Science.gov

Sample records for 100-kwe nuclear space

  1. Power management for multi-100 KWe space systems

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.; Valgora, M. E.

    1980-01-01

    This paper examines mid to late 1980s power management technology needs to support development of a general-purpose space platform, capable of supplying 100 to 250 KWe to a variety of users in LEO. To that end, a typical Shuttle-assembled and supplied space platform is described, along with a group of payloads which might reasonably be expected to use such a facility. Examination of platform and user power needs yields a set of power system requirements used to evaluate power management options for life cycle cost effectiveness. The most cost-effective AC/DC and DC systems are evaluated, specifically to develop system details which lead to technology goals including array and transmission voltage, best frequency for AC power transmission, and advantages and disadvantages of AC and DC systems for this application. Finally, system and component requirements are compared with the state of the art to identify areas where technology development is required.

  2. Study of power management technology for orbital multi-100KWe applications. Volume 3: Requirements

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.

    1980-01-01

    Mid to late 1980's power management technology needs to support development of a general purpose space platform, capable of suplying 100 to 250 KWe to a variety of users in low Earth orbit are examined. A typical, shuttle assembled and supplied space platform is illustred, along with a group of payloads which might reasonably be expected to use such a facility. Examination of platform and user power needs yields a set of power requirements used to evaluate power management options for life cycle cost effectivness. The most cost effective ac/dc and dc systems are evaluated, specifically to develop system details which lead to technology goals, including: array and transmission voltages, best frequency for ac power transmission, and advantages and disadvantages of ac and dc systems for this application. System and component requirements are compared with the state-of-the-art to identify areas where technological development is required.

  3. Study of power management technology for orbital multi-100KWe applications. Volume 3: Requirements

    NASA Astrophysics Data System (ADS)

    Mildice, J. W.

    1980-07-01

    Mid to late 1980's power management technology needs to support development of a general purpose space platform, capable of suplying 100 to 250 KWe to a variety of users in low Earth orbit are examined. A typical, shuttle assembled and supplied space platform is illustred, along with a group of payloads which might reasonably be expected to use such a facility. Examination of platform and user power needs yields a set of power requirements used to evaluate power management options for life cycle cost effectivness. The most cost effective ac/dc and dc systems are evaluated, specifically to develop system details which lead to technology goals, including: array and transmission voltages, best frequency for ac power transmission, and advantages and disadvantages of ac and dc systems for this application. System and component requirements are compared with the state-of-the-art to identify areas where technological development is required.

  4. Study of power management technology for orbital multi-100KWe applications. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.

    1980-01-01

    The preliminary requirements and technology advances required for cost effective space power management systems for multi-100 kilowatt requirements were identified. System requirements were defined by establishing a baseline space platform in the 250 KE KWe range and examining typical user loads and interfaces. The most critical design parameters identified for detailed analysis include: increased distribution voltages and space plasma losses, the choice between ac and dc distribution systems, shuttle servicing effects on reliability, life cycle costs, and frequency impacts to power management system and payload systems for AC transmission. The first choice for a power management system for this kind of application and size range is a hybrid ac/dc combination with the following major features: modular design and construction-sized minimum weight/life cycle cost; high voltage transmission (100 Vac RMS); medium voltage array or = 440 Vdc); resonant inversion; transformer rotary joint; high frequency power transmission line or = 20 KHz); energy storage on array side or rotary joint; fully redundant; and 10 year life with minimal replacement and repair.

  5. Study of power management technology for orbital multi-100KWe applications. Volume 2: Study results

    NASA Astrophysics Data System (ADS)

    Mildice, J. W.

    1980-07-01

    The preliminary requirements and technology advances required for cost effective space power management systems for multi-100 kilowatt requirements were identified. System requirements were defined by establishing a baseline space platform in the 250 KE KWe range and examining typical user loads and interfaces. The most critical design parameters identified for detailed analysis include: increased distribution voltages and space plasma losses, the choice between ac and dc distribution systems, shuttle servicing effects on reliability, life cycle costs, and frequency impacts to power management system and payload systems for AC transmission. The first choice for a power management system for this kind of application and size range is a hybrid ac/dc combination with the following major features: modular design and construction-sized minimum weight/life cycle cost; high voltage transmission (100 Vac RMS); medium voltage array or = 440 Vdc); resonant inversion; transformer rotary joint; high frequency power transmission line or = 20 KHz); energy storage on array side or rotary joint; fully redundant; and 10 year life with minimal replacement and repair.

  6. Nuclear power in space

    SciTech Connect

    Aftergood, S. ); Hafemeister, D.W. ); Prilutsky, O.F.; Rodionov, S.N. ); Primack, J.R. )

    1991-06-01

    Nuclear reactors have provided energy for satellites-with nearly disastrous results. Now the US government is proposing to build nuclear-powered boosters to launch Star Wars defenses. These authors represent scientific groups that are opposed to the use of nuclear power in near space. The authors feel that the best course for space-borne reactors is to ban them from Earth orbit and use them in deep space.

  7. Nuclear power in space

    NASA Astrophysics Data System (ADS)

    Written and verbal testimony presented before the House Subcommittee on Energy Research and Development is documented. Current research efforts related to space nuclear power are discussed including the SP-100 Space Reactor Program, development of radioisotope thermoelectric generators, and the Advanced Nuclear Systems Program. Funding, research and test facilities, specific space mission requirements, and the comparison of solar and nuclear power systems are addressed. Witnesses included representatives from DOD, NASA, DOE, universities, and private industry.

  8. Ongoing Space Nuclear Activities

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    2007-01-01

    Most ongoing US activities related to space nuclear power and propulsion are sponsored by NASA. NASA-spons0red space nuclear work is currently focused on evaluating potential fission surface power (FSP) systems and on radioisotope power systems (RPS). In addition, significant efforts related to nuclear thermal propulsion (NTP) systems have been completed and will provide a starting point for potential future NTP work.

  9. Nuclear Power in Space

    DOE R&D Accomplishments Database

    1994-01-01

    In the early years of the United States space program, lightweight batteries, fuel cells, and solar modules provided electric power for space missions. As missions became more ambitious and complex, power needs increased and scientists investigated various options to meet these challenging power requirements. One of the options was nuclear energy. By the mid-1950s, research had begun in earnest on ways to use nuclear power in space. These efforts resulted in the first radioisotope thermoelectric generators (RTGs), which are nuclear power generators build specifically for space and special terrestrial uses. These RTGs convert the heat generated from the natural decay of their radioactive fuel into electricity. RTGs have powered many spacecraft used for exploring the outer planets of the solar system and orbiting the sun and Earth. They have also landed on Mars and the moon. They provide the power that enables us to see and learn about even the farthermost objects in our solar system.

  10. Nuclear Power in Space.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Research has shown that nuclear radioisotope power generators can supply compact, reliable, and efficient sources of energy for a broad range of space missions. These missions range from televising views of planetary surfaces to communicating scientific data to Earth. This publication presents many applications of the advancing technology and…

  11. Nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  12. Nuclear Propulsion in Space (1968)

    SciTech Connect

    2012-06-23

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  13. Nuclear Propulsion in Space (1968)

    ScienceCinema

    None

    2016-07-12

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  14. Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    2012-01-01

    Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.

  15. Space disposal of nuclear wastes

    NASA Technical Reports Server (NTRS)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  16. Nuclear Safety for Space Systems

    NASA Astrophysics Data System (ADS)

    Offiong, Etim

    2010-09-01

    It is trite, albeit a truism, to say that nuclear power can provide propulsion thrust needed to launch space vehicles and also, to provide electricity for powering on-board systems, especially for missions to the Moon, Mars and other deep space missions. Nuclear Power Sources(NPSs) are known to provide more capabilities than solar power, fuel cells and conventional chemical means. The worry has always been that of safety. The earliest superpowers(US and former Soviet Union) have designed and launched several nuclear-powered systems, with some failures. Nuclear failures and accidents, however little the number, could be far-reaching geographically, and are catastrophic to humans and the environment. Building on the numerous research works on nuclear power on Earth and in space, this paper seeks to bring to bear, issues relating to safety of space systems - spacecrafts, astronauts, Earth environment and extra terrestrial habitats - in the use and application of nuclear power sources. It also introduces a new formal training course in Space Systems Safety.

  17. Emerging Space Nuclear Power Needs

    NASA Technical Reports Server (NTRS)

    Redd, F. J.; Fornoles, E. V.

    1984-01-01

    Growing interest in new classes of military and civil space systems which demand substantial increases in power over current satellites is generating a renewed interest in space qualified nuclear power systems. Indeed, one can say that power is a limiting technology to the achievement of many future goals in space. The speed of nuclear power system development is currently limited by the lack of a clear distinct definition of system requirements. Emerging system requirements are discussed for the following fields: robust surveillance systems, survivable communication systems with anti-jam capabilities, electric propulsion systems, and weapons applications.

  18. Technology and applications of space nuclear power

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.; Rosen, Robert; Bennett, Gary L.; Schnyer, A. D.

    1991-01-01

    Requirements for a number of potential NASA civil space missions are addressed, and the nuclear power technology base to meet these requirements is described. Particular attention is given to applications of space nuclear power to lunar, Mars, and science missions and the technology status of space nuclear power with emphasis on dynamic isotope and space nuclear reactor power systems.

  19. (Nuclear power engineering in space)

    SciTech Connect

    Cooper, R.H. Jr.

    1990-06-18

    The principal purpose of this trip was to participate in the Anniversary Specialist Conference on Nuclear Power Engineering in Space hosted by the USSR Ministry of Atomic Power Engineering and Industry. The conference was held in Obninsk, USSR. A secondary purpose of the trip was to meet with the French Commissariat A L'Energie Atomique in Paris regarding the status of their space power program.

  20. In-space nuclear propulsion

    NASA Astrophysics Data System (ADS)

    Bruno, C.; Dujarric, C.

    2013-02-01

    The past and the recent status of nuclear propulsion (NP) for application to space mission is presented. The case for using NP in manned space missions is made based on fundamental physics and on the necessity to ensure safe radiation doses to future astronauts. In fact, the presence of solar and galactic-cosmic radiation poses substantial risks to crews traveling for months in a row to destinations such as asteroids and Mars. Since passive or active shields would be massive to protect against the more energetic part of the radiation energy spectrum, the only alternative is to reduce dose by traveling faster. Hence the importance of propulsion systems with much higher specific impulse than that of current chemical systems, and thus the use of nuclear propulsion. Nuclear-thermal and nuclear-electric propulsions are then discussed in view of their potential application to missions now in the preliminary planning stage by space agencies and industries and being considered by the ISECG international panel. In this context, recent ideas for future use of the ISS that may require NP are also presented.

  1. Nuclear Propulsion for Space Applications

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Bechtel, R. D.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2013-01-01

    Basics of Nuclear Systems: Long history of use on Apollo and space science missions. 44 RTGs and hundreds of RHUs launched by U.S. during past 4 decades. Heat produced from natural alpha (a) particle decay of Plutonium (Pu-238). Used for both thermal management and electricity production. Used terrestrially for over 65 years. Fissioning 1 kg of uranium yields as much energy as burning 2,700,000 kg of coal. One US space reactor (SNAP-10A) flown (1965). Former U.S.S.R. flew 33 space reactors. Heat produced from neutron-induced splitting of a nucleus (e.g. U-235). At steady-state, 1 of the 2 to 3 neutrons released in the reaction causes a subsequent fission in a "chain reaction" process. Heat converted to electricity, or used directly to heat a propellant. Fission is highly versatile with many applications.

  2. NASA Missions Enabled by Space Nuclear Systems

    NASA Technical Reports Server (NTRS)

    Scott, John H.; Schmidt, George R.

    2009-01-01

    This viewgraph presentation reviews NASA Space Missions that are enabled by Space Nuclear Systems. The topics include: 1) Space Nuclear System Applications; 2) Trade Space for Electric Power Systems; 3) Power Generation Specific Energy Trade Space; 4) Radioisotope Power Generation; 5) Radioisotope Missions; 6) Fission Power Generation; 7) Solar Powered Lunar Outpost; 8) Fission Powered Lunar Outpost; 9) Fission Electric Power Generation; and 10) Fission Nuclear Thermal Propulsion.

  3. Space nuclear thermal propulsion program

    SciTech Connect

    Haslett, R.A.

    1994-12-31

    This report describes te development and funding problems of the space nuclear thermal propulsion program (SNTP). The SNTP program was transferred to the air force, and almost immediately , they indicated that they would have to terminate the program because of a decreasing defense budget and other air force priorities. Congress continued to strongly support the program and $55 million was appropriated for fiscal year 1993, but the air force would not release any of the money to the program. By the summer of 1993, barely 18 months after the program was transferred to the air force, the SNTP team had essentially stopped all work and reduced to a skeleton staff to perform an orderly termination. Despite the significant accomplishments of the program and the endorsements it received from two DSBs, the 1994 Congressional Appropriations Committee had no alternative but to withhold further funding support since no cognizant agency (air force, NASA, or the DOE) was willing to take the lead and continue the technology for future space applications. Once again, the inability to forge cooperation between government agencies for a long-term goal doomed another nuclear technology program. The technology is currently being documented to the extent possible with existing funds because it is clear that a compact lightweight PBR space power and/or propulsion system will be required to enable unmanned and eventually manned exploration of the solar system.

  4. Nuclear Energy for Space Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    2010-01-01

    Nuclear power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system. Fusion and antimatter systems may also be viable in the future

  5. Space nuclear power and man's extraterrestrial civilization

    SciTech Connect

    Angelo, J.J.; Buden, D.

    1983-01-01

    This paper examines leading space nuclear power technology candidates. Particular emphasis is given the heat-pipe reactor technology currently under development at the Los Alamos National Laboratory. This program is aimed at developing a 10-100 kWe, 7-year lifetime space nuclear power plant. As the demand for space-based power reaches megawatt levels, other nuclear reactor designs including: solid core, fluidized bed, and gaseous core, are considered.

  6. Making space nuclear power a reality

    NASA Technical Reports Server (NTRS)

    Cook, Beverly A.

    2005-01-01

    Our current space exploration missions are power limited. Space nuclear reactors could provide the power for both onboard electrical power and propulsion to enable a new generation of space science and exploration. Implementing a mission using a space nuclear reactor presents many technical challenges. However, nuclear technologies are safely and reliably used throughout U.S. industries and the Government. Well-defined processes and regulations currently exist for the use of nuclear technologies in space or any other application. These processes and regulations assure safe, reliable use of nuclear technology in a manner that protects the public and the environment. The question is not one of choosing between safety and space science, but of investing in a technology that includes rigorous processes and procedures to assure safe.

  7. Coordinating Space Nuclear Research Advancement and Education

    SciTech Connect

    John D. Bess; Jonathon A. Webb; Brian J. Gross; Aaron E. Craft

    2009-11-01

    The advancement of space exploration using nuclear science and technology has been a goal sought by many individuals over the years. The quest to enable space nuclear applications has experienced many challenges such as funding restrictions; lack of political, corporate, or public support; and limitations in educational opportunities. The Center for Space Nuclear Research (CSNR) was established at the Idaho National Laboratory (INL) with the mission to address the numerous challenges and opportunities relevant to the promotion of space nuclear research and education.1 The CSNR is operated by the Universities Space Research Association and its activities are overseen by a Science Council comprised of various representatives from academic and professional entities with space nuclear experience. Program participants in the CSNR include academic researchers and students, government representatives, and representatives from industrial and corporate entities. Space nuclear educational opportunities have traditionally been limited to various sponsored research projects through government agencies or industrial partners, and dedicated research centers. Centralized research opportunities are vital to the growth and development of space nuclear advancement. Coordinated and focused research plays a key role in developing the future leaders in the space nuclear field. The CSNR strives to synchronize research efforts and provide means to train and educate students with skills to help them excel as leaders.

  8. Overview of DOE space nuclear propulsion programs

    NASA Technical Reports Server (NTRS)

    Newhouse, Alan R.

    1993-01-01

    An overview of Department of Energy space nuclear propulsion programs is presented in outline and graphic form. DOE's role in the development and safety assurance of space nuclear propulsion is addressed. Testing issues and facilities are discussed along with development needs and recent research activities.

  9. Space Nuclear Thermal Propulsion (SNTP) tests

    NASA Technical Reports Server (NTRS)

    Allen, George C.

    1993-01-01

    Viewgraphs on the space nuclear thermal propulsion (SNTP) program are presented. The objective of the research is to develop advanced nuclear thermal propulsion (NTP) technology based on the particle bed reactor concept. A strong philosophical commitment exists in the industry/national laboratory team to emphasize testing in development activities. Nuclear testing currently underway to support development of SNTP technology is addressed.

  10. Nuclear Space Power Systems Materials Requirements

    SciTech Connect

    Buckman, R.W. Jr.

    2004-02-04

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited.

  11. Nuclear systems for space power and propulsion

    NASA Technical Reports Server (NTRS)

    Klein, M.

    1971-01-01

    As exploration and utilization of space proceeds through the 1970s, 1980s, and beyond, spacecraft in earth orbit will become increasingly larger, spacecraft will travel deeper into space, and space activities will involve more complex operations. These trends require increasing amounts of energy for power and propulsion. The role to be played by nuclear energy is presented, including plans for deep space missions using radioisotope generators, the reactor power systems for earth orbiting stations and satellites, and the role of nuclear propulsion in space transportation.

  12. An evolutionary strategy for space nuclear power

    NASA Astrophysics Data System (ADS)

    Bennett, Gary L.

    1996-03-01

    A number of exciting mission opportunities are being considered for the 21st century, including (1) advanced robotic science missions to the outer planets and beyond; (2) advanced space transportation systems; and (3) human exploration of the Moon and Mars. Several of these missions will require some form of nuclear power; however, it is clear that current budgetary constraints preclude developing many different types of space nuclear power systems. This paper reviews the specific civil space missions which have been identified, the power levels and lifetimes required, and the technologies available. From this an evolutionary space nuclear power program is developed which builds upon the experience of radioisotope thermoelectric generators, improved static and dynamic isotope power systems, and space nuclear reactors. It is strongly suggested that not only does this approach make technical and budgetary sense but that it is consistent with the normal development of new technologies.

  13. Space nuclear power: a strategy for tomorrow

    SciTech Connect

    Buden, D.; Angelo, J. Jr.

    1981-01-01

    Energy: reliable, portable, abundant and low cost will be a most critical factor, perhaps the sine qua non, for the unfolding of man's permanent presence in space. Space-based nuclear power, in turn, is a key technology for developing such space platforms and the transportation systems necessary to service them. A strategy for meeting space power requirements is the development of a 100-kW(e) nuclear reactor system for high earth orbit missions, transportation from Shuttle orbits to geosynchronous orbit, and for outer planet exploration. The component technology for this nuclear power plant is now underway at the Los Alamos National Laboratory. As permanent settlements are established on the Moon and in space, multimegawatt power plants will be needed. This would involve different technology similar to terrestrial nuclear power plants.

  14. Space Nuclear Thermal Propulsion (SNTP) program

    NASA Technical Reports Server (NTRS)

    Bleeker, Gary A.

    1993-01-01

    An overview of the Space Nuclear Thermal Propulsion program is presented in graphic form. A program organizational chart is presented that shows the government and industry participants. Enabling technologies and test facilities and approaches are also addressed.

  15. Space and nuclear research and technology

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A fact sheet is presented on the space and nuclear research and technology program consisting of a research and technology base, system studies, system technology programs, entry systems technology, and experimental programs.

  16. Transactions of the fourth symposium on space nuclear power systems

    SciTech Connect

    El-Genk, M.S.; Hoover, M.D.

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  17. Transactions of the fifth symposium on space nuclear power systems

    SciTech Connect

    El-Genk, M.S.; Hoover, M.D.

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  18. The disposal of nuclear waste in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1978-01-01

    The important problem of disposal of nuclear waste in space is addressed. A prior study proposed carrying only actinide wastes to space, but the present study assumes that all actinides and all fission products are to be carried to space. It is shown that nuclear waste in the calcine (oxide) form can be packaged in a container designed to provide thermal control, radiation shielding, mechanical containment, and an abort reentry thermal protection system. This package can be transported to orbit via the Space Shuttle. A second Space Shuttle delivers an oxygen-hydrogen orbit transfer vehicle to a rendezvous compatible orbit and the mated OTV and waste package are sent to the preferred destination. Preferred locations are either a lunar crater or a solar orbit. Shuttle traffic densities (which vary in time) are given and the safety of space disposal of wastes discussed.

  19. Nuclear propulsion for the space exploration initiative

    SciTech Connect

    Stanley, M.L. )

    1991-11-01

    President Bush's speech of July 20, 1989, outlining a goal to go back to the moon and then Mars initiated the Space Exploration Initiative (SEI). The US Department of Defense (DOD), US Department of Energy (DOE), and NASA have been working together in the planning necessary to initiate a program to develop a nuclear propulsion system. Applications of nuclear technology for in-space transfer of personnel and cargo between Earth orbit and lunar or Martian orbit are being considered as alternatives to chemical propulsion systems. Mission and system concept studies conducted over the past 30 yr have consistently indicated that use of nuclear technology can substantially reduce in-space propellant requirements. A variety of nuclear technology options are currently being studied, including nuclear thermal rockets, nuclear electrical propulsion systems, and hybrid nuclear thermal rockets/nuclear electric propulsion concepts. Concept performance in terms of thrust, weight, power, and efficiency are dependent, and appropriate concept application is mission dependent (i.e., lunar, Mars, cargo, personnel, trajectory, transit time, payload). A comprehensive evaluation of mission application, technology performance capability and maturity, technology development programmatics, and safety characteristics is required to optimize both technology and mission selection to support the Presidential initiative.

  20. Space Nuclear Thermal Propulsion Test Facilities Subpanel

    NASA Technical Reports Server (NTRS)

    Allen, George C.; Warren, John W.; Martinell, John; Clark, John S.; Perkins, David

    1993-01-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies; this final report

  1. Space nuclear power systems, Part 3

    SciTech Connect

    El-Genk, M.S. ); Hoover, M.D. )

    1992-01-01

    This volume, number three of three, contains reviewed and edited papers that are being presented at the Ninth Symposium in Albuquerque, New Mexico, January 12--16, 1992. The objective of the symposium, and hence these volumes, is to summarize the state of knowledge in the area of space nuclear power and propulsion and to provide a forum at which the most recent findings and important new developments can be presented and discussed. Topics addressed in this volume are: dynamic energy conversion; nuclear safety; nuclear thermal propulsion; simulation and modeling; heat pipe technology; flight qualification and testing; nuclear electric propulsion; micro gravity two phase flow; space power and propulsion; core materials; fuel materials; and static energy conversion.

  2. Space nuclear power systems, Part 3

    SciTech Connect

    El-Genk, M.S.; Hoover, M.D.

    1992-02-01

    This volume, number three of three, contains reviewed and edited papers that are being presented at the Ninth Symposium in Albuquerque, New Mexico, January 12--16, 1992. The objective of the symposium, and hence these volumes, is to summarize the state of knowledge in the area of space nuclear power and propulsion and to provide a forum at which the most recent findings and important new developments can be presented and discussed. Topics addressed in this volume are: dynamic energy conversion; nuclear safety; nuclear thermal propulsion; simulation and modeling; heat pipe technology; flight qualification and testing; nuclear electric propulsion; micro gravity two phase flow; space power and propulsion; core materials; fuel materials; and static energy conversion.

  3. Trade studies for nuclear space power systems

    NASA Technical Reports Server (NTRS)

    Smith, John M.; Bents, David J.; Bloomfield, Harvey S.

    1991-01-01

    As visions of space applications expand and as probes extend further and further out into the universe, the need for power also expands, and missions evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources are defined. These include earth orbital platforms, deep space platforms, planetary exploration and extraterrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the moon and Mars has more clearly defined these missions and their power requirements. This paper presents results of recent studies of radioisotope and nuclear-reactor energy sources combined with various energy-conversion devices for earth orbital applications, SEI lunar/Mars rover and surface power, and planetary exploration.

  4. Trade studies for nuclear space power systems

    NASA Technical Reports Server (NTRS)

    Smith, John M.; Bents, David J.; Bloomfield, Harvey S.

    1991-01-01

    As human visions of space applications expand and as we probe further out into the universe, our needs for power will also expand, and missions will evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources have been defined. These include Earth orbital platforms, deep space platforms, planetary exploration, and terrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the Moon and Mars has more clearly defined these missions and their power requirements. Presented here are results of recent studies of radioisotope and nuclear reactor energy sources, combined with various energy conversion devices for Earth orbital applications, SEI lunar/Mars rovers, surface power, and planetary exploration.

  5. Space nuclear power, propulsion, and related technologies

    SciTech Connect

    Berman, M.; Stikar, J.A.

    1992-01-01

    Sandia National Laboratories is one of the nation's largest research and development (R and D) facilities and is responsible for national security programs in defense and energy with a primary emphasis on nuclear weapon R and D. However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. A brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space is presented.

  6. Space nuclear power, propulsion, and related technologies

    NASA Astrophysics Data System (ADS)

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories is one of the nation's largest research and development (R&D) facilities and is responsible for national security programs in defense and energy with a primary emphasis on nuclear weapon R&D. However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. A brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space is presented.

  7. Thermionic reactors for space nuclear power

    NASA Astrophysics Data System (ADS)

    Griaznov, Georgii M.; Zhabotinskii, Evgenii E.; Serbin, Victor I.; Zrodnikov, Anatolii V.; Pupko, Victor Ia.; Ponomarev-Stepnoi, Nikolai N.; Usov, V. A.; Nikolaev, Iu. V.

    Compact thermionic nuclear reactor systems with satisfactory mass performance are competitive with space nuclear power systems based on the organic Rankine and closed Brayton cycles. The mass characteristics of the thermionic space nuclear power system are better than that of the solar power system for power levels beyond about 10 kWe. Longlife thermionic fuel element requirements, including their optimal dimensions, and common requirements for the in-core thermionic reactor design are formulated. Thermal and fast in-core thermionic reactors are considered and the ranges of their sensible use are discussed. Some design features of the fast in-core thermionic reactors cores (power range to 1 MWe) including a choice of coolants are discussed. Mass and dimensional performance for thermionic nuclear power reactor system are assessed. It is concluded that thermionic space nuclear power systems are promising power supplies for spacecrafts and that a single basic type of thermionic fuel element may be used for power requirements ranging to several hundred kWe.

  8. Telerobotic technology for nuclear and space applications

    SciTech Connect

    Herndon, J.N.; Hamel, W.R.

    1987-03-01

    Telerobotic development efforts at Oak Ridge National Laboratory are extensive and relatively diverse. Current efforts include development of a prototype space telerobot system for the NASA Langley Research Center and development and large-scale demonstration of nuclear fuel cycle teleoperators in the Consolidated Fuel Reprocessing Program. This paper presents an overview of the efforts in these major programs. 10 refs., 8 figs.

  9. Key issues in space nuclear power

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W.

    1991-01-01

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to the success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency, and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems.

  10. Nuclear Thermal Propulsion for Advanced Space Exploration

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  11. Nuclear Power Sources for Space Systems

    NASA Astrophysics Data System (ADS)

    Kukharkin, N. E.; Ponomarev-Stepnoi, N. N.; Usov, V. A.

    This chapter contains the information about nuclear power sources for space systems. Reactor nuclear sources are considered that use the energy of heavy nuclei fission generated by controlled chain fission reaction, as well as the isotope ones producing heat due to the energy of nuclei radioactive decay. Power of reactor nuclear sources is determined by the rate of heavy nuclei fission that may be controlled within a wide range from the zero up to the nominal one. Thermal power of isotope sources cannot be controlled. It is determined by the type and quantity of isotopes and decreases in time due to their radioactive decay. Both, in the reactor sources and in the isotope ones, nuclear power is converted into the thermal one that may be consumed for the coolant heating to produce thrust (Nuclear Power Propulsion System, NPPS) or may be converted into electricity (Nuclear Power Source, NPS) dynamically (a turbine generator) or statically (thermoelectric or thermionic converters). Electric power is supplied to the airborne equipment or is used to produce thrust in electric (ionic, plasma) low-thrust engines. A brief description is presented of the different nuclear systems with reactor and isotopic power sources implemented in Russia and the USA. The information is also given about isotopic sources for the ground-based application, mainly for navigation systems.

  12. Nuclear safety for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Dix, Terry E.

    1991-01-01

    The results of a study to identify potential hazards arising from nuclear reactor power systems for use on the lunar and Martian surfaces, related safety issues, and resolutions of such issues by system design changes, operating procedures, and other means are presented. All safety aspects of nuclear reactor power systems from prelaunch ground handling to eventual disposal were examined consistent with the level of detail for SP-100 reactor design at the 1988 System Design Review and for launch vehicle and space transport vehicle designs and mission descriptions as defined in the 90-day Space Exploration Initiative (SEI) study. Information from previous aerospace nuclear safety studies was used where appropriate. Safety requirements for the SP-100 space nuclear reactor system were compiled. Mission profiles were defined with emphasis on activities after low earth orbit insertion. Accident scenarios were then qualitatively defined for each mission phase. Safety issues were identified for all mission phases with the aid of simplified event trees. Safety issue resolution approaches of the SP-100 program were compiled. Resolution approaches for those safety issues not covered by the SP-100 program were identified. Additionally, the resolution approaches of the SP-100 program were examined in light of the moon and Mars missions.

  13. Power conditioning for space nuclear reactor systems

    NASA Technical Reports Server (NTRS)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  14. Space nuclear safety from a user's viewpoint

    NASA Technical Reports Server (NTRS)

    Campbell, R. W.

    1985-01-01

    The National Aeronautics and Space Administration (NASA) launched the Jet Propulsion Laboratory's (JPL) two Voyager spacecraft to Jupiter in 1977, each using three radioisotope thermoelectric generators (RTGs) supplied by the Department of Energy (DOE) for onboard electric power. In 1986 NASA will launch JPL's Galileo spacecraft to Jupiter equipped with two DOE supplied RTGs of an improved design. NASA and JPL are also responsible for obtaining a single RTG of this type from DOE and supplying it to the European Space Agency as part of its participation in the International Solar Polar Mission. As a result of these missions, JPL has been deeply involved in space nuclear safety as a user. This paper will give a brief review of the user contributions by JPL - and NASA in general - to the nuclear safety processes and relate them to the overall nuclear safety program necessary for the launch of an RTG. The two major safety areas requiring user support are the ground operations involving RTGs at the launch site and the failure modes and probabilities associated with launch accidents.

  15. Tethered nuclear power for the Space Station

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1985-01-01

    A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.

  16. Non-Nuclear Testing of Space Nuclear Systems at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Pearson, Boise J.; Aschenbrenner, Kenneth C.; Bradley, David E.; Dickens, Ricky; Emrich, William J.; Garber, Anne; Godfroy, Thomas J.; Harper, Roger T.; Martin, Jim J.; Polzin, Kurt; Schoenfeld, Michael P.; Webster, Kenneth L.

    2010-01-01

    Highly realistic non-nuclear testing can be used to investigate and resolve potential issues with space nuclear power and propulsion systems. Non-nuclear testing is particularly useful for systems designed with fuels and materials operating within their demonstrated nuclear performance envelope. Non-nuclear testing allows thermal hydraulic, heat transfer, structural, integration, safety, operational, performance, and other potential issues to be investigated and resolved with a greater degree of flexibility and at reduced cost and schedule compared to nuclear testing. The primary limit of non-nuclear testing is that nuclear characteristics and potential nuclear issues cannot be directly investigated. However, non-nuclear testing can be used to augment the potential benefit from any nuclear testing that may be required for space nuclear system design and development. This paper describes previous and ongoing non-nuclear testing related to space nuclear systems at NASA's Marshall Space Flight Center (MSFC).

  17. Proceedings of the eighth symposium on space nuclear power systems

    SciTech Connect

    El-Genk, M.S. ); Hoover, M.D. . Inhalation Toxicology Research Inst.)

    1991-01-01

    The eighth symposium on Space Nuclear Power Systems was held in Albuquerque, New Mexico. Separate abstracts have been prepared for the papers presented in Part Three of the conference proceedings in the following areas of interest: space power electronics; heat pipe technology; space nuclear fuels for propulsion reactors; power systems concepts; use of artificial intelligence in space; key issues in space nuclear power; flight qualifications and testing (including SP-100 nuclear assembly test program); microgravity two phase flow; simulation and modeling; manufacturing and processing; and space environmental effects. (MB)

  18. Space nuclear power systems for extraterrestrial basing

    NASA Technical Reports Server (NTRS)

    Lance, J. R.; Chi, J. W. H.

    1989-01-01

    Comparative analyses reveal that the nuclear power option significantly reduces the logistic burden required to support a lunar base. The paper considers power levels from tens of kWe for early base operation up to 2000 kWe for a self-sustaining base with a CELSS. It is shown that SP-100 and NERVA derivative reactor (NDR) technology for space power can be used effectively for extraterrestrial base power systems. Recent developments in NDR design that result in major reductions in reactor mass are described.

  19. NASA mission planning for space nuclear power

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Schnyer, A. D.

    1991-01-01

    An evaluation is conducted of those aspects of the Space Exploration Initiative which stand to gain from the use of nuclear powerplants. Low-power, less than 10 kW(e) missions in question encompass the Comet Rendezvous Asteroid Flyby, the Cassini mission to Saturn, the Mars Network mission, a solar probe, the Mars Rover Sample Return mission, the Rosetta comet nucleus sample return mission, and an outer planets orbiter/probe. Reactor power yielding 10-100 kW(e) can be used by advanced rovers and initial lunar and Martian outposts, as well as Jovian and Saturnian grand tours and sample-return missions.

  20. SP-100 space nuclear power system

    NASA Technical Reports Server (NTRS)

    Given, R. W.; Morgan, R. E.; Chi, J. W. H.

    1984-01-01

    A baseline design concept for a 100 kWe nuclear reactor space power system is described. The concept was developed under contract from JPL as part of a joint program of the DOE, DOD, and NASA. The major technical and safety constraints influencing the selection of reactor operating parameters are discussed. A lithium-cooled compact fast reactor was selected as the best candidate system. The material selected for the thermoelectric conversion system was silicon germanium (SiGe) with gallium phosphide doping. Attention is given to the improved safety of the seven in-core control rod configuration.

  1. Thermoelectric conversion for space nuclear power

    SciTech Connect

    Ewell, R.; Stapfer, G.

    1982-08-01

    A lightweight, high performance nuclear reactor power system can offer significant advantages for many space missions. Conceptual design has been completed for the SP-100, a system which utilizes many thermoelectric converters and is capable of delivering 100 kilowatts of electrical power. A reference design, using thermoelectric materials with an average figure of merit of 1.0 X 10/sup -3/K/sup -1/ and a reactor heat pipe temperature of 1500 K, is presented which has a mass of 2280 kg not including contingency. The sensitivity of system mass to changes in the configuration and thermoelectric material properties are presented.

  2. Thermoelectric conversion for space nuclear power

    NASA Technical Reports Server (NTRS)

    Ewell, R.; Stapfer, G.

    1982-01-01

    A lightweight, high performance nuclear reactor power system can offer significant advantages for many space missions. Conceptual design has been completed for the SP-100, a system which utilizes many thermoelectric converters and is capable of delivering 100 kilowatts of electrical power. A reference design, using thermoelectric materials with an average figure of merit of 0.001/K and a reactor heat pipe temperature of 1500 K, is presented which has a mass of 2280 kg not including contingency. The sensitivity of system mass to changes in the configuration and thermoelectric material properties are presented

  3. Nuclear Cross Sections for Space Radiation Applications

    NASA Technical Reports Server (NTRS)

    Werneth, C. M.; Maung, K. M.; Ford, W. P.; Norbury, J. W.; Vera, M. D.

    2015-01-01

    The eikonal, partial wave (PW) Lippmann-Schwinger, and three-dimensional Lippmann-Schwinger (LS3D) methods are compared for nuclear reactions that are relevant for space radiation applications. Numerical convergence of the eikonal method is readily achieved when exact formulas of the optical potential are used for light nuclei (A = 16) and the momentum-space optical potential is used for heavier nuclei. The PW solution method is known to be numerically unstable for systems that require a large number of partial waves, and, as a result, the LS3D method is employed. The effect of relativistic kinematics is studied with the PW and LS3D methods and is compared to eikonal results. It is recommended that the LS3D method be used for high energy nucleon-nucleus reactions and nucleus-nucleus reactions at all energies because of its rapid numerical convergence and stability for both non-relativistic and relativistic kinematics.

  4. Autonomous Control of Space Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Merk, John

    2013-01-01

    Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation. Long-duration surface missions necessitate reliable autonomous operation, and manned missions impose added requirements for failsafe reactor protection. There is a need for an advanced instrumentation and control system for space-nuclear reactors that addresses both aspects of autonomous operation and safety. The Reactor Instrumentation and Control System (RICS) consists of two functionally independent systems: the Reactor Protection System (RPS) and the Supervision and Control System (SCS). Through these two systems, the RICS both supervises and controls a nuclear reactor during normal operational states, as well as monitors the operation of the reactor and, upon sensing a system anomaly, automatically takes the appropriate actions to prevent an unsafe or potentially unsafe condition from occurring. The RPS encompasses all electrical and mechanical devices and circuitry, from sensors to actuation device output terminals. The SCS contains a comprehensive data acquisition system to measure continuously different groups of variables consisting of primary measurement elements, transmitters, or conditioning modules. These reactor control variables can be categorized into two groups: those directly related to the behavior of the core (known as nuclear variables) and those related to secondary systems (known as process variables). Reliable closed-loop reactor control is achieved by processing the acquired variables and actuating the appropriate device drivers to maintain the reactor in a safe operating state. The SCS must prevent a deviation from the reactor nominal conditions by managing limitation functions in order to avoid RPS actions. The RICS has four identical redundancies that comply with physical separation, electrical isolation, and functional independence. This architecture complies with the

  5. Space nuclear power, propulsion, and related technologies.

    SciTech Connect

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already

  6. Nuclear Electric Propulsion for Outer Space Missions

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    2003-01-01

    Today we know of 66 moons in our very own Solar System, and many of these have atmospheres and oceans. In addition, the Hubble (optical) Space Telescope has helped us to discover a total of 100 extra-solar planets, i.e., planets going around other suns, including several solar systems. The Chandra (X-ray) Space Telescope has helped us to discover 33 Black Holes. There are some extremely fascinating things out there in our Universe to explore. In order to travel greater distances into our Universe, and to reach planetary bodies in our Solar System in much less time, new and innovative space propulsion systems must be developed. To this end NASA has created the Prometheus Program. When one considers space missions to the outer edges of our Solar System and far beyond, our Sun cannot be relied on to produce the required spacecraft (s/c) power. Solar energy diminishes as the square of the distance from the Sun. At Mars it is only 43% of that at Earth. At Jupiter, it falls off to only 3.6% of Earth's. By the time we get out to Pluto, solar energy is only .066% what it is on Earth. Therefore, beyond the orbit of Mars, it is not practical to depend on solar power for a s/c. However, the farther out we go the more power we need to heat the s/c and to transmit data back to Earth over the long distances. On Earth, knowledge is power. In the outer Solar System, power is knowledge. It is important that the public be made aware of the tremendous space benefits offered by Nuclear Electric Propulsion (NEP) and the minimal risk it poses to our environment. This paper presents an overview of the reasons for NEP systems, along with their basic components including the reactor, power conversion units (both static and dynamic), electric thrusters, and the launch safety of the NEP system.

  7. Historical overview of the US use of space nuclear power

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1989-01-01

    Since 1961, the United States has successfully flown 35 space nuclear power sources on 20 space systems. These space systems have included the Apollo, Pioneer, Viking and Voyager spacecraft launched by the National Aeronautics and Space Administration and navigation and communications satellites launched by the Department of Defense. These power sources performed as planned and i8n many cases exceeded their power requirements and/or lifetimes. All of the power sources met their safety requirements. This paper surveys past uses of space nuclear power in the US and thus serves as a historical framework for other papers in this Conference dealing with future US applications of space nuclear power.

  8. Thermionic reactors for space nuclear power

    NASA Technical Reports Server (NTRS)

    Homeyer, W. G.; Merrill, M. H.; Holland, J. W.; Fisher, C. R.; Allen, D. T.

    1985-01-01

    Thermionic reactor designs for a variety of space power applications spanning the range from 5 kWe to 3 MWe are described. In all of these reactors, nuclear heat is converted directly to electrical energy in thermionic fuel elements (TFEs). A circulating reactor coolant carries heat from the core of TFEs directly to a heat rejection radiator system. The recent design of a thermionic reactor to meet the SP-100 requirements is emphasized. Design studies of reactors at other power levels show that the same TFE can be used over a broad range in power, and that design modifications can extend the range to many megawatts. The design of the SP-100 TFE is similar to that of TFEs operated successfully in test reactors, but with design improvements to extend the operating lifetime to seven years.

  9. Proceedings of the eighth symposium on space nuclear power systems

    SciTech Connect

    El-Genk, M.S. ); Hoover, M.D. . Inhalation Toxicology Research Inst.)

    1991-01-01

    The eighth symposium on Space Nuclear Power Systems was held in Albuquerque, New Mexico. Separate abstracts have been prepared for the papers presented in Part Two of the conference proceedings in the following areas of interest: nuclear electric propulsion: engine concepts; key nuclear technologies for human exploration of the solar system; materials and nuclear fuels; dynamic energy conversion; direct nuclear propulsion; thermionic conversion technology; reactor and power system control; thermal management; thermionic research; radiation effects to electronics; heat pipe technology; space nuclear fuels for power reactors; and radioisotope power systems. (MB)

  10. Nuclear power sources in outer space. [spacecraft propulsion legal aspects

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1978-01-01

    Legal problems associated with nuclear power sources in space are discussed with particular reference to the Cosmos 954 incident. Deliberations of the Legal and Scientific and Technical Subcommittees on the Peaceful Uses of Outer Space on this subject are discussed.

  11. Nuclear space power safety and facility guidelines study

    SciTech Connect

    Mehlman, W.F.

    1995-09-11

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.

  12. Nuclear Reactors for Space Power, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.

    The historical development of rocketry and nuclear technology includes a specific description of Systems for Nuclear Auxiliary Power (SNAP) programs. Solar cells and fuel cells are considered as alternative power supplies for space use. Construction and operation of space power plants must include considerations of the transfer of heat energy to…

  13. Application of nuclear photon engines for deep-space exploration

    NASA Astrophysics Data System (ADS)

    Gulevich, Andrey V.; Ivanov, Eugeny A.; Kukharchuk, Oleg F.; Poupko, Victor Ya.; Zrodnikov, Anatoly V.

    2001-02-01

    Conception of using the nuclear photon rocket engines for deep space exploration is proposed. Some analytical estimations have been made to illustrate the possibility to travel to 100-10000 AU using a small thrust photon engine. Concepts of high temperature nuclear reactors for the nuclear photon engines are also discussed. .

  14. Direct conversion nuclear reactor space power systems

    SciTech Connect

    Britt, E.J.; Fitzpatrick, G.O.

    1982-08-01

    This paper presents the results of a study of space nuclear reactor power systems using either thermoelectric or thermionic energy converters. An in-core reactor design and two heat pipe cooled out-of-core reactor designs were considered. One of the out-of-core cases utilized, long heat pipes (LHP) directly coupled to the energy converter. The second utilized a larger number of smaller heat pipes (mini-pipe) radiatively coupled to the energy converter. In all cases the entire system, including power conditioning, was constrained to be launched in a single shuttle flight. Assuming presently available performance, both the LHP thermoelectric system and minipipe thermionic system, designed to produce 100 kWe for seven years, would have a specific mass near 22kg/kWe. The specific mass of the thermionic minipipe system designed for a one year mission is 165 kg/kWe due to less fuel swelling. Shuttle imposed growth limits are near 300 kWe and 1.2 MWe for the thermoelectric and thermionic systems, respectively. Converter performance improvements could double this potential, and over 10 MWe may be possible for very short missions.

  15. Legal Implications of Nuclear Propulsion for Space Objects

    NASA Astrophysics Data System (ADS)

    Pop, V.

    2002-01-01

    This paper is intended to examine nuclear propulsion concepts such as "Project Orion", "Project Daedalus", NERVA, VASIMIR, from the legal point of view. The UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space apply to nuclear power sources in outer space devoted to the generation of electric power on board space objects for non-propulsive purposes, and do not regulate the use of nuclear energy as a means of propulsion. However, nuclear propulsion by means of detonating atomic bombs (ORION) is, in principle, banned under the 1963 Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space, and Under Water. The legality of use of nuclear propulsion will be analysed from different approaches - historical (i.e. the lawfulness of these projects at the time of their proposal, at the present time, and in the future - in the light of the mutability and evolution of international law), spatial (i.e. the legal regime governing peaceful nuclear explosions in different spatial zones - Earth atmosphere, Earth orbit, Solar System, and interstellar space), and technical (i.e, the legal regime applicable to different nuclear propulsion techniques, and to the various negative effects - e.g. damage to other space systems as an effect of the electromagnetic pulse, etc). The paper will analyse the positive law, and will also come with suggestions "de lege ferenda".

  16. Space Nuclear Propulsion Systems and Applications

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.

    1972-01-01

    The basic principles of the operation of a nuclear rocket engine are reviewed along with a summary of the early history. In addition, the technology status in the nuclear rocket program for development of the flight-rated NERVA engine is described, and applications for this 75,000-pound thrust engine and the results of nuclear stage studies are presented. Advanced research and supporting technology activities in the nuclear rocket program are also summarized.

  17. Ongoing Space Nuclear Systems Development in the United States

    SciTech Connect

    S. Bragg-Sitton; J. Werner; S. Johnson; Michael G. Houts; Donald T. Palac; Lee S. Mason; David I. Poston; A. Lou Qualls

    2011-10-01

    Reliable, long-life power systems are required for ambitious space exploration missions. Nuclear power and propulsion options can enable a bold, new set of missions and introduce propulsion capabilities to achieve access to science destinations that are not possible with more conventional systems. Space nuclear power options can be divided into three main categories: radioisotope power for heating or low power applications; fission power systems for non-terrestrial surface application or for spacecraft power; and fission power systems for electric propulsion or direct thermal propulsion. Each of these areas has been investigated in the United States since the 1950s, achieving various stages of development. While some nuclear systems have achieved flight deployment, others continue to be researched today. This paper will provide a brief overview of historical space nuclear programs in the U.S. and will provide a summary of the ongoing space nuclear systems research, development, and deployment in the United States.

