfields of highly loaded transonic compressors are heavily influenced by unsteady flow phenomena. The high response measurements exhibited large variations in the blade to blade flow and in the blade passage flow. The observed unsteadiness in the blade wakes is explained in terms of the rotor blades' shed vorticity in periodic vortex streets. The wakes were modeled as two-dimensional vortex streets with finite size cores. The model fit the data quite well as it was able to reproduce the average wake shape and bi-modal probability density distributions seen in the laser anemometry data. The presence of vortex streets in the blade wakes also explains the large blade to blade fluctuations seen by the high response probes which is simply due to the intermittent sampling of the vortex street as it is swept past a stationary probe.

  2. Numerical, hydraulic, and hemolytic evaluation of an intravascular axial flow blood pump to mechanically support Fontan patients.

    PubMed

    Throckmorton, Amy L; Kapadia, Jugal Y; Chopski, Steven G; Bhavsar, Sonya S; Moskowitz, William B; Gullquist, Scott D; Gangemi, James J; Haggerty, Christopher M; Yoganathan, Ajit P

    2011-01-01

    Currently available mechanical circulatory support systems are limited for adolescent and adult patients with a Fontan physiology. To address this growing need, we are developing a collapsible, percutaneously-inserted, axial flow blood pump to support the cavopulmonary circulation in Fontan patients. During the first phase of development, the design and experimental evaluation of an axial flow blood pump was performed. We completed numerical modeling of the pump using computational fluid dynamics analysis, hydraulic testing of a plastic pump prototype, and blood bag experiments (n=7) to measure the levels of hemolysis produced by the pump. Statistical analyses using regression were performed. The prototype with a 4-bladed impeller generated a pressure rise of 2-30 mmHg with a flow rate of 0.5-4 L/min for 3000-6000 RPM. A comparison of the experimental performance data to the numerical predictions demonstrated an excellent agreement with a maximum deviation being less than 6%. A linear increase in the plasma-free hemoglobin (pfHb) levels during the 6-h experiments was found, as desired. The maximum pfHb level was measured to be 21 mg/dL, and the average normalized index of hemolysis was determined to be 0.0097 g/100 L for all experiments. The hydraulic performance of the prototype and level of hemolysis are indicative of significant progress in the design of this blood pump. These results support the continued development of this intravascular pump as a bridge-to-transplant, bridge-to-recovery, bridge-to-hemodynamic stability, or bridge-to-surgical reconstruction for Fontan patients.

  3. Large-scale flow phenomena in axial compressors: Modeling, analysis, and control with air injectors

    NASA Astrophysics Data System (ADS)

    Hagen, Gregory Scott

    This thesis presents a large scale model of axial compressor flows that is detailed enough to describe the modal and spike stall inception processes, and is also amenable to dynamical systems analysis and control design. The research presented here is based on the model derived by Mezic, which shows that the flows are dominated by the competition between the blade forcing of the compressor and the overall pressure differential created by the compressor. This model describes the modal stall inception process in a similar manner as the Moore-Greitzer model, but also describes the cross sectional flow velocities, and exhibits full span and part span stall. All of these flow patterns described by the model agree with experimental data. Furthermore, the initial model is altered in order to describe the effects of three dimensional spike disturbances, which can destabilize the compressor at otherwise stable operating points. The three dimensional model exhibits flow patterns during spike stall inception that also appear in experiments. The second part of this research focuses on the dynamical systems analysis of, and control design with, the PDE model of the axial flow in the compressor. We show that the axial flow model can be written as a gradient system and illustrate some stability properties of the stalled flow. This also reveals that flows with multiple stall cells correspond to higher energy states in the compressor. The model is derived with air injection actuation, and globally stabilizing distributed controls are designed. We first present a locally optimal controller for the linearized system, and then use Lyapunov analysis to show sufficient conditions for global stability. The concept of sector nonlinearities is applied to the problem of distributed parameter systems, and by analyzing the sector property of the compressor characteristic function, completely decentralized controllers are derived. Finally, the modal decomposition and Lyapunov analysis used in

  4. Turbo-compressor engine

    SciTech Connect

    Rifkin, F.

    1992-02-18

    This patent describes a turbo-compressor engine for a continuous supply of compressed gases. It comprises a first compressor means adapted to compress a body of air and connected to a combustion chamber to pass compressed air thereinto; means to introduce and mix fuel into the compressed air; means to ignite the fuel-air mixture; housing means; an exhaust chamber located in the housing means and defining with the housing means guide means to guide combustion products from the combustion chamber; combustion products turbine means positioned downstream of the combustion means and in communication with the guide means; second compressor means downstream of the turbine means for compressing combustion products and connected to the exhaust chamber, the first and second compressor means and the turbine means being axially aligned on a common shaft, the shaft terminating before the exhaust chamber, and an end plate separating the exhaust chamber from the turbine means, the end plate secured to an end face of the shaft, the turbine means and second compressor means attached to the end plate, forming a rotatable subassembly, and the end plate including openings therethrough adapted to pass combustion products, compressed by second compressor means into the exhaust chamber.

  5. Controlling Compressor Vane Flow Vectoring Angles at Transonic Speeds

    NASA Astrophysics Data System (ADS)

    Munson, Matthew; Rempfer, Dietmar; Williams, David; Acharya, Mukund

    2003-11-01

    The ability to control flow separation angles from compressor inlet guide vanes with a Coanda-type actuator is demonstrated using both wind tunnel experiments and finite element simulations. Vectoring angles up to 40 degrees from the uncontrolled baseline state were measured with helium schlieren visualization at transonic Mach numbers ranging from 0.1 to 0.6, and with airfoil chord Reynolds numbers ranging from 89,000 to 710,000. The magnitude of the vectoring angle is shown to depend upon the geometry of the trailing edge, and actuator slot size, and the momentum flux coefficient. Under certain conditions the blowing has no effect on the vectoring angle indicating that the Coanda effect is not present. DNS simulations with the finite element method investigated the effects of geometry changes and external flow. Continuous control of the vectoring angle is demonstrated, which has important implications for application to rotating machinery. The technique is shown to reduce the stall flow coefficient by 15 percent in an axial flow compressor.

  6. Preliminary Results of an Altitude-Wind-Tunnel Investigation of an Axial-Flow Gas Turbine-Propeller Engine. 2; Windmilling Characteristics

    NASA Technical Reports Server (NTRS)

    Conrad, E. W.; Durham, J. D.

    1948-01-01

    Wind tunnel investigations were performed to determine the performance properties of an axial-flow gas turbine-propeller engine II. Windmilling characteristics were determined for a range of altitudes from 5000 to 35,000 feet, true airspeeds from 100 to 273 miles per hour, and propeller blade angles from 4 degrees to 46 degrees.

  7. Rotary-Wing Relevant Compressor Aero Research and Technology Development Activities at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Hathaway, Michael D.; Skoch, Gary J.; Snyder, Christopher A.

    2012-01-01

    Technical challenges of compressors for future rotorcraft engines are driven by engine-level and component-level requirements. Cycle analyses are used to highlight the engine-level challenges for 3000, 7500, and 12000 SHP-class engines, which include retention of performance and stability margin at low corrected flows, and matching compressor type, axial-flow or centrifugal, to the low corrected flows and high temperatures in the aft stages. At the component level: power-to-weight and efficiency requirements impel designs with lower inherent aerodynamic stability margin; and, optimum engine overall pressure ratios lead to small blade heights and the associated challenges of scale, particularly increased clearance-to-span ratios. The technical challenges associated with the aerodynamics of low corrected flows and stability management impel the compressor aero research and development efforts reviewed herein. These activities include development of simple models for clearance sensitivities to improve cycle calculations, full-annulus, unsteady Navier-Stokes simulations used to elucidate stall, its inception, and the physics of stall control by discrete tip-injection, development of an actuator-duct-based model for rapid simulation of nonaxisymmetric flow fields (e.g., due inlet circumferential distortion), advanced centrifugal compressor stage development and experimentation, and application of stall control in a T700 engine.

  8. Compressor map prediction tool

    NASA Astrophysics Data System (ADS)

    Ravi, Arjun; Sznajder, Lukasz; Bennett, Ian

    2015-08-01

    Shell Global Solutions uses an in-house developed system for remote condition monitoring of centrifugal compressors. It requires field process data collected during operation to calculate and assess the machine's performance. Performance is assessed by comparing live results of polytropic head and efficiency versus design compressor curves provided by the Manufacturer. Typically, these design curves are given for specific suction conditions. The further these conditions on site deviate from those prescribed at design, the less accurate the health assessment of the compressor becomes. To address this specified problem, a compressor map prediction tool is proposed. The original performance curves of polytropic head against volumetric flow for varying rotational speeds are used as an input to define a range of Mach numbers within which the non-dimensional invariant performance curve of head and volume flow coefficient is generated. The new performance curves of polytropic head vs. flow for desired set of inlet conditions are then back calculated using the invariant non-dimensional curve. Within the range of Mach numbers calculated from design data, the proposed methodology can predict polytropic head curves at a new set of inlet conditions within an estimated 3% accuracy. The presented methodology does not require knowledge of detailed impeller geometry such as throat areas, blade number, blade angles, thicknesses nor other aspects of the aerodynamic design - diffusion levels, flow angles, etc. The only required mechanical design feature is the first impeller tip diameter. Described method makes centrifugal compressor surveillance activities more accurate, enabling precise problem isolation affecting machine's performance.

  9. Measurements on Compressor-Blade Lattices

    NASA Technical Reports Server (NTRS)

    Weinig, F.

    1948-01-01

    At the end & 1940 an investigation of a guide-vane lattice for the compressor of a TL unit [NACA comment: Turbojet] was requested. The greatest possible Mach number had to be attained. The investigation was conducted with an annular lattice subjected to axial flow. A direct-current shunt motor with a useful output of 235 horsepower at en engine speed of 1800 qm was available for driving the necessary blower. In designing the blower the speed was set at 10,000 rpm. A gear box fran an armored car was used as gearing in which supplementary fresh oil lubrication was installed. The gear box was used to step up from low to high speeds. The blower that was designed is two stage. The hub-tip ratios are 0.79 to 0.82; the design pressure coefficient for each stage is 0.6 and the design flow coefficient is 0.4. The rotor dosimeter D sub a is 0.39 meters and the resulting peripheral speed is u sub a = 204 meters per second [NACA comment: Value corrected from the German]. The blower was entirely satisfactory. The construction of the test stand is shown in figure 1. The air flows in through an annular Inlet, which is used in the measurement of the quantity of air, and is deflected into an inward-pointing radial slot. A spiral motion is imparted to the air by a guide-vane installation manually adjustable as desired, which enables injection of the air, after it has been deflected from the radial direction to the axial direction, into the lattice being investigated at any desired angle.

  10. Standing wave compressor

    DOEpatents

    Lucas, Timothy S.

    1991-01-01

    A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

  11. Oil-Free Compressor

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.; Belver, T. L.; Moore, H. E.

    1986-01-01

    Compressor pistons moved by eccentric shaft need no lubricants. Compressor has shaft, middle section is eccentric in relation to end sections. Driven by brushless dc motor, shaft turns inner races of set of four cam bearings. Outer cam-bearing races in turn actuate four pistons spaced equally apart, around and along shaft. Each outer bearing race held in position by pressure exerted on it by piston. Because no frictional motion between piston and outer bearing race, lubricant between them unnecessary. Cam bearings themselves contain potted internal lubricant. Originally proposed for use in space, new compressor for refrigerators or freezers does not depend on pool of oil for lubricating its pistons. Operated in any orientation.

  12. Electrochemical Hydrogen Compressor

    SciTech Connect

    Lipp, Ludwig

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  13. Compressor surge counter

    DOEpatents

    Castleberry, Kimberly N.

    1983-01-01

    A surge counter for a rotating compressor is provided which detects surging by monitoring the vibration signal from an accelerometer mounted on the shaft bearing of the compressor. The circuit detects a rapid increase in the amplitude envelope of the vibration signal, e.g., 4 dB or greater in less than one second, which is associated with a surge onset and increments a counter. The circuit is rendered non-responsive for a period of about 5 seconds following the detection which corresponds to the duration of the surge condition. This prevents multiple registration of counts during the surge period due to rapid swings in vibration amplitude during the period.

  14. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 1; Validation

    NASA Technical Reports Server (NTRS)

    Chen, Shu-cheng, S.

    2009-01-01

    For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.

  15. Noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump.

    PubMed

    Kosaka, Ryo; Fukuda, Kyohei; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2013-01-01

    In order to monitor the condition of a patient using a left ventricular assist system (LVAS), blood flow should be measured. However, the reliable determination of blood-flow rate has not been established. The purpose of the present study is to develop a noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump. The flow meter uses the centrifugal force generated by the flow rate in the curved cannula. Two strain gauges served as sensors. The first gauges were attached to the curved area to measure static pressure and centrifugal force, and the second gauges were attached to straight area to measure static pressure. The flow rate was determined by the differences in output from the two gauges. The zero compensation was constructed based on the consideration that the flow rate could be estimated during the initial driving condition and the ventricular suction condition without using the flow meter. A mock circulation loop was constructed in order to evaluate the measurement performance of the developed flow meter with zero compensation. As a result, the zero compensation worked effectively for the initial calibration and the zero-drift of the measured flow rate. We confirmed that the developed flow meter using a curved cannula with zero compensation was able to accurately measure the flow rate continuously and noninvasively.

  16. Analytical and experimental study of mean flow and turbulence characteristics inside the passages of an axial flow inducer

    NASA Technical Reports Server (NTRS)

    Gorton, C. A.; Lakshminarayana, B.

    1980-01-01

    The inviscid and viscid effects existing within the passages of a three bladed axial flow inducer operating at a flow coefficient of 0.065 are investigated. The blade static pressure and blade limiting streamline angle distributions were determined and the three components of mean velocity, turbulence intensities, and turbulence stresses were measured at locations inside the inducer blade passage utilizing a rotating three sensor hotwire probe. Applicable equations were derived for the hotwire data reduction analysis and solved numerically to obtain the appropriate flow parameters. The three dimensional inviscid flow in the inducer was predicted by numerically solving the exact equations of motion, and the three dimensional viscid flow was predicted by incorporating the dominant viscous terms into the exact equations. The analytical results are compared with the experimental measurements and design values where appropriate. Radial velocities are found to be of the same order as axial velocities within the inducer passage, confirming the highly three dimensional characteristic of inducer flow. Total relative velocity distribution indicate a substantial velocity deficiency near the tip at mid-passage which expands significantly as the flow proceeds toward the inducer trailing edge. High turbulence intensities and turbulence stresses are concentrated within this core region. Considerable wake diffusion occurs immediately downstream of the inducer trailing edge to decay this loss core. Evidence of boundary layer interactions, blade blockage effects, radially inward flows, annulus wall effects, and backflows are all found to exist within the long, narrow passages of the inducer.

  17. Spot size and effective focal length measurements for a fast axial flow CO{sub 2} laser

    SciTech Connect

    Steele, R.J.; Fuerschbach, P.W.; MacCallum, D.O.

    1997-12-31

    An evaluation of the variation in focal plane position and spot size for a 1,650 W fast axial flow CO{sub 2} laser was performed. Multiple measurements of the focused beam were taken at stepped intervals along the beam axis to create a composite representation of the focus region. Measurements were made at several power levels from low to full power for each of five nominally identical lenses. It was found that as laser output power increases, the minimum focused spot radius increases, and the position of minimum focus shifts toward the laser resonator. These effects were attributed to observed variations in the diameter of the beam entering the focusing lens. For the ZnSe (f = 127 mm) lenses examined, variations in spot radius and focal plane position were seen. Lenses with high rated absorption had a larger variation in spot size and effective focal length than those with low absorption. Lenses that had previously been degraded by welding had the greatest variation.

  18. Relation between the fluctuating wall pressure and the turbulent structure of a boundary layer on a cylinder in axial flow

    NASA Astrophysics Data System (ADS)

    Snarski, Stephen R.

    1993-08-01

    The turbulent flow structures responsible for the fluctuating wall pressure in the turbulent boundary layer on a cylinder in axial flow (delta/a = 5.04, Re(sub theta) = 2870) have been investigated. Simultaneous measurements of the fluctuating wall pressure and turbulent streamwise velocities have been performed throughout a large volume of the boundary layer (y(sup +) = 14 to y/delta = 1.91, 0 less than or equal to x/delta less than or equal to 1.52, azimuthal angle phi = 0 deg, 20 deg, 40 deg) with a subminiature electret microphone (d(sup +) = 25.9) and hotwire velocity probe (1(sup +) = 18.5). Pressure-velocity cross-spectra and cross-correlation measurements indicate that two primary groups of pressure fluctuations exist in the cylindrical boundary layer: (1) small-scale, high-frequency disturbances concentrated close to the wall associated with the burst-sweep cycle; and (2) large-scale, low-frequency disturbances extending from the wall to the turbulent/potential-flow interface that are consistent with a large spanwise-oriented 'vortex' in close contact with and inclined to the wall.

  19. Theoretical analysis of transient gain phenomena in a fast-axial flow type CO/sub 2/ laser amplifier

    SciTech Connect

    Tsuchida, E.; Sato, H. )

    1989-01-01

    A decrease of output power was observed after discharging plasma tubes in a fast-axial flow (FAF) CO/sub 2/ laser amplifier with a short dwell time of about 1 ms. As as example, for the 10P (18) line at 50 torr pressure, the small-signal gain goes down from 1.308/m to 1.068/m within 135 s after discharging the plasma tubes, for a gasflow velocity of 180 m/s and discharge current of 60 mA. The fraction of power decrease is about 15 percent for the plasma length of 80 cm and the input power of 5 W. Dependences of the observed fraction of power down and the transient time to reach a stable power on input power and plasma length are theoretically analyzed by introducing the CO/sub 2/ dissociation factor as a function of gas-flow velocity, discharge current and plasma length, and gain saturation, resulting in good agreement between the experimental results and computation.

  20. Design optimization of axial flow hydraulic turbine runner: Part I - an improved Q3D inverse method

    NASA Astrophysics Data System (ADS)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    With the aim of constructing a comprehensive design optimization procedure of axial flow hydraulic turbine, an improved quasi-three-dimensional inverse method has been proposed from the viewpoint of system and a set of rotational flow governing equations as well as a blade geometry design equation has been derived. The computation domain is firstly taken from the inlet of guide vane to the far outlet of runner blade in the inverse method and flows in different regions are solved simultaneously. So the influence of wicket gate parameters on the runner blade design can be considered and the difficulty to define the flow condition at the runner blade inlet is surmounted. As a pre-computation of initial blade design on S2m surface is newly adopted, the iteration of S1 and S2m surfaces has been reduced greatly and the convergence of inverse computation has been improved. The present model has been applied to the inverse computation of a Kaplan turbine runner. Experimental results and the direct flow analysis have proved the validation of inverse computation. Numerical investigations show that a proper enlargement of guide vane distribution diameter is advantageous to improve the performance of axial hydraulic turbine runner. Copyright

  1. Axial flow pump treatment during myocardial depression in calves: an invasive hemodynamic and echocardiographic tissue Doppler study.

    PubMed

    Hubbert, Laila; Peterzén, Bengt; Traff, Stefan; Janerot-Sjoberg, Birgitta; Ahn, Henrik

    2008-01-01

    The aim of this study was to investigate flow characteristics and myocardial function after implantation of an axial pump left ventricular assist device while varying afterload and during progressive myocardial depression. Ten calves were included, seven of which fulfilled the protocol. Invasive hemodynamic monitoring and echocardiography with color-coded systolic tissue Doppler velocity (TD velocity) were used during prepump conditions, at three different pump speeds, during modification of the systemic vascular resistance (SVR), and during increasing degrees of beta-blockade. The TD velocity decreased with the myocardial function whereas left ventricular size, fractional shortening, and pump speed did not correlate significantly with the TD velocity. The TD velocity correlated significantly with native stroke volume, heart rate, SVR and cardiac output but none of these alone could explain more than 20% of the changes in TD velocity. The axial flow pump studied is effective in unloading the severely depressed heart and has a high capacity for maintaining an adequate cardiac output, regardless of differing hemodynamic conditions, pump speed or decreasing LV function. Echocardiography with volumetric rendering and TD velocity imaging are valuable tools for monitoring and quantifying residual myocardial function during pump treatment.

  2. Experimental Investigation of a 0.35 Hub-Tip Radius Ratio Transonic Axial Flow Rotor Designed for 40 Pounds per Second per Square Foot with a Design Tip Diffusion Factor of 0.20

    NASA Technical Reports Server (NTRS)

    Yasaki, Paul T.; Montgomery, John C.

    1959-01-01

    In order to determine the effect of a low design diffusion factor on the performance of a transonic axial-flow compressor rotor, a high-specific-flow rotor with a 0.35 hub-tip radius ratio was designed, fabricated and tested. This rotor used a design tip diffusion factor of 0.20 with a design corrected specific weight flow of 40 pounds per second per square foot of frontal area, a total-pressure ratio of 1.27, and an adiabatic efficiency of 0.96. The design, rotor performance, and blade element performance are presented with a discussion on rotor shock losses and a comparison with a similarly designed rotor with a tip diffusion factor of 0.35. At the design corrected tip speed of 1100 feet per second, a peak rotor adiabatic efficiency of 0.88 was attained at a corrected specific weight flow of 39 pounds per second per square foot of frontal area with a mass-averaged total-pressure ratio of 1.27. The blade element tip diffusion factor was 0.281, which is 0.08 higher than the design value of 0.20. Peak efficiencies of 0.95, 0.91, 0.89, and 0.85 were obtained at 70, 80, 90, and 110 percent of design speed, respectively. Comparison of the performance of the rotor reported herein and a similarly designed rotor with increased blade loading indicates that higher blade loading results in a more desirable rotor because of a higher pressure ratio and equivalent efficiency. Computed values of shock losses at the rotor tip section indicate that the losses at peak efficiency are primarily a function of shock losses since the profile losses are only a small percentage of the total loss.

