Science.gov

Sample records for 100-m radio telescope

  1. Novel technology for the the Effelsberg 100-m Radio Telescope and MeerKAT

    NASA Astrophysics Data System (ADS)

    Kramer, Michael; Kraus, Alex; Wieching, Gundolf

    2015-08-01

    The 100-m radio telescope of the Max-Planck-Institut für Radioastronomie (MPIfR) is a unique European astronomical facility that combines superb sensitivity and wide frequency coverage (300 MHz - 95 GHz) with distinct versatility, making the telescope not only a cutting edge instrument for front-line research but also a testbed for emerging and future technology.Even more than 40 years old, the telescope has been continuously modernized and is heavily involved in various kinds of astronomical research as stand-alone instrument as well as in several VLBI networks. Currently, a large upgrade of the receiver suite at the telescope is ongoing. Several new, state-of-the-are broad-band receivers have been installed recently or are under constructions. Along with the new receivers, modern digital backends are being designed. We report on the current status of these upgrades by presenting some „highlights" and giving an outlook on the activities planned for the future.The technology developed and tested during these upgrades also finds application in the MeerKAT observatory in South Africa. MeerKAT is a fully funded radio observatory under construction in the Northern Cape of South Africa. When complete, MeerKAT’s 64 13.5-m dishes will form the - by far - most sensitive telescope in the Southern hemisphere, being equivalent to a 110 m dish. Due to the dish design with an offset Gregorian feed it will be 60%more sensitive than large center feed single dishes of comparable size.MPIfR is designing and constructing a 1.75- 3.44 GHz Receiver system for MeerKAT. The receiver will allow observations at a frequency range at currently unavailable sensitivity and spatial resolution in the Southern hemisphere. Combined with its powerful MPIfR Pulsar search backend it is expected to detect more than 1600 normal and 270 millisecond pulsars. In addition MeerKat will open up science that stays for its own but also prepares future observations with SKA and complements future SKA

  2. Single-Dish Radio Polarimetry in the F-GAMMA Program with the Effelsberg 100-m Radio Telescope

    NASA Astrophysics Data System (ADS)

    Beuchert, Tobias; Kadler, Matthias; Wilms, Jörn; Angelakis, Emmanouil; Fuhrmann, Lars; Myserlis, Ioannis; Nestoras, Ioannis; Kraus, Alex; Bach, Uwe; Ros, Eduardo; Grossberger, Christoph; Schulz, Robert

    2013-12-01

    Studying the variability of polarized AGN jet emission in the radio band is crucial for understanding the dynamics of moving shocks as well as the structure of the underlying magnetic field. The 100-m Effelsberg Telescope is a high-quality instrument for studying the long-term variability of both total and polarized intensity as well as the electric-vector position angle. Since 2007, the F-GAMMA program has been monitoring the linear polarized emission of roughly 60 blazars at 11 frequencies between 2.7 and 43 GHz. Here, we describe the calibration of the polarimetric data at 5 and 10 GHz and the resulting F-GAMMA full-Stokes light curves for the exemplary case of the radio galaxy 3C 111.

  3. Measuring the Solar Magnetic Field with STEREO A Radio Transmissions: Faraday Rotation Observations using the 100m Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Kobelski, A.; Jensen, E.; Wexler, D.; Heiles, C.; Kepley, A.; Kuiper, T.; Bisi, M.

    2016-04-01

    The STEREO mission spacecraft recently passed through superior conjunction, providing an opportunity to probe the solar corona using radio transmissions. Strong magnetic field and dense plasma environment induce Faraday rotation of the linearly polarized fraction of the spacecraft radio carrier signal. Variations in the Faraday rotation signify changes in magnetic field components and plasma parameters, and thus can be used to gain understanding processes of the quiescent sun as well as active outbursts including coronal mass ejections. Our 2015 observing campaign resulted in a series of measurements over several months with the 100m Green Bank Telescope (GBT) to investigate the coronal Faraday rotation at various radial distances. These observations reveal notable fluctuations in the Faraday rotation of the signal in the deep corona, and should yield unique insights into coronal magnetohydrodynamics down to a 1.5 solar radius line-of-sight solar elongation.

  4. Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Ekers, Ron; Wilson, Thomas L.

    ``Radio Telescopes" starts with a brief historical introduction from Jansky's1931 discovery of radio emission from the Milky Way through the development ofradio telescope dishes and arrays to aperture synthesis imaging. It includessufficient basics of electromagnetic radiation to provide some understanding of thedesign and operation of radio telescopes. The criteria such as frequencyrange, sensitivity, survey speed, angular resolution, and field of view thatdetermine the design of radio telescopes are introduced. Because it is soeasy to manipulate the electromagnetic waves at radio frequencies, radiotelescopes have evolved into many different forms, sometimes with "wire"structures tuned to specific wavelengths, which look very different from anykind of classical telescope. To assist astronomers more familiar with otherwavelength domains, the appendix A.1. includes a comparison of radioand optical terminology. Some of the different types of radio telescopesincluding the filled aperture dishes, electronically steered phased arrays, andaperture synthesis radio telescopes are discussed, and there is a sectioncomparing the differences between dishes and arrays. Some of the morerecent developments including hierarchical beam forming, phased arrayfeeds, mosaicing, rotation measure synthesis, digital receivers, and longbaseline interferometers are included. The problem of increasing radiofrequency interference is discussed, and some possible mitigation strategies areoutlined.

  5. Simulations of cm-wavelength Sunyaev-Zel'dovich galaxy cluster and point source blind sky surveys and predictions for the RT32/OCRA-f and the Hevelius 100-m radio telescope

    SciTech Connect

    Lew, Bartosz; Kus, Andrzej; Birkinshaw, Mark; Wilkinson, Peter E-mail: Mark.Birkinshaw@bristol.ac.uk E-mail: ajk@astro.uni.torun.pl

    2015-02-01

    We investigate the effectiveness of blind surveys for radio sources and galaxy cluster thermal Sunyaev-Zel'dovich effects (TSZEs) using the four-pair, beam-switched OCRA-f radiometer on the 32-m radio telescope in Poland. The predictions are based on mock maps that include the cosmic microwave background, TSZEs from hydrodynamical simulations of large scale structure formation, and unresolved radio sources. We validate the mock maps against observational data, and examine the limitations imposed by simplified physics. We estimate the effects of source clustering towards galaxy clusters from NVSS source counts around Planck-selected cluster candidates, and include appropriate correlations in our mock maps. The study allows us to quantify the effects of halo line-of-sight alignments, source confusion, and telescope angular resolution on the detections of TSZEs. We perform a similar analysis for the planned 100-m Hevelius radio telescope (RTH) equipped with a 49-beam radio camera and operating at frequencies up to 22 GHz.We find that RT32/OCRA-f will be suitable for small-field blind radio source surveys, and will detect 33{sup +17}{sub −11} new radio sources brighter than 0.87 mJy at 30 GHz in a 1 deg{sup 2} field at > 5σ CL during a one-year, non-continuous, observing campaign, taking account of Polish weather conditions. It is unlikely that any galaxy cluster will be detected at 3σ CL in such a survey. A 60-deg{sup 2} survey, with field coverage of 2{sup 2} beams per pixel, at 15 GHz with the RTH, would find <1.5 galaxy clusters per year brighter than 60 μJy (at 3σ CL), and would detect about 3.4 × 10{sup 4} point sources brighter than 1 mJy at 5σ CL, with confusion causing flux density errors ∼< 2% (20%) in 68% (95%) of the detected sources.A primary goal of the planned RTH will be a wide-area (π sr) radio source survey at 15 GHz. This survey will detect nearly 3 × 10{sup 5} radio sources at 5σ CL down to 1.3 mJy, and tens of galaxy clusters

  6. Ultra low wind resistance enclosure for a 100-m telescope

    NASA Astrophysics Data System (ADS)

    Ditto, Thomas D.; Ritter, Joseph M.

    2008-07-01

    We discuss a transmission primary objective grating (POG) telescope that is nearly flat to the ground with its secondary components buried below ground in a protected environment that enjoys a controlled atmosphere. Temperature gradients can be held steady by sealing this enclosure. End-to-end ray paths need not be interrupted by spiders or other structural support elements. Unlike mirror and lens telescopes, this layout is intrinsically off-axis. Light diffracted from a POG at a grazing angle can be collected a few meters below the POG, and the substructures do not require a deep excavation, as would be required for buried on-axis mirrors such as a zenith tube. The POG principle can take advantage of the rotation of the earth to acquire spectra sequentially, so active tilt and rotate axes are not necessary during observations. The POG aperture is extensible as a ribbon optic to kilometer scale at a linear increase in cost, as compared to other choices where infrastructure grows as the cube of the telescope size. The principle of operation was proven in miniature during bench tests that show high resolution spectra can be obtained at angular resolutions equal to seeing. Mathematical models of the underlying relationships show that flux collection increases with increased angles of grazing exodus even as efficiency decreases. Zemax models show a 30° field-of-view and the capacity to take spectra of all sources within that very wide field-of-view. The method lends itself to large apertures, because it is tolerant of POG surface unevenness.

  7. Homologous Deformation of the Effelsberg 100-m Telescope Determined with a Total Station

    NASA Technical Reports Server (NTRS)

    Nothnagel, Axel; Pietzner, Judith; Eling, Christian; Hering, Claudia

    2010-01-01

    Due to gravitation the main reflector of the Effelsberg 100-m telescope of the Max Planck Institute for Radio Astronomy is deformed whenever it is tilted from zenith to arbitrary elevation angles. However, the resulting shape always is a paraboloid again, though with different parameters, a phenomenon which is called homologous deformation. In summer 2008, we have carried out measurements with a total station to determine the magnitude of these deformations in order to evaluate existing assumptions provided by the manufacturer from the telescope's design phase. The measurements are based on a newly developed approach with a Leica TCRP 1201 total station mounted head down near the subreflector. Mini-retro-reflectors are placed at various locations on the paraboloid itself and on the subreflector support structure. The results indicate that the measurement setup is suitable for the purpose and provides the information needed for a determination of elevation dependent delay corrections. The focal length changes only by about 8 mm when the telescope is tilted from 90. to 7.5. elevation angle.

  8. The Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Grueff, G.; Alvito, G.; Ambrosini, R.; Bolli, P.; D'Amico, N.; Maccaferri, A.; Maccaferri, G.; Morsiani, M.; Mureddu, L.; Natale, V.; Olmi, L.; Orfei, A.; Pernechele, C.; Poma, A.; Porceddu, I.; Rossi, L.; Zacchiroli, G.

    We describe the Sardinia Radio Telescope (SRT), a new general purpose, fully steerable antenna of the National Institute for Astrophysics. The radio telescope is under construction near Cagliari (Sardinia). With its large aperture (64m diameter) and its active surface, SRT is capable of operations up to ˜100GHz, it will contribute significantly to VLBI networks and will represent a powerful single-dish radio telescope for many science fields. The radio telescope has a Gregorian optical configuration with a supplementary beam-waveguide (BWG), which provides additional focal points. The Gregorian surfaces are shaped to minimize the spill-over and standing wave. After the start of the contract for the radio telescope structural and mechanical fabrication in 2003, in the present year the foundation construction will be completed. The schedule foresees the radio telescope inauguration in late 2006.

  9. The Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi

    2011-08-01

    We present the status of the Sardinia Radio Telescope (SRT) project, a new general purpose, fully steerable 64 m diameter parabolic radio telescope under construction in Sardinia. The instrument is funded by Italian Ministry of University and Research (MIUR), by the Sardinia Regional Government (RAS), and by the Italian Space Agency (ASI), and it is charge to three research structures of the National Institute for Astrophysics (INAF): the Institute of Radio Astronomy of Bologna, the Cagliari Astronomical Observatory (in Sardinia), and the Arcetri Astrophysical Observatory in Florence. The radio telescope has a shaped Gregorian optical configuration with a 8 m diameter secondary mirror and additional Beam-Wave Guide (BWG) mirrors. One of the most challenging feature of SRT is the active surface of the primary reflector which provides good efficiency up to about 100 GHz. This paper reports on the most recent advances of the construction.