  18. SEI needs for space nuclear power

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W.; Cataldo, R. L.

    1991-01-01

    The use of nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) for transportation to the moon and Mars is examined, and the use on Mars and moon bases of thermal conversion subsystems based on either a Brayton or a Stirling cycle is examined. It is shown that both cycles are attractive alternatives for those applications where continuous field operation is desired. Nuclear power systems have a clear advantage with regard to the moon and a lesser one with regard to Mars.

  19. Future NASA mission applications of space nuclear power

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Mankins, John; Mcconnell, Dudley G.; Reck, Gregory M.

    1990-01-01

    Recent studies sponsored by NASA show a continuing need for space nuclear power. A recently completed study considered missions (such as a Jovian grand tour, a Uranus or Neptune orbiter and probe, and a Pluto flyby) that can only be done with nuclear power. There are also studies for missions beyond the outer boundaries of the solar system at distances of 100 to 1000 astronomical units. The NASA 90-day study on the Space Exploration Initiative identified a need for nuclear reactors to power lunar surface bases and radioisotope power sources for use in lunar or Martian rovers, as well as considering options for advanced, nuclear propulsion systems for human missions to Mars.

  20. A look at the Soviet space nuclear power program

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1989-01-01

    For the most part Soviet nuclear power sources have been low-power nuclear reactors using a thermoelectric conversion principle. Recently the Soviet Union has flown two satellites using a higher power reactor that employs a thermionic conversion system. Despite reentry of two of the earlier reactors on board Cosmos 954 and Cosmos 1402 and the recent potential accident involving Cosmos 1900, the evidence points toward a continued Soviet use of nuclear power sources in space. Information in the open literature on the Soviet space nuclear power program, including the Romashka Topaz, the new reactor based on the Topaz program, and the RORSAT reactor experience, is summarized.

  1. Recent measurements for hadrontherapy and space radiation: nuclear physics.

    PubMed

    Miller, J

    2001-01-01

    The particles and energies commonly used for hadron therapy overlap the low end of the charge and energy range of greatest interest for space radiation applications, Z=1-26 and approximately 100-1000 MeV/nucleon. It has been known for some time that the nuclear interactions of the incident ions must be taken into account both in treatment planning and in understanding and addressing the effects of galactic cosmic ray ions on humans in space. Until relatively recently, most of the studies of nuclear fragmentation and transport in matter were driven by the interests of the nuclear physics and later, the hadron therapy communities. However, the experimental and theoretical methods and the accelerator facilities developed for use in heavy ion nuclear physics are directly applicable to radiotherapy and space radiation studies. I will briefly review relevant data taken recently at various accelerators, and discuss the implications of the measurements for radiotherapy, radiobiology and space radiation research.

  2. Important technology considerations for space nuclear power systems

    SciTech Connect

    Kuspa, J.P.; Wahlquist, E.J.; Bitz, D.A.

    1988-03-01

    This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources -- isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic -- to meet mission requirements well into the next century. 2 figs., 1 tab.

  3. Recent measurements for hadrontherapy and space radiation: nuclear physics

    NASA Technical Reports Server (NTRS)

    Miller, J.

    2001-01-01

    The particles and energies commonly used for hadron therapy overlap the low end of the charge and energy range of greatest interest for space radiation applications, Z=1-26 and approximately 100-1000 MeV/nucleon. It has been known for some time that the nuclear interactions of the incident ions must be taken into account both in treatment planning and in understanding and addressing the effects of galactic cosmic ray ions on humans in space. Until relatively recently, most of the studies of nuclear fragmentation and transport in matter were driven by the interests of the nuclear physics and later, the hadron therapy communities. However, the experimental and theoretical methods and the accelerator facilities developed for use in heavy ion nuclear physics are directly applicable to radiotherapy and space radiation studies. I will briefly review relevant data taken recently at various accelerators, and discuss the implications of the measurements for radiotherapy, radiobiology and space radiation research.

  4. Nuclear technology and the space exploration missions

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W.; Sovie, Ronald J.

    1990-01-01

    The strategy for a major exploration initiative leading to permanent human presence beyond earth orbit is still being developed; however enough is known to begin defining the role of nuclear technologies. Three broad areas are discussed: low power (less than 10 kWe) rover/vehicle power systems; integrated, evolutionary base power systems (25 to 100 kW) and nuclear energy for electric propulsion (2 to 100 MWe); and direct thermal propulsion (1000s MW). A phased, evolutionary approach is described for both the moon and Mars, and the benefits of nuclear technologies relative to solar and their integration are described.

  5. Importance of Nuclear Physics to NASA's Space Missions

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    We show that nuclear physics is extremely important for accurate risk assessments for space missions. Due to paucity of experimental input radiation interaction information it is imperative to develop reliable accurate models for the interaction of radiation with matter. State-of-the-art nuclear cross sections models have been developed at the NASA Langley Research center and are discussed.

  6. Instrument and spacecraft faults associated with nuclear radiation in space

    NASA Technical Reports Server (NTRS)

    Trainos, J. H.

    1994-01-01

    A review is given which surveys the variety of faults and failures which have occurred in space due both to the effects of single, energetic nuclear particles, as well as effects due to the accumulated ionizing dose or the fluence of nuclear particles. The review covers a variety of problems with sensors, electronics, instruments and spacecraft from several countries.

  7. Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    NASA Technical Reports Server (NTRS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2007-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,

  8. Space Nuclear Space Program. Progress report, December 1983

    SciTech Connect

    Bronisz, S.E.

    1984-06-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Results from safety-verification tests including impact tests are presented.

  9. Opening up to the future in space with nuclear power

    NASA Technical Reports Server (NTRS)

    Buden, David; Angelo, Joseph, Jr.

    1987-01-01

    The relationship between the exploration of space and the availability of abundant power supplies is discussed. It is proposed that nuclear power will be needed to satisfy the power demands of manufacturing facilities in LEO, and power demands for the year 2000 are projected to be 300 KW(e). The capabilities and development of the Space Station are described; the use of nuclear power for the Station and various reactor location configurations are studied. The power requirements that will be necessary for the development of lunar resource bases and the exploration of Mars and other planets are considered; the advantages of nuclear power are examined.

  10. Safety aspects of nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Edgecombe, D. S.; Compton, P. R.

    1981-01-01

    Safety issues involved in the disposal of nuclear wastes in space as a complement to mined geologic repositories are examined as part of an assessment of the feasibility of nuclear waste disposal in space. General safety guidelines for space disposal developed in the areas of radiation exposure and shielding, containment, accident environments, criticality, post-accident recovery, monitoring systems and isolation are presented for a nuclear waste disposal in space mission employing conventional space technology such as the Space Shuttle. The current reference concept under consideration by NASA and DOE is then examined in detail, with attention given to the waste source and mix, the waste form, waste processing and payload fabrication, shipping casks and ground transport vehicles, launch site operations and facilities, Shuttle-derived launch vehicle, orbit transfer vehicle, orbital operations and space destination, and the system safety aspects of the concept are discussed for each component. It is pointed out that future work remains in the development of an improved basis for the safety guidelines and the determination of the possible benefits and costs of the space disposal option for nuclear wastes.

  11. Nuclear power - How safe in space

    SciTech Connect

    Chien, P.

    1987-09-01

    The use of nuclear-powered spacecraft is examined. The nuclear-powered radioisotopic thermoelectric generators (RTGs) serve only as power generators and are not involved in the propulsion of the spacecraft. The plutonium power core is contained in a graphite container in order to ensure safety in the event of a launch accident or the possible reentry of the lunar module into the earth's atmosphere. The operation of the RTG is described. Various experiments and applications for the RTGs, such as the Apollo Lunar Surface Experiment Package, the Viking Mars explorers, and Pioneer 10 and 11 spacecraft, are discussed.

  12. Evaluating Russian space nuclear reactor technology for United States applications

    SciTech Connect

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-08-01

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch.

  13. Proposal of Space Reactor for Nuclear Electric Propulsion System

    NASA Astrophysics Data System (ADS)

    Nagata, Hidetaka; Nishiyama, Takaaki; Nakashima, Hideki

    Currently, the solar battery, the chemical cell, and the RI battery are used for the energy source in space. However, it is difficult for them to satisfy requirements for deep space explorations. Therefore, other electric power sources which can stably produce high electric energy output, regardless of distance from the sun, are necessary to execute such missions. Then, we here propose small nuclear reactors as power sources for deep space exploration, and consider a conceptual design of a small nuclear reactor for Nuclear Electric Propulsion System. It is found from nuclear analyses that the Gas-Cooled reactor could not meet the design requirement imposed on the core mass. On the other hand, a light water reactor is found to be a promising alternative to the Gas-Cooled reactor.

  14. Opening up the future in space with nuclear power

    SciTech Connect

    Buden, D.; Angelo, J. Jr.

    1985-01-01

    Man's extraterrestrial development is dependent on abundant power. For example, space-based manufacturing facilities are projected to have a power demand of 300 kWe by the end of this Century, and several megawatts in the early part of next millennium. The development of the lunar resource base will result in power needs ranging from an initial 100 kW(e) to many megawatts. Human visits to Mars could be achieved using a multimegawatt nuclear electric propulsion system or high thrust nuclear rockets. Detailed exploration of the solar system will also be greatly enhanced by the availability of large nuclear electric propulsion systems. All of these activities will require substantial increases in space power - hundreds of kilowatts to many megawatts. The challenge is clear: how to effectively use nuclear energy to support humanity's expansion into space.

  15. A Wide Range Neutron Detector for Space Nuclear Reactor Applications

    SciTech Connect

    Nassif, Eduardo; Sismonda, Miguel; Matatagui, Emilio; Pretorius, Stephan

    2007-01-30

    We propose here a versatile and innovative solution for monitoring and controlling a space-based nuclear reactor that is based on technology already proved in ground based reactors. A Wide Range Neutron Detector (WRND) allows for a reduction in the complexity of space based nuclear instrumentation and control systems. A ground model, predecessor of the proposed system, has been installed and is operating at the OPAL (Open Pool Advanced Light Water Research Reactor) in Australia, providing long term functional data. A space compatible Engineering Qualification Model of the WRND has been developed, manufactured and verified satisfactorily by analysis, and is currently under environmental testing.

  16. Space Nuclear Safety Program, September 1983

    NASA Astrophysics Data System (ADS)

    Bronisz, S. E.

    1984-01-01

    This technical monthly report covers studies related to the use of (238) PuO2 in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed here are ongoing. Results and conclusions described may change as the work continues.

  17. Space Nuclear Safety Program. Progress report

    SciTech Connect

    Bronisz, S.E.

    1984-01-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed here are ongoing. Results and conclusions described may change as the work continues.

  18. Man-machine interface issues for space nuclear power systems

    NASA Astrophysics Data System (ADS)

    Nelson, William R.; Haugset, Kjell

    1991-01-01

    The deployment of nuclear reactors in space necessitates an entirely new set of guidelines for the design of the man-machine interface (MMI) when compared to earth-based applications such as commerical nuclear power plants. Although the design objectives of earth- and space-based nuclear power systems are the same, that is, to produce electrical power, the differences in the application environments mean that the operator's role will be significantly different for space-based systems. This paper explores the issues associated with establishing the necessary MMI guidelines for space nuclear power systems. The generic human performance requirements for space-based systems are described, and the operator roles that are utilized for the operation of current and advanced earth-based reactors are briefly summarized. The development of a prototype advanced control room, the Integrated Surveillance and Control System (ISACS) at the Organization for Economic Cooperation and Development (OECD) Halden Reactor Project is introduced. Finally, preliminary ideas for the use of the ISACS system as a test bed for establishing MMI guidelines for space nuclear systems are presented.

  19. Man--machine interface issues for space nuclear power systems

    SciTech Connect

    Nelson, W.R.; Haugset, K. )

    1991-01-10

    The deployment of nuclear reactors in space necessitates an entirely new set of guidelines for the design of the man--machine interface (MMI) when compared to earth-based applications such as commerical nuclear power plants. Although the design objectives of earth- and space-based nuclear power systems are the same, that is, to produce electrical power, the differences in the application environments mean that the operator's role will be significantly different for space-based systems. This paper explores the issues associated with establishing the necessary MMI guidelines for space nuclear power systems. The generic human performance requirements for space-based systems are described, and the operator roles that are utilized for the operation of current and advanced earth-based reactors are briefly summarized. The development of a prototype advanced control room, the Integrated Surveillance and Control System (ISACS) at the Organization for Economic Cooperation and Development (OECD) Halden Reactor Project is introduced. Finally, preliminary ideas for the use of the ISACS system as a test bed for establishing MMI guidelines for space nuclear systems are presented.

  20. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    NASA Technical Reports Server (NTRS)

    Beck, David F.

    1993-01-01

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  1. Space nuclear power: Key to outer solar system exploration

    SciTech Connect

    Bennett, G.L.; Allen, D.M.

    1998-07-01

    In 1995, in response to threatened budget cuts, the American Institute of Aeronautics and Astronautics (AIAA) approved a position paper supporting the maintenance of the technology base for space nuclear power. The position paper contained four recomemndations: (1) DOE, NASA, and DoD should develop and support an integrated program that maintains the nuclear option and develops the needed high-payoff technologies; (2) Congress should provide strong, continuing financial and political support for the agencies' program; (3) Government and industry leaders should voice their advocacy for a strong space nuclear power program to support future system requirements; and (4) The US should continue to maintain its cooperation and technical interchanges with other countries to advance nuclear power source technology and to promote nuclear safety.

  2. Space Nuclear Thermal Propulsion Test Facilities Subpanel. Final report

    SciTech Connect

    Allen, G.C.; Warren, J.W.; Martinell, J.; Clark, J.S.; Perkins, D.

    1993-04-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies.

  3. Nuclear Power Technologies for Deep Space and Planetary Missions

    NASA Astrophysics Data System (ADS)

    Stephenson, K.; Blancquaert, T.

    2008-09-01

    Photovoltaic cells are well established as the appropriate primary power source for most space missions. For long duration missions that cannot rely on harnessing the external power of the sun, electrochemical processes are simply too low in energy density to provide useful sustained power. Nuclear processes, however, can have huge energy densities, and for this reason, nuclear power systems (NPS) are the only current alternative to solar arrays for long-term generation of power in space.Although nuclear power has been in use since the beginnings of spaceflight, it remains a niche technology that has not enjoyed the visibility and commercial-sector development effort of solar photovoltaics. However, as our space science and exploration programmes look to the outer planets or to long-duration lander missions, nuclear power becomes a key enabling technology.It is logical and useful to divide space nuclear power systems into three categories. In order of increasing complexity, these are:• Direct production of heat by radioactive decay.• Electrical power generation via radioactive decay heat.• Nuclear reactor systems.Past and future mission applications for these are briefly considered before examining, in greater detail, the technology challenges presented by the first two classes of NPS; the radioactive decay heat systems. Of particular current interest are the various methods for conversion of heat to electrical power. For space nuclear power systems, thermoelectricity has been the dominant technology, due to its long-term reliability and vibration-free operation. However, the cost, mass, and safety implications of radioisotopic fuel provide a strong driver to move towards higher-efficiency conversion techniques that could greatly reduce the fuel quantities required.This paper reviews the established technologies used in space nuclear power systems, and then looks to the future, summarising the main areas of worldwide development and considering the

  4. Effects of Nuclear Interactions on Accuracy of Space Radiation Transport

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei; Barghouty, A. F.

    2005-01-01

    Space radiation risk to astronauts and electronic equipments is one major obstacle in long term human space explorations. Space radiation transport codes have been developed to calculate radiation effects behind materials in human missions to the Moon, Mars or beyond. We study how nuclear fragmentation processes affect the accuracy of predictions from such radiation transport. In particular, we investigate the effects of fragmentation cross sections at different energies on fluxes, dose and dose-equivalent from galactic cosmic rays behind typical shielding materials. These results tell us at what energies nuclear cross sections are the most important for radiation risk evaluations, and how uncertainties in our knowledge about nuclear fragmentations relate to uncertainties in space transport predictions.

  5. Advanced materials for space nuclear power systems

    SciTech Connect

    Titran, R.H.; Grobstein, T.L. . Lewis Research Center); Ellis, D.L. )

    1991-01-01

    Research on monolithic refractory metal alloys and on metal matrix composites is being conducted at the NASA Lewis Research Center, Cleveland, Ohio, in support of advanced space power systems. The overall philosophy of the research is to develop and characterize new high-temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites (Gr/Cu) for heat rejection fins, and tungsten fiber reinforced niobium matrix composites (W/NB) for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  6. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  7. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  8. SP-100 nuclear space power systems with application to space commercialization

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1990-01-01

    The technology of the SP-100 space nuclear power system program is compared to that of more familiar solar-power systems. The SP-100 program develops, validates, and demonstrates the technology for space nuclear power systems in the range of 10 to 1000 kilowatts electric for use in future military and civilian space missions. Mission applications, including earth orbiting platforms and lunar/Mars surface power, are enhanced or made possible by SP-100 technology. Attention is given to the SP-100 reference flight system design, the SP-100 nuclear reactor and nuclear-reactor shield, the platform-mounted, tethered, and free-flying reactors, and installation, operation, and disposal options, as well as lunar-Mars surface applications. The SP-100 is presented as one of the nuclear energy sources needed for long-life, compact, lightweight, continuous high power independent of solar orientation, specific orbits, or missions.

  9. Nuclear modules for space electric propulsion

    NASA Technical Reports Server (NTRS)

    Difilippo, F. C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow.

  10. Nuclear modules for space electric propulsion

    SciTech Connect

    Difilippo, F.C.

    1998-12-31

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow. 10 refs., 1 tab.

  11. Progress report on nuclear propulsion for space exploration and science

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Miller, Thomas J.

    1993-01-01

    NASA is continuing its work in cooperation with the Department of Energy (DOE) on nuclear propulsion - both nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The focus of the NTP studies remains on piloted and cargo missions to Mars (with precursor missions to the moon) although studies are under way to examine the potential uses of NTP for science missions. The focus of the NEP studies has shifted to space science missions with consideration of combining a science mission with an earlier demonstration of NEP using the SP-100 space nuclear reactor power system. Both NTP and NEP efforts are continuing in 1993 to provide a good foundation for science and exploration planners. Both NTP and NEP provide a very important transportation resource and in a number of cases enable missions that could not otherwise be accomplished.

  12. The results of application studies for space nuclear power

    NASA Technical Reports Server (NTRS)

    Isenberg, L.; Mcgraw, K.; Mankins, J.; Mondt, J.; Olivieri, J.

    1987-01-01

    The results are summarized of the studies over the last several years to identify and characterize potential applications for the SP-100 space nuclear reactor power system in powering spacecraft. SP-100 is a space power system based on a fast spectrum nuclear reactor with thermoelectric power conversion and liquid metal and heat pipe thermal transport. SP-100 reactor systems are designed to provide electric power with user designated characteristics at levels in the range from 10 to 1000 kWe. The use of nuclear reactors such as SP-100 as a power source provides a potential means of providing uninterrupted electrical power as required for many of todays space missions within acceptable cost and safety constraints.

  13. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  14. RECENT ACTIVITIES AT THE CENTER FOR SPACE NUCLEAR RESEARCH FOR DEVELOPING NUCLEAR THERMAL ROCKETS

    SciTech Connect

    Robert C. O'Brien

    2001-09-01

    Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.

  15. Heat pipe nuclear reactor for space power

    NASA Technical Reports Server (NTRS)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  16. Space nuclear power applied to electric propulsion

    NASA Technical Reports Server (NTRS)

    Vicente, F. A.; Karras, T.; Darooka, D.; Isenberg, L.

    1989-01-01

    Space reactor power systems with characteristics ideal for advanced spacecraft systems applications are discussed. These characteristics are: high power-to-weight ratio (15 to 33 W/kg); high volume density (high ballistic coefficient); no preferential orientation in orbit; long operational life; high reliability; and total launch and operational safety. These characteristics allow the use of electric propulsion to raise spacecraft from low earth parking orbits to operational orbits, greatly increasing the useful orbit payload for a given launch vehicle by eliminating the need for a separation injection stage. A proposed demonstration mission is described.

  17. Assessment of nuclear reactor concepts for low power space applications

    NASA Technical Reports Server (NTRS)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  18. Applicability of trends in nuclear safety analysis to space nuclear power systems

    SciTech Connect

    Bari, R.A.

    1992-10-01

    A survey is presented of some current trends in nuclear safety analysis that may be relevant to space nuclear power systems. This includes: lessons learned from operating power reactor safety and licensing; approaches to the safety design of advanced and novel reactors and facilities; the roles of risk assessment, extremely unlikely accidents, safety goals/targets; and risk-benefit analysis and communication.

  19. Preliminary risk benefit assessment for nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.; Priest, C. C.

    1982-01-01

    This paper describes the recent work of the authors on the evaluation of health risk benefits of space disposal of nuclear waste. The paper describes a risk model approach that has been developed to estimate the non-recoverable, cumulative, expected radionuclide release to the earth's biosphere for different options of nuclear waste disposal in space. Risk estimates for the disposal of nuclear waste in a mined geologic repository and the short- and long-term risk estimates for space disposal were developed. The results showed that the preliminary estimates of space disposal risks are low, even with the estimated uncertainty bounds. If calculated release risks for mined geologic repositories remain as low as given by the U.S. DOE, and U.S. EPA requirements continue to be met, then no additional space disposal study effort in the U.S. is warranted at this time. If risks perceived by the public are significant in the acceptance of mined geologic repositories, then consideration of space disposal as a complement to the mined geologic repository is warranted.

  20. Perspectives of The Interagency Nuclear Safety Review Panel (INSRP) on future nuclear powered space missions

    SciTech Connect

    Gray, L.B. ); Pyatt, D.W. ); Sholtis, J.A. ); Winchester, R.O. , c/o Directorate of Nuclear Surety, Kirtland AFB, New Mexico 87117 )

    1993-01-10

    The Interagency Nuclear Safety Review Panel (INSRP) has provided reviews of all nuclear powered spacecraft launched by the United States. The two most recent launches were Ulysses in 1990 and Galileo in 1989. One reactor was launched in 1965 (SNAP-10A). All other U.S. space missions have utilized radioisotopic thermoelectric generators (RTGs). There are several missions in the next few years that are to be nuclear powered, including one that would utilize the Topaz II reactor purchased from Russia. INSRP must realign itself to perform parallel safety assessments of a reactor powered space mission, which has not been done in about thirty years, and RTG powered missions.

  1. Preserving the nuclear option: The AIAA position paper on space nuclear power

    SciTech Connect

    Allen, D.M.; Bennett, G.L.; El-Genk, M.S.; Newhouse, A.R.; Rose, M.F.; Rovang, R.D.

    1996-03-01

    In response to published reports about the decline in funding for space nuclear power, the Board of Directors of the American Institute of Aeronautics and Astronautics (AIAA) approved a position paper in March 1995 that recommends (1) development and support of an integrated space nuclear power program by DOE, NASA and DoD; (2) Congressional support for the program; (3) advocacy of the program by government and industry leaders; and (4) continuation of cooperation between the U.S. and other countries to advance nuclear power source technology and to promote safety. This position paper has been distributed to various people having oversight of the U.S. space nuclear power program. {copyright} {ital 1996 American Institute of Physics.}

  2. Effects of Nuclear Interactions in Space Radiation Transport

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei; Barghouty, A. F.

    2005-01-01

    Space radiation transport codes have been developed to calculate radiation effects behind materials in human mission to the Moon, Mars or beyond. We study how nuclear fragmentation processes affect predictions from such radiation transport codes. In particular, we investigate the effects of fragmentation cross sections at different energies on fluxes, dose and dose-equivalent from galactic cosmic rays behind typical shielding materials.

  3. Effects of Nuclear Interactions in Space Radiation Transport

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei; Barghouty, A. F.

    2004-01-01

    Space radiation transport codes have been developed to calculate radiation effects behind materials in human missions to the Moon, Mars or beyond. We study how nuclear fragmentation processes affect predictions from such radiation transport codes. In particular, we investigate the effects of fragmentation cross sections at different energies on fluxes, dose and dose-equivalent from galactic cosmic rays behind typical shielding materials.

  4. Determining Important Nuclear Fragmentation Processes for Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2005-01-01

    Space radiation from cosmic ray particles is a major risk for astronauts in long-term human space explorations such as a permanent moon base or a trip to Mars. Radiation shielding is needed to reduce the radiation hazard to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials. In this talk we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. As a result, these cross sections need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.

  5. Disposal of high-level nuclear waste in space

    NASA Astrophysics Data System (ADS)

    Coopersmith, Jonathan

    1992-08-01

    A solution of launching high-level nuclear waste into space is suggested. Disposal in space includes solidifying the wastes, embedding them in an explosion-proof vehicle, and launching it into earth orbit, and then into a solar orbit. The benefits of such a system include not only the safe disposal of high-level waste but also the establishment of an infrastructure for large-scale space exploration and development. Particular attention is given to the wide range of technical choices along with the societal, economic, and political factors needed for success.

  6. Key issues in space nuclear power challenges for the future

    NASA Astrophysics Data System (ADS)

    Brandhorst, Henry W., Jr.

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to the success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency, and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems.

  7. Key issues in space nuclear power challenges for the future

    NASA Astrophysics Data System (ADS)

    Brandhorst, Henry W.

    1991-01-01

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems.

  8. Key issues in space nuclear power challenges for the future

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1991-01-01

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to the success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency, and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems.

  9. Nuclear Fragmentation Processes Relevant for Human Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2007-01-01

    Space radiation from cosmic ray particles is one of the main challenges for human space explorations such-as a moon base or a trip to Mars. Models have been developed in order to predict the radiation exposure to astronauts and to evaluate the effectiveness of different shielding materials, and a key ingredient in these models is the physics of nuclear fragmentations. We have developed a semi-analytical method to determine which partial cross sections of nuclear fragmentations most affect the radiation dose behind shielding materials due to exposure to galactic cosmic rays. The cross sections thus determined will require more theoretical and/or experimental studies in order for us to better predict, reduce and mitigate the radiation exposure in human space explorations.

  10. Refractory alloy technology for space nuclear power applications

    SciTech Connect

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  11. Safety and Nuclear Power Sources for Space Systems

    NASA Astrophysics Data System (ADS)

    Segalas, Corinne C.; Schmidt, George R.

    2010-09-01

    Nuclear power sources have been used in space applications for decades. They have been used extensively for electrical power production, and their future potential for propulsion has been recognized since the dawn of the spaceflight era. Nuclear power sources offer many advantages in terms of long duration operation and high power densities independent of distance and orientation with respect to the Sun. However, it is also broadly known that use of radioactive materials do carry more risk that must be addressed to ensure safe operation during all phases of the mission, particularly before and during launch into orbit. Almost all of the nuclear-powered missions to date have been flown by the United States and former Soviet Union, but other space-faring nations have recognized its importance for their future missions. Consequently, many in the space community have advocated the development of a broad set of principles that could be applied on an international basis. This paper examines the current guidelines by the major space-faring nations, and suggests a framework primarily based on the U.S. methodology for ensuring reduction of risk, mitigating environmental impact and promoting launch safety.

  12. Nuclear model calculations and their role in space radiation research

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Cucinotta, F. A.; Heilbronn, L. H.

    2002-01-01

    Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to spacecraft crews from energetic space radiation requires accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through thick absorbers. These quantitative methods are also needed for characterizing accelerator beams used in space radiobiology studies. Because of the impracticality/impossibility of measuring these altered radiation fields inside critical internal body organs of biological test specimens and humans, computational methods rather than direct measurements must be used. Since composition changes in the fields arise from nuclear interaction processes (elastic, inelastic and breakup), knowledge of the appropriate cross sections and spectra must be available. Experiments alone cannot provide the necessary cross section and secondary particle (neutron and charged particle) spectral data because of the large number of nuclear species and wide range of energies involved in space radiation research. Hence, nuclear models are needed. In this paper current methods of predicting total and absorption cross sections and secondary particle (neutrons and ions) yields and spectra for space radiation protection analyses are reviewed. Model shortcomings are discussed and future needs presented. c2002 COSPAR. Published by Elsevier Science Ltd. All right reserved.

  13. Multimegawatt space nuclear power supply, Phase 1 Final report

    SciTech Connect

    Not Available

    1989-02-17

    This Specification establishes the performance, design, development, and test requirements for the Boeing Multimegawatt Space Nuclear Power System (MSNPS). The Boeing Multimegawatt Space Power System is part of the DOE/SDIO Multimegawatt Space Nuclear Power Program. The purpose of this program is to provide a space-based nuclear power system to meet the needs of SDIO missions. The Boeing MSNPS is a category 1 concept which is capable of delivering 10's of MW(e) for 100's of seconds with effluent permitted. A design goal is for the system to have growth or downscale capability for other power system concepts. The growth objective is to meet the category 3 capability of 100's of MW(e) for 100's of seconds, also with effluent permitted. The purpose of this preliminary document is to guide the conceptual design effort throughout the Phase 1 study effort. This document will be updated through out the study. It will thus result in a record of the development of the design effort.

  14. Nuclear reactor descriptions for space power systems analysis

    NASA Technical Reports Server (NTRS)

    Mccauley, E. W.; Brown, N. J.

    1972-01-01

    For the small, high performance reactors required for space electric applications, adequate neutronic analysis is of crucial importance, but in terms of computational time consumed, nuclear calculations probably yield the least amount of detail for mission analysis study. It has been found possible, after generation of only a few designs of a reactor family in elaborate thermomechanical and nuclear detail to use simple curve fitting techniques to assure desired neutronic performance while still performing the thermomechanical analysis in explicit detail. The resulting speed-up in computation time permits a broad detailed examination of constraints by the mission analyst.

  15. The role of integral experiments and nuclear cross section evaluations in space nuclear reactor design

    NASA Astrophysics Data System (ADS)

    Moses, David L.; McKnight, Richard D.

    The importance of the nuclear and neutronic properties of candidate space reactor materials to the design process has been acknowledged as has been the use of benchmark reactor physics experiments to verify and qualify analytical tools used in design, safety, and performance evaluation. Since June 1966, the Cross Section Evaluation Working Group (CSEWG) has acted as an interagency forum for the assessment and evaluation of nuclear reaction data used in the nuclear design process. CSEWG data testing has involved the specification and calculation of benchmark experiments which are used widely for commercial reactor design and safety analysis. These benchmark experiments preceded the issuance of the industry standards for acceptance, but the benchmarks exceed the minimum acceptance criteria for such data. Thus, a starting place has been provided in assuring the accuracy and uncertainty of nuclear data important to space reactor applications.

  16. SP-100 nuclear space power systems with application to space commercialization

    NASA Technical Reports Server (NTRS)

    Smith, John M.

    1988-01-01

    The purpose of this paper is to familiarize the Space Commercialization Community with the status and characteristics of the SP-100 space nuclear power system. The program is a joint undertaking by the Department of Defense, the Department of Energy and NASA. The goal of the program is to develop, validate, and demonstrate the technology for space nuclear power systems in the range of 10 to 1000 kWe electric for use in the future civilian and military space missions. Also discussed are mission applications which are enhanced and/or enabled by SP-100 technology and how this technology compares to that of more familiar solar power systems. The mission applications include earth orbiting platforms and lunar/Mars surface power.

  17. Parametric analysis of a thermionic space nuclear power system

    NASA Technical Reports Server (NTRS)

    Strohmayer, W. H.; Van Hagan, T. H.

    1987-01-01

    Key parameters in the design of a thermionic space nuclear power system are identified and analysed in various system tradeoffs. The results are referenced to the thermionic system currently being studied for the SP-100 program. The SP-100 requirements provide definitive guidelines with respect to system optimization, the primary ones being the system mass limit of 3000 kg, the system volume constrraint of one-third of the Space Shuttle cargo bay, and the system lifetime of seven years. Many parametric influences are described and the methods used to optimize system design, in the context of the requirements, are indicated. Considerable design flexiblity is demonstrated.

  18. A Review of Tribomaterial Technology for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has recently proposed a nuclear closed-cycle electric power conversion system for generation of 100-kW of electrical power for space exploration missions. A critical issue is the tribological performance of sliding components within the power conversion unit that will be exposed to neutron radiation. This paper presents a review of the main considerations that have been made in the selection of solid lubricants for similar applications in the past as well as a recommendations for continuing development of the technology.

  19. Nuclear pairing within a configuration-space Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Lingle, Mark; Volya, Alexander

    2015-06-01

    Pairing correlations in nuclei play a decisive role in determining nuclear drip lines, binding energies, and many collective properties. In this work a new configuration-space Monte Carlo (CSMC) method for treating nuclear pairing correlations is developed, implemented, and demonstrated. In CSMC the Hamiltonian matrix is stochastically generated in Krylov subspace, resulting in the Monte Carlo version of Lanczos-like diagonalization. The advantages of this approach over other techniques are discussed; the absence of the fermionic sign problem, probabilistic interpretation of quantum-mechanical amplitudes, and ability to handle truly large-scale problems with defined precision and error control are noteworthy merits of CSMC. The features of our CSMC approach are shown using models and realistic examples. Special attention is given to difficult limits: situations with nonconstant pairing strengths, cases with nearly degenerate excited states, limits when pairing correlations in finite systems are weak, and problems when the relevant configuration space is large.

  20. Nuclear Waste Disposal in Space: BEP's Best Hope?

    SciTech Connect

    Coopersmith, Jonathan

    2006-05-02

    The best technology is worthless if it cannot find a market Beam energy propulsion (BEP) is a very promising technology, but faces major competition from less capable but fully developed conventional rockets. Rockets can easily handle projected markets for payloads into space. Without a new, huge demand for launch capability, BEP is unlikely to gain the resources it needs for development and application. Launching tens of thousands of tons of nuclear waste into space for safe and permanent disposal will provide that necessary demand while solving a major problem on earth. Several options exist to dispose of nuclear waste, including solar orbit, lunar orbit, soft lunar landing, launching outside the solar system, and launching into the sun.

  1. Nuclear Waste Disposal in Space: BEP's Best Hope?

    NASA Astrophysics Data System (ADS)

    Coopersmith, Jonathan

    2006-05-01

    The best technology is worthless if it cannot find a market Beam energy propulsion (BEP) is a very promising technology, but faces major competition from less capable but fully developed conventional rockets. Rockets can easily handle projected markets for payloads into space. Without a new, huge demand for launch capability, BEP is unlikely to gain the resources it needs for development and application. Launching tens of thousands of tons of nuclear waste into space for safe and permanent disposal will provide that necessary demand while solving a major problem on earth. Several options exist to dispose of nuclear waste, including solar orbit, lunar orbit, soft lunar landing, launching outside the solar system, and launching into the sun.

  2. Potential civil mission applications for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Ambrus, J. H.; Beatty, R. G. G.

    1985-01-01

    It is pointed out that the energy needs of spacecraft over the last 25 years have been met by photovoltaic arrays with batteries, primary fuel cells, and radioisotope thermoelectric generators (RTG). However, it might be difficult to satisfy energy requirements for the next generation of space missions with the currently used energy sources. Applications studies have emphasized the need for a lighter, cheaper, and more compact high-energy source than the scaling up of current technologies would permit. These requirements could be satisfied by a nuclear reactor power system. The joint NASA/DOD/DOE SP-100 program is to explore and evaluate this option. Critical elements of the technology are also to be developed, taking into account space reactor systems of the 100 kW class. The present paper is concerned with some of the civil mission categories and concepts which are enabled or significantly enhanced by the performance characteristics of a nuclear reactor energy system.

  3. Nuclear safety policy working group recommendations on nuclear propulsion safety for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Marshall, Albert C.; Lee, James H.; Mcculloch, William H.; Sawyer, J. Charles, Jr.; Bari, Robert A.; Cullingford, Hatice S.; Hardy, Alva C.; Niederauer, George F.; Remp, Kerry; Rice, John W.

    1993-01-01

    An interagency Nuclear Safety Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program. These recommendations, which are contained in this report, should facilitate the implementation of mission planning and conceptual design studies. The NSPWG has recommended a top-level policy to provide the guiding principles for the development and implementation of the SEI nuclear propulsion safety program. In addition, the NSPWG has reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. These recommendations should be useful for the development of the program's top-level requirements for safety functions (referred to as Safety Functional Requirements). The safety requirements and guidelines address the following topics: reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations.

  4. Review of nuclear physics experimental data for space radiation.

    PubMed

    Norbury, John W; Miller, Jack

    2012-11-01

    The available nuclear fragmentation data relevant to space radiation studies are reviewed. It is found that there are serious gaps in the data. Helium data are missing in the intervals 280 MeV n-3 GeV n and >15 GeV n. Carbon data are missing >15 GeV n. Iron projectile data are missing at all energies except in the interval 280 MeV n-3 GeV n.

  5. Systems aspects of a space nuclear reactor power system

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    Various system aspects of a 300-kW nuclear reactor power system for spacecraft have been investigated. Special attention is given to the cases of a reusable OTV and a space-based radar. It is demonstrated that the stowed length of the power system is important to mission design, and that orbital storage for months to years may be needed for missions involving orbital assembly.

  6. Ground-based testing of space nuclear power plants

    SciTech Connect

    McDonald, T.G.

    1990-10-22

    Small nuclear power plants for space applications are evaluated according to their testability in this two part report. The first part introduces the issues involved in testing these power plants. Some of the concerns include oxygen embrittlement of critical components, the test environment, the effects of a vacuum environment on materials, the practically of racing an activated test chamber, and possible testing alternative the SEHPTR, king develop at the Idaho National Engineering Laboratory. 10 refs., 6 figs., 1 tab.

  7. Lightweight Radiator for in Space Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Craven, Paul; Tomboulian, Briana; SanSoucie, Michael

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.

  8. The role of nuclear reactors in space exploration and development

    SciTech Connect

    Lipinski, R.J.

    2000-07-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of {sup 238}Pu for power and typically generate <1 kW of electricity. Apollo, Pioneer, Voyager, Viking, Galileo, Ulysses, and Cassini all used RTGs. Space reactors use the fission energy of {sup 235}U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. One reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new

  9. Utilizing a Russian space nuclear reactor for a United States space mission: Systems integration issues

    SciTech Connect

    Reynolds, E.; Schaefer, E.; Polansky, G.; Lacy, J.; Bocharov, A.

    1993-09-30

    The Nuclear Electric Propulsion Space Test Program (NEPSTP) has developed a cooperative relationship with several institutes of the former Soviet Union to evaluate Russian space hardware on a US spacecraft One component is the Topaz II Nuclear Power System; a built and flight qualified nuclear reactor that has yet to be tested in space. The access to the Topaz II reactor provides the NEPSTP with a rare opportunity; to conduct an early flight demonstration of nuclear electric propulsion at a relatively low cost. This opportunity, however, is not without challenges. Topaz II was designed to be compatible with Russian spacecraft and launch vehicles. It was manufactured and flight qualified by Russian techniques and standards and conforms to safety requirements of the former Soviet Union, not the United States. As it is desired to make minimal modifications to the Topaz II, integrating the reactor system with a United States spacecraft and launch vehicle presents an engineering challenge. This paper documents the lessons teamed regarding the integration of reactor based spacecraft and also some insight about integrating Russian hardware. It examines the planned integration flow along with specific reactor requirements that affect the spacecraft integration including American-Russian space system compatibility.

  10. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space exploration.

  11. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.

  12. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most effect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.

  13. Fault-tolerant adaptive control for load-following in static space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Onbasioglu, Fetiye O.; Peddicord, Kenneth L.; Metzger, John D.

    1992-01-01

    The possible use of a dual-loop model-based adaptive control system for load following in static space nuclear power systems is investigated. The proposed approach has thus far been applied only to a thermoelectric space nuclear power system but is equally applicable to other static space nuclear power systems such as thermionic systems.

  14. Nuclear data needs for the space exploration initiative

    SciTech Connect

    Howe, S.D.; Auchampaugh, G.

    1991-01-01

    On July 20, 1989, the President of the United States announced a new direction for the US Space Program. The new Space Exploration Initiative (SEI) is intended to emplace a permanent base on the Lunar surface and a manned outpost on the Mars surface by 2019. In order to achieve this ambitious challenge, new, innovative and robust technologies will have to be developed to support crew operations. Nuclear power and propulsion have been recognized as technologies that are at least mission enhancing and, in some scenarios, mission enabling. Because of the extreme operating conditions present in a nuclear rocket core, accurate modeling of the rocket will require cross section data sets which do not currently exist. In order to successfully achieve the goals of the SEI, major obstacles inherent in long duration space travel will have to be overcome. One of these obstacles is the radiation environment to which the astronauts will be exposed. In general, an unshielded crew will be exposed to roughly one REM per week in free space. For missions to Mars, the total dose could exceed more than one-half the total allowed lifetime level. Shielding of the crew may be possible, but accurate assessments of shield composition and thickness are critical if shield masses are to be kept at acceptable levels. In addition, the entire ship design may be altered by the differential neutron production by heavy ions (Galactic Cosmic Rays) incident on ship structures. The components of the radiation environment, current modeling capability and envisioned experiments will be discussed.

  15. Comparison: Direct thrust nuclear engine, nuclear electric engine, and a chemical engine for future space missions

    SciTech Connect

    Ramsthaler, J.H.; Sulmeisters, T.K.

    1988-01-01

    The need for an advanced direct thrust nuclear rocket propulsion engine has been identified in Project Forecast 2, Air Force Systems Command report which looks into future Air Force needs. The Air Force Astronautical Laboratory (AFAL) has been assigned responsibility for developing the nuclear engine, and they in turn have requested support from teams of contractors who have the full capability to assist in the development of the nuclear engine. The Idaho National Engineering Laboratory (INEL) has formed a team of experts with Martin Marietta for mission analysis. Science Applications International (SAIC) for flight safety analysis, Westinghouse for the nuclear subsystem, and Rocketdyne for the engine system. INEL is the overall program manager and manager for test facility design, construction and operation. The INEL team has produced plans for both the engine system and the ground test facility. AFAL has funded the INEL team to perform mission analyses to evaluate the cost, performance and operational advantages for a nuclear rocket engine in performing Air Force Space Missions. For those studies, the Advanced Nuclear Rocket Engine (ANRE), a scaled down NERVA derivative, was used as the baseline nuclear engine to compare against chemical engines and nuclear electric engines for performance of orbital transfer and maneuvering missions. 3 tabs.

  16. Review of Nuclear Physics Experiments for Space Radiation

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Miller, Jack; Adamczyk, Anne M.; Heilbronn, Lawrence H.; Townsend, Lawrence W.; Blattnig, Steve R.; Norman, Ryan B.; Guetersloh, Stephen B.; Zeitlin, Cary J.

    2011-01-01

    Human space flight requires protecting astronauts from the harmful effects of space radiation. The availability of measured nuclear cross section data needed for these studies is reviewed in the present paper. The energy range of interest for radiation protection is approximately 100 MeV/n to 10 GeV/n. The majority of data are for projectile fragmentation partial and total cross sections, including both charge changing and isotopic cross sections. The cross section data are organized into categories which include charge changing, elemental, isotopic for total, single and double differential with respect to momentum, energy and angle. Gaps in the data relevant to space radiation protection are discussed and recommendations for future experiments are made.

  17. Separable coupled-channels momentum space potentials for nuclear reactions

    NASA Astrophysics Data System (ADS)

    Hlophe, Linda; Eremenko, Vasily; Elster, Charlotte; Nunes, Filomena; Deltuva, Arbanas; Escher, Jutta; Thompson, Ian; Torus Collaboration

    2015-10-01

    Many nuclei are deformed and their properties may be described using a rotational model. This involves defining a deformed surface of the nucleus and constructing the nuclear interaction as a function of distance to the surface. The resulting potential has non-zero matrix elements between different rotational states which are characterized by the nuclear spin-parity Iπ, leading to channel couplings. Our goal is to utilize these coupled-channels potentials in momentum space Faddeev calculations which take into account core excitations. For this purpose their separable representation in momentum space is necessary. We accomplish this by employing the separable representation scheme developed by Ernst, Shakin, and Thaler (EST). Since the potentials are complex, the multichannel EST scheme is generalized to non-Hermitian potentials. In the case of proton-nucleus interactions the EST scheme is further extended to include charged particles. The multichannel EST scheme is applied to scattering off 10Be and 12C. For 10Be only couplings to the first excited state (Iπ =2+) were included while for 12C the first two excited states (Iπ =2+ ,4+) were taken into account. Research for this project was supported in part by the US Department of Energy, Office of Science of Nuclear Physics contact.

  18. Pressure Fed Nuclear Thermal Rockets for space missions

    SciTech Connect

    Leyse, C.F. , Idaho Falls, ID ); Madsen, W.W.; Ramsthaler, J.H.; Schnitzler, B.G. )

    1989-08-01

    The National Space Policy includes a long range goal of expanding human presence and activity beyond Earth orbit into the solar system. This has renewed interest in the potential application of Nuclear Thermal Rockets (NTR) to space flight, particularly for human expeditions to the Moon and Mars. Recent NASA studies consider applications of the previously developed NERVA (Nuclear Engine for Rocket Vehicle Application) technology and the more advanced gas core reactors and show their potential advantages in reducing the initial mass in Earth orbit (IMEO) compared to advanced chemical rocket engines. Application of NERVA technology will require reestablishing the prior technological base or extending it to an advanced NERVA type engine, while the gas core NTR will require an extensive high risk research and development program. A technology intermediate between NERVA and the gas core NTR is a low pressure engine based on solid fuel, a Pressure Fed NTR (PFNTR). In addition to the simplicity of the gas pressurized engine cycle, the PFNTR takes advantage of the dissociation of hydrogen-the increases in specific impulse become significant as the chamber pressure decreases below 1.0 MPa (10 atmospheres) and the chamber temperature increases above 3000 K. The developmental status of technology applicable to a Pressure Fed Nuclear Thermal Rocket (PFNTR) lies between that of the NERVA engine and the gas core NTR (GCNTR). This document investigates PFNTR performance and provides typical mission analyses.