  3. Transonic compressor technology advancements

    NASA Technical Reports Server (NTRS)

    Benser, W. A.

    1974-01-01

    The highlights of the NASA program on transonic compressors are presented. Effects of blade shape and throat area on losses and flow range are discussed. Some effects of casing treatment on stall margin are presented. Results of tests with varying solidity are also presented. High Mach number, highly loaded stators are discussed and some results of stator hub slit suction are presented.

  4. Heat powered refrigeration compressor

    NASA Astrophysics Data System (ADS)

    Goad, R. R.

    This prototype will be of similar capacity as the compressor that will eventually be commercially produced. This unit can operate on almost any moderate temperature water heat source. This heat source could include such applications as industrial waste heat, solar, wood burning stove, resistance electrical heat produced by a windmill, or even perhaps heat put out by the condenser of another refrigeration system.

  5. Novel Compressor Blade Design Study

    NASA Astrophysics Data System (ADS)

    Srinivas, Abhay

    Jet engine efficiency goals are driving compressors to higher pressure ratios and engines to higher bypass ratios, each one driving to smaller cores. This is leading to larger tip gaps relative to the blade height. These larger relative tip clearances would negate some of the cycle improvements, and ways to mitigate this effect must be found. A novel split tip blade geometry has been created which helps improve the efficiency at large clearances while also improving operating range. Two identical blades are leaned in opposite directions starting at 85% span. They are cut at mid chord and the 2 halves then merged together so a split tip is created. The result is similar to the alula feathers on a soaring bird. The concept is that the split tip will energize the tip flow and increase range. For higher relative tip clearance, this will also improve efficiency. The 6th rotor of a highly loaded 10 stage machine was chosen as the baseline for this study. Three dimensional CFD simulations were performed using CD Adapco's Star-CCM+ at 5 clearances for the baseline and split tip geometry. The choking flow and stall margin of the split tip blade was higher than that of the baseline blade for all tip clearances. The pressure ratio of the novel blade was higher than that of the baseline blade near choke, but closer to stall it decreased. The sensitivity of peak efficiency to clearance was improved. At tight clearances of 0.62% of blade height, the maximum efficiency of the new design was less than the baseline blade, but as the tip clearance was increased above 2.5%, the maximum efficiency increased. Structural analysis was also performed to ascertain the feasibility of the design.

  6. Axial flow plasma shutter

    DOEpatents

    Krausse, George J.

    1988-01-01

    A shutter (36) is provided for controlling a beam, or current, of charged particles in a device such as a thyratron (10). The substrate (38) defines an aperture (60) with a gap (32) which is placeable within the current. Coils (48) are formed on the substrate (38) adjacent the aperture (60) to produce a magnetic field for trapping the charged particles in or about aperture (60). The proximity of the coils (48) to the aperture (60) enables an effective magnetic field to be generated by coils (48) having a low inductance suitable for high frequency control. The substantially monolithic structure including the substrate (38) and coils (48) enables the entire shutter assembly (36) to be effectively located with respect to the particle beam.

  7. Piezoelectric axial flow microvalve

    DOEpatents

    Gemmen, Randall; Thornton, Jimmy; Vipperman, Jeffrey S.; Clark, William W.

    2007-01-09

    This invention is directed to a fuel cell operable with a quantity of fuel and a quantity of an oxidizer to produce electrical power, the fuel cell including a fuel cell body including a labyrinth system structured to permit the fuel and the oxidizer to flow therethrough; at least a first catalyst in fluid communication with the labyrinth; and at least a first microvalve operably disposed within at least a portion of the labyrinth. The microvalve utilizes a deflectable member operable upon the application of a voltage from a voltage source. The microvalve includes an elongated flow channel formed therein and extending substantially longitudinally between the first and second ends to permit substantially longitudinal flow of the fluid therethrough and between the first and second ends; and the deflectable member disposed on the valve body, the deflectable member including at least a first piezoelectric portion that is piezoelectrically operable to deflect the deflectable member between an open position and a closed position upon the application of a voltage, the deflectable member in the closed position being operable to resist the flow of the fluid through the flow channel.

  8. Development of a miniaturized mass-flow meter for an axial flow blood pump based on computational analysis.

    PubMed

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2011-09-01

    In order to monitor the condition of patients with implantable left ventricular assist systems (LVAS), it is important to measure pump flow rate continuously and noninvasively. However, it is difficult to measure the pump flow rate, especially in an implantable axial flow blood pump, because the power consumption has neither linearity nor uniqueness with regard to the pump flow rate. In this study, a miniaturized mass-flow meter for discharged patients with an implantable axial blood pump was developed on the basis of computational analysis, and was evaluated in in-vitro tests. The mass-flow meter makes use of centrifugal force produced by the mass-flow rate around a curved cannula. An optimized design was investigated by use of computational fluid dynamics (CFD) analysis. On the basis of the computational analysis, a miniaturized mass-flow meter made of titanium alloy was developed. A strain gauge was adopted as a sensor element. The first strain gauge, attached to the curved area, measured both static pressure and centrifugal force. The second strain gauge, attached to the straight area, measured static pressure. By subtracting the output of the second strain gauge from the output of the first strain gauge, the mass-flow rate was determined. In in-vitro tests using a model circulation loop, the mass-flow meter was compared with a conventional flow meter. Measurement error was less than ±0.5 L/min and average time delay was 0.14 s. We confirmed that the miniaturized mass-flow meter could accurately measure the mass-flow rate continuously and noninvasively.

  9. On the effects of turbine geometry on the far wake dynamics of an axial flow hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Yang, Xiaolei; Kang, Seokkoo

    2013-11-01

    In large-eddy simulation (LES) of multi-turbine arrays actuator disk (AD) or actuator line (AL) models are employed to simulate individual turbines. Such parameterizations do not take into account the details of the turbine geometry and, therefore, cannot be expected to accurately resolve the flow in the near wake. We investigate the performance of AD and AL models by comparing their predictions with laboratory measurements and with LES resolving the geometrical details of the turbine. We simulate the flow past an axial flow hydrokinetic turbine in a fully-developed turbulent flow in an open channel using: turbine-geometry resolving LES (LES-TG) and LES-AD and LES-AL parameterizations. We show that LES-TG reveals very complex large-scale dynamics in the near wake, driven by the interaction of a counter-rotating to the turbine hub vortex and the top-tip shear layer, which appears to influence both the mean flow characteristics and the intensity of wake meandering several rotor diameters downstream. The LES-AD and LES-AL results cannot capture the geometry-induced complex near wake phenomena and yield flows that exhibit important differences with the LES-TG results in the far wake. The mechanisms that give rise to and modeling implications of these differences will be discussed. This work was supported by Department of Energy DOE (DE-EE0002980 and DE-EE0005482) and Xcel Energy through the Renewable Development Fund (grant RD3-42). Computational resources were provided by the University of Minnesota Supercomputing Institute.

  10. Flutter analysis of supersonic axial flow cascades using a high resolution Euler solver. Part 1: Formulation and validation

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Huff, Dennis L.; Swafford, Timothy W.

    1992-01-01

    This report presents, in two parts, a dynamic aeroelastic stability (flutter) analysis of a cascade of blades in supersonic axial flow. Each blade of the cascade is modeled as a typical section having pitching and plunging degrees of freedom. Aerodynamic forces are obtained from a time accurate, unsteady, two-dimensional cascade solver based on the Euler equations. The solver uses a time marching flux-difference splitting (FDS) scheme. Flutter stability is analyzed in the frequency domain. The unsteady force coefficients required in the analysis are obtained by harmonically oscillating (HO) the blades for a given flow condition, oscillation frequency, and interblade phase angle. The calculated time history of the forces is then Fourier decomposed to give the required unsteady force coefficients. An influence coefficient (IC) method and a pulse response (PR) method are also implemented to reduce the computational time for the calculation of the unsteady force coefficients for any phase angle and oscillation frequency. Part 1, this report, presents these analysis methods and their validation by comparison with results obtained from linear theory for a selected flat plate cascade geometry. A typical calculation for a rotor airfoil is also included to show the applicability of the present solver for airfoil configurations. The predicted unsteady aerodynamic forces for a selected flat plate cascade geometry and flow conditions correlated well with those obtained from linear theory for different interblade phase angles and oscillation frequencies. All the three methods of predicting unsteady force coefficients, namely, HO, IC, and PR, showed good correlations with each other. It was established that only a single calculation with four blade passages is required to calculate the aerodynamic forces for any phase angle for a cascade consisting of any number of blades, for any value of the oscillation frequency. Flutter results, including mistuning effects, for a cascade of

  11. Cold-air performance of a 12.766-centimeter-tip-diameter axial-flow cooled turbine. 1: Design and performance of a solid blade configuration

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.

    1975-01-01

    A solid blade version of a single-stage, axial-flow turbine was investigated to determine its performance over a range of speeds from 0 to 105 percent of equivalent design speed and over a range of total to static pressure ratios from 1.62 to 5.07. The results of this investigation will be used as a baseline for comparison with those obtained from a cooled version of this turbine.

  12. Cold air performance of a 12.766-centimeter-tip-diameter axial-flow cooled turbine. 2: Effect of air ejection on turbine performance

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.

    1977-01-01

    An air cooled version of a single-stage, axial-flow turbine was investigated to determine aerodynamic performance with and without air ejection from the stator and rotor blades surfaces to simulate the effect of cooling air discharge. Air ejection rate was varied from 0 to 10 percent of turbine mass flow for both the stator and the rotor. A primary-to-air ejection temperature ratio of about 1 was maintained.

  13. Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine, NASA Advanced Air Vehicles Program - Commercial Supersonic Technology Project - AeroServoElasticity

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Cheng, Larry

    2015-01-01

    This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  14. 23. Station Compressor Room 1 with Air Compressors and Accumulator ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Station Compressor Room 1 with Air Compressors and Accumulator Tanks, view to the south. One of the two large station air compressor units used for depressing the draft tube water level is visible atop a concrete pedestal on the left side of photograph (the second identical compressor is located in an adjacent room). Two of the six station air accumulator tanks are visible in the background. The smaller station service air compressor is visible in right foreground of the photograph was installed in the early 1980s, and replaced the original station service air compressor. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  15. Stratification and mixing in Lake Elsinore, California: an assessment of axial flow pumps for improving water quality in a shallow eutrophic lake.

    PubMed

    Lawson, Rebecca; Anderson, Michael A

    2007-11-01

    A 3-year study was conducted to quantify the effectiveness of a destratification system on weakening thermal stratification and increasing dissolved oxygen (DO) levels in Lake Elsinore, California. Biweekly measurements of temperature, DO, and other parameters were made at 14 sites across the lake beginning in July 2003. A destratification system consisting of 20 axial flow pumps fitted with 3 HP electric motors and 1.8m diameter impellers mounted 2m below the water surface was installed in the spring of 2004 and made fully operational in July 2004. An unusually wet winter of 2005 raised the summer mean depth from 3.0m in 2004 to 6.7 m in 2005. This study thus allowed us to quantify the influence of axial flow pump operation on water column properties under shallow water conditions (i.e., before and after axial flow pump installation), and also to compare the effectiveness of the destratification system at two strongly different lake levels. Transparencies increased substantially after the winter storms in 2005 and thermal stability was shown to be strongly dependent upon lake level. Stratification and a large area of anoxic sediments persisted despite pump operation in the summers of 2004 and 2005. Acoustic Doppler current profiler (ADCP) measurements showed that mixing energy was not being efficiently transmitted laterally into the water column.

  16. Stator Indexing in Multistage Compressors

    NASA Technical Reports Server (NTRS)

    Barankiewicz, Wendy S.

    1997-01-01

    The relative circumferential location of stator rows (stator indexing) is an aspect of multistage compressor design that has not yet been explored for its potential impact on compressor aerodynamic performance. Although the inlet stages of multistage compressors usually have differing stator blade counts, the aft stages of core compressors can often have stage blocks with equal stator blade counts in successive stages. The potential impact of stator indexing is likely greatest in these stages. To assess the performance impact of stator indexing, researchers at the NASA Lewis Research Center used the 4 ft diameter, four-stage NASA Low Speed Axial Compressor for detailed experiments. This compressor has geometrically identical stages that can circumferentially index stator rows relative to each other in a controlled manner; thus it is an ideal test rig for such investigations.

  17. Temperature Swing Adsorption Compressor Development

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Mulloth, Lila M.; Affleck, Dave L.

    2001-01-01

    Closing the oxygen loop in an air revitalization system based on four-bed molecular sieve and Sabatier reactor technology requires a vacuum pump-compressor that can take the low-pressure CO, from the 4BMS and compress and store for use by a Sabatier reactor. NASA Ames Research Center proposed a solid-state temperature-swing adsorption (TSA) compressor that appears to meet performance requirements, be quiet and reliable, and consume less power than a comparable mechanical compressor/accumulator combination. Under this task, TSA compressor technology is being advanced through development of a complete prototype system. A liquid-cooled TSA compressor has been partially tested, and the rest of the system is being fabricated. An air-cooled TSA compressor is also being designed.

  18. High Speed Compressor Study

    DTIC Science & Technology

    2011-12-21

    Nov 2011. 11 Walker, G., Senft, J. R., “Free Piston Stirling Engines”, Springer-Verlag, Berlin, 1985, pp118. 12 Green RH, Bailey PB, Roberts L...carried out on a relatively old design of compressor, initially developed for use with a Stirling cycle domestic freezer12, and subsequently used in a...2003), pp 247-253. 3 Wang, X, Dai, W., et al, “Performance of a Stirling -Type Pulse Tube Cooler for High Efficiency Operation at 100Hz

  19. Light intensity compressor

    DOEpatents

    Rushford, Michael C.

    1990-01-01

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  20. Light intensity compressor

    DOEpatents

    Rushford, Michael C.

    1990-02-06

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  1. Energy efficient engine. High pressure compressor detail design report

    NASA Technical Reports Server (NTRS)

    Holloway, P. R.; Koch, C. C.; Knight, G. L.; Shaffer, S. L.

    1982-01-01

    A compressor optimization study defined a 10-stage configuration with a 22.6:1 pressure ratio, and adiabatic efficiency goal of 86.1%, and a polytropic efficiency of 90.6%; the corrected airflow is 53.5 kg/sec. Subsequent component testing included three full-scale tests: a six-stage rig test, and another 10-stage rig test completed in the second quarter of 1982. Information from these tests is being used to select the configuration for a core engine test scheduled for July 1982 and an integrated core/low spool test slated for early 1983. The test results will also provide data base for the flight propulsion system.

  2. Extended parametric representation of compressor fans and turbines. Volume 2: Part user's manual (parametric turbine)

    NASA Technical Reports Server (NTRS)

    Coverse, G. L.

    1984-01-01

    A turbine modeling technique has been developed which will enable the user to obtain consistent and rapid off-design performance from design point input. This technique is applicable to both axial and radial flow turbine with flow sizes ranging from about one pound per second to several hundred pounds per second. The axial flow turbines may or may not include variable geometry in the first stage nozzle. A user-specified option will also permit the calculation of design point cooling flow levels and corresponding changes in efficiency for the axial flow turbines. The modeling technique has been incorporated into a time-sharing program in order to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and example cases, it is suitable as a user's manual. This report is the second of a three volume set. The titles of the three volumes are as follows: (1) Volume 1 CMGEN USER's Manual (Parametric Compressor Generator); (2) Volume 2 PART USER's Manual (Parametric Turbine); (3) Volume 3 MODFAN USER's Manual (Parametric Modulation Flow Fan).

  3. Relation Between the Fluctuating Wall Pressure and the Turbulent Structure of a Boundary Layer on a Cylinder in Axial Flow.

    NASA Astrophysics Data System (ADS)

    Snarski, Stephen Randolph

    The turbulent flow structures responsible for the fluctuating wall pressure in the turbulent boundary layer on a cylinder in axial flow (delta /a = 5.04, Re_theta = 2870) have been investigated. Using a subminiature electret microphone (d^+ = 25.9) and hotwire velocity probe (1^+ = 18.5), simultaneous measurements of the fluctuating wall pressure and turbulent streamwise velocities have been performed throughout a large volume of the boundary layer (y^+ = 14 to y/delta = 1.91, 0 <= x/delta <= 1.52, emptyset = 0^circ, 20^ circ, 40^circ).. Pressure-velocity cross spectra and cross correlation measurements indicate that two primary groups of pressure fluctuations exist in the cylindrical boundary layer: (1) small-scale, high-frequency disturbances concentrated close to the wall associated with the burst-sweep cycle, and (2) large-scale, low-frequency disturbances that extend from the wall to the turbulent/potential interface that are consistent with a large spanwise oriented 'vortex' in close contact with and inclined to the wall. Because the large- and small-scale motions coexist near the wall and an overlap occurs in the frequencies over which their energy is concentrated, it appears that the two motions are interrelated. Conditionally sampling by pressure-peak and VITA detection schemes indicates a distinct bidirectional relationship between both positive and negative large-amplitude wall pressure fluctuations and the temporal derivative of u in the near-wall region. This suggests that both types of processes are equally important to the physics of the near-wall flow. No explicit relationship exists between the sign of p and the sign of u and the turbulent sources generating the large-amplitude negative pressure peaks are concentrated closer to the wall than those responsible for the positive pressure peaks. The power spectral density of the wall pressure in a cylindrical boundary layer compared to a planar boundary layer contains less energy at low frequencies

  4. General view of low pressure compressor (unit #3) with compressor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of low pressure compressor (unit #3) with compressor in foreground and engines in background. High pressure stage is on left, low pressure stage is on right. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  5. VIEW OF COMPRESSOR ROOM AT GROUND LEVEL SHOWING COMPRESSOR EQUIPMENT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF COMPRESSOR ROOM AT GROUND LEVEL SHOWING COMPRESSOR EQUIPMENT. VIEW FACING SOUTH - U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI

  6. Separation Control in a Multistage Compressor Using Impulsive Surface Injection

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.; Braunscheidel, Edward P.; Culley, Dennis E.; Bright, Michelle M.

    2006-01-01

    Control of flow separation using impulsive surface injection is investigated within the multistage environment of a low speed axial-flow compressor. Measured wake profiles behind a set of embedded stator vanes treated with suction-surface injection indicate significant reduction in flow separation at a variety of injection-pulse repetition rates and durations. The corresponding total pressure losses across the vanes reveal a bank of repetition rates at each pulse duration where the separation control remains nearly complete. This persistence allows for demands on the injected-mass delivery system to be economized while still achieving effective flow control. The response of the stator-vane boundary layers to infrequently applied short injection pulses is described in terms of the periodic excitation of turbulent strips whose growth and propagation characteristics dictate the lower bound on the band of optimal pulse repetition rates. The eventual falloff in separation control at higher repetition rates is linked to a competition between the benefits of pulse-induced mixing and the aggravation caused by the periodic introduction of low-momentum fluid. Use of these observations for impulsive actuator design is discussed and their impact on modeling the time-average effect of impulsive surface injection for multistage steady-flow simulation is considered.

  7. Low-Vibration Oscillating Compressor

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1984-01-01

    Oscillating compressor momentum compensated: produces little vibration in its supporting structure. Compressure requires no lubrication and virtually free of wear. Compresses working fluids such as helium, nitrogen or chlorfluorocarbons for Stirling-cycle refrigeration or other purposes. Compressor includes two mutually opposed ferromagnetic pistons of same shape and mass. Electromagnetic flux links both pistons, causing magnetic attraction between them.

  8. OMC Compressor Case

    NASA Technical Reports Server (NTRS)

    Humphrey, W. Donald

    1997-01-01

    This report summarizes efforts expended in the development of an all-composite compressor case. Two pre-production units have been built, one utilizing V-CAP and one utilizing AFR-700B resin systems. Both units have been rig tested at elevated temperatures well above design limit loads. This report discusses the manufacturing processes, test results, and Finite Element Analysis performed. The V-CAP unit was funded by NASA-Lewis Research Center in 1994 under contract number NAS3- 27442 for Development of an All-Composite OMC Compressor Case. This contract was followed by an Air Force study in 1996 to build and identical unit using the AFR-700B resin system in place of the V-CAP system. The second compressor case was funded under U.S. Air Force contract F33615-93-D-5326, Advanced Materials for Aerospace Structures Special Studies (AMAS3), Delivery Order 0021 entitled "Advanced Polymeric Composite Materials and Structures Technology for Advanced High Temperature Gas Turbine Engines.' Initial studies using the V-CAP resin system were undertaken in 1993 under a NASA Lewis contract (NAS3-26829). A first prototype unit was developed in a joint program between Textron-Lycoming (now Allied Signal) and Brunswick (now Lincoln Composites). This unit included composite end closures using low density, high temperature molded end closures. The units was similar in size and shape to a titanium case currently used on the PT-21 0 engine and was funded as part of the integrated High Performance Turbine Engine Technology (EHPTET) initiative of DOD and NASA.

  9. Interstage cooling in compressors

    SciTech Connect

    Bisio, G.; Devia, F.

    1997-12-31

    Interstage cooling in air compressors presents pros and cons according to the purposes for which air is compressed and the systems up to now applied are very different among them. In this paper, cases in which intercooling is made by usual exchangers are considered first. In these cases, either the final pressure only is useful, or both final pressure and temperature are useful. Subsequently, injection of alcohols in open-cycle gas turbines during the compression process is considered, putting in evidence theoretical and actually possible advantages, as higher efficiency and specific work. In the various cases examined, several thermodynamic parameters should be suitably chosen in order to examine the most convenient solution.