  10. Observations of free-free and anomalous microwave emission from LDN 1622 with the 100 m Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Harper, S. E.; Dickinson, C.; Cleary, K.

    2015-11-01

    LDN 1622 has previously been identified as a possible strong source of dust-correlated anomalous microwave emission (AME). Previous observations were limited by resolution meaning that the radio emission could not be compared with current generation high-resolution infrared data from Herschel, Spitzer or Wide-field Infrared Sky Explorer. This paper presents arcminute resolution mapping observations of LDN 1622 at 4.85 and 13.7 GHz using the 100 m Robert C. Byrd Green Bank Telescope. The 4.85 GHz map reveals a corona of free-free emission enclosing LDN 1622 that traces the photodissociation region of the cloud. The brightest peaks of the 4.85 GHz map are found to be within ≈10 per cent agreement with the expected free-free predicted by Southern H-Alpha Sky Survey Atlas H α data of LDN 1622. At 13.7 GHz, the AME flux density was found to be 7.0 ± 1.4 mJy and evidence is presented for a rising spectrum between 13.7 and 31 GHz. The spinning dust model of AME is found to naturally account for the flux seen at 13.7 GHz. Correlations between the diffuse 13.7 GHz emission and the diffuse mid-infrared emission are used to further demonstrate that the emission originating from LDN 1622 at 13.7 GHz is described by the spinning dust model.

  11. Prism beamswitch for radio telescopes.

    PubMed

    Payne, J M; Ulich, B L

    1978-12-01

    A dielectric prism and switching mechanism have been constructed for beamswitching a Cassegrain radio telescope. Spatially extended radio sources may be mapped without significant confusion utilizing the sensitivity and stability inherent in the conventional Dicke radiometer.

  12. Kashima 34-m Radio Telescope

    NASA Technical Reports Server (NTRS)

    Sekido, Mamoru; Kawai, Eiji

    2013-01-01

    The Kashima 34-m radio telescope has been continuously operated and maintained by the National Institute of Information and Communications Technology (NICT) as a facility of the Kashima Space Technology Center (KSTC) in Japan. This brief report summarizes the status of this telescope, the staff, and activities during 2012.

  13. The Parkes radio telescope - 1986

    NASA Astrophysics Data System (ADS)

    Ables, J. G.; Jacka, C. E.; McConnell, D.; Schinckel, A. E.; Hunt, A. J.

    The Parkes radio telescope has been refurbished 25 years after its commisioning in 1961, with complete replacement of its drive and control systems. The new computer system distributes computing tasks among a loosely coupled network of minicomputers which communicate via full duplex serial lines. Central to the control system is the 'CLOCK' element, which relates all positioning of the telescope to absolute time and synchronizes the logging of astronomical data. Two completely independent servo loops furnish telescope positioning functions.

  14. Radio refractive index in the lowest 100-m layer of the troposphere in Akure, South Western Nigeria

    NASA Astrophysics Data System (ADS)

    Falodun, S. E.; Ajewole, M. O.

    2006-01-01

    The structure of the radio refractive index “in altitudes of” first 100 m of the troposphere is important for the planning and design of microwave communication “links”. For this reason, measurements of atmospheric pressure, temperature, and relative humidity were conducted in Akure “(7.15°N, 5.12°E)” to determine the radio refractive index. “Wireless meteorological sensors were positioned at the ground surface and at 100 m altitude on a 202 m high tower owned by the Nigerian Television Authority (hereafter NTA) which is now idle due to the relocation of the television house”. The measurements were “made” every “30 min” and round the clock. “Statistical” distributions of the refractive index modulus, “its” vertical gradient, and the diurnal and seasonal variations of the refractivity modulus were determined from the measured “data”. The results obtained show that the local climate has an appreciable influence on the radio refractivity. The curve of the seasonal variation of the vertical gradient of the radio refractive modulus has some minima points corresponding to the dry and the rainy seasons in Akure. The results obtained also show that the values of the refractive modulus at the “100 m” altitude were high in the morning and late evening/night hours while they “show” minima during the afternoon hours. Thus, the worst propagation condition obtained for Akure was observed in the afternoon “within” the time window “from 15:00 to 18:00” local time (hereafter LT) during the dry months and from roughly 17:00 to 19:00 LT during the rainy season.

  15. The Five-hundred-meter Aperture Spherical Radio Telescope Project

    NASA Astrophysics Data System (ADS)

    Li, Di; Pan, Zhichen

    2016-07-01

    The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) is a Chinese megascience project funded by the National Development and Reform Commission (NDRC) of the People's Republic of China. The National Astronomical Observatories of China (NAOC) is in charge of its construction and subsequent operation. Upon its expected completion in September 2016, FAST will surpass the 305 m Arecibo Telescope and the 100 m Green Bank Telescope in terms of absolute sensitivity in the 70 MHz to 3 GHz bands. In this paper, we report on the project, its current status, the key science goals, and plans for early science.

  16. The Giant Metrewave Radio Telescope

    NASA Astrophysics Data System (ADS)

    Nityananda, R.

    2003-05-01

    The Giant Metrewave Radio Telescope (GMRT) of the National Centre of Radio Astrophysics (NCRA) of the Tata Institute of Fundamental Research (TIFR) at Khodad, India, has been operational in the band 0.2 to 2 metres for the last two and a half years. The system characteristics and performance and recent results from the group will be presented. Details of use over the last six months by scientists from other observatories under the GMRT Time Allocation Committee (GTAC) and future plans will be also be reviewed in this paper. Areas which have been studied include observations made in the GMRT band of neutral hydrogen, nearby galaxies, supernova remnants, the Galactic Centre, pulsars, the Sun and others.

  17. Proposed Integrated Radio-Telescope Network

    NASA Technical Reports Server (NTRS)

    Cohen, M. H.; Ewing, M. S.; Levy, G. S.; Mallis, R. K.; Readhead, A. C. S.; Smith, J. R.; Backer, D. C.

    1982-01-01

    Proposed network of radio telescopes, controlled by a central computer and managed by a single organization, offer potential for research on a scale that could not be matched by present privately and publicly-owned radio telescopes. With 10 antenna sites, network would establish base lines thousands of miles long. Antennas will be linked to computer center by telephone circuits.

  18. Geodetic Observatory Wettzell - 20-m Radio Telescope and Twin Telescope

    NASA Technical Reports Server (NTRS)

    Neidhardt, Alexander; Kronschnabl, Gerhard; Schatz, Raimund

    2013-01-01

    In the year 2012, the 20-m radio telescope at the Geodetic Observatory Wettzell, Germany again contributed very successfully to the International VLBI Service for Geodesy and Astrometry observing program. Technical changes, developments, improvements, and upgrades were made to increase the reliability of the entire VLBI observing system. In parallel, the new Twin radio telescope Wettzell (TTW) got the first feedhorn, while the construction of the HF-receiving and the controlling system was continued.

  19. Sardinia Radio Telescope: the new Italian project

    NASA Astrophysics Data System (ADS)

    Grueff, Gavril; Alvito, Giovanni; Ambrosini, Roberto; Bolli, Pietro; Maccaferri, Andrea; Maccaferri, Giuseppe; Morsiani, Marco; Mureddu, Leonardo; Natale, Vincenzo; Olmi, Luca; Orfei, Alessandro; Pernechele, Claudio; Poma, Angelo; Porceddu, Ignazio; Rossi, Lucio; Zacchiroli, Gianpaolo

    2004-10-01

    This contribution gives a description of the Sardinia Radio Telescope (SRT), a new general purpose, fully steerable antenna proposed by the Institute of Radio Astronomy (IRA) of the National Institute for Astrophysics. The radio telescope is under construction near Cagliari (Sardinia) and it will join the two existing antennas of Medicina (Bologna) and Noto (Siracusa) both operated by the IRA. With its large antenna size (64m diameter) and its active surface, SRT, capable of operations up to about 100GHz, will contribute significantly to VLBI networks and will represent a powerful single-dish radio telescope for many science fields. The radio telescope has a Gregorian optical configuration with a supplementary beam-waveguide (BWG), which provides additional focal points. The Gregorian surfaces are shaped to minimize the spill-over and the standing wave between secondary mirror and feed. After the start of the contract for the radio telescope structural and mechanical fabrication in 2003, in the present year the foundation construction will be completed. The schedule foresees the radio telescope inauguration in late 2006.

  20. Goldstone Apple Valley Radio Telescope Project.

    ERIC Educational Resources Information Center

    Ibe, Mary; MacLaren, Dave

    2003-01-01

    Describes the Goldstone Apple Valley Radio Telescope (GAVRT) project as a way of teaching astronomy concepts to middle school students. The project provides students opportunities to work with professional scientists. (SOE)

  1. Undergraduate Research with a Small Radio Telescope

    NASA Astrophysics Data System (ADS)

    Fisher, P. L.; Williams, G. J.

    2001-11-01

    We describe the construction of a small radio telescope system at ULM and the role of radio astronomy in undergraduate education. The heart of the system is the Small Radio Telescope (SRT), which is a modified satellite TV antenna and custom receiver purchased from MIT Haystack Observatory. This telescope measures the brightness of many celestial objects at wavelengths near 21 cm. The system consists of various components to control dish movement, as well as perform analog to digital conversions allowing analysis of collected data. Undergraduate students have participated in the construction of the hardware and the task of interfacing the hardware to software on two GNU/Linux computer systems. The construction of the telescope and analysis of data allow the students to employ key concepts from mechanics, optics, electrodynamics, and thermodynamics, as well as computer and electronics skills. We will report preliminary results of solar observations conducted with this instrument and with the MIT Haystack Observatory 37m radio telescope. This work was supported by Louisiana Board of Regents grant LEQSF-ENH-UG-16, NASA/LaSPACE LURA R109139 and ULM Development Foundation Grant 97317.

  2. The radio telescope RATAN 600

    NASA Technical Reports Server (NTRS)

    Schwartz, R.

    1978-01-01

    A six-meter radio antenna having 900 reflector elements arranged on a 579 -meter diameter circle and located in the northern part of the Caucasian Mountains is described. The elements are about 7.4 m by 2 m resulting in a total reflector surface of about 10,000 sq m. Individual elements can be adjusted by changing 260 screws and can be rotated both horizontally and vertically as well as being moved translationally in the radial direction. The circular area is equipped with a grid of tracks where four asymmetric cylindrical paraboloids serving as subreflectors are located. The directional profile or observational direction of the antenna is achieved by shifting the subreflectors and changing the position of the reflecting elements with respect to the subreflectors. Different radio sources can be observed at the same time by using different subreflectors and their associated reflector sectors. Each subreflector is connected to a receiving station. Capabilities for spectroscopic observation are discussed.

  3. Teaching radio astronomy with Affordable Small Radio Telescope (ASRT)

    NASA Astrophysics Data System (ADS)

    Joshi, Bhal Chandra

    A simple, easy to build and portable radio telescope, called Affordable Small Radio Telescope (ASRT), has been developed by the Radio Physics Laboratory (RPL), a radio astronomy teaching unit associated with the National Centre for Radio Astrophysics (TIFR) and Inter-University Centre for Astronomy and Astrophysics (IUCAA), which are two premier astronomy institutes in India. ASRT consists of off-the-shelf available Direct to Home television dishes and is easy to assemble. Our design is scalable from simple very low cost telescope to more complex yet moderately costing instrument. ASRT provides a platform for demonstrating radio physics concepts through simple hands-on experiment as well as for carrying out solar monitoring by college/University students. The presentation will highlight the concept of ASRT and the different experiments that can be carried out using it. The solar monitoring observations will be discussed along-with details of methods for calibrating these measurements. The pedagogical usefulness of ASRT in introducing undergraduatephysics students to astrophysics, measurements and analysis methods used in radio astronomy will also be discussed. Use of ASRT in the last three years in the programs of RPL, namely the annual Radio Astronomy Winter School for College students (RAWSC) and Pulsar Observing for Students (POS) is also presented. This year a new program was initiated to form a virtual group of an ASRT community, which will not only share their measurements, but also think of improving the pedagogical usefulness of ASRT by innovative experiments. This initiative is presented with the best practices drawn from our experience in using ASRT as a tool for student training in space sciences. The talk will also point out future ideas in involving a larger body of students in simple radio astronomy experiments with the ASRT, which RPL is likely to nucleate as part of its mandate.