  19. In Space Nuclear Power as an Enabling Technology for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.; Houts, Michael

    2000-01-01

    Deep Space Exploration missions, both for scientific and Human Exploration and Development (HEDS), appear to be as weight limited today as they would have been 35 years ago. Right behind the weight constraints is the nearly equally important mission limitation of cost. Launch vehicles, upper stages and in-space propulsion systems also cost about the same today with the same efficiency as they have had for many years (excluding impact of inflation). Both these dual mission constraints combine to force either very expensive, mega systems missions or very light weight, but high risk/low margin planetary spacecraft designs, such as the recent unsuccessful attempts for an extremely low cost mission to Mars during the 1998-99 opportunity (i.e., Mars Climate Orbiter and the Mars Polar Lander). When one considers spacecraft missions to the outer heliopause or even the outer planets, the enormous weight and cost constraints will impose even more daunting concerns for mission cost, risk and the ability to establish adequate mission margins for success. This paper will discuss the benefits of using a safe in-space nuclear reactor as the basis for providing both sufficient electric power and high performance space propulsion that will greatly reduce mission risk and significantly increase weight (IMLEO) and cost margins. Weight and cost margins are increased by enabling much higher payload fractions and redundant design features for a given launch vehicle (higher payload fraction of IMLEO). The paper will also discuss and summarize the recent advances in nuclear reactor technology and safety of modern reactor designs and operating practice and experience, as well as advances in reactor coupled power generation and high performance nuclear thermal and electric propulsion technologies. It will be shown that these nuclear power and propulsion technologies are major enabling capabilities for higher reliability, higher margin and lower cost deep space missions design to reliably

  20. Relative nuclear abundances inside ISS with ALTEA-Space experiment

    NASA Astrophysics Data System (ADS)

    Zaconte, Veronica; Casolino, Marco; di Fino, Luca; La Tessa, Chiara; Larosa, Marianna; Narici, Livio; Picozza, Piergiorgio; Rinaldi, Adele; Sannita, Walter G.

    ALTEA (Anomalous Long Term Effects on Astronauts) is a multidisciplinary project aimed at studying the cosmic rays and their effects on the astronauts during the space missions, with a focus on the Light Flashes phenomenon. The ALTEA-Space is the main space experiment of the ALTEA project and its goal is the characterization of the radiation environment inside the International Space Station (ISS). It includes a stack of six silicon telescope particle detectors arranged in a 3D structure, capable to determine the energy loss and the trajectory of the cosmic ray ions. ALTEA-Space is on board the ISS since July 2006 and collected data continuously between August 2006 and July 2007. The first analysis has been performed on particles that release almost constant energy inside the detectors and provides spectra of the quasi relativistic radiation making possible the identification of ions from Boron to Iron. Relative nuclear abundances and absolute fluxes for all discriminated elements are presented, both total and divided into the different geomagnetic regions (polar, equatorial and South Atlantic Anomaly). Abundances are compared with literature values and with data from previous experiments.

  1. Aging effects of US space nuclear systems in orbit

    SciTech Connect

    Bartram, B.W.; Huang, R.; Tammara, S.R.; Thielke, N.R.

    1982-05-14

    This report presents information and data in support of a cost-benefit analysis being performed by Fair child Industries (FI) on the feasibility of retrieving existing US space nuclear systems in earth orbit by the Space Shuttle. This report evaluates, for US space nuclear systems presently in orbit, the radioisotopic inventory and external radiation field as a function of time, the effect of aging on fuel containment materials over the projected lifetime of the system, and the possible radioactive source terms should reentry eventually occur. Although the radioisotopic inventories and radiation fields have been evaluated for all systems, Transit 4A and Transit Triad have been emphasized in the evaluation of the aging effects and reentry consequences because these spacecraft have the shortest projected orbital lifetimes (570 and 150 years, respectively). In addition to existing systems in orbit, the radioisotopic inventory, radiation field, and reentry source terms have been evaluated for a General Purpose Heat Source (GPHS) in a parking orbit due to an aborted Galileo Mission or International Solar Polar Mission (ISPM).

  2. Proposed advanced satellite applications utilizing space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Bailey, Patrick G.; Isenberg, Lon

    1990-01-01

    A review of the status of space nuclear reactor systems and their possible applications is presented. Such systems have been developed over the past twenty years and are capable of use in various military and civilian applications in the 5-1000-kWe power range. The capabilities and limitations of the currently proposed nuclear reactor systems are summarized. Statements of need are presented from DoD, DOE, and NASA. Safety issues are identified, and if they are properly addressed they should not pose a hindrance. Applications are summarized for the DoD, DOE, NASA, and the civilian community. These applications include both low- and high-altitude satellite surveillance missions, communications satellites, planetary probes, low- and high-power lunar and planetary base power systems, broadband global telecommunications, air traffic control, and high-definition television.

  3. Nuclear fragmentation measurements for hadrontherapy and space radiation protection

    SciTech Connect

    De Napoli, M.; Agodi, C.; Blancato, A. A.; Cavallaro, M.; Cirrone, G. A. P.; Cuttone, G.; Sardina, D.; Scuderi, V.; Battistoni, G.; Bondi, M.; Cappuzzello, F.; Carbone, D.; Nicolosi, D.; Raciti, G.; Tropea, S.; Giacoppo, F.; Morone, M. C.; Pandola, L.; Rapisarda, E.; Romano, F.; and others

    2013-04-19

    Nuclear fragmentation measurements are necessary in hadrontherapy and space radiation protection, to predict the effects of the ion nuclear interactions within the human body. Nowadays, a very limited set of carbon fragmentation cross sections has been measured and in particular, to our knowledge, no double differential fragmentation cross sections at intermediate energies are available in literature. We have measured the double differential cross sections and the angular distributions of the secondary fragments produced in the {sup 12}C fragmentation at 62 AMeV on a thin carbon target. The experimental data have been also used to benchmark the prediction capability of the Geant4 Monte Carlo code at intermediate energies, where it was never tested before.

  4. Deployment of the Topaz-II space nuclear power plant

    SciTech Connect

    Standley, V.H.; Wyant, F.J.; Polansky, G.F. )

    1993-01-01

    The Topaz-II is a 5-kW(electric) Russian space nuclear power plant. The power plant resembles a shuttlecock standing 3.9 m high and is 1.4 m in diameter at the base. The reactor is at the top, the radiation shield is in the middle, and the radiator is at the bottom. The whole system weighs 1 tonne. The reactor core is 37.5 cm long and 26 cm in diameter. It contains 37 core-length, single-cell thermionic fuel elements embedded in a ZrH moderator. Each thermionic fuel cell is a cylindrical emitter inside a cylindrical collector. Nuclear fuel inside the emitter raises the emitter's temperature.

  5. Improved Nuclear Reactor and Shield Mass Model for Space Applications

    NASA Technical Reports Server (NTRS)

    Robb, Kevin

    2004-01-01

    New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.

  6. Probabilistic assessment of space nuclear propulsion system nozzle

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Ball, Richard D.; Chamis, Christos C.

    1994-01-01

    In assessing the reliability of a space nuclear propulsion system (SNPS) nozzle, uncertainties associated with the following design parameters were considered: geometry, boundary conditions, material behavior, and thermal and pressure loads. A preliminary assessment of the reliability was performed using NESSUS (Numerical Evaluation of Stochastic Structures Under Stress), a finite-element computer code developed at the NASA Lewis Research Center. The sensitivity of the nozzle reliability to the uncertainties in the random variables was quantified. With respect to the effective stress, preliminary results showed that the nozzle spatial geometry uncertainties have the most significant effect at low probabilities whereas the inner wall temperature has the most significant effect at higher probabilities.

  7. Reliability program requirements for Space and Terrestrial Nuclear Power Systems

    SciTech Connect

    Not Available

    1982-10-01

    The objectives of the reliability program requirements described in this report are (1) to provide contractors with an outline of the reliability requirements established by the Department of Energy (DOE) in the areas of design, development, production, testing, and acceptance of space and terrestrial nuclear systems hardware, and (2) to guide the contractor in meeting these requirements. This publication or particular portions of it is applicable as specified in the contract. Whether the contractors/subcontractors are subject to all the requirements or only to part of them will be specified by contract, program letter, or by the contract statement-of-work.

  8. Technology status of tantalum alloys for space nuclear power applications

    NASA Technical Reports Server (NTRS)

    Hoffman, E. E.

    1985-01-01

    Tantalum alloys have a variety of properties which make them attractive candidates for application in nuclear power systems required to operate in space at elevated temperatures (1200 to 1600 K) for extended time periods. Most of the technology development on this class of alloys which is pertinent to space system application occurred during the 1960 to 1972 time period under NASA sponsorship. The most extensive data bases resulting from this earlier work were obtained on the alloys T-111 (Ta-8W-2Hf) and ASTAR 811C (Ta-8W-1Re-0.7Hf-0.025C). Emphasis in this paper is directed at the following technical factors: producibility, creep strength, weldability and compatibility. These factors are considered to be the most important elements in the selection of alloys for this application. Review of the available information indicates that alloys of this type are appropriate for application in many systems, particularly those utilizing alkali metals as the working fluid.

  9. Space Agriculture for Recovery of Fukushima from the Nuclear Disaster

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Tomita-Yokotani, Kaori; Hasegawa, Katsuya; Kanazawa, Shinjiro; Oshima, Tairo

    2012-07-01

    Space agriculture is an engineering challenge to realize life support functions on distant planetary bodies under their harsh environment. After the nuclear disaster in Fukushima, its land was heavily contaminated by radioactive cesium and other nuclei. We proposed the use of space agriculture to remediate the contaminated land. Since materials circulation in the human dominant system should remove sodium from metabolic waste at processing fertilizer for crop plants, handling of sodium and potassium ions in agro-ecosystem has been one of major research targets of space agriculture. Cesium resembles to potassium as alkaline metal. Knowledge on behavior of sodium/potassium in agro-ecosystem might contribute to Fukushima. Reduction of volume of contaminated biomass made by hyperthermophilic aerobic composting bacterial system is another proposal from space agriculture. Volume and mass of plant bodies should be reduced for safe storage of nuclear wastes. Capacity of the storage facility will be definitely limited against huge amount of contaminated soil, plants and others. For this purpose, incineration of biomass first choice. The process should be under the lowered combustion temperature and with filters to confine radioactive ash to prevent dispersion of radioactive cesium. Biological combustion made by hyperthermophilic aerobic composting bacterial system might offer safe alternative for the volume reduction of plant biomass. Scientific evidence are demanded for Fukushima in order to to judge health risks of the low dose rate exposure and their biological mechanism. Biology and medicine for low dose rate exposure have been intensively studied for space exploration. The criteria of radiation exposure for general public should be remained as 1 mSv/year, because people has no merit at being exposed. However, the criteria of 1,200 mSv for life long, which is set to male astronaut, age of his first flight after age 40, might be informative to people for understanding

  10. Review of Overall Safety Manual for space nuclear systems. An evaluation of a nuclear safety analysis methodology for plutonium-fueled space nuclear systems

    SciTech Connect

    Coleman, J.; Inhaber, H.

    1984-02-01

    As part of its duties in connection with space missions involving nuclear power sources, the Office of Nuclear Safety (ONS) of the Office of Assistant Secretary for Environmental Protection, Safety, and Emergency Preparedness has been assigned the task of reviewing the Overall Safety Manual (OSM) (memo from B.J. Rock to J.R. Maher, December 1, 1982). The OSM, dated July 1981 and in four volumes, was prepared by NUS Corporation, Rockville, Maryland, for the US Department of Energy. The OSM provides many of the technical models and much of the data which are used by (1) space launch contractors in safety analysis reports and (2) the broader Interagency Nuclear Safety Review Panel (INSRP) safety evaluation reports. If fhs interaction between the OSM, contractors, and INSRP is to work effectively, the OSM must be accurate, comprehensive, understandable, and usable.

  11. An Approach to Autonomous Control for Space Nuclear Power Systems

    SciTech Connect

    Wood, Richard Thomas; Upadhyaya, Belle R.

    2011-01-01

    Under Project Prometheus, the National Aeronautics and Space Administration (NASA) investigated deep space missions that would utilize space nuclear power systems (SNPSs) to provide energy for propulsion and spacecraft power. The initial study involved the Jupiter Icy Moons Orbiter (JIMO), which was proposed to conduct in-depth studies of three Jovian moons. Current radioisotope thermoelectric generator (RTG) and solar power systems cannot meet expected mission power demands, which include propulsion, scientific instrument packages, and communications. Historically, RTGs have provided long-lived, highly reliable, low-power-level systems. Solar power systems can provide much greater levels of power, but power density levels decrease dramatically at {approx} 1.5 astronomical units (AU) and beyond. Alternatively, an SNPS can supply high-sustained power for space applications that is both reliable and mass efficient. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of an SNPS must be able to provide continuous operatio for the mission duration with limited immediate human interaction and no opportunity for hardware maintenance or sensor calibration. In effect, the SNPS control system must be able to independently operate the power plant while maintaining power production even when subject to off-normal events and component failure. This capability is critical because it will not be possible to rely upon continuous, immediate human interaction for control due to communications delays and periods of planetary occlusion. In addition, uncertainties, rare events, and component degradation combine with the aforementioned inaccessibility and unattended operation to pose unique challenges that an SNPS control system must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design.

  12. SPACE-R Thermionic Space Nuclear Power System: Design and Technology Demonstration Program

    NASA Astrophysics Data System (ADS)

    1993-05-01

    This semiannual technical progress report summarizes the technical progress and accomplishments for the Thermionic Space Nuclear Power System (TI-SNPS) Design and Technology Demonstration Program of the prime contractor, Space Power Incorporated (SPI), its subcontractors, and supporting national laboratories during the first half of the government fiscal year (GFY) 1993. SPI's subcontractors and supporting national laboratories include: Babcock & Wilcox for the reactor core and externals; Space Systems/Loral for the spacecraft integration; Thermocore for the radiator heat pipes and the heat exchanger; INERTEK of CIS for the TFE, core elements, and nuclear tests; Argonne National Laboratories for nuclear safety, physics, and control verification; and Oak Ridge National laboratories for materials testing. Parametric trade studies are near completion. However, technical input from INERTEK has yet to be provided to determine some of the baseline design configurations. The INERTEK subcontract is expected to be initiated soon. The point design task has been initiated. The thermionic fuel element (TFE) is undergoing several design iterations. The reactor core vessel analysis and design has also been started.

  13. Advanced Thermophotovoltaic Devices for Space Nuclear Power Systems

    SciTech Connect

    Wernsman, Bernard; Mahorter, Robert G.; Siergiej, Richard; Link, Samuel D.; Wehrer, Rebecca J.; Belanger, Sean J.; Fourspring, Patrick; Murray, Susan; Newman, Fred; Taylor, Dan; Rahmlow, Tom

    2005-02-06

    Advanced thermophotovoltaic (TPV) modules capable of producing > 0.3 W/cm2 at an efficiency > 22% while operating at a converter radiator and module temperature of 1228 K and 325 K, respectively, have been made. These advanced TPV modules are projected to produce > 0.9 W/cm2 at an efficiency > 24% while operating at a converter radiator and module temperature of 1373 K and 325 K, respectively. Radioisotope and nuclear (fission) powered space systems utilizing these advanced TPV modules have been evaluated. For a 100 We radioisotope TPV system, systems utilizing as low as 2 general purpose heat source (GPHS) units are feasible, where the specific power for the 2 and 3 GPHS unit systems operating in a 200 K environment is as large as {approx} 16 We/kg and {approx} 14 We/kg, respectively. For a 100 kWe nuclear powered (as was entertained for the thermoelectric SP-100 program) TPV system, the minimum system radiator area and mass is {approx} 640 m2 and {approx} 1150 kg, respectively, for a converter radiator, system radiator and environment temperature of 1373 K, 435 K and 200 K, respectively. Also, for a converter radiator temperature of 1373 K, the converter volume and mass remains less than 0.36 m3 and 640 kg, respectively. Thus, the minimum system radiator + converter (reactor and shield not included) specific mass is {approx} 16 kg/kWe for a converter radiator, system radiator and environment temperature of 1373 K, 425 K and 200 K, respectively. Under this operating condition, the reactor thermal rating is {approx} 1110 kWt. Due to the large radiator area, the added complexity and mission risk needs to be weighed against reducing the reactor thermal rating to determine the feasibility of using TPV for space nuclear (fission) power systems.

  14. Advanced Thermophotovoltaic Devices for Space Nuclear Power Systems

    NASA Astrophysics Data System (ADS)

    Wernsman, Bernard; Mahorter, Robert G.; Siergiej, Richard; Link, Samuel D.; Wehrer, Rebecca J.; Belanger, Sean J.; Fourspring, Patrick; Murray, Susan; Newman, Fred; Taylor, Dan; Rahmlow, Tom

    2005-02-01

    Advanced thermophotovoltaic (TPV) modules capable of producing > 0.3 W/cm2 at an efficiency > 22% while operating at a converter radiator and module temperature of 1228 K and 325 K, respectively, have been made. These advanced TPV modules are projected to produce > 0.9 W/cm2 at an efficiency > 24% while operating at a converter radiator and module temperature of 1373 K and 325 K, respectively. Radioisotope and nuclear (fission) powered space systems utilizing these advanced TPV modules have been evaluated. For a 100 We radioisotope TPV system, systems utilizing as low as 2 general purpose heat source (GPHS) units are feasible, where the specific power for the 2 and 3 GPHS unit systems operating in a 200 K environment is as large as ˜ 16 We/kg and ˜ 14 We/kg, respectively. For a 100 kWe nuclear powered (as was entertained for the thermoelectric SP-100 program) TPV system, the minimum system radiator area and mass is ˜ 640 m2 and ˜ 1150 kg, respectively, for a converter radiator, system radiator and environment temperature of 1373 K, 435 K and 200 K, respectively. Also, for a converter radiator temperature of 1373 K, the converter volume and mass remains less than 0.36 m3 and 640 kg, respectively. Thus, the minimum system radiator + converter (reactor and shield not included) specific mass is ˜ 16 kg/kWe for a converter radiator, system radiator and environment temperature of 1373 K, 425 K and 200 K, respectively. Under this operating condition, the reactor thermal rating is ˜ 1110 kWt. Due to the large radiator area, the added complexity and mission risk needs to be weighed against reducing the reactor thermal rating to determine the feasibility of using TPV for space nuclear (fission) power systems.

  15. Refractory metal alloys and composites for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Stephens, Joseph R.; Petrasek, Donald W.

    1988-01-01

    Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the Space Shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conservation system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wires for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites are discussed.

  16. Shielding considerations for advanced space nuclear reactor systems

    SciTech Connect

    Angelo, J.P. Jr.; Buden, D.

    1982-01-01

    To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO/sub 2/) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The paper reviews the status of this advanced heat pipe reactor and explores the radiation environments and shielding requirements for representative manned and unmanned applications.

  17. Direct-energy-conversion implications of Space Nuclear Reactors

    SciTech Connect

    Morris, J.F.

    1982-08-01

    The Air Force, NASA and DOE stress space-nuclear reactor (SNR) needs in 1981 IECEC papers. SNR proposals range from 10-to-100kW /SUB e/,s with thermoelectrics through the fractional-to-several MW /SUB e/ 's with thermionic conversion to rotating bed-reactor (RBR) and NERVA ultraversions. SNR direct conversion comprises thermionic and thermoelectric generation (TEG). Thermionic energy conversion (TEC) pervades the pre-1973 in-core and out-of-core-heat-pipe concepts. SPAR and SP-100 focus on thermoelectrics because of ostensible fuel-temperature limits. A Rasor Associates mini-heat-pipe reactor verifies again the high-power capability of this SNR type--as well as TEC advantages over TEG. Finally with about 2000K effluents, directly from RBR's, NERVA's or from MHD used with them, TEC could also produce very high power levels. This paper outlines SNR needs, discusses some proposed concepts and recommends future technology programs.

  18. Nuclear electric propulsion for future NASA space science missions

    SciTech Connect

    Yen, Chen-wan L.

    1993-07-20

    This study has been made to assess the needs, potential benefits and the applicability of early (circa year 2000) Nuclear Electric Propulsion (NEP) technology in conducting NASA science missions. The study goals are: to obtain the performance characteristics of near term NEP technologies; to measure the performance potential of NEP for important OSSA missions; to compare NEP performance with that of conventional chemical propulsion; to identify key NEP system requirements; to clarify and depict the degree of importance NEP might have in advancing NASA space science goals; and to disseminate the results in a format useful to both NEP users and technology developers. This is a mission performance study and precludes investigations of multitudes of new mission operation and systems design issues attendant in a NEP flight.

  19. Carbon-carbon turbopump concept for Space Nuclear Thermal Propulsion

    SciTech Connect

    Overholt, D.M.

    1993-06-01

    The U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program is placing high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio in the development of a practical high-performance nuclear rocket. The turbopump design is driven by these goals. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is from rapid heating of the propellant from 180 R to thousands of degrees in the particle bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. A high-performance approach is to use an uncooled carbon-carbon nozzle and duct turbine inlet. Carbon-carbon components are used throughout the TPA hot section to obtain the high-temperature capability. Several carbon-carbon components are in development including structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines and many other turbomachinery applications. 3 refs.

  20. High-temperature turbopump assembly for space nuclear thermal propulsion

    SciTech Connect

    Overholt, D.M. )

    1993-01-20

    The development of a practical, high-performance nuclear rocket by the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program places high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio. The operating parameters arising from these goals drive the propellant-pump design. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is effected by rapid heating of the propellant from 100 K to thousands of degrees in the particle-bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. One approach to achieve high performance is to use an uncooled carbon-carbon nozzle and duct turbine inlet. The high-temperature capability is obtained by using carbon-carbon throughout the TPA hot section. Carbon-carbon components in development include structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines plus a wide variety of other turbomachinery applications.

  1. Carbon-carbon turbopump concept for Space Nuclear Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Overholt, David M.

    1993-06-01

    The U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program is placing high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio in the development of a practical high-performance nuclear rocket. The turbopump design is driven by these goals. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is from rapid heating of the propellant from 180 R to thousands of degrees in the particle bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. A high-performance approach is to use an uncooled carbon-carbon nozzle and duct turbine inlet. Carbon-carbon components are used throughout the TPA hot section to obtain the high-temperature capability. Several carbon-carbon components are in development including structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines and many other turbomachinery applications.

  2. Summary of space nuclear reactor power systems, 1983 - 1992

    NASA Astrophysics Data System (ADS)

    Buden, D.

    1993-08-01

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987-88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  3. System aspects of a Space Nuclear Reactor Power System

    SciTech Connect

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01

    Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, altitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly. The power system design evolved during the study and has continued to evolve; the current design differs somewhat from that examined in this paper.

  4. IEEE Nuclear and Space Radiation Effects Conference: Notes on the Early Conferences

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Galloway, Kenneth F.

    2013-01-01

    This paper gathers the remembrances of several key contributors who participated in the earliest Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conferences (NSREC).

  5. Reactivity Control Schemes for Fast Spectrum Space Nuclear Reactors

    SciTech Connect

    Craft, Aaron E.; King, Jeffrey C.

    2008-01-21

    Several different reactivity control schemes are considered for future space nuclear reactor power systems. Each of these control schemes uses a combination of boron carbide absorbers and/or beryllium oxide reflectors to achieve sufficient reactivity swing to keep the reactor subcritical during launch and to provide sufficient excess reactivity to operate the reactor over its expected 7-15 year lifetime. The size and shape of the control system directly impacts the size and mass of the space reactor's reflector and shadow shield, leading to a tradeoff between reactivity swing and total system mass. This paper presents a trade study of drum, shutter, and petal control schemes based on reactivity swing and mass effects for a representative fast-spectrum, gas-cooled reactor. For each control scheme, the dimensions and composition of the core are constant, and the reflector is sized to provide $5 of cold-clean excess reactivity with each configuration in its most reactive state. The advantages and disadvantages of each configuration are discussed, along with optimization techniques and novel geometric approaches for each scheme.

  6. Preliminary risk assessment for nuclear waste disposal in space, volume 1

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.

    1982-01-01

    The feasibility, desirability and preferred approaches for disposal of selected high-level nuclear wastes in space were analyzed. Preliminary space disposal risk estimates and estimates of risk uncertainty are provided.

  7. Progress in space nuclear reactor power systems technology development - The SP-100 program

    NASA Technical Reports Server (NTRS)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  8. A radiological assessment of space nuclear power operations near Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Stevenson, Steve

    1990-01-01

    In order to accomplish NASA's more ambitious exploration goals, nuclear reactors may be used in the vicinity of Space Station Freedom (SSF) either as power sources for coorbiting platforms or as part of the propulsion system for departing and returning personnel or cargo vehicles. This study identifies ranges of operational parameters, such as parking distances and reactor cooldown times, which would reasonably guarantee that doses to the SSF crew from all radiation sources would be below guidelines recently recommended by the National Council of Radiation Protection and Measurements. The specific scenarios considered include: (1) the launch and return of a nuclear electric propulsion vehicle, (2) the launch and return of a nuclear thermal rocket vehicle, (3) the operation of an SP-100 class reactor on a coorbiting platform, (4) the activation of materials near operating reactors, (5) the storage and handling of radioisotope thermal generator units, and (6) the storage and handling of fresh and previously operated reactors. Portable reactor shield concepts were examined for relaxing the operational constraints imposed by unshielded (for human proximity operations) reactors and that might also be used to provide additional SSF crew protection from natural background radiation.

  9. Summary of space nuclear reactor power systems, 1983--1992

    SciTech Connect

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  10. Nuclear design of a vapor core reactor for space nuclear propulsion

    NASA Astrophysics Data System (ADS)

    Dugan, Edward T.; Watanabe, Yoichi; Kuras, Stephen A.; Maya, Isaac; Diaz, Nils J.

    1993-01-01

    Neutronic analysis methodology and results are presented for the nuclear design of a vapor core reactor for space nuclear propulsion. The Nuclear Vapor Thermal Reactor (NVTR) Rocket Engine uses modified NERVA geometry and systems which the solid fuel replaced by uranium tetrafluoride vapor. The NVTR is an intermediate term gas core thermal rocket engine with specific impulse in the range of 1000-1200 seconds; a thrust of 75,000 lbs for a hydrogen flow rate of 30 kg/s; average core exit temperatures of 3100 K to 3400 K; and reactor thermal powers of 1400 to 1800 MW. Initial calculations were performed on epithermal NVTRs using ZrC fuel elements. Studies are now directed at thermal NVTRs that use fuel elements made of C-C composite. The large ZrC-moderated reactors resulted in thrust-to-weight ratios of only 1 to 2; the compact C-C composite systems yield thrust-to-weight ratios of 3 to 5.

  11. Nuclear reactor power as applied to a space-based radar mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    A space-based radar mission and spacecraft are examined to determine system requirements for a 300 kWe space nuclear reactor power system. The spacecraft configuration and its orbit, launch vehicle, and propulsion are described. Mission profiles are addressed, and storage in assembly orbit is considered. Dynamics and attitude control and the problems of nuclear and thermal radiation are examined.

  12. Stirling System Modeling for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Johnson, Paul K.

    2007-01-01

    A dynamic model of a high-power Stirling convertor has been developed for space nuclear power systems modeling. The model is based on the Component Test Power Convertor (CTPC), a 12.5-kWe free-piston Stirling convertor. The model includes the fluid heat source, the Stirling convertor, output power and heat rejection. The Stirling convertor model includes the Stirling cycle thermodynamics, heat flow, mechanical mass-spring damper systems, and the linear alternator. The model was validated against test data. Both nonlinear and linear versions of the model were developed. The linear version algebraically couples two separate linear dynamic models; one model of the Stirling cycle and one model of the thermal system, through the pressure factors. Future possible uses of the Stirling system dynamic model are discussed. A pair of commercially available 1-kWe Stirling convertors is being purchased by NASA Glenn Research Center. The specifications of those convertors may eventually be incorporated into the dynamic model and analysis compared to the convertor test data. Subsequent potential testing could include integrating the convertors into a pumped liquid metal hot-end interface. This test would provide more data for comparison to the dynamic model analysis.

  13. Stirling System Modeling for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Johnson, Paul K.

    2008-01-01

    A dynamic model of a high-power Stirling convertor has been developed for space nuclear power systems modeling. The model is based on the Component Test Power Convertor (CTPC), a 12.5-kWe free-piston Stirling convertor. The model includes the fluid heat source, the Stirling convertor, output power, and heat rejection. The Stirling convertor model includes the Stirling cycle thermodynamics, heat flow, mechanical mass-spring damper systems, and the linear alternator. The model was validated against test data. Both nonlinear and linear versions of the model were developed. The linear version algebraically couples two separate linear dynamic models; one model of the Stirling cycle and one model of the thermal system, through the pressure factors. Future possible uses of the Stirling system dynamic model are discussed. A pair of commercially available 1-kWe Stirling convertors is being purchased by NASA Glenn Research Center. The specifications of those convertors may eventually be incorporated into the dynamic model and analysis compared to the convertor test data. Subsequent potential testing could include integrating the convertors into a pumped liquid metal hot-end interface. This test would provide more data for comparison to the dynamic model analysis.

  14. Space nuclear reactor shields for manned and unmanned applications

    SciTech Connect

    McKissock, B.I.; Bloomfield, H.S.

    1994-09-01

    Missions which use nuclear reactor power systems require radiation shielding of payload and/or crew areas to predetermined dose rates. Since shielding can become a significant fraction of the total mass of the system, it is of interest to show the effect of various parameters on shield thickness and mass for manned and unmanned applications. Algorithms were developed to give the thicknesses needed if reactor thermal power, separation distances, and dose rates are given as input. The thickness algorithms were combined with models for four different shield geometries to allow tradeoff studies of shield volume and mass for a variety of manned and unmanned missions. Shield design tradeoffs presented in this study include the effects of: Higher allowable dose rates; radiation hardened electronics; shorter crew exposure times; shield geometry; distance of the payload and/or crew from the reactor; and changes in the size of the shielded area. Specific NASA missions that were considered in this study include unmanned outer planetary exploration, manned advanced/evolutionary space station, and advanced manned lunar base.

  15. Gas Foil Bearings for Space Propulsion Nuclear Electric Power Generation

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher

    2006-01-01

    The choice of power conversion technology is critical in directing the design of a space vehicle for the future NASA mission to Mars. One candidate design consists of a foil bearing supported turbo alternator driven by a helium-xenon gas mixture heated by a nuclear reactor. The system is a closed-loop, meaning there is a constant volume of process fluid that is sealed from the environment. Therefore, foil bearings are proposed due to their ability to use the process gas as a lubricant. As such, the rotor dynamics of a foil bearing supported rotor is an important factor in the eventual design. The current work describes a rotor dynamic analysis to assess the viability of such a system. A brief technology background, assumptions, analyses, and conclusions are discussed in this report. The results indicate that a foil bearing supported turbo alternator is possible, although more work will be needed to gain knowledge about foil bearing behavior in helium-xenon gas.

  16. A compact Gas Core Nuclear Rocket for space exploration

    NASA Astrophysics Data System (ADS)

    Kammash, Terry

    1993-06-01

    The open cycle Gas Core Nuclear Rocket (GCR) possesses, in principle, outstanding propulsion characteristics that make it especially attractive for advanced space propulsion. With uranium as fuel and hydrogen as propellant, it can generate several thousand seconds of specific impulse and hundreds of kilonewtons of thrust. In its standard configuration, however, GCR is susceptible to hydrodynamic and acoustic instabilities, which could lead to a significant loss of fuel and severe limitation on its propulsion capabilities. In this paper we examine the potential utilization of americium in place of uranium, and study the effect of such fuel change on the size reduction of the system as well as its impact on the hydrodynamic stability question. We find that the same propulsion performance can be achieved at a comparable fuel density but with a radial size reduction of both core and moderator/reflector of about 70 percent, and a corresponding stabilizing effect on the Kelvin-Helmholtz instability which lies at the heart of turbulent mixing in this device.

  17. Analysis of space systems study for the space disposal of nuclear waste study report. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Reasonable space systems concepts were systematically identified and defined and a total system was evaluated for the space disposal of nuclear wastes. Areas studied include space destinations, space transportation options, launch site options payload protection approaches, and payload rescue techniques. Systems level cost and performance trades defined four alternative space systems which deliver payloads to the selected 0.85 AU heliocentric orbit destination at least as economically as the reference system without requiring removal of the protective radiation shield container. No concepts significantly less costly than the reference concept were identified.

  18. Radionuclide inventories for short run-time space nuclear reactor systems

    SciTech Connect

    Coats, R.L.

    1992-10-22

    Space Nuclear Reactor Systems, especially those used for propulsion, often have expected operation run times much shorter than those for land-based nuclear power plants. This produces substantially different radionuclide inventories to be considered in the safety analyses of space nuclear systems. This presentation describes an analysis utilizing ORIGEN2 and DKPOWER to provide comparisons among representative land-based and space systems. These comparisons enable early, conceptual considerations of safety issues and features in the preliminary design phases of operational systems, test facilities, and operations by identifying differences between the requirements for space systems and the established practice for land-based power systems. Early indications are that separation distance is much more effective as a safety measure for space nuclear systems than for power reactors because greater decay of the radionuclide activity occurs during the time to transport the inventory a given distance. In addition, the inventories of long-lived actinides are very low for space reactor systems.

  19. The past as prologue - A look at historical flight qualifications for space nuclear systems

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1992-01-01

    Currently the U.S. is sponsoring production of radioisotope thermoelectric generators (RTGs) for the Cassini mission to Saturn; the SP-100 space nuclear reactor power system for NASA applications; a thermionic space reactor program for DoD applications as well as early work on nuclear propulsion. In an era of heightened public concern about having successful space ventures it is important that a full understanding be developed of what it means to 'flight qualify' a space nuclear system. As a contribution to the ongoing work this paper reviews several qualification programs, including the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions, the SNAP-10A space reactor, the Nuclear Engine for Rocket Vehicle Applications (NERVA), the F-1 chemical engine used on the Saturn-V, and the Space Shuttle Main Engines (SSMEs). Similarities and contrasts are noted.

  20. Analysis of space systems study for the space disposal of nuclear waste. Study report, volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Space systems concepts were identified and defined and evaluated as to their performance, risks, and technical viability in order to select the most attractive approach for disposal of high level nuclear wastes in space. Major study areas discussed include: (1) mission and operations analysis; (2) waste payload systems; (3) flight support system; (4) launch site systems; (5) launch vehicle systems; (6) orbit transfer system; (7) space disposal destinations; and (8) systems integration and evaluation.

  1. Nuclear Propulsion for Space, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.; Schwenk, Francis C.

    The operation of nuclear rockets with respect both to rocket theory and to various fuels is described. The development of nuclear reactors for use in nuclear rocket systems is provided, with the Kiwi and NERVA programs highlighted. The theory of fuel element and reactor construction and operation is explained with particular reference to rocket…

  2. Space disposal of nuclear wastes. Volume 1: Socio-political aspects

    NASA Technical Reports Server (NTRS)

    Laporte, T.; Rochlin, G. I.; Metlay, D.; Windham, P.

    1976-01-01

    The history and interpretation of radioactive waste management in the U.S., criteria for choosing from various options for waste disposal, and the impact of nuclear power growth from 1975 to 2000 are discussed. Preconditions for the existence of high level wastes in a form suitable for space disposal are explored. The role of the NASA space shuttle program in the space disposal of nuclear wastes, and the impact on program management, resources and regulation are examined.

  3. Spectral Shift Absorbers for Fast Spectrum Space Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2005-02-01

    The space nuclear reactors being considered to support the Jupiter Icy Moons Orbiter (JIMO-1) mission-1 sometime in the next decade are compact and fast spectrum with void fractions ranging from 20-40%. In order to secure launch approval, it has to be demonstrated that these reactors will remain sufficiently subcritical when submerged in water or wet sand and subsequently flooded with water, following a launch abort accident. The resulting shift in the neutron spectrum towards thermal increases reactivity, potentially making the reactors supercritical. Incorporating ``Spectral Shift Absorbers'' (or SSAs), elements such as boron, europium, gadolinium or rhenium, which have significantly higher absorption cross-sections for thermal versus fast neutrons, can offset the reactivity increase. It has always been the assumption that the worst-case submersion accident is with a fully flooded reactor; however, this work shows that, depending on the type and amount of SSA in the reactor, a submerged but unflooded reactor core could be more reactive, raising a safety concern. This condition, referred to as ``reactivity inversion'', is investigated for the following SSA elements: boron, boron-10, samarium-149, europium, europium-151, gadolinium, gadolinium-155, gadolinium-157 and rhenium, by varying the ratio of SSA to fissile atoms in the reactor. The effect of placing a coating of SSA material on the outside of the reactor vessel is also investigated. Gadolinium-157 is the most effective SSA material investigated as a core additive, yielding the greatest increase in the safety worth of a submerged space reactor with a comparatively small decrease in excess reactivity. Samarium-149 yields a similar increase in safety worth, but with a much larger decrease in excess reactivity. Natural europium and gadolinium are also promising: however, the decrease in the excess reactivity is greater with europium than with gadolinium. Boron and boron-10 are not particularly attractive as

  4. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The impact on space systems of three alternative waste mixes was evaluated as part of an effort to investigate the disposal of certain high-level nuclear wastes in space as a complement to mined geologic repositories. A brief overview of the study background, objectives, scope, approach and guidelines, and limitations is presented. The effects of variations in waste mixes on space system concepts were studied in order to provide data for determining relative total system risk benefits resulting from space disposal of the alternative waste mixes. Overall objectives of the NASA-DOE sustaining-level study program are to investigate space disposal concepts which can provide information to support future nuclear waste terminal storage programmatic decisions and to maintain a low level of research activity in this area to provide a baseline for future development should a decision be made to increase the emphasis on this option.

  5. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    The impact on space systems of three alternative waste mixes was evaluated as part of an effort to investigate the disposal of certain high-level nuclear wastes in space as a complement to mined geologic repositories. A brief overview of the study background, objectives, scope, approach and guidelines, and limitations is presented. The effects of variations in waste mixes on space system concepts were studied in order to provide data for determining relative total system risk benefits resulting from space disposal of the alternative waste mixes. Overall objectives of the NASA-DOE sustaining-level study program are to investigate space disposal concepts which can provide information to support future nuclear waste terminal storage programmatic decisions and to maintain a low level of research activity in this area to provide a baseline for future development should a decision be made to increase the emphasis on this option.

  6. Toward the last frontier - A strategy for the evolutionary development of space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1992-01-01

    A number of exciting mission opportunities are being considered for the 21st century, including advanced robotic science missions to the outer planets and beyond, human exploration of the Moon and Mars, and advanced space transportation systems. All of these missions will require some form of nuclear power; however, it is clear that current budgetary constraints preclude developing many different types of space nuclear power systems. This paper reviews the specific civil space missions which have been identified, the power levels and lifetimes required, and the technologies available. From this an evolutionary space nuclear power program is developed which builds upon the experience of radioisotope thermoelectric generators, dynamic isotope power systems, and space nuclear reactors. It is strongly suggested that not only does this approach make technical and budgetary sense but that it is consistent with the normal development of new technologies.

  7. Space Nuclear Power Public and Stakeholder Risk Communication

    NASA Technical Reports Server (NTRS)

    Dawson, Sandra M.; Sklar, Maria

    2005-01-01

    The 1986 Challenger accident coupled with the Chernobyl nuclear reactor accident increased public concern about the safety of spacecraft using nuclear technology. While three nuclear powered spacecraft had been launched before 1986 with little public interest, future nuclear powered missions would see significantly more public concern and require NASA to increase its efforts to communicate mission risks to the public. In 1987 a separate risk communication area within the Launch Approval Planning Group of the Jet Propulsion Laboratory was created to address public concern about the health, environmental, and safety risks of NASA missions. The lessons learned from the risk communication strategies developed for the nuclear powered Galileo, Ulysses, and Cassini missions are reviewed in this paper and recommendations are given as to how these lessons can be applied to future NASA missions that may use nuclear power systems and other potentially controversial NASA missions.

  8. Absolute nuclear material assay using count distribution (LAMBDA) space

    SciTech Connect

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  9. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  10. Thermal Simulator Development: Non-Nuclear Testing of Space Fission Systems

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky E.

    2006-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system. At the NASA MSFC Early Flight Fission Test Facility (EFF-TF), highly designed electric heaters are used to simulate the heat from nuclear fuel to test space fission power and propulsion systems. To allow early utilization, nuclear system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. In this test strategy, highly designed electric heaters are used to simulate the heat from nuclear fuel, allowing one to develop a significant understanding of individual components and integrated system operation without the cost, time and safety concerns associated with nuclear testing.

  11. Nuclear systems in space? Does/will the public accept them?

    NASA Technical Reports Server (NTRS)

    Finger, Harold B.

    1993-01-01

    Public attitudes toward the use of nuclear energy on earth and in space are discussed. Survey data are presented which show that the public believes nuclear energy should play an important role in our energy supply. However, based on broad attitude research, there should be no expectation that the public will accept or support the use of nuclear energy unless it meets special needs and offers special and significant benefits. It is proposed that a public information program be adopted that results in getting recognition and support for the space program broadly and for the missions that benefit substantially from or require nuclear energy for their accomplishment.

  12. A Critical Review of Space Nuclear Power and Propulsion 1984-1993

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.

    Market: Researchers in nuclear power, physicists, chemical and nuclear engineers, students, and policy makers. The papers in this volume summarize key technological advancements that occurred during the ten years from 1984 to 1993 in such areas as heat pipe technology, fuels, space nuclear safety, dynamic power conversion systems, and advanced radiator technologies for spacecraft power systems. In light of new industry initiatives to form a consortia and the possibility of bi-modal space nuclear power and propulsion systems, this informative volume will be an invaluable reference source.

  13. Space Nuclear Program INL's role in energizing exploration

    SciTech Connect

    Idaho National Laboratory

    2008-04-22

    Idaho National Laboratory is helping make space exploration possible with the development of radioisotope power systems, which can work in areas too harsh and too isolated in space where the suns rays cannot be used for energy.

  14. Space Nuclear Program INL's role in energizing exploration

    ScienceCinema

    Idaho National Laboratory

    2016-07-12

    Idaho National Laboratory is helping make space exploration possible with the development of radioisotope power systems, which can work in areas too harsh and too isolated in space where the suns rays cannot be used for energy.

  15. How Space Radiation Risk from Galactic Cosmic Rays at the International Space Station Relates to Nuclear Cross Sections

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei; Adams, J. H., Jr.

    2005-01-01

    Space radiation risk to astronauts is a major obstacle for long term human space explorations. Space radiation transport codes have thus been developed to evaluate radiation effects at the International Space Station (ISS) and in missions to the Moon or Mars. We study how nuclear fragmentation processes in such radiation transport affect predictions on the radiation risk from galactic cosmic rays. Taking into account effects of the geomagnetic field on the cosmic ray spectra, we investigate the effects of fragmentation cross sections at different energies on the radiation risk (represented by dose-equivalent) from galactic cosmic rays behind typical spacecraft materials. These results tell us how the radiation risk at the ISS is related to nuclear cross sections at different energies, and consequently how to most efficiently reduce the physical uncertainty in our predictions on the radiation risk at the ISS.

  16. Heat pipe space nuclear reactor design assessment. Volume 2: Feasibility study of upgrading the SP-100 heat pipe space nuclear power system

    NASA Astrophysics Data System (ADS)

    El-Genk, M. S.; Seo, J. T.

    1985-08-01

    This report investigated the feasibility of upgrading the power of the Heat Pipe Space Nuclear Reactor (HPSNR) system design. The report has also discussed the four primary methods for power upgrading: Increasing the thermal power output to the reactor core, pulse-mode operation, improving the heat rejection, and improving the thermal-to-electric energy conversion.

  17. Capillary-Pumped Passive Reactor Concept for Space Nuclear Power

    SciTech Connect

    Dr. Thomas F. Lin; Dr. Thomas G. Hughes; Christopher G. Miller

    2008-05-30

    To develop the passively-cooled space reactor concept using the capillary-induced lithium flow, since molten lithium possesses a very favorable surface tension characteristic. In space where the gravitational field is minimal, the gravity-assisted natural convection cooling is not effective nor an option for reactor heat removal, the capillary induced cooling becomes an attractive means of providing reactor cooling.

  18. The problem of space nuclear power sources collisions with artificial space objects in near-earth orbits

    NASA Astrophysics Data System (ADS)

    Gafarov, Albert A.

    1993-01-01

    Practically all space objects with onboard nuclear power sources stay in earth satellite orbits with an orbital lifetime long enough to reduce their radioactivity to levels presenting no danger for the Earth population. One of the reasons for orbit lifetime reduction can be collisions with other space objects in near-earth orbits. The possible consequence of collisions can be partial, or even complete, destruction of the spacecraft with an onboard nuclear power source; as well as delivery of additional impulse both to the spacecraft and its fragments. It is shown that collisions in orbit do not cause increase of radiation hazard for the Earth population if there is aerodynamic breakup of nuclear power sources into fragments of safe sizes during atmospheric reentry.

  19. Nuclear Thermal Propulsion (NTP) Development Activities at the NASA Marshall Space Flight Center - 2006 Accomplishments

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2007-01-01

    In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments

  20. Space exploration initiative candidate nuclear propulsion test facilities

    NASA Technical Reports Server (NTRS)

    Baldwin, Darrell; Clark, John S.