  10. Centrifugal-reciprocating compressor

    NASA Technical Reports Server (NTRS)

    Higa, W. H. (Inventor)

    1984-01-01

    A centrifugal compressor is described which includes at least one pair of cylinders arranged in coaxial alignment and supported for angular displacement about a common axis of rotation normally disecting a common longitudinal axis of symmetry for the cylinders. The cylinders are characterized by ported closures located at the mutually remote ends thereof through which the cylinders are charged and discharged, and a pair of piston heads seated within the cylinders and supported for floating displacement in compressive strokes in response to unidirectional angular displacement imparted to the cylinders.

  11. Practical experience with unstable compressors

    NASA Technical Reports Server (NTRS)

    Malanoski, S. B.

    1980-01-01

    Using analytical mathematical modeling techniques for the system components, an attempt is made to gauge the destabilizing effects in a number of compressor designs. In particular the overhung (or cantilevered) compressor designs and the straddle-mounted (or simply supported) compressor designs are examined. Recommendations are made, based on experiences with stable and unstable compressors, which can be used as guides in future designs. High and low pressure compressors which operate well above their fundamental rotor-bearing lateral natural frequencies can suffer from destructive subsynchronous vibration. Usually the elements in the system design which contribute to this vibration, other than the shafting and the bearings, are the seals (both gas labyrinth and oil breakdown bushings) and the aerodynamic components.

  12. Single-stage experimental evaluation of low aspect ratio, highly loaded blading for compressors. Part 9: Stage F and stage G, volume 1

    NASA Technical Reports Server (NTRS)

    Cheatham, J. G.; Smith, J. D.; Wright, D. L.

    1976-01-01

    Two single-stage, 0.77 hub/tip ratio axial-flow compressors were tested to evaluate the effectiveness of low aspect ratio blading as a means of obtaining higher stage loadings. One compressor, designated Stage F, was comprised of circular arc blading with an aspect ratio of 0.9 for both the rotor and stator. This compressor was tested with uniform inlet flow, hub radial, tip radial, and 180 deg arc circumferential inlet distortion. The second compressor, designated Stage G, was comprised of multiple circular arc blading with an aspect ratio of 1.0 for both the rotor and stator. This compressor was tested with uniform inlet flow only. Design rotor tip speeds for Rotor F and Rotor G were 285 m/sec (934 ft/sec) and 327 m/sec (1,074 ft/sec) respectively. Both stages operated at high loading levels with adequate efficiency and operating range. The peak efficiencies and corresponding average stage diffusion factors for Stages F and G at design rotor speed were 86.4% and 84.1% and 0.59 and 0.55 respectively. The surge margin at peak efficiency for Stage F was 12.6% and the corresponding value for Stage G was 16.5%. Both stages experienced a loss in efficiency with increasing rotor speed; however, the multiple circular arc rotor delayed the characteristic loss in efficiency within increasing Mach number to higher Mach number.

  13. Design and performance of an 0.8 hub-tip ratio axial flow pump rotor with a blade tip diffusion factor of 0.55

    NASA Technical Reports Server (NTRS)

    Urasek, D. C.

    1972-01-01

    A 22.9-centimeter diameter axial flow rotor with a 0.8 hub-tip radius ratio, a design flow coefficient of 0.466, and a blade tip design diffusion factor of 0.55 was tested in cold water under both cavitating and noncavitating conditions. Radial surveys of the flow conditions at the rotor inlet and outlet were made. At design flow, the rotor produced an overall headrise coefficient of 0.360 with an overall efficiency of 95.0 percent. The efficiency remained greater than 88 percent over the entire flow coefficient range which varied from 0.350 to 0.615.

  14. Effects of four inlet and outlet tip-annulus-area blockage configurations on the performance of an axial-flow fan rotor

    NASA Technical Reports Server (NTRS)

    Osborn, W. M.; Hager, R. D.

    1976-01-01

    An axial-flow fan rotor was tested with four configurations of tip-annulus-area blockage to speeds as high as 0.8 of design speed. The rotor performance with the four blockage configurations is compared with the unblocked rotor performance and with blockage configurations previously investigated. The blockage configurations enable the rotor to operate in a stable condition, to much lower flows than the unblocked rotor, with no evidence of rotating stall. The blockage configurations were effective in reducing rotor torque and weight flow but were accompanied by reductions in pressure ratio and efficiency.

  15. Centrifugal Compressor Aeroelastic Analysis Code

    NASA Astrophysics Data System (ADS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  16. The Multistage Compressor Facility

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie

    2004-01-01

    Research and developments of new aerospace technologies is one of Glenn Research Center's specialties. One facility that deals with the research of aerospace technologies is the High-speed Multistage Compressor Facility. This facility will be testing the performance and efficiency of an Ultra Efficient Engine Technology (UEET) two-stage compressor. There is a lot of preparation involved with testing something of this caliber. Before the test article can be installed into the test rig, the facility must be fully operational and ready to run. Meaning all the necessary instrumentation must be calibrated and installed in the facility. The test rig should also be in safe operating condition, and the proper safety permits obtained. In preparation for the test, the Multistage Compressor Facility went through a few changes. For instance the facility will now be utilizing slip rings, the gearbox went through some maintenance, new lubrications systems replaced the old ones, and special instrumentation needs to be fine tuned to achieve the maximum amount of accurate data. Slips rings help gather information off of a rotating device - in this case from a shaft - onto stationary contacts. The contacts (or brushes) need to be cooled to reduce the amount of frictional heat produced between the slip ring and brushes. The coolant being run through the slip ring is AK-225, a material hazardous to the ozone. To abide by the safety regulations the coolant must be run through a closed chiller system. A new chiller system was purchased but the reservoir that holds the coolant was ventilated which doesn t make the system truly closed and sealed. My task was to design and have a new reservoir built for the chiller system that complies with the safety guidelines. The gearbox had some safety issues also. Located in the back of the gearbox an inching drive was set up. When the inching drive is in use the gears and chain are bare and someone can easily get caught up in it. So to prevent

  17. Aerodynamic performance of centrifugal compressors

    SciTech Connect

    Sayyed, S.

    1981-12-01

    Saving money with an efficient pipeline system design depends on accurately predicting compressor performance and ensuring that it meets the manufacturer's guaranteed levels. When shop testing with the actual gas is impractical, an aerodynamic test can ascertain compressor efficiency, but the accuracy and consistency of data acquisition in such tests is critical. Low test-pressure levels necessitate accounting for the effects of Reynolds number and heat transfer. Moreover, the compressor user and manufacturer must agree on the magnitude of the corrections to be applied to the test data.

  18. Experimental investigation on axial-flow turbine arrays in erodible and non-erodible channels: Performance, flow-field, and bathymetric interactions

    NASA Astrophysics Data System (ADS)

    Hill, Craig; Sotiropoulos, Fotis; Guala, Michele

    2014-11-01

    Natural channels ideal for hydrokinetic turbine installations present complex environments containing asymmetric flow, regions of high shear and turbulent eddies that impact turbine performance. To understand the impacts caused by variable topography, baseline conditions in a laboratory flume are compared to turbine performance, flow characteristics, and channel topography measurements from two additional experiments with small-scale and large-scale bathymetric features. Both aligned and staggered multi-turbine configurations were investigated. Small-scale axial-flow rotors attached to miniature DC motors provided measurements of turbine performance and response to i) complex topographic features and ii) flow features induced by upstream turbines. Discussion will focus on optimal streamwise and lateral spacing for axial-flow devices, turbine-topography interactions within arrays and inter-array flow-field measurements. Primary focus will center on results from turbines separated by a streamwise distance of 7dT. Additionally, results indicate possible control strategies for turbines installed in complex natural environments. This work was supported by NSF PFI Grant IIP-1318201, CAREER: Geophysical Flow Control (NSF).

  19. Free piston inertia compressor

    DOEpatents

    Richards, William D. C.; Bilodeau, Denis; Marusak, Thomas; Dutram, Jr., Leonard; Brady, Joseph

    1981-01-01

    A free piston inertia compressor comprises a piston assembly including a connecting rod having pistons on both ends, the cylinder being split into two substantially identical portions by a seal through which the connecting rod passes. Vents in the cylinder wall are provided near the seal to permit gas to excape the cylinder until the piston covers the vent whereupon the remaining gas in the cylinder functions as a gas spring and cushions the piston against impact on the seal. The connecting rod has a central portion of relatively small diameter providing free play of the connecting rod through the seal and end portions of relatively large diameter providing a limited tolerance between the connecting rod and the seal. Finally, the seal comprises a seal ring assembly consisting of a dampener plate, a free floating seal at the center of the dampener plate and a seal retainer plate in one face of the dampener plate.

  20. Dual capacity reciprocating compressor

    DOEpatents

    Wolfe, R.W.

    1984-10-30

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  1. Dual capacity reciprocating compressor

    DOEpatents

    Wolfe, Robert W.

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  2. Electrochemical Hydrogen Compressor

    SciTech Connect

    David P. Bloomfield; Brian S. MacKenzie

    2006-05-01

    The Electrochemical Hydrogen Compressor EHC was evaluated against DOE applications for compressing hydrogen at automobile filling stations, in future hydrogen pipelines and as a commercial replacement for conventional diaphragm hydrogen compressors. It was also evaluated as a modular replacement for the compressors used in petrochemical refineries. If the EHC can be made inexpensive, reliable and long lived then it can satisfy all these applications save pipelines where the requirements for platinum catalyst exceeds the annual world production. The research performed did not completely investigate Molybdenum as a hydrogen anode or cathode, it did show that photoetched 316 stainless steel is inadequate for an EHC. It also showed that: molybdenum bipolar plates, photochemical etching processes, and Gortex Teflon seals are too costly for a commercial EHC. The use of carbon paper in combination with a perforated thin metal electrode demonstrated adequate anode support strength, but is suspect in promoting galvanic corrosion. The nature of the corrosion mechanisms are not well understood, but locally high potentials within the unit cell package are probably involved. The program produced a design with an extraordinary high cell pitch, and a very low part count. This is one of the promising aspects of the redesigned EHC. The development and successful demonstration of the hydraulic cathode is also important. The problem of corrosion resistant metal bipolar plates is vital to the development of an inexpensive, commercial PEM fuel cell. Our research suggests that there is more to the corrosion process in fuel cells and electrochemical compressors than simple, steady state, galvanic stability. It is an important area for scientific investigation. The experiments and analysis conducted lead to several recommended future research directions. First, we need a better understanding of the corrosion mechanisms involved. The diagnosis of experimental cells with titration to

  3. Magentically actuated compressor

    NASA Technical Reports Server (NTRS)

    Evans, J.; Studer, P. A. (Inventor)

    1985-01-01

    A vibration free fluid compressor particularly adapted for Stirling cycle cryogenic refrigeration apparatus comprises a pair of identical opposing ferromagnetic pistons located in a housing and between a gas spring including a sealed volume of a working fluid such as gas under pressure. The gas compresses and expands in accordance with movement of the pistons to generate a compression wave which can be vented to other apparatus, for example, a displacer unit in a Stirling cycle engine. The pistons are urged outwardly due to the pressure of the gas; however, a fixed electromagnetic coil assembly located in the housing adjacent the pistons, is periodically energized to produce a magnetic field which interlinks the pistons in such a fashion that the pistons are mutually attracted to one another. The mass of the pistons, in conjunction with the compressed gas between them, form a naturally resonant system which, when the pistons are electromagnetically energized, produces an oscillating compression wave in the entrapped fluid medium.

  4. Free piston inertia compressor

    DOEpatents

    Richards, W.D.C.; Bilodeau, D.; Marusak, T.; Dutram, L. Jr.; Brady, J.

    A free piston inertia compressor comprises a piston assembly including a connecting rod having pistons on both ends, the cylinder being split into two substantially identical portions by a seal through which the connecting rod passes. Vents in the cylinder wall are provided near the seal to permit gas to escape the cylinder until the piston covers the vent whereupon the remaining gas in the cylinder functions as a gas spring and cushions the piston against impact on the seal. The connecting rod has a central portion of relatively small diameter providing free play of the connecting rod through the seal and end portions of relatively large diameter providing a limited tolerance between the connecting rod and the seal. Finally, the seal comprises a seal ring assembly consisting of a dampener plate, a free floating seal at the center of the dampener plate and a seal retainer plate in one face of the dampener plate.

  5. Semi-active compressor valve

    DOEpatents

    Brun, Klaus; Gernentz, Ryan S.

    2010-07-27

    A method and system for fine-tuning the motion of suction or discharge valves associated with cylinders of a reciprocating gas compressor, such as the large compressors used for natural gas transmission. The valve's primary driving force is conventional, but the valve also uses an electromagnetic coil to sense position of the plate (or other plugging element) and to provide an opposing force prior to impact.

  6. Suction muffler for refrigeration compressor

    DOEpatents

    Nelson, Richard T.; Middleton, Marc G.

    1983-01-01

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell.

  7. Suction muffler for refrigeration compressor

    DOEpatents

    Nelson, R.T.; Middleton, M.G.

    1983-01-25

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell. 5 figs.

  8. Compressor bleed cooling fluid feed system

    DOEpatents

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  9. Altitude-Wind-Tunnel Investigation of a 3000-Pound-Thrust Axial-Flow Turbojet Engine. 6; Analysis of Effects of Inlet Pressure Losses

    NASA Technical Reports Server (NTRS)

    Sanders, Newell D.; Palasics, John

    1948-01-01

    The losses in the inlet air ducts, the diffusers, and the de-icing equipment associated with turbojet engine installations cause a reduction in the total pressure at the inlet of the engine and result in reduced thrust and increased specific fuel consumption. An analytical evaluation of the effects of inlet losses on the net thrust and the fuel economy of a 3000-pound-thrust axial flow turbojet engine with a two-stage turbine is presented. The analysis is based on engine performance characteristics that were determined from experiments in the NACA Cleveland altitude wind tunnel. The experimental investigation did not include tests in which inlet losses were systematically varied, but the effects of these losses can be accurately estimated from the experimentally determined performance characteristics of the engine.

  10. 1D Modeling of the Initial Stage of Wire Explosions and 2D Modeling of the m=0 Sausage Instability With Sheared Axial Flow

    NASA Astrophysics Data System (ADS)

    Makhin, Volodymyr; Sotnikov, Vladimir; Bauer, Bruno; Lindemuth, Irvin; Sheehey, Peter

    2001-10-01

    1D modeling of the initial state of wire explosions (“cold start” with updated SESAME tables) was examined using 1D version of the Eulerian Magnetohydrodynamic Radiative Code (MHRDR). Simulations were carried out for two regimes: with (black body radiative model) and without radiative losses. Results of the simulations revealed strong dependence of the time of explosion and expansion speed of the wire on the implemented radiative model. This shows that it is necessary to accurately include radiative losses to model “cold start” wire explosions. 2D modeling of the m=0 sausage instability with sheared axial flow. The MHRDR simulations were used to obtain the growth rate of the m=0 sausage instability in plasma column with initial Bennett equilibrium profile with and without shear flow. These growth rates appeared to be in good agreement with growth rates calculated from the linearized MHD equations.

  11. PURDU-WINCOF: A computer code for establishing the performance of a fan-compressor unit with water ingestion

    NASA Technical Reports Server (NTRS)

    Leonardo, M.; Tsuchiya, T.; Murthy, S. N. B.

    1982-01-01

    A model for predicting the performance of a multi-spool axial-flow compressor with a fan during operation with water ingestion was developed incorporating several two-phase fluid flow effects as follows: (1) ingestion of water, (2) droplet interaction with blades and resulting changes in blade characteristics, (3) redistribution of water and water vapor due to centrifugal action, (4) heat and mass transfer processes, and (5) droplet size adjustment due to mass transfer and mechanical stability considerations. A computer program, called the PURDU-WINCOF code, was generated based on the model utilizing a one-dimensional formulation. An illustrative case serves to show the manner in which the code can be utilized and the nature of the results obtained.

  12. A mock circulatory system to assess the performance of continuous-flow left ventricular assist devices (LVADs): does axial flow unload better than centrifugal LVAD?

    PubMed

    Sénage, Thomas; Février, Dorothée; Michel, Magali; Pichot, Emmanuel; Duveau, Daniel; Tsui, Steven; Trochu, Jean Noel; Roussel, Jean Christian

    2014-01-01

    Hemodynamic performances comparisons between different types of left ventricular assist devices (LVADs) remain difficult in a clinical context. The aim of this study was to create an experimental model to assess and compare two types of LVAD under hemodynamic conditions that simulated physical effort and pulmonary hypertension. An experimental mock circulatory system was created to simulate the systemic and pulmonary circulations and consisted of pulsatile left and right cardiac simulators (cardiowest pump), air/water tanks to model compliances, and tubes to model the venous and arterial resistances. Two types of continuous-flow ventricular assist devices were connected to this pulsated model: an axial flow pump, Heartmate II (HTM II), and a centrifugal pump, VentrAssist (VTA). The hemodynamic conditions at rest and during exercise were replicated. Mean aortic pressures were not significantly different at rest and during effort but mean flow under maximum pump speed was higher with HTM II (13 L vs. 10 L, p = 0.02). Left atrial pressure was lower at rest and during effort for the HTM II (11 mm Hg vs. 3 mm Hg, p = 0.02 and 9 mm Hg vs. 2 mm Hg, p = 0.008) than with the VTA, but with greater risk of left-ventricle suck-down for the axial flow. Power consumption for a similar flow was lower with the VTA during rest (4.7 W vs. 6.9 W, p = 0.002) and during effort (4.3 W vs. 6.6 W, p = 0.008). In case of high pulmonary vascular resistance with preserved right ventricular function, lower right ventricular pressure was obtained with HTM II (21 mm Hg vs. 28 mm Hg, p = 0.03). Observed results are in favor of a better discharge of the left and right cavities with the HTM II compared to the VTA yet with a higher risk of left cavity collapse occurrence.

  13. Water injected fuel cell system compressor

    DOEpatents

    Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  14. Multi-stage hydride-hydrogen compressor

    NASA Astrophysics Data System (ADS)

    Golben, P. M.

    A 4-stage metal hydride/hydrogen compressor that uses low temperature hot water (75 C) as its energy source has been built and tested. The compressor utilizes a new hydride heat exchanger technique that has achieved fast cycling time (with 20 C cooling water) on the order of 1 min. This refinement substantially decreases the size, weight and cost of the unit when compared to previous hydride compressors or even conventional mechanical diaphragm compressors.

  15. New coatings extend compressor service life

    SciTech Connect

    Chow, R.; McMordie, B.; Wiegand, R.

    1995-10-01

    To lengthen production runs, a Canadian ethylene operator experimented with a coating system to protect a critical compressor`s rotor from hydrocarbon-polymerization/fouling. In ethylene manufacturing, compressor fouling is an accepted ``fact of life.`` Past attempts to minimize fouling in the crack-gas compression train were unsuccessful or marginally cost-effective. Applying protective coatings to a critical-service ethylene compressor rotor slowed oiling, thus lengthening the production run time by one year.

  16. 46 CFR 154.1415 - Air compressor.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Air compressor. 154.1415 Section 154.1415 Shipping COAST... Equipment § 154.1415 Air compressor. Each vessel must have an air compressor to recharge the bottles for the air-breathing apparatus....

  17. 46 CFR 154.1415 - Air compressor.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Air compressor. 154.1415 Section 154.1415 Shipping COAST... Equipment § 154.1415 Air compressor. Each vessel must have an air compressor to recharge the bottles for the air-breathing apparatus....

  18. Rotor-generated unsteady aerodynamic interactions in a 1½ stage compressor

    NASA Astrophysics Data System (ADS)

    Papalia, John J.

    Because High Cycle Fatigue (HCF) remains the predominant surprise failure mode in gas turbine engines, HCF avoidance design systems are utilized to identify possible failures early in the engine development process. A key requirement of these analyses is accurate determination of the aerodynamic forcing function and corresponding airfoil unsteady response. The current study expands the limited experimental database of blade row interactions necessary for calibration of predictive HCF analyses, with transonic axial-flow compressors of particular interest due to the presence of rotor leading edge shocks. The majority of HCF failures in aircraft engines occur at off-design operating conditions. Therefore, experiments focused on rotor-IGV interactions at off-design are conducted in the Purdue Transonic Research Compressor. The rotor-generated IGV unsteady aerodynamics are quantified when the IGV reset angle causes the vane trailing edge to be nearly aligned with the rotor leading edge shocks. A significant vane response to the impulsive static pressure perturbation associated with a shock is evident in the point measurements at 90% span, with details of this complex interaction revealed in the corresponding time-variant vane-to-vane flow field data. Industry wide implementation of Controlled Diffusion Airfoils (CDA) in modern compressors motivated an investigation of upstream propagating CDA rotor-generated forcing functions. Whole field velocity measurements in the reconfigured Purdue Transonic Research Compressor along the design speedline reveal steady loading had a considerable effect on the rotor shock structure. A detached rotor leading edge shock exists at low loading, with an attached leading edge and mid-chord suction surface normal shock present at nominal loading. These CDA forcing functions are 3--4 times smaller than those generated by the baseline NACA 65 rotor at their respective operating points. However, the IGV unsteady aerodynamic response to the CDA

  19. Positive Displacement Compressor Technology for Air Congitioners

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi

    Trends of compressor technologies for air conditioners are presented in this paper. HFC refrigerants such is R410A and R407C are promising candidates as an alternative for R22. Performance of rotary and scroll compressors in the operation with R410A and R407C are described. In addition, compressor technologies such as efficiency improvement, reliability and simulation methods are described in both cases of rotary and scroll compressors. Advanced compressor technologies developed for air conditioners are desired in the field of the global environment protection and the energy saving.