  4. Design of a Wideband Radio Telescope

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Weinreb, Sander; Mani, Handi

    2007-01-01

    A wideband Radio Telescope is being designed for use in the Goldstone Apple Valley Radio Telescope program. It uses an existing 34-meter antenna retrofitted with a tertiary offset mirror placed at the apex of the main reflector. It can be rotated to use two feeds that cover the 1.2 to 14 GHz band. The feed for 4.0 to 14.0 GHz is a cryogenically cooled commercially available open boundary quadridge horn from ETS-Lindgren. Coverage from 1.2 to 4.0 GHz is provided by an un-cooled scaled version of the same feed. The performance is greater than 40% over most of the band and greater than 55%from 6 to 13.5 GHz.

  5. IAA RAS Radio Telescope Monitoring System

    NASA Astrophysics Data System (ADS)

    Mikhailov, A.; Lavrov, A.

    2007-07-01

    Institute of Applied Astronomy of the Russian Academy of Sciences (IAA RAS) has three identical radio telescopes, the receiving complex of which consists of five two-channel receivers of different bands, six cryogen systems, and additional devices: four local oscillators, phase calibration generators and IF commutator. The design, hardware and data communication protocol are described. The most convenient way to join the devices of the receiving complex into the common monitoring system is to use the interface which allows to connect numerous devices to the data bus. For the purpose of data communication regulation and to exclude conflicts, a data communication protocol has been designed, which operates with complex formatted data sequences. Formation of such sequences requires considerable data processing capability. That is provided by a microcontroller chip in each slave device. The test version of the software for the central computer has been developed in IAA RAS. We are developing the Mark IV FS software extension modules, which will allow us to control the receiving complex of the radio telescope by special SNAP commands from both operator input and schedule files. We are also developing procedures of automatic measurements of SEFD, system noise temperature and other parameters, available both in VLBI and single-dish modes of operation. The system described has been installed on all IAA RAS radio telescopes at "Svetloe", "Zelenchukskaya" and "Badary" observatories. It has proved to be working quite reliably and to show the perfonmance expected.

  6. The Sardinia Radio Telescope (SRT) optical alignment

    NASA Astrophysics Data System (ADS)

    Süss, Martin; Koch, Dietmar; Paluszek, Heiko

    2012-09-01

    The Sardinia Radio Telescope (SRT) is the largest radio telescope recently built in Europe - a 64m Radio Telescope designed to operate in a wavelength regime down to 1mm. The SRT is designed in a classical Gregorian configuration, allowing access to the primary mirror focus (F1), the Gregorian focus (F2) as well as a further translation to different F3 using a beam waveguide system and an automated change between different F3 receiver positions. The primary mirror M1, 64m in diameter, is composed by 1008 individual panels. The surface can be actively controlled. It’s surface, as well as the one of the 8 m Gregorian subreflector, needed to be adjusted after panel mounting at the Sardinia site. The measurement technique used is photogrammetry. In case of the large scale M1 a dedicated combination of a large scale and a small scale approach was developed to achieve extremely high accuracy on the large scale dimension. The measurement/ alignment efforts were carried out in 2010 and 2011, with a final completion in spring 2012. The results obtained are presented and discussed. The overall alignment approach also included the absolute adjustments of M2 to M1 and the alignments of M3, M4 and M5. M3 is a rotating mirror guiding the RF beam to M4 or M5, depending on the operational scenario. These adjustments are based on Lasertracker measurements and have been carried out in an integrated approach.

  7. Classroom Experience with the Small Radio Telescope

    NASA Astrophysics Data System (ADS)

    Johnson, W.; Pratap, P.

    2005-12-01

    The Small Radio Telescope (SRT) was designed by MIT Haystack Observatory for use in science classrooms at the secondary and undergraduate level. The system consists of a 7-ft antenna with a receiver capable of observing the 1420 MHz radio astronomy band. A portable version of the telescope is available for teachers in the eastern Massachusetts and southern New Hampshire area. The SRT has been used at Haystack Observatory by teachers participating in an NSF Research Experiences for Teachers (RET) program. High school lesson plans for the SRT were developed as part of this program and are available on the Haystack Observatory web site at http://web.haystack.mit.edu/pcr/precollegeindex.htm. Last spring, some of these lesson plans were tested at Nashua High School South in Nashua, NH. The presentation will discuss the experience of teaching observational radio astronomy in a high school physics classroom. Specific information will be given on the SRT and available lesson plans. Effects on student achievement and attitude will also be discussed. These experiences were made possible through an NSF/RET grant.

  8. Radio Telescopes Reveal Unseen Galactic Cannibalism

    NASA Astrophysics Data System (ADS)

    2008-06-01

    Radio-telescope images have revealed previously-unseen galactic cannibalism -- a triggering event that leads to feeding frenzies by gigantic black holes at the cores of galaxies. Astronomers have long suspected that the extra-bright cores of spiral galaxies called Seyfert galaxies are powered by supermassive black holes consuming material. However, they could not see how the material is started on its journey toward the black hole. Optical/Radio Comparison Visible-light (left) and radio (right) image of galaxy pair: Radio image shows gas streaming between galaxies. CREDIT: Kuo et al., NRAO/AUI/NSF Click on image for more graphics. One leading theory said that Seyfert galaxies have been disturbed by close encounters with neighboring galaxies, thus stirring up their gas and bringing more of it within the gravitational reach of the black hole. However, when astronomers looked at Seyferts with visible-light telescopes, only a small fraction showed any evidence of such an encounter. Now, new images of hydrogen gas in Seyferts made using the National Science Foundation's Very Large Array (VLA) radio telescope show the majority of them are, in fact, disturbed by ongoing encounters with neighbor galaxies. "The VLA lifted the veil on what's really happening with these galaxies," said Cheng-Yu Kuo, a graduate student at the University of Virginia. "Looking at the gas in these galaxies clearly showed that they are snacking on their neighbors. This is a dramatic contrast with their appearance in visible starlight," he added. The effect of the galactic encounters is to send gas and dust toward the black hole and produce energy as the material ultimately is consumed. Black holes, concentrations of matter so dense that not even light can escape their gravitational pull, reside at the cores of many galaxies. Depending on how rapidly the black hole is eating, the galaxy can show a wide range of energetic activity. Seyfert galaxies have the mildest version of this activity, while

  9. Goldstone-Apple Valley Radio Telescope System Theory of Operation

    NASA Technical Reports Server (NTRS)

    Stephan, George R.

    1997-01-01

    The purpose of this learning module is to enable learners to describe how the Goldstone-Apple Valley Radio Telescope (GAVRT) system functions in support of Apple Valley Science and Technology Center's (AVSTC) client schools' radio astronomy activities.

  10. Beam Calibration of Radio Telescopes with Drones

    NASA Astrophysics Data System (ADS)

    Chang, Chihway; Monstein, Christian; Refregier, Alexandre; Amara, Adam; Glauser, Adrian; Casura, Sarah

    2015-11-01

    We present a multifrequency far-field beam map for the 5-m dish telescope at the Bleien Observatory measured using a commercially available drone. We describe the hexacopter drone used in this experiment, the design of the flight pattern, and the data analysis scheme. This is the first application of this calibration method to a single-dish radio telescope in the far-field. The high signal-to-noise ratio data allows us to characterize the beam pattern with high accuracy out to at least the fourth side-lobe. The resulting two-dimensional beam pattern is compared with that derived from a more traditional calibration approach using an astronomical calibration source. We discuss the advantages of this method compared to other beam calibration methods. Our results show that this drone-based technique is very promising for ongoing and future radio experiments, where the knowledge of the beam pattern is key to obtaining high-accuracy cosmological and astronomical measurements.

  11. Radio Telescopes Reveal Youngest Stellar Corpse

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Astronomers using a global combination of radio telescopes to study a stellar explosion some 30 million light-years from Earth have likely discovered either the youngest black hole or the youngest neutron star known in the Universe. Their discovery also marks the first time that a black hole or neutron star has been found associated with a supernova that has been seen to explode since the invention of the telescope nearly 400 years ago. M51 An artist's impression of Supernova 1986J. The newly discovered nebula around the black hole or neutron star in the center is shown in blue, and is in the center of the expanding, fragmented shell of material thrown off in the supernova explosion, which is shown in red. CREDIT: Norbert Bartel and Michael F. Bietenholz, York University; Artist: G. Arguner (Click on image for larger version) Image Files Artist's Conception (above image, 836K) Galaxy and Supernova (47K) A VLA image (left) of the galaxy NGC 891, showing the bright supernova explosion below the galaxy's center. At right, a closer view of the supernova, made with a global array of radio telescopes. CREDIT: Miguel A. Perez-Torres, Antxon Alberdi and Lucas Lara, Instituto de Astrofisica de Andalucia - CSIC, Spain, Jon Marcaide and Jose C. Guirado, Universidad de Valencia, Spain Franco Mantovani, IRA-CNR, Italy, Eduardo Ros, MPIfR, Germany, and Kurt W. Weiler, Naval Research Laboratory, USA Multi-Frequency Closeup View (201K) Blue and white area shows the nebula surrounding the black hole or neutron star lurking in the center of the supernova. This nebula is apparent at a higher radio frequency (15 GHz). The red and also the contours show the distorted, expanding shell of material thrown off in the supernova explosion. This shell is seen at a lower radio frequency (5 GHz). CREDIT: Michael F. Bietenholz and Norbert Bartel, York University, Michael Rupen, NRAO, NRAO/AUI/NSF A supernova is the explosion of a massive star after it exhausts its supply of nuclear fuel and

  12. Integrated modeling of submillimeter radio telescopes

    NASA Astrophysics Data System (ADS)

    Moraru, Dan; Andersen, Torben

    2002-07-01

    Integrated models are inherently complex and often obscure to any but those who write them. Their usefulness can be greatly enhanced through well-structured, object-oriented design. A robust and computationally efficient Simulink/C++ library of optics, control, finite-element, and visualization routines for modeling radio telescope performance under various operating conditions is being developed and is described. The library is being developed in conjunction with an end-to-end model of the Atacama Large Millimeter Array (ALMA) antennas. The model includes the mechanical structure, optics, servos, and potential laser gyros, and can be used to investigate such issues as tracking performance, compliance with error budgets, wind sensitivity, and effectiveness of an internal metrology system. It will also be a good tool for comparison of different antenna designs.

  13. Interplanetary scintillation observations with the Cocoa Cross radio telescope

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.; Erskine, F. T.; Huneke, A. H.; Mitchell, D. G.

    1976-01-01

    Physical and electrical parameters for the 34.3-MHz Cocoa Cross radio telescope are given. The telescope is dedicated to the determination of solar-wind characteristics in and out of the ecliptic plane through measurement of electron-density irregularity structure as determined from IPS (interplanetary scintillation) of natural radio sources. The collecting area (72,000 sq m), angular resolution (0.4 deg EW by 0.6 deg NS), and spatial extent (1.3 km EW by 0.8 km NS) make the telescope well suited for measurements of IPS index and frequency scale for hundreds of weak radio sources without serious confusion effects.

  14. A decametric wavelength radio telescope for interplanetary scintillation observations

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.

    1975-01-01

    A phased array, electrically steerable radio telescope (with a total collecting area of 18 acres), constructed for the purpose of remotely sensing electron density irregularity structure in the solar wind, is presented. The radio telescope is able to locate, map, and track large scale features of the solar wind, such as streams and blast waves, by monitoring a large grid of natural radio sources subject to rapid intensity fluctuation (interplanetary scintillation) caused by the irregularity structure. Observations verify the performance of the array, the receiver, and the scintillation signal processing circuitry of the telescope.

  15. Radio astronomers, X-ray astronomers and the space telescope

    NASA Technical Reports Server (NTRS)

    Longair, M. S.