    1993-01-01

    One-page descriptions for approximately 200 existing government, university, and industry facilities which may be available in the future to support SEI nuclear propulsion technology development and test program requirements are provided. To facilitate use of the information, the candidate facilities are listed both by location (Index L) and by Facility Type (Index FT). The included one-page descriptions provide a brief narrative description of facility capability, suggest potential uses for each facility, and designate a point of contact for additional information that may be needed in the future. The Nuclear Propulsion Office at NASA Lewis presently plans to maintain, expand, and update this information periodically for use by NASA, DOE, and DOD personnel involved in planning various phases of the SEI Nuclear Propulsion Project.

  1. Timing system for firing widely spaced test nuclear detonations

    NASA Technical Reports Server (NTRS)

    Partridge, Ralph E.

    1992-01-01

    The national weapons design laboratories (Los Alamos National Laboratory and Lawrence Livermore National Laboratory) test fire nuclear devices at the Nevada Test Site (NTS), which is spread over an area of over 1200 square miles. On each test there are hundreds of high time resolution recordings made of nuclear output waveforms and other phenomena. In order to synchronize these recordings with each other, with the nuclear device, and with offsite recordings, there is a requirement that the permanent command center and the outlying temporary firing sites be time tied to each other and to UTC to permit firing the shot at a predetermined time with an accuracy of about a microsecond. Various aspects of the test setup and timing system are discussed.

  2. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    SciTech Connect

    James Werner

    2014-07-01

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

  3. Nuclear Power: Time, Space and Spirit--Keys to Scientific Literacy Series.

    ERIC Educational Resources Information Center

    Stonebarger, Bill

    One of the most important discoveries of the twentieth century was the fission of radioactive materials. This booklet considers nuclear energy from three aspects: time; space; and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several chapters on the history and concepts of nuclear…

  4. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The space option for disposal of certain high-level nuclear wastes in space as a complement to mined geological repositories is studied. A brief overview of the study background, scope, objective, guidelines and assumptions, and contents is presented. The determination of the effects of variations in the waste mix on the space systems concept to allow determination of the space systems effect on total system risk benefits when used as a complement to the DOE reference mined geological repository is studied. The waste payload system, launch site, launch system, and orbit transfer system are all addressed. Rescue mission requirements are studied. The characteristics of waste forms suitable for space disposal are identified. Trajectories and performance requirements are discussed.

  5. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 2: Technical report

    NASA Astrophysics Data System (ADS)

    The space option for disposal of certain high-level nuclear wastes in space as a complement to mined geological repositories is studied. A brief overview of the study background, scope, objective, guidelines and assumptions, and contents is presented. The determination of the effects of variations in the waste mix on the space systems concept to allow determination of the space systems effect on total system risk benefits when used as a complement to the DOE reference mined geological repository is studied. The waste payload system, launch site, launch system, and orbit transfer system are all addressed. Rescue mission requirements are studied. The characteristics of waste forms suitable for space disposal are identified. Trajectories and performance requirements are discussed.

  6. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    SciTech Connect

    Carmack, W.J.; Husser, D.L.; Mohr, T.C.; Richardson, W.C.

    2004-02-04

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developed to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.

  7. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    NASA Astrophysics Data System (ADS)

    Carmack, W. J.; Husser, D. L.; Mohr, T. C.; Richardson, W. C.

    2004-02-01

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developed to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.

  8. Space Nuclear Facility test capability at the Baikal-1 and IGR sites Semipalatinsk-21, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Hill, T. J.; Stanley, M. L.; Martinell, J. S.

    1993-01-01

    The International Space Technology Assessment Program was established 1/19/92 to take advantage of the availability of Russian space technology and hardware. DOE had two delegations visit CIS and assess its space nuclear power and propulsion technologies. The visit coincided with the Conference on Nuclear Power Engineering in Space Nuclear Rocket Engines at Semipalatinsk-21 (Kurchatov, Kazakhstan) on Sept. 22-25, 1992. Reactor facilities assessed in Semipalatinski-21 included the IVG-1 reactor (a nuclear furnace, which has been modified and now called IVG-1M), the RA reactor, and the Impulse Graphite Reactor (IGR), the CIS version of TREAT. Although the reactor facilities are being maintained satisfactorily, the support infrastructure appears to be degrading. The group assessment is based on two half-day tours of the Baikals-1 test facility and a brief (2 hr) tour of IGR; because of limited time and the large size of the tour group, it was impossible to obtain answers to all prepared questions. Potential benefit is that CIS fuels and facilities may permit USA to conduct a lower priced space nuclear propulsion program while achieving higher performance capability faster, and immediate access to test facilities that cannot be available in this country for 5 years. Information needs to be obtained about available data acquisition capability, accuracy, frequency response, and number of channels. Potential areas of interest with broad application in the U.S. nuclear industry are listed.

  9. Summary of the study of disposal of nuclear waste into space

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1973-01-01

    NASA, at the request of the AEC, is conducting a preliminary study to determine the feasibility of disposing of nuclear waste material into space. The study has indicated that the Space Shuttle together with expendable and nonexpendable orbital stages such as the Space Tug or Centaur can safety dispose of waste material by ejecting it from the solar system. The safety problems associated with all phases of launching and operation (normal, emergency and accident) of such a system are being examined. From the preliminary study it appears that solutions can be found that should make the risks acceptable when compared to the benefits to be obtained from the disposal of the nuclear waste.

  10. Space nuclear safety program. Progress report, September 1984

    SciTech Connect

    George, T.G.

    1986-02-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems conducted for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed are ongoing; the results and conclusions described may change as the work progresses. 15 figs.

  11. Space Nuclear Safety Program. Progress report, April 1984

    SciTech Connect

    George, T.G.

    1985-10-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Covered are: general-purpose heat source testing and recovery, and safety technology program (biaxial testing, iridium chemistry).

  12. Space nuclear safety program. Progress report, August 1983

    SciTech Connect

    Bronisz, S.E.

    1984-01-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed here are ongoing. Results and conclusions described may change as the work continues.

  13. Space nuclear safety program. Progress report, October-December 1984

    SciTech Connect

    George, T.G.

    1986-05-01

    This quarterly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed are ongoing; the results and conclusions described may change as the work progresses.

  14. Space Nuclear Safety Program: Progress report, January-March 1987

    SciTech Connect

    Lewin, R.; George, T.G.

    1988-07-01

    This quarterly report describes studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems, which were carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed are ongoing; the results and conclusions described may change as the work progresses.

  15. Space nuclear safety program. Progress report, January 1984

    SciTech Connect

    Bronisz, S.E.

    1984-07-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed here are ongoing. Results and conclusions described may change as the work continues.

  16. Space nuclear safety program: Progress report, July--September 1987

    SciTech Connect

    George, T.G.

    1989-02-01

    This quarterly report describes studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems, carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. The studies discussed are ongoing; the results and conclusions described may change as the work progresses. 20 figs., 4 tabs.

  17. Advanced Space Nuclear Reactors from Fiction to Reality

    NASA Astrophysics Data System (ADS)

    Popa-Simil, L.

    The advanced nuclear power sources are used in a large variety of science fiction movies and novels, but their practical development is, still, in its early conceptual stages, some of the ideas being confirmed by collateral experiments. The novel reactor concept uses the direct conversion of nuclear energy into electricity, has electronic control of reactivity, being surrounded by a transmutation blanket and very thin shielding being small and light that at its very limit may be suitable to power an autonomously flying car. It also provides an improved fuel cycle producing minimal negative impact to environment. The key elements started to lose the fiction attributes, becoming viable actual concepts and goals for the developments to come, and on the possibility to achieve these objectives started to become more real because the theory shows that using the novel nano-technologies this novel reactor might be achievable in less than a century.

  18. Technology development issues in space nuclear power for planetary exploration

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Atkins, K. L.; Mastal, E. F.; Mcconnell, D. G.

    1990-01-01

    Planning for future planetary exploration missions indicates that there are continuing, long range requirements for nuclear power, and in particular radioisotope-based power sources. In meeting these requirements, there is a need for higher efficiency, lower mass systems. Four technology areas currently under development that address these goals are described: modular RTG, modular RTG with advanced thermoelectric materials, dynamic isotope power system (DIPS), and the Alkali Metal Thermoelectric Converter (AMTEC).

  19. Space Nuclear Safety Program. Progress report, November 1983

    SciTech Connect

    Bronisz, S.E.

    1984-06-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Topics discussed include: safety-verification impact tests; explosion test; fragment test; leaking fueled clads; effects of fresh water and seawater or PuO/sub 2/ pellets; and impact tests of 5 watt radioisotope thermoelectric generator.

  20. Nuclear alkali metal Rankine power systems for space applications

    SciTech Connect

    Moyers, J.C.; Holcomb, R.S.

    1986-08-01

    Nucler power systems utilizing alkali metal Rankine power conversion cycles offer the potential for high efficiency, lightweight space power plants. Conceptual design studies are being carried out for both direct and indirect cycle systems for steady state space power applications. A computational model has been developed for calculating the performance, size, and weight of these systems over a wide range of design parameters. The model is described briefly and results from parametric design studies, with descriptions of typical point designs, are presented in this paper.

  1. A Methodology for the Neutronics Design of Space Nuclear Reactors

    SciTech Connect

    King, Jeffrey C.; El-Genk, Mohamed S.

    2004-02-04

    A methodology for the neutronics design of space power reactors is presented. This methodology involves balancing the competing requirements of having sufficient excess reactivity for the desired lifetime, keeping the reactor subcritical at launch and during submersion accidents, and providing sufficient control over the lifetime of the reactor. These requirements are addressed by three reactivity values for a given reactor design: the excess reactivity at beginning of mission, the negative reactivity at shutdown, and the negative reactivity margin in submersion accidents. These reactivity values define the control worth and the safety worth in submersion accidents, used for evaluating the merit of a proposed reactor type and design. The Heat Pipe-Segmented Thermoelectric Module Converters space reactor core design is evaluated and modified based on the proposed methodology. The final reactor core design has sufficient excess reactivity for 10 years of nominal operation at 1.82 MW of fission power and is subcritical at launch and in all water submersion accidents.

  2. A Methodology for the Neutronics Design of Space Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2004-02-01

    A methodology for the neutronics design of space power reactors is presented. This methodology involves balancing the competing requirements of having sufficient excess reactivity for the desired lifetime, keeping the reactor subcritical at launch and during submersion accidents, and providing sufficient control over the lifetime of the reactor. These requirements are addressed by three reactivity values for a given reactor design: the excess reactivity at beginning of mission, the negative reactivity at shutdown, and the negative reactivity margin in submersion accidents. These reactivity values define the control worth and the safety worth in submersion accidents, used for evaluating the merit of a proposed reactor type and design. The Heat Pipe-Segmented Thermoelectric Module Converters space reactor core design is evaluated and modified based on the proposed methodology. The final reactor core design has sufficient excess reactivity for 10 years of nominal operation at 1.82 MW of fission power and is subcritical at launch and in all water submersion accidents.

  3. SP-100, the US Space Nuclear Reactor Power Program. Technical information report

    SciTech Connect

    Truscello, V.C.

    1983-11-01

    DARPA, in conjunction with DOE`s Office of Nuclear Energy, and NASA`s Office of Aeronautics and Space Technology are jointly sponsoring a space nuclear reactor power system program known as the Space Power-100 (SP-100) Development Project. The program is presently in the critical technology phase. This phase, better known as technology assessment and advancement, includes mission requirements definition, system conceptual designs, and critical technology development. A ground test phase decision is scheduled for July 1985. If the decision is positive, the next phase would begin in fiscal year 1986. An overriding concern in conducting this program is to ensure that nuclear safety is being properly addressed even in these early stages.

  4. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    NASA Astrophysics Data System (ADS)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  5. Human Factors and Information Operation for a Nuclear Power Space Vehicle

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Brown-VanHoozer, S. Alenka

    2002-01-01

    This paper describes human-interactive systems needed for a crewed nuclear-enabled space mission. A synthesis of aircraft engine and nuclear power plant displays, biofeedback of sensory input, virtual control, brain mapping for control process and manipulation, and so forth are becoming viable solutions. These aspects must maintain the crew's situation awareness and performance, which entails a delicate function allocation between crew and automation.

  6. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    SciTech Connect

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-04

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal conditions.

  7. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  8. Historical perspectives - The role of the NASA Lewis Research Center in the national space nuclear power programs

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many natural space nuclear power and propulsion programs.

  9. Historical perspectives: The role of the NASA Lewis Research Center in the national space nuclear power programs

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many national space nuclear power and propulsion programs.

  10. Thermal investigation of nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. L.

    1981-01-01

    A thermal analysis has been conducted to determine the allowable size and response of bare and shielded nuclear waste forms in both low earth orbit and at 0.85 astronomical units. Contingency conditions of re-entry with a 45 deg and 60 deg aeroshell are examined as well as re-entry of a spherical shielded waste form. A variety of shielded schemes were examined and the waste form thermal response for each determined. Two optimum configurations were selected. The thermal response of these two shielded waste configurations to indefinite exposure to ground conditions following controlled and uncontrolled re-entry is determined. In all cases the prime criterion is that waste containment must be maintained.

  11. Alkali Metal Thermoelectric Conversion (AMTEC) for space nuclear power systems

    NASA Astrophysics Data System (ADS)

    Bankston, C. P.; Cole, T.; Khanna, S. K.; Thakoor, A. P.

    Performance parameters of the Alkali Metal Thermoelectric Converter (AMTEC) for a 100 kW electric power system have been calculated at four technological levels assuming a heat pipe-cooled nuclear reactor heat source. The most advanced level considered would operate between 1180 K converter temperature and 711 K radiator temperature at 16 percent efficiency, and would weigh 1850 kg with a radiator area of 43 sq m. In addition, electrode research studies for the AMTEC systems have been conducted utilizing an experimental test cell of Bankston et al. (1983) and Mo and several Mo-Ti electrodes. It was found that the Mo-Ti electrodes offered no improvement in lifetime characteristics over the pure Mo electrodes, however, oxygen treatment of a degraded Mo electrode restored its specific power output to 90 percent of its original specific power and maintained this level for 60 hr, thus offering a potential for lifetime stability.

  12. A Programmatic and Engineering Approach to the Development of a Nuclear Thermal Rocket for Space Exploration

    NASA Technical Reports Server (NTRS)

    Bordelon, Wayne J., Jr.; Ballard, Rick O.; Gerrish, Harold P., Jr.

    2006-01-01

    With the announcement of the Vision for Space Exploration on January 14, 2004, there has been a renewed interest in nuclear thermal propulsion. Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions; however, the cost to develop a nuclear thermal rocket engine system is uncertain. Key to determining the engine development cost will be the engine requirements, the technology used in the development and the development approach. The engine requirements and technology selection have not been defined and are awaiting definition of the Mars architecture and vehicle definitions. The paper discusses an engine development approach in light of top-level strategic questions and considerations for nuclear thermal propulsion and provides a suggested approach based on work conducted at the NASA Marshall Space Flight Center to support planning and requirements for the Prometheus Power and Propulsion Office. This work is intended to help support the development of a comprehensive strategy for nuclear thermal propulsion, to help reduce the uncertainty in the development cost estimate, and to help assess the potential value of and need for nuclear thermal propulsion for a human Mars mission.

  13. NASA safety program activities in support of the Space Exploration Initiatives Nuclear Propulsion program

    NASA Technical Reports Server (NTRS)

    Sawyer, J. C., Jr.

    1993-01-01

    The activities of the joint NASA/DOE/DOD Nuclear Propulsion Program Technical Panels have been used as the basis for the current development of safety policies and requirements for the Space Exploration Initiatives (SEI) Nuclear Propulsion Technology development program. The Safety Division of the NASA Office of Safety and Mission Quality has initiated efforts to develop policies for the safe use of nuclear propulsion in space through involvement in the joint agency Nuclear Safety Policy Working Group (NSPWG), encouraged expansion of the initial policy development into proposed programmatic requirements, and suggested further expansion into the overall risk assessment and risk management process for the NASA Exploration Program. Similar efforts are underway within the Department of Energy to ensure the safe development and testing of nuclear propulsion systems on Earth. This paper describes the NASA safety policy related to requirements for the design of systems that may operate where Earth re-entry is a possibility. The expected plan of action is to support and oversee activities related to the technology development of nuclear propulsion in space, and support the overall safety and risk management program being developed for the NASA Exploration Program.

  14. Electric propulsion applications enabled by space nuclear power

    NASA Technical Reports Server (NTRS)

    Vicente, F. A.; Karras, T.; Brewer, L.; Gore, R.

    1989-01-01

    Electric propulsion promises the advantage of providing high Isp's for placing payloads into their assigned orbits. This translates into heavier payloads using a given lift capability or, conversely, the use of smaller boosters. To accomplish this, high electric powers are required. Space reactor power systems such as SP-100 enable this technology. The electric propulsion requirements needed, namely, their power requirements and the resulting payload masses and time-to-orbit, are shown. Also indicated are the missions most benefitting from the use of electric propulsion. An Interim Reference Mission is described, synthesizing the results shown, for demonstration purposes.

  15. Space nuclear safety and fuels program. Progress report, February 1980

    SciTech Connect

    Bronisz, S.E.

    1981-05-01

    This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Space and Terrestrial Systems Division of the US Department of Energy by the Los Alamos National Laboratory. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

  16. Space Nuclear Power Plant Pre-Conceptual Design Report, For Information

    SciTech Connect

    B. Levine

    2006-01-27

    This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

  17. Preliminary survey of 21st century civil mission applications of space nuclear power

    NASA Technical Reports Server (NTRS)

    Mankins, John C.; Olivieri, J.; Hepenstal, A.

    1987-01-01

    The purpose was to collect and categorize a forecast of civilian space missions and their power requirements, and to assess the suitability of an SP-100 class space reactor power system to those missions. A wide variety of missions were selected for examination. The applicability of an SP-100 type of nuclear power system was assessed for each of the selected missions; a strawman nuclear power system configuration was drawn up for each mission. The main conclusions are as follows: (1) Space nuclear power in the 50 kW sub e plus range can enhance or enable a wide variety of ambitious civil space mission; (2) Safety issues require additional analyses for some applications; (3) Safe space nuclear reactor disposal is an issue for some applications; (4) The current baseline SP-100 conical radiator configuration is not applicable in all cases; (5) Several applications will require shielding greater than that provided by the baseline shadow-shield; and (6) Long duration, continuous operation, high reliability missions may exceed the currently designed SP-100 lifetime capabilities.

  18. An interagency space nuclear propulsion safety policy for SEI - Issues and discussion

    NASA Technical Reports Server (NTRS)

    Marshall, A. C.; Sawyer, J. C., Jr.

    1991-01-01

    An interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition, the NSPWG reviewed safety issues for nuclear propulsion and recommended top level safety requirements and guidelines to address these issues. Safety topics include reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations. In this paper the emphasis is placed on the safety policy and the issues and considerations that are addressed by the NSPWG recommendations.

  19. Heat resistant materials and their feasibility issues for a space nuclear transportation system

    SciTech Connect

    Olsen, C.S.

    1991-01-01

    A number of nuclear propulsion concepts based on solid-core nuclear propulsion are being evaluated for a nuclear propulsion transportation system to support the Space Exploration Initiative (SEI) involving the reestablishment of a manned lunar base and the subsequent exploration of Mars. These systems will require high-temperature materials to meet the operating conditions with appropriate reliability and safety built into these systems through the selection and testing of appropriate materials. The application of materials for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems and the feasibility issues identified for their use will be discussed. Some mechanical property measurements have been obtained, and compatibility tests were conducted to help identify feasibility issues. 3 refs., 1 fig., 4 tabs.

  20. Instrumentation and Controls evaluation for space nuclear power systems

    SciTech Connect

    Anderson, J.L.; Oakes, L.C.

    1984-01-01

    Design of control and protection systems should be coordinated with the design of the neutronic, thermal-hydraulic, and mechanical aspects of the core and plant at the earliest possible stage of concept development. An integrated systematic design approach is necessary to prevent uncoordinated choices in one technology area from imposing impractical or impossible requirements in another. Significant development and qualification will be required for virtually every aspect of reactor control and instrumentation. In-core instrumentation widely used in commercial light water reactors will not likely be usable in the higher temperatures of a space power plant. Thermocouples for temperature measurement and gamma thermometers for flux measurement appear to be the only viable candidates. Recent developments in ex-core neutron detectors may provide achievable alternatives to in-core measurements. Reliable electronic equipment and high-temperature actuators will require major development efforts.

  1. Space nuclear power system and the design of the nuclear electric propulsion OTV

    SciTech Connect

    Buden, D.; Garrison, P.W.

    1984-01-01

    Payload increases of three to five times that of the Shuttle/Centaur can be achieved using nuclear electric propulsion. Various nuclear power plant options being pursued by the SP-100 Program are described. These concepts can grow from 100 kW/sub e/ to 1MW/sub e/ output. Spacecraft design aspects are addressed, including thermal interactions, plume interactions, and radiation fluences. A baseline configuration is described accounting for these issues. Safety aspects of starting the OTV transfer from an altitude of 300 km indicate no significant additional risk to the biosphere.

  2. Space nuclear power system and the design of the nuclear electric propulsion OTV

    NASA Technical Reports Server (NTRS)

    Buden, D.; Garrison, P. W.

    1984-01-01

    Payload increases of three to five times that of the Shuttle/Centaur can be achieved using nuclear electric propulsion. Various nuclear power plant options being pursued by the SP-100 Program are described. These concepts can grow from 100 kWe to 1 MWe output. Spacecraft design aspects are addressed, including thermal interactions, plume interactions, and radiation fluences. A baseline configuration is described accounting for these issues. Safety aspects of starting the OTV transfer from an altitude of 300 km indicate no significant additional risk to the biosphere.

  3. Analysis of nuclear waste disposal in space, phase 3. Volume 1: Executive summary of technical report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Miller, N. E.; Yates, K. R.; Martin, W. E.; Friedlander, A. L.

    1980-01-01

    The objectives, approach, assumptions, and limitations of a study of nuclear waste disposal in space are discussed with emphasis on the following: (1) payload characterization; (2) safety assessment; (3) health effects assessment; (4) long-term risk assessment; and (5) program planning support to NASA and DOE. Conclusions are presented for each task.

  4. Determination of important nuclear fragmentation processes for human space radiation protection

    SciTech Connect

    Lin Ziwei

    2007-03-15

    We present a semianalytical method to determine which partial cross sections of nuclear fragmentations most affect the shielded dose equivalent due to exposure to galactic cosmic rays. The cross sections thus determined will require more theoretical and/or experimental studies for us to better predict, reduce, and mitigate the radiation exposure in human space explorations.

  5. Determination of Important Nuclear Fragmentation Processes for Human Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2007-01-01

    We present a semi-analytical method to determine which partial cross sections of nuclear fragmentations most affect the shielded dose equivalent due to exposure to galactic cosmic rays. The cross sections thus determined will require more theoretical and/or experimental studies in order for us to better predict, reduce and mitigate the radiation exposure in human space explorations.

  6. United Nations deliberations of the use of nuclear power sources in space: 1978-1987

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Sholtis, Joseph A., Jr.; Rashkow, Bruce C.

    1988-01-01

    The United Nations (U.N.) is continuing its deliberations on the use of nuclear power sources (NPS) in space. Although no complete set of legal principles has yet been agreed upon, certain scientific and technical criteria for the safe design and use of NPS have been accepted. In this respect, it should be noted that in its 1981 report, the Working Group on the Use of Power Sources in Outer Space concluded that power sources can be used safely in outer space, provided that all necessary safety requirements are met. This is also a succinct statement of the U.S. position.

  7. U.S. program assessing nuclear waste disposal in space - A status report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Priest, C. C.; Friedlander, A. L.

    1980-01-01

    Various concepts for the space disposal of nuclear waste are discussed, with attention given to the destinations now being considered (high earth orbit, lunar orbit, lunar surface, solar orbit, solar system escape, sun). Waste mixes are considered in the context of the 'Purex' (Plutonium and Uranium extraction) process and the potential forms for nuclear waste disposal (ORNL cermet, Boro-silicate glass, Metal matrix, Hot-pressed supercalcine) are described. Preliminary estimates of the energy required and the cost surcharge needed to support the space disposal of nuclear waste are presented (8 metric tons/year, requiring three Shuttle launches). When Purex is employed, the generated electrical energy needed to support the Shuttle launches is shown to be less than 1%, and the projected surcharge to electrical users is shown to be slightly more than two mills/kW-hour.

  8. Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.

    2004-01-01

    An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.

  9. Startup control of the TOPAZ-II space nuclear reactor. Master`s thesis

    SciTech Connect

    Astrin, C.D.

    1996-09-01

    The Russian designed and manufactured TOPAZ-II Thermionic Nuclear Space Reactor has been supplied to the Ballistic Missile Defense Organization for study as part of the TOPAZ International Program. A Preliminary Nuclear Safety Assessment investigated the readiness to use the TOPAZ-II in support of a Nuclear Electric Propulsion Space Test Mission (NEPSTP). Among the anticipated system modifications required for launching the TOPAZ-II system within safety goals is for a U.S. designed Automatic Control System. The requirements and desired features of such a control system are developed based upon U.S. safety standards. System theory and design are presented in order to establish the basis for development of a hybrid control model from available simulations. The model is verified and then used in exploration of various control schemes and casualty analysis providing groundwork for future Automatic Control System design.

  10. NASA Growth Space Station missions and candidate nuclear/solar power systems

    NASA Technical Reports Server (NTRS)

    Heller, Jack A.; Nainiger, Joseph J.

    1987-01-01

    A brief summary is presented of a NASA study contract and in-house investigation on Growth Space Station missions and appropriate nuclear and solar space electric power systems. By the year 2000 some 300 kWe will be needed for missions and housekeeping power for a 12 to 18 person Station crew. Several Space Station configurations employing nuclear reactor power systems are discussed, including shielding requirements and power transmission schemes. Advantages of reactor power include a greatly simplified Station orientation procedure, greatly reduced occultation of views of the earth and deep space, near elimination of energy storage requirements, and significantly reduced station-keeping propellant mass due to very low drag of the reactor power system. The in-house studies of viable alternative Growth Space Station power systems showed that at 300 kWe a rigid silicon solar cell array with NiCd batteries had the highest specific mass at 275 kg/kWe, with solar Stirling the lowest at 40 kg/kWe. However, when 10 year propellant mass requirements are factored in, the 300 kWe nuclear Stirling exhibits the lowest total mass.

  11. A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.; George, Jeffrey A.

    2013-01-01

    The potential capability of NTP is game changing for space exploration. A first generation NCPS could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Near-term NCPS systems would provide a foundation for the development of significantly more advanced, higher performance systems. John F. Kennedy made his historic special address to Congress on the importance of space on May 25, 1961, "First, I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth..." This was accomplished. John F. Kennedy also made a second request, "Secondly... accelerate development of the Rover nuclear rocket. This gives promise of some day providing a means for even more exciting and ambitious exploration of space, perhaps beyond the Moon, perhaps to the very end of the solar system itself." The investment in the Rover nuclear rocket program provided the foundation of technology that gives us assurance for greater performing rockets that are capable of taking us further into space. Combined with current technologies, the vision to go beyond the Moon and to the very end of the solar system can be realized with space nuclear propulsion and power.

  12. The International Safety Framework for nuclear power source applications in outer space-Useful and substantial guidance

    NASA Astrophysics Data System (ADS)

    Summerer, L.; Wilcox, R. E.; Bechtel, R.; Harbison, S.

    2015-06-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space was adopted, following a multi-year process that involved all major space faring nations under the auspices of a partnership between the UN Committee on the Peaceful Uses of Outer Space and the International Atomic Energy Agency. The Safety Framework reflects an international consensus on best practices to achieve safety. Following the 1992 UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second attempt by the international community to draft guidance promoting the safety of applications of nuclear power sources in space missions. NPS applications in space have unique safety considerations compared with terrestrial applications. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. Potential accident conditions could expose nuclear power sources to extreme physical conditions. The Safety Framework is structured to provide guidance for both the programmatic and technical aspects of safety. In addition to sections containing specific guidance for governments and for management, it contains technical guidance pertinent to the design, development and all mission phases of space NPS applications. All sections of the Safety Framework contain elements directly relevant to engineers and space mission designers for missions involving space nuclear power sources. The challenge for organisations and engineers involved in the design and development processes of space nuclear power sources and applications is to implement the guidance provided in the Safety Framework by integrating it into the existing standard space mission infrastructure of design, development and operational requirements, practices and processes. This adds complexity to the standard space mission and launch approval processes. The Safety Framework is deliberately

  13. Power beaming to space using a nuclear reactor-pumped laser

    SciTech Connect

    Lipinski, R.J.; Monroe, D.K.; Pickard, P.S.

    1993-10-01

    The present political and environmental climate may slow the inevitable direct utilization of nuclear power in space. In the meantime, there is another approach for using nuclear energy for space power. That approach is to let nuclear energy generate a laser beam in a ground-based nuclear reactor-pumped laser (RPL), and then beam the optical energy into space. Potential space applications for a ground-based RPL include (1) illuminating geosynchronous communication satellites in the earth`s shadow to extend their lives, (2) beaming power to orbital transfer vehicles, (3) providing power (from earth) to a lunar base during the long lunar night, and (4) removing space debris. FALCON is a high-power, steady-state, nuclear reactor-pumped laser (RPL) concept that is being developed by the Department of Energy with Sandia National Laboratories as the lead laboratory. The FALCON program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at wavelengths of 0.585, 0.703, 0.725, 1.271, 1.733, 1.792, 2.032, 2.63, 2.65, and 3.37 {mu}m with intrinsic efficiency as high as 2.5%. Frequency-doubling the 1.733{minus}{mu}m line would yield a good match for photovoltaic arrays at 0.867 {mu}m. Preliminary designs of an RPL suitable for power beaming have been completed. The MWclass laser is fairly simple in construction, self-powered, closed-cycle (no exhaust gases), and modular. This paper describes the FALCON program accomplishments and power-beaming applications.

  14. U.S. program assessing nuclear waste disposal in space - A 1981 status report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Edgecombe, D. S.; Best, R. E.; Compton, P. R.

    1982-01-01

    Concepts, current studies, and technology and equipment requirements for using the STS for space disposal of selected nuclear wastes as a complement to geological storage are reviewed. An orbital transfer vehicle carried by the Shuttle would kick the waste cannister into a 0.85 AU heliocentric orbit. One flight per week is regarded as sufficient to dispose of all high level wastes chemically separated from reactor fuel rods from 200 GWe nuclear power capacity. Studies are proceeding for candidate wastes, the STS system suited to each waste, and the risk/benefits of a space disposal system. Risk assessments are being extended to total waste disposal risks for various disposal programs with and without a space segment, and including side waste streams produced as a result of separating substances for launch.

  15. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    SciTech Connect

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative ECS that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal.

  16. Design of an Annular Linear Induction Pump for Nuclear Space Applications

    SciTech Connect

    Carloa O. Maidana; James E. Werner; Daniel M. Wachs

    2011-02-01

    Abstract. The United States Department of Energy's (DOE) Office of Nuclear Energy, Science, and Technology is supporting the National Aeronautics and Space Administration (NASA) in evaluating space mission power, propulsion systems and technologies to support the implementation of the Vision for Space Exploration (VSE). NASA will need increased power for propulsion and for surface power applications to support both robotic and human space exploration missions. As part of the Fission Surface Power Technology Project for the development of nuclear reactor technologies for multi-mission spacecrafts, an Annular Linear Induction Pump, a type of Electromagnetic Pump for liquid metals, able to operate in space has to be designed. Results of such design work are described as well as the fundamental ideas behind the development of an optimized design methodology. This project, which is a collaboration between Idaho National Laboratory (INL), Pacific Northwest National Laboratory (PNNL) and Marshall Space Flight Center (MSFC), involves the use of theoretical, computational and experimental tools for multi-physics analysis as well as advanced engineering design methods and techniques.

  17. Basic Research and Development Effort to Design a Micro Nuclear Power Plant for Brazilian Space Applications

    NASA Astrophysics Data System (ADS)

    Guimares, L. N. F.; Camillo, G. P.; Placco, G. M.; Barrios, G., A., Jr.; Do Nascimento, J. A.; Borges, E. M.; De Castro Lobo, P. D.

    For some years the Nuclear Energy Division of the Institute for Advanced Studies is conducting the TERRA (Portuguese abbreviation for advanced fast reactor technology) project. This project aims at research and development of the key issues related with nuclear energy applied to space technology. The purpose of this development is to allow future Brazilian space explorers the access of a good and reliable heat, power and/or propulsion system based on nuclear energy. Efforts are being made in fuel and nuclear core design, designing and building a closed Brayton cycle loop for energy conversion, heat pipe systems research for passive space heat rejection, developing computational programs for thermal loop safety analysis and other technology that may be used to improve efficiency and operation. Currently there is no specific mission that requires these technology development efforts; therefore, there is a certain degree of freedom in the organization and development efforts. This paper will present what has been achieved so far, what is the current development status, where efforts are heading and a proposed time table to meet development objectives.

  18. A radiological assessment of nuclear power and propulsion operations near Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Bolch, Wesley E.; Thomas, J. Kelly; Peddicord, K. Lee; Nelson, Paul; Marshall, David T.; Busche, Donna M.

    1990-01-01

    Scenarios were identified which involve the use of nuclear power systems in the vicinity of Space Station Freedom (SSF) and their radiological impact on the SSF crew was quantified. Several of the developed scenarios relate to the use of SSF as an evolutionary transportation node for lunar and Mars missions. In particular, radiation doses delivered to SSF crew were calculated for both the launch and subsequent return of a Nuclear Electric Propulsion (NEP) cargo vehicle and a Nuclear Thermal Rocket (NTR) personnel vehicle to low earth orbit. The use of nuclear power on co-orbiting platforms and the storage and handling issues associated with radioisotope power systems were also explored as they relate to SSF. A central philosophy in these analyses was the utilization of a radiation dose budget, defined as the difference between recommended dose limits from all radiation sources and estimated doses received by crew members from natural space radiations. Consequently, for each scenario examined, the dose budget concept was used to identify and quantify constraints on operational parameters such as launch separation distances, returned vehicle parking distances, and reactor shutdown times prior to vehicle approach. The results indicate that realistic scenarios do not exist which would preclude the use of nuclear power sources in the vicinity of SSF. The radiation dose to the SSF crew can be maintained at safe levels solely by implementing proper and reasonable operating procedures.

  19. Feasibility of an earth-to-space rail launcher system. [emphasizing nuclear waste disposal application

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Miller, L. A.; Marshall, R. A.; Kerslake, W. R.

    1982-01-01

    The feasibility of earth-to-space electromagnetic (railgun) launchers (ESRL) is considered, in order to determine their technical practicality and economic viability. The potential applications of the launcher include nuclear waste disposal into space, deep space probe launches, and atmospheric research. Examples of performance requirements of the ESRL system are a maximum acceleration of 10,000 g's for nuclear waste disposal in space (NWDS) missions and 2,500 g's for earth orbital missions, a 20 km/sec launch velocity for NWDS missions, and a launch azimuth of 90 degrees E. A brief configuration description is given, and test results indicate that for the 2020-2050 time period, as much as 3.0 MT per day of bulk material could be launched, and about 0.5 MT per day of high-level nuclear waste could be launched. For earth orbital missions, a significant projectile mass was approximately 6.5 MT, and an integral distributed energy store launch system demonstrated a good potential performance. ESRL prove to be economically and environmentally feasible, but an operational ESRL of the proposed size is not considered achievable before the year 2020.

  20. Review of the Tri-Agency Space Nuclear Reactor Power System Technology Program

    NASA Technical Reports Server (NTRS)

    Ambrus, J. H.; Wright, W. E.; Bunch, D. F.

    1984-01-01

    The Space Nuclear Reactor Power System Technology Program designated SP-100 was created in 1983 by NASA, the U.S. Department of Defense, and the Defense Advanced Research Projects Agency. Attention is presently given to the development history of SP-100 over the course of its first year, in which it has been engaged in program objectives' definition, the analysis of civil and military missions, nuclear power system functional requirements' definition, concept definition studies, the selection of primary concepts for technology feasibility validation, and the acquisition of initial experimental and analytical results.

  1. Benefits of 20 kHz PMAD in a nuclear space station

    NASA Astrophysics Data System (ADS)

    Sundberg, Gale R.

    Compared to existing systems, high frequency ac power provides higher efficiency, lower cost, and improved safety benefits. The 20 kHz power system has exceptional flexibility, is inherently user friendly, and is compatible with all types of energy sources; photovoltaic, solar dynamic, rotating machines and nuclear. A 25 kW, 20 kHz ac power distribution system testbed was recently (1986) developed. The testbed possesses maximum flexibility, versatility, and transparency to user technology while maintaining high efficiency, low mass, and reduced volume. Several aspects of the 20 kHz power management and distribution (PMAD) system that have particular benefits for a nuclear power Space Station are discussed.

  2. 10 kWe dual-mode space nuclear power system for military and scientific applications

    NASA Astrophysics Data System (ADS)

    Malloy, John; Westerman, Kurt; Rochow, Richard; Scoles, Stephen

    The Small Externally-fueled Heat Pipe Thermionic Reactor concept is used as the basis of a 10 kWe dual-mode space power system scheme that generates both arcjet propulsion system power and direct (hydrogen propellant-heating) thrust. This direct-thrust feature allows the nuclear-power system to move a payload from LEO to GEO in less than one month, using half as much propellant as a cryogenic-fuel chemical rocket. The nuclear reactor uses 36 thermionic heat-pipe modules, which produce electricity within the reactor and remove waste heat.

  3. Benefits of 20 kHz PMAD in a nuclear space station

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1987-01-01

    Compared to existing systems, high frequency ac power provides higher efficiency, lower cost, and improved safety benefits. The 20 kHz power system has exceptional flexibility, is inherently user friendly, and is compatible with all types of energy sources; photovoltaic, solar dynamic, rotating machines and nuclear. A 25 kW, 20 kHz ac power distribution system testbed was recently (1986) developed. The testbed possesses maximum flexibility, versatility, and transparency to user technology while maintaining high efficiency, low mass, and reduced volume. Several aspects of the 20 kHz power management and distribution (PMAD) system that have particular benefits for a nuclear power Space Station are discussed.

  4. General-purpose heat source project and space nuclear safety fuels program. Progress report, February 1980

    SciTech Connect

    Maraman, W.J.

    1980-05-01

    This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are: General-Purpose Heat Source Development and Space Nuclear Safety and Fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

  5. An evaluation of some special techniques for nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Mackay, J. S.

    1973-01-01

    A preliminary examination is reported of several special ways for space disposal of nuclear waste material which utilize the radioactive heat in the waste to assist in the propulsion for deep space trajectories. These include use of the wastes in a thermoelectric generator (RTG) which operates an electric propulsion device and a radioisotope - thermal thruster which uses hydrogen or ammonia as the propellant. These propulsive devices are compared to the space tug and the space tug/solar electric propulsion combination for disposal of waste on a solar system escape trajectory. Such comparisons indicate that the waste-RTG approach has considerable potential provided the combined specific mass of the waste container - RTG system does not exceed approximately 150 kg/kw sub e. Several exploratory numerical calculations have been made for high earth orbit and Earth escape destinations.

  6. Feasibility of space disposal of radioactive nuclear waste. 2: Technical summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The feasibility of transporting radioactive waste produced in the process of generating electricity in nuclear powerplants into space for ultimate disposal was investigated at the request of the AEC as a NASA in-house effort. The investigation is part of a broad AEC study of methods for long-term storage or disposal of radioactive waste. The results of the study indicate that transporting specific radioactive wastes, particularly the actinides with very long half-lives, into space using the space shuttle/tug as the launch system, appears feasible from the engineering and safety viewpoints. The space transportation costs for ejecting the actinides out of the solar system would represent less than a 5-percent increase in the average consumer's electric bill.

  7. Nuclear Physics and Radiobiology - Issues for Humans in Space and on Earth

    NASA Astrophysics Data System (ADS)

    Tripathi, Ram

    2008-10-01

    Nuclear physics is playing a vital role in human biological applications, specifically in planned space missions, in hadron radiotherapy, and in low dose radiobiology. While seemingly disparate, these and other areas share a common need for the understanding of nuclear interactions in biological systems. Radiobiology continues to provide valuable information that will help develop better methods for using radiation in the treatment of disease as well as provide a scientific basis for radiation protection standards. NASA is now focused on the agency's vision for space exploration encompassing a broad range of human and robotic missions including missions to the Moon, Mars and beyond. As a result, there is a focus on long duration space missions. Protection from hazards of space radiation has been identified as one of the five NASA critical areas for human space flight. The cost effective design of spacecraft demands a very stringent requirement on the optimization process. Exposures from the hazards of severe space radiation in deep space and/or long duration missions are very different from that of low earth orbit, and much needs to be done about their effects. However, it is clear that revolutionary technologies will need to be developed. Here on earth, particulate radiation treatment for cancer, such as proton radiotherapy, is playing an increasing important role, while the biological effectiveness remains less well understood than for x-rays and other forms of medical radiation treatments. Advanced imaging, dosimetric, Monte Carlo, and other techniques from nuclear physics are utilized to study the molecular basis of fractionation dependency and other tumor and normal tissue radiation responses, such as radiosensitivity. Moreover, advances developed by biological research efforts, such as the sequencing of the human genome, have opened new horizons for radiobiology. New techniques have made it possible to determine at the cellular / molecular level how living

  8. Summary of the study of disposal of nuclear waste into space

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1973-01-01

    The space shuttle together with expendable and nonexpendable orbital stages such as the space tug or Centaur can safely dispose of waste material by ejecting it from the solar system. The safety problems associated with all phases of launching and operation (normal, emergency, and accident) of such a system are being examined. It appears that solutions can be found that should make the risks acceptable when compared to the benefits to be obtained from the disposal of the nuclear waste. The techniques proposed to make such a system acceptable need to be carefully verified by further study and experiment.

  9. Status of Rankine-cycle technology for space nuclear power applications

    SciTech Connect

    Holcomb, R.S.

    1991-01-01

    A substantial effort on the development of the liquid metal Rankine cycle space nuclear power system was carried out in programs jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Atomic Energy Commission (AEC) during the period of 1960--1972. Component tests were conducted which have established a considerable technology base for the concept. The development effort and technology status of each component are presented. The key technology issues remaining for development of the system are: refractory metal parts fabrication, turbine blade endurance, turbine bearings and seals, and generator winding seal. 5 refs.

  10. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2007-01-01

    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is

  11. Comments on dual-mode nuclear space power and propulsion system concepts

    NASA Technical Reports Server (NTRS)

    Layton, J. Preston; Grey, Jerry

    1991-01-01

    Some form of Dual-Mode Nuclear Space Power & Propulsion System (D-MNSP&PS) will be essential to spacefaring throughout teh solar system and that such systems must evolve as mankind moves into outer space. The initial D-MNPSP&PS Reference System should be based on (1) present (1990), and (2) advanced (1995) technology for use on comparable mission in the 2000 and 2005 time period respectively. D-MNSP&PS can be broken down into a number of subsystems: Nuclear subsystems including the energy source and controls for the release of thermal power at elevated temperatures; power conversion subsystems; waste heat rejection subsystems; and control and safety subsystems. These systems are briefly detailed.

  12. An overview of NASA's projected mission requirements for space nuclear systems

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Pilcher, Carl B.; Smith, William L.; Stetson, Douglas S.

    1993-01-01

    The near-term ongoing NASA space nuclear program is the Cassini mission to Saturn which will use three radioisotope thermoelectric generators (RTGs). Beyond that NASA is studying a Pluto Fast Flyby mission which will challenge the space power community to produce a low-mass RTG. Another candidate RTG mission is the Mars Environmental Survey (MESUR) mission to emplace a number of probes on the surface of Mars to obtain a more global survey of the planet than was accomplished with the two Viking Landers. Looking toward the 21st century, there are a number of exciting planetary missions, such as the Jupiter Grand Tour, Outer Planet Orbiters/Probes, comet/asteroid rendezvous/sample return, which are enabled or greatly enhanced by nuclear reactor power coupled with electric propulsion.

  13. Aging effects of U.S. space nuclear systems, currently in orbit

    NASA Astrophysics Data System (ADS)

    Bartram, Bart W.; Tammara, Seshagiri R.

    1992-01-01

    There are currently nine U.S. space nuclear systems in orbit, include eight with plutonium-238 fueled radioisotope thermoelectric generators and one fission-reactor system. Due to the inventories of radioactive materials onboard these spacecraft, the potential exists for radioactive releases during or following reentry. Projected orbital lifetimes, aging of containment materials, and radioactive decay will determine the degree of potential hazard associated with spacecraft reentry. These factors also affect consideration of possibly retrieving these spacecraft prior to reentry in order to minimize such hazards. This paper reviews the present U.S. space nuclear systems in orbit and summarizes the results of studies related to the aging effects of containment materials; describes changes in radionuclide inventory and external radiation field due to radioactive decay; and estimates the potential radioactive releases during or following reentry.

  14. Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.; Dudzinski, Leonard A.; Borowski, Stanley K.; Juhasz, Albert J.

    2005-01-01

    A conceptual vehicle design enabling fast, piloted outer solar system travel was created predicated on a small aspect ratio spherical torus nuclear fusion reactor. The initial requirements were satisfied by the vehicle concept, which could deliver a 172 mt crew payload from Earth to Jupiter rendezvous in 118 days, with an initial mass in low Earth orbit of 1,690 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including artificial gravity payload, central truss, nuclear fusion reactor, power conversion, magnetic nozzle, fast wave plasma heating, tankage, fuel pellet injector, startup/re-start fission reactor and battery bank, refrigeration, reaction control, communications, mission design, and space operations. Detailed fusion reactor design included analysis of plasma characteristics, power balance/utilization, first wall, toroidal field coils, heat transfer, and neutron/x-ray radiation. Technical comparisons are made between the vehicle concept and the interplanetary spacecraft depicted in the motion picture 2001: A Space Odyssey.

  15. Thermal control of high energy nuclear waste, space option. [mathematical models

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.