  20. Multiple volume compressor for hot gas engine

    SciTech Connect

    Stotts, Robert E.

    1986-01-01

    A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

  1. A modeling study of a centrifugal compressor

    SciTech Connect

    Popovic, P.; Shapiro, H.N.

    1998-12-31

    A centrifugal compressor, which is part of a chlorofluorocarbon R-114 chiller installation, was investigated, operating with a new refrigerant, hydrofluorocarbon R-236ea, a proposed alternative to R-114. A large set of R-236ea operating data, as well as a limited amount of R-114 data, were available for this study. A relatively simple analytical compressor model was developed to describe compressor performance. The model was built upon a thorough literature search, experimental data, and some compressor design parameters. Two original empirical relations were developed, providing a new approach to the compressor modeling. The model was developed in a format that would permit it to be easily incorporated into a complete chiller simulation. The model was found to improve somewhat on the quantitative and physical aspects of a compressor model of the same format found in the literature. It was found that the compressor model is specific to the particular refrigerant.

  2. Axial-Centrifugal Compressor Program

    DTIC Science & Technology

    1975-10-01

    We also wish to thank Robert Langworthy of the Eustis Directorate for his timely assistance and constructive guidance. 3, INj TABLE OF CONTENTS Page...34 PREFACE 3 LIST OF ILLUSTRATIONS ..................... 7 LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . 17 INTRODUCTIONB...Blow Test. 132 Axial IGV Blow Test . . . . . . . . ........... 141 PMIZ ?crn AM BLANK-NOT 1=43D TABLE OF CONTENTS - Continued Centrifugal Compressor

  3. Plasma Spraying Reclaims Compressor Housings

    NASA Technical Reports Server (NTRS)

    Leissler, George W.; Yuhas, John S.

    1991-01-01

    Plasma-spraying process used to build up material in worn and pitted areas. Newly applied material remachined to specified surface contours. Effective technique for addition of metal to out-of-tolerance magnesium-alloy turbine-engine compressor housings.

  4. Pulse compressor with aberration correction

    SciTech Connect

    Mankos, Marian

    2015-11-30

    In this SBIR project, Electron Optica, Inc. (EOI) is developing an electron mirror-based pulse compressor attachment to new and retrofitted dynamic transmission electron microscopes (DTEMs) and ultrafast electron diffraction (UED) cameras for improving the temporal resolution of these instruments from the characteristic range of a few picoseconds to a few nanoseconds and beyond, into the sub-100 femtosecond range. The improvement will enable electron microscopes and diffraction cameras to better resolve the dynamics of reactions in the areas of solid state physics, chemistry, and biology. EOI’s pulse compressor technology utilizes the combination of electron mirror optics and a magnetic beam separator to compress the electron pulse. The design exploits the symmetry inherent in reversing the electron trajectory in the mirror in order to compress the temporally broadened beam. This system also simultaneously corrects the chromatic and spherical aberration of the objective lens for improved spatial resolution. This correction will be found valuable as the source size is reduced with laser-triggered point source emitters. With such emitters, it might be possible to significantly reduce the illuminated area and carry out ultrafast diffraction experiments from small regions of the sample, e.g. from individual grains or nanoparticles. During phase I, EOI drafted a set of candidate pulse compressor architectures and evaluated the trade-offs between temporal resolution and electron bunch size to achieve the optimum design for two particular applications with market potential: increasing the temporal and spatial resolution of UEDs, and increasing the temporal and spatial resolution of DTEMs. Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key pulse compressor components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded

  5. One-step fabrication of triple-layered microcapsules by a tri-axial flow focusing device for microencapsulation of soluble drugs and imaging agents

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Wu, Qiang; Lei, Fan; Li, Guangbin; Si, Ting; Xu, Ronald X.

    2016-04-01

    In this work, the microencapsulation of water-soluble drug (doxorubicin, Dox) and imaging agent (perfluorocarbon, PFC) is performed by a novel liquid driven tri-axial flow focusing (LDTFF) device. The formation of stable triple-layered cone-jet mode can be observed in the simple well-assembled LDTFF device, providing an easy approach to fabricate mono-disperse triple-layered microcapsules with high encapsulation efficiency, high throughput and low cost in just one step. The fluorescence images show that the microcapsules have a satisfactory core-shell structure. The SEM micrographs show spherical and smooth surface views of the triple-layered microcapsules after being stirred 72h to remove the organic solvent totally. The results of thermo-responsive release experiments of the produced triple-layered microcapsules show these multifunctional capsules can be well stimulated when the environment temperature is beyond 55 degree centigrade. In a word, this novel approach has a great potential in applications such as drug delivery and image-guided therapy.

  6. Computational cavitation flows at inception and light stages on an axial-flow pump blade and in a cage-guided control valve

    NASA Astrophysics Data System (ADS)

    Saito, Sumio; Shibata, Masahiro; Fukae, Hideo; Outa, Eisuke

    2007-11-01

    Cavitation flows induced around an axial-flow pump blade and inside a high pressure cage-type valve are simulated by a two-dimensional unsteady Navier-Stokes analysis with the simplest treatment of bubble dynamics. The fluid is assumed as a continuum of homogeneous dispersed mixture of water and vapor nuclei. The analysis is aimed to capture transient stages with high amplitude pressure change during the birth and collapse of the bubble especially at the stage of cavitation inception. By the pump blade analysis, in which the field pressure is moderate, cavitation number of the inception and locations of developed cavitation are found to agree with experimental results in a wide flow range between high incidence and negative incidence. In the valve flow analysis, in which the water pressure of 5MPa is reduced to 2MPa, pressure change responding to the bubble collapse between the vapor pressure lower than 1 KPa and the extreme pressure of higher than 104 KPa is captured through a stable computation. Location of the inception bubble and pressure force to the valve plug is found agree well with the respective experimental features.

  7. Myocardial mechanics, energetics, and hemodynamics during intraaortic balloon and transvalvular axial flow hemopump support with a bovine model of ischemic cardiac dysfunction.

    PubMed

    Marks, J D; Pantalos, G M; Long, J W; Kinoshita, M; Everett, S D; Olsen, D B

    1999-01-01

    Unlike the mechanisms of intraaortic balloon pump (IABP) support, the mechanisms by which transvalvular axial flow Hemopump (HP) support benefit dysfunctional myocardium are less clearly understood. To help elucidate these mechanisms, hemodynamic, metabolic, and mechanical indexes of left ventricular function were measured during conditions of control, ischemic dysfunction, IABP support, and HP support. A large animal (calf) model of left ventricular dysfunction was created with multiple coronary ligations. Peak intraventricular pressure increased with HP support and decreased with IABP support. Intramyocardial pressure (an indicator of intramyocardial stress), time rate of pressure change (an indicator of contractility), and left ventricular myocardial oxygen consumption decreased with IABP and HP support. Left ventricular work decreased with HP support and increased with IABP support. During HP support, indexes of wall stress, work, and contractility, all primary determinants of oxygen consumption, were reduced. During IABP support, indexes of wall stress and contractility were reduced and external work increased. These changes were attributed primarily to changes in ventricular preload, and geometry for HP support, and to a reduction in afterload for IABP support. These findings support the hypothesis that both HP and IABP support reduce intramyocardial stress development and the corresponding oxygen consumption, although via different mechanisms.

  8. Contributions of the secondary jet to the maximum tangential velocity and to the collection efficiency of the fixed guide vane type axial flow cyclone dust collector

    NASA Astrophysics Data System (ADS)

    Ogawa, Akira; Anzou, Hideki; Yamamoto, So; Shimagaki, Mituru

    2015-11-01

    In order to control the maximum tangential velocity Vθm(m/s) of the turbulent rotational air flow and the collection efficiency ηc (%) using the fly ash of the mean diameter XR50=5.57 µm, two secondary jet nozzles were installed to the body of the axial flow cyclone dust collector with the body diameter D1=99mm. Then in order to estimate Vθm (m/s), the conservation theory of the angular momentum flux with Ogawa combined vortex model was applied. The comparisons of the estimated results of Vθm(m/s) with the measured results by the cylindrical Pitot-tube were shown in good agreement. And also the estimated collection efficiencies ηcth (%) basing upon the cut-size Xc (µm) which was calculated by using the estimated Vθ m(m/s) and also the particle size distribution R(Xp) were shown a little higher values than the experimental results due to the re-entrainment of the collected dust. The best method for adjustment of ηc (%) related to the contribution of the secondary jet flow is principally to apply the centrifugal effect Φc (1). Above stated results are described in detail.

  9. Altitude-wind-tunnel investigation of tail-pipe burning with a Westinghouse X24C-4B axial-flow turbojet engine

    NASA Technical Reports Server (NTRS)

    Fleming, William A; Wallner, Lewis E

    1948-01-01

    Thrust augmentation of an axial-flow type turbojet engine by burning fuel in the tail pipe has been investigated in the NACA Cleveland altitude wind tunnel. The performance was determined over a range of simulated flight conditions and tail-pipe fuel flows. The engine tail pipe was modified for the investigation to reduce the gas velocity at the inlet of the tail-pipe combustion chamber and to provide an adequate seat for the flame; four such modifications were investigated. The highest net-thrust increase obtained in the investigation was 86 percent with a net thrust specific fuel consumption of 2.91 and a total fuel-air ratio of 0.0523. The highest combustion efficiencies obtained with the four configurations ranged from 0.71 to 0.96. With three of the tail-pipe burners, for which no external cooling was provided, the exhaust nozzle and the rear part of the burner section were bright red during operation at high tail-pipe fuel-air ratios. With the tail-pipe burner for which fuel and water cooling were provided, the outer shell of the tail-pipe burner showed no evidence of elevated temperatures at any operating condition.

  10. Measurements of the unsteady flow field within the stator row of a transonic axial-flow fan. Part 2: Results and discussion

    NASA Technical Reports Server (NTRS)

    Hathaway, M. D.; Suder, K. L.; Okiishi, T. H.; Strazisar, A. J.; Adamczyk, J. J.

    1987-01-01

    Unsteady velocity field measurements made within the stator row of a transonic axial-flow fan are presented. Measurements were obtained at midspan for two different stator blade rows using a laser anemometer. The first stator row consists of double circular-arc airfoils with a solidity of 1.68. The second features controlled-diffusion airfoils with a solidity of 0.85. Both were tested at design-speed peak efficiency conditions. In addition, the controlled-diffusion stator was also tested at near stall conditions. The procedures developed here are used to identify the rotor wake generated and unresolved unsteadiness from the velocity measurements (rotor wake generated unsteadiness refers to the unsteadiness generated by the rotor wake velocity deficit and unresolved unsteadiness refers to all remaining unsteadiness which contributes to the spread in the distribution of velocities such as vortex shedding, turbulence, etc.). Auto and cross correlations of these unsteady velocity fluctuations are presented to show their relative magnitude and spatial distributions. Amplification and attenuation of both rotor wake generated and unresolved unsteadiness are shown to occur within the stator blade passage.

  11. Measurements of the unsteady flow field within the stator row of a transonic axial-flow fan. II - Results and discussion

    NASA Technical Reports Server (NTRS)

    Hathaway, M. D.; Suder, K. L.; Strazisar, A. J.; Adamczyk, J. J.; Okiishi, T. H.

    1987-01-01

    Unsteady velocity field measurements made within the stator row of a transonic axial-flow fan are presented. Measurements were obtained at midspan for two different stator blade rows using a laser anemometer. The first stator row consists of double circular-arc airfoils with a solidity of 1.68. The second features controlled-diffusion airfoils with a solidity of 0.85. Both were tested at design-speed peak efficiency conditions. In addition, the controlled-diffusion stator was also tested at near stall conditions. The procedures developed here are used to identify the rotor wake generated and unresolved unsteadiness from the velocity measurements (rotor wake generated unsteadiness refers to the unsteadiness generated by the rotor wake velocity deficit and unresolved unsteadiness refers to all remaining unsteadiness which contributes to the spread in the distribution of velocities such as vortex shedding, turbulence, etc.). Auto and cross correlations of these unsteady velocity fluctuations are presented to show their relative magnitude and spatial distributions. Amplification and attenuation of both rotor wake generated and unresolved unsteadiness are shown to occur within the stator blade passage.

  12. Unsteady Flows in a Single-Stage Transonic Axial-Flow Fan Stator Row. Ph.D. Thesis - Iowa State Univ.

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.

    1986-01-01

    Measurements of the unsteady velocity field within the stator row of a transonic axial-flow fan were acquired using a laser anemometer. Measurements were obtained on axisymmetric surfaces located at 10 and 50 percent span from the shroud, with the fan operating at maximum efficiency at design speed. The ensemble-average and variance of the measured velocities are used to identify rotor-wake-generated (deterministic) unsteadiness and turbulence, respectively. Correlations of both deterministic and turbulent velocity fluctuations provide information on the characteristics of unsteady interactions within the stator row. These correlations are derived from the Navier-Stokes equation in a manner similar to deriving the Reynolds stress terms, whereby various averaging operators are used to average the aperiodic, deterministic, and turbulent velocity fluctuations which are known to be present in multistage turbomachines. The correlations of deterministic and turbulent velocity fluctuations throughout the axial fan stator row are presented. In particular, amplification and attenuation of both types of unsteadiness are shown to occur within the stator blade passage.

  13. Preventing rotary compressor oil carryover

    SciTech Connect

    Perry, W. . Quincy Compressor Div.)

    1995-01-09

    Design of the air end, discharge piping, separator reservoir, and lubricant chemistry in a compressed air system should minimize the amount of lubricant reaching the separator element. A separator element must trap liquids and aerosols at anticipated air velocities and return trapped liquid to a reservoir. These actions produce minimal oil carryover during typical plant operating conditions, which usually means full-load volume at design operating pressure and normal indoor ambient conditions. Several factors must be examined when operating conditions deviate from this typical point. These factors are pressure, temperature and relative humidity of air drawn into the compressor, and compressor controls. These are discussed and several solutions to the carryover problem are given.

  14. Magnetic power piston fluid compressor

    NASA Technical Reports Server (NTRS)

    Gasser, Max G. (Inventor)

    1994-01-01

    A compressor with no moving parts in the traditional sense having a housing having an inlet end allowing a low pressure fluid to enter and an outlet end allowing a high pressure fluid to exit is described. Within the compressor housing is at least one compression stage to increase the pressure of the fluid within the housing. The compression stage has a quantity of magnetic powder within the housing, is supported by a screen that allows passage of the fluid, and a coil for selectively providing a magnetic field across the magnetic powder such that when the magnetic field is not present the individual particles of the powder are separated allowing the fluid to flow through the powder and when the magnetic field is present the individual particles of the powder pack together causing the powder mass to expand preventing the fluid from flowing through the powder and causing a pressure pulse to compress the fluid.

  15. Axial Compressor Reversed Flow Performance.

    DTIC Science & Technology

    1985-05-01

    change which occurs at the stall limit of the compresor , the time-owaged data indicates that another flow mode change occurs in the neighborhood of the...surging compression system Into a small amplitude oscillation about the nonrecoverable stall point. This forced oscillation can then decay Into a system...were heavily dependent upon the model used for defining compressor post- stall performance, both steady state end transient, especially In the reve a

  16. Oil cooled, hermetic refrigerant compressor

    DOEpatents

    English, William A.; Young, Robert R.

    1985-01-01

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  17. Oil cooled, hermetic refrigerant compressor

    DOEpatents

    English, W.A.; Young, R.R.

    1985-05-14

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  18. MTR COMPRESSOR BUILDING, TRA651. TWO JOY COMPRESSORS ARE INSTALLED. OUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR COMPRESSOR BUILDING, TRA-651. TWO JOY COMPRESSORS ARE INSTALLED. OUT OF VIEW ON RIGHT WERE TWO INGERSOLL-RAND COMPRESSORS. NOTE FRAME STRUCTURE OF METAL-SIDING BUILDING. COMPARE WITH ID-33-G-4. INL NEGATIVE NO. 56-1257. Jack L. Anderson, Photographer, 4/20/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. Improved heat switch for gas sorption compressor

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1985-01-01

    Thermal conductivities of the charcoal bed and the copper matrix for the gas adsorption compressor were measured by the concentric-cylinder method. The presence of the copper matrix in the charcoal bed enhanced the bed conductance by at least an order of magnitude. Thermal capacities of the adsorbent cell and the heat leaks to two compressor designs were measured by the transient method. The new gas adsorption compressor had a heat switch that could transfer eight times more heat than the previous one. The cycle time for the new prototype compressor is also improved by a factor of eight to within the minute range.

  20. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors. Part 7: Data and performance for stage E

    NASA Technical Reports Server (NTRS)

    Cheatham, J. G.

    1974-01-01

    An axial flow compressor stage, having tandem airfoil blading, was designed for zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The stage was designed to produce a pressure ratio of 1.265 at a rotor tip velocity of 757 ft/sec. The rotor has an inlet hub/tip ratio of 0.8. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The objectives of this experimental program were (1) to obtain performance with uniform and distorted inlet flow for comparison with the performance of a stage consisting of single-airfoil blading designed for the same vector diagrams and (2) to evaluate the effectiveness of accounting for the inlet boundary layer, axial velocity ratio, and secondary flows in the stage design.

  1. An Experimental Characterization of Tip Leakage Flows and Corresponding Effects on Multistage Compressor Performance

    NASA Astrophysics Data System (ADS)

    Berdanier, Reid Adam

    The effect of rotor tip clearances in turbomachinery applications has been a primary research interest for nearly 80 years. Over that time, studies have shown increased tip clearance in axial flow compressors typically has a detrimental effect on overall pressure rise capability, isentropic efficiency, and stall margin. With modern engine designs trending toward decreased core sizes to increase propulsive efficiency (by increasing bypass ratio) or additional compression stages to increase thermal efficiency by increasing the overall pressure ratio, blade heights in the rear stages of the high pressure compressor are expected to decrease. These rear stages typically feature smaller blade aspect ratios, for which endwall flows are more important, and the rotor tip clearance height represents a larger fraction of blade span. As a result, data sets collected with large relative rotor tip clearance heights are necessary to facilitate these future small core design goals. This research seeks to characterize rotor tip leakage flows for three tip clearance heights in the Purdue three-stage axial compressor facility (1.5%, 3.0%, and 4.0% as a percentage of overall annulus height). The multistage environment of this compressor provides the unique opportunity to examine tip leakage flow effects due to stage matching, stator-rotor interactions, and rotor-rotor interactions. The important tip leakage flow effects which develop as a result of these interactions are absent for previous studies which have been conducted using single-stage machines or isolated rotors. A series of compressor performance maps comprise points at four corrected speeds for each of the three rotor tip clearance heights. Steady total pressure and total temperature measurements highlight the effects of tip leakage flows on radial profiles and wake shapes throughout the compressor. These data also evaluate tip clearance effects on efficiency, stall margin, and peak pressure rise capability. An emphasis of

  2. Particle flow within a transonic compressor rotor passage with application to laser-Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Maxwell, B. R.

    1975-01-01

    A theoretical analysis was conducted of the dynamic behavior of micron size particles moving in the three-dimensional flow field of a rotating transonic axial-flow air compressor rotor. The particle velocity lag and angular deviation relative to the gas were determined as functions of particle diameter, mass density and radial position. Particle size and density were varied over ranges selected to correspond to typical laser-Doppler velocimeter (LDV) flow field mapping applications. It was found that the particles move essentially on gas stream surfaces and that particle tracking is relatively insensitive to the rotor radial coordinate. Velocity lag and angular deviation increased whenever particle size or mass density increased, and particle tracking was more sensitive to a change in particle diameter than to a corresponding change in mass density. Results indicated that velocity and angular deviations generally less than 1 percent and 1 degree could be achieved with 1 gm/cc tracer particles with diameters of 1 micron or less.

  3. 40 CFR 63.1031 - Compressors standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emission Standards for Equipment Leaks-Control Level 2 Standards § 63.1031 Compressors standards. (a... service. Each barrier fluid system shall be equipped with a sensor that will detect failure of the seal... alarm unless the compressor is located within the boundary of an unmanned plant site. (d)...

  4. 40 CFR 63.1031 - Compressors standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emission Standards for Equipment Leaks-Control Level 2 Standards § 63.1031 Compressors standards. (a... service. Each barrier fluid system shall be equipped with a sensor that will detect failure of the seal... alarm unless the compressor is located within the boundary of an unmanned plant site. (d)...

  5. 40 CFR 65.112 - Standards: Compressors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compressor is located within the boundary of an unmanned plant site. (d) Failure criterion and leak detection... indicates failure of the seal system, the barrier fluid system, or both based on the criterion, a leak is...) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.112 Standards: Compressors. (a) Compliance schedule....

  6. 40 CFR 63.1031 - Compressors standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emission Standards for Equipment Leaks-Control Level 2 Standards § 63.1031 Compressors standards. (a... service. Each barrier fluid system shall be equipped with a sensor that will detect failure of the seal... alarm unless the compressor is located within the boundary of an unmanned plant site. (d)...

  7. Regenerative sorption compressors for cryogenic refrigeration

    NASA Technical Reports Server (NTRS)

    Bard, Steven; Jones, Jack A.

    1990-01-01

    Dramatic efficiency improvements for sorption coolers appear possible with use of compressor heat regeneration techniques. The general theory of sorption compressor heat regeneration is discussed in this paper, and several design concepts are presented. These designs result in long-life, low-vibration cryocoolers that potentially have efficiencies comparable to Stirling refrigerators for 65 to 90 K spacecraft instrument cooling applications.