    1979-01-01

    The use of the Space Telescope and the study of objects in the radio and X-ray wavebands, particularly extragalactic objects, are discussed. The scientific objectives of a number of projects which involve observations with the Space Telescope are described.

  16. A School Radio Telescope for Two Metres

    ERIC Educational Resources Information Center

    Codling, J. C.

    1973-01-01

    Discusses the arrangement, specifications, and operation of a setup designed for use as a student project to record radio storms, continuous level of the quiet sun, and scientific satellites operating near the amateur 2-m band. Included is an example of records of solar activity during 1968-73. (CC)

  17. Radio Astronomical studies of microquasars with RATAN-600 radio telescope

    NASA Astrophysics Data System (ADS)

    Trushkin, Sergei; Nizhelskij, Nikolaj; Tsybulev, Peter; Bursov, Nikolaj

    Relativistic outflows of accreted matter in the collimated two opposite side jets, ejected from polar regions of accretion disks around black holes or neutron stars in microquasars, are the intensive sources of variable synchrotron radio emission and even TeV energy gamma-ray emission. The ballistic tracks of the clouds (blobs) are directly visible as radio jets in VLA and VLBI maps of SS433, GRS 1915+105, Cyg X-3. The temporal and frequency changes in the measured light curves are a key for deep understanding and a good probe test for physical models of of cosmic jets in mQSO and AGNs. A comparison the radio, optical, X-ray and now high energy gamma-ray intensities allows us to provide detailed studies. We have carried out the long-time monitoring (as a rule 200-250 daily measurements per year) Cyg X-3, GRS1915+10, SS433, Cyg X-1, LSI+61d303, LS5039 with RATAN-600 at 4.8, 7.7, 11.2, 21.7, and 30 GHz during last four years. While Cyg X-3 was in quiet state, we have detected clear radio-X-ray (RATAN-Swift) correlation. We have detected a lot of very bright flares (more than 1.5 Jy at 4.8 GHz) from SS433. In quiet state the radio emission of SS433 is modulated by a half of orbit period near 6.5d, probably being the geometric effect of precessing (164d) and nodding (6.1d) jets. GRS1915+105 have shown the clear correlation of flaring radio emission with X-ray flux from MAXI (Punsly et al., 2014 ApJ, in press). We have detected the enhanced absorption due to the rising hydrogen column density. We continue to study the super-orbital modulation (1666 days) of the flaring radio emission from LSI+61d303. The moments of maxima of the periodically flaring radio emission from it correlated with phase of this super-orbital period. The studies were supported by the grant 12-02-00812 from Russian Foundation of Basic Research.

  18. Observations of cometary parent molecules with the IRAM radio telescope

    NASA Technical Reports Server (NTRS)

    Colom, P.; Despois, D.; Paubert, G.; Bockelee-Morvan, D.; Crovisier, Jacques

    1992-01-01

    Several rotational transitions of HCN, H2S, H2CO, and CH3OH were detected in comets P/Brorsen-Metcalf 1989 X, Austin (1989c1) and Levy (1990c) with the Institute for Millimeter Radioastronomy (IRAM) 30-m radio telescope. This allows us to determine the production rates of these molecules and to probe the physical conditions of the coma.

  19. Construction of a Novel Interferometric Array of Small Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Engelhardt, Dalit; Timbie, P.

    2006-12-01

    Interferometric arrays of large numbers of antennas are under study for a variety of programs, such as the Square Kilometer Array and instruments optimized for observing the cosmic microwave background radiation. The Wisconsin Small Telescope Array for Radio-waves (WSTAR) will serve as a test of a simple and inexpensive method for building an adding interferometer with a large number of antennas. The approach creates a simple analog correlator from an ordinary receiver. Signals from each radio antenna are phase-modulated between 0 and 180 degrees at unique frequencies. The signals are added together and then enter a receiver/spectrometer. The visibilities from each baseline are decoded by phase-sensitive detection of the receiver output at the appropriate modulation frequencies. The scheme can be extended to an arbitrary number of antennas and has minimal computational requirements. WSTAR will consist of three small radio telescopes of 2.5 meter diameter which closely follow the Small Radio Telescope (SRT) design developed at the MIT Haystack Observatory. WSTAR will operate as a three-dish adding interferometer of variable spacing. The initial configuration is an equilateral triangle with 10 m spacing. At this stage, one telescope has been successfully constructed and is undergoing initial testing. Completion of the array is expected in 2007. This poster will present the adding algorithm and its significance as well as the construction details of WSTAR. This work was supported by the National Science Foundation's REU program and the Department of Defense's ASSURE program through NSF Award AST-0453442.

  20. Radio and Optical Telescopes for School Students and Professional Astronomers

    NASA Astrophysics Data System (ADS)

    Hosmer, Laura; Langston, G.; Heatherly, S.; Towner, A. P.; Ford, J.; Simon, R. S.; White, S.; O'Neil, K. L.; Haipslip, J.; Reichart, D.

    2013-01-01

    The NRAO 20m telescope is now on-line as a part of UNC's Skynet worldwide telescope network. The NRAO is completing integration of radio astronomy tools with the Skynet web interface. We present the web interface and astronomy projects that allow students and astronomers from all over the country to become Radio Astronomers. The 20 meter radio telescope at NRAO in Green Bank, WV is dedicated to public education and also is part of an experiment in public funding for astronomy. The telescope has a fantastic new web-based interface, with priority queuing, accommodating priority for paying customers and enabling free use of otherwise unused time. This revival included many software and hardware improvements including automatic calibration and improved time integration resulting in improved data processing, and a new ultra high resolution spectrometer. This new spectrometer is optimized for very narrow spectral lines, which will allow astronomers to study complex molecules and very cold regions of space in remarkable detail. In accordance with focusing on broader impacts, many public outreach and high school education activities have been completed with many confirmed future activities. The 20 meter is now a fully automated, powerful tool capable of professional grade results available to anyone in the world. Drop by our poster and try out real-time telescope control!

  1. High-precision pointing with the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Poppi, Sergio; Pernechele, Claudio; Pisanu, Tonino; Morsiani, Marco

    2010-07-01

    We present here the systems aimed to measure and minimize the pointing errors for the Sardinia Radio Telescope: they consist of an optical telescope to measure errors due to the mechanical structure deformations and a lasers system for the errors due to the subreflector displacement. We show here the results of the tests that we have done on the Medicina 32 meters VLBI radio telescope. The measurements demonstrate we can measure the pointing errors of the mechanical structure, with an accuracy of about ~1 arcsec. Moreover, we show the technique to measure the displacement of the subreflector, placed in the SRT at 22 meters from the main mirror, within +/-0.1 mm from its optimal position. These measurements show that we can obtain the needed accuracy to correct also the non repeatable pointing errors, which arise on time scale varying from seconds to minutes.

  2. Launch Will Create a Radio Telescope Larger than Earth

    NASA Astrophysics Data System (ADS)

    NASA and the National Radio Astronomy Observatory are joining with an international consortium of space agencies to support the launch of a Japanese satellite next week that will create the largest astronomical "instrument" ever built -- a radio telescope more than two-and-a-half times the diameter of the Earth that will give astronomers their sharpest view yet of the universe. The launch of the Very Long Baseline Interferometry (VLBI) Space Observatory Program (VSOP) satellite by Japan's Institute of Space and Astronautical Science (ISAS) is scheduled for Feb. 10 at 11:50 p.m. EST (1:50 p.m. Feb. 11, Japan time.) The satellite is part of an international collaboration led by ISAS and backed by Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA; the National Science Foundation's National Radio Astronomy Observatory (NRAO), Socorro, NM; the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. Very long baseline interferometry is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance between telescopes, the greater the resolving power. By taking this technique into space for the first time, astronomers will approximately triple the resolving power previously available with only ground-based telescopes. The satellite system will have resolving power almost 1,000 times greater than the Hubble Space Telescope at optical wavelengths. The satellite's resolving power is equivalent to being able to see a grain of rice in Tokyo from Los Angeles. "Using space VLBI, we can probe the cores of quasars and active galaxies, believed to be powered by super massive black holes," said Dr. Robert Preston, project scientist for the U.S. Space Very Long

  3. Radio Telescopes Will Add to Cassini-Huygens Discoveries

    NASA Astrophysics Data System (ADS)

    2004-12-01

    When the European Space Agency's Huygens spacecraft makes its plunge into the atmosphere of Saturn's moon Titan on January 14, radio telescopes of the National Science Foundation's National Radio Astronomy Observatory (NRAO) will help international teams of scientists extract the maximum possible amount of irreplaceable information from an experiment unique in human history. Huygens is the 700-pound probe that has accompanied the larger Cassini spacecraft on a mission to thoroughly explore Saturn, its rings and its numerous moons. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) The Robert C. Byrd Green Bank Telescope (GBT) in West Virginia and eight of the ten telescopes of the continent-wide Very Long Baseline Array (VLBA), located at Pie Town and Los Alamos, NM, Fort Davis, TX, North Liberty, IA, Kitt Peak, AZ, Brewster, WA, Owens Valley, CA, and Mauna Kea, HI, will directly receive the faint signal from Huygens during its descent. Along with other radio telescopes in Australia, Japan, and China, the NRAO facilities will add significantly to the information about Titan and its atmosphere that will be gained from the Huygens mission. A European-led team will use the radio telescopes to make extremely precise measurements of the probe's position during its descent, while a U.S.-led team will concentrate on gathering measurements of the probe's descent speed and the direction of its motion. The radio-telescope measurements will provide data vital to gaining a full understanding of the winds that Huygens encounters in Titan's atmosphere. Currently, scientists know little about Titan's winds. Data from the Voyager I spacecraft's 1980 flyby indicated that east-west winds may reach 225 mph or more. North-south winds and possible vertical winds, while probably much weaker, may still be significant. There are competing theoretical models of Titan's winds, and the overall picture is best summarized as

  4. Radio Telescopes "Save the Day," Produce Data on Titan's Winds

    NASA Astrophysics Data System (ADS)

    2005-02-01

    In what some scientists termed "a surprising, almost miraculous turnabout," radio telescopes, including major facilities of the National Science Foundation's National Radio Astronomy Observatory (NRAO), have provided data needed to measure the winds encountered by the Huygens spacecraft as it descended through the atmosphere of Saturn's moon Titan last month -- measurements feared lost because of a communication error between Huygens and its "mother ship" Cassini. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) A global network of radio telescopes, including the NRAO's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia and eight of the ten antennas of the Very Long Baseline Array (VLBA), recorded the radio signal from Huygens during its descent on January 14. Measurements of the frequency shift caused by the craft's motion, called Doppler shift, are giving planetary scientists their first direct information about Titan's winds. "When we began working with our international partners on this project, we thought our telescopes would be adding to the wind data produced by the two spacecraft themselves. Now, with the ground-based telescopes providing the only information about Titan's winds, we are extremely proud that our facilities are making such a key contribution to our understanding of this fascinating planetary body," said Dr. Fred K.Y. Lo, Director of the National Radio Astronomy Observatory (NRAO). Early analysis of the radio-telescope data shows that Titan's wind flows from west to east, in the direction of the moon's rotation, at all altitudes. The highest wind speed, nearly 270 mph, was measured at an altitude of about 75 miles. Winds are weak near Titan's surface and increase in speed slowly up to an altitude of about 37 miles, where the spacecraft encountered highly-variable winds that scientists think indicate a region of vertical wind shear. The ground-based Doppler

  5. Detecting cosmic rays with the LOFAR radio telescope

    NASA Astrophysics Data System (ADS)

    Schellart, P.; Nelles, A.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Frieswijk, W.; Hörandel, J. R.; Horneffer, A.; James, C. W.; Krause, M.; Mevius, M.; Scholten, O.; ter Veen, S.; Thoudam, S.; van den Akker, M.; Alexov, A.; Anderson, J.; Avruch, I. M.; Bähren, L.; Beck, R.; Bell, M. E.; Bennema, P.; Bentum, M. J.; Bernardi, G.; Best, P.; Bregman, J.; Breitling, F.; Brentjens, M.; Broderick, J.; Brüggen, M.; Ciardi, B.; Coolen, A.; de Gasperin, F.; de Geus, E.; de Jong, A.; de Vos, M.; Duscha, S.; Eislöffel, J.; Fallows, R. A.; Ferrari, C.; Garrett, M. A.; Grießmeier, J.; Grit, T.; Hamaker, J. P.; Hassall, T. E.; Heald, G.; Hessels, J. W. T.; Hoeft, M.; Holties, H. A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Klijn, W.; Kohler, J.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Macario, G.; Mann, G.; Markoff, S.; McKay-Bukowski, D.; McKean, J. P.; Miller-Jones, J. C. A.; Mol, J. D.; Mulcahy, D. D.; Munk, H.; Nijboer, R.; Norden, M. J.; Orru, E.; Overeem, R.; Paas, H.; Pandey-Pommier, M.; Pizzo, R.; Polatidis, A. G.; Renting, A.; Romein, J. W.; Röttgering, H.; Schoenmakers, A.; Schwarz, D.; Sluman, J.; Smirnov, O.; Sobey, C.; Stappers, B. W.; Steinmetz, M.; Swinbank, J.; Tang, Y.; Tasse, C.; Toribio, C.; van Leeuwen, J.; van Nieuwpoort, R.; van Weeren, R. J.; Vermaas, N.; Vermeulen, R.; Vocks, C.; Vogt, C.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.; Zensus, A.