    1979-01-01

    Problems related to the temperature and packaging of nuclear waste material for disposal in space are explored. An approach is suggested for solving both problems with emphasis on high energy density waste material. A passive cooling concept is presented which utilized conduction rods that penetrate the inner core. Data are presented to illustrate the effectiveness of the rods and the limit of their capability. A computerized thermal model is discussed and developed for the cooling concept.

  16. Chemical thermodynamic assessment of the Li-U-O system for possible space nuclear applications

    NASA Astrophysics Data System (ADS)

    Besmann, T. M.; Cooper, R. H., Jr.

    1985-06-01

    A thermochemical assessment of possible oxide fuel-lithium coolant interactions in conceptual 100-kW(e) space nuclear power reactors was performed. Results of the evaluation indicate that in the event of a cladding breach the fuel and coolant will interact with extremely negative consequences. The lithium has the potential to reduce the fuel to metallic uranium. Differences in temperature within the coolant loop can drive oxygen and uranium transport processes.

  17. Fractality in momentum space: A signal of criticality in nuclear collisions

    NASA Astrophysics Data System (ADS)

    Antoniou, N. G.; Davis, N.; Diakonos, F. K.

    2016-01-01

    We show that critical systems of finite size develop a fractal structure in momentum space with anomalous dimension given in terms of the isotherm critical exponent δ of the corresponding infinite system. The associated power laws of transverse momentum correlations, in high-energy nuclear collisions, provide us with a signature of a critical point in strongly interacting matter according to the laws of QCD.

  18. Development and verification of design methods for ducts in a space nuclear shield

    NASA Technical Reports Server (NTRS)

    Cerbone, R. J.; Selph, W. E.; Read, P. A.

    1972-01-01

    A practical method for computing the effectiveness of a space nuclear shield perforated by small tubing and cavities is reported. Performed calculations use solutions for a two dimensional transport code and evaluate perturbations of that solution using last flight estimates and other kernel integration techniques. In general, perturbations are viewed as a change in source strength of scattered radiation and a change in attenuation properties of the region.

  19. A configuration space Monte Carlo algorithm for solving the nuclear pairing problem

    NASA Astrophysics Data System (ADS)

    Lingle, Mark

    Nuclear pairing correlations using Quantum Monte Carlo are studied in this dissertation. We start by defining the nuclear pairing problem and discussing several historical methods developed to solve this problem, paying special attention to the applicability of such methods. A numerical example discussing pairing correlations in several calcium isotopes using the BCS and Exact Pairing solutions are presented. The ground state energies, correlation energies, and occupation numbers are compared to determine the applicability of each approach to realistic cases. Next we discuss some generalities related to the theory of Markov Chains and Quantum Monte Carlo in regards to nuclear structure. Finally we present our configuration space Monte Carlo algorithm starting from a discussion of a path integral approach by the authors. Some general features of the Pairing Hamiltonian that boost the effectiveness of a configuration space Monte Carlo approach are mentioned. The full details of our method are presented and special attention is paid to convergence and error control. We present a series of examples illustrating the effectiveness of our approach. These include situations with non-constant pairing strengths, limits when pairing correlations are weak, the computation of excited states, and problems when the relevant configuration space is large. We conclude with a chapter examining some of the effects of continuum states in 24O.

  20. Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations

    SciTech Connect

    Washington, K.E.

    1986-01-01

    Renewed interest in space nuclear applications has motivated the study of a specialized reactor kinetics model. Consideration of a kinetics model favorable for study of the feasibility of automatic control of these devices is warranted. The need to bridge this gap between reactor kinetics and automatic control in conjunction with the control drum design characteristic of next generation paper space reactors inspired the development of a new Reflected Kinetics (RK) model. An extension of the conventional point-kinetics (PK) model was done in order to explicitly correlate reactivity and the reflector/absorber control drums characteristic of space nuclear reactor designs. Open-loop computations and numerical comparison to analytic PK equations indicated that the RK model is a functional alternative to equivalent bare point kinetics in the analysis of moderate transients. Variations in the RK reflector-to-core transfer probabilities and coolant flow rate do indeed drive the transient differently than the lumped insertion of equivalent reactivity amounts in the core. These computations illustrated the potential importance of the utilization of variable coolant flow rate to aid control in space reactor systems limited by minimal drum reactivity worth. Additionally the Doppler reactivity shutdown mechanism was concluded to be the primarily reliable means of safety shutdown in such systems. The structure of the RK equations proved to be advantageous for integration of automatic control.

  1. Nuclear reactors using fine-particulate fuel for primary power in space

    SciTech Connect

    Botts, T.E.; Powell, J.R.; Usher, J.L.; Horn, F.L.

    1982-01-01

    Large future power requirements in space, include power beaming to earth, airplanes, and solar-powered satellites in eclipse; industrial processing; and space colonies. The Rotating Bed Nuclear Reactor (RBR) and Fixed Bed Reactor (FBR) are multi-megawatt power systems which are light, compact and suited to operation in space. Both are cavity reactors, with an annular fuel region (e.g., a bed of 500 ..mu.. HTGR fuel particulates made of UC with ceramic coating) surrounded by a reflector that moderates fast neutrons from the /sup 235/U fuel. A porous metal drum holds the fuel. In the RBR, rotation of the drum allows the particulate fuel bed to fluidize as cooling gas passes through. In the FBR, an inner porous carbon drum holds the packed fuel bed, which is not fluidized. The RBR and FBR have many important features for space nuclear power: very high power density (up to thousands of MW(th)/m/sup 3/ of fuel); very small size and weight, excellent thermal shock and fatigue resistance; short start/stop times (sec); high gas outlet temperatures (to 3000/sup 0/K), good neutron economy, low critical mass; and simple/reliable construction.

  2. Toward Global Standards on Peaceful uses of Space Nuclear Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    El-Genk, M. S.

    Space reactor power systems are enabling to future space exploration and outposts on the Moon, Mars and other celestial bodies. They could provide for electrical propulsion, thermal propulsion and bimodal operation of thermal propulsion and electrical power generation. The much higher specific impulse of nuclear thermal and electric propulsion, compared to chemical rockets, could significantly shorten the travel time to Mars and farthest destinations, reducing the exposure of equipment and astronauts to the harmful space radiation. This article addresses safety issues relevant to the design, operation and end-of-life storage of these systems in an attempt to stimulate a discussion of the need to establish specific and globally agreed upon safety standards and guidelines for future peaceful uses.

  3. Analysis of nuclear waste disposal in space, phase 3. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Miller, N. E.; Yates, K. R.; Martin, W. E.; Friedlander, A. L.

    1980-01-01

    The options, reference definitions and/or requirements currently envisioned for the total nuclear waste disposal in space mission are summarized. The waste form evaluation and selection process is documented along with the physical characteristics of the iron nickel-base cermet matrix chosen for disposal of commercial and defense wastes. Safety aspects of radioisotope thermal generators, the general purpose heat source, and the Lewis Research Center concept for space disposal are assessed as well as the on-pad catastrophic accident environments for the uprated space shuttle and the heavy lift launch vehicle. The radionuclides that contribute most to long-term risk of terrestrial disposal were determined and the effects of resuspension of fallout particles from an accidental release of waste material were studied. Health effects are considered. Payload breakup and rescue technology are discussed as well as expected requirements for licensing, supporting research and technology, and safety testing.

  4. High-temperature nuclear closed Brayton cycle power conversion system for the space exploration initiative

    SciTech Connect

    Brandes, D.J. )

    1991-01-05

    The Space Exploration Initiative (SEI) has stated goals of colonizing the moon and conducting manned exploration of the planet Mars. Unlike previous ventures into space, both manned and unmanned, large quantities of electrical power will be required to provide the energy for lunar base sustenance and for highly efficient propulsion systems for the long trip to mars and return. Further, the requirement for electrical power of several megawatts will necessitate the use of nuclear reactor driven power conversion systems. This paper discusses a particle bed reactor closed Brayton cycle space power system that uses advanced materials technology to achieve a high-temperature, low-specific-weight modular system capable of providing the requisite electrical power for both a lunar base and a Mars flight vehicle propulsion system.

  5. NASA solar dynamic ground test demonstration (GTD) program and its application to space nuclear power

    NASA Astrophysics Data System (ADS)

    Harper, William B.; Shaltens, Richard K.

    1993-01-01

    Closed Brayton cycle power conversion systems are readily adaptable to any heat source contemplated for space application. The inert gas working fluid can be used directly in gas-cooled reactors and coupled to a variety of heat sources (reactor, isotope or solar) by a heat exchanger. This point is demonstrated by the incorporation in the NASA 2 kWe Solar Dynamic (SD) Space Power Ground Test Demonstration (GTD) Program of the turboalternator-compressor and recuperator from the Brayton Isotope Power System (BIPS) program. This paper will review the goals and status of the SD GTD Program, initiated in April 1992. The performance of the BIPS isotope-heated system will be compared to the solar-heated GTD system incorporating the BIPS components and the applicability of the GTD test bed to dynamics space nuclear power R&D will be discussed.

  6. Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations

    SciTech Connect

    Washington, K.E.

    1986-05-01

    The objective of this research is to develop a model that offers an alternative to the point kinetics (PK) modelling approach in the analysis of space reactor kinetics and control studies. Modelling effort will focus on the explicit treatment of control drums as reactivity input devices so that the transition to automatic control can be smoothly done. The proposed model is developed for the specific integration of automatic control and the solution of the servo mechanism problem. The integration of the kinetics model with an automatic controller will provide a useful tool for performing space reactor scoping studies for different designs and configurations. Such a tool should prove to be invaluable in the design phase of a space nuclear system from the point of view of kinetics and control limitations.

  7. The 100 kW space station. [regenerative fuel cells and nickel hydrogen and nickel cadmium batteries for solar arrays

    NASA Technical Reports Server (NTRS)

    Mckhann, G.

    1977-01-01

    Solar array power systems for the space construction base are discussed. Nickel cadmium and nickel hydrogen batteries are equally attractive relative to regenerative fuel cell systems at 5 years life. Further evaluation of energy storage system life (low orbit conditions) is required. Shuttle and solid polymer electrolyte fuel cell technology appears adequate; large units (approximately four times shuttle) are most appropriate and should be studied for a 100 KWe SCB system. A conservative NiH2 battery DOD (18.6%) was elected due to lack of test data and offers considerable improvement potential. Multiorbit load averaging and reserve capacity requirements limit nominal DOD to 30% to 50% maximum, independent of life considerations.

  8. Fabric composite radiators for space nuclear power applications. Final report, March 1993

    SciTech Connect

    Klein, A.C.; Al-Baroudi, H.; Gulshan-Ara, Z.; Kiestler, W.C.; Snuggerud, R.D.; Abdul-Hamid, S.A.; Marks, T.S.

    1993-03-24

    Nuclear power systems will be required to provide much greater power levels for both civilian and defense space activities in the future than an currently needed. Limitations on the amount of usable power from radioisotope thermal generators and the limited availability of radioisotope heat source materials lead directly to the conclusion that nuclear power reactors will be needed to enhance the exploration of the solar system as well as to provide for an adequate defense. Lunar bases and travel to the Martian surface will be greatly enhanced by the use of high levels of nuclear power. Space based radar systems requiring many kilowatts of electrical power can provide intercontinental airline traffic control and defense early warning systems. Since the, figure of merit used in defining any space power system is the specific power, the decrease in die mass of any reactor system component will yield a tremendous benefit to the overall system performance. Also, since the heat rejection system of any power system can make up a large portion of the total system mass, any reduction in the mass of the heat rejection radiators will significantly affect the performance of the power system. Composite materials which combine the high strength, flexibility, and low mass characteristics of Si% based fibers with the attractive compatibility and heat transfer features of metallic foils, have been proposed for use m a number of space radiator applications. Thus, the weave of the fabric and the high strength capability of the individual fibers are combined with the high conductivity and chemical stability of a metallic liner to provide a light weight, flexible alternative to heavy, rigid, metallic radiator structural containers. The primary focus of this investigation revolves around two applications of the fabric composite materials, notably a fabric heat pipe radiator design and the Bubble Membrane Radiator concept.

  9. A Closed Brayton Power Conversion Unit Concept for Nuclear Electric Propulsion for Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Joyner, Claude Russell; Fowler, Bruce; Matthews, John

    2003-01-01

    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt & Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level.

  10. Condition monitoring requirements for the development of a space nuclear propulsion module

    NASA Technical Reports Server (NTRS)

    Wagner, Robert C.

    1993-01-01

    To facilitate the development of a space nuclear propulsion module for manned flights to Mars, requirements must be established early in the technology cycle. The long lead times for the acquisition of the engine system and nuclear test facilities demands that the engine system, size, performance, safety goals and condition monitoring philosophy be defined at the earliest possible time. These systems are highly complex and require a large multi-disciplinary systems engineering team to develop and track the requirements and to ensure that the as-built system reflects the intent of the mission. An effective methodology has been devised coupled with sophisticated computer tools to effectivly develop and interpret the functional requirements. These requirements can then be decomposed down to the specification level for implementation. This paper discusses the application of the methodology and the analyses to develop condition monitoring requirements under a contract with the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) Nuclear Propulsion Office (NPO).

  11. Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute

    NASA Astrophysics Data System (ADS)

    Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.

    2004-02-01

    The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and ``iron'' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper.

  12. Lightweight Damage Tolerant Radiators for In-Space Nuclear Electric Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Craven, Paul; SanSoucie, Michael P.; Tomboulian, Briana; Rogers, Jan; Hyers, Robert

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear power sources and efficient electric thrusters. Advanced power conversion technologies for converting thermal energy from the reactor to electrical energy at high operating temperatures would benefit from lightweight, high temperature radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature and mass. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities. A description of this effort is presented.

  13. Processing of mixed uranium/refractory metal carbide fuels for high temperature space nuclear reactors

    NASA Astrophysics Data System (ADS)

    Knight, Travis; Anghaie, Samim

    2000-01-01

    Single phase, solid-solution mixed uranium/refractory metal carbides have been proposed as an advanced nuclear fuel for high performance, next generation space power and propulsion systems. These mixed carbides such as the pseudo-ternary, (U, Zr, Nb)C, hold significant promise because of their high melting points (typically greater than 3200 K), thermochemical stability in a hot hydrogen environment, and high thermal conductivity. However, insufficient test data exist under nuclear thermal propulsion conditions of temperature and hot hydrogen environment to fully evaluate their performance. Various compositions of (U, Zr, Nb)C were processed with 5% and 10% metal mole fraction of uranium. Stoichiometric samples were processed from the constituent carbide powders while hypostoichiometric samples with carbon-to-metal (C/M) ratios of 0.95 were processed from uranium hydride, graphite, and constituent refractory carbide powders. Processing techniques of cold pressing, sintering, and hot pressing were investigated to optimize the processing parameters necessary to produce dense (low porosity), homogeneous, single phase, solid-solution mixed carbide nuclear fuels for testing. This investigation was undertaken to evaluate and characterize the performance of these mixed uranium/refractory metal carbides for space power and propulsion applications. .

  14. Technological implications of SNAP reactor power system development on future space nuclear power systems

    SciTech Connect

    Anderson, R.V.

    1982-11-16

    Nuclear reactor systems are one method of satisfying space mission power needs. The development of such systems must proceed on a path consistent with mission needs and schedules. This path, or technology roadmap, starts from the power system technology data base available today. Much of this data base was established during the 1960s and early 1970s, when government and industry developed space nuclear reactor systems for steady-state power and propulsion. One of the largest development programs was the Systems for Nuclear Auxiliary Power (SNAP) Program. By the early 1970s, a technology base had evolved from this program at the system, subsystem, and component levels. There are many implications of this technology base on future reactor power systems. A review of this base highlights the need for performing a power system technology and mission overview study. Such a study is currently being performed by Rockwell's Energy Systems Group for the Department of Energy and will assess power system capabilities versus mission needs, considering development, schedule, and cost implications. The end product of the study will be a technology roadmap to guide reactor power system development.

  15. Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute

    SciTech Connect

    Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.

    2004-02-04

    The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and 'iron' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper.

  16. Preliminary nuclear safety assessment of the NEPST (Topaz II) space reactor program

    SciTech Connect

    Marshall, A.C.

    1993-01-01

    The United States (US) Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of launching a Russian Topaz II space nuclear power system. A preliminary nuclear safety assessment was conducted to determine whether or not a space mission could be conducted safely and within budget constraints. As part of this assessment, a safety policy and safety functional requirements were developed to guide both the safety assessment and future Topaz II activities. A review of the Russian flight safety program was conducted and documented. Our preliminary nuclear safety assessment included a number of deterministic analyses, such as; neutronic analysis of normal and accident configurations, an evaluation of temperature coefficients of reactivity, a reentry and disposal analysis, an analysis of postulated launch abort impact accidents, and an analysis of postulated propellant fire and explosion accidents. Based on the assessment to date, it appears that it will be possible to safely launch the Topaz II system in the US with a modification to preclude water flooded criticality. A full scale safety program is now underway.

  17. Structural integrity of a confinement vessel for testing nuclear fuels for space propulsion

    NASA Astrophysics Data System (ADS)

    Bergmann, V. L.

    Nuclear propulsion systems for rockets could significantly reduce the travel time to distant destinations in space. However, long before such a concept can become reality, a significant effort must be invested in analysis and ground testing to guide the development of nuclear fuels. Any testing in support of development of nuclear fuels for space propulsion must be safely contained to prevent the release of radioactive materials. This paper describes analyses performed to assess the structural integrity of a test confinement vessel. The confinement structure, a stainless steel pressure vessel with bolted flanges, was designed for operating static pressures in accordance with the ASME Boiler and Pressure Vessel Code. In addition to the static operating pressures, the confinement barrier must withstand static overpressures from off-normal conditions without releasing radioactive material. Results from axisymmetric finite element analyses are used to evaluate the response of the confinement structure under design and accident conditions. For the static design conditions, the stresses computed from the ASME code are compared with the stresses computed by the finite element method.

  18. Analysis of space reactor system components: Investigation through simulation and non-nuclear testing

    NASA Astrophysics Data System (ADS)

    Bragg-Sitton, Shannon M.

    The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable ambitious space exploration missions. The natural space radiation environment provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Applying the approximate proton source in geosynchronous orbit during a solar particle event, investigation using MCNPX 2.5.b for proton transport through the SAFE-400 heat pipe cooled reactor indicates an incoming secondary neutron current of (1.16 +/- 0.03) x 107 n/s at the core-reflector interface. This neutron current may affect reactor operation during low power maneuvers (e.g., start-up) and may provide a sufficient reactor start-up source. It is important that a reactor control system be designed to automatically adjust to changes in reactor power levels, maintaining nominal operation without user intervention. A robust, autonomous control system is developed and analyzed for application during reactor start-up, accounting for fluctuations in the radiation environment that result from changes in vehicle location or to temporal variations in the radiation field. Development of a nuclear reactor for space applications requires a significant amount of testing prior to deployment of a flight unit. High confidence in fission system performance can be obtained through relatively inexpensive non-nuclear tests performed in relevant environments, with the heat from nuclear fission simulated using electric resistance heaters. A series of non-nuclear experiments was performed to characterize various aspects of reactor operation. This work includes measurement of reactor core deformation due to material thermal expansion and

  19. Space Molten Salt Reactor Concept for Nuclear Electric Propulsion and Surface Power

    NASA Astrophysics Data System (ADS)

    Eades, M.; Flanders, J.; McMurray, N.; Denning, R.; Sun, X.; Windl, W.; Blue, T.

    Students at The Ohio State University working under the NASA Steckler Grant sought to investigate how molten salt reactors with fissile material dissolved in a liquid fuel medium can be applied to space applications. Molten salt reactors of this kind, built for non-space applications, have demonstrated high power densities, high temperature operation without pressurization, high fuel burn up and other characteristics that are ideal for space fission systems. However, little research has been published on the application of molten salt reactor technology to space fission systems. This paper presents a conceptual design of the Space Molten Salt Reactor (SMSR), which utilizes molten salt reactor technology for Nuclear Electric Propulsion (NEP) and surface power at the 100 kWe to 15 MWe level. Central to the SMSR design is a liquid mixture of LiF, BeF2 and highly enriched U235F4 that acts as both fuel and core coolant. In brief, some of the positive characteristics of the SMSR are compact size, simplified core design, high fuel burn up percentages, proliferation resistant features, passive safety mechanisms, a considerable body of previous research, and the possibility for flexible mission architecture.

  20. Effects of Nuclear Cross Sections at Different Energies on Space Radiation Exposure from Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Li, Zi-Wei; Adams, James H., Jr.

    2007-01-01

    Space radiation from galactic cosmic rays (GCR) is a major hazard to space crews, especially in long duration human space explorations. For this reason, they will be protected by radiation shielding that fragments the GCR heavy ions. Here we investigate how sensitive the crew's radiation exposure is to nuclear fragmentation cross sections at different energies. We find that in deep space cross sections between about 0.2 and 1.2 GeV/u have the strongest effect on dose equivalent behind shielding in solar minimum GCR environments, and cross sections between about 0.6 and 1.7 GeV/u are the most important at solar maximum'. On the other hand, at the location of the International Space Station, cross sections at_higher -energies, between about 0.6 and 1.7 GeV /u at solar minimum and between about 1.7 and 3.4 GeV/u'at,solar maximum, are the most important This is. due-to the average geomagnetic cutoff for the ISS orbit. We also show the effect of uncertainties in the fragmentation cross sections on the elemental energy spectra behind shielding. These results help to focus the studies of fragmentation cross sections on the proper energy range in order to improve our predictions of crew exposures.

  1. Processing of pseudo-ternary carbide fuels for high temperature space nuclear reactors

    NASA Astrophysics Data System (ADS)

    Knight, Travis; Anghaie, Samim

    1999-01-01

    Single phase, solid-solution pseudo-ternary carbides such as (U, Zr, Nb)C, hold significant promise for space nuclear power and propulsion applications because of their high melting points (typically greater than 3200 K), thermochemical stability in a hot hydrogen environment, and high thermal conductivity. Their projected endurance at very high temperatures far exceeds that of fuels previously tested and signifies their potential as a fuel for increased performance characteristics (i.e. higher specific impulse and/or longer lifetime, etc.). However, insufficient test data exist under nuclear thermal propulsion (NTP) conditions of temperature and hot hydrogen environment to fully evaluate their performance. An investigation into processing techniques was conducted in order to produce a series of pseudo-ternary carbide samples for characterization and testing. Consideration was given to the real world challenges of manufacturing full-scale fuel elements. Particular consideration was given to the fabrication requirements for the innovative, square-lattice honeycomb (SLHC) fuel elements for advanced NTP cores. This paper outlines the background and technical considerations important to mixed carbide nuclear fuel development and describes the preliminary results in developing processing techniques for pseudo-ternary carbide nuclear fuels.

  2. J. Preston Layton 1919-1992: A guiding light in nuclear space power and propulsion

    NASA Astrophysics Data System (ADS)

    Brill, Yvonne C.

    An eventful, highly productive career ended with the death of James Preston ("Pres") Layton in December 1992. His career in rockets, which spanned 50 years, is a chronology of developments in the U.S. space program. Layton was instrumental in the development of rocket technologies ranging from the first jet-assisted take off (JATO) boosters used on aircraft to space nuclear power and propulsion. His work on JATOs, during World War II, involved both testing of solid-fueled units on naval aircraft in the Pacific and developing advanced liquid-fueled systems at the U.S. Naval Academy's laboratory under the direction of Robert H. Goddard, the father of American rocketry. It was Goddard who inspired Layton to devote his life to rocketry. In 1948, as chief of propulsion for the Glenn L. Martin company, he became crew chief in charge of testing the first big U.S. rocket, the Viking series. Layton subsequently joined the research faculty at Princeton University where he served from 1951 to 1976, taking a brief leave in 1955 to earn a Masters Degree at Purdue University under the direction of Maurice Zucrow, another American rocket pioneer. As Chief Engineer of Princeton's Guggenheim Jet Propulsion Center, he created the nation's foremost university rocket research facilities, where he conducted the first experimental evaluation of liquid ozone as a rocket propellant. Later Layton led Princeton's Advanced Systems and Mission Analysis Laboratory, which conducted pioneering studies of space nuclear power and propulsion systems. During this period, at the Lawrence Livermore National Laboratory (on leave from Princeton), Layton helped develop and test the world's first and only nuclear ram-rocket. During his career, Layton performed many responsible consulting tasks for industry and government in the U.S.A. and abroad. He was chief technical consultant to Mathematica, Inc., whose analyses formed the basis for the current Space Shuttle design. He conducted an AIAA assessment of

  3. Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications

    SciTech Connect

    Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O'Brien

    2013-02-01

    Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

  4. A spherical torus nuclear fusion reactor space propulsion vehicle concept for fast interplanetary travel

    NASA Astrophysics Data System (ADS)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1999-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a>5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including payload, central truss, nuclear reactor (including diverter and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, and component design.

  5. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1998-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  6. A Logical Approach to Designing Safety Test Plans for Space Nuclear Systems

    SciTech Connect

    Coleman, James R

    2004-02-04

    This paper presents a logical approach to designing a safety test plan for a space nuclear system. It is pointed out that two important facts need to underlie the development of a test plan: first, that sequential insults and the accumulation of damage are the rule; and second that the response of the nuclear system is stochastic (i.e., for any given set of conditions a probabilistic range of outcomes will occur regardless of the state of our knowledge). Because of these facts a deterministic approach can only be a starting point. The substance of the approach consists of undertaking and documenting three basic efforts: (1) a description of the analysts view of the problem and how it fits into the safety analysis, (2) a formal documentation of the purpose and requirements of the test plan (or test), and (3) an assessment of the use or usefulness of existing test data.

  7. Sliding mode control of the space nuclear reactor system TOPAZ II

    SciTech Connect

    Shtessel, Y.B.; Wyant, F.J.

    1996-03-01

    The Automatic Control System (ACS) of the space nuclear reactor power system TOPAZ II that generates electricity from nuclear heat using in-core thermionic converters is considered. Sliding Mode Control Technique was applied to the reactor system controller design in order to provide the robust high accuracy following of a neutron (thermal) power reference profile in a start up regime and a payload electric power (current) reference profile following in an operation regime. Extensive simulations of the TOPAZ II reactor system with the designed sliding mode controllers showed improved accuracy and robustness of the reactor system performances in a start up regime and in an electric power supply regime as well. {copyright} {ital 1996 American Institute of Physics.}

  8. Mission needs and system commonality for space nuclear power and propulsion

    SciTech Connect

    Buden, D.; Zuppero, A.; Redd, L.

    1993-07-01

    Nuclear power enables or significantly enhances a variety of space missions whether near-Earth, or for solar system exploration, lunar-Mars exploration and recovery of near-Earth resources. Performance optimizations for individual missions leads to a large number of power and propulsion systems to be developed. However, the realities of the budget and schedules indicates that the number of nuclear systems that will be developed are limited. One needs to seek the ``minimum requirements`` to do a job rather than the last ounce of performance, and areas of commonality. To develop a minimum number of systems to meet the overall DoD, NASA, and commercial needs, the broad spectrum of requirements has been examined along with cost drivers.

  9. Space vehicle design and operation for efficient use of Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Stancati, Mike L.; Hodge, John R.; Borowski, Stanley K.

    1993-01-01

    Nuclear Thermal Propulsion (NTP) is a high-leverage, and possibly enabling, propulsion choice for sending humans to Mars. Important performance gains are expected for NTP Mars transfer vehicle over their counterparts, the conventional chemical systems. These gains come in spite of vehicle unique requirements for NTP engine development and operations: expected higher development costs, prelaunch and in-space handing safeguards, extra propellant for reactor cool-down after engine burns, and safe, managed disposal of spent NTP engines. Prior studies have also shown that these NTP engines and stages, sized for Mars missions, could increase delivered payloads for some piloted lunar mission as well.

  10. Fabrication of carbon-carbon heat pipes for space nuclear power applications

    NASA Technical Reports Server (NTRS)

    Rovang, Richard D.; Palamides, Thomas R.; Hunt, Maribeth E.

    1992-01-01

    Significant advancements have been made in the development of lightweight, high performance, carbon-carbon heat pipes for space nuclear power applications. The subject program has progressed through the concept definition and feasibility analysis stages to the current test article component fabrication and assembly phase. This concept utilizes a carbon-carbon tube with integrally woven fins as the primary structural element and radiative surface, Nb-1Zr liners to contain a potassium working fluid, and welded end caps and fill tubes. Various tests have been performed in the development of suitable liner bonding techniques and in the assessment of material stability.

  11. Shock and vibration tests of uranium mononitride fuel pellets for a space power nuclear reactor

    NASA Technical Reports Server (NTRS)

    Adams, D. W.

    1972-01-01

    Shock and vibration tests were conducted on cylindrically shaped, depleted, uranium mononitride (UN) fuel pellets. The structural capabilities of the pellets were determined under exposure to shock and vibration loading which a nuclear reactor may encounter during launching into space. Various combinations of diametral and axial clearances between the pellets and their enclosing structures were tested. The results of these tests indicate that for present fabrication of UN pellets, a diametral clearance of 0.254 millimeter and an axial clearance of 0.025 millimeter are tolerable when subjected to launch-induced loads.

  12. Materials technology for an advanced space power nuclear reactor concept: Program summary

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  13. Development and characterization of lubricants for use near nuclear reactors in space vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, G. L.; Akawie, R. I.; Gardos, M. N.; Krening, K. C.

    1972-01-01

    The synthesis and evaluation program was conducted to develop wide-temperature range lubricants suitable for use in space vehicles particularly in the vicinity of nuclear reactors. Synthetic approaches resulted in nonpolymeric, large molecular weight materials, all based on some combination of siloxane and aromatic groups. Evaluation of these materials indicated that certain tetramethyl and hexamethyl disiloxanes containing phenyl thiophenyl substituents are extremely promising with respect to radiation stability, wide temperature range, good lubricity, oxidation resistance and additive acceptance. The synthesis of fluids is discussed, and the equipment and methods used in evaluation are described, some of which were designed to evaluate micro-quantities of the synthesized lubricants.

  14. Quality assurance program requirements for Space and Terrestrial Nuclear Power Systems

    SciTech Connect

    Not Available

    1982-10-01

    This publication gives the general requirements for planning, managing, and evaluating quality assurance (QA) programs for Space and Terrestrial Nuclear Power Systems. These requirements are based on proven practices and provide direction to project management to aid in safe, reliable, and economical operation. The program's objective is to assure that systems, components, piece parts and materials (including those used for facilities and testing) are designed, developed, fabricated, installed, operated, and maintained in compliance with established engineering criteria. It is the intent of the Department of Energy (DOE) that QA standards be applied to hardware design and development programs from their inception to their completion.

  15. Carbon-Carbon Recuperators in Closed-Brayton-Cycle Nuclear Space Power Systems: A Feasibility Assessment

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Johnson, Paul K.

    2004-01-01

    The feasibility of using carbon-carbon recuperators in closed-Brayton-cycle (CBC) nuclear space power conversion systems (PCS) was assessed. Recuperator performance expectations were forecast based on projected thermodynamic cycle state values for a planetary mission. Resulting thermal performance, mass and volume for a plate-fin carbon-carbon recuperator were estimated and quantitatively compared with values for a conventional offset-strip-fin metallic design. Material compatibility issues regarding carbon-carbon surfaces exposed to the working fluid in the CBC PCS were also discussed.

  16. Finite-thrust optimization of interplanetary transfers of space vehicle with bimodal nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Kharytonov, Oleksii M.; Kiforenko, Boris M.

    2011-08-01

    The nuclear thermal rocket (NTR) propulsion is one of the leading promising technologies for primary space propulsion for manned exploration of the solar system due to its high specific impulse capability and sufficiently high thrust-to-weight ratio. Another benefit of NTR is its possible bimodal design, when nuclear reactor is used for generation of a jet thrust in a high-thrust mode and (with an appropriate power conversion system) as a source of electric power to supply the payload and the electric engines in a low-thrust mode. The model of the NTR thrust control was developed considering high-thrust NTR as a propulsion system of limited power and exhaust velocity. For the proposed model the control of the thrust value is accomplished by the regulation of reactor thermal power and propellant mass flow rate. The problem of joint optimization of the combination of high- and low-thrust arcs and the parameters of bimodal NTR (BNTR) propulsion system is considered for the interplanetary transfers. The interplanetary trajectory of the space vehicle is formed by the high-thrust NTR burns, which define planet-centric maneuvers and by the low-thrust heliocentric arcs where the nuclear electric propulsion (NEP) is used. The high-thrust arcs are analyzed using finite-thrust approach. The motion of the corresponding dynamical system is realized in three phase spaces concerning the departure planet-centric maneuver by means of high-thrust NTR propulsion, the low-thrust NEP heliocentric maneuver and the approach high-thrust NTR planet-centric maneuver. The phase coordinates are related at the time instants of the change of the phase spaces due to the relations between the space vehicle masses. The optimal control analysis is performed using Pontryagin's maximum principle. The numerical results are analyzed for Earth-Mars "sprint" transfer. The optimal values of the parameters that define the masses of NTR and NEP subsystems have been evaluated. It is shown that the low

  17. Space Nuclear Power and Propulsion - a basic Tool for the manned Exploration of the Solar System

    SciTech Connect

    Frischauf, Norbert; Hamilton, Booz Allen

    2004-07-01

    Humanity has started to explore space more than 40 years ago. Numerous spacecraft have left the Earth in this endeavour, but while unmanned spacecraft were already sent out on missions, where they would eventually reach the outer limits of the Solar System, manned exploration has always been confined to the tiny bubble of the Earth's gravitational well, stretching out at maximum to our closest celestial companion - the Moon - during the era of the Apollo programme in the late 60's and early 70's. When mankind made its giant leap, the exploration of our cosmic neighbour was seen as the initial step for the manned exploration of the whole Solar System. Consequently ambitious research and development programmes were undertaken at that time to enable what seemed to be the next logical steps: the establishment of a permanent settled base on the Moon and the first manned mission to Mars in the 80's. Nuclear space power and propulsion played an important role in these entire future scenarios, hence ambitious development programmes were undertaken to make these technologies available. Unfortunately the 70's-paradigm shift in space policies did not only bring an end to the Apollo programme, but it also brought a complete halt to all of these technology programmes and confined the human presence in space to a tiny bubble including nothing more than the Earth's sphere and a mere shell of a few hundred kilometres of altitude, too small to even include the Moon. Today, after more than three decades, manned exploration of the Solar System has become an issue again and so are missions to Moon and Mars. However, studies and analyses show that all of these future plans are hampered by today's available propulsion systems and by the problematic of solar power generation at distances at and beyond of Mars, a problem, however, that can readily be solved by the utilisation of space nuclear reactors and propulsion systems. This paper intends to provide an overview on the various fission

  18. Analysis of TOPAZ II and SPACE-R space nuclear power plants using a modified thermionic model

    SciTech Connect

    Habedank, O.D.

    1993-03-01

    Models based on the TDS thermionic diode model were developed for the TOPAZ II and SPACE-R nuclear power systems. Due to computer code limitations inherent in the TDS model, only the TOPAZ II system model ran successfully. Several parameter studies were conducted on the TOPAZ II model. These studies determined system performance and efficiency while varying the following: (1) the coolant flow inlet temperatures; (2) the rate of coolant temperature change; (3) the power profile of the core; and (4) the cesium reservoir temperature. Analysis of the results indicate that the model accurately represented the TOPAZ II system, underestimating published data by 10%. Coolant flow parameter studies indicate that raising coolant flow temperatures up to 100 K higher increases system power by put to 5%. Additional increases in temperature result in gradual performance degradation. Varying the axial power profile of the core from the actual peaked profile to a flat profile results in a negligible 0.3% change in total system performance. The peaked profile used in TOPAZ II produces the highest system efficiency of all the profiles modeled. The cesium pressure study indicates that the system is operating above optimum cesium pressure and that system performance is strongly dependent on cesium pressure. Increasing cesium reservoir temperature above design temperature by 30 K decreases system efficiency by 30%.

  19. Analysis of TOPAZ 2 and SPACE-R space nuclear power plants using a modified thermionic model

    NASA Astrophysics Data System (ADS)

    Habedank, Otto D.

    1993-03-01

    Models based on the TDS thermionic diode model were developed for TOPAZ 2 and SPACE-R nuclear power systems. Several parameter studies were conducted with the TOPAZ 2 model. These determined system performance and efficiency while varying the following: (1) Coolant flow inlet temperatures. (2) Rate of coolant temperature change. (3) Power profile of the core. (4) Cesium reservoir temperature. Analysis of results indicate the model accurately represented the TOPAZ 2 system, underestimating published data by 10%. Coolant flow studies indicate that raising coolant temperatures up to 100 K higher increases system power by up to 5%. Additional increases in temperature result in gradual performance degradation. Varying the axial power profile of the core from the actual peaked profile to a flat profile results in a negligible 0.3% change in system performance. The peaked profile used in TOPAZ 2 produces the highest system efficiency of all the profiles modeled. The cesium pressure study indicates the system is operating above optimum cesium pressure and system performance is strongly dependent on cesium pressure. Increasing cesium reservoir temperature above design temperature by 30 K decreases system efficiency by 30%.

  20. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  1. SUSEE: A Compact, Lightweight Space Nuclear Power System Using Present Water Reactor Technology

    SciTech Connect

    Maise, George; Powell, James; Paniagua, John

    2006-01-20

    The SUSEE space reactor system uses existing nuclear fuels and the standard steam cycle to generate electrical and thermal power for a wide range of in-space and surface applications, including manned bases, sub-surface mobile probes to explore thick ice deposits on Mars and the Jovian moons, and mobile rovers. SUSEE cycle efficiency, thermal to electric, ranges from {approx}20 to 24%, depending on operating parameters. Rejection of waste heat is by a lightweight condensing radiator that can be launched as a compact rolled-up package and deployed into flat panels when appropriate. The 50 centimeter diameter SUSEE reactor can provide power over the range of 10 kW(e) to 1 MW(e) for a period of 10 years. Higher power outputs are possible using slightly larger reactors. System specific weight (reactor, turbine, generator, piping, and radiator) is {approx}3 kg/kW(e). Two SUSEE reactor options are described, based on the existing Zr/O2 cermet and the UH3/ZrH2 TRIGA nuclear fuels.

  2. Conduct and results of the Interagency Nuclear Safety Review Panel's evaluation of the Ulysses space mission

    SciTech Connect

    Sholtis, J.A. Jr. ); Gray, L.B. ); Huff, D.A. ); Klug, N.P. ); Winchester, R.O. )

    1991-01-01

    The recent 6 October 1990 launch and deployment of the nuclear-powered Ulysses spacecraft from the Space Shuttle {ital Discovery} culminated an extensive safety review and evaluation effort by the Interagency Nuclear Safety Review Panel (INSRP). After more than a year of detailed independent review, study, and analysis, the INSRP prepared a Safety Evaluation Report (SER) on the Ulysses mission, in accordance with Presidential Directive-National Security Council memorandum 25. The SER, which included a review of the Ulysses Final Safety Analysis Report (FSAR) and an independent characterization of the mission risks, was used by the National Aeronautics and Space Administration (NASA) in its decision to request launch approval as well as by the Executive Office of the President in arriving at a launch decision based on risk-benefit considerations. This paper provides an overview of the Ulysses mission and the conduct as well as the results of the INSRP evaluation. While the mission risk determined by the INSRP in the SER was higher than that characterized by the Ulysses project in the FSAR, both reports indicated that the radiological risks were relatively small. In the final analysis, the SER proved to be supportive of a positive launch decision. The INSRP evaluation process has demonstrated its effectiveness numerous times since the 1960s. In every case, it has provided the essential ingredients and perspective to permit an informed launch decision at the highest level of our Government.

  3. Nuclear reactor power for a space-based radar. SP-100 project

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey; Heller, Jack; Jaffe, Leonard; Beatty, Richard; Bhandari, Pradeep; Chow, Edwin; Deininger, William; Ewell, Richard; Fujita, Toshio; Grossman, Merlin

    1986-01-01

    A space-based radar mission and spacecraft, using a 300 kWe nuclear reactor power system, has been examined, with emphasis on aspects affecting the power system. The radar antenna is a horizontal planar array, 32 X 64 m. The orbit is at 61 deg, 1088 km. The mass of the antenna with support structure is 42,000 kg; of the nuclear reactor power system, 8,300 kg; of the whole spacecraft about 51,000 kg, necessitating multiple launches and orbital assembly. The assembly orbit is at 57 deg, 400 km, high enough to provide the orbital lifetime needed for orbital assembly. The selected scenario uses six Shuttle launches to bring the spacecraft and a Centaur G upper-stage vehicle to assembly orbit. After assembly, the Centaur places the spacecraft in operational orbit, where it is deployed on radio command, the power system started, and the spacecraft becomes operational. Electric propulsion is an alternative and allows deployment in assembly orbit, but introduces a question of nuclear safety.

  4. Applications of power beaming from space-based nuclear power stations

    NASA Astrophysics Data System (ADS)

    Powell, J. R.; Botts, T. E.; Hertzberg, A.

    Power beaming from space-based nuclear reactors to earth, aircraft, or spacecraft is offered as an alternative to the SPSS. A rotating bed reactor (RBR) is described, in which the nuclear fuel is an annular bed of small particulates held in a rotating basket through which a coolant passes. Advantages over a previous nuclear rocket program, NERVA, are given as minimized size, external moderation and reflection, and several GW available from a reactor about one cu m in size. Testing of a model fluidized bed is described, noting favorable results from U-233 fuel, a projected 50 cm diam bed, and total mass of 3 metric tons. Two Brayton cycle generator systems are examined, and it is found that a turbine inlet temperature of 2,000 K and a simple Brayton cycle without regeneration yields a best efficiency of 30%. The RBR components are discussed, and microwave and laser power beaming systems are compared; economic projections indicate laser beaming to cruising aircraft is competitive with current jet fuel use.

  5. Independent Safety Assessment of the TOPAZ-II space nuclear reactor power system (Revised)

    SciTech Connect

    1993-09-01

    The Independent Safety Assessment described in this study report was performed to assess the safety of the design and launch plans anticipated by the U.S. Department of Defense (DOD) in 1993 for a Russian-built, U.S.-modified, TOPAZ-II space nuclear reactor power system. Its conclusions, and the bases for them, were intended to provide guidance for the U.S. Department of Energy (DOE) management in the event that the DOD requested authorization under section 91b. of the Atomic Energy Act of 1954, as amended, for possession and use (including ground testing and launch) of a nuclear-fueled, modified TOPAZ-II. The scientists and engineers who were engaged to perform this assessment are nationally-known nuclear safety experts in various disciplines. They met with participants in the TOPAZ-II program during the spring and summer of 1993 and produced a report based on their analysis of the proposed TOPAZ-II mission. Their conclusions were confined to the potential impact on public safety and did not include budgetary, reliability, or risk-benefit analyses.

  6. Influence of nuclear de-excitation on observables relevant for space exploration

    NASA Astrophysics Data System (ADS)

    Mancusi, Davide; Boudard, Alain; Cugnon, Joseph; David, Jean-Christophe; Leray, Sylvie

    The composition of the space radiation environment inside spacecrafts is modified by the inter-action with shielding material, with equipment and even with the astronauts' bodies. Accurate quantitative estimates of the effects of nuclear reactions are necessary, for example, for dose estimation and prediction of single-event upset rates. To this end, it is necessary to construct predictive models for nuclear reactions, which usually consist of an intranuclear-cascade or quantum-molecular-dynamics stage, followed by a nuclear de-excitation stage. While it is generally acknowledged that it is necessary to accurately simulate the first reaction stage, transport-code users often neglect or underestimate the importance of the choice of the de-excitation code. The purpose of this work is to prove that the de-excitation model is in fact a non-negligible source of uncertainty for the prediction of several observables of crucial importance for space applications. For some particular observables, such as fragmentation cross sections, the systematic uncertainty due to the de-excitation model actually dominates the theoretical error. Our point will be illustrated by making use of calculations performed with several intranuclear-cascade/de-excitation models, such as the Li`ge Intranuclear Cascade model (INCL) and Isabel (for the cascade part) and ABLA, GEMINI++ and SMM (on the de-excitation side). We will also rely on the results of the recent IAEA intercomparison of spallation models, which can be used as informative groundwork for the evaluation of the global uncertainties involved in nucleon-nucleus reactions.

  7. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)

    1991-01-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects.

  8. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Hoover, Mark D.

    1991-07-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects. (For individual items see A93-13752 to A93-13937)

  9. Comparative evaluation of NMR and nuclear medicine in disc space infection: A pilot study

    SciTech Connect

    Modic, M.; Feiglin, D.; Piraino, D.; O'Donnell, J.K.; Go, R.T.; Weinstein, M.; MacIntyre, W.J.

    1984-01-01

    Six patients with proven disc space infection underwent bone scanning with 975MB/sub q/ HDP together with NMR imaging on a 0.6T superconducting magnet to obtain weighted T1 30mSec (TE .3 Sec TR) and T2 (120mSec TE 3 Sec TR) images within a 48 hr. period. All patients had plain radiographic evaluation of the areas involved. Three pts. had Ga-67 Citrate scans using 222MBq activity following the bone scan and 1 patient had CT images of the involved area. All 6 bone scans showed increased bony uptake in at least the adjacent vertebral end plates but did not show any abnormal uptake in the region of the disc. Bony activity distribution was non-specific and could have been consistent with either degenerative or osteomyelitic change. Gallium imaging in one case supported the latter diagnosis but did not indicate presence of disc space involvement. Two other cases showed bony involvement to the extent of the bone scan; one showing minimal uptake due to antibiotic therapy. Plain radiographs were suggestive of disc space infection in all cases. NMR in all cases revealed marked disc space and adjacent bone involvement to the extent shown on bone scans. T1 and T2 weighted images appeared highly specific for either infection or degenerative change and were unaffected by antibiotic therapy. NMR appears to be more sensitive in evaluation of disc space infection than radionuclide studies. NMR is also able to provide significant anatomic information involving thecal sac and neural structures. Nuclear medicine studies appear equally sensitive though less specific in the evaluation of bone involvement except perhaps where antibiotic therapy has been used.