  8. Compressor wheel assembly for turbochargers

    SciTech Connect

    Joco, F.M.

    1987-11-10

    In a turbocharger having a housing, this patent describes: a rotatable shaft having a threaded end; bearing means for rotatably mounting the shaft to the housing; a boreless turbine wheel secured to an end of the shaft opposite the threaded end; a boreless compressor wheel having a boreless hub supporting a circumferentially arranged array of impeller blades; and an attachment member mounted on the hub generally at one axial end thereof in a position generally centered on a central axis of the hub. The attachment member includes means for attachment to the threaded end of the shaft.

  9. Scroll Compressor Oil Pump Analysis

    NASA Astrophysics Data System (ADS)

    Branch, S.

    2015-08-01

    Scroll compressors utilize three journal bearings to absorb gas, friction and inertial loads exerted on the crankshaft. To function properly, these bearings must be lubricated with a certain amount of oil. The focus of this paper will be to discuss how computational fluid dynamics can be used to predict oil flow out of a single-stage oil pump. The effects of speed and lubricant viscosity on pump output will also be presented. The comparisons will look at mass flow rates, differences in pressure, and torque at various speeds and dynamic viscosities. The computational fluid dynamic analysis results will be compared with actual lab testing where a crankshaft bench tester was built.

  10. Refrigeration system having standing wave compressor

    DOEpatents

    Lucas, Timothy S.

    1992-01-01

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  11. 49 CFR 192.736 - Compressor stations: Gas detection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Compressor stations: Gas detection. 192.736... Compressor stations: Gas detection. (a) Not later than September 16, 1996, each compressor building in a compressor station must have a fixed gas detection and alarm system, unless the building is— (1)...

  12. 49 CFR 192.736 - Compressor stations: Gas detection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Compressor stations: Gas detection. 192.736... Compressor stations: Gas detection. (a) Not later than September 16, 1996, each compressor building in a compressor station must have a fixed gas detection and alarm system, unless the building is— (1)...

  13. NG compressors play role in success story

    SciTech Connect

    1995-12-11

    In early 1993, Con Edison and Brooklyn Union Gas began offering rebates to manufacturers that replaced electric motor-driven air compressors with natural gas engine-driven air compressors. These rebates covered significant portions of the costs of installation. After carefully considering all options, Ultra Creative decided to order two Quincy QSS-750-NG, 220-HP units from scales Air Compressor Crop. Scales is a full-service air compressor distribution which offers complete turnkey installation service on all types of stationary air compressors, plus maintenance and repairs. The complete Quincy QSS Series of natural gas engine-driven air compressors is available in sizes from 370 to 1500 cfm. An optical heat recovery system can boost energy efficiencies over 80%. For example, heat recovered from the engine cooling water and exhaust, combined with the heat recovered from the air compressor oil cooler and aftercooler, can be used for heating boiler and laundry process water, plastics thermoforming, unit heaters for space heating, plating tanks, and a variety of other applications to displace conventional fuels.

  14. Improved Regenerative Sorbent-Compressor Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Conceptual regenerative sorbent-compressor refrigerator attains regeneration efficiency and, therefore, overall power efficiency and performance greater than conventional refrigerators. Includes two fluid loops. In one, CH2FCF3 (R134a) ciculates by physical adsorption and desorption in four activated-charcoal sorption compressors. In other, liquid or gas coolant circulated by pump. Wave of regenerative heating and cooling propagates cyclically like peristatic wave among sorption compressors and associated heat exchangers. Powered by electricity, oil, gas, solar heat, or waste heat. Used as air conditioners, refrigerators, and heat pumps in industrial, home, and automotive applications.

  15. Compressor ported shroud for foil bearing cooling

    DOEpatents

    Elpern, David G.; McCabe, Niall; Gee, Mark

    2011-08-02

    A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

  16. On-Orbit Compressor Technology Program

    NASA Technical Reports Server (NTRS)

    Deffenbaugh, Danny M.; Svedeman, Steven J.; Schroeder, Edgar C.; Gerlach, C. Richard

    1990-01-01

    A synopsis of the On-Orbit Compressor Technology Program is presented. The objective is the exploration of compressor technology applicable for use by the Space Station Fluid Management System, Space Station Propulsion System, and related on-orbit fluid transfer systems. The approach is to extend the current state-of-the-art in natural gas compressor technology to the unique requirements of high-pressure, low-flow, small, light, and low-power devices for on-orbit applications. This technology is adapted to seven on-orbit conceptual designs and one prototype is developed and tested.

  17. Integrated Heat Switch/Oxide Sorption Compressor

    NASA Technical Reports Server (NTRS)

    Bard, Steven

    1989-01-01

    Thermally-driven, nonmechanical compressor uses container filled with compressed praseodymium cerium oxide powder (PrCeOx) to provide high-pressure flow of oxygen gas for driving closed-cycle Joule-Thomson-expansion refrigeration unit. Integrated heat switch/oxide sorption compressor has no moving parts except check valves, which control flow of oxygen gas between compressor and closed-cycle Joule-Thomson refrigeration system. Oxygen expelled from sorbent at high pressure by evacuating heat-switch gap and turning on heater.

  18. Investigation of axial positioning for flexural compressors

    NASA Technical Reports Server (NTRS)

    Riggle, Peter

    1991-01-01

    The testing of the research compressor is presented. The research compressor was assembled and disassembled in order to show the consistency in which the piston and rod could be aligned with a .0004 inch radial gap around the piston. A full set of tests was completed for the first assembly, which is referred to as assembly no. 1. The compressor was disassembled and assembled a second time (assembly no. 2). Assembly no. 2 was only tested statically due to the time constraint. Results are discussed.

  19. Compressor Has No Moving Macroscopic Parts

    NASA Technical Reports Server (NTRS)

    Gasser, Max

    1995-01-01

    Compressor containing no moving macroscopic parts functions by alternating piston and valve actions of successive beds of magnetic particles. Fabricated easily because no need for precisely fitting parts rotating or sliding on each other. Also no need for lubricant fluid contaminating fluid to be compressed. Compressor operates continuously, eliminating troublesome on/off cycling of other compressors, and decreasing consumption of energy. Phased cells push fluid from bottom to top, adding increments of pressure. Each cell contains magnetic powder particles loose when electromagnet coil deenergized, but tightly packed when coil energized.

  20. Automation of existing natural gas compressor stations

    SciTech Connect

    Little, J.E.

    1986-05-01

    ANR Pipeline Co., in automating 20 major compressor stations in 20 months' time, standardized on hardware and software design. In this article, the author tells how off-the-shelf automation was used and how the systems work.

  1. Refrigeration system having dual suction port compressor

    DOEpatents

    Wu, Guolian

    2016-01-05

    A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portion of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.

  2. Method and apparatus for starting supersonic compressors

    DOEpatents

    Lawlor, Shawn P

    2013-08-06

    A supersonic gas compressor with bleed gas collectors, and a method of starting the compressor. The compressor includes aerodynamic duct(s) situated for rotary movement in a casing. The aerodynamic duct(s) generate a plurality of oblique shock waves for efficiently compressing a gas at supersonic conditions. A convergent inlet is provided adjacent to a bleed gas collector, and during startup of the compressor, bypass gas is removed from the convergent inlet via the bleed gas collector, to enable supersonic shock stabilization. Once the oblique shocks are stabilized at a selected inlet relative Mach number and pressure ratio, the bleed of bypass gas from the convergent inlet via the bypass gas collectors is effectively eliminated.

  3. Abradable compressor and turbine seals, volume 2

    NASA Technical Reports Server (NTRS)

    Sundberg, D. V.; Dennis, R. E.; Hurst, L. G.

    1979-01-01

    The applications and advantages of abradable coatings as gas path seals in a general aviation turbofan engine were investigated. Abradable materials were evaluated for the high pressure radial compressor and the axial high and low pressure turbine shrouds.

  4. Hydrogen pipeline compressors annual progress report.

    SciTech Connect

    Fenske, G. R.; Erck, R. A.

    2011-07-15

    The objectives are: (1) develop advanced materials and coatings for hydrogen pipeline compressors; (2) achieve greater reliability, greater efficiency, and lower capital in vestment and maintenance costs in hydrogen pipeline compressors; and (3) research existing and novel hydrogen compression technologies that can improve reliability, eliminate contamination, and reduce cost. Compressors are critical components used in the production and delivery of hydrogen. Current reciprocating compressors used for pipeline delivery of hydrogen are costly, are subject to excessive wear, have poor reliability, and often require the use of lubricants that can contaminate the hydrogen (used in fuel cells). Duplicate compressors may be required to assure availability. The primary objective of this project is to identify, and develop as required, advanced materials and coatings that can achieve the friction, wear, and reliability requirements for dynamically loaded components (seal and bearings) in high-temperature, high-pressure hydrogen environments prototypical of pipeline and forecourt compressor systems. The DOE Strategic Directions for Hydrogen Delivery Workshop identified critical needs in the development of advanced hydrogen compressors - notably, the need to minimize moving parts and to address wear through new designs (centrifugal, linear, guided rotor, and electrochemical) and improved compressor materials. The DOE is supporting several compressor design studies on hydrogen pipeline compression specifically addressing oil-free designs that demonstrate compression in the 0-500 psig to 800-1200 psig range with significant improvements in efficiency, contamination, and reliability/durability. One of the designs by Mohawk Innovative Technologies Inc. (MiTi{reg_sign}) involves using oil-free foil bearings and seals in a centrifual compressor, and MiTi{reg_sign} identified the development of bearings, seals, and oil-free tribological coatings as crucial to the successful

  5. Electrochemical oxygen concentrator as an oxygen compressor

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A solid polymer electrolyte (SPE) oxygen compressor is described which generates pressures of 3000 psi. The SPE is a cation exchange membrane with chemical compatibility, and has the capability of withstanding 5000 psi. Other features of the compressor described include: gasketless sealing, porus plate cell supports, and conductive cooling. Results are presented of a computer program which defines the power of the system as a function of density, temperature, pressure, membrane thickness, and water content.

  6. Alternatives to compressor cooling in California climates

    SciTech Connect

    Feustel, H. ); de Almeida, A. . Dept. of Electrical Engineering); Blumstein, C. . Universitywide Energy Research Group)

    1991-01-01

    This review and discussion has been prepared for the California Institute for Energy Efficiency (CIEE) to examine research on alternatives to compressor cooling. The report focuses on strategies for eliminating compressors in California's transition climates -- moderately warm areas located between the cool coastal regions and the hot central regions. Many of these strategies could also help reduce compressor use in hotter climates. Compressor-driven cooling of residences in California's transition climate regions is an undesirable load for California's electric utilities because load factor is poor and usage is typically high during periods of system peak demand. We review a number of alternatives to compressors, including low-energy strategies: evaporative cooling, natural and induced ventilation, reflective coatings, shading with vegetation and improved glazing, thermal storage, and radiative cooling. Also included are two energy-intensive strategies: absorption cooling and desiccant cooling. Our literature survey leads us to conclude that many of these strategies, used either singly or in combination, are technically and economically feasible alternatives to compressor-driven cooling. 78 refs., 8 figs.

  7. Core compressor exit stage study, 2

    NASA Technical Reports Server (NTRS)

    Behlke, R. F.; Burdsall, E. A.; Canal, E., Jr.; Korn, N. D.

    1979-01-01

    A total of two three-stage compressors were designed and tested to determine the effects of aspect ratio on compressor performance. The first compressor was designed with an aspect ratio of 0.81; the other, with an aspect ratio of 1.22. Both compressors had a hub-tip ratio of 0.915, representative of the rear stages of a core compressor, and both were designed to achieve a 15.0% surge margin at design pressure ratios of 1.357 and 1.324, respectively, at a mean wheel speed of 167 m/sec. At design speed the 0.81 aspect ratio compressor achieved a pressure ratio of 1.346 at a corrected flow of 4.28 kg/sec and an adiabatic efficiency of 86.1%. The 1.22 aspect ratio design achieved a pressure ratio of 1.314 at 4.35 kg/sec flow and 87.0% adiabatic efficiency. Surge margin to peak efficiency was 24.0% with the lower aspect ratio blading, compared with 12.4% with the higher aspect ratio blading.

  8. RELAP5-3D Compressor Model

    SciTech Connect

    James E. Fisher; Cliff B. Davis; Walter L. Weaver

    2005-06-01

    A compressor model has been implemented in the RELAP5-3D© code. The model is similar to that of the existing pump model, and performs the same function on a gas as the pump performs on a single-phase or two-phase fluid. The compressor component consists of an inlet junction and a control volume, and optionally, an outlet junction. This feature permits cascading compressor components in series. The equations describing the physics of the compressor are derived from first principles. These equations are used to obtain the head, the torque, and the energy dissipation. Compressor performance is specified using a map, specific to the design of the machine, in terms of the ratio of outlet-to-inlet total (or stagnation) pressure and adiabatic efficiency as functions of rotational velocity and flow rate. The input quantities are specified in terms of dimensionless variables, which are corrected to stagnation density and stagnation sound speed. A small correction was formulated for the input of efficiency to account for the error introduced by assumption of constant density when integrating the momentum equation. Comparison of the results of steady-state operation of the compressor model to those of the MIT design calculation showed excellent agreement for both pressure ratio and power.

  9. Development of Carbon Dioxide Hermitic Compressor

    NASA Astrophysics Data System (ADS)

    Imai, Satoshi; Oda, Atsushi; Ebara, Toshiyuki

    Because of global environmental problems, the existing refrigerants are to be replaced with natural refrigerants. CO2 is one of the natural refrigerants and environmentally safe, inflammable and non-toxic refrigerant. Therefore high efficiency compressor that can operate with natural refrigerants, especially CO2, needs to be developed. We developed a prototype CO2 hermetic compressor, which is able to use in carbon dioxide refrigerating systems for practical use. The compressor has two rolling pistons, and it leads to low vibrations, low noise. In additions, two-stage compression with two cylinders is adopted, because pressure difference is too large to compress in one stage. And inner pressure of the shell case is intermediate pressure to minimize gas leakage between compressing rooms and inner space of shell case. Intermediate pressure design enabled to make the compressor smaller in size and lighter in weight. As a result, the compressor achieved high efficiency and high reliability by these technology. We plan to study heat pump water heater, cup vending machine and various applications with CO2 compressor.

  10. The problem of the turbo-compressor

    NASA Technical Reports Server (NTRS)

    Devillers, Rene

    1920-01-01

    In terminating the study of the adaptation of the engine to the airplane, we will examine the problem of the turbo-compressor,the first realization of which dates from the war; this will form an addition to the indications already given on supercharging at various altitudes. This subject is of great importance for the application of the turbo-compressor worked by the exhaust gases. As a matter of fact, a compressor increasing the pressure in the admission manifold may be controlled by the engine shaft by means of multiplication gear or by a turbine operated by the exhaust gas. Assuming that the increase of pressure in the admission manifold is the same in both cases, the pressure in the exhaust manifold would be greater in the case in which the compressor is worked by the exhaust gas and there would result a certain reduction of engine power which we must be able to calculate. On the other hand , if the compressor is controlled by the engine shaft, a certain fraction of the excess power supplied is utilized for the rotation of the compressor. In order to compare the two systems, it is there-fore necessary to determine the value of the reduction of power due to back pressure when the turbine is employed.

  11. ETR COMPRESSOR BUILDING, TRA643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COMPRESSOR BUILDING, TRA-643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ROOF AND CONCRETE BLOCK WALLS. INL NEGATIVE NO. 61-4536. Unknown Photographer, ca. 1961. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. MTR COMPRESSOR BUILDING, TRA651. RELATED AIR COMPRESSOR EQUIPMENT OUTSIDE BUILDING. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR COMPRESSOR BUILDING, TRA-651. RELATED AIR COMPRESSOR EQUIPMENT OUTSIDE BUILDING. PIPE LEADS BELOW GRADE INTO MTR BUILDING. CAMERA FACING WEST, IE, EAST SIDE OF MTR BUILDING. INL NEGATIVE NO. 56-1265. Jack L. Larsen, Photographer, 4/20/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. NASA Low-speed Axial Compressor for Fundamental Research

    NASA Technical Reports Server (NTRS)

    Wasserbauer, Charles A.; Weaver, Harold F.; Senyitko, Richard G.

    1995-01-01

    A low-speed multistage axial compressor built by the NASA Lewis Research Center is described. The purpose of this compressor is to increase the understanding of the complex flow phenomena within multistage axial compressors and to obtain detailed data from a multistage compressor environment for use in developing and verifying models for computational fluid dynamic code assessment. The compressor has extensive pressure instrumentation in both stationary and rotating frames of reference, and has provisions for flow visualization and laser velocimetry. The compressor will accommodate rotational speeds to 1050 rpm and is rated at a pressure ratio of 1.042.

  14. Compressor seal rub energetics study

    NASA Technical Reports Server (NTRS)

    Laverty, W. F.

    1978-01-01

    The rub mechanics of compressor abradable blade tip seals at simulated engine conditions were investigated. Twelve statistically planned, instrumented rub tests were conducted with titanium blades and Feltmetal fibermetal rubstrips. The tests were conducted with single stationary blades rubbing against seal material bonded to rotating test disks. The instantaneous rub torque, speed, incursion rate and blade temperatures were continuously measured and recorded. Basic rub parameters (incursion rate, rub depth, abradable density, blade thickness and rub velocity) were varied to determine the effects on rub energy and heat split between the blade, rubstrip surface and rub debris. The test data was reduced, energies were determined and statistical analyses were completed to determine the primary and interactive effects. Wear surface morphology, profile measurements and metallographic analysis were used to determine wear, glazing, melting and material transfer. The rub energies for these tests were most significantly affected by the incursion rate while rub velocity and blade thickness were of secondary importance. The ratios of blade wear to seal wear were representative of those experienced in engine operation of these seal system materials.

  15. Gas compressor for jet engine

    SciTech Connect

    Hartman, N.W.

    1987-02-24

    A gas compressor is described including: (a) a housing defining a passage therethrough, the housing having an inlet and an outlet; (b) means disposed near the inlet for producing a stream of gas flowing at supersonic velocity in a direction from the inlet toward the outlet; (c) a mixing chamber, internal to the housing, downstream from and in fluid communication with the inlet, which mixing chamber is also in communication with the gas producing means and into which passes the stream of gas; (d) a source of liquid coolant and means for injecting the coolant into the mixing chamber to accomplish modification of stagnation enthalpy and temperature of the gases in the mixing chamber; (e) a converging, diverging nozzle disposed internal to the housing between and in fluid communication with the housing inlet and the mixing chamber for providing a passage for inlet gases from the inlet to the mixing chamber. The supersonic velocity gas stream which flows through the mixing chamber creates a partial vacuum in the mixing chamber causing the inlet gases to flow through the inlet and through the converging, diverging nozzle into the mixing chamber at supersonic velocity; (f) a diffuser internal to the housing disposed downstream of and in fluid communication with the mixing chamber, the diffuser including: (1) a supersonic diffuser defining a chamber of decreasing volume; (2) a subsonic diffuser defining a chamber of increasing volume; and (3) a throat connecting the supersonic diffuser and the subsonic diffuser.

  16. Performance of single-stage compressor designed on basis of constant total enthalpy with symmetrical velocity diagram at all radii and velocity ratio of 0.7 at rotor hub / Jack R. Burtt and Robert J. Jackson

    NASA Technical Reports Server (NTRS)

    Burtt, Jack R; Jackson, Robert J

    1951-01-01

    A typical inlet axial-flow compressor inlet stage, which was designed on the basis of constant total enthalpy with symmetrical velocity diagram at all radii, was investigated. At a tip speed of 1126 feet per second, a peak pressure ratio of 1.28 was obtained at an efficiency of 0.76. At a tip speed, the highest practical flow was 28 pounds per second per square foot frontal area with an efficiency of 0.78. Data for a rotor relative inlet Mach number range of from 0.5 to 0.875 indicates that the critical value for any stage radial element is approximately 0.80 for the stage investigated.

  17. Compressor Stall Recovery Through Tip Injection Assessed

    NASA Technical Reports Server (NTRS)

    Suder, Ken L.

    2001-01-01

    Aerodynamic stability is a fundamental limit in the compressor design process. The development of robust techniques for increasing stability has several benefits: enabling higher loading and fewer blades, increasing safety throughout a mission, increasing tolerance to stage mismatch during part-speed operation and speed transients, and providing an opportunity to match stages at the compressor maximum efficiency point, thus reducing fuel burn. Mass injection upstream of the tip of a high-speed axial compressor rotor is a stability enhancement approach known to be effective in suppressing stall in tip-critical rotors if the injection is activated before stall occurs. This approach to stall suppression requires that a reliable stall warning system be available. Tests have recently been performed to assess whether steady injection can also be used to recover from fully developed stall. If mass injection is effective in recovering from stall quickly enough to avoid structural damage or loss of engine power, then a stall warning system may not be required. The stall recovery tests were performed on a transonic compressor rotor at its design tip speed of 1475 ft/sec using four injectors evenly spaced around the compressor case upstream of the rotor. The injectors were connected to an external air source. In an actual engine application, the injected air would be supplied with compressor bleed air. The injectors were isolated from the air source by a fast-acting butterfly valve. With the injectors turned off, the compressor was throttled into stall. Air injection was then activated with no change in throttle setting by opening the butterfly valve. The compressor recovered from stall at a fixed throttle setting with the aid of tip injection. The unsteady operating characteristic of the rotor was measured during these tests using high-response pressure sensors located upstream and downstream of the rotor. The figure shows the results, where the unsteady pressure and mass

  18. Experimental Investigation of Centrifugal Compressor Stabilization Techniques

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2003-01-01

    Results from a series of experiments to investigate techniques for extending the stable flow range of a centrifugal compressor are reported. The research was conducted in a high-speed centrifugal compressor at the NASA Glenn Research Center. The stabilizing effect of steadily flowing air-streams injected into the vaneless region of a vane-island diffuser through the shroud surface is described. Parametric variations of injection angle, injection flow rate, number of injectors, injector spacing, and injection versus bleed were investigated for a range of impeller speeds and tip clearances. Both the compressor discharge and an external source were used for the injection air supply. The stabilizing effect of flow obstructions created by tubes that were inserted into the diffuser vaneless space through the shroud was also investigated. Tube immersion into the vaneless space was varied in the flow obstruction experiments. Results from testing done at impeller design speed and tip clearance are presented. Surge margin improved by 1.7 points using injection air that was supplied from within the compressor. Externally supplied injection air was used to return the compressor to stable operation after being throttled into surge. The tubes, which were capped to prevent mass flux, provided 9.3 points of additional surge margin over the baseline surge margin of 11.7 points.