    2013-12-01

    The low frequency array (LOFAR), is the first radio telescope designed with the capability to measure radio emission from cosmic-ray induced air showers in parallel with interferometric observations. In the first ~2 years of observing, 405 cosmic-ray events in the energy range of 1016-1018 eV have been detected in the band from 30-80 MHz. Each of these air showers is registered with up to ~1000 independent antennas resulting in measurements of the radio emission with unprecedented detail. This article describes the dataset, as well as the analysis pipeline, and serves as a reference for future papers based on these data. All steps necessary to achieve a full reconstruction of the electric field at every antenna position are explained, including removal of radio frequency interference, correcting for the antenna response and identification of the pulsed signal.

  6. The microwave holography system for the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Serra, G.; Bolli, P.; Busonera, G.; Pisanu, T.; Poppi, S.; Gaudiomonte, F.; Zacchiroli, G.; Roda, J.; Morsiani, M.; López-Pérez, J. A.

    2012-09-01

    Microwave holography is a well-established technique for mapping surface errors of large reflector antennas, particularly those designed to operate at high frequencies. We present here a holography system based on the interferometric method for mapping the primary reflector surface of the Sardinia Radio Telescope (SRT). SRT is a new 64-m-diameter antenna located in Sardinia, Italy, equipped with an active surface and designed to operate up to 115 GHz. The system consists mainly of two radio frequency low-noise coherent channels, designed to receive Ku-band digital TV signals from geostationary satellites. Two commercial prime focus low-noise block converters are installed on the radio telescope under test and on a small reference antenna, respectively. Then the signals are amplified, filtered and downconverted to baseband. An innovative digital back-end based on FPGA technology has been implemented to digitize two 5 MHz-band signals and calculate their cross-correlation in real-time. This is carried out by using a 16-bit resolution ADCs and a FPGA reaching very large amplitude dynamic range and reducing post-processing time. The final holography data analysis is performed by CLIC data reduction software developed within the Institut de Radioastronomie Millimétrique (IRAM, Grenoble, France). The system was successfully tested during several holography measurement campaigns, recently performed at the Medicina 32-m radio telescope. Two 65-by-65 maps, using an on-the-fly raster scan with on-source phase calibration, were performed pointing the radio telescope at 38 degrees elevation towards EUTELSAT 7A satellite. The high SNR (greater than 60 dB) and the good phase stability led to get an accuracy on the surface error maps better than 150 μm RMS.

  7. Astronomers Make First Images With Space Radio Telescope

    NASA Astrophysics Data System (ADS)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  8. The history of radio telescopes, 1945-1990

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T.

    2009-08-01

    Forged by the development of radar during World War II, radio astronomy revolutionized astronomy during the decade after the war. A new universe was revealed, centered not on stars and planets, but on the gas between the stars, on explosive sources of unprecedented luminosity, and on hundreds of mysterious discrete sources with no optical identifications. Using “radio telescopes” that looked nothing like traditional (optical) telescopes, radio astronomers were a very different breed from traditional (optical) astronomers. This pathbreaking of radio astronomy also made it much easier for later “astronomies” and their “telescopes” (X-ray, ultraviolet, infrared, gamma-ray) to become integrated into astronomy after the launch of the space age in the 1960s. This paper traces the history of radio telescopes from 1945 through about 1990, from the era of converted small-sized, military radar antennas to that of large interferometric arrays connected by complex electronics and computers; from the era of strip-chart recordings measured by rulers to powerful computers and display graphics; from the era of individuals and small groups building their own equipment to that of Big Science, large collaborations and national observatories.

  9. Background Information: Deciphering Gamma Ray Burst Physics With Radio Telescopes

    NASA Astrophysics Data System (ADS)

    For 30 years, Gamma Ray Bursts, now known to be the most energetic explosions in the sky, have intrigued scientists and constituted one of the greatest mysteries in astrophysics. Such basic details as their exact locations in the sky and their distances from Earth remained unknown or subject to intense debate until just last year. With the discovery of "afterglows" at X-ray, visible, infrared and radio wavelengths, scientists have been able to study the physics of these explosive fireballs for the first time. Radio telescopes, the NSF's VLA in particular, are vitally important in this quest for the answers about Gamma Ray Bursts. Planned improvements to the VLA will make it an even more valuable tool in this field. Since their first identification in 1967 by satellites orbited to monitor compliance with the atmospheric nuclear test ban, more than 2,000 Gamma Ray Bursts have been detected. The celestial positions of the bursts have only been well-localized since early 1997, when the Italian- Dutch satellite Beppo-SAX went into operation. Since Beppo-SAX began providing improved information on burst positions, other instruments, both orbiting and ground-based, have been able to study the afterglows. So far, X-ray afterglows have been seen in about a dozen bursts, visible-light afterglows in six and radio afterglows in three. The search for radio emission from Gamma Ray Bursts has been an ongoing, target-of-opportunity program at the VLA for more than four years, led by NRAO scientist Dale Frail. The detection of afterglows "opens up a new era in the studies of Gamma Ray Bursts," Princeton University theorist Bohdan Paczynski wrote in a recent scientific paper. Optical studies of GRB 970508 indicated a distance of at least seven billion light-years, the first distance measured for a Gamma Ray Burst. VLA studies of the same burst showed that the fireball was about a tenth of a light-year in diameter a few days after the explosion and that it was expanding at very

  10. Launch Will Create a Radio Telescope Larger than Earth

    NASA Astrophysics Data System (ADS)

    NASA and the National Radio Astronomy Observatory are joining with an international consortium of space agencies to support the launch of a Japanese satellite next week that will create the largest astronomical "instrument" ever built -- a radio telescope more than two-and-a-half times the diameter of the Earth that will give astronomers their sharpest view yet of the universe. The launch of the Very Long Baseline Interferometry (VLBI) Space Observatory Program (VSOP) satellite by Japan's Institute of Space and Astronautical Science (ISAS) is scheduled for Feb. 10 at 11:50 p.m. EST (1:50 p.m. Feb. 11, Japan time.) The satellite is part of an international collaboration led by ISAS and backed by Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA; the National Science Foundation's National Radio Astronomy Observatory (NRAO), Socorro, NM; the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. Very long baseline interferometry is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance between telescopes, the greater the resolving power. By taking this technique into space for the first time, astronomers will approximately triple the resolving power previously available with only ground-based telescopes. The satellite system will have resolving power almost 1,000 times greater than the Hubble Space Telescope at optical wavelengths. The satellite's resolving power is equivalent to being able to see a grain of rice in Tokyo from Los Angeles. "Using space VLBI, we can probe the cores of quasars and active galaxies, believed to be powered by super massive black holes," said Dr. Robert Preston, project scientist for the U.S. Space Very Long

  11. Performance Analysis of Paraboloidal Reflector Antennas in Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Yeap, Kim Ho; Law, Young Hui; Rizman, Zairi Ismael; Cheong, Yuen Kiat; Ong, Chu En; Chong, Kok Hen

    2013-10-01

    In this paper, we present an analysis on the performance of the three most commonly used paraboloidal reflector antennas in radio telescopes - i.e. the prime focus, Cassegrain, and Gregorian antennas. In our study, we have adopted the design parameters for the Cassegrain configuration used in the Atacama Large Millimeter Array (ALMA) project. The parameters are subsequently re-calculated so as to meet the design requirement of the Gregorian and prime focus configurations. The simulation results obtained from GRASP reveal that the prime focus configuration produces the lowest side lobes and the highest main lobe level. Such configuration, however, has the disadvantage of being highly susceptible to thermal ground noise radiation. The radiation characteristics produced by both the Cassegrain and Gregorian configurations are very close to each other. Indeed, the results show that there is no significant advantage between the two designs. Hence, we can conclude that both co! nfigurations are comparable in the application of radio telescopes.

  12. K-ART (Korea Array Radio Telescope) and Monitoring of Radio Transients

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Sook; Lim, Soon-Wook; Park, Yong-Sun

    2010-12-01

    Korea Array Radio Telescope (K-ART), a proto-type radio array telescope, is designed for 300-450 MHz wavebands. The system is located in the Jeju Island of the South Korea, and is currently in its testing mode since last mid-October 2010. It is primarily designed for monitoring solar activity and radio transients. K-ART has a capacity to monitor transients for about 2 hours per day, with a spatial resolution of about 10 minutes and a timing resolution of milliseconds. The sensitivity is expected to be a few mJy or less. We propose to monitor radio transients such as X-ray binaries, cataclysmic variables and quasars, on the target-of-opportunity mode, in addition to the scheduled observation.

  13. A Tour of the Goldstone-Apple Valley Radio Telescope

    NASA Technical Reports Server (NTRS)

    Ardenski, Brooke; Stephan, George R.

    1997-01-01

    Goldstone-Apple Valley Radio Telescope (GAVRT) is located in a remote area of the Mojave Desert, 40 miles north of Barstow, California. The antenna, identified as DSS-12, is a 34-meter diameter dish, 11 times the diameter of a ten foot microwave dish used for satellite television. DSS-12 has been used by NASA to communicate with robotic space probes for more than thirty years.

  14. The Five-Hundred Aperture Spherical Radio Telescope (fast) Project

    NASA Astrophysics Data System (ADS)

    Nan, Rendong; Li, Di; Jin, Chengjin; Wang, Qiming; Zhu, Lichun; Zhu, Wenbai; Zhang, Haiyan; Yue, Youling; Qian, Lei

    Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese mega-science project to build the largest single dish radio telescope in the world. Its innovative engineering concept and design pave a new road to realize a huge single dish in the most effective way. FAST also represents Chinese contribution in the international efforts to build the square kilometer array (SKA). Being the most sensitive single dish radio telescope, FAST will enable astronomers to jump-start many science goals, such as surveying the neutral hydrogen in the Milky Way and other galaxies, detecting faint pulsars, looking for the first shining stars, hearing the possible signals from other civilizations, etc. The idea of sitting a large spherical dish in a karst depression is rooted in Arecibo telescope. FAST is an Arecibo-type antenna with three outstanding aspects: the karst depression used as the site, which is large to host the 500-meter telescope and deep to allow a zenith angle of 40 degrees; the active main reflector correcting for spherical aberration on the ground to achieve a full polarization and a wide band without involving complex feed systems; and the light-weight feed cabin driven by cables and servomechanism plus a parallel robot as a secondary adjustable system to move with high precision. The feasibility studies for FAST have been carried out for 14 years, supported by Chinese and world astronomical communities. Funding for FAST has been approved by the National Development and Reform Commission in July of 2007 with a capital budget ~ 700 million RMB. The project time is 5.5 years from the commencement of work in March of 2011 and the first light is expected to be in 2016. This review intends to introduce the project of FAST with emphasis on the recent progress since 2006. In this paper, the subsystems of FAST are described in modest details followed by discussions of the fundamental science goals and examples of early science projects.