  10. Reacting to nuclear power systems in space: American public protests over outer planetary probes since the 1980s

    NASA Astrophysics Data System (ADS)

    Launius, Roger D.

    2014-03-01

    The United States has pioneered the use of nuclear power systems for outer planetary space probes since the 1970s. These systems have enabled the Viking landings to reach the surface of Mars and both Pioneers 10 and 11 and Voyagers 1 and 2 to travel to the limits of the solar system. Although the American public has long been concerned about safety of these systems, in the 1980s a reaction to nuclear accidents - especially the Soviet Cosmos 954 spacecraft destruction and the Three Mile Island nuclear power plant accidents - heightened awareness about the hazards of nuclear power and every spacecraft launch since that time has been contested by opponents of nuclear energy. This has led to a debate over the appropriateness of the use of nuclear power systems for spacecraft. It has also refocused attention on the need for strict systems of control and rigorous checks and balances to assure safety. This essay describes the history of space radioisotope power systems, the struggles to ensure safe operations, and the political confrontation over whether or not to allow the launch the Galileo and Cassini space probes to the outer planets. Effectively, these efforts have led to the successful flights of 12 deep space planetary probes, two-thirds of them operated since the accidents of Cosmos 954, Three Mile Island, and Chernobyl.

  11. The Role of Nuclear Fragmentation in Particle Therapy and Space Radiation Protection.

    PubMed

    Zeitlin, Cary; La Tessa, Chiara

    2016-01-01

    The transport of the so-called HZE particles (those having high charge, Z, and energy, E) through matter is crucially important both in space radiation protection and in the clinical setting where heavy ions are used for cancer treatment. HZE particles are usually considered those having Z > 1, though sometimes Z > 2 is meant. Transport physics is governed by two types of interactions, electromagnetic (ionization energy loss) and nuclear. Models of transport, such as those used in treatment planning and space mission planning must account for both effects in detail. The theory of electromagnetic interactions is well developed, but nucleus-nucleus collisions are so complex that no fundamental physical theory currently describes them. Instead, interaction models are generally anchored to experimental data, which in some areas are far from complete. The lack of fundamental physics knowledge introduces uncertainties in the calculations of exposures and their associated risks. These uncertainties are greatly compounded by the much larger uncertainties in biological response to HZE particles. In this article, we discuss the role of nucleus-nucleus interactions in heavy charged particle therapy and in deep space, where astronauts will receive a chronic low dose from galactic cosmic rays (GCRs) and potentially higher short-term doses from sporadic, unpredictable solar energetic particles (SEPs). GCRs include HZE particles; SEPs typically do not and we, therefore, exclude them from consideration in this article. Nucleus-nucleus collisions can result in the breakup of heavy ions into lighter ions. In space, this is generally beneficial because dose and dose equivalent are, on the whole, reduced in the process. The GCRs can be considered a radiation field with a significant high-LET component; when they pass through matter, the high-LET component is attenuated, at the cost of a slight increase in the low-LET component. Not only are the standard measures of risk

  12. The Role of Nuclear Fragmentation in Particle Therapy and Space Radiation Protection

    PubMed Central

    Zeitlin, Cary; La Tessa, Chiara

    2016-01-01

    The transport of the so-called HZE particles (those having high charge, Z, and energy, E) through matter is crucially important both in space radiation protection and in the clinical setting where heavy ions are used for cancer treatment. HZE particles are usually considered those having Z > 1, though sometimes Z > 2 is meant. Transport physics is governed by two types of interactions, electromagnetic (ionization energy loss) and nuclear. Models of transport, such as those used in treatment planning and space mission planning must account for both effects in detail. The theory of electromagnetic interactions is well developed, but nucleus–nucleus collisions are so complex that no fundamental physical theory currently describes them. Instead, interaction models are generally anchored to experimental data, which in some areas are far from complete. The lack of fundamental physics knowledge introduces uncertainties in the calculations of exposures and their associated risks. These uncertainties are greatly compounded by the much larger uncertainties in biological response to HZE particles. In this article, we discuss the role of nucleus–nucleus interactions in heavy charged particle therapy and in deep space, where astronauts will receive a chronic low dose from galactic cosmic rays (GCRs) and potentially higher short-term doses from sporadic, unpredictable solar energetic particles (SEPs). GCRs include HZE particles; SEPs typically do not and we, therefore, exclude them from consideration in this article. Nucleus–nucleus collisions can result in the breakup of heavy ions into lighter ions. In space, this is generally beneficial because dose and dose equivalent are, on the whole, reduced in the process. The GCRs can be considered a radiation field with a significant high-LET component; when they pass through matter, the high-LET component is attenuated, at the cost of a slight increase in the low-LET component. Not only are the standard measures of risk

  13. The Role of Nuclear Fragmentation in Particle Therapy and Space Radiation Protection.

    PubMed

    Zeitlin, Cary; La Tessa, Chiara

    2016-01-01

    The transport of the so-called HZE particles (those having high charge, Z, and energy, E) through matter is crucially important both in space radiation protection and in the clinical setting where heavy ions are used for cancer treatment. HZE particles are usually considered those having Z > 1, though sometimes Z > 2 is meant. Transport physics is governed by two types of interactions, electromagnetic (ionization energy loss) and nuclear. Models of transport, such as those used in treatment planning and space mission planning must account for both effects in detail. The theory of electromagnetic interactions is well developed, but nucleus-nucleus collisions are so complex that no fundamental physical theory currently describes them. Instead, interaction models are generally anchored to experimental data, which in some areas are far from complete. The lack of fundamental physics knowledge introduces uncertainties in the calculations of exposures and their associated risks. These uncertainties are greatly compounded by the much larger uncertainties in biological response to HZE particles. In this article, we discuss the role of nucleus-nucleus interactions in heavy charged particle therapy and in deep space, where astronauts will receive a chronic low dose from galactic cosmic rays (GCRs) and potentially higher short-term doses from sporadic, unpredictable solar energetic particles (SEPs). GCRs include HZE particles; SEPs typically do not and we, therefore, exclude them from consideration in this article. Nucleus-nucleus collisions can result in the breakup of heavy ions into lighter ions. In space, this is generally beneficial because dose and dose equivalent are, on the whole, reduced in the process. The GCRs can be considered a radiation field with a significant high-LET component; when they pass through matter, the high-LET component is attenuated, at the cost of a slight increase in the low-LET component. Not only are the standard measures of risk

  14. Gas production and behavior in the coolant of the SP-100 Space Nuclear Power System

    SciTech Connect

    McGhee, J.M.

    1989-08-01

    The radiologic generation and subsequent behavior of helium gas in the lithium coolant of SP-100 class space nuclear power reactors was investigated analytically in a two part study. Part One of the study consisted of a calculation of coolant radiologic helium gas production rates in a SP-100 class reactor using the discrete ordinates code TWODANT. Cross sections were developed from ENDF/B-V data via the MATXS6s master cross section library. Cross sections were self shielded assuming one homogeneous core region, and doppler broadened to 1300 K using the cross section preparation code TRANSX. Calculations were performed using an S{sub 4}/P{sub 1} approximation and 80 neutron energy groups. Part Two of the study consisted of a theoretical investigation into the behavior of helium gas in the primary loop of lithium cooled space reactors. The SP-100 space power system was used as a representative of such a system. Topics investigated included: (1) heterogeneous and homogeneous nucleation; (2) bubble growth/collapse by diffusion, mechanical temperature/pressure effects, and coalescence; and, (3) the effects on bubble distribution of microgravity, magnetic fields, and inertially induced buoyancy. 104 refs., 78 figs., 28 tabs.

  15. Space Nuclear Power and Propulsion: Materials Challenges for the 21st Century

    NASA Technical Reports Server (NTRS)

    Houts, Mike

    2008-01-01

    The current focus of NASA s space fission effort is Fission Surface Power (FSP). FSP systems could be used to provide power anytime, anywhere on the surface of the Moon or Mars. FSP systems could be used at locations away from the lunar poles or in permanently shaded regions, with no performance penalty. A potential reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass. The potential reference system is readily extensible for use on Mars. At Mars the system could be capable of operating through global dust storms and providing year-round power at any Martian latitude. To ensure affordability, the potential near-term, 40 kWe reference concept is designed to use only well established materials and fuels. However, if various materials challenges could be overcome, extremely high performance fission systems could be devised. These include high power, low mass fission surface power systems; in-space systems with high specific power; and high performance nuclear thermal propulsion systems. This tutorial will provide a brief overview of space fission systems and will focus on materials challenges that, if overcome, could help enable advanced exploration and utilization of the solar system.

  16. Gas production and behavior in the coolant of the SP-100 space nuclear power system

    NASA Astrophysics Data System (ADS)

    McGhee, John Morton

    1989-08-01

    The radiologic generation and subsequent behavior of helium gas in the lithium coolant of SP-100 class space nuclear power reactors was investigated analytically in a two part study. Part One of the study consisted of a calculation of coolant radiologic helium gas production rates in a SP-100 class reactor using the discrete ordinates code TWODANT. Cross sections were developed from ENDF/B-V data via the MATXS6s master cross section library. Cross sections were self shielded assuming one homogeneous core region, and Doppler broadened to 1300 K using the cross section preparation code TRANSX. Calculations were performed using an S sub 4/P sub 1 approximation and 80 neutron energy groups. Part Two of the study consisted of a theoretical investigation into the behavior of helium gas in the primary loop of lithium cooled space reactors. The SP-100 space power system was used as a representative of such a system. Topics investigated included: (1) heterogeneous and homogeneous nucleation; (2) bubble growth/collapse by diffusion, mechanical temperature/pressure effects, and coalescence; and, (3) the effects on bubble distribution of microgravity, magnetic fields, and inertially induced buoyancy.

  17. Mechanically Alloyed-Oxide Dispersion Strengthened Steels for Use in Space Nuclear Power Systems

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2004-02-01

    The mechanical and thermo-physical properties of Mechanically Alloyed (MA)-Oxide Dispersion Strengthened (ODS) steels are reviewed and their potential for use in space nuclear reactor power systems is examined. The three MA-ODS alloys examined are Inconel MA-ODS754 (77.55Ni, 20Cr, 1Fe, 0.5Ti, 0.3Al, 0.05C, and 0.6Y2O3), Incoloy MA-ODS956 (74.45Fe, 20Cr, 4.5Al, 0.5Ti, 0.05C, 0.5Y2O3), and Incoloy MA-ODS957 (84.55Fe, 14Cr, 0.3Mo, 0.9Ti, 0.25Y2O3). The major advantages of these alloys are: (a) their strength at high temperatures (>1000 K) is relatively higher and decreases slower with temperature than niobium (Nb) and molybdenum (Mo) refractory alloys; (b) they are relatively lightweight and less expensive; (c) they have been shown to experience low swelling and embrittlement with exposure to high-energy neutrons (> 0.1 MeV) up to a fluence of 1023 n/cm2; and (d) their high resistance to oxidation and nitration at high temperatures, which simplifies handling and assembly. These MS-ODS alloys are also lighter and much stronger than 316-stainless steel and super-alloys such as Inconel 601, Haynes 25, and Hastalloy-X at moderately high temperatures (688-1000 K). The little data available on the compatibility of the MA-ODS alloys with alkali liquid metals up to 1100 K are encouraging, however, additional tests at typical operation temperatures (1000-1400 K) in liquid metal cooled and alkali metal heat pipe-cooled space nuclear reactors are needed. The anisotropy of the MA-ODS alloys when cold worked, and in particularly when rolled into tubes, should not hinder their use in space nuclear power systems, in which the operation pressure is either near atmospheric or as high as 2 MPa.

  18. Mechanically Alloyed-Oxide Dispersion Strengthened Steels for Use in Space Nuclear Power Systems

    SciTech Connect

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2004-02-04

    The mechanical and thermo-physical properties of Mechanically Alloyed (MA)-Oxide Dispersion Strengthened (ODS) steels are reviewed and their potential for use in space nuclear reactor power systems is examined. The three MA-ODS alloys examined are Inconel MA-ODS754 (77.55Ni, 20Cr, 1Fe, 0.5Ti, 0.3Al, 0.05C, and 0.6Y2O3), Incoloy MA-ODS956 (74.45Fe, 20Cr, 4.5Al, 0.5Ti, 0.05C, 0.5Y2O3), and Incoloy MA-ODS957 (84.55Fe, 14Cr, 0.3Mo, 0.9Ti, 0.25Y2O3). The major advantages of these alloys are: (a) their strength at high temperatures (>1000 K) is relatively higher and decreases slower with temperature than niobium (Nb) and molybdenum (Mo) refractory alloys; (b) they are relatively lightweight and less expensive; (c) they have been shown to experience low swelling and embrittlement with exposure to high-energy neutrons (> 0.1 MeV) up to a fluence of 1023 n/cm2; and (d) their high resistance to oxidation and nitration at high temperatures, which simplifies handling and assembly. These MS-ODS alloys are also lighter and much stronger than 316-stainless steel and super-alloys such as Inconel 601, Haynes 25, and Hastalloy-X at moderately high temperatures (688-1000 K). The little data available on the compatibility of the MA-ODS alloys with alkali liquid metals up to 1100 K are encouraging, however, additional tests at typical operation temperatures (1000-1400 K) in liquid metal cooled and alkali metal heat pipe-cooled space nuclear reactors are needed. The anisotropy of the MA-ODS alloys when cold worked, and in particularly when rolled into tubes, should not hinder their use in space nuclear power systems, in which the operation pressure is either near atmospheric or as high as 2 MPa.

  19. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 3, technologies 2: Power conversion

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    The major power conversion concepts considered for the Megawatt Class Nuclear Space Power System (MCNSPS) are discussed. These concepts include: (1) Rankine alkali-metal-vapor turbine alternators; (2) in-core thermionic conversion; (3) Brayton gas turbine alternators; and (4) free piston Stirling engine linear alternators. Considerations important to the coupling of these four conversion alternatives to an appropriate nuclear reactor heat source are examined along with the comparative performance characteristics of the combined systems meeting MCNSPS requirements.

  20. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 3, technologies 2: Power conversion

    NASA Astrophysics Data System (ADS)

    Wetch, J. R.

    1988-09-01

    The major power conversion concepts considered for the Megawatt Class Nuclear Space Power System (MCNSPS) are discussed. These concepts include: (1) Rankine alkali-metal-vapor turbine alternators; (2) in-core thermionic conversion; (3) Brayton gas turbine alternators; and (4) free piston Stirling engine linear alternators. Considerations important to the coupling of these four conversion alternatives to an appropriate nuclear reactor heat source are examined along with the comparative performance characteristics of the combined systems meeting MCNSPS requirements.

  1. S-PRIME Thermionic Space Nuclear Power System Quality Assurance Program Plan

    SciTech Connect

    Jones, C.M.

    1992-09-23

    This Quality Assurance Program Plan (QAPP)describes how the Thermionic Space Nuclear Power System Design and Technology Demonstration Project addresses the Quality Assurance requirements delineated in DOE Order 5700.6C and the Thermionic Program Management Plan 214PMP000001. The Quality Assurance Program is based on the following fundamental principles, which Rocketdyne endorses and the QA Project Manager and Program Manager shall enforce: Quality Achievement is a continuing responsibility of line organization at all levels; the Quality Assurance organization through the effective overview of work, gives additional assurance that specified requirements are met; risk is the fundamental consideration in determining to what extent the Quality Assurance Plan should be applied to items and processes; action is based on facts and analysis, customer driven quality, strong quality leadership and continuous improvement.

  2. Closed Cycle Magnetohydrodynamic Nuclear Space Power Generation Using Helium/Xenon Working Plasma

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Harada, N.

    2005-01-01

    A multimegawatt-class nuclear fission powered closed cycle magnetohydrodynamic space power plant using a helium/xenon working gas has been studied, to include a comprehensive system analysis. Total plant efficiency was expected to be 55.2 percent including pre-ionization power. The effects of compressor stage number, regenerator efficiency, and radiation cooler temperature on plant efficiency were investigated. The specific mass of the power generation plant was also examined. System specific mass was estimated to be 3 kg/kWe for a net electrical output power of 1 MWe, 2-3 kg/kWe at 2 MWe, and approx.2 kg/KWe at >3 MWe. Three phases of research and development plan were proposed: (1) Phase I-proof of principle, (2) Phase II-demonstration of power generation, and (3) Phase III-prototypical closed loop test.

  3. Transient analysis and startup simulation of a thermionic space nuclear reactor system

    SciTech Connect

    El-Genk, M.S.; Xue, Huimin; Paramonov, D. . Dept. of Chemical and Nuclear Engineering)

    1994-01-01

    The thermionic transient analysis model is used to simulate the startup of the TOPAZ-2 space nuclear power system in orbit. The simulated startup procedures are assumed for the purpose of demonstrating the capabilities of the model and may not represent an accurate account of the actual startup procedures of the TOPAZ-2 system. The temperature reactivity feedback effects of the moderator, UO[sub 2] fuel, electrodes, coolant, and other components in the core are calculated, and their effects on the thermal and criticality conditions of the reactor are investigated. Also, estimates of the time constants of the temperature reactivity feedback for the UO[sub 2] fuel and the ZrH moderator during startup, as well as of the total temperature reactivity feedback as a function of the reactor steady-state thermal power, are obtained.

  4. Start-up simulation of a thermionic space nuclear reactor system

    SciTech Connect

    El-Genk, M.S.; Xue, H.; Paramonov, D. )

    1993-01-15

    The Thermionic Transient Analysis Model (TITAM) is used in this paper to simulate the start-up of the TOPAZ-II space nuclear power system in orbit. The start-up procedures simulated herein are assumed for the purpose of demonstrating the capabilities of the model and may not represent an accurate account of the actual start-up procedures of the TOPAZ-II system. The temperature reactivity feedback effects of the moderator, UO[sub 2] fuel, electrodes, coolant, and other components in the core are calculated and their effects on the thermal and criticality conditions of the reactor are investigated. Also, estimates of the time constants of the temperature reactivity feedback for the UO[sub 2] fuel and the ZrH moderator during start-up, as well as of the total temperature reactivity feedback as a function of the reactor steady-state thermal power, are obtained.

  5. Nuclear safety considerations in the conceptual design of a fast reactor for space electric power and propulsion

    NASA Technical Reports Server (NTRS)

    Hsieh, T.-M.; Koenig, D. R.

    1977-01-01

    Some nuclear safety aspects of a 3.2 mWt heat pipe cooled fast reactor with out-of-core thermionic converters are discussed. Safety related characteristics of the design including a thin layer of B4C surrounding the core, the use of heat pipes and BeO reflector assembly, the elimination of fuel element bowing, etc., are highlighted. Potential supercriticality hazards and countermeasures are considered. Impacts of some safety guidelines of space transportation system are also briefly discussed, since the currently developing space shuttle would be used as the primary launch vehicle for the nuclear electric propulsion spacecraft.

  6. A 20,000-Kilowatt Nuclear Turboelectric Power Supply for Manned Space Vehicles

    NASA Technical Reports Server (NTRS)

    English, Robert E.; Slone, Henry O.; Bernatowicz, Daniel T.; Davison, Elmer H.; Lieblein, Seymour

    1959-01-01

    A conceptual design of a nuclear turboelectric powerplant, producing 20,000 kilowatts of power suitable for manned space vehicles is presented. The study indicates that the radiator necessary for rejecting cycle waste heat is the dominant weight, and emphasis is placed on the selection of cycle operating conditions in order to reduce this weight. A thermodynamic cycle using sodium vapor as the working fluid and operating at a turbine-inlet temperature of 2500 R was selected. The total powerplant weight was calculated to be approximately 6 pounds per kilowatt. The radiator contributes approximately 2.1 pounds per kilowatt to the total weight and the reactor and reactor shield contribute approximately 0.24 and 1.2 pounds per kilowatt, respectively. The generator, turbine, and piping add significantly to the total weight (between 0.5 and 0.6 lb/kw), but the heat exchanger, pumps, and so on are less important. Several important research areas associated with the development of a reliable nuclear turboelectric powerplant of the type analyzed are discussed.

  7. Nuclear Energy Gradients for Internally Contracted Complete Active Space Second-Order Perturbation Theory: Multistate Extensions.

    PubMed

    Vlaisavljevich, Bess; Shiozaki, Toru

    2016-08-01

    We report the development of the theory and computer program for analytical nuclear energy gradients for (extended) multistate complete active space perturbation theory (CASPT2) with full internal contraction. The vertical shifts are also considered in this work. This is an extension of the fully internally contracted CASPT2 nuclear gradient program recently developed for a state-specific variant by us [MacLeod and Shiozaki, J. Chem. Phys. 2015, 142, 051103]; in this extension, the so-called λ equation is solved to account for the variation of the multistate CASPT2 energies with respect to the change in the amplitudes obtained in the preceding state-specific CASPT2 calculations, and the Z vector equations are modified accordingly. The program is parallelized using the MPI3 remote memory access protocol that allows us to perform efficient one-sided communication. The optimized geometries of the ground and excited states of a copper corrole and benzophenone are presented as numerical examples. The code is publicly available under the GNU General Public License.

  8. Mass optimization studies of gamma shield materials for space nuclear reactors

    SciTech Connect

    Banjac, V.; Heger, A.S. . Dept. of Chemical and Nuclear Engineering)

    1994-10-01

    A mass optimization study of the total shield mass requirements for gamma attenuation for a space nuclear power system is carried out. The reference system is a nuclear electric power-generating reactor with a 10[sup 16] [gamma]/s source term and reference dimensions based on the Russian TOPAZ-II. Seven potential shield materials are analyzed, and the total gamma shield masses are presented for a desired dose equivalent of 5.0 mrem/h at the end of the shield. A three-dimensional shielding code, QAD-CGGP, is used to model the reactor and the truncated cone shield. Gamma energies of 0.5, 1.0, and 2.0 MeV are analyzed, and the required shield masses are normalized to the lowest value, giving a mass index.'' Comparison of the required masses and mass indices for both direct radiation and buildup dose is presented. For all three gamma energies, depleted uranium has a mass index of 1.0 and provides the required shielding with the lowest mass requirement. Mass indices between 1.2 and 1.7 are characteristic of tungsten and lead, making them potential substitutes for depleted uranium in the case of smaller reactor power levels.

  9. The rationale/benefits of nuclear thermal rocket propulsion for NASA's lunar space transportation system

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.

    1994-09-01

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  10. Fabrication and testing of thermionic heat pipe modules for space nuclear power systems

    NASA Astrophysics Data System (ADS)

    Hartenstine, John R.; Horner-Richardson, Kevin; Rhee, Hyop S.

    1993-01-01

    Thermacore, Inc. along with the Idaho National Engineering Laboratory (INEL) is developing a Thermionic Heat Pipe Module (THPM) for use with small, Thermionic Space Nuclear Power Systems. The THPM concept is a core length, cylindrical thermionic diode with a near-isothermal heat pipe emitter sleeve coupled to reactor fuel by radiation, and a heat ipe collector which also forms the waste heat radiator. The design allows for independent, non-nuclear development and testing of the THPM hardware for later integration into the nucelar reactor. A hardward development program is currently underway to demonstrate key feasibility components and to fabricate and test prototype THPMs for application to the Small Externally-Fueled Heat Pipe Thermionic Reactor (SEHPTR) concept. This paper describes the scope and status of the THPM development program at Thermacore. Design, fabrication and test results to date of the first of several half-length THPM design iterations are presented and future activities intended to incrementally develop the concept are discussed.

  11. Fabrication and testing of thermionic heat pipe modules for space nuclear power systems

    SciTech Connect

    Hartenstine, J.R.; Horner-Richardson, K. ); Rhee, H.S. )

    1993-01-20

    Thermacore, Inc. along with the Idaho National Engineering Laboratory (INEL) is developing a Thermionic Heat Pipe Module (THPM) for use with small, Thermionic Space Nuclear Power Systems. The THPM concept is a core length, cylindrical thermionic diode with a near-isothermal heat pipe emitter sleeve coupled to reactor fuel by radiation, and a heat ipe collector which also forms the waste heat radiator. The design allows for independent, non-nuclear development and testing of the THPM hardware for later integration into the nucelar reactor. A hardward development program is currently underway to demonstrate key feasibility components and to fabricate and test prototype THPMs for application to the Small Externally-Fueled Heat Pipe Thermionic Reactor (SEHPTR) concept. This paper describes the scope and status of the THPM development program at Thermacore. Design, fabrication and test results to date of the first of several half-length THPM design iterations are presented and future activities intended to incrementally develop the concept are discussed.

  12. Nuclear Energy Gradients for Internally Contracted Complete Active Space Second-Order Perturbation Theory: Multistate Extensions.

    PubMed

    Vlaisavljevich, Bess; Shiozaki, Toru

    2016-08-01

    We report the development of the theory and computer program for analytical nuclear energy gradients for (extended) multistate complete active space perturbation theory (CASPT2) with full internal contraction. The vertical shifts are also considered in this work. This is an extension of the fully internally contracted CASPT2 nuclear gradient program recently developed for a state-specific variant by us [MacLeod and Shiozaki, J. Chem. Phys. 2015, 142, 051103]; in this extension, the so-called λ equation is solved to account for the variation of the multistate CASPT2 energies with respect to the change in the amplitudes obtained in the preceding state-specific CASPT2 calculations, and the Z vector equations are modified accordingly. The program is parallelized using the MPI3 remote memory access protocol that allows us to perform efficient one-sided communication. The optimized geometries of the ground and excited states of a copper corrole and benzophenone are presented as numerical examples. The code is publicly available under the GNU General Public License. PMID:27388038

  13. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    SciTech Connect

    Maraman, W.J.

    1980-02-01

    Studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of LASL are presented. The three programs involved are: general-purpose heat source development; space nuclear safety; and fuels program. Three impact tests were conducted to evaluate the effects of a high temperature reentry pulse and the use of CBCF on impact performance. Additionally, two /sup 238/PuO/sub 2/ pellets were encapsulated in Ir-0.3% W for impact testing. Results of the clad development test and vent testing are noted. Results of the environmental tests are summarized. Progress on the Stirling isotope power systems test and the status of the improved MHW tests are indicated. The examination of the impact failure of the iridium shell of MHFT-65 at a fuel pass-through continued. A test plan was written for vibration testing of the assembled light-weight radioisotopic heater unit. Progress on fuel processing is reported.

  14. The Rationale/Benefits of Nuclear Thermal Rocket Propulsion for NASA's Lunar Space Transportation System

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    1994-01-01

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  15. A feasibility assessment of nuclear reactor power system concepts for the NASA Growth Space Station

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Heller, J. A.

    1986-01-01

    A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth Space Station architecture was conducted to address a variety of installation, operational, disposition and safety issues. A previous NASA sponsored study, which showed the advantages of Space Station - attached concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide a feasibility of each combination.

  16. An overview of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite

    SciTech Connect

    Voss, S.S.; Reynolds, E.L.

    1994-06-01

    Early in 1992 the idea of purchasing a Russian designed and fabricated space reactor power system and integrating it with a US designed satellite went from fiction to reality with the purchase of the first two Topaz II reactors by the Strategic Defense Initiative Organization (now the Ballistic Missile Defense Organization (BMDO). The New Mexico Alliance was formed to establish a ground test facility in which to perform nonnuclear systems testing of the Topaz II, and to evaluate the Topaz 11 system for flight testing with respect to safety, performance, and operability. In conjunction, SDIO requested that the Applied Physics Laboratory in Laurel, MD propose a mission and design a satellite in which the Topaz II could be used as the power source. The outcome of these two activities was the design of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite which combines a modified Russian Topaz II power system with a US designed satellite to achieve a specified mission. Due to funding reduction within the SDIO, the Topaz II flight program was postponed indefinitely at the end of Fiscal Year 1993. The purpose of this paper is to present an overview of the NEPSTP mission and the satellite design at the time the flight program ended.

  17. Marshall Space Flight Center and the Reactor-in-Flight Stage: A Look Back at Using Nuclear Propulsion to Power Space Vehicles in the 1960's

    NASA Technical Reports Server (NTRS)

    Wright, Mike

    2003-01-01

    This paper examines the Marshall Space Flight Center s role in the Reactor-In-Flight (RIlT) project that NASA was involved with in the early 1960 s. The paper outlines the project s relation to the joint NASA-Atomic Energy Commission nuclear initiative known as Project Rover. It describes the justification for the RIFT project, its scope, and the difficulties that were encountered during the project. It also provides as assessment of NASA s overall capabilities related to nuclear propulsion in the early 1960 s.

  18. 1987 Annual Conference on Nuclear and Space Radiation Effects, Snowmass Village, CO, July 28-31, 1987, Proceedings

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Various papers on nuclear and space radiation effects are presented. The general topics addressed include: basic mechanisms of radiation effects, single-event phenomena, temperature and field effects, modeling and characterization of radiation effects, IC radiation effects and hardening, and EMP/SGEMP/IEMP phenomena. Also considered are: dosimetry/energy-dependent effects, sensors in and for radiation environments, spacecraft charging and space radiation effects, radiation effects and devices, radiation effects on isolation technologies, and hardness assurance and testing techniques.

  19. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 2, technologies 1: Reactors, heat transport, integration issues

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    The objectives of the Megawatt Class Nuclear Space Power System (MCNSPS) study are summarized and candidate systems and subsystems are described. Particular emphasis is given to the heat rejection system and the space reactor subsystem.

  20. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    SciTech Connect

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  1. SPACE-R thermionic space nuclear power system: Design and technology demonstration. Monthly report for 1 August 1994--1 September 1994

    SciTech Connect

    Not Available

    1994-10-01

    The objective of this program is to design, develop, demonstrate, and advance the technology for thermionic space nuclear power system (TI-SNPS) to meet key functional requirements with reliable 5{approximately}40 kWe output and 18-month near-term/10-year long-term goals. A 40 kWe TI-SNPS point design will be prepared, and key technologies and critical components supporting that design will be validated. This program will produce an assessed design of a 40 kWe-EOL space nuclear power system. Phase 1 will provide for the performance of parametric trade studies and demonstration of key technologies, resulting in a preferred conceptual design for the TI-SNPS. The focus of the tasks is technology validation drive by the system design.

  2. 1990 IEEE Annual Conference on Nuclear and Space Radiation Effects, 27th, Reno, NV, July 16-20, 1990, Proceedings

    NASA Technical Reports Server (NTRS)

    Fleetwood, Daniel M. (Editor)

    1990-01-01

    Various papers on nuclear and space radiation effects are presented. The general topics addressed include: basic mechanisms of radiation effects, dosimetry and energy-dependent effects, hardness assurance and testing techniques, single-event upset and latchup, isolation technologies, device and integrated circuit effects and hardening, spacecraft charging and electromagnetic effects.

  3. SRTC criticality safety technical review: Nuclear criticality safety evaluation 94-02, uranium solidification facility pencil tank module spacing

    SciTech Connect

    Rathbun, R.

    1994-04-26

    Review of NMP-NCS-94-0087, ``Nuclear Criticality Safety Evaluation 94-02: Uranium Solidification Facility Pencil Tank Module Spacing (U), April 18, 1994,`` was requested of the SRTC Applied Physics Group. The NCSE is a criticality assessment to show that the USF process module spacing, as given in Non-Conformance Report SHM-0045, remains safe for operation. The NCSE under review concludes that the module spacing as given in Non-Conformance Report SHM-0045 remains in a critically safe configuration for all normal and single credible abnormal conditions. After a thorough review of the NCSE, this reviewer agrees with that conclusion.

  4. SPACE-R Thermionic Space Nuclear Power System: Design and Technology Demonstration Program. Semiannual technical progress report for period ending March 1993

    SciTech Connect

    Not Available

    1993-05-01

    This Semiannual Technical Progress Report summarizes the technical progress and accomplishments for the Thermionic Space Nuclear Power System (TI-SNPS) Design and Technology Demonstration Program of the Prime Contractor, Space Power Incorporated (SPI), its subcontractors and supporting National Laboratories during the first half of the Government Fiscal Year (GFY) 1993. SPI`s subcontractors and supporting National Laboratories include: Babcock & Wilcox for the reactor core and externals; Space Systems/Loral for the spacecraft integration; Thermocore for the radiator heat pipes and the heat exchanger; INERTEK of CIS for the TFE, core elements and nuclear tests; Argonne National Laboratories for nuclear safety, physics and control verification; and Oak Ridge National laboratories for materials testing. Parametric trade studies are near completion. However, technical input from INERTEK has yet to be provided to determine some of the baseline design configurations. The INERTEK subcontract is expected to be initiated soon. The Point Design task has been initiated. The thermionic fuel element (TFE) is undergoing several design iterations. The reactor core vessel analysis and design has also been started.

  5. Test and Evaluation of Fiber Optic Sensors for High-Radiation Space Nuclear Power Applications

    SciTech Connect

    Klemer, Daniel; Fielder, Robert S.; Stinson-Bagby, Kelly L.

    2004-07-01

    Fiber optic sensors can be used to measure a number of parameters, including temperature, strain, pressure and flow, for instrumentation and control of space nuclear power systems. In the past, this technology has often been rejected for use in such a high-radiation environment based on early experiments that revealed a number of degradation phenomena, including radiation-induced fiber attenuation, or 'graying', and Fiber Bragg Grating (FBG) fading and wavelength shift. However, this paper reports the results of recent experimental testing that demonstrates readability of fiber optic sensors to extremely high levels of neutron and gamma radiation. Both distributed Fiber Bragg Grating (FBG) sensors and single-point Extrinsic Fabry Perot Interferometer (EFPI) sensors were continuously monitored over a 2-month period, during which they were exposed to combined neutron and gamma radiation in both in-core and ex-core positions within a nuclear reactor. Total exposure reached approximately 2 x 10{sup 19} cm{sup -2} fast neutron (E > 1 MeV) fluence and 8.7 x 10{sup 8} Gy gamma for in-core sensors. FBG sensors were interrogated using a standard Luna Innovations FBG measurement system, which is based on optical frequency-domain reflectometer (OFDR) technology. Approximately 74% of the 19 FBG sensors located at the core centerline in the in-core position exhibited sufficient signal-to-noise ratio (SNR) to remain readable even after receiving the maximum dose. EFPI sensors were spectrally interrogated using a broadband probe source operating in the 830 nm wavelength region. While these single-point sensors failed early in the test, important additional fiber spectral transmission data was collected, which indicates that interrogation of EFPI sensors in alternate wavelength regions may allow significant improvement in sensor longevity for operation in high-radiation environments. This work was funded through a Small Business Innovative Research (SBIR) contract with the Nasa

  6. Technical Bases to Aid in the Decision of Conducting Full Power Ground Nuclear Tests for Space Fission Reactors

    NASA Astrophysics Data System (ADS)

    Hixson, Laurie L.; Houts, Michael G.; Clement, Steven D.

    2004-02-01

    The extent to which, if any, full power ground nuclear testing of space reactors should be performed has been a point of discussion within the industry for decades. Do the benefits outweigh the risks? Are there equivalent alternatives? Can a test facility be constructed (or modified) in a reasonable amount of time? Is the test article an accurate representation of the flight system? Are the costs too restrictive? The obvious benefits of full power ground nuclear testing; obtaining systems integrated reliability data on a full-scale, complete end-to-end system; come at some programmatic risk. Safety related information is not obtained from a full-power ground nuclear test. This paper will discuss and assess these and other technical considerations essential in the decision to conduct full power ground nuclear-or alternative-tests.

  7. The feasibility of retrieving nuclear heat sources from orbit with the space shuttle

    SciTech Connect

    Pyatt, D.W.; Englehart, R.W.

    1980-01-01

    Spacecraft launched for orbital missions have a finite orbital lifetime. Current estimates for the lifetime of the nine nuclear powered U.S. satellites now in orbit range from 150 years to 10{sup 6} years. Orbital lifetime is determined primarily by altitude, solar activity, and the satellite ballistic coefficient. There is also the potential of collision with other satellites or space debris, which would reduce the lifetime in orbit. These orbiting power sources contain primarily Pu-238 and Pu-239 as the fuel material. Pu-238 has an approximate 87-year half life and so considerable amounts of daughter products are present after a few tens of years. In addition, there are minor but possibly significant amounts of impurity isotopes present with their own decay chains. Radioisotopic heat sources have been designed to evolving criteria since the first launches. Early models were designed to burn up upon reentry. Later designs were designed to reenter intact. After tens or hundreds of years in orbit, the ability of any orbiting heat source to reenter intact and impact while maintaining containment integrity is in doubt. Such ability could only be verified by design to provide protection in the case of early mission failures such as launch aborts, failure to achieve orbit, or the attainment of only a short orbit. With the development of the Space Shuttle there exists the potential ability to recover heat sources in orbit after their missions are completed. Such retrieval could allow the risk of eventual reentry burnup or impact with atmospheric dispersion and subsequent radiation doses to the public to be avoided.

  8. Nuclear Physics Issues in Space Radiation Risk Assessment-The FLUKA Monte Carlo Transport Code Used for Space Radiation Measurement and Protection

    SciTech Connect

    Lee, K. T.

    2007-02-12

    The long term human exploration goals that NASA has embraced, requires the need to understand the primary radiation and secondary particle production under a variety of environmental conditions. In order to perform accurate transport simulations for the incident particles found in the space environment, accurate nucleus-nucleus inelastic event generators are needed, and NASA is funding their development. For the first time, NASA is including the radiation problem into the . design of the next manned exploration vehicle. The NASA-funded FLUER-S (FLUKA Executing Under ROOT-Space) project has several goals beyond the improvement of the internal nuclear physics simulations. These include making FLUKA more user-friendly. Several tools have been developed to simplify the use of FLUKA without compromising its accuracy or versatility. Among these tools are a general source input, ability of distributive computing, simplification of geometry input, geometry and event visualization, and standard FLUKA scoring output analysis using a ROOT GUI. In addition to describing these tools we will show how they have been used for space radiation environment data analysis in MARIE, IVCPDS, and EVCPDS. Similar analyses can be performed for future radiation measurement detectors before they are deployed in order to optimize their design. These tools can also be used in the design of nuclear-based power systems on manned exploration vehicles and planetary surfaces. In addition to these space applications, the simulations are being used to support accelerator based experiments like the cross-section measurements being performed at HIMAC and NSRL at BNL.

  9. Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems

    NASA Astrophysics Data System (ADS)

    Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel

    2007-01-01

    Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

  10. Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems

    SciTech Connect

    Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel

    2007-01-30

    Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

  11. Evolution of systems concepts for a 100 kWe class Space Nuclear Power System

    NASA Technical Reports Server (NTRS)

    Katucki, R.; Josloff, A.; Kirpich, A.; Florio, F.

    1985-01-01

    Conceptual designs for the SP-100 Space Nuclear Power System have been prepared that meet baseline, backup and growth program scenarios. Near-term advancement in technology was considered in the design of the Baseline Concept. An improved silicon-germanium thermoelectric technique is used to convert the heat from a fast-spectrum, liquid lithium cooled reactor. This system produces a net power of 100 kWe with a 10-year end of life, under the specific constraints of area and volume. Output of the Backup Concept is estimated to be 60 kWe for a 10-year end of life. This system differs from the Baseline Concept because currently available thermoelectric conversion is used from energy supplied by a liquid sodium cooled reactor. The Growth Concept uses Stirling engine conversion to produce 100 kWe within the constraints of mass and volume. The Growth Concept can be scaled up to produce a 1 MWe output that uses the same type reactor developed for the Baseline Concept. Assessments made for each of the program scenarios indicate the key development efforts needed to initiate detailed design and hardware program phases. Development plans were prepared for each scenario that detail the work elements and show the program activities leading to a state of flight readiness.

  12. Thermomechanical Characterization and Analysis of Insulation Materials for Nuclear-Based Space Power Systems

    SciTech Connect

    Hemrick, James Gordon; Burns, Zachary M; Ulrich, George B

    2014-01-01

    Testing was carried out to characterize and predict the long-term thermomechanical properties of various thermal insulation materials for use in nuclear-based space power systems. In particular, the high temperature compressive strength and stress relaxation behavior of these materials under vacuum or an inert atmosphere and up to 950 C were evaluated under either isothermal conditions or under various thermal gradients for test times of over two years. Several tests subjected to thermal gradient conditions were also evaluated for changes in strain due to cooling or heating events. Other testing of these materials included evaluation of their response to lateral (as opposed to axial) loads, their response to triaxial loading conditions, thermal shock behavior of these materials, and shrinkage effects in these materials due to elevated temperature exposure. Additionally, finite element and mathematical models were formulated to predict the mechanical behavior exhibited by these materials out to 35,000 hours (4 years) based on this testing. This paper will summarize the design and construction of unique test equipment to carry out this testing, along with the results of the testing and the subsequent modeling.

  13. Summary of particle bed reactor designs for the Space Nuclear Thermal Propulsion Program

    NASA Astrophysics Data System (ADS)

    Powell, J. R.; Ludewig, H.; Todosow, M.

    1993-09-01

    A summary report of the Particle Bed Reactor (PBR) designs considered for the space nuclear thermal propulsion program has been prepared. The first chapters outline the methods of analysis, and their validation. Monte Carlo methods are used for the physics analysis, several new algorithms are used for the fluid dynamics heat transfer and engine system analysis, and commercially available codes are used for the stress analysis. A critical experiment, prototypic of the PBR was used for the physics validation, and blowdown experiments using fuel beds of prototypic dimensions were used to validate the power extraction capabilities from particle beds. In all four different PBR rocket reactor designs were studied to varying degrees of detail. They varied in power from 400 MW to 2000 MW. These designs were all characterized by a negative prompt coefficient, due to Doppler feedback, and the feedback due to moderator heat up varied from slightly negative to slightly positive. In all practical cases, the coolant worth was positive, although core configurations with negative coolant worth could be designed. In all practical cases the thrust/weight ratio was greater than 20.

  14. Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Harada, Nobuhiro

    2011-01-01

    Prospects for a low specific mass multi-megawatt nuclear space power plant were examined assuming closed cycle coupling of a high-temperature fission reactor with magnetohydrodynamic (MHD) energy conversion and utilization of a nonequilibrium helium/xenon frozen inert plasma (FIP). Critical evaluation of performance attributes and specific mass characteristics was based on a comprehensive systems analysis assuming a reactor operating temperature of 1800 K for a range of subsystem mass properties. Total plant efficiency was expected to be 55.2% including plasma pre-ionization power, and the effects of compressor stage number, regenerator efficiency and radiation cooler temperature on plant efficiency were assessed. Optimal specific mass characteristics were found to be dependent on overall power plant scale with 3 kg/kWe being potentially achievable at a net electrical power output of 1-MWe. This figure drops to less than 2 kg/kWe when power output exceeds 3 MWe. Key technical issues include identification of effective methods for non-equilibrium pre-ionization and achievement of frozen inert plasma conditions within the MHD generator channel. A three-phase research and development strategy is proposed encompassing Phase-I Proof of Principle Experiments, a Phase-II Subscale Power Generation Experiment, and a Phase-III Closed-Loop Prototypical Laboratory Demonstration Test.

  15. The scalability of OTR (out-of-core thermionic reactor) space nuclear power systems

    SciTech Connect

    Gallup, D.R.

    1990-03-01

    In this document, masses of the STAR-C power system and an optimized out-of-core thermionic reactor (OTR) power system versus power level are investigated. The impacts of key system parameters on system performance are also addressed. The STAR-C is mass competitive below about 15 kWe, but at higher power levels the scalability is relatively poor. An optimized OR is the least massive space nuclear power system below 25 kWe, and scales well to 50 kWe. The system parameters that have a significant impact on the scalability of the STAR-C are core thermal flux, thermionic converter efficiency, and core length to diameter ratio. The emissivity of the core surface is shown to be a relatively unimportant parameter. For an optimized OR power system, the most significant system parameter is the maximum allowable fuel temperature. It is also shown that if advanced radiation-hardened electronics are used in the satellite payload, a very large mass savings is realized. 10 refs., 23 figs., 7 tabs.

  16. Nuclear space-valued stochastic differential equations driven by Poisson random measures

    SciTech Connect

    Xiong, J.

    1992-01-01

    The thesis is devoted primarily to the study of stochastic differential equations on duals of nuclear spaces driven by Poisson random measures. The existence of a weak solution is obtained by the Galerkin method and the uniqueness is established by implementing the Yamada-Watanabe argument in the present setup. When the magnitudes of the driving terms are small enough and the Poisson streams occur frequently enough, it is proved that the stochastic differential equations mentioned above can be approximated by diffusion equations. Finally, the author considers a system of interacting stochastic differential equations driven by Poisson random measures. Let (X[sup n][sub i](t), [center dot][center dot][center dot], X[sup n][sub n](t)) be the solution of this system and consider the empirical measures [zeta]n([omega],B) [identical to] (1/n) (sum of j=1 to n) [delta]x[sup n][sub j]([center dot],[omega])(B) (n[>=]1). It is provided that [zeta][sub n] converges in distribution to a non-random measure which is the unique solution of a McKean-Vlasov equation. The above problems are motivated by applications to neurophysiology, in particular, to the fluctuation of voltage potentials of spatially distributed neurons and to the study of asymptotic behavior of large systems of interacting neurons.

  17. Geo-Space observation of atmospheric environmental effects associated with 2011 Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Pulinets, Sergey; Ouzounov, Dimitar; Hernandez-Pajares, Manuel; Hattori, Katsumi; Garcia-Rigo, Alberto

    2014-05-01

    Our approach of using multiple geo-space observation is based on the LAIC (Lithosphere- Atmosphere- Ionosphere Coupling) model and the gained experience during similar analysis of Three-Mile Island and Chernobyl accidents. We do collect a unique dataset of geophysical data for the period around the time of the most active phase of Fukushima explosions (from 12 March till 31 March, 71-90 DOY). We analyzed following data sets: (i) ground temperature and relative humidity data from the JMA network of Japan, (ii) satellite meteorological data and assimilative models to obtain the integrated water vapor chemical potential; (iii) the infrared emission on the top of atmosphere measured by NOAA and GEOS satellites estimated as Outgoing Longwave Radiation; and (iv) multiple ionospheric measurements , including ground based ionosondes, GPS vTEC from GEONET network, COSMIC/FORMOSAT constellation occultation data, JASON satellite TEC measurements, and tomography reconstruction technique to obtain 3D distribution of electron concentration around the Fukushima power plant. As a result we were able to detect the anomalies in different geophysical parameters representing the dynamics of the Fukushima nuclear accident development and the effects on the atmospheric environment. Their temporal evolution demonstrates the synergy in different atmospheric anomalies development what implies the existence of the common physical mechanism described by the LAIC model.