  19. 49 CFR 230.71 - Orifice testing of compressors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Compressor size Single strokes per minute Diameter of orifice(in inches) Air pressure maintained(in pounds... feet the speed of compressor may be increased 5 single strokes per minute for each 1,000 feet...

  20. 49 CFR 230.71 - Orifice testing of compressors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Compressor size Single strokes per minute Diameter of orifice(in inches) Air pressure maintained(in pounds... feet the speed of compressor may be increased 5 single strokes per minute for each 1,000 feet...

  1. 49 CFR 230.71 - Orifice testing of compressors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Compressor size Single strokes per minute Diameter of orifice(in inches) Air pressure maintained(in pounds... feet the speed of compressor may be increased 5 single strokes per minute for each 1,000 feet...

  2. 49 CFR 230.71 - Orifice testing of compressors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Compressor size Single strokes per minute Diameter of orifice(in inches) Air pressure maintained(in pounds... feet the speed of compressor may be increased 5 single strokes per minute for each 1,000 feet...

  3. Efficiency study of oil cooling of a screw compressor

    SciTech Connect

    Tree, D.R.; McKellar, M.G.

    1989-04-01

    One of the major goals of all compressor manufacturers is to build as efficient a compressor as possible. Over the last several years improvements to the design of screw compressors has made them efficiently competitive with other types of compressors, especially at large loads. The primary purpose of this research is to investigate four different methods of cooling a 250 horsepower compressor and determine their effects on the efficiency of the compressor. Two conventional methods, liquid injection and thermosyphon cooling, and two new methods, V-PLUS and Fresco oil injection, are investigated. The screw compressor used in the tests was a VRS-500 screw compressor made by the Vilter Manufacturing Corporation. 6 figs.

  4. 49 CFR 230.71 - Orifice testing of compressors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Compressor size Single strokes per minute Diameter of orifice(in inches) Air pressure maintained(in pounds... feet the speed of compressor may be increased 5 single strokes per minute for each 1,000 feet...

  5. Design of 9.271-pressure-ratio 5-stage core compressor and overall performance for first 3 stages

    NASA Technical Reports Server (NTRS)

    Steinke, Ronald J.

    1986-01-01

    Overall aerodynamic design information is given for all five stages of an axial flow core compressor (74A) having a 9.271 pressure ratio and 29.710 kg/sec flow. For the inlet stage group (first three stages), detailed blade element design information and experimental overall performance are given. At rotor 1 inlet tip speed was 430.291 m/sec, and hub to tip radius ratio was 0.488. A low number of blades per row was achieved by the use of low-aspect-ratio blading of moderate solidity. The high reaction stages have about equal energy addition. Radial energy varied to give constant total pressure at the rotor exit. The blade element profile and shock losses and the incidence and deviation angles were based on relevant experimental data. Blade shapes are mostly double circular arc. Analysis by a three-dimensional Euler code verified the experimentally measured high flow at design speed and IGV-stator setting angles. An optimization code gave an optimal IGV-stator reset schedule for higher measured efficiency at all speeds.

  6. Enhanced SAR Data Compressor for Sentinel-1

    NASA Astrophysics Data System (ADS)

    Algra, T.; Bierens, L.

    2007-08-01

    This paper presents a new on-board SAR data compressor which outperforms the conventionally used Block Adaptive Quantization (BAQ) compressor. The system applies improved entropy-constrained block adaptive quantization of raw Synthetic Aperture Radar (SAR) data in the frequency domain. For advanced multi-mode satellite SAR instruments, such as the one to be implemented on-board of Sentinel- , the average compression ratio can be doubled as compared to BAQ. Space borne implementation with a high-speed data throughput is feasible due to the advent of advanced space FPGA's and ASIC's including the powerFFT, a fast FFT-oriented DSP. The complete compressor module can be implemented on a 6U Eurocard that fits in the SAR Electronics System crate of Sentinel-1.

  7. Sorption compressor/mechanical expander hybrid refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, J. A.; Britcliffe, M.

    1987-01-01

    Experience with Deep Space Network (DSN) ground-based cryogenic refrigerators has proved the reliability of the basic two-stage Gifford-McMahon helium refrigerator. A very long life cryogenic refrigeration system appears possible by combining this expansion system or a turbo expansion system with a hydride sorption compressor in place of the usual motor driven piston compressor. To test the feasibility of this system, a commercial Gifford-McMahon refrigerator was tested using hydrogen gas as the working fluid. Although no attempt was made to optimize the system for hydrogen operation, the refrigerator developed 1.3 W at 30 K and 6.6 W at 60 K. The results of the test and of theoretical performances of the hybrid compressor coupled to these expansion systems are presented.

  8. Compressor airfoil tip clearance optimization system

    DOEpatents

    Little, David A.; Pu, Zhengxiang

    2015-08-18

    A compressor airfoil tip clearance optimization system for reducing a gap between a tip of a compressor airfoil and a radially adjacent component of a turbine engine is disclosed. The turbine engine may include ID and OD flowpath boundaries configured to minimize compressor airfoil tip clearances during turbine engine operation in cooperation with one or more clearance reduction systems that are configured to move the rotor assembly axially to reduce tip clearance. The configurations of the ID and OD flowpath boundaries enhance the effectiveness of the axial movement of the rotor assembly, which includes movement of the ID flowpath boundary. During operation of the turbine engine, the rotor assembly may be moved axially to increase the efficiency of the turbine engine.

  9. 49 CFR 178.338-17 - Pumps and compressors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Specifications for Containers for Motor Vehicle Transportation § 178.338-17 Pumps and compressors. (a) Liquid pumps and gas compressors, if used, must be of suitable design, adequately protected against breakage by... 49 Transportation 3 2012-10-01 2012-10-01 false Pumps and compressors. 178.338-17 Section...

  10. 49 CFR 192.736 - Compressor stations: Gas detection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Compressor stations: Gas detection. 192.736... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.736 Compressor stations: Gas detection. (a) Not later than September 16, 1996, each compressor building in...

  11. 49 CFR 192.736 - Compressor stations: Gas detection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Compressor stations: Gas detection. 192.736... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.736 Compressor stations: Gas detection. (a) Not later than September 16, 1996, each compressor building in...

  12. 49 CFR 192.173 - Compressor stations: Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Compressor stations: Ventilation. 192.173 Section 192.173 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS....173 Compressor stations: Ventilation. Each compressor station building must be ventilated to...

  13. 49 CFR 192.173 - Compressor stations: Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Compressor stations: Ventilation. 192.173 Section 192.173 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS....173 Compressor stations: Ventilation. Each compressor station building must be ventilated to...

  14. 40 CFR 204.57-3 - Test compressor preparation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Test compressor preparation. 204.57-3... compressor preparation. (a) Prior to the official test, the test compressor selected in accordance with § 204... adjustments, preparations, modifications and/or tests are part of the manufacturer's prescribed...

  15. 40 CFR 204.57-3 - Test compressor preparation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Test compressor preparation. 204.57-3... compressor preparation. (a) Prior to the official test, the test compressor selected in accordance with § 204... adjustments, preparations, modifications and/or tests are part of the manufacturer's prescribed...

  16. 40 CFR 204.57-3 - Test compressor preparation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Test compressor preparation. 204.57-3... compressor preparation. (a) Prior to the official test, the test compressor selected in accordance with § 204... adjustments, preparations, modifications and/or tests are part of the manufacturer's prescribed...

  17. 40 CFR 204.57-3 - Test compressor preparation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Test compressor preparation. 204.57-3... compressor preparation. (a) Prior to the official test, the test compressor selected in accordance with § 204... adjustments, preparations, modifications and/or tests are part of the manufacturer's prescribed...

  18. 49 CFR 192.173 - Compressor stations: Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Compressor stations: Ventilation. 192.173 Section... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of Pipeline Components § 192.173 Compressor stations: Ventilation. Each compressor station building must be ventilated to...

  19. 49 CFR 192.173 - Compressor stations: Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Compressor stations: Ventilation. 192.173 Section... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of Pipeline Components § 192.173 Compressor stations: Ventilation. Each compressor station building must be ventilated to...

  20. 49 CFR 192.173 - Compressor stations: Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Compressor stations: Ventilation. 192.173 Section... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of Pipeline Components § 192.173 Compressor stations: Ventilation. Each compressor station building must be ventilated to...

  1. 21 CFR 868.6250 - Portable air compressor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes,...

  2. 21 CFR 868.6250 - Portable air compressor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes,...

  3. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped...

  4. 49 CFR 192.169 - Compressor stations: Pressure limiting devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Compressor stations: Pressure limiting devices... Pipeline Components § 192.169 Compressor stations: Pressure limiting devices. (a) Each compressor station must have pressure relief or other suitable protective devices of sufficient capacity and...

  5. Cold Climate Heat Pumps Using Tandem Compressors

    SciTech Connect

    Shen, Bo; Abdelaziz, Omar; Rice, C Keith; Baxter, Van D

    2016-01-01

    In cold climate zones, e.g. ASHRAE climate regions IV and V, conventional electric air-source heat pumps (ASHP) do not work well, due to high compressor discharge temperatures, large pressure ratios and inadequate heating capacities at low ambient temperatures. Consequently, significant use of auxiliary strip heating is required to meet the building heating load. We introduce innovative ASHP technologies as part of continuing efforts to eliminate auxiliary strip heat use and maximize heating COP with acceptable cost-effectiveness and reliability. These innovative ASHP were developed using tandem compressors, which are capable of augmenting heating capacity at low temperatures and maintain superior part-load operation efficiency at moderate temperatures. Two options of tandem compressors were studied; the first employs two identical, single-speed compressors, and the second employs two identical, vapor-injection compressors. The investigations were based on system modeling and laboratory evaluation. Both designs have successfully met the performance criteria. Laboratory evaluation showed that the tandem, single-speed compressor ASHP system is able to achieve heating COP = 4.2 at 47 F (8.3 C), COP = 2.9 at 17 F (-8.3 C), and 76% rated capacity and COP = 1.9 at -13 F (-25 C). This yields a HSPF = 11.0 (per AHRI 210/240). The tandem, vapor-injection ASHP is able to reach heating COP = 4.4 at 47 F, COP = 3.1 at 17 F, and 88% rated capacity and COP = 2.0 at -13 F. This yields a HSPF = 12.0. The system modeling and further laboratory evaluation are presented in the paper.

  6. Effects of Shrouded Stator Cavity Flows on Multistage Axial Compressor Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Wellborn, Steven R.; Okiishi, Theodore H.

    1996-01-01

    Experiments were performed on a low-speed multistage axial-flow compressor to assess the effects of shrouded stator cavity flows on aerodynamic performance. Five configurations, which involved changes in seal-tooth leakage rates and/or elimination of the shrouded stator cavities, were tested. Data collected enabled differences in overall individual stage and the third stage blade element performance parameters to be compared. The results show conclusively that seal-tooth leakage ran have a large impact on compressor aerodynamic performance while the presence of the shrouded stator cavities alone seemed to have little influence. Overall performance data revealed that for every 1% increase in the seal-tooth clearance to blade-height ratio the pressure rise dropped up to 3% while efficiency was reduced by 1 to 1.5 points. These observed efficiency penalty slopes are comparable to those commonly reported for rotor and cantilevered stator tip clearance variations. Therefore, it appears that in order to correctly predict overall performance it is equally important to account for the effects of seal-tooth leakage as it is to include the influence of tip clearance flows. Third stage blade element performance data suggested that the performance degradation observed when leakage was increased was brought about in two distinct ways. First, increasing seal-tooth leakage directly spoiled the near hub performance of the stator row in which leakage occurred. Second, the altered stator exit now conditions caused by increased leakage impaired the performance of the next downstream stage by decreasing the work input of the downstream rotor and increasing total pressure loss of the downstream stator. These trends caused downstream stages to progressively perform worse. Other measurements were acquired to determine spatial and temporal flow field variations within the up-and-downstream shrouded stator cavities. Flow within the cavities involved low momentum fluid traveling primarily

  7. Method and apparatus for starting supersonic compressors

    DOEpatents

    Lawlor, Shawn P [Bellevue, WA

    2012-04-10

    A supersonic gas compressor. The compressor includes aerodynamic duct(s) situated on a rotor journaled in a casing. The aerodynamic duct(s) generate a plurality of oblique shock waves for efficiently compressing a gas at supersonic conditions. The convergent inlet is adjacent to a bleed air collector, and during acceleration of the rotor, bypass gas is removed from the convergent inlet via a collector to enable supersonic shock stabilization. Once the oblique shocks are stabilized at a selected inlet relative Mach number and pressure ratio, the bleed of bypass gas from the convergent inlet via the bypass gas collectors is eliminated.

  8. Active magnetic bearings applied to industrial compressors

    NASA Technical Reports Server (NTRS)

    Kirk, R. G.; Hustak, J. F.; Schoeneck, K. A.

    1993-01-01

    The design and shop test results are given for a high-speed eight-stage centrifugal compressor supported by active magnetic bearings. A brief summary of the basic operation of active magnetic bearings and the required rotor dynamics analysis are presented with specific attention given to design considerations for optimum rotor stability. The concerns for retrofits of magnetic bearings in existing machinery are discussed with supporting analysis of a four-stage centrifugal compressor. The current status of industrial machinery in North America using this new support system is presented and recommendations are given on design and analysis requirements for successful machinery operation of either retrofit or new design turbomachinery.

  9. Cold-air performance of a 15.41-cm-tip-diameter axial-flow power turbine with variable-area stator designed for a 75-kW automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Mclallin, K. L.; Kofskey, M. G.; Wong, R. Y.

    1982-01-01

    An experimental evaluation of the aerodynamic performance of the axial flow, variable area stator power turbine stage for the Department of Energy upgraded automotive gas turbine engine was conducted in cold air. The interstage transition duct, the variable area stator, the rotor, and the exit diffuser were included in the evaluation of the turbine stage. The measured total blading efficiency was 0.096 less than the design value of 0.85. Large radial gradients in flow conditions were found at the exit of the interstage duct that adversely affected power turbine performance. Although power turbine efficiency was less than design, the turbine operating line corresponding to the steady state road load power curve was within 0.02 of the maximum available stage efficiency at any given speed.

  10. Development of a J-T Micro Compressor

    NASA Astrophysics Data System (ADS)

    Champagne, P.; Olson, J. R.; Nast, T.; Roth, E.; Collaco, A.; Kaldas, G.; Saito, E.; Loung, V.

    2015-12-01

    Lockheed Martin has developed and tested a space-quality compressor capable of delivering closed-loop gas flow with a high pressure ratio, suitable for driving a Joule- Thomson cold head. The compressor is based on a traditional “Oxford style” dual-opposed piston compressor with linear drive motors and flexure-bearing clearance-seal technology for high reliability and long life. This J-T compressor retains the approximate size, weight, and cost of the ultra-compact, 200 gram Lockheed Martin Pulse Tube Micro Compressor, despite the addition of a flow-rectifying system to convert the AC pressure wave into a steady flow.

  11. Design Study of a Rotary Reciprocating Thermal Compressor

    DTIC Science & Technology

    1974-10-01

    Compressor 1 7 11 17 17 17 30 30 43 43 43 53 53 56 59 63 65 67 Appendix II Description of a Thermal Compressor Computer Program 79 ...immmmmmmmm^ ■* * ’»J’-WPPI mwmu + m.. nmmmm ■ mamF***™******^* —>-■., „.h,, „ •PWCIDIIO PiOK BLANE-OT Figure No. 1 2 3 4 5 6 7 8 9...Thermal Compressor 3 Summary of Thermal Compressor Design 4 Comparison of Refrigerator Types 6 Void Volume Summary 22 Comparison of Compressor

  12. Counterrotatable booster compressor assembly for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Moniz, Thomas Ory (Inventor); Orlando, Robert Joseph (Inventor)

    2004-01-01

    A counterrotatable booster compressor assembly for a gas turbine engine having a counterrotatable fan section with a first fan blade row connected to a first drive shaft and a second fan blade row axially spaced from the first fan blade row and connected to a second drive shaft, the counterrotatable booster compressor assembly including a first compressor blade row connected to the first drive shaft and a second compressor blade row interdigitated with the first compressor blade row and connected to the second drive shaft. A portion of each fan blade of the second fan blade row extends through a flowpath of the counterrotatable booster compressor so as to function as a compressor blade in the second compressor blade row. The counterrotatable booster compressor further includes a first platform member integral with each fan blade of the second fan blade row at a first location so as to form an inner flowpath for the counterrotatable booster compressor and a second platform member integral with each fan blade of the second fan blade row at a second location so as to form an outer flowpath for the counterrotatable booster compressor.

  13. Fault detection and diagnosis for refrigerator from compressor sensor

    DOEpatents

    Keres, Stephen L.; Gomes, Alberto Regio; Litch, Andrew D.

    2016-12-06

    A refrigerator, a sealed refrigerant system, and method are provided where the refrigerator includes at least a refrigerated compartment and a sealed refrigerant system including an evaporator, a compressor, a condenser, a controller, an evaporator fan, and a condenser fan. The method includes monitoring a frequency of the compressor, and identifying a fault condition in the at least one component of the refrigerant sealed system in response to the compressor frequency. The method may further comprise calculating a compressor frequency rate based upon the rate of change of the compressor frequency, wherein a fault in the condenser fan is identified if the compressor frequency rate is positive and exceeds a condenser fan fault threshold rate, and wherein a fault in the evaporator fan is identified if the compressor frequency rate is negative and exceeds an evaporator fan fault threshold rate.

  14. 40 CFR 63.1031 - Compressors standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operating experience, a criterion that indicates failure of the seal system, the barrier fluid system, or... service. Each barrier fluid system shall be equipped with a sensor that will detect failure of the seal... alarm unless the compressor is located within the boundary of an unmanned plant site. (d)...

  15. 40 CFR 65.112 - Standards: Compressors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compressor is located within the boundary of an unmanned plant site. (d) Failure criterion and leak detection... criterion that indicates failure of the seal system, the barrier fluid system, or both. If the sensor indicates failure of the seal system, the barrier fluid system, or both based on the criterion, a leak...

  16. 40 CFR 65.112 - Standards: Compressors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compressor is located within the boundary of an unmanned plant site. (d) Failure criterion and leak detection... criterion that indicates failure of the seal system, the barrier fluid system, or both. If the sensor indicates failure of the seal system, the barrier fluid system, or both based on the criterion, a leak...

  17. 40 CFR 65.112 - Standards: Compressors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compressor is located within the boundary of an unmanned plant site. (d) Failure criterion and leak detection... criterion that indicates failure of the seal system, the barrier fluid system, or both. If the sensor indicates failure of the seal system, the barrier fluid system, or both based on the criterion, a leak...

  18. 40 CFR 63.1012 - Compressor standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... an unmanned plant site. (d) Failure criterion and leak detection. (1) The owner or operator shall... Emission Standards for Equipment Leaks-Control Level 1 § 63.1012 Compressor standards. (a) Compliance... sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall...

  19. 40 CFR 63.1012 - Compressor standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... an unmanned plant site. (d) Failure criterion and leak detection. (1) The owner or operator shall... Emission Standards for Equipment Leaks-Control Level 1 § 63.1012 Compressor standards. (a) Compliance... sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall...

  20. 40 CFR 63.1012 - Compressor standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... an unmanned plant site. (d) Failure criterion and leak detection. (1) The owner or operator shall... Emission Standards for Equipment Leaks-Control Level 1 § 63.1012 Compressor standards. (a) Compliance... sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall...

  1. Jumplike fatigue crack growth in compressor blades

    NASA Astrophysics Data System (ADS)

    Limar', L. V.; Demina, Yu. A.; Botvina, L. R.

    2014-04-01

    It is shown that power relations between the two main fractographic characteristics of fracture surfaces forming during jumplike fatigue crack growth, namely, the crack depth and the corresponding crack front length, can be used to estimate the fracture stress during vibration tests of the compressor blades of an aviation gas turbine engine, which are made of VT3-1 titanium alloy.

  2. Experimental study on performance of BOG compressor

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Wang, Tao; Peng, Xueyuan; Feng, Jianmei

    2015-08-01

    The boil-off gas (BOG) compressor is widely used for recycling the excessive boil-off gas of liquefied natural gas (LNG), and the extra-low suction temperature brings about great challenges to design of the BOG compressor. In this paper, a test system was built to examine the effects of low suction temperature on the compressor performance, in which the lowest temperature reached -178°C by means of a plate-fin heat exchanger with liquefied nitrogen. The test results showed that, as the suction temperature decreased from 20°C to -150°C, the volumetric efficiency of the compressor dropped by 37.0%, and the power consumption decreased by 10.0%. The preheat of the gas by the pipe through the suction flange to suction valve was larger than 20°C as the suction temperature was -150°C, and this value increased with the decreased suction temperature. The pressure loss through the suction valve at lower suction temperature was larger than that at ambient temperature while the volume flow rate was kept the same.