  15. Phase Retrieval for Radio Telescope and Antenna Control

    NASA Technical Reports Server (NTRS)

    Dean, Bruce

    2011-01-01

    Phase-retrieval is a general term used in optics to describe the estimation of optical imperfections or "aberrations." The purpose of this innovation is to develop the application of phase retrieval to radio telescope and antenna control in the millimeter wave band. Earlier techniques do not approximate the incoherent subtraction process as a coherent propagation. This approximation reduces the noise in the data and allows a straightforward application of conventional phase retrieval techniques for radio telescope and antenna control. The application of iterative-transform phase retrieval to radio telescope and antenna control is made by approximating the incoherent subtraction process as a coherent propagation. Thus, for systems utilizing both positive and negative polarity feeds, this approximation allows both surface and alignment errors to be assessed without the use of additional hardware or laser metrology. Knowledge of the antenna surface profile allows errors to be corrected at a given surface temperature and observing angle. In addition to imperfections of the antenna surface figure, the misalignment of multiple antennas operating in unison can reduce or degrade the signal-to-noise ratio of the received or broadcast signals. This technique also has application to the alignment of antenna array configurations.

  16. Teaching Astronomy at Columbus State University using Small Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Webster, Zodiac T.

    2006-12-01

    Astronomy is inherently fascinating to students but dark skies and good weather are not often scheduled during the school day. Radio telescopes provide an all-weather, all-day opportunity for astronomical observations. Columbus State University (CSU) has installed two “Small Radio Telescopes” for use by undergraduate students to pursue extra-curricular research in introductory astronomy. These telescopes are relatively affordable and are designed to be remotely operated through a Windows, Linux, or Macintosh environment. They are capable of diffraction-limited observations of the Sun and galactic Hydrogen in the ‘L-band’. A comprehensive website of projects suitable for high-school students and undergraduates is maintained by a group at MIT. This website ensures users are not left to explore the telescope’s abilities blindly. Students with varied interests learn about the nature of science by using an instrument that doesn’t lend itself to pretty pictures. Radio telescopes also provide a slight engineering flavor drawing in students who might not otherwise be interested in astronomy. This poster will provide a summary of installation, calibration, and future plans, and will share some observations by undergraduates at CSU.

  17. SETI reloaded: Next generation radio telescopes, transients and cognitive computing

    NASA Astrophysics Data System (ADS)

    Garrett, Michael A.

    2015-08-01

    The Search for Extra-terrestrial Intelligence (SETI) using radio telescopes is an area of research that is now more than 50 years old. Thus far, both targeted and wide-area surveys have yet to detect artificial signals from intelligent civilisations. In this paper, I argue that the incidence of co-existing intelligent and communicating civilisations is probably small in the Milky Way. While this makes successful SETI searches a very difficult pursuit indeed, the huge impact of even a single detection requires us to continue the search. A substantial increase in the overall performance of radio telescopes (and in particular future wide-field instruments such as the Square Kilometre Array - SKA), provide renewed optimism in the field. Evidence for this is already to be seen in the success of SETI researchers in acquiring observations on some of the world's most sensitive radio telescope facilities via open, peer-reviewed processes. The increasing interest in the dynamic radio sky, and our ability to detect new and rapid transient phenomena such as Fast Radio Bursts (FRB) is also greatly encouraging. While the nature of FRBs is not yet fully understood, I argue they are unlikely to be the signature of distant extra-terrestrial civilisations. As astronomers face a data avalanche on all sides, advances made in related areas such as advanced Big Data analytics, and cognitive computing are crucial to enable serendipitous discoveries to be made. In any case, as the era of the SKA fast approaches, the prospects of a SETI detection have never been better.

  18. The control software for the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Orlati, A.; Buttu, M.; Melis, A.; Migoni, C.; Poppi, S.; Righini, S.

    2012-09-01

    The Sardinia Radio Telescope (SRT) is a new 64-meter shaped antenna designed to carry out observations up to 100 GHz. This large instrument has been built in Sardinia, 35 km north of Cagliari, and is now facing the technical commissioning phase. This paper describes the architecture, the implementation solutions and the development status of NURAGHE, the SRT control software. Aim of the project was to produce a software which is reliable, easy to keep up to date and flexible against other telescopes. The most ambitious goal will be to install NURAGHE at all the three italian radio telescopes, allowing the astronomers to access these facilities through a common interface with very limited extra effort. We give a description of all the control software subsystems (servo systems, backends, receivers, etc.) focusing on the resulting design, which is based on the ACS (Alma Common Software) patterns and comes from linux-based, LGPL, Object-Oriented development technologies. We also illustrate how NURAGHE deals with higher level requirements, coming from the telescope management or from the system users.

  19. Observations of supernova remnants with the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Egron, E.; Pellizzoni, A.; Loru, S.; Iacolina, M. N.; Marongiu, M.; Righini, S.; Mulas, S.; Murtas, G.; Bachetti, M.; Concu, R.; Melis, A.; Trois, A.; Ricci, R.; Pilia, M.

    2016-06-01

    In the frame of the Astronomical Validation activities for the 64m Sardinia Radio Telescope, we performed 5-22 GHz imaging observations of the complex-morphology supernova remnants (SNRs) W44 and IC443. We adopted innovative observing and mapping techniques providing unprecedented accuracy for single-dish imaging of SNRs at these frequencies, revealing morphological details typically available only at lower frequencies through interferometry observations. High-frequency studies of SNRs in the radio range are useful to better characterize the spatially-resolved spectra and the physical parameters of different regions of the SNRs interacting with the ISM. Furthermore, synchrotron-emitting electrons in the high-frequency radio band are also responsible for the observed high-energy phenomenology as -e.g.- Inverse Compton and bremsstrahlung emission components observed in gamma-rays, to be disentangled from hadron emission contribution (providing constraints on the origin of cosmic rays).

  20. Youngest Radio Pulsar Revealed with Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    2002-04-01

    Astronomers using the National Science Foundation's (NSF) newly commissioned Robert C. Byrd Green Bank Telescope (GBT) have detected remarkably faint radio signals from an 820 year-old pulsar, making it the youngest radio-emitting pulsar known. This discovery pushes the boundaries of radio telescope sensitivity for discovering pulsars, and will enable scientists to conduct observations that could lead to a better understanding of how these stars evolve. The Robert C. Byrd Green Bank Telescope Robert C. Byrd Green Bank Telescope "Important questions about pulsars may be answered by long-term monitoring of objects such as the one we just detected," said Fernando Camilo of Columbia University in New York City. "Young pulsars are particularly rare, and being able to study such a young one at radio wavelengths provides an outstanding opportunity to learn critical facts about their evolution and workings." The results of this research, based on observations conducted on February 22-23, 2002, were accepted for publication in the Astrophysical Journal Letters. Scientists have long suspected that a pulsar - a rapidly spinning, superdense neutron star - was born when a giant star ended its life in a cataclysmic supernova explosion observed in late summer of 1181, as suggested by Japanese and Chinese historical records. For the past 20 years, astronomers have searched this supernova remnant (3C58), located 10,000 light-years away in the constellation Cassiopeia, for the telltale pulsations of a newly born pulsar. Late in 2001, data from NASA's Chandra X-ray satellite confirmed its existence, but it remained an elusive quarry for radio telescopes. "We believed from historical records and certainly knew from recent X-ray observations that this star was there," Camilo remarked, "but despite many attempts, no one had been able to find any radio pulsations from it because the signals are, it turns out, incredibly weak." For comparison, this pulsar's radio emission is some 250

  1. Solar and Planetary Observations with a Lunar Radio Telescope

    NASA Astrophysics Data System (ADS)

    Kassim, N.; Weiler, K. W.; Lazio, J. W.; MacDowall, R. J.; Jones, D. L.; Bale, S. D.; Demaio, L.; Kasper, J. C.

    2006-05-01

    Ground-based radio telescopes cannot observe at frequencies below about 10 MHz (wavelengths longer than 30 m) because of ionospheric absorption. The Lunar Imaging Radio Array (LIRA) is a mission concept in which an array of radio telescopes is deployed on the Moon, as part of the Vision for Space Exploration, with the aim of extending radio observations to lower frequencies than are possible from the Earth. LIRA would provide the capability for dedicated monitoring of solar and planetary bursts as well as the search for magnetospheric emissions from extrasolar planets. The highest sensitivity observations can be accomplished by locating LIRA on the far side of the Moon. The array would be composed of 10-12 radial arms, each 1-2 km in length. Each arm would have several hundred dipole antennas and feedlines printed on a very thin sheet of kapton with a total mass of about 300 kg. This would provide a convenient way to deploy thousands of individual antennas and a centrally condensed distribution of array baselines. The lunar farside provides shielding from terrestrial natural and technological radio interference and freedom from the corrupting influence of Earth's ionosphere. This paper will describe the science case for LIRA as well as various options for array deployment and data transmission to Earth. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Basic research in radio astronomy at the NRL is supported by the Office of Naval Research.

  2. The UTMOST - rebirth of the Molonglo Radio Telescope

    NASA Astrophysics Data System (ADS)

    Green, Anne J.; Flynn, Chris

    2015-08-01

    The Molongo Radio Telescope, a large cylindrical paraboloid interferometer located near Canberra in Australia, has been redeveloped with a digital receiver system and optic fibre transmission network leading to a hybrid signal processor incorporating a GPU supercomputer and programmable-logic chip based filterbanks. Data rates up to 22 Gbytes/sec will be processed in real-time. The new configuration is 10 times more efficient than the previous system with substantially increased sensitivity and bandwidth (centred on 843 MHz) and a field of view of about 8 square degrees. The mechanical infrastructure has been retained; hence the angular resolution remains at 43 arcsec. The key science goals of the new instrument include increasing the Fast Radio Burst discovery rate by an order of magnitude or more over our long term rate with the Parkes Telescope, pulsar timing and commensal imaging of diffuse radio sources. Novel methods of RFI excision have been demonstrated. The talk will present the elements of the new system and some recent science results.

  3. Engineering and science highlights of the KAT-7 radio telescope

    NASA Astrophysics Data System (ADS)

    Foley, A. R.; Alberts, T.; Armstrong, R. P.; Barta, A.; Bauermeister, E. F.; Bester, H.; Blose, S.; Booth, R. S.; Botha, D. H.; Buchner, S. J.; Carignan, C.; Cheetham, T.; Cloete, K.; Coreejes, G.; Crida, R. C.; Cross, S. D.; Curtolo, F.; Dikgale, A.; de Villiers, M. S.; du Toit, L. J.; Esterhuyse, S. W. P.; Fanaroff, B.; Fender, R. P.; Fijalkowski, M.; Fourie, D.; Frank, B.; George, D.; Gibbs, P.; Goedhart, S.; Grobbelaar, J.; Gumede, S. C.; Herselman, P.; Hess, K. M.; Hoek, N.; Horrell, J.; Jonas, J. L.; Jordaan, J. D. B.; Julie, R.; Kapp, F.; Kotzé, P.; Kusel, T.; Langman, A.; Lehmensiek, R.; Liebenberg, D.; Liebenberg, I. J. V.; Loots, A.; Lord, R. T.; Lucero, D. M.; Ludick, J.; Macfarlane, P.; Madlavana, M.; Magnus, L.; Magozore, C.; Malan, J. A.; Manley, J. R.; Marais, L.; Marais, N.; Marais, S. J.; Maree, M.; Martens, A.; Mokone, O.; Moss, V.; Mthembu, S.; New, W.; Nicholson, G. D.; van Niekerk, P. C.; Oozeer, N.; Passmoor, S. S.; Peens-Hough, A.; Pińska, A. B.; Prozesky, P.; Rajan, S.; Ratcliffe, S.; Renil, R.; Richter, L. L.; Rosekrans, D.; Rust, A.; Schröder, A. C.; Schwardt, L. C.; Seranyane, S.; Serylak, M.; Shepherd, D. S.; Siebrits, R.; Sofeya, L.; Spann, R.; Springbok, R.; Swart, P. S.; Thondikulam, Venkatasubramani L.; Theron, I. P.; Tiplady, A.; Toruvanda, O.; Tshongweni, S.; van den Heever, L.; van der Merwe, C.; van Rooyen, R.; Wakhaba, S.; Walker, A. L.; Welz, M.; Williams, L.; Wolleben, M.; Woudt, P. A.; Young, N. J.; Zwart, J. T. L.