  18. Evaluation of solid state nuclear track detector stacks exposed on the international space station.

    PubMed

    Pálfalvi, J K; Akatov, Yu; Szabó, J; Sajó-Bohus, L; Eördögh, I

    2004-01-01

    The aim of the study was to investigate the contribution of secondary neutrons to the total dose inside the International Space Station (ISS). For this purpose solid-state nuclear track detector (SSNTD) stacks were used. Each stack consisted of three CR-39 sheets. The first and second sheets were separated by a Ti plate, and the second and third sheets sandwiched a Lexan polycarbonate foil. The neutron and proton responses of each sheet were studied through MC calculations and experimentally, utilising monoenergetic protons. Seven stacks were exposed in 2001 for 249 days at different locations of the Russian segment 'Zvezda'. The total storage time before and after the exposure onboard was estimated to be seven months. Another eight stacks were exposed at the CERF high-energy neutron field for calibration purposes. The CR-39 detectors were evaluated in four steps: after 2, 6, 12 and 20 h etching in 6 N NaOH at 70 degrees C (VB = 1.34 microm h(-1)). All the individual tracks were investigated and recorded using an image analyser. The stacks provided the averaged neutron ambient dose equivalent (H*) between 200 keV and 20 MeV, and the values varied from 39 to 73 microSv d(-1), depending on the location. The Lexan detectors were used to detect the dose originating from high-charge and high-energy (HZE) particles. These results will be published elsewhere.

  19. Technology for Brayton-cycle space powerplants using solar and nuclear energy

    SciTech Connect

    English, R.E.

    1986-02-01

    Brayton-cycle gas turbines have the potential to use either solar heat or nuclear reactors to generate from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power-generating system. Their development for solar-energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power-generating system has already demonstrated overall efficiency of 0.29 and operated for 38,000 hr. Tests of improved components show that, if installed in the power-generating system, these components would raise that efficiency to 0.32; this efficiency is twice that so far demonstrated by any alternate concept, a characteristic especially important for solar power systems. Because of this high efficiency, solar-heat Brayton-cycle power generators offer the potential to increase power per unit of solar-collector area to levels exceeding four times that from photovoltaic powerplants based on present technology for silicon solar cells. For the heat source, paraboloidal mirrors have been assembled from sectors here on Earth. One mirror, 1.5-m diameter, had a standard error for its surface of only 1 arc-min and a specific mass of only 1.3 kg/m 2. A heavier mirror (nearly 5 kg/m{sup 2}), assembled from 12 sectors, had a standard surface error of 3 arc-min but was 6 m in diameter. Either of these mirrors is sufficiently accurate for use with the Brayton cycle, but the techniques for actually assembling large mirrors in space must yet be worked out. For use during the shadow period of a low Earth orbit (LEO), heat could be stored in LiF, a salt that melts at 1121 K (1558{degrees}F) and whose latent heat of fusion exceeds 1 MJ/kg. Because of the prior experience with its fabrication and of its tolerance of the thermal cycling in LEO, Nb-1Zr was selected to contain the LiF.

  20. Three-Dimensional Analysis of Nuclear Size, Shape and Displacement in Clover Root Cap Statocytes from Space and a Clinostat

    NASA Technical Reports Server (NTRS)

    Smith, J.D.; Todd, P. W.; Staehelin, L. A.; Holton, Emily (Technical Monitor)

    1997-01-01

    Under normal (l-g) conditions the statocytes of root caps have a characteristic polarity with the nucleus in tight association with the proximal cell wall; but, in altered gravity environments including microgravity (mu-g) and the clinostat (c-g) movement of the nucleus away from the proximal cell wall is not uncommon. To further understand the cause of gravity-dependent nuclear displacement in statocytes, three-dimensional cell reconstruction techniques were used to precisely measure the volumes, shapes, and positions of nuclei in white clover (Trifolium repens) flown in space and rotated on a clinostat. Seeds were germinated and grown for 72 hours aboard the Space Shuttle (STS-63) in the Fluid Processing Apparatus (BioServe Space Technologies, Univ. of Colorado, Boulder). Clinorotation experiments were performed on a two-axis clinostat (BioServe). Computer reconstruction of selected groups of statocytes were made from serial sections (0.5 microns thick) using the ROSS (Reconstruction Of Serial Sections) software package (Biocomputation Center, NASA Ames Research Center). Nuclei were significantly displaced from the tops of cells in mu-g (4.2 +/- 1.0 microns) and c-g (4.9 +/- 1.4 microns) when compared to l-g controls (3.4 +/- 0.8 gm); but, nuclear volume (113 +/- 36 cu microns, 127 +/- 32 cu microns and 125 +/- 28 cu microns for l-g, mu-g and c-g respectively) and the ratio of nuclear volume to cell volume (4.310.7%, 4.211.0% and 4.911.4% respectively) were not significantly dependent on gravity treatment (ANOVA; alpha = 0.05). Three-dimensional analysis of nuclear shape and proximity to the cell wall, however, showed that nuclei from l-g controls appeared ellipsoidal while those from space and the clinostat were more spherically shaped. This change in nuclear shape may be responsible for its displacement under altered gravity conditions. Since the cytoskeleton is known to affect nuclear polarity in root cap statocytes, those same cytoskeletal elements could also

  1. General-purpose heat source project and space nuclear safety and fuels program. Progress reportt, January 1980

    SciTech Connect

    Maraman, W.J.

    1980-04-01

    This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are the general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

  2. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    SciTech Connect

    MM Hall

    2006-01-31

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

  3. 1988 IEEE Annual Conference on Nuclear and Space Radiation Effects, 25th, Portland, OR, July 12-15, 1988, Proceedings

    NASA Technical Reports Server (NTRS)

    Coakley, Peter G. (Editor)

    1988-01-01

    The effects of nuclear and space radiation on the performance of electronic devices are discussed in reviews and reports of recent investigations. Topics addressed include the basic mechanisms of radiation effects, dosimetry and energy-dependent effects, sensors in and for radiation environments, EMP/SGEMP/IEMP phenomena, radiation effects on isolation technologies, and spacecraft charging and space radiation effects. Consideration is given to device radiation effects and hardening, hardness assurance and testing techniques, IC radiation effects and hardening, and single-event phenomena.

  4. Annual Conference on Nuclear and Space Radiation Effects, 19th, Las Vegas, NV, July 20-22, 1982, Proceedings

    NASA Technical Reports Server (NTRS)

    Long, D. M.

    1982-01-01

    The results of research concerning the effects of nuclear and space radiation are presented. Topics discussed include the basic mechanisms of nuclear and space radiation effects, radiation effects in devices, and radiation effects in microcircuits, including studies of radiation-induced paramagnetic defects in MOS structures, silicon solar cell damage from electrical overstress, radiation-induced charge dynamics in dielectrics, and the enhanced radiation effects on submicron narrow-channel NMOS. Also examined are topics in SGEMP/IEMP phenomena, hardness assurance and testing, energy deposition, desometry, and radiation transport, and single event phenomena. Among others, studies are presented concerning the limits to hardening electronic boxes to IEMP coupling, transient radiation screening of silicon devices using backside laser irradiation, the damage equivalence of electrons, protons, and gamma rays in MOS devices, and the single event upset sensitivity of low power Schottky devices.

  5. Journey into tomorrow - Developing nuclear propulsion for the Space Exploration Initiative

    NASA Astrophysics Data System (ADS)

    Harer, Kathleen F.; Graham, Scott R.; Bennett, Gary L.

    Nuclear propulsion, either nuclear thermal propulsion or nuclear electric propulsion, offers the potential of reduced trip times and/or reduced mass into low earth orbit, compared to chemical propulsion systems. In addition, the greater performance benefits of nuclear propulsion can provide the added margin for greater operational flexibility, including mission abort options and increased launch windows. During the 1950s and 1960s experimental and analytical studies showed the feasibility of nuclear propulsion. NASA, in cooperation with other agencies and organizations, is currently planning a technology development program for nuclear propulsion. The overall objective is to develop at least one NTP concept and one NEP concept for piloted and robotic (e.g., cargo) missions to Mars.

  6. Modeling the Action of Protons and Heavier Ions in Biological Targets: Nuclear Interactions in Hadrontherapy and Space Radiation Protection

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Battistoni, G.; Cerutti, F.; Ferrari, A.; Gadioli, E.; Garzelli, M. V.; Ottolenghi, A.; Parini, V.; Pelliccioni, M.; Pinsky, L.; Sala, P.; Scannicchio, D.

    2005-05-01

    Tumor treatment with protons and Carbon ions can allow for a better optimization of Tumor Control Probability and Normal Tissue Complication Probability, especially for radio-resistant tumors. Exposure to protons and heavier ions is also of concern for manned space missions such as future travels to the Moon and Mars. Nuclear reactions with the human body constituents, the beam line components (for hadrontherapy), and the spacecraft walls and shielding (for space radiation protection) can significantly modify the characteristics of the primary radiation field and thus the dose distributions in the various target tissues. In this context the FLUKA Monte Carlo transport code, integrated with radiobiological data and coupled with anthropomorphic phantoms, was applied to the characterization of therapeutic proton beams and the calculation of space radiation organ doses, with focus on the role of nuclear interactions. Besides absorbed and equivalent doses, distributions of ``biological'' dose (modeled as the average number of DNA clustered lesions per cell induced in a given organ or tissue) were calculated as well. Concerning space radiation protection, exposure to Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) under different shielding conditions was simulated. Both for hadrontherapy and for space radiation exposure, nuclear reaction products were found to play a more important role for the equivalent and ``biological'' dose than for the absorbed dose. Furthermore, while for SPEs the doses (both absorbed and equivalent/``biological'') decreased dramatically by increasing the shield thickness, the GCR doses showed a slight shielding dependence. Overall, these examples of application of FLUKA to radiotherapy and radiation protection problems emphasized the need of further models and data, typically double-differential cross sections for nucleus-nucleus interactions at energies below a few hundred MeV/n.

  7. Alkali metal Rankine cycle boiler technology challenges and some potential solutions for space nuclear power and propulsion applications

    NASA Astrophysics Data System (ADS)

    Stone, James R.

    1994-07-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler

  8. Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Stone, James R.

    1994-01-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler

  9. High-Fidelity Space-Time Adaptive Multiphysics Simulations in Nuclear Engineering

    SciTech Connect

    Solin, Pavel; Ragusa, Jean

    2014-03-09

    We delivered a series of fundamentally new computational technologies that have the potential to significantly advance the state-of-the-art of computer simulations of transient multiphysics nuclear reactor processes. These methods were implemented in the form of a C++ library, and applied to a number of multiphysics coupled problems relevant to nuclear reactor simulations.

  10. Numerical simulation of free evolution in solid-state nuclear magnetic resonance using low-order correlations in Liouville space

    NASA Astrophysics Data System (ADS)

    Dumez, Jean-Nicolas; Butler, Mark C.; Emsley, Lyndon

    2010-12-01

    The design of simulations of free evolution in dipolar-coupled nuclear-spin systems using low-order correlations in Liouville space (LCL) is discussed, and a computational scheme relying on the Suzuki-Trotter algorithm and involving minimal memory requirements is described. The unusual nature of the approximation introduced by Liouville-space reduction in a spinning solid is highlighted by considering the accuracy of LCL simulations at different spinning frequencies, the quasiequilibria achieved by spin systems in LCL simulations, and the growth of high-order coherences in the exact dynamics. In particular, it is shown that accurate LCL simulations of proton spin diffusion occur in a regime where the reduced space excludes the coherences that make the dominant contribution to Vert σ Vert ^2, the norm-squared of the density matrix.

  11. Localization of rRNA genes in the nuclear space of Calliphora erythrocephala Mg. nurse cells during polytenization.

    PubMed

    Kokhanenko, Alina; Anan'ina, Tatyana; Stegniy, Vladimir

    2014-01-01

    Multicolor 3D fluorescence in situ hybridization was used to study arrangement of rRNA genes in Calliphora erythrocephala nurse cell nuclei with different levels of polyteny. It has been shown that the rRNA genes are exclusively localized to chromosome 6, suggesting that chromosome 6 is the only C. erythrocephala chromosome responsible for nucleolar formation. We have also described changes in localization of ribosomal genes within the chromosome territory during polytenization, namely, that rDNA signals are detected in the peripheral region of chromosome territory starting from the stage of polytene chromosomes. In addition, it has emerged that large nucleolus associated with chromosome 6 starts to develop in the central nuclear region in the C. erythrocephala nurse cell nuclei at the stage of a primary reticular structure. The central position and nucleolar structure are retained at the stages when chromosome 6 occupies the central position, that is, at the stages of polytene and bloblike chromosomes. When the nucleus restores a reticular structure but at a higher polyteny level, the displacement of chromosome 6 to the nuclear periphery is accompanied by disruption of the large nucleolus into micronucleoli. The micronucleoli are distributed in the nuclear space retaining their association with the nucleolar-organizing regions of chromosome 6. Thus, our data suggest that the large-scale alterations in the organization of chromosome 6 and the nucleolus during polytenization are the correlated processes directly dependent on the rRNA gene activity. The earlier described dynamics of nucleolar-organizing chromosome territory and nucleolus in the nuclear space is likely to be associated with the change in the total expression activity of the nucleus, which complies with the hypothesis on the correlation between spatial nuclear organization and expression regulation of genetic material.

  12. Analysis of TOPAZ II and SPACE-R space nuclear power plants using a modified thermionic model. Master's thesis

    SciTech Connect

    Habedank, O.D.

    1993-03-01

    Models based on the TDS thermionic diode model were developed for TOPAZ II and SPACER nuclear power systems. Several parameter studies were conducted with the TOPAZ II model. These determined system performance and efficiency while varying the following: (1) Coolant flow inlet temperatures. (2) Rate of coolant temperature change. (3) Power profile of the core. (4) Cesium reservoir temperature. Analysis of results indicate the model accurately represented the TOPAZ II system, underestimating published data by 10%. Coolant flow studies indicate that raising coolant temperatures up to 100 K higher increases system power by up to 5%. Additional increases in temperature result in gradual performance degradation. Varying the axial power profile of the core from the actual peaked profile to a flat profile results in a negligible 0.3% change in system performance. The peaked profile used in TOPAZ II produces the highest system efficiency of all the profiles modeled. The cesium pressure study indicates the system is operating above optimum cesium pressure and system performance is strongly dependent on cesium pressure. Increasing cesium reservoir temperature above design temperature by 30 K decreases system efficiency by 30%.

  13. Shadow Radiation Shield Required Thickness Estimation for Space Nuclear Power Units

    NASA Astrophysics Data System (ADS)

    Voevodina, E. V.; Martishin, V. M.; Ivanovsky, V. A.; Prasolova, N. O.

    The paper concerns theoretical possibility of visiting orbital transport vehicles based on nuclear power unit and electric propulsion system on the Earth's orbit by astronauts to maintain work with payload from the perspective of radiation safety. There has been done estimation of possible time of the crew's staying in the area of payload of orbital transport vehicles for different reactor powers, which is a consistent part of nuclear power unit.

  14. Toward understanding of H3+ isotopic and nuclear spin fractionations in cold space

    NASA Astrophysics Data System (ADS)

    Hugo, E.; Asvany, O.; Harju, J.; Schlemmer, S.

    2007-12-01

    Two levels of statistical theories describing the H3+ plus H2 system and its isotopic variants at temperatures of astronomical interest (~ 10 K) are presented. The canonical approach accounting for the nuclear spins describes the system in a simple and convenient way. The microcanonical approach based on total energy, total angular momentum and total nuclear spin conservations yields state-to-state details. Non-thermal effects and astronomical implications are discussed.

  15. NGC 4314. II - Hubble Space Telescope I-band surface photometry of the nuclear region

    NASA Technical Reports Server (NTRS)

    Benedict, G. F.; Higdon, J. L.; Jefferys, W. H.; Duncombe, R.; Hemenway, P. D.; Shelus, P. J.; Whipple, A. L.; Nelan, E.; Story, D.; Mcarthur, B.

    1993-01-01

    We present an HST I-band Planetary Camera image of the nuclear region of NGC 4314, an anemic barred galaxy with recent star formation confined to a nuclear ring. These data resolve the nuclear ring into multiple sites of new star formation and resolve associated dust lanes into discrete clouds. Deconvolution results in at least 0.13 arcsec resolution, as demonstrated by the de Vaucouleurs r exp 1/4 law. Contrasted with similar studies of M87 and NGC 7457, we find no photometric evidence for an extreme concentration of stars in the center of NGC 4314. We identify an oval distortion of length 8 arcsec in the nuclear region, using ellipse-fitting routines and the unsharp masked frame. This nuclear bar has newer stars near its ends. We catalog 14 star clusters associated with H II regions in the nuclear ring. As an additional demonstration of the resolution achieved, the integral size distribution of these clusters is described by an exponential relationship which prevails down to 0.14 arcsec.

  16. Impact of the use of low or medium enriched uranium on the masses of space nuclear reactor power systems

    SciTech Connect

    1994-12-01

    The design process for determining the mass increase for the substitution of low-enriched uranium (LEU) for high-enriched uranium (HEU) in space nuclear reactor systems is an optimization process which must simultaneously consider several variables. This process becomes more complex whenever the reactor core operates on an in-core thermionic power conversion, in which the fissioning of the nuclear fuel is used to directly heat thermionic emitters, with the subsequent elimination of external power conversion equipment. The increased complexity of the optimization process for this type of system is reflected in the work reported herein, where considerably more information has been developed for the moderated in-core thermionic reactors.

  17. Preliminary risk assessment for nuclear waste disposal in space, volume 2

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.

    1982-01-01

    Safety guidelines are presented. Waste form, waste processing and payload fabrication facilities, shipping casks and ground transport vehicles, payload primary container/core, radiation shield, reentry systems, launch site facilities, uprooted space shuttle launch vehicle, Earth packing orbits, orbit transfer systems, and space destination are discussed. Disposed concepts and risks are then discussed.

  18. Review, Analyses and Recommendations Related to Modern International Use of Nuclear Space Technologies with Focus on United States and Russia

    NASA Astrophysics Data System (ADS)

    Smith, T.

    The current Administration under President Barack Obama has given NASA a new directive in manned spaceflight. Instead of building a fleet of Ares rockets with various load specifications to deliver astronauts to the International Space Station (ISS) and return them to the Moon, the 2011 NASA Strategic Plan [1] states that NASA will develop ``integrated architecture and capabilities for safe crewed and cargo missions beyond Low Earth Orbit.'' The technologies developed within this architecture will take astronauts beyond the Moon, to destinations such as Mars or asteroids and will most likely require the use of Nuclear Space Technologies (NSTs).While there are other proposals for novel power generation and propulsion, such as fusion technology, these technologies are immature and it may be decades before they have demonstrated feasibility; in contrast NSTs are readily available, proven to work in space, and flight qualified. However, NSTs such as nuclear thermal propulsion (NTP) may or may not reach completion - especially with the lack of a mission in which they may be developed. Prospects and progress in current NST projects, ranging from power sources to propulsion units, are explored within this study, mainly in the United States, with an overview of projects occurring in other countries. At the end of the study, recommendations are made in order to address budget and political realities, aerospace export control and nuclear non-proliferation programs, and international issues and potentials as related to NSTs. While this report is not fully comprehensive, the selection of chosen projects illustrates a range of issues for NSTs. Secondly, the reader would be keen to make a distinction between technologies that have flown in the past, projects that have been tested and developed yet not flown, and concepts that have not yet reached the bench for testing.

  19. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 2. Technical report

    SciTech Connect

    1982-01-01

    Some of the conclusions reached as a result of this study are summarized. Waste form parameters for the reference cermet waste form are available only by analogy. Detail design of the waste payload would require determination of actual waste form properties. The billet configuration constraints for the cermet waste form limit the packing efficiency to slightly under 75% net volume. The effect of this packing inefficiency in reducing the net waste form per waste payload can be seen graphically. The cermet waste form mass per unit mass of waste payload is lower than that of the iodine waste form even though the cermet has a higher density (6.5 versus 5.5). This is because the lead iodide is cast achieving almost 100% efficiency in packing. This inefficiency in the packing of the cermet results in a 20% increase in number of flights which increases both cost and risk. Alternative systems for waste mixes requiring low flight rates (technetium-99, iodine-129) can make effective use of the existing 65K space transportation system in either single- or dual-launch scenarios. A comprehensive trade study would be required to select the optimum orbit transfer system for low-launch-rate systems. This study was not conducted as part of the present effort due to selection of the cermet waste form as the reference for the study. Several candidates look attractive for both single- and dual-launch systems (see sec. 4.4), but due to the relatively small number of missions, a comprehensive comparison of life cycle costs including DDT and E would be required to select the best system. The reference system described in sections 5.0, 6.0, 7.0, and 8.0 offers the best combination of cost, risk, and alignment with ongoing NASA technology development efforts for disposal of the reference cermet waste form.

  20. Processing of solid solution, mixed uranium/refractory metal carbides for advanced space nuclear power and propulsion systems

    NASA Astrophysics Data System (ADS)

    Knight, Travis Warren

    Nuclear thermal propulsion (NTP) and space nuclear power are two enabling technologies for the manned exploration of space and the development of research outposts in space and on other planets such as Mars. Advanced carbide nuclear fuels have been proposed for application in space nuclear power and propulsion systems. This study examined the processing technologies and optimal parameters necessary to fabricate samples of single phase, solid solution, mixed uranium/refractory metal carbides. In particular, the pseudo-ternary carbide, UC-ZrC-NbC, system was examined with uranium metal mole fractions of 5% and 10% and corresponding uranium densities of 0.8 to 1.8 gU/cc. Efforts were directed to those methods that could produce simple geometry fuel elements or wafers such as those used to fabricate a Square Lattice Honeycomb (SLHC) fuel element and reactor core. Methods of cold uniaxial pressing, sintering by induction heating, and hot pressing by self-resistance heating were investigated. Solid solution, high density (low porosity) samples greater than 95% TD were processed by cold pressing at 150 MPa and sintering above 2600 K for times longer than 90 min. Some impurity oxide phases were noted in some samples attributed to residual gases in the furnace during processing. Also, some samples noted secondary phases of carbon and UC2 due to some hyperstoichiometric powder mixtures having carbon-to-metal ratios greater than one. In all, 33 mixed carbide samples were processed and analyzed with half bearing uranium as ternary carbides of UC-ZrC-NbC. Scanning electron microscopy, x-ray diffraction, and density measurements were used to characterize samples. Samples were processed from powders of the refractory mono-carbides and UC/UC 2 or from powders of uranium hydride (UH3), graphite, and refractory metal carbides to produce hypostoichiometric mixed carbides. Samples processed from the constituent carbide powders and sintered at temperatures above the melting point of UC

  1. Effects of backlash and dead band on temperature control of the primary loop of a conceptual nuclear Brayton space powerplant

    NASA Technical Reports Server (NTRS)

    Petrick, E. J.

    1973-01-01

    An analytical study was made of the stability of a closed-loop liquid-lithium temperature control of the primary loop of a conceptual nuclear Brayton space powerplant. The operating point was varied from 20 to 120 percent of design. A describing-function technique was used to evaluate the effects of temperature dead band and control coupling backlash. From the system investigation, it was predicted that a limit cycle will not exist with a temperature dead band, but a limit cycle will not exist when backlash is present. The results compare favorably with a digital computer simulation.

  2. Space nuclear power system based on thermionic reactor with single-cell TFEs and zirconium hydride moderator

    SciTech Connect

    Ponomarev-Stepnoi, N.N.; Usov, V.A. ); Nickitin, V.P.; Ogloblin, B.G.; Lutov, J.I.; Luppov, A.N.; Gabrusev, V.N.; Klimov, A.V. ); Nicolaev, J.V.; Kucherov, R.J.; Eremin, S.A. )

    1993-01-15

    The results of research and development work on the space nuclear power system with net electric power of 40 kW performed with cooperation of Russian research and engineering organizations in 1991--92 are presented in this paper. Development work was carried out on the basis of experience gained in the course of Topaz-2 SNPS creation. As the basis for SNPS the 127-channel intermediate reactor is used with in-core single-cell TFEs having improved parameters. The SNPS parameters, distinctive features of decision on design and layout, safety ensuring concepts, proposals on the future stages of SNPS development are also considered in the paper.

  3. Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1974-01-01

    An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.

  4. Space nuclear power: technology, policy, and risk considerations in human missions to Mars.

    PubMed

    Friedensen, V P

    1998-01-01

    There is a large discrepancy between potential needs for nuclear propulsion and power systems for the human exploration of Mars and the current status of R&D funding, public opinion, and governmental support for these technologies. Mission planners and spacecraft designers, energized by the recent claims of possible discovery of life on Mars and responding to increased public interest in the human exploration of Mars, frequently propose nuclear reactors and radioisotope thermoelectric generators (RTGs) for interplanetary spacecraft propulsion and for power supply on the surface of Mars. These plans and designs typically assume that reactors will be available "on-the-shelf," and do not take the extensive R&D costs required to develop such reactors into consideration. However, it is likely that current U.S. policies, if unchanged, will prohibit the launch of nuclear reactors and large RTGs in response to a perceived risk by the public.

  5. Space nuclear power: technology, policy, and risk considerations in human missions to Mars.

    PubMed

    Friedensen, V P

    1998-01-01

    There is a large discrepancy between potential needs for nuclear propulsion and power systems for the human exploration of Mars and the current status of R&D funding, public opinion, and governmental support for these technologies. Mission planners and spacecraft designers, energized by the recent claims of possible discovery of life on Mars and responding to increased public interest in the human exploration of Mars, frequently propose nuclear reactors and radioisotope thermoelectric generators (RTGs) for interplanetary spacecraft propulsion and for power supply on the surface of Mars. These plans and designs typically assume that reactors will be available "on-the-shelf," and do not take the extensive R&D costs required to develop such reactors into consideration. However, it is likely that current U.S. policies, if unchanged, will prohibit the launch of nuclear reactors and large RTGs in response to a perceived risk by the public. PMID:11541623

  6. The Thermionic System Evaluation Test (TSET): Descriptions, limitations, and the involvement of the space nuclear power community

    SciTech Connect

    Morris, D.B. )

    1993-01-20

    Project and test planning for the Thermionic System Evaluation Test (TSET) Project began in August 1990. Since the formalization of the contract agreement two years ago, the TOPAZ-II testing hardware was delivered in May 1992. In the months since the delivery of the test hardware, Russians and Americans working side-by-side installed the equipment and are preparing to begin testing in early 1993. The procurement of the Russian TOPAZ-II unfueled thermionic space nuclear power system (SNP) provides a unique opportunity to understand a complete thermionic system and enhances the possibility for further study of this type of power conversion for space applications. This paper will describe the program and test article, facility and test article limitations, and how the government and industry are encouraged to be involved in the program.

  7. 1986 Annual Conference on Nuclear and Space Radiation Effects, 23rd, Providence, RI, July 21-23, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Ellis, Thomas D. (Editor)

    1986-01-01

    The present conference on the effects of nuclear and space radiation on electronic hardware gives attention to topics in the basic mechanisms of radiation effects, dosimetry and energy-dependent effects, electronic device radiation hardness assurance, SOI/SOS radiation effects, spacecraft charging and space radiation, IC radiation effects and hardening, single-event upset (SEU) phenomena and hardening, and EMP/SGEMP/IEMP phenomena. Specific treatments encompass the generation of interface states by ionizing radiation in very thin MOS oxides, the microdosimetry of meson energy deposited on 1-micron sites in Si, total dose radiation and engineering studies, plasma interactions with biased concentrator solar cells, the transient imprint memory effect in MOS memories, mechanisms leading to SEU, and the vaporization and breakdown of thin columns of water.

  8. Space Exploration Initiative Fuels, Materials and Related Nuclear Propulsion Technologies Panel

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S. K.; Olsen, C.; Cooper, R.; Matthews, R. B.; Walter, C.; Titran, R. J.

    1993-01-01

    This report was prepared by members of the Fuels, Materials and Related Technologies Panel, with assistance from a number of industry observers as well as laboratory colleagues of the panel members. It represents a consensus view of the panel members. This report was not subjected to a thorough review by DOE, NASA or DoD, and the opinions expressed should not be construed to represent the official position of these organizations, individually or jointly. Topics addressed include: requirement for fuels and materials development for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP); overview of proposed concepts; fuels technology development plan; materials technology development plan; other reactor technology development; and fuels and materials requirements for advanced propulsion concepts.

  9. Summary and recommendations on nuclear electric propulsion technology for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Holcomb, Robert S.

    1993-01-01

    A project in Nuclear Electric Propulsion (NEP) technology is being established to develop the NEP technologies needed for advanced propulsion systems. A paced approach has been suggested which calls for progressive development of NEP component and subsystem level technologies. This approach will lead to major facility testing to achieve TRL-5 for megawatt NEP for SEI mission applications. This approach is designed to validate NEP power and propulsion technologies from kilowatt class to megawatt class ratings. Such a paced approach would have the benefit of achieving the development, testing, and flight of NEP systems in an evolutionary manner. This approach may also have the additional benefit of synergistic application with SEI extraterrestrial surface nuclear power applications.

  10. Comparison of Structural Optimization Techniques for a Nuclear Electric Space Vehicle

    NASA Technical Reports Server (NTRS)

    Benford, Andrew

    2003-01-01

    The purpose of this paper is to utilize the optimization method of genetic algorithms (GA) for truss design on a nuclear propulsion vehicle. Genetic Algorithms are a guided, random search that mirrors Darwin s theory of natural selection and survival of the fittest. To verify the GA s capabilities, other traditional optimization methods were used to compare the results obtained by the GA's, first on simple 2-D structures, and eventually on full-scale 3-D truss designs.

  11. Truss Optimization for a Manned Nuclear Electric Space Vehicle using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Benford, Andrew; Tinker, Michael L.

    2004-01-01

    The purpose of this paper is to utilize the genetic algorithm (GA) optimization method for structural design of a nuclear propulsion vehicle. Genetic algorithms provide a guided, random search technique that mirrors biological adaptation. To verify the GA capabilities, other traditional optimization methods were used to generate results for comparison to the GA results, first for simple two-dimensional structures, and then for full-scale three-dimensional truss designs.

  12. High Power Nuclear Electric Propulsion (NEP) for Cargo and Propellant Transfer Missions in Cislunar Space

    NASA Technical Reports Server (NTRS)

    Falck, Robert D.; Borowski, Stanley K.

    2003-01-01

    The performance of Nuclear Electric Propulsion (NEP) in transporting cargo and propellant from Low Earth Orbit (LEO) to the first Earth-Moon Lagrange point (EML1) is examined. The baseline NEP vehicle utilizes a fission reactor system with Brayton power conversion for electric power generation to power multiple liquid hydrogen magnetoplasmadynamic (MPD) thrusters. Vehicle characteristics and performance levels are based on technology availability in a fifteen to twenty year timeframe. Results of numerical trajectory analyses are also provided.

  13. Feasibility of space disposal of radioactive nuclear waste. 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This NASA study, performed at the request of the AEC, concludes that transporting radioactive waste (primarily long-lived isotopes) into space is feasible. Tentative solutions are presented for technical problems involving safe packaging. Launch systems (existing and planned), trajectories, potential hazards, and various destinations were evaluated. Solar system escape is possible and would have the advantage of ultimate removal of the radioactive waste from man's environment. Transportation costs would be low (comparable to less than a 5 percent increase in the cost of electricity) even though more than 100 space shuttle launches per year would be required by the year 2000.

  14. Nuclear reactor power as applied to a space-based radar mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01

    The SP-100 Project was established to develop and demonstrate feasibility of a space reactor power system (SRPS) at power levels of 10's of kilowatts to a megawatt. To help determine systems requirements for the SRPS, a mission and spacecraft were examined which utilize this power system for a space-based radar to observe moving objects. Aspects of the mission and spacecraft bearing on the power system were the primary objectives of this study; performance of the radar itself was not within the scope. The study was carried out by the Systems Design Audit Team of the SP-100 Project.

  15. Evaluation of High-Performance Space Nuclear Electric Generators for Electric Propulsion Application

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Kross, Dennis A. (Technical Monitor)

    2002-01-01

    Electric propulsion applications are enhanced by high power-to-mass ratios for their electric power sources. At multi-megawatt levels, we can expect thrust production systems to be less than 5 kg/kWe. Application of nuclear electric propulsion to human Mars missions becomes an attractive alternative to nuclear thermal propulsion if the propulsion system is less than about 10 kg/kWe. Recent references have projected megawatt-plus nuclear electric sources at specific mass values from less than 1 kg/kWe to about 5 kg/kWe. Various assumptions are made regarding power generation cycle (turbogenerator; MHD (magnetohydrodynamics)) and reactor heat source design. The present paper compares heat source and power generation options on the basis of a parametric model that emphasizes heat transfer design and realizable hardware concept. Pressure drop (important!) is included in the power cycle analysis, and MHD and turbogenerator cycles are compared. Results indicate that power source specific mass less than 5 kg/kWe is attainable, even if peak temperatures achievable are limited to 1500 K. Projections of specific mass less than 1 kg/kWe are unrealistic, even at the highest peak temperatures considered.

  16. TOPAZ-2'' thermionic space nuclear power system and the perspectives of its development

    SciTech Connect

    Nickitin, V.P.; Ogloblin, B.G.; Luppov, A.N. ); Usov, V.A. ) Nicolaev, Y.V. ) Wetch, J.R. )

    1991-01-05

    This paper describes characteristics of the TOPAZ Reactors for space power applications developed in the USSR. TOPAZ-2 has been shown to be useful for satellites and for lunar or Martian bases. It can be coupled with a Stirling engine. TOPAZ-3 reactor provides greater power levels while TOPAZ-4 has an improved multicell thermionic fuel element. (AIP)

  17. The Nuclear Thermal Propulsion Stage (NTPS): A Key Space Asset for Human Exploration and Commercial Missions to the Moon

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Burke, Laura M.

    2014-01-01

    The nuclear thermal rocket (NTR) has frequently been discussed as a key space asset that can bridge the gap between a sustained human presence on the Moon and the eventual human exploration of Mars. Recently, a human mission to a near Earth asteroid (NEA) has also been included as a "deep space precursor" to an orbital mission of Mars before a landing is attempted. In his "post-Apollo" Integrated Space Program Plan (1970 to 1990), Wernher von Braun, proposed a reusable Nuclear Thermal Propulsion Stage (NTPS) to deliver cargo and crew to the Moon to establish a lunar base initially before sending human missions to Mars. The NTR was selected because it was a proven technology capable of generating both high thrust and high specific impulse (Isp approx. 900 s)-twice that of today's best chemical rockets. During the Rover and NERVA programs, 20 rocket reactors were designed, built and successfully ground tested. These tests demonstrated the (1) thrust levels; (2) high fuel temperatures; (3) sustained operation; (4) accumulated lifetime; and (5) restart capability needed for an affordable in-space transportation system. In NASA's Mars Design Reference Architecture (DRA) 5.0 study, the "Copernicus" crewed NTR Mars transfer vehicle used three 25 klbf "Pewee" engines-the smallest and highest performing engine tested in the Rover program. Smaller lunar transfer vehicles-consisting of a NTPS with three approx. 16.7 klbf "SNRE-class" engines, an in-line propellant tank, plus the payload-can be delivered to LEO using a 70 t to LEO upgraded SLS, and can support reusable cargo delivery and crewed lunar landing missions. The NTPS can play an important role in returning humans to the Moon to stay by providing an affordable in-space transportation system that can allow initial lunar outposts to evolve into settlements capable of supporting commercial activities. Over the next decade collaborative efforts between NASA and private industry could open up new exploration and commercial

  18. Power monitoring in space nuclear reactors using silicon carbide radiation detectors

    NASA Technical Reports Server (NTRS)

    Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.

    2005-01-01

    Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.

  19. The feasibility of near-term low-cost space nuclear power

    SciTech Connect

    Adams, B. T.; Houts, M. G.; Poston, D. I.; Reid, R. S.; Nikolaev, Yu V.; Ponomarev-Stepnoi, N. N.; Poliakov, D. N.; Yermoshin, M.; Chitaykin, V. I.; Ionkin, V. I.; Almambetov, A. K.; Kuptsov, G. A.; Rusanov, A. E.

    1999-01-22

    The Heatpipe Power System (HPS) and Heatpipe Bimodal System (HBS) both have been proposed as potential near-term, low-cost, space fission power systems, with the latter option adding the capability for spacecraft propulsion. In this context the phrase 'near term' has referred to having a flight-ready system available for launch within 5 yr. The term 'low cost' implies that the initial system could be developed and produced for less than $100M, with subsequent production in the range of $20M per system. A study has been conducted to develop a cost and schedule estimate to design, produce, and qualify a flight-ready HPS/HBS reactor and the associated shield and power conversion system. The conclusion of this study is that the HPS/HBS concepts qualify as near-term, low-cost, space fission power system options within the current state of technology.

  20. A long term radiological risk model for plutonium-fueled and fission reactor space nuclear system

    SciTech Connect

    Bartram, B.W.; Dougherty, D.K.

    1987-01-01

    This report describes the optimization of the RISK III mathematical model, which provides risk assessment for the use of a plutonium-fueled, fission reactor in space systems. The report discusses possible scenarios leading to radiation releases on the ground; distinctions are made for an intact reactor and a dispersed reactor. Also included are projected dose equivalents for various accident situations. 54 refs., 31 figs., 11 tabs. (TEM)

  1. Fuel system and structural alloy considerations for space nuclear reactor systems

    SciTech Connect

    Hoffman, E.E.; Cooper, R.H. Jr.

    1981-05-03

    Sufficient data exist to provide a high level of confidence that refractory-alloy-clad ceramic fuel pins and refractory structural alloys can be used successfully in an operational space power system. However, data are not yet sufficient to ensure that these materials can meet the temperature, lifetime, and system mass envelope requirements for reliable operation of a 100 kW(e) system as specified by the SP-100 Project. Development efforts to provide these data are being initiated.

  2. Ablation and deceleration of mass-driver launched projectiles for space disposal of nuclear wastes

    NASA Technical Reports Server (NTRS)

    Park, C.; Bowen, S. W.

    1981-01-01

    The energy cost of launching a projectile containing nuclear waste is two orders of magnitude lower with a mass driver than with a typical rocket system. A mass driver scheme will be feasible, however, only if ablation and deceleration are within certain tolerable limits. It is shown that if a hemisphere-cylinder-shaped projectile protected thermally with a graphite nose is launched vertically to attain a velocity of 17 km/sec at an altitude of 40 km, the mass loss from ablation during atmospheric flight will be less than 0.1 ton, provided the radius of the projectile is under 20 cm and the projectile's mass is of the order of 1 ton. The velocity loss from drag will vary from 0.4 to 30 km/sec, depending on the mass and radius of the projectile, the smaller velocity loss corresponding to large mass and small radius. Ablation is always within a tolerable range for schemes using a mass driver launcher to dispose of nuclear wastes outside the solar system. Deceleration can also be held in the tolerable range if the mass and diameter of the projectile are properly chosen.

  3. Modeling of 3d Space-time Surface of Potential Fields and Hydrogeologic Modeling of Nuclear Waste Disposal Sites

    NASA Astrophysics Data System (ADS)

    Shestopalov, V.; Bondarenko, Y.; Zayonts, I.; Rudenko, Y.

    Introduction After the Chernobyl Nuclear Power Plant (CNPP) disaster (04.26.1986) a huge amount (over 2000 sq. km) of nuclear wastes appeared within so-called "Cher- nobyl Exclusion Zone" (CEZ). At present there are not enough storage facilities in the Ukraine for safe disposal of nuclear wastes and hazardous chemical wastes. The urgent problem now is safe isolation of these dangerous wastes. According to the developed state program of radioactive waste management, the construction of a na- tional storage facility of nuclear wastes is planned. It is also possible to create regional storage facilities for hazardous chemical wastes. The region of our exploration cov- ers the eastern part of the Korosten Plutone and its slope, reaching the CNPP. 3D Space-Time Surface Imaging of Geophysical Fields. There are only three direct meth- ods of stress field reconstruction in present practice, namely the field investigations based on the large-scale fracturing tests, petrotectonic and optical polarization meth- ods. Unfortunately, all these methods are extremely laborious and need the regular field tests, which is difficult to conduct in the areas of anisotropic rock outcrops. A compilation of magnetic and gravity data covering the CNPP area was carried out as a prelude to an interpretation study. More than thirty map products were generated from magnetic, gravity and geodesy data to prepare the 3D Space-Time Surface Images (3D STSI). Multi-layer topography and geophysic surfaces included: total magnetic intensity, isostatically-corrected Bouguer gravity, aspect and slope, first and second derivatives, vertical and horizontal curvature, histogram characteristics and space cor- relation coefficients between the gradient fields. Many maps shows the first and sec- ond derivatives of the potential fields, with the results of lineament (edge) structure detection superimposed. The lineament or edges of the potential fields are located from maximal gradient in many directions

  4. A critical assembly designed to measure neutronic benchmarks in support of the Space Nuclear Thermal Propulsion program

    NASA Astrophysics Data System (ADS)

    Parma, E. J.; Ball, R. M.; Hoovler, G. S.; Selcow, E. C.; Cerbone, R. J.

    1992-10-01

    A reactor designed to perform criticality experiments in support of the Space Nuclear Thermal Propulsion program is currently in operation at the Sandia National Laboratories' reactor facility. The reactor is a small, water-moderated system that uses highly enriched uranium particle fuel in a 19-element configuration. Its purpose is to obtain neutronic measurements under a variety of experimental conditions that are subsequently used to benchmark reactor-design computer codes. Brookhaven National Laboratory, Babcock & Wilcox, and Sandia National Laboratories participated in determining the reactor's performance requirements, design, follow on experimentation, and in obtaining the licensing approvals. Brookhaven National Laboratory is primarily responsible for the analytical support, Babcock & Wilcox the hardware design, and Sandia National Laboratories the operational safety. All of the team members participate in determining the experimentation requirements, performance, and data reduction. Initial criticality was achieved in October 1989. An over-all description of the reactor is presented along with key design features and safety-related aspects.

  5. A critical assembly designed to measure neutronic benchmarks in support of the space nuclear thermal propulsion program

    NASA Astrophysics Data System (ADS)

    Parma, Edward J.; Ball, Russell M.; Hoovler, Gary S.; Selcow, Elizabeth C.; Cerbone, Ralph J.

    1993-01-01

    A reactor designed to perform criticality experiments in support of the Space Nuclear Thermal Propulsion program is currently in operation at the Sandia National Laboratories' reactor facility. The reactor is a small, water-moderated system that uses highly enriched uranium particle fuel in a 19-element configuration. Its purpose is to obtain neutronic measurements under a variety of experimental conditions that are subsequently used to benchmark rector-design computer codes. Brookhaven National Laboratory, Babcock & Wilcox, and Sandia National Laboratories participated in determining the reactor's performance requirements, design, follow-on experimentation, and in obtaining the licensing approvals. Brookhaven National Laboratory is primarily responsible for the analytical support, Babcock & Wilcox the hardware design, and Sandia National Laboratories the operational safety. All of the team members participate in determining the experimentation requirements, performance, and data reduction. Initial criticality was achieved in October 1989. An overall description of the reactor is presented along with key design features and safety-related aspects.

  6. A Comparison of Brayton and Stirling Space Nuclear Power Systems for Power Levels from 1 Kilowatt to 10 Megawatts

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2000-01-01

    An analytical study was conducted to assess the performance and mass of Brayton and Stirling nuclear power systems for a wide range of future NASA space exploration missions. The power levels and design concepts were based on three different mission classes. Isotope systems, with power levels from 1 to 10 kW, were considered for planetary surface rovers and robotic science. Reactor power systems for planetary surface outposts and bases were evaluated from 10 to 500 kW. Finally, reactor power systems in the range from 100 kW to 10 mW were assessed for advanced propulsion applications. The analysis also examined the effect of advanced component technology on system performance. The advanced technologies included high temperature materials, lightweight radiators, and high voltage power management and distribution.

  7. Outstanding conference paper award 2014 IEEE nuclear and space radiation effects conference

    DOE PAGES

    Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul E.; Doyle, Barney Lee; Trinczek, Michael; Blackmore, Ewart W.; Rodbell, Kenneth P.; Reed, Robert A.; Pellish, Jonathan A.; et al

    2014-12-01

    The recipients of the 2014 NSREC Outstanding Conference Paper Award are Nathaniel A. Dodds, James R. Schwank, Marty R. Shaneyfelt, Paul E. Dodd, Barney L. Doyle, Michael Trinczek, Ewart W. Blackmore, Kenneth P. Rodbell, Michael S. Gordon, Robert A. Reed, Jonathan A. Pellish, Kenneth A. LaBel, Paul W. Marshall, Scot E. Swanson, Gyorgy Vizkelethy, Stuart Van Deusen, Frederick W. Sexton, and M. John Martinez, for their paper entitled "Hardness Assurance for Proton Direct Ionization-Induced SEEs Using a High-Energy Proton Beam." For older CMOS technologies, protons could only cause single-event effects (SEEs) through nuclear interactions. Numerous recent studies on 90 nmmore » and newer CMOS technologies have shown that protons can also cause SEEs through direct ionization. Furthermore, this paper develops and demonstrates an accurate and practical method for predicting the error rate caused by proton direct ionization (PDI).« less

  8. Analysis of closed cycle megawatt class space power systems with nuclear reactor heat sources

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Jones, B. I.