  3. 40 CFR 264.1053 - Standards: Compressors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) of this section shall be checked daily or shall be equipped... compressor is located within the boundary of an unmanned plant site, in which case the sensor must be...

  4. 40 CFR 265.1053 - Standards: Compressors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) of this section shall be checked daily or shall be equipped... compressor is located within the boundary of an unmanned plant site, in which case the sensor must be...

  5. 30 CFR 75.344 - Compressors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air course or to the surface and equipped with sensors to monitor for heat and for carbon monoxide or smoke. The sensors shall deenergize power to the compressor, activate a visual and audible alarm located... every 31 days, sensors installed to monitor for carbon monoxide shall be calibrated with a...

  6. High stability design for new centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Kanki, H.; Katayama, K.; Morii, S.; Mouri, Y.; Umemura, S.; Ozawa, U.; Oda, T.

    1989-01-01

    It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions.

  7. IEMDC - In-Line Electric Motor Driven Compressor

    SciTech Connect

    Michael J. Crowley

    2004-03-31

    This report covers the fifth quarter (01/01/04 to 03/31/04) of the In-Line Electric Motor Driven Compressor (IEMDC) project. Design efforts on the IEMDC continued with compressor efforts focused on performing aerodynamic analyses. These analyses were conducted using computational fluid dynamics. Compressor efforts also entailed developing mechanical designs of components through the use of solid models and working on project deliverables. Electric motor efforts focused on the design of the magnetic bearing system, motor pressure housing, and the motor-compressor interface. The mechanical evaluation of the main interface from both the perspective of the compressor manufacturer and electric motor manufacturer indicates that an acceptable design has been achieved. All mechanical and aerodynamic design efforts have resulted in considerable progress being made towards the completion of the compressor and electric motor design and towards the successful completion of the IEMDC unit.

  8. Efficiency study of oil cooling of a screw compressor

    SciTech Connect

    Tree, D.R.; McKellar, M.G. . Ray W. Herrick Labs.); Fresco, A. )

    1990-01-01

    One of the major goals of all compressor manufacturers is to design and build as efficient a compressor as possible. In a screw compressor it appears that the way the compressor is cooled can have an effect on the compressor's efficiency. This paper presents experimental data on three different screw compressor cooling methods: Liquid Refrigerant Injection Cooling System; Thermosyphon Cooling System; and Oil Injection System. All tests were conducted on a hot gas bypass system using refrigerant R-22. The data taken shows that the Oil Injection System is slightly better than the other two. These tests should be repeated with a higher oil flow rate and ammonia as the working fluid. 10 figs.

  9. Integrally Cast Low-Cost Compressor.

    DTIC Science & Technology

    1983-01-03

    and AE355 for discs). Figures 3 through 6 sumarize cast Custom 450 properties compared with wrought A350 and 355 and cast 17 - 4PH (a common compressor...experience with the casting of other Custom 450 alloy and 17 - 4PH alloy components. Although higher cagting and mold temperatures normally assist alloy...by regulation of air pressure. Tip deflection was related to the stress at failure locations by strain gaging techniques. 94 AOL- TABLE 17 . TENSILE

  10. Combined cold compressor/ejector helium refrigerator

    DOEpatents

    Brown, Donald P.

    1985-01-01

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  11. Combined cold compressor/ejector helium refrigerator

    DOEpatents

    Brown, D.P.

    1984-06-05

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  12. Advanced Compressor for Long Life Space Cryocoolers

    DTIC Science & Technology

    1994-11-01

    Stirling -cycle and pulse-tube cryocoolers are examples of regenerative cryocoolers in which the time-averaged helium flow at any point in the cycle...as described in Section 6.0 for the Phase II proof-of- concept compressor. In the case of split- Stirling cryocoolers , transfer lines from the...feasible motor for this application. If it can be demonstrated that satisfactory pulse-tube (or Stirling ) cryocooler performance can be obtained at 50

  13. METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW

    SciTech Connect

    Bowman Jr, Robert C; Yartys, Dr. Volodymyr A.; Lototskyy, Dr. Michael V; Pollet, Dr. B.G.

    2014-01-01

    Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

  14. Object-oriented Technology for Compressor Simulation

    NASA Technical Reports Server (NTRS)

    Drummond, C. K.; Follen, G. J.; Cannon, M. R.

    1994-01-01

    An object-oriented basis for interdisciplinary compressor simulation can, in principle, overcome several barriers associated with the traditional structured (procedural) development approach. This paper presents the results of a research effort with the objective to explore the repercussions on design, analysis, and implementation of a compressor model in an object oriented (OO) language, and to examine the ability of the OO system design to accommodate computational fluid dynamics (CFD) code for compressor performance prediction. Three fundamental results are that: (1) the selection of the object oriented language is not the central issue; enhanced (interdisciplinary) analysis capability derives from a broader focus on object-oriented technology; (2) object-oriented designs will produce more effective and reusable computer programs when the technology is applied to issues involving complex system inter-relationships (more so than when addressing the complex physics of an isolated discipline); and (3) the concept of disposable prototypes is effective for exploratory research programs, but this requires organizations to have a commensurate long-term perspective. This work also suggests that interdisciplinary simulation can be effectively accomplished (over several levels of fidelity) with a mixed language treatment (i.e., FORTRAN-C++), reinforcing the notion the OO technology implementation into simulations is a 'journey' in which the syntax can, by design, continuously evolve.

  15. Linear motor free piston compressor. Final report

    SciTech Connect

    Bloomfield, D.P.

    1995-02-17

    A Linear Motor Free Piston Compressor (LMFPC), a free piston pressure recovery system for fuel cell powerplants was developed. The LMFPC consists of a reciprocating compressor and a reciprocating expander which are separated by a piston. In the past energy efficient turbochargers have been used for pressure large (over 50 kW) fuel cell powerplants by recovering pressure energy from the powerplant exhaust. A free piston compressor allows pressurizing 3 - 5 kW sized fuel cell powerplants. The motivation for pressurizing PEM fuel cell powerplants is to improve fuel cell performance. Pressurization of direct methanol fuel cells will IC required if PEM membranes are to be used. Direct methanol oxidation anode catalysts require high temperatures to operate at reasonable power densities. The elevated temperatures above 80 deg C will cause high water loss from conventional PEM membranes unless pressurization is employed. Because pressurization is an energy intensive process, recovery of the pressure energy is required to permit high efficiency in fuel cell powerplants. A complete LMFPC which can pressurize a 3 kW fuel cell stack was built. This unit is one of several that were constructed during the course of the program.

  16. Transonic Fan/Compressor Rotor Design Study. Volume 4

    DTIC Science & Technology

    1982-02-01

    amd Identify by block number) Fan Aircraft Engines Compressor Blade Thickness Rotor Camber Distribution Aerodesign Throat Margin Aerodynamics 20...COMPRESSOR ROTOR DESIGN STUDY Volume IV D.E. Parker and M.R. Simonson General Electric Company Aircraft Engine Business Group Advanced Technology...Compressor Research Group Chief, Technology Branch FOR THE COMMANDER H. IVAN BUS Director, Turbine Engine Division If your address has changed, if you

  17. Transonic Fan/Compressor Rotor Design Study. Volume 3

    DTIC Science & Technology

    1982-02-01

    KEY WORDS (Continue on revere. old. $1 nocoeoary and identify by block nuvb.,) Fan Aircraft Engines Compressor Blade Thickne)s Rotor Camber...COMPRESSOR ’Q ROTOR DESIGN STUDY Volume III D.E. Parker and M.R. Simonson CZ) General Electric Company Aircraft Engine Business Group Advanced...Compressor Research Group Chief, Technology Branch FOR THE COMMANDER H. WAN BI Director, Turbine Engine Division ŕ *If your address has changed, if you wish

  18. Study on the Oil Supply System for Rotary Compressors

    NASA Astrophysics Data System (ADS)

    Ito, Takahide; Kobayashi, Hiroyuki; Fujitani, Makoto; Murata, Nobuo

    Research has been undertaken to clarify the shaft oil pump mechanisms and oil supply network systems for rotary compressors. Numerical expressions were developed for each part of the rotary compressor,(such as drive shaft,oil pump and journal bearing grooves)in order to confirm that the calculated values agree with the experimental results. Finally,a computer program has been developed to evaluate the oil supply system performance under steady conditions for rotary compressors.

  19. Economics of water injected air screw compressor systems

    NASA Astrophysics Data System (ADS)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  20. Critical speed measurements in the Tevatron cold compressors

    SciTech Connect

    DeGraff, B.; Bossert, R.; Martinez, A.; Soyars, W.M.; /Fermilab

    2006-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high energy operations. Nominal operating range for these compressors is 43,000 to 85,000 rpm. Past foil bearing failures prompted investigation to determine if critical speeds for operating compressors fall within operating range. Data acquisition hardware and software settings will be discussed for measuring liftoff, first critical and second critical speeds. Several tests provided comparisons between an optical displacement probe and accelerometer measurements. Vibration data and analysis of the 20 Tevatron ring cold compressors will be presented.

  1. Development of an adsorption compressor for use in cryogenic refrigeration

    NASA Technical Reports Server (NTRS)

    Schember, Helen R.

    1989-01-01

    A new compressor with no moving parts has been developed which is able to supply a source of high-pressure gas to a Joule-Thompson based cryogenic refrigerator. The compressor relies on a newly implemented combination of high-surface-area Saran carbon (sorbent) and krypton gas (working fluid). In addition, an integral gas-gap heat switch is used to provide improved overall efficiency. A prototype compressor has been designed, built, and tested as a part of the Jet Propulsion Laboratory effort in sorption refrigeration. Performance data from the prototype unit described here demonstrate successful compressor performance and good agreement with theoretical predictions.

  2. Absorption-Desorption Compressor for Spaceborne/Airborne Cryogenic Refrigerators.

    DTIC Science & Technology

    Refrigerant compressors, *Refrigeration systems), Spaceborne, Airborne, Cryogenics, Gases, Absorption, Desorption, Hydrogen, Hydrides, Lanthanum compounds, Nickel alloys, Joule Thomson effect , Heat transfer

  3. Helium compressors for closed-cycle, 4.5-Kelvin refrigerators

    NASA Technical Reports Server (NTRS)

    Hanson, T. R.

    1992-01-01

    An improved helium compressor for traveling-wave maser and closed-cycle refrigerator systems was developed and is currently being supplied to the DSN. This new 5-hp compressor package is designed to replace the current 3-hp DSN compressors. The new compressor package was designed to retrofit into the existing 3-hp compressor frame and reuse many of the same components, therefore saving the cost of documenting and fabricating these components when implementing a new 5-hp compressor.

  4. Single-stage experimental evaluation of tandem-airfoil rotor stator blading for compressors. Part 6: Data and performance for stage D

    NASA Technical Reports Server (NTRS)

    Clemmons, D. R.

    1973-01-01

    An axial flow compressor stage, having single-airfoil blading, was designed for zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The stage was designed to produce a pressure ratio of 1.265 at a rotor tip velocity of 757 ft/sec. The rotor had an inlet hub/tip ratio of 0.8. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The objectives of this experimental program were: (1) to obtain performance with uniform and distorted inlet flow for comparison with the performance of a stage consisting of tandem-airfoil blading designed for the same vector diagrams; and (2) to evaluate the effectiveness of accounting for the inlet boundary layer, axial velocity ratio, and secondary flows in the stage design. With uniform inlet flow, the rotor achieved a maximum adiabatic efficiency of 90.1% at design equivalent rotor speed and a pressure ratio of 1.281. The stage maximum adiabatic efficiency at design equivalent rotor speed with uniform inlet flow was 86.1% at a pressure ratio of 1.266. Hub radial, tip radial, and circumferential distortion of the inlet flow caused reductions in surge pressure ratio of approximately 2, 10 and 5%, respectively, at design rotor speed.

  5. Compressor station noise-abatement: a case study

    SciTech Connect

    Bianucci, J.A.; Bush, R.C.; Dooher, C.A.

    1980-01-01

    This paper describes the noise abatement measures incorporated by Pacific Gas and Electric Company into the design of its Brannan Island Compressor Station. This two unit reciprocating compressor station is located within 100 feet of a state park and 600 feet of a camp site. Operating noise level data is presented and compared to design expectations.

  6. Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4 percent. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.

  7. Vapor cycle compressors for aerospace vehicle thermal management

    NASA Astrophysics Data System (ADS)

    Dexter, Peter F.; Watts, Roland J.; Haskin, William L.

    1990-10-01

    An overview is given of approaches to achieving high reliability and long life in vapor cycle compressor design for aerospace vehicles. The requirements peculiar to aircraft and spacecraft cooling systems are described. Piston, rotary vane, rolling piston, helical screw, scroll, and centrifugal compressors being developed for aerospace applications are discussed.

  8. Detail view of unit 43 with high pressure stage compressor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of unit 43 with high pressure stage compressor in left foreground and low pressure stage compressor in right background. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  9. 49 CFR 192.165 - Compressor stations: Liquid removal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Compressor stations: Liquid removal. 192.165... Components § 192.165 Compressor stations: Liquid removal. (a) Where entrained vapors in gas may liquefy under... introduction of those liquids in quantities that could cause damage. (b) Each liquid separator used to...

  10. 49 CFR 192.165 - Compressor stations: Liquid removal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Compressor stations: Liquid removal. 192.165... Components § 192.165 Compressor stations: Liquid removal. (a) Where entrained vapors in gas may liquefy under... introduction of those liquids in quantities that could cause damage. (b) Each liquid separator used to...

  11. 49 CFR 192.165 - Compressor stations: Liquid removal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Compressor stations: Liquid removal. 192.165... Components § 192.165 Compressor stations: Liquid removal. (a) Where entrained vapors in gas may liquefy under... introduction of those liquids in quantities that could cause damage. (b) Each liquid separator used to...

  12. 49 CFR 192.165 - Compressor stations: Liquid removal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Compressor stations: Liquid removal. 192.165... Components § 192.165 Compressor stations: Liquid removal. (a) Where entrained vapors in gas may liquefy under... introduction of those liquids in quantities that could cause damage. (b) Each liquid separator used to...

  13. 49 CFR 192.165 - Compressor stations: Liquid removal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Compressor stations: Liquid removal. 192.165... Components § 192.165 Compressor stations: Liquid removal. (a) Where entrained vapors in gas may liquefy under... introduction of those liquids in quantities that could cause damage. (b) Each liquid separator used to...

  14. Sound reduction of air compressors using a systematic approach

    NASA Astrophysics Data System (ADS)

    Moylan, Justin Tharp

    The noise emitted by portable electric air compressors can often be a nuisance or potentially hazardous to the operator or others nearby. Therefore, reducing the noise of these air compressors is desired. This research focuses on compressors with a reciprocating piston design as this is the most common type of pump design for portable compressors. An experimental setup was developed to measure the sound and vibration of the air compressors, including testing inside a semi-anechoic chamber. The design of a quiet air compressor was performed in four stages: 1) Teardown and benchmarking of air compressors, 2) Identification and isolation of noise sources, 3) Development of individual means to quiet noise sources, 4) Selection and testing of integrated solutions. The systematic approach and results for each of these stages will be discussed. Two redesigned solutions were developed and measured to be approximately 65% quieter than the previous unmodified compressor. An additional analysis was performed on the solutions selected by the participants involved in the selection process. This analysis involved determining which of the design criteria each participant considered most important when selecting solutions. The results from each participant were then compared to their educational background and experience and correlations were identified. The correlations discovered suggest that educational background and experience may be key determinants for the preference models developed.

  15. Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4%. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.

  16. Reciprocating compressor valve failure -- Digital modelling and analysis

    SciTech Connect

    Motriuk, R.W.

    1996-12-31

    Many problems in reciprocating compressors are caused by valve failures. Usually, valve failures are diagnosed early, and the worn out parts are replaced. This requires, however, unscheduled compressor shutdowns which increase the cost of operation and possibly breach gas delivery contracts. Thus, it is essential to design valves adequate for the particular compressors and flow conditions. In this paper, it is determined that the cause of an unusually large number of valve failures at one of the NOVA Gas Transmission Limited (NGTL) compressor stations was an inadequate valve design. It is shown that the type of valve presently used is unacceptable and should be replaced. Due to economic restrictions, however, the existing valves are modified rather than replaced. The method used to re-design the compressor valves includes two steps: field measurements and computer digital modelling. The modelling incorporates: (1) acoustic simulation of the system, (2) compressor valve dynamic simulation, and (3) simultaneous simulation of fluid solid interactions between the compressor valves, compressor cylinders and pipework. The results obtained by using models of (2) and (3) are compared.

  17. 14. VIEW OF AIR COMPRESSOR. 1500 kw Westinghouse AC generator ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF AIR COMPRESSOR. 1500 kw Westinghouse AC generator steam-turbine unit; beyond is air compressor of Chicago Pneumatic Tool Company, 1920, engineered by Earl E. Know Company, Erie, Pennsylvania. - Juniata Shops, Power Plant & Boiler House, East of Fourth Avenue at Second Street, Altoona, Blair County, PA

  18. 46 CFR 154.534 - Cargo pumps and cargo compressors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pumps and cargo compressors. 154.534 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo and Process Piping Systems § 154.534 Cargo pumps and cargo compressors. Cargo pumps...

  19. 49 CFR 178.338-17 - Pumps and compressors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Pumps and compressors. 178.338-17 Section 178.338... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.338-17 Pumps and compressors. (a)...

  20. 49 CFR 178.338-17 - Pumps and compressors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Pumps and compressors. 178.338-17 Section 178.338... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.338-17 Pumps and compressors. (a)...

  1. 49 CFR 178.337-15 - Pumps and compressors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Pumps and compressors. 178.337-15 Section 178.337... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.337-15 Pumps and compressors. (a)...

  2. 46 CFR 154.534 - Cargo pumps and cargo compressors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo pumps and cargo compressors. 154.534 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo and Process Piping Systems § 154.534 Cargo pumps and cargo compressors. Cargo pumps...

  3. 49 CFR 178.337-15 - Pumps and compressors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Pumps and compressors. 178.337-15 Section 178.337... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.337-15 Pumps and compressors. (a)...

  4. 46 CFR 154.534 - Cargo pumps and cargo compressors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo pumps and cargo compressors. 154.534 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo and Process Piping Systems § 154.534 Cargo pumps and cargo compressors. Cargo pumps...

  5. 49 CFR 178.337-15 - Pumps and compressors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Pumps and compressors. 178.337-15 Section 178.337... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.337-15 Pumps and compressors. (a)...

  6. 46 CFR 154.534 - Cargo pumps and cargo compressors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo pumps and cargo compressors. 154.534 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo and Process Piping Systems § 154.534 Cargo pumps and cargo compressors. Cargo pumps...

  7. 46 CFR 154.534 - Cargo pumps and cargo compressors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo pumps and cargo compressors. 154.534 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo and Process Piping Systems § 154.534 Cargo pumps and cargo compressors. Cargo pumps...

  8. 49 CFR 178.337-15 - Pumps and compressors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Pumps and compressors. 178.337-15 Section 178.337... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.337-15 Pumps and compressors. (a)...

  9. Axial and Centrifugal Compressor Mean Line Flow Analysis Method

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.

  10. Erosion / Corrosion Resistant Coatings for Compressor Airfoils

    DTIC Science & Technology

    2012-08-29

    2012 2. REPORT TYPE 3 . DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Erosion / Corrosion Resistant Coatings for Compressor...driver • DoD consumes ≈ $13B in aviation fuel annually • Eroded engines emit 10 to 25% greater pollutants 2 3 Erosive media GAS TURBINE ENGINE...AGT1500 for M1A Tank RTM322 for Merlin Arriel for LUH Gnome for Sea King CF34 for E170     5 T64 for H-53  HPW3000 CFM56 for

  11. Piston-Skirt Lubrication System For Compressor

    NASA Technical Reports Server (NTRS)

    Schroeder, Edgar C.; Burzynski, Marion, Jr.

    1994-01-01

    Piston-skirt lubrication system provides steady supply of oil to piston rings of gas compressor. No need for oil-filled crankcase or external oil pump. Instead, part of each piston acts as its own oil pump circulating oil from reservoir. Annular space at bottom of piston and cylinder constitutes working volume of small oil pump. Depending on application, reservoir open to atmosphere, or sealed and pressurized in bellows to prevent contact between oil and atmosphere. Filter removes particles worn away from piston rings and cylinder wall during normal operation.

  12. Liquid rocket engine axial-flow turbopumps

    NASA Technical Reports Server (NTRS)

    Scheer, D. D.; Huppert, M. C.; Viteri, F.; Farquhar, J.; Keller, R. B., Jr. (Editor)

    1978-01-01

    The axial pump is considered in terms of the total turbopump assembly. Stage hydrodynamic design, pump rotor assembly, pump materials for liquid hydrogen applications, and safety factors as utilized in state of the art pumps are among the topics discussed. Axial pump applications are included.

  13. Transonic airfoil and axial flow rotary machine

    DOEpatents

    Nagai, Naonori; Iwatani, Junji

    2015-09-01

    Sectional profiles close to a tip 124 and a part between a midportion 125 and a hub 123 are shifted to the upstream of an operating fluid flow in a sweep direction. Accordingly, an S shape is formed in which the tip 124 and the part between the midportion 125 and the hub 123 protrude. As a result, it is possible reduce various losses due to shook, waves, thereby forming a transonic airfoil having an excellent aerodynamic characteristic.

  14. Numerical flow analysis for axial flow turbine

    NASA Astrophysics Data System (ADS)

    Sato, T.; Aoki, S.