    2016-08-01

    The construction of the seven-dish Karoo Array Telescope (KAT-7) array in the Karoo region of the Northern Cape in South Africa was intended primarily as an engineering prototype for technologies and techniques applicable to the MeerKAT telescope. This paper looks at the main engineering and scientific highlights from this effort, and discusses their applicability to both MeerKAT and other next-generation radio telescopes. In particular, we found that the composite dish surface works well, but it becomes complicated to fabricate for a dish lacking circular symmetry; the Stirling cycle cryogenic system with ion pump to achieve vacuum works but demands much higher maintenance than an equivalent Gifford-McMahon cycle system; the ROACH (Reconfigurable Open Architecture Computing Hardware)-based correlator with SPEAD (Streaming Protocol for Exchanging Astronomical Data) protocol data transfer works very well and KATCP (Karoo Array Telescope Control Protocol) control protocol has proven very flexible and convenient. KAT-7 has also been used for scientific observations where it has a niche in mapping low surface-brightness continuum sources, some extended H I haloes and OH masers in star-forming regions. It can also be used to monitor continuum source variability, observe pulsars, and make Very Long Baseline Interferometry observations.

  4. Computer-aided structural design of a lunar radio telescope

    NASA Technical Reports Server (NTRS)

    Akgul, Ferhat; Gerstle, Walter H.; Johnson, Stewart W.

    1990-01-01

    This paper describes a computer-aided structural design of the main reflector of a fully steerable radio telescope to be located (in the 21st century) on the moon, and presents the results of the structural analysis of the reflector. The reflector is a paraboloid with a surface area of 12,660 sq m and a focal ratio of 0.42. The reflector's surface will be covered by a 5.08 cm-thick sandwich panel made of thin-walled aluminum cells filled with low-density foam. The low weight of the design will be achieved by using graphite-epoxy as the structural material.

  5. Foundation design for a radio telescope on the moon

    NASA Technical Reports Server (NTRS)

    Chua, Koon Meng; Johnson, Stewart W.; Yuan, Zehong

    1990-01-01

    A foundation design for a 122 m diameter dish-type radio telescope on the moon is presented. The 1.2 m wide and 43 m diameter circular strip footing was analyzed for settlement due to compaction during installation and also for total and differential settlement under in-service laods. An axisymmetrical finite element code of the uppdated Lagrangian formulation was used. Interface slip elements were also used. The nonlinear hyperbolic stress-strain model parameters for the regolith were derived from load-deflection characteristics of astronauts' bootprints and the Rover tracks.

  6. A METHOD TO IMPROVE THE SENSITIVITY OF RADIO TELESCOPES

    SciTech Connect

    Lieu, Richard; Duan, Lingze; Kibble, T. W. B.

    2015-01-10

    As an extension of the ideas of Hanbury-Brown and Twiss, a method is proposed to eliminate the phase noise of white chaotic light in the regime where it is dominant, and to measure the much smaller Poisson fluctuations from which the incoming flux can be reconstructed. The best effect is achieved when the timing resolution is finer than the inverse bandwidth of the spectral filter. There may be applications to radio astronomy at the phase noise dominated frequencies of 1-10 GHz, in terms of potentially increasing the sensitivity of telescopes by an order of magnitude.

  7. Short History of Fixed-Reflector Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Strom, R. G.

    2016-02-01

    From the 66 m parabolic reflector built in 1947 at Jodrell Bank to the 305 m Arecibo dish completed nearly two decades later, radio astronomers in the early days experimented with fixed reflecting mirrors to achieve large collecting areas. In this brief history I will consider the over half-dozen such instruments (of which I am aware) built by 1970, and their main achievements. I will discuss the likely reasons for the success of some of these telescopes, as well as their short-comings, and the lessons for future instruments like FAST.

  8. A refracting radio telescope. [using ionosphere as lens

    NASA Technical Reports Server (NTRS)

    Bernhardt, P.; Da Rosa, A. V.

    1977-01-01

    Observations of extraterrestrial radio sources at the lower end of the radio frequency spectrum are limited by reflection of waves from the topside ionosphere and by the large size of antenna apertures necessary for the realization of narrow beamwidths. The use of the ionosphere as a lens is considered. The lens is formed by the release of chemicals such as H2 and H2O at the F2-layer peak. These chemicals promote dissociative recombination of O(+) in the ionosphere resulting in a local reduction in plasma density. Gradients in electron density in the vicinity of the gas release tend to focus rays propagating through the depleted region. Preliminary calculations indicate that a lens capable of focusing cosmic radio waves in the 1 to 10 MHz frequency range may be produced by the release of 100 kg of H2 at the peak of the nighttime F layer. The beamwidth of a refracting radio telescope using this lens may be less than 1/5 degree.

  9. Design and Construction of a Radio Telescope for Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Stathis, Christopher

    2011-03-01

    Radio telescopes provide a practical and economical alternative to optical observatories for astrophysics research and education at primarily undergraduate physics and astronomy institutions. Ithaca College is in the testing phase of development for a low cost, flexible frequency band radio telescope which I have developed as the research component of my undergraduate thesis. I have constructed a three-stage low noise superheterodyne radiometer on custom printed circuit boards for signal detection, which is mounted on a 3 meter parabolic antenna. Data collection and signal processing is achieved using custom software written in MATLAB. We are currently performing preliminary drift continuum observations of the Sun and Milky Way at Ku band frequencies. We expect that the receiver can also be easily adapted to measure spectral emission of neutral hydrogen and OH masers at L band. I present my design methods for the radiometer and printed circuit boards, including measured noise characteristics and SPICE simulations, as well as an overview of applied signal processing methods and a discussion of observable celestial sources.

  10. The Nançay Radio Telescope Archive

    NASA Astrophysics Data System (ADS)

    Theureau, G.; Martin, J.-M.; Cognard, I.; Borsenberger, J.

    2006-07-01

    The Nançay radio telescope (NRT) is a national facility, the fourth single-dish instrument in the world for its collecting area. It provides spectral and/or continuum data in the frequency range 1.06 to 3.5 GHz, and covers various scientific fields in solar system astronomy (comets, planets...), galactic astronomy (pulsars, late type stars, star forming regions, microquasars...) and extragalactic astronomy (HI in galaxies, large scale structure of the universe, quasars...). Two on-line databases {http://klun.obs-nancay.fr} and a general archive are being designed to fullfill the VO standards: HIG (HI profiles of Galaxies) contains reduced 1-D 21-cm spectra for ˜4500 galaxies; NAP (Nançay Archive of Pulsars) provides a few thousand pulse profiles from regular timing observations of ˜40 pulsars; NRTA (Nançay Radio Telescope Archive) will host all NRT data from the backends (correlator, digital spectrometer and pulsar dedispersors). Most of the data consist of dynamical spectra (time-frequency domain). The package which is used for the database management and for the data-processing pipeline is the Pleinpot software, which has been developed for the hyperleda database {http://leda.univ-lyon1.fr/install/mirror.html}.

  11. A database of phase calibration sources and their radio spectra for the Giant Metrewave Radio Telescope

    NASA Astrophysics Data System (ADS)

    Lal, Dharam V.; Dubal, Shilpa S.; Sherkar, Sachin S.

    2016-10-01

    We are pursuing a project to build a database of phase calibration sources suitable for Giant Metrewave Radio Telescope (GMRT). Here we present the first release of 45 low frequency calibration sources at 235 MHz and 610 MHz. These calibration sources are broadly divided into quasars, radio galaxies and unidentified sources. We provide their flux densities, models for calibration sources, (u,v) plots, final deconvolved restored maps and uc(clean)-component lists/files for use in the Astronomical Image Processing System (uc(aips)) and the Common Astronomy Software Applications (uc(casa)). We also assign a quality factor to each of the calibration sources. These data products are made available online through the GMRT observatory website. In addition we find that (i) these 45 low frequency calibration sources are uniformly distributed in the sky and future efforts to increase the size of the database should populate the sky further, (ii) spectra of these calibration sources are about equally divided between straight, curved and complex shapes, (iii) quasars tend to exhibit flatter radio spectra as compared to the radio galaxies or the unidentified sources, (iv) quasars are also known to be radio variable and hence possibly show complex spectra more frequently, and (v) radio galaxies tend to have steeper spectra, which are possibly due to the large redshifts of distant galaxies causing the shift of spectrum to lower frequencies.

  12. A radio telescope for the calibration of radio sources at 32 gigahertz

    NASA Technical Reports Server (NTRS)

    Gatti, M. S.; Stewart, S. R.; Bowen, J. G.; Paulsen, E. B.

    1994-01-01

    A 1.5-m-diameter radio telescope has been designed, developed, and assembled to directly measure the flux density of radio sources in the 32-GHz (Ka-band) frequency band. The main goal of the design and development was to provide a system that could yield the greatest absolute accuracy yet possible with such a system. The accuracy of the measurements have a heritage that is traceable to the National Institute of Standards and Technology. At the present time, the absolute accuracy of flux density measurements provided by this telescope system, during Venus observations at nearly closest approach to Earth, is plus or minus 5 percent, with an associated precision of plus or minus 2 percent. Combining a cooled high-electron mobility transistor low-noise amplifier, twin-beam Dicke switching antenna, and accurate positioning system resulted in a state-of-the-art system at 32 GHz. This article describes the design and performance of the system as it was delivered to the Owens Valley Radio Observatory to support direct calibrations of the strongest radio sources at Ka-band.

  13. Radio Telescopes Provide Key Clue on Black Hole Growth

    NASA Astrophysics Data System (ADS)

    2007-01-01

    Astronomers have discovered the strongest evidence yet found indicating that matter is being ejected by a medium-sized black hole, providing valuable insight on a process that may have been key to the development of larger black holes in the early Universe. The scientists combined the power of all the operational telescopes of the National Science Foundation's National Radio Astronomy Observatory (NRAO) to peer deep into the heart of the galaxy NGC 4395, 14 million light-years from Earth in the direction of the constellation Canes Venatici. NGC 4395 Core VLBI image of extended radio emission from core of NGC 4395, indicating suspected outflow powered by black hole CREDIT: Wrobel & Ho, NRAO/AUI/NSF Click on image for larger file Optical (visible light) image of NGC 4395 See here for detail and credit information for optical image. "We are seeing in this relatively nearby galaxy a process that may have been responsible for building intermediate-mass black holes into supermassive ones in the early Universe," said Joan Wrobel, an NRAO scientist in Socorro, NM. Wrobel and Luis Ho of the Observatories of the Carnegie Institution of Washington in Pasadena, CA, presented their findings to the American Astronomical Society's meeting in Seattle, WA. Black holes are concentrations of matter so dense that not even light can escape their powerful gravitational pull. The black hole in NGC 4395 is about 400,000 times more massive than the Sun. This puts it in a rarely-seen intermediate range between the supermassive black holes at the cores of many galaxies, which have masses millions to billions of times that of the Sun, and stellar-mass black holes only a few times more massive than the Sun. Energetic outflows of matter are common to both the supermassive and the stellar-mass black holes, but the new radio observations of NGC 4395 provided the first direct image of such a suspected outflow from an intermediate-mass black hole. The outflows presumably are generated by little

  14. Precise Radio-Telescope Measurements Advance Frontier Gravitational Physics

    NASA Astrophysics Data System (ADS)

    2009-09-01

    Scientists using a continent-wide array of radio telescopes have made an extremely precise measurement of the curvature of space caused by the Sun's gravity, and their technique promises a major contribution to a frontier area of basic physics. "Measuring the curvature of space caused by gravity is one of the most sensitive ways to learn how Einstein's theory of General Relativity relates to quantum physics. Uniting gravity theory with quantum theory is a major goal of 21st-Century physics, and these astronomical measurements are a key to understanding the relationship between the two," said Sergei Kopeikin of the University of Missouri. Kopeikin and his colleagues used the National Science Foundation's Very Long Baseline Array (VLBA) radio-telescope system to measure the bending of light caused by the Sun's gravity to an accuracy of 0.03 percent. With further observations, the scientists say their precision technique can make the most accurate measure ever of this phenomenon. Bending of starlight by gravity was predicted by Albert Einstein when he published his theory of General Relativity in 1916. According to relativity theory, the strong gravity of a massive object such as the Sun produces curvature in the nearby space, which alters the path of light or radio waves passing near the object. The phenomenon was first observed during a solar eclipse in 1919. Though numerous measurements of the effect have been made over the intervening 90 years, the problem of merging General Relativity and quantum theory has required ever more accurate observations. Physicists describe the space curvature and gravitational light-bending as a parameter called "gamma." Einstein's theory holds that gamma should equal exactly 1.0. "Even a value that differs by one part in a million from 1.0 would have major ramifications for the goal of uniting gravity theory and quantum theory, and thus in predicting the phenomena in high-gravity regions near black holes," Kopeikin said. To make

  15. Embracing the Wave: Using the Very Small Radio Telescope to Teach Students about Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Fish, Vincent L.; Needles, M. M.; Rogers, A. E. E.; Doherty, M.; Minnigh, S.; Arndt, M. B.; Pratap, P.