    1987-01-01

    The analysis and integration studies of multimegawatt nuclear power conversion systems for potential SDI applications is presented. A study is summarized which considered 3 separate types of power conversion systems for steady state power generation with a duty requirement of 1 yr at full power. The systems considered are based on the following conversion cycles: direct and indirect Brayton gas turbine, direct and indirect liquid metal Rankine, and in core thermionic. A complete mass analysis was performed for each system at power levels ranging from 1 to 25 MWe for both heat pipe and liquid droplet radiator options. In the modeling of common subsystems, reactor and shield calculations were based on multiparameter correlation and an in-house analysis for the heat rejection and other subsystems.

  9. Outstanding conference paper award 2014 IEEE nuclear and space radiation effects conference

    SciTech Connect

    Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul E.; Doyle, Barney Lee; Trinczek, Michael; Blackmore, Ewart W.; Rodbell, Kenneth P.; Reed, Robert A.; Pellish, Jonathan A.; LaBel, Kenneth A.; Marshall, Paul W.; Swanson, Scot E.; Vizkelethy, Gyorgy; Van Deusen, Stuart B.; Sexton, Frederick W.; Martinez, Marino John

    2014-12-01

    The recipients of the 2014 NSREC Outstanding Conference Paper Award are Nathaniel A. Dodds, James R. Schwank, Marty R. Shaneyfelt, Paul E. Dodd, Barney L. Doyle, Michael Trinczek, Ewart W. Blackmore, Kenneth P. Rodbell, Michael S. Gordon, Robert A. Reed, Jonathan A. Pellish, Kenneth A. LaBel, Paul W. Marshall, Scot E. Swanson, Gyorgy Vizkelethy, Stuart Van Deusen, Frederick W. Sexton, and M. John Martinez, for their paper entitled "Hardness Assurance for Proton Direct Ionization-Induced SEEs Using a High-Energy Proton Beam." For older CMOS technologies, protons could only cause single-event effects (SEEs) through nuclear interactions. Numerous recent studies on 90 nm and newer CMOS technologies have shown that protons can also cause SEEs through direct ionization. Furthermore, this paper develops and demonstrates an accurate and practical method for predicting the error rate caused by proton direct ionization (PDI).

  10. Testing nuclear physics from space with quiescent low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Guillot, Sebastien

    2016-07-01

    X-ray observations of quiescent low-mass X-ray binaries (qLMXBs) provide one of the methods to understand the internal structure of neutron stars and therefore place constraints on the nuclear physics of dense matter. The hot thermal emission from the surface of neutron stars in qLMXBs allows us to measure the neutron star radius. In the past few years, promising results were obtained from statistical analyses that combined the X-ray spectra of qLMXBs. In this talk, I will summarize the constraints on the internal structure of neutron star obtained from currently available observations of qLMXBs, as well as the most recent results. In an effort to be as conservative as possible with the observational constraints, I will present the current limitations of this method, and how these limitations can be overcome with more observations of qLXMBs with current and future instrumentation.

  11. An assessment and validation study of nuclear reactors for low power space applications

    NASA Technical Reports Server (NTRS)

    Klein, A. C.; Gedeon, S. R.; Morey, D. C.

    1987-01-01

    The feasibility and safety of six conceptual small, low power nuclear reactor designs was evaluated. Feasibility evaluations included the determination of sufficient reactivity margins for seven years of full power operation and safe shutdown as well as handling during pre-launch assembly phases. Safety evaluations were concerned with the potential for maintaining subcritical conditions in the event of launch or transportation accidents. These included water immersion accident scenarios both with and without water flooding the core. Results show that most of the concepts can potentially meet the feasibility and safety requirements; however, due to the preliminary nature of the designs considered, more detailed designs will be necessary to enable these concepts to fully meet the safety requirements.

  12. Earth reencounter probabilities for aborted space disposal of hazardous nuclear waste

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Feingold, H.

    1977-01-01

    A quantitative assessment is made of the long-term risk of earth reencounter and reentry associated with aborted disposal of hazardous material in the space environment. Numerical results are presented for 10 candidate disposal options covering a broad spectrum of disposal destinations and deployment propulsion systems. Based on representative models of system failure, the probability that a single payload will return and collide with earth within a period of 250,000 years is found to lie in the range .0002-.006. Proportionately smaller risk attaches to shorter time intervals. Risk-critical factors related to trajectory geometry and system reliability are identified as possible mechanisms of hazard reduction.

  13. Design, performance, and evaluation of a direct-current contactor for space nuclear electrical systems

    NASA Technical Reports Server (NTRS)

    Mueller, L. A.; Medwid, D. W.; Koutnik, E. A.; Powell, A. H.

    1972-01-01

    A direct-current contactor for use in large space power systems was designed, built, and tested. It was developed to be operational in an environment of 540 C and at a pressure of 0.0001 N/sq m or lower. The contactor is rated to pass 10 A continuously and to interrupt a 20-A current at 10,000 V. It was tested to determine the corona threshold level and the leakage current at different temperatures. Also, it was tested for its closing and interruption ability.

  14. The feasibility of near-term low-cost space nuclear power

    SciTech Connect

    Adams, B.T.; Houts, M.G.; Poston, D.I.; Reid, R.S.; Nikolaev, Y.V.; Ponomarev-Stepnoi, N.N.; Poliakov, D.N.; Yermoshin, M.; Chitaykin, V.I.; Ionkin, V.I.; Almambetov, A.K.; Kuptsov, G.A.; Rusanov, A.E.

    1999-01-01

    The Heatpipe Power System (HPS) and Heatpipe Bimodal System (HBS) both have been proposed as potential near-term, low-cost, space fission power systems, with the latter option adding the capability for spacecraft propulsion. In this context the phrase {open_quotes}near term{close_quotes} has referred to having a flight-ready system available for launch within 5 yr. The term {open_quotes}low cost{close_quotes} implies that the initial system could be developed and produced for less than {dollar_sign}100M, with subsequent production in the range of {dollar_sign}20M per system. A study has been conducted to develop a cost and schedule estimate to design, produce, and qualify a flight-ready HPS/HBS reactor and the associated shield and power conversion system. The conclusion of this study is that the HPS/HBS concepts qualify as near-term, low-cost, space fission power system options within the current state of technology. {copyright} {ital 1999 American Institute of Physics.}

  15. High Temperature Nanocomposites For Nuclear Thermal Propulsion and In-Space Fabrication by Hyperbaric Pressure Laser Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Maxwell, J. L.; Webb, N. D.; Espinoza, M.; Cook, S.; Houts, M.; Kim, T.

    Nuclear Thermal Propulsion (NTP) is an indispensable technology for the manned exploration of the solar system. By using Hyperbaric Pressure Laser Chemical Vapor Deposition (HP-LCVD), the authors propose to design and build a promising next-generation fuel element composed of uranium carbide UC embedded in a latticed matrix of highly refractory Ta4HfC5 for an NTP rocket capable of sustaining temperatures up to 4000 K, enabling an Isp of up to 1250 s. Furthermore, HP-LCVD technology can also be harnessed to enable 3D rapid prototyping of a variety of materials including metals, ceramics and composites, opening up the possibility of in-space fabrication of components, replacement parts, difficult-to-launch solar sails and panels and a variety of other space structures. Additionally, rapid prototyping with HP-LCVD makes a feasible "live off the land" strategy of interplanetary and interstellar exploration ­ the precursors commonly used in the technology are found, often in abundance, on other solar system bodies either as readily harvestable gas (e.g. methane) or as a raw material that could be converted into a suitable precursor (e.g. iron oxide into ferrocene on Mars).

  16. 1992 IEEE Annual Conference on Nuclear and Space Radiation Effects, 29th, New Orleans, LA, July 13-17, 1992, Proceedings

    NASA Technical Reports Server (NTRS)

    Van Vonno, Nick W. (Editor)

    1992-01-01

    The papers presented in this volume provide an overview of recent theoretical and experimental research related to nuclear and space radiation effects. Topics dicussed include single event phenomena, radiation effects in particle detectors and associated electronics for accelerators, spacecraft charging, and space environments and effects. The discussion also covers hardness assurance and testing techniques, electromagnetic effects, radiation effects in devices and integrated circuits, dosimetry and radiation facilities, isolation techniques, and basic mechanisms.

  17. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 5: Nuclear electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The nuclear electric propulsion (NEP) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study is presented. The evolution of the NEP concept is described along with the requirements, guidelines, and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  18. Nuclear quantum effects in water: A study in position and momentum space

    NASA Astrophysics Data System (ADS)

    Morrone, Joseph A.

    Water is a system of fundamental importance in the biological and physical sciences. Due to the low mass of the proton, nuclear quantum effects are non-negligible in water. These effects may be included in atomic simulation via the Feynman path integral methodology, and have been studied over the past two decades. Recently, neutron Compton scattering experiments have been performed that have uncovered the proton momentum distribution in a variety of systems, including water. This momentum distribution significantly varies from the classical (Boltzmann) result, and is sensitive to the potential energy surface. We have developed an "open" path integral molecular dynamics methodology in order to compute the proton momentum distribution in water. We have performed the simulation utilizing both empirical force fields and the Car-Parrinello methodology, which derives the interactions "on the fly" from first principles electronic structure theory. We find that the computed momentum distributions, although in fairly good agreement with experiment, are somewhat broader than the scattering results. This indicates, via the uncertainty principle, that the proton is somewhat more localized in the simulation than in experiment. We also find that the Car-Parrinello result, unlike the force field outcome, is capable of qualitatively reproducing the experimental differences between the liquid water and ice distributions. These differences arise from the red-shift in the OH stretch that occurs when transitioning from liquid to solid water. Such effects are a reflection of the entanglement of the potential energy surface with the momentum distribution that is engendered by the uncertainty relation between position and momentum. In addition, we find that nuclear quantum effects broaden the structure of liquid water as compared to Car-Parrinello results with classical nuclei. Accordingly, there is an increased fraction of broken hydrogen bonds that is found in the path integral result

  19. Space nuclear thermal propulsion program. Final report, September 1989-May 1995

    SciTech Connect

    Haslett, R.A.

    1995-05-01

    The SNTP Program was an advanced technology development effort aimed at providing the Nation a new, dramatically higher performing rocket engine that would more than double the performance of the best conventional chemical rocket engines. The program consisted of three phases. Phase I ran from November 1987 through September 1989. The objective of this phase was to verify the feasibility of the Particle Bed Reactor (PBR) as the propulsion energy source for the upper stage of a ground-based Boost Phase Intercept (BPI) vehicle. The BPl mission was of interest to the Strategic Defense Initiative Organization (SDIO) who sponsored the program. Phase II started under SDIO control and was transferred to the Air Force (AF) in October 1991. The BPI mission was de-emphasized, and engine requirements were revised to satisfy more general AF space missions. The goal of Phase II was to perform a ground demonstration of a prototypical PBR engine.

  20. Conceptual Design of a 100-kWe Space Nuclear Reactor Power System with High-Power AMTEC

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2003-01-01

    Alkali Metal Thermal-to-Electric Conversion (AMTEC), although currently at a Technology Readiness Level-3 (TRL-3), has an excellent potential for use in Space Nuclear Reactor Power (SNRP) systems for NASA's deep-space exploration missions. In addition to operating at a conversion efficiency > 20%, representing the highest fraction (> 60%) of Carnot efficiency of all other static and dynamic conversion technology options, the relatively high heat rejection radiator temperature (650-700 K) reduces the size and mass of the radiator and of the SNRP system. A high-power AMTEC unit design has been developed and optimized for operating at reactor exit temperatures <= 1180 K and radiator temperature <= 680 K. Depending on the reactor exit temperature, the nominal electrical power of the AMTEC unit, measuring 594 mm × 410 mm × 115 mm and weighting 44.3 kg, could be as high as 5.6 kWe, with a margin of >= 5% for an additional load-following increase. A conceptual design of a 100 kWe SNRP system with these high-power AMTEC units is developed and presented in this paper. The total mass of major subsystems, including the converters, nuclear reactor, shadow radiation shield, and radiator, is calculated and compared with that for the SP-100. Despite the large specific mass of the AMTEC units compared to the SiGe thermoelectrics in the SP-100 system, the lower masses of the reactor, radiation shield, and radiator make the present AMTEC-SNRP system > 26% lighter, for the same electrical power. An optimized AMTEC-SNRP system could potentially operate at a specific power > 30 We/kg (or specific mass < 33 kg/kWe), use non-refractory structures of super-steel alloys with well-know properties, relatively low density, low Ductile-To-Brittle (DTB) transition temperatures, and good compatibility with space and planetary environments containing CO2 and oxygen. The radiator area for the baseline 100 kWe AMTEC SNRP system is < 27 m2, which, together with operating the potassium heat pipes

  1. Monitoring sources of nuclear radiation in space. Part 1: Early 1984 observations, revision

    NASA Astrophysics Data System (ADS)

    Share, G. H.; Kurfess, J. D.; Messina, D. C.

    1989-05-01

    Nuclear radiation from the reactor powered satellite COSMOS 1579 was monitored by the gamma ray spectrometer (GRS) on NASA's Solar Maximum Mission satellite (SMM). Gamma rays from the RORSAT (Radar Ocean Reconnaissance Satellites) were detected about every 4 days as it passed within about 500 km of SMM. In addition, events attributed to positrons emitted from the outer shell of COSMOS 1579 were detected on the average of once every about 1.5 days. These positrons were detected at large distances (less than or = 5000 km) from COSMOS after being stored in the earth's magnetic field for seconds or minutes. The rate of the positron detections is about a factor of two higher than observed for most of the earlier RORSAT's detected by SMM. At present, this increase is unexplained. The qualitative features of the measured gamma-ray spectrum from COSMOS 1579 are similar to those of preceding satellites; however, the spectral features are clearer. A model is presented for the origin of these features which suggests the presence of significant amounts of beryllium, sodium, potassium, molybdenum and lithium and/or hydrogen lying with tens of gm/sq cm of material. There is also spectral evidence for the presence of either iron or aluminum. Based on this model, a conservative lower limit was obtained to the thermal power of the reactor on COSMOS 1579. This lower limit is 30 kW.

  2. Computer code for space-time diagnostics of nuclear safety parameters

    SciTech Connect

    Solovyev, D. A.; Semenov, A. A.; Gruzdov, F. V.; Druzhaev, A. A.; Shchukin, N. V.; Dolgenko, S. G.; Solovyeva, I. V.; Ovchinnikova, E. A.

    2012-07-01

    The computer code ECRAN 3D (Experimental and Calculation Reactor Analysis) is designed for continuous monitoring and diagnostics of reactor cores and databases for RBMK-1000 on the basis of analytical methods for the interrelation parameters of nuclear safety. The code algorithms are based on the analysis of deviations between the physically obtained figures and the results of neutron-physical and thermal-hydraulic calculations. Discrepancies between the measured and calculated signals are equivalent to obtaining inadequacy between performance of the physical device and its simulator. The diagnostics system can solve the following problems: identification of facts and time for inconsistent results, localization of failures, identification and quantification of the causes for inconsistencies. These problems can be effectively solved only when the computer code is working in a real-time mode. This leads to increasing requirements for a higher code performance. As false operations can lead to significant economic losses, the diagnostics system must be based on the certified software tools. POLARIS, version 4.2.1 is used for the neutron-physical calculation in the computer code ECRAN 3D. (authors)

  3. Radiator Heat Pipes with Carbon-Carbon Fins and Armor for Space Nuclear Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel; El-Genk, Mohamed

    2005-02-01

    Technologies for Space Reactor Power Systems are being developed to enable future NASA's missions early next decade to explore the farthest planets in the solar system. The choices of the energy conversion technology for these power systems require radiator temperatures that span a wide range, from 350 K to 800 K. Heat pipes with carbon-carbon fins and armor are the preferred choice for these radiators because of inherent redundancy and efficient spreading and rejection of waste heat into space at a relatively small mass penalty. The performance results and specific masses of radiator heat pipes with cesium, rubidium, and potassium working fluids are presented and compared in this paper. The heat pipes operate at 40% of the prevailing operation limit (a design margin of 60%), typically the sonic and/or capillary limit. The thickness of the carbon-carbon fins is 0.5 mm but the width is varied, and the evaporator and condenser sections are 0.15 and 1.35 m long, respectively. The 400-mesh wick and the heat pipe thin metal wall are titanium, and the carbon-carbon armor (~ 2 mm-thick) provides both structural strength and protection against meteoroids impacts. The cross-section area of the D-shaped radiator heat pipes is optimized for minimum mass. Because of the low vapor pressure of potassium and its very high Figure-Of-Merit (FOM), radiator potassium heat pipes are the best performers at temperatures above 800 K, where the sonic limit is no longer an issue. On the other hand, rubidium heat pipes are limited by the sonic limit below 762 K and by the capillary limit at higher temperature. The transition temperature between these two limits for the cesium heat pipes occurs at a lower temperature of 724 K, since cesium has lower FOM than rubidium. The present results show that with a design margin of 60%, the cesium heat pipes radiator is best at 680-720 K, the rubidium heat pipes radiator is best at 720-800 K, while the potassium heat pipes radiator is the best

  4. Radiator Heat Pipes with Carbon-Carbon Fins and Armor for Space Nuclear Reactor Power Systems

    SciTech Connect

    Tournier, Jean-Michel; El-Genk, Mohamed

    2005-02-06

    Technologies for Space Reactor Power Systems are being developed to enable future NASA's missions early next decade to explore the farthest planets in the solar system. The choices of the energy conversion technology for these power systems require radiator temperatures that span a wide range, from 350 K to 800 K. Heat pipes with carbon-carbon fins and armor are the preferred choice for these radiators because of inherent redundancy and efficient spreading and rejection of waste heat into space at a relatively small mass penalty. The performance results and specific masses of radiator heat pipes with cesium, rubidium, and potassium working fluids are presented and compared in this paper. The heat pipes operate at 40% of the prevailing operation limit (a design margin of 60%), typically the sonic and/or capillary limit. The thickness of the carbon-carbon fins is 0.5 mm but the width is varied, and the evaporator and condenser sections are 0.15 and 1.35 m long, respectively. The 400-mesh wick and the heat pipe thin metal wall are titanium, and the carbon-carbon armor ({approx} 2 mm-thick) provides both structural strength and protection against meteoroids impacts. The cross-section area of the D-shaped radiator heat pipes is optimized for minimum mass. Because of the low vapor pressure of potassium and its very high Figure-Of-Merit (FOM), radiator potassium heat pipes are the best performers at temperatures above 800 K, where the sonic limit is no longer an issue. On the other hand, rubidium heat pipes are limited by the sonic limit below 762 K and by the capillary limit at higher temperature. The transition temperature between these two limits for the cesium heat pipes occurs at a lower temperature of 724 K, since cesium has lower FOM than rubidium. The present results show that with a design margin of 60%, the cesium heat pipes radiator is best at 680-720 K, the rubidium heat pipes radiator is best at 720-800 K, while the potassium heat pipes radiator is the best

  5. Two generic concepts for space propulsion based on thermal nuclear fusion

    NASA Astrophysics Data System (ADS)

    Gabrielli, R. A.; Petkow, D.; Herdrich, G.; Laufer, R.; Röser, H.-P.

    2014-08-01

    In the present work, two different concepts for fusion based space propulsion are compared. While the first concept is based solely on propulsion by hypothetic ejection of fusion products and hence may be called ash drive, the second one uses an additional coolant for thrust enhancement. Since this coolant was initially assumed to be gaseous and since it is doing most of the propulsion work, the name of “working gas drive” has been proposed. Propulsive characteristics for both types are evaluated for four fusion reactant couples (D-T; D-3He; 3He-3He; 11B-p). In working gas drives, only hydrogen is considered as coolant due to its exceptionally good caloric and propulsive properties. The results of comparative studies show that while ash drives excel working gas drives in terms of specific impulse the latter yield considerably more thrust than ash drives. Another major drawback of the ash drives is relatively small thrust efficiencies. The plasma power has to be disposed of nearly entirely as waste heat leading to prohibitive radiator masses.

  6. 1991 IEEE Annual Conference on Nuclear and Space Radiation Effects, 28th, San Diego, CA, July 15-19, 1991, Proceedings

    NASA Technical Reports Server (NTRS)

    Millward, Douglas G. (Editor)

    1991-01-01

    Various papers on nuclear science are presented. The general topics addressed are: basic mechanisms of radiation effects, dosimetry and energy-dependent effects, isolation technologies, device radiation response and hardening, microcircuit radiation response and hardening, single-event phenomena, hardness assurance and testing techniques, spacecraft charging, space environments and effects.

  7. 1989 IEEE Annual Conference on Nuclear and Space Radiation Effects, 26th, Marco Island, FL, July 25-29, 1989, Proceedings. Part 1

    NASA Technical Reports Server (NTRS)

    Ochoa, Agustin, Jr. (Editor)

    1989-01-01

    Various papers on nuclear science are presented. The general topics addressed include: basic mechanics of radiation effects, dosimetry and energy-dependent effects, hardness assurance and testing techniques, spacecraft charging and space radiation effects, EMP/SGEMP/IEMP phenomena, device radiation effects and hardening, radiation effects on isolation technologies, IC radiation effects and hardening, and single-event phenomena.

  8. Testimony (on space nuclear power) before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives

    SciTech Connect

    Mynatt, F.R.

    1985-10-09

    This brief presentation consists of four parts: first, a few introductory comments about space nuclear power technology; second, a description of activities currently underway at Martin Marietta Energy Systems; third, a discussion of future directions at Martin Marietta Energy Systems; and fourth, some recommendations.

  9. The PEGASUS Drive: A nuclear electric propulsion system for the space exploration initiative

    SciTech Connect

    Coomes, E.P.; Dagle, J.E.

    1990-10-01

    The advantages of using electric propulsion for propulsion are well-known in the aerospace community. The high specific impulse, lower propellant requirements, and lower system mass make it a very attractive propulsion option for the Space Exploration Initiative (SEI), especially for the transport of cargo. One such propulsion system is the PEGASUS Drive (Coomes et al. 1987). In its original configuration, the PEGASUS Drive consisted of a 10-MWe power source coupled to a 6-MW magnetoplasmadynamic (MPD) thruster system. The PEGASUS Drive propelled a manned vehicle to Mars and back in 601 days. By removing the crew and their associated support systems from the spacecraft and by incorporating technology advances in reactor design and heat rejection systems, a second generation PEGASUS Drive can be developed with an alpha less than two. Utilizing this propulsion system, a 400-MT cargo vehicle, assembled and loaded in low Earth orbit (LEO), could deliver 262 MT of supplies and hardware to Mars 282 days after escaping Earth orbit. Upon arrival at Mars the transport vehicle would place its cargo in the desired parking orbit around Mars and then proceed to synchronous orbit above the desired landing sight. Using a laser transmitter, PEGASUS would provide 2-MWe on the surface to operate automated systems deployed earlier and then provide surface power to support crew activities after their arrival. The additional supplies and hardware, coupled with the availability of megawatt levels of electric power on the Mars surface, would greatly enhance and even expand the mission options being considered under SEI. 9 refs., 1 fig., 1 tab.

  10. Public perceptions of the risks of an unfamiliar technology: The case of using nuclear energy sources for space missions

    NASA Astrophysics Data System (ADS)

    Maharik, Michael

    This thesis addresses the public perception of the risk of a technology not widely known to laypeople. Its aims were (1) to characterize public perceptions of the risk of using nuclear energy in space and decisions related to this risk, and (2) to extend the 'mental model' methodology to studying public perception of unfamiliar, risky technologies. A model of the physical processes capable of creating risks from using nuclear energy sources in space was first constructed. Then, knowledge and beliefs related to this topic were elicited from three different groups of people. The generality of the findings was examined in a constructive replication with environmentally-oriented people. The possibility of involving the public in decision-making processes related to engineering macro-design was then investigated. Finally, a communication regarding these risk processes was developed and evaluated in an experiment comparing it with communications produced by NASA. Although they included large portions of the expert model, people's beliefs also had gaps and misconceptions. Respondents often used scientific terms without a clear understanding of what they meant. Respondents' mental models sometimes contained scattered and inconsistent entries. The impact of pre-existing mental models was clearly seen. Different groups of people had different patterns of knowledge and beliefs. Nevertheless, respondents expressed reasonable and coherent opinions on choices among engineering options. The CMU brochure, derived from the study of readers' existing mental models, provided a better risk communication tool than NASA's material, reflecting primarily experts' perspective. The better performance of subjects reading either brochure generally reflected adding knowledge on issues that they had not previously known, rather than correcting wrong beliefs. The communication study confirmed a hypothesis that improving knowledge on risk processes related to the use of a technology causes a more

  11. Design and analysis of a radiatively-cooled, inertially-driven nuclear generator system for space-based applications

    SciTech Connect

    Apley, W.J.

    1989-01-01

    The RING (Radiatively-Cooled, Inertially-Driven Nuclear Generator) radiator is proposed as a novel heat rejection system for advanced space reactor power applications in the 1 to 25 MW(t) range. The RING radiator system employs four counter-rotating, hollow, cylindrical, ring-shaped tubes filled with liquid lithium. The rings pass through a cavity heat exchanger, absorb heat, and then re-radiate that absorbed heat to space. Each ring is made of thin-walled, corrugated Nb-1%Zr tubing with external fins, segmented to minimize the consequence of coolant loss. To examine both the system transient and steady-state thermal hydraulic response, a set of detailed, analytical computer codes was developed (RINGSYS-System Thermal Hydraulics and Power Rating/RINGDYN-System Dynamics/RINGRAD-Radiation Damage and Void Gas Formation/RINGDATG-Data Handling). An additional code (TEMPEST) was obtained to examine the impact of augmented, internal ring convective heat transfer on overall system performance. Performance results and a cumulative uncertainty analysis including analytical, computational, property, and environmental condition errors are presented. The optimized radiator configuration at a cavity temperature of 1500 K results in a 3.3 MW(t) heat removal capacity at a minimum radiator weight ratio of 2.1 kg/kW(t); or a radiator weight ratio of 4.0 kg/kW(t) at a maximum achievable capacity of 5.6 MW(t). Despite a higher kg/kW(t) ratio than reported for other comparable temperature radiator designs, the concept is an attractive option for use with high-temperature reactors in high or geosynchronous earth orbit, specifically where the essential design criteria emphasize reliability, safety, and repairability. This dissertation also describes the confirmatory research, especially related to the material and thermal characteristics of key components, necessary to ensure successful RING radiator system deployment.

  12. Pore space characterization in carbonate rocks - Approach to combine nuclear magnetic resonance and elastic wave velocity measurements

    NASA Astrophysics Data System (ADS)

    Müller-Huber, Edith; Schön, Jürgen; Börner, Frank

    2016-04-01

    Pore space features influence petrophysical parameters such as porosity, permeability, elastic wave velocity or nuclear magnetic resonance (NMR). Therefore they are essential to describe the spatial distribution of petrophysical parameters in the subsurface, which is crucial for efficient reservoir characterization especially in carbonate rocks. While elastic wave velocity measurements respond to the properties of the solid rock matrix including pores or fractures, NMR measurements are sensitive to the distribution of pore-filling fluids controlled by rock properties such as the pore-surface-to-pore-volume ratio. Therefore a combination of both measurement principles helps to investigate carbonate pore space using complementary information. In this study, a workflow is presented that delivers a representative average semi-axis length of ellipsoidal pores in carbonate rocks based on the pore aspect ratio received from velocity interpretation and the pore-surface-to-pore-volume ratio Spor as input parameters combined with theoretical calculations for ellipsoidal inclusions. A novel method to calculate Spor from NMR data based on the ratio of capillary-bound to movable fluids and the thickness of the capillary-bound water film is used. To test the workflow, a comprehensive petrophysical database was compiled using micritic and oomoldic Lower Muschelkalk carbonates from Germany. The experimental data indicate that both mud-dominated and grain-dominated carbonates possess distinct ranges of petrophysical parameters. The agreement between the predicted and measured surface-to-volume ratio is satisfying for oomoldic and most micritic samples, while pyrite or significant sample heterogeneity may lead to deviations. Selected photo-micrographs and scanning electron microscope images support the validity of the estimated representative pore dimensions.

  13. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 1: Objectives, summary results and introduction

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    The objective was to determine which reactor, conversion, and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. Specifically, the requirement was 10 megawatts for 5 years of full power operation and 10 years systems life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study. The concepts are: a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heat pipe and pumped tube-fin heat rejection; a lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator; a lithium cooled reactor with potassium Rankine turbine-alternator and heat pipe radiator; and a lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the lithium cooled incore thermionic reactor with heat pipe radiator.

  14. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 4: Concepts selection, conceptual designs, recommendations

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    A study was conducted by NASA Lewis Research Center for the Triagency SP-100 program office. The objective was to determine which reactor, conversion and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. The requirement was 10 megawatts for 5 years of full power operation and 10 years system life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study: (1) a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heatpipe and pumped tube fin rejection, (2) a Lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator,(3) a Lithium cooled reactor with a Potassium Rankine turbine-alternator and heat pipe radiator, and (4) a Lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the Lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the Lithium cooled incore thermionic reactor with heat pipe radiator.

  15. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 1: Objectives, summary results and introduction

    NASA Astrophysics Data System (ADS)

    Wetch, J. R.

    1988-09-01

    The objective was to determine which reactor, conversion, and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. Specifically, the requirement was 10 megawatts for 5 years of full power operation and 10 years systems life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study. The concepts are: a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heat pipe and pumped tube-fin heat rejection; a lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator; a lithium cooled reactor with potassium Rankine turbine-alternator and heat pipe radiator; and a lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the lithium cooled incore thermionic reactor with heat pipe radiator.

  16. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 4: Concepts selection, conceptual designs, recommendations

    SciTech Connect

    Wetch, J.R.

    1988-09-01

    A study was conducted by NASA Lewis Research Center for the Triagency SP-100 program office. The objective was to determine which reactor, conversion and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. The requirement was 10 megawatts for 5 years of full power operation and 10 years system life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study: (1) a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heatpipe and pumped tube fin rejection, (2) a Lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator,(3) a Lithium cooled reactor with a Potassium Rankine turbine-alternator and heat pipe radiator, and (4) a Lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the Lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the Lithium cooled incore thermionic reactor with heat pipe radiator.

  17. The Evaluation of Lithium Hydride for Use in a Space Nuclear Reactor Shield, Including a Historical Perspective

    SciTech Connect

    D. Poeth

    2005-12-09

    LiH was one of the five primary shield materials the NRPCT intended to develop (along with beryllium, boron carbide, tungsten, and water) for potential Prometheus application. It was also anticipated that {sup 10}B metal would be investigated for feasibility at a low level of effort. LiH historically has been selected as a low mass, neutron absorption material for space shields (Systems for Nuclear Auxiliary Power (SNAP), Topaz, SP-100). Initial NRPCT investigations did not produce convincing evidence that LiH was desirable or feasible for a Prometheus mission due to material property issues (primarily swelling and hydrogen cover gas containment), and related thermal design complexity. Furthermore, if mass limits allowed, an option to avoid use of LiH was being contemplated to lower development costs and associated risks. However, LiH remains theoretically the most efficient neutron shield material per unit mass, and, with sufficient testing and development, could be an optimal material choice for future flights.

  18. Performance Expectations of Closed-Brayton-Cycle Heat Exchangers in 100-kWe Nuclear Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.

    2003-01-01

    Performance expectations of closed-Brayton-cycle heat exchangers to be used in 100-kWe nuclear space power systems were forecast. Proposed cycle state points for a system supporting a mission to three of Jupiter s moons required effectiveness values for the heat-source exchanger, recuperator and rejection exchanger (gas cooler) of 0.98,0.95 and 0.97, respectively. Performance parameters such as number of thermal units (Nm), equivalent thermal conductance (UA), and entropy generation numbers (Ns) varied from 11 to 19,23 to 39 kWK, and 0.019 to 0.023 for some standard heat exchanger configurations. Pressure-loss contributions to entropy generation were significant; the largest frictional contribution was 114% of the heat-transfer irreversibility. Using conventional recuperator designs, the 0.95 effectiveness proved difficult to achieve without exceeding other performance targets; a metallic, plate-fin counterflow solution called for 15% more mass and 33% higher pressure-loss than the target values. Two types of gas-coolers showed promise. Single-pass counterflow and multipass cross-counterflow arrangements both met the 0.97 effectiveness requirement. Potential reliability-related advantages of the cross-countefflow design were noted. Cycle modifications, enhanced heat transfer techniques and incorporation of advanced materials were suggested options to reduce system development risk. Carbon-carbon sheeting or foam proved an attractive option to improve overall performance.

  19. Space teleoperation research. American Nuclear Society Executive conference: Remote operations and robotics in the nuclear industry; remote maintenance in other hostile environments

    NASA Technical Reports Server (NTRS)

    Meintel, A. J., Jr.; Will, R. W.

    1985-01-01

    This presentation consists of four sections. The first section is a brief introduction to the NASA Space Program. The second portion summarized the results of a congressionally mandated study of automation and robotics for space station. The third portion presents a number of concepts for space teleoperator systems. The remainder of the presentation describes Langley Research Center's teleoperator/robotic research to support remote space operations.

  20. Space nuclear safety program

    NASA Astrophysics Data System (ADS)

    Bronisz, S. E.

    1984-01-01

    The scheduled 38-day, 1287 degree C aging of the impact assembly of a general purpose heat source was completed and it was subjected to the standard orbital decay reentry heating simulation. Results are given. Also discussed is the exposure to seawater of a lightweight radioisotope heater unit.

  1. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 3: Nuclear thermal rocket vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents the nuclear thermal rocket (NTR) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the NTR concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  2. Conference on the High Energy Radiation Background in Space, held in conjunction with IEEE Nuclear and Space Radiation Effects Conference. Workshop record.

    NASA Astrophysics Data System (ADS)

    The following topics were dealt with: the high energy radiation background in space, cosmic rays, solar particle events, gamma-ray astronomical telescopes, detector noise due to background radiations, semiconductor particle counters, magnetosphere and radiation belts.

  3. Thermal and neutron-physical features of the nuclear reactor for a power pulsation plant for space applications

    NASA Astrophysics Data System (ADS)

    Gordeev, É. G.; Kaminskii, A. S.; Konyukhov, G. V.; Pavshuk, V. A.; Turbina, T. A.

    2012-05-01

    We have explored the possibility of creating small-size reactors with a high power output with the provision of thermal stability and nuclear safety under standard operating conditions and in emergency situations. The neutron-physical features of such a reactor have been considered and variants of its designs preserving the main principles and approaches of nuclear rocket engine technology are presented.

  4. Nuclear war: Opposing viewpoints

    SciTech Connect

    Szumski, B.

    1985-01-01

    This book presents opposing viewpoints on nuclear war. Topics discussed include: how nuclear would begin; would humanity survive; would civil defense work; will an arms agreement work; and can space weapons reduce the risk of nuclear war.

  5. Nuclear energy technology

    NASA Technical Reports Server (NTRS)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  6. A numerical simulation package for analysis of neutronics and thermal fluids of space nuclear power and propulsion systems

    SciTech Connect

    Anghaie, S.; Feller, G.J. ); Peery, S.D.; Parsley, R.C. )

    1993-01-20

    A system of computer codes for engineering simulation and in-depth analysis of nuclear and thermal fluid design of nuclear thermal rockets is developed. The computational system includes a neutronic solver package, a thermal fluid solver package and a propellant and materials property package. The Rocket Engine Transient Simulation (ROCETS) system code is incorporated with computational modules specific to nuclear powered engines. ROCETS features a component based performance architecture that interfaces component modules into the user designed configuration, interprets user commands, creates an executable FORTRAN computer program, and executes the program to provide output to the user. Basic design features of the Pratt Whitney XNR2000 nuclear rocket concept and its operational performance are analyzed and simulated.

  7. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 2A: Accident model document, appendix

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The detailed abort sequence trees for the reference zirconium hydride (ZrH) reactor power module that have been generated for each phase of the reference Space Base program mission are presented. The trees are graphical representations of causal sequences. Each tree begins with the phase identification and the dichotomy between success and failure. The success branch shows the mission phase objective as being achieved. The failure branch is subdivided, as conditions require, into various primary initiating abort conditions.

  8. Bimodal space nuclear power system with fast reactor and Topaz II-type single-cell TFE

    SciTech Connect

    Ponomarev-Stepnoi, N.N.; Usov, V.A.; Ogloblin, B.G.; Shalaev, A.I.; Klimov, A.V.; Kirillov, E.Y.; Shumov, D.P.; Radchenko, I.S.; Nicolaev, Y.V.

    1996-03-01

    The paper deals with characteristics and conceptual studies of a bimodal space thermionic system with a fast reactor and single-cell TFEs which is designed to operate in two modes: rated power mode providing power supply to space vehicle-mounted systems with energy consumption level of 10{endash}80 kW(e) and forced thermal propulsion mode with thrust of 2200 N. {copyright} {ital 1996 American Institute of Physics.}

  9. The Use of Nuclear Propulsion, Power and 'In-Situ' Resources for Routine Lunar Space Transportation and Commercial Base Development

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    2003-01-01

    This viewgraph presentation illustrates possible future strategies for solar system exploration supported by Nuclear Thermal Rocket (NTR) Propulsion. Topics addressed in the presentation include: lunar mining, Liquid Oxygen (LOX) augmented NTR (LANTR), 'Shuttle-Derived' Heavy Lift Vehicle (SDHLV) options for future human Lunar missions, and lunar-produced oxygen (LUNOX).

  10. Probing in Space and Time the Nuclear Motion Driven by Nonequilibrium Electronic Dynamics in Ultrafast Pumped N2.

    PubMed

    Ajay, J; Šmydke, J; Remacle, F; Levine, R D

    2016-05-19

    An ultrafast electronic excitation of N2 in the vacuum ultraviolet creates a nonstationary coherent linear superposition of interacting valence and Rydberg states resulting in a net oscillating dipole moment. There is therefore a linear response to an electrical field that can be queried by varying the time delay between the pump and a second optical probe pulse. Both the pump and probe pulses are included in our computation as part of the Hamiltonian, and the time-dependent wave function for both electronic and nuclear dynamics is computed using a grid representation for the internuclear coordinate. Even on an ultrafast time scale there are several processes that can be discerned beyond the expected coherence oscillations. In particular, the coupling between the excited valence and Rydberg states of the same symmetry is very evident and can be directly probed by varying the delay between pulse and probe. For quite a number of vibrations the nuclear motion does not dephase the electronic disequilibrium. However, the nuclear motion does modulate the dipolar response by taking the wave packet in and out of the Franck-Condon region and by its strong influence on the coupling of the Rydberg and valence states. A distinct isotope effect arises from the dependence of the interstate coupling on the nuclear mass.

  11. Annual Conference on Nuclear and Space Radiation Effects, 16th, Santa Cruz, Calif., July 17-20, 1979, Proceedings

    NASA Technical Reports Server (NTRS)

    Bombardt, J.

    1979-01-01

    Papers are presented on the following topics: radiation effects in bipolar microcircuits; basic radiation mechanisms in materials and devices; energy deposition and dosimetry; and system responses from SGEMP, IEMP, and EMP. Also considered are basic processes in SGEMP and IEMP, radiation effects in MOS microcircuits, and space radiation effects and spacecraft charging.

  12. SPACE-R thermionic space nuclear power system: Design and technology demonstration. Task 1.5.6, Moderator containment laboratory experiment test plant (CDRL No. 5)

    SciTech Connect

    Not Available

    1993-10-01

    The preferred moderator being considered for SPACE-R is yttrium hydride encased in beryllium tubes. The baseline beryllium performs a dual function as it acts as a moderator and provides containment for hydrogen. The permeation rate of hydrogen from the hydride through the beryllium shell at the operating temperature is an important factor for the functionality and reliability of the Be-YHx moderator. Hydrogen containment capability of beryllium is comparable to enamel which was used in SNAP and Topaz II reactors. However, limited experimental data base exists for the hydrogen permeation through fabricated beryllium enclosures at high temperature. Permeation of hydrogen in beryllium is strongly affected by surface conditions, thickness of surface oxide, surface and bulk traps, impurity content and microstructure. The objective of this experiment is to determine the permeation rate of hydrogen from yttrium hydride and zirconium hydride through beryllium in the temperature range of 773 K--973 K. In addition, Topaz II type zirconium hydride specimens with and without the proprietary oxide coating canned in stainless steel will be tested to measure the hydrogen permeation rate. The TSET SS-canned ZrHx samples currently at Phillips Laboratory will be used for the latter test with Phillips Laboratory participation at the SPI hydrogen leak test stand. A key technology demonstration of the effectiveness of transferred arc plasma spraying of a 1 mil Molybdenum coating on the Be cladding will be performed. The effectiveness of the Molybdenum coating in preventing any interaction of Be with Stainless Steel in NaK will be assessed and demonstrated.

  13. Annual Conference on Nuclear and Space Radiation Effects, 21st, Colorado Springs, CO, July 23-25, 1984, Proceedings

    NASA Technical Reports Server (NTRS)

    Winokur, P. S. (Editor)

    1984-01-01

    Radiation effects on electronic systems and devices (particularly spacecraft systems) are examined with attention given to such topics as radiation transport, energy deposition, and charge collection; single-event phenomena; basic mechanisms of radiation effects in structures and materials; and EMP phenomena. Also considered are radiation effects in integrated circuits, spacecraft charging and space radiation effects, hardness assurance for devices and systems, and SGEMP/IEMP phenomena.

  14. A small-sized MWPC with 1 mm wire spacing as a beam/target chamber for nuclear experiments

    NASA Astrophysics Data System (ADS)

    Ninomiya, M.; Arai, I.; Manabe, A.; Nunokawa, H.; Tanaka, M.; Tomizawa, K.; Yagi, K.; Kobayashi, T.; Chiba, J.; Nakai, K.; Sano, H.; Sasaki, S.; Nagae, T.; Tokushuku, K.; Sekimoto, M.

    1988-11-01

    We developed a small-sized multiwire proportional chamber with 1 mm wire spacing for a study of backward Λ production in high energy hadron-nucleus reactions. Two chambers were installed in a cylindrical drift chamber of the large aperture spectrometer FANCY in order to determine beam trajectories precisely. A position resolution of about 0.6 mm was obtained with a counting efficiency of 97%.

  15. Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome.

    PubMed

    Thévenin, Annelyse; Ein-Dor, Liat; Ozery-Flato, Michal; Shamir, Ron

    2014-09-01

    Genomes undergo changes in organization as a result of gene duplications, chromosomal rearrangements and local mutations, among other mechanisms. In contrast to prokaryotes, in which genes of a common function are often organized in operons and reside contiguously along the genome, most eukaryotes show much weaker clustering of genes by function, except for few concrete functional groups. We set out to check systematically if there is a relation between gene function and gene organization in the human genome. We test this question for three types of functional groups: pairs of interacting proteins, complexes and pathways. We find a significant concentration of functional groups both in terms of their distance within the same chromosome and in terms of their dispersal over several chromosomes. Moreover, using Hi-C contact map of the tendency of chromosomal segments to appear close in the 3D space of the nucleus, we show that members of the same functional group that reside on distinct chromosomes tend to co-localize in space. The result holds for all three types of functional groups that we tested. Hence, the human genome shows substantial concentration of functional groups within chromosomes and across chromosomes in space.

  16. Space nuclear power systems 1989; Proceedings of the 6th Symposium, Albuquerque, NM, Jan. 8-12, 1989. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)

    1992-01-01

    The present conference discusses such space nuclear power (SNP) issues as current design trends for SDI applications, ultrahigh heat-flux systems with curved surface subcooled nucleate boiling, design and manufacturing alternatives for low cost production of SNPs, a lightweight radioisotope heater for the Galileo mission, compatible materials for uranium fluoride-based gas core SNPs, Johnson noise thermometry for SNPs, and uranium nitride/rhenium compatibility studies for the SP-100 SNP. Also discussed are system issues in antimatter energy conversion, the thermal design of a heat source for a Brayton cycle radioisotope power system, structural and thermal analyses of an isotope heat source, a novel plant protection strategy for transient reactors, and beryllium toxicity.

  17. Robots for hazardous duties: Military, space, and nuclear facility applications. October 1986-October 1989 (Citations from the NTIS data base). Report for October 1986-October 1989

    SciTech Connect

    Not Available

    1989-11-01

    This bibliography contains citations concerning the design and application of robots used in place of humans where the environment could be hazardous. Military applications include autonomous land vehicles, robotic howitzers, and battlefield support operations. Space operations include docking, maintenance, and mission support, both intra-vehicular and extra-vehicular activities. Nuclear applications include operations within the containment vessel, radioactive waste operations, fueling operations, and plant security. Many of the articles reference control techniques and the use of expert systems in robotic operations. Applications involving industrial manufacturing, walking robots, and robot welding are cited in other published searches in this series. (This updated bibliography contains 360 citations, 98 of which are new entries to the previous edition.)

  18. Measurements of shielding effects and nuclear abundances on board the International Space Station in the Lazio-Sirad and Altcriss Experiments.

    NASA Astrophysics Data System (ADS)

    Casolino, M.; Altcriss Collaboration

    In this work we examine the effect of shielding on the nuclear abundance and particle flux on board the International Space Station The first measurements were performed during the Italian Soyuz 2 mission Lazio-Sirad experiment April 2005 using a set of multi-material nextel nomex polyethylene tiles placed in the angle of view of the Sileye-3 Alteino experiment Subsequently the ESA Altcriss project begun in 2005 continued and extended these measurements in a long duration campaign to perform these observations at different points inside the Russian section of the station Various sets of dosimeters shielded and unshielded are being used in parallel with the active detector In this work we will discuss the results of the Lazio-Sirad and the first measurements of the Altcriss campaign

  19. Nuclear thermal propulsion program overview

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    Nuclear thermal propulsion program is described. The following subject areas are covered: lunar and Mars missions; national space policy; international cooperation in space exploration; propulsion technology; nuclear rocket program; and budgeting.

  20. A feasibility assessment of installation, operation and disposal options for nuclear reactor power system concepts for a NASA growth space station

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.; Heller, Jack A.

    1987-01-01

    A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth space station architecture was conducted to address a variety of installation, operational disposition, and safety issues. A previous NASA sponsored study, which showed the advantages of space station - attached concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide the feasibility of each combination.