    Some numerical flow analysis methods adopted in the gas turbine interactive design system, TDSYS, are described. In the TDSYS, a streamline curvature program for axisymmetric flows, quasi 3-D and fully 3-D time marching programs are used respectively for blade to blade flows and annular cascade flows. The streamline curvature method has some advantages in that it can include the effect of coolant mixing and choking flow conditions. Comparison of the experimental results with calculated results shows that the overall accuracy is determined more by the empirical correlations used for loss and deviation than by the numerical scheme. The time marching methods are the best choice for the analysis of turbine cascade flows because they can handle mixed subsonic-supersonic flows with automatic inclusion of shock waves in a single calculation. Some experimental results show that a time marching method can predict the airfoil surface Mach number distribution more accurately than a finite difference method. One weakpoint of the time marching methods is a long computer time; they usually require several times as much CPU time as other methods. But reductions in computer costs and improvements in numerical methods have made the quasi 3-D and fully 3-D time marching methods usable as design tools, and they are now used in TDSYS.

  15. Aerodynamics of Advanced Axial-Flow Turbomachinery.

    DTIC Science & Technology

    1980-11-30

    computation and analysis initiated in 1974 with funding from NASA and extended under an AFOSR grant in 1978. Task IV evolved from discussions with Dr. Arthur J...cementing in place short segments of lb ga. (1.2 mm I.D.) hypodermic tubing in drillud holes carefully aligned normal to the sidewall profile at the...PRESSURE I REFERENCE SCANPREF I I SYSTEM 0YTE NECKED- PRF NEEDLE VALVE PE PRRSSUE TRANSDUCER AMPLIF IER] POSITIONER TEMPERATURES I STO BE READ I

  16. Impulsive Injection for Compressor Stator Separation Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Braunscheidel, Edward P.; Bright, Michelle M.

    2005-01-01

    Flow control using impulsive injection from the suction surface of a stator vane has been applied in a low speed axial compressor. Impulsive injection is shown to significantly reduce separation relative to steady injection for vanes that were induced to separate by an increase in vane stagger angle of 4 degrees. Injected flow was applied to the airfoil suction surface using spanwise slots pitched in the streamwise direction. Injection was limited to the near-hub region, from 10 to 36 percent of span, to affect the dominant loss due to hub leakage flow. Actuation was provided externally using high-speed solenoid valves closely coupled to the vane tip. Variations in injected mass, frequency, and duty cycle are explored. The local corrected total pressure loss across the vane at the lower span region was reduced by over 20 percent. Additionally, low momentum fluid migrating from the hub region toward the tip was effectively suppressed resulting in an overall benefit which reduced corrected area averaged loss through the passage by 4 percent. The injection mass fraction used for impulsive actuation was typically less than 0.1 percent of the compressor through flow.

  17. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2014-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were

  18. Core compressor exit stage study. 1: Aerodynamic and mechanical design

    NASA Technical Reports Server (NTRS)

    Burdsall, E. A.; Canal, E., Jr.; Lyons, K. A.

    1979-01-01

    The effect of aspect ratio on the performance of core compressor exit stages was demonstrated using two three stage, highly loaded, core compressors. Aspect ratio was identified as having a strong influence on compressors endwall loss. Both compressors simulated the last three stages of an advanced eight stage core compressor and were designed with the same 0.915 hub/tip ratio, 4.30 kg/sec (9.47 1bm/sec) inlet corrected flow, and 167 m/sec (547 ft/sec) corrected mean wheel speed. The first compressor had an aspect ratio of 0.81 and an overall pressure ratio of 1.357 at a design adiabatic efficiency of 88.3% with an average diffusion factor or 0.529. The aspect ratio of the second compressor was 1.22 with an overall pressure ratio of 1.324 at a design adiabatic efficiency of 88.7% with an average diffusion factor of 0.491.

  19. Pressure field study of the Tevatron cold compressors

    SciTech Connect

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.; /Fermilab

    2003-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40 and 95 krpm, with a speed of 80 krpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper.

  20. Surge recovery techniques for the Tevatron cold compressors

    SciTech Connect

    Martinez, A.; Klebaner, A.L.; Makara, J.N.; Theilacker, J.C.; /Fermilab

    2006-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, made by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/s of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/s and operating speeds between 40 and 95 krpm. Since initial commissioning in 1993, Tevatron transient conditions such as quench recovery have led to multiple-location machine trips as a result of the cold compressors entering the surge regime. Historically, compressors operating at lower inlet pressures and higher speeds have been especially susceptible to these machine trips and it was not uncommon to have multiple compressor trips during large multiple-house quenches. In order to cope with these events and limit accelerator down time, surge recovery techniques have been implemented in an attempt to prevent the compressors from tripping once the machine entered this surge regime. This paper discusses the different methods of surge recovery that have been employed. Data from tests performed at the Cryogenic Test Facility at Fermilab as well as actual Tevatron operational data were utilized. In order to aid in the determination of the surge region, a full mapping study was undertaken to characterize the entire pressure field of the cold compressor. These techniques were then implemented and tested at several locations in the Tevatron with some success.

  1. Surge Recovery Techniques for the Tevatron Cold Compressors

    NASA Astrophysics Data System (ADS)

    Martinez, A.; Klebaner, A. L.; Makara, J. N.; Theilacker, J. C.

    2006-04-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, made by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations. The compressor is designed to pump 60 g/s of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/s and operating speeds between 40 and 95 krpm. Since initial commissioning in 1993, Tevatron transient conditions such as quench recovery have led to multiple-location machine trips as a result of the cold compressors entering the surge regime. Historically, compressors operating at lower inlet pressures and higher speeds have been especially susceptible to these machine trips and it was not uncommon to have multiple compressor trips during large multiple-house quenches. In order to cope with these events and limit accelerator down time, surge recovery techniques have been implemented in an attempt to prevent the compressors from tripping once the machine entered this surge regime. This paper discusses the different methods of surge recovery that have been employed. Data from tests performed at the Cryogenic Test Facility at Fermilab as well as actual Tevatron operational data were utilized. In order to aid in the determination of the surge region, a full mapping study was undertaken to characterize the entire pressure field of the cold compressor. These techniques were then implemented and tested at several locations in the Tevatron with some success.

  2. Compressor Research Facility F100 High Pressure Compressor Inlet Total Pressure and Swirl Profile Simulation.

    DTIC Science & Technology

    1984-10-01

    SECTION I INTRODUCTION 1. GENERAL -.The F100 gas turbine engine currently powers the Air Force F-15 and F-16 aircraft . The compression section of this... Aircraft in designing these vanes and screens to provide the measured engine profiles. lata acquisition system was defined and transported to Pratt and...WILLIAM W. COEHVRWALKER H. MITCHELL Compressor Test Group Chief, Technology Branch Technology Branch Turbine Engine Division Turbine Engine Division

  3. Turbine Engine with Differential Gear Driven Fan and Compressor

    NASA Technical Reports Server (NTRS)

    Suciu, Gabriel L. (Inventor); Pagluica, Gino J. (Inventor); Duong, Loc Quang (Inventor); Portlock, Lawrence E. (Inventor)

    2013-01-01

    A gas turbine engine provides a differential gear system coupling the turbine to the bypass fan and the compressor. In this manner, the power/speed split between the bypass fan and the compressor can be optimized under all conditions. In the example shown, the turbine drives a sun gear, which drives a planet carrier and a ring gear in a differential manner. One of the planet carrier and the ring gear is coupled to the bypass fan, while the other is coupled to the compressor.

  4. Some field experience with subsynchronous vibration of centrifugal compressors

    NASA Technical Reports Server (NTRS)

    Wang, Xi-Xuan; Gu, Jin-Chu; Shen, Qin-Gen; Hua, Yong-Li; Zhu, Lan-Sheng; Du, Yun-Tian

    1989-01-01

    A lot of large chemical fertilizer plants producing 1000 ton NH3/day and 1700 ton urea/day were constructed in the 1970's in China. During operation, subsynchronous vibration takes place occasionally in some of the large turbine-compressor sets and has resulted in heavy economic losses. Two cases of subsynchronous vibration are described: Self-excited vibration of the low-pressure (LP) cylinder of one kind of N2-H2 multistage compressor; and Forced subsynchronous vibration of the high-pressure (HP) cylinder of the CO2 compressor.

  5. Design and performance analysis of gas sorption compressors

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1984-01-01

    Compressor kinetics based on gas adsorption and desorption processes by charcoal and for gas absorption and desorption processes by LaNi5 were analyzed using a two-phase model and a three-component model, respectively. The assumption of the modeling involved thermal and mechanical equilibria between phases or among the components. The analyses predicted performance well for compressors which have heaters located outside the adsorbent or the absorbent bed. For the rapidly-cycled compressor, where the heater was centrally located, only the transient pressure compared well with the experimental data.

  6. Internal hysteresis experienced on a high pressure syn gas compressor

    NASA Technical Reports Server (NTRS)

    Zeidan, F. Y.

    1984-01-01

    A vibration instability phenomenon experienced in operating high pressure syn gas centrifugal compressors in two ammonia plants is described. The compressors were monitored by orbit and spectrum analysis for changes from baseline readings. It is found that internal hysteresis was the major destabilizing force; however, the problem was further complicated by seal lockup at the suction end of the compressor. A coupling lockup problem and a coupling fit problem, which frettage of the shaft, are also considered as contributors to the self excited vibrations.

  7. Rub energetics of compressor blade tip seals

    SciTech Connect

    Laverty, W.F.

    1981-03-30

    The rub mechanics of aircraft gas turbine engine compressor abradable blade tip seals was studied at simulated engine conditions. In 12 statistically planned, instrumented rub tests using single titanium blades and fiber-metal rubstrips, the rub velocity, incursion rate, incursion depth, blade thickness, and abradable strength were varied to determine the effects on rub energy, heat split between the blade, rubstrip surface and rub debris, and blade and seal wear. The rub energies were found to be most significantly affected by the incursion rate while rub velocity and blade thickness were of secondary importance. In five additional rub tests using single nickel alloy blades and multiple titanium alloy blades, rub energy and wear effects were found to be similar for titanium and nickel alloy blades while rub energies increased for multiple blades relative to single blade test results.

  8. Rub energetics of compressor blade tip seals

    NASA Technical Reports Server (NTRS)

    Laverty, W. F.

    1981-01-01

    The rub mechanics of aircraft gas turbine engine compressor abradable blade tip seals was studied at simulated engine conditions. In 12 statistically planned, instrumented rub tests using single titanium blades and fiber-metal rubstrips the rub velocity, incursion rate, incursion depth, blade thickness, and abradable strength were varied to determine the effects on rub energy, heat split between the blade, rubstrip surface and rub debris, and blade and seal wear. The rub energies were found to be most significantly affected by the incursion rate while rub velocity and blade thickness were of secondary importance. In five additional rub tests using single nickel alloy blades and multiple titanium alloy blades, rub energy and wear effects were found to be similar for titanium and nickel alloy blades while rub energies increased for multiple blades relative to single blade test results.

  9. Stabilized Liner Compressor: The Return of Linus

    NASA Astrophysics Data System (ADS)

    Turchi, Peter; Frese, Sherry; Frese, Michael; Mielke, Charles; Hinrichs, Mark; Nguyen, Doan

    2015-11-01

    To access the lower cost regime of magneto-inertial fusion at megagauss magnetic field-levels requires the use of dynamic conductors in the form of imploding cylindrical shells, aka, liners. Such liner implosions can compress magnetic flux and plasma to attain fusion conditions, but are subject to Rayleigh-Taylor instabilities, both in the launch and recovery of the liner material and in the final few diameters of implosion. These instabilities were overcome in the Linus program at the Naval Research Laboratory, c. 1979, providing the experimentally-demonstrated basis for repetitive operation and leading to an economical reactor concept at low fusion gain. The recent ARPA-E program for low-cost fusion technology has revived interest in this approach. We shall discuss progress in modeling and design of a Stabilized Liner Compressor (SLC) that extends the earlier work to higher pressures and liner speeds appropriate to potential plasma targets. Sponsored by ARPA-E ALPHA Program.

  10. Demonstration of PIV in a Transonic Compressor

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1998-01-01

    Particle Imaging Velocimetry (PIV) is a powerful measurement technique which can be used as an alternative or complementary approach to Laser Doppler Velocimetry (LDV) in a wide range of research applications. PIV data are measured simultaneously at multiple points in space, which enables the investigation of the non-stationary spatial structures typically encountered in turbomachinery. Many of the same issues encountered in the application of LDV techniques to rotating machinery apply in the application of PIV. Preliminary results from the successful application of the standard 2-D PIV technique to a transonic axial compressor are presented. The lessons learned from the application of the 2-D PIV technique will serve as the basis for applying 3-component PIV techniques to turbomachinery.

  11. Analysis of three-dimensional transonic compressors

    NASA Technical Reports Server (NTRS)

    Bourgeade, A.

    1984-01-01

    A method for computing the three-dimensional transonic flow around the blades of a compressor or of a propeller is given. The method is based on the use of the velocity potential, on the hypothesis that the flow is inviscid, irrotational and isentropic. The equation of the potential is solved in a transformed space such that the surface of the blade is mapped into a plane where the periodicity is implicit. This equation is in a nonconservative form and is solved with the help of a finite difference method using artificial time. A computer code is provided and some sample results are given in order to demonstrate the influence of three-dimensional effects and the blade's rotation.

  12. Gas turbine engine with supersonic compressor

    SciTech Connect

    Roberts, II, William Byron; Lawlor, Shawn P.

    2015-10-20

    A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  13. 19. View northwest of Tropic Chamber reciprocal compressors (typical), in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View northwest of Tropic Chamber reciprocal compressors (typical), in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  14. 18. View north of Tropic Chamber Worthington centrifugal compressor and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. View north of Tropic Chamber Worthington centrifugal compressor and control panel, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  15. 16. View northwest of Arctic Chamber Worthington centrifugal compressor and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. View northwest of Arctic Chamber Worthington centrifugal compressor and control panel, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  16. 5. INTERIOR, LOOKING PAST HELIUM COMPRESSORS NO. 3 AND NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR, LOOKING PAST HELIUM COMPRESSORS NO. 3 AND NO. 2, TO NORTHEAST FRONT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  17. 8. ORIGINAL HELIUM COMPRESSOR, CIRCA 1957, BY HASKELL ENGINEERING, GLENDALE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. ORIGINAL HELIUM COMPRESSOR, CIRCA 1957, BY HASKELL ENGINEERING, GLENDALE, CALIFORNIA. Looking north. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  18. 46. Communication equipment room, shock isolator air compressor at right, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. Communication equipment room, shock isolator air compressor at right, looking northeast - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  19. 40 CFR 204.57-3 - Test compressor preparation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... measurement methodology. (c) In the event of compressor manfunction (i.e., failure to start, misfiring... which will be distributed in commerce, unless such procedures are required or permitted under...

  20. Development Of A Centrifugal Hydrogen Pipeline Gas Compressor

    SciTech Connect

    Di Bella, Francis A.

    2015-04-16

    Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary to relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.

  1. Synthetic Minor NSR Permit: Questar Pipeline Company - Fidlar Compressor Station

    EPA Pesticide Factsheets

    This page contains documents related to the synthetic minor NSR permit for the Questar Pipeline Company Fidlar Compressor Station, located on the Uintah and Ouray Indian Reservation in Uintah County, UT.

  2. Space station gas compressor technology study program, phase 1

    NASA Technical Reports Server (NTRS)

    Hafele, B. W.; Rapozo, R. R.

    1989-01-01

    The objectives were to identify the space station waste gases and their characteristics, and to investigate compressor and dryer types, as well as transport and storage requirements with tradeoffs leading to a preliminary system definition.

  3. 14. INSIDE VIEW OF BOMB SHELTER WITH AIR COMPRESSOR Everett ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INSIDE VIEW OF BOMB SHELTER WITH AIR COMPRESSOR Everett Weinreb, photographer, April 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  4. 5. DISCONNECTED COMPRESSOR MOTOR. Hot Springs National Park, Bathhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DISCONNECTED COMPRESSOR MOTOR. - Hot Springs National Park, Bathhouse Row, Quapaw Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  5. Experimentally studying of axial compressor operation with steam

    NASA Astrophysics Data System (ADS)

    Batenin, V. M.; Zeigarnik, Yu. A.; Kosoi, A. S.; Datsenko, V. V.; Sinkevich, M. V.

    2015-12-01

    Steam offers numerous benefits when used as the working fluid in thermodynamic cycles. In lowtemperature cycles, where thermal energy is switched from one temperature potential to another (thermal transformers), steam is much less commonly used as a working fluid than in high-temperature cycles. The deficiencies of difficulties in using steam in thermal transformers include low pressure at the working temperatures and hence large specific volume. A compressor capable of high productivity having high discharge and relatively large increase in pressure is required. To that end, a multistage axial compressor from an airplane aircraft engine may be employed. To confirm the viability of this approach, the compressor of an AL-21 airplane aircraft engine is tested on a custom test bench. Experimental results are presented for a multistage axial compressor working with steam, when the input pressure is 0.5-5 kPa.

  6. 4. INGERSOLLRAND AMMONIA COMPRESSOR AND CONTROL PANEL INSIDE BUILDING 2; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INGERSOLL-RAND AMMONIA COMPRESSOR AND CONTROL PANEL INSIDE BUILDING 2; LOOKING SOUTHWEST - Rath Packing Company, Engine Room, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  7. 7. INTERIOR VIEW OF BREW HOUSE, AMMONIA COMPRESSOR READS: THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. INTERIOR VIEW OF BREW HOUSE, AMMONIA COMPRESSOR- READS: THE FRED WOLF CO. 139 REES STREET, CHICAGO; CLOSER RANGE (NOTE GAUGES ON FAR WALL) - August Schell Brewing Company, Twentieth Street South, New Ulm, Brown County, MN

  8. Compressor-fan unitary structure for air conditioning system

    NASA Astrophysics Data System (ADS)

    Dreiman, N.

    2015-08-01

    An extremely compact, therefore space saving unitary structure of short axial length is produced by radial integration of a revolving piston rotary compressor and an impeller of a centrifugal fan. The unitary structure employs single motor to run as the compressor so the airflow fan and eliminates duality of motors, related power supply and control elements. Novel revolving piston rotary compressor which provides possibility for such integration comprises the following: a suction gas delivery system which provides cooling of the motor and supplies refrigerant into the suction chamber under higher pressure (supercharged); a modified discharge system and lubricating oil supply system. Axial passages formed in the stationary crankshaft are used to supply discharge gas to a condenser, to return vaporized cooling agent from the evaporator to the suction cavity of the compressor, to pass a lubricant and to accommodate wiring supplying power to the unitary structure driver -external rotor electric motor.

  9. 20. VIEW OF WORTHINGTON BASE LOAD OXYGEN COMPRESSOR IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF WORTHINGTON BASE LOAD OXYGEN COMPRESSOR IN THE HIGH PURITY OXYGEN BUILDING LOOKING NORTH. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  10. 21. VIEW OF CLARK OXYGEN BOOSTER COMPRESSOR IN THE HIGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW OF CLARK OXYGEN BOOSTER COMPRESSOR IN THE HIGH PURITY OXYGEN BUILDING LOOKING SOUTH. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  11. General interior view of pumphouse looking southwest. Compressor unit 40 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General interior view of pumphouse looking southwest. Compressor unit 40 is in foreground. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  12. Detail view of unit 43 with high pressure stage compressor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of unit 43 with high pressure stage compressor in left foreground. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  13. DETAIL VIEW OF UNIT #3 WITH HIGH PRESSURE STAGE COMPRESSOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF UNIT #3 WITH HIGH PRESSURE STAGE COMPRESSOR IN LEFT FOREGROUND. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  14. View of steam powered air compressor in boiler house. Gas ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of steam powered air compressor in boiler house. Gas engine powered electric generators are visible in far left background. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  15. View looking to starboard of stem powered refrigeration compressor (ice ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking to starboard of stem powered refrigeration compressor (ice machine); low counter at left center of photograph is a mold for making block ice. (p55) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA

  16. 49 CFR 192.163 - Compressor stations: Design and construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... which can be readily opened from the inside without a key. Each swinging door located in an exterior wall must be mounted to swing outward. (d) Fenced areas. Each fence around a compressor station...

  17. 35. VIEW LOOKING EAST IN PUMP ROOM. AIR COMPRESSOR ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. VIEW LOOKING EAST IN PUMP ROOM. AIR COMPRESSOR ON LEFT, FUEL OIL PUMP BEHIND ON LEFT, FUEL OIL HEATERS AND PUMPS IN BACKGROUND WITH DRAIN SYSTEM - Georgetown Steam Plant, South Warsaw Street, King County Airport, Seattle, King County, WA

  18. Hyper dispersion pulse compressor for chirped pulse amplification systems

    DOEpatents

    Barty, Christopher P. J.

    2011-11-29

    A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.

  19. Internal combustion engine for natural gas compressor operation

    SciTech Connect

    Hagen, Christopher; Babbitt, Guy

    2016-12-27

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.

  20. Transonic Fan/Compressor Rotor Design Study. Volume 2

    DTIC Science & Technology

    1982-02-01

    Identity by block number) Fan Aircraft Engines Compressor Blade Thickness Rotor Camber Distribution Aerodesign Throat Margin Aerodynamics 20. 1ABSRACT...COMPRESSOR ROTOR DESIGN STUDY Volume II D.E. Parker and M.R. Simonson General Electric Company / Aircraft Engine Business Group Advanced Technology...Research Group Chief, Technology Branch FOR THE COMMANDER H. IVAN BUSH Director, Turbine Engine Division . If your address has changed, if you wish to be