    2010-01-01

    The Very Small Radio Telescope (VSRT) is a low-cost educational tool appropriate for laboratory demonstrations of the nature of radio waves and the principles of interferometry for use in both high school and undergraduate physics/astronomy classes. The system consists of small direct broadcast antenna dishes and other commercially available parts and can be assembled for under $500. Complete teaching units have been developed and tested by high school physics teachers to demonstrate radio wave transmission and exponential absorption though materials (Beer's law), the polarization of electromagnetic waves (Malus' law), the inverse square law, and interferometry. These units can be used to explore the properties of electromagnetic waves, including similarities and differences between radio and visible light, while challenging students' misconceptions about a wavelength regime that is important to both astronomy and everyday life. In addition, the VSRT can be used as a radio astronomical interferometer to measure the diameter of the Sun at 12 GHz. Full details, including a parts list, comprehensive assembly instructions, informational memos, teaching units, software, and conformance to national and Massachusetts educational standards, are available on the web at http://www.haystack.mit.edu/edu/undergrad/VSRT/index.html . Development of the VSRT at MIT Haystack Observatory is made possible through funding provided by the National Science Foundation.

  16. Radio Telescopes to Keep Sharp Eye on Mars Lander

    NASA Astrophysics Data System (ADS)

    2008-05-01

    As NASA's Phoenix Mars Lander descends through the Red Planet's atmosphere toward its landing on May 25, its progress will be scrutinized by radio telescopes from the National Radio Astronomy Observatory (NRAO). At NRAO control rooms in Green Bank, West Virginia, and Socorro, New Mexico, scientists, engineers and technicians will be tracking the faint signal from the lander, 171 million miles from Earth. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF To make a safe landing, Phoenix must make a risky descent, slowing down from nearly 13,000 mph at the top of the Martian atmosphere to only 5 mph in the final seconds before touchdown. NASA officials point out that fewer than half of all Mars landing missions have been successful, but the scientific rewards of success are worth the risk. Major events in the spacecraft's atmospheric entry, descent and landing will be marked by changes in the Doppler Shift in the frequency of the vehicle's radio signal. Doppler Shift is the change in frequency caused by relative motion between the transmitter and receiver. At Green Bank, NRAO and NASA personnel will use the giant Robert C. Byrd Green Bank Telescope (GBT) to follow the Doppler changes and verify that the descent is going as planned. The radio signal from Phoenix is designed to be received by other spacecraft in Mars orbit, then relayed to Earth. However, the GBT, a dish antenna with more than two acres of collecting surface and highly-sensitive receivers, can directly receive the transmissions from Phoenix. "We'll see the frequency change as Phoenix slows down in the Martian atmosphere, then there will be a big change when the parachute deploys," said NRAO astronomer Frank Ghigo. When the spacecraft's rocket thrusters slow it down for its final, gentle touchdown, its radio frequency will stabilize, Ghigo said. "We'll have confirmation of these major events through our direct reception several seconds earlier than the controllers at NASA's Jet Propulsion

  17. Lunar Radio Telescopes: A Staged Approach for Lunar Science, Heliophysics, Astrobiology, Cosmology, and Exploration

    NASA Technical Reports Server (NTRS)

    Lazio, Joseph; Bowman, Judd D.; Burns, Jack O.; Farrell, W. M.; Jones, D. L.; Kasper, J. C.; MacDowall, R. J.; Stewart, K. P.; Weiler, K.

    2012-01-01

    Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. The instrument packages and infrastructure needed for radio telescopes can be transported and deployed as part of Exploration activities, and the resulting science measurements may inform Exploration (e.g., measurements of lunar surface charging). An illustrative roadmap for the staged deployment of lunar radio telescopes

  18. Diving into the Sardinia Radio Telescope minor servo system

    NASA Astrophysics Data System (ADS)

    Buttu, M.; Orlati, A.; Zacchiroli, G.; Morsiani, M.; Fiocchi, F.; Buffa, F.; Maccaferri, G.; Vargiu, G. P.; Migoni, C.; Poppi, S.; Righini, S.; Melis, A.

    2012-09-01

    The Sardinia Radio Telescope (SRT) is a new 64-metre, Gregorian-shaped antenna built in Sardinia (Italy). It is designed to carry out observations up to 100 GHz. The telescope is provided with six focal positions: primary, Gregorian and four beam-waveguide foci. This paper describes the project of the servo system which allows the focus and receiver selection during the instrument setup. This system also operates, at the observation stage, the compensation of some of the stucture deformations due to gravity, temperature variations and other environmental effects. We illustrate the system features following a bottom-up approach, analysing all the project layers ranging from low-level systems, as the hardware controls, to the design and implementation of high-level software, which is based on the distributed objects ACS (ALMA Common Software) framework. Particular focus will be put on the links among the hierarchical levels of the system, and on the solutions adopted in order to guarantee that the control of the servo system is abstracted from the underlying hardware.

  19. Metric Observations of Saturn with the Giant Metrewave Radio Telescope

    NASA Astrophysics Data System (ADS)

    Courtin, R.; Pandey-Pommier, M.; Gautier, D.; Zarka, P.; Hofstadter, M.; Hersant, F.; Girard, J.

    2015-12-01

    We used the Giant Metrewave Radio Telescope (GMRT, India) to observe Saturn in the metric domain – at 0.49 m (610 MHz), 1.28 m (235 MHz), and 2.0 m (150 MHz) -with the aim of constraining the deep atmospheric ammonia and water vapor concentrations around 10-20 kbar. We have obtained a clean detection at 610 MHz, with a disk brightness temperature Tb= 216 ± 32 K, and no significant emission outside of the disk, thus confirming model predictions about the weakness of synchrotron radiation by magnetospheric electrons (Lorenzato et al. 2012, Lorenzato et al. 2012). A marginal detection was obtained at 235 MHz, with Tb= 404 ± 249 K, while an upper limit of 1210 K was set at 150 MHz. Unfortunately, some of the GMRT measurements were affected by strong ionospheric scintillation or radio frequency interferences (RFI). Although the reduction of the LOFAR measurements is much more complex, results are expected in the near future and they will complement nicely with those obtained with the GMRT. We will discuss the constraints resulting from these observations on Saturn's deep atmospheric composition.

  20. Thermal behavior of the Medicina 32-meter radio telescope

    NASA Astrophysics Data System (ADS)

    Pisanu, Tonino; Buffa, Franco; Morsiani, Marco; Pernechele, Claudio; Poppi, Sergio

    2010-07-01

    We studied the thermal effects on the 32 m diameter radio-telescope managed by the Institute of Radio Astronomy (IRA), Medicina, Bologna, Italy. The preliminary results show that thermal gradients deteriorate the pointing performance of the antenna. Data has been collected by using: a) two inclinometers mounted near the elevation bearing and on the central part of the alidade structure; b) a non contact laser alignment optical system capable of measuring the secondary mirror position; c) twenty thermal sensors mounted on the alidade trusses. Two series of measurements were made, the first series was performed by placing the antenna in stow position, the second series was performed while tracking a circumpolar astronomical source. When the antenna was in stow position we observed a strong correlation between the inclinometer measurements and the differential temperature. The latter was measured with the sensors located on the South and North sides of the alidade, thus indicating that the inclinometers track well the thermal deformation of the alidade. When the antenna pointed at the source we measured: pointing errors, the inclination of the alidade, the temperature of the alidade components and the subreflector position. The pointing errors measured on-source were 15-20 arcsec greater than those measured with the inclinometer.

  1. Saving a Radio Telescope...or...Kids Can Make a Difference.

    ERIC Educational Resources Information Center

    Leach, Susan

    1985-01-01

    Students at Jones Middle School (Upper Arlington, Ohio) became involved when a nearby radio telescope was threatened by a land sale. Students not only learned about the basics of telescope use but also wrote to various local and national officials to "save the telescope." (DH)

  2. Radio Telescope Reveals Secrets of Massive Black Hole

    NASA Astrophysics Data System (ADS)

    2008-04-01

    . As the material moves from the outer edge of the disk inward, magnetic field lines perpendicular to the disk are twisted, forming a tightly-coiled bundle that, astronomers believe, propels and confines the ejected particles. Closer to the black hole, space itself, including the magnetic fields, is twisted by the strong gravitational pull and rotation of the black hole. Theorists predicted that material moving outward in this close-in acceleration region would follow a corkscrew-shaped path inside the bundle of twisted magnetic fields. They also predicted that light and other radiation emitted by the moving material would brighten when its rotating path was aimed most directly toward Earth. Marscher and his colleagues predicted there would also be a flare later when the material hits a stationary shock wave called the "core" some time after it has emerged from the acceleration region. "That behavior is exactly what we saw," Marscher said, when his team followed an outburst from BL Lac. In late 2005 and early 2006, the astronomers watched BL Lac with an international collection of telescopes as a knot of material was ejected outward through the jet. As the material sped out from the neighborhood of the black hole, the VLBA could pinpoint its location, while other telescopes measured the properties of the radiation emitted from the knot. Bright bursts of light, X-rays, and gamma rays came when the knot was precisely at locations where the theories said such bursts would be seen. In addition, the alignment of the radio and light waves -- a property called polarization -- rotated as the knot wound its corkscrew path inside the tight throat of twisted magnetic fields. "We got an unprecedented view of the inner portion of one of these jets and gained information that's very important to understanding how these tremendous particle accelerators work," Marscher said. In addition to the continent-wide VLBA, an array of 10 radio telescopes spread from Hawaii to the Virgin

  3. Space-based radio telescopes and an orbiting deep-space relay station

    NASA Technical Reports Server (NTRS)

    Powell, R. V.

    1979-01-01

    Foremost among the candidates for early utilization of the Shuttle-launched self-deployable structures are the space-based radio telescopes. Several space-based telescopes are examined including an orbiting VLBI terminal, an orbiting submillimeter telescope, and a large ambient deployable IR telescope. Particular consideration is given to the high-gain Orbiting Deep-Space Relay Station for communication with deep-space probes. Details of deployable antenna technology are discussed.

  4. Initial Results Obtained with the First TWIN VLBI Radio Telescope at the Geodetic Observatory Wettzell.

    PubMed

    Schüler, Torben; Kronschnabl, Gerhard; Plötz, Christian; Neidhardt, Alexander; Bertarini, Alessandra; Bernhart, Simone; la Porta, Laura; Halsig, Sebastian; Nothnagel, Axel

    2015-01-01

    Geodetic Very Long Baseline Interferometry (VLBI) uses radio telescopes as sensor networks to determine Earth orientation parameters and baseline vectors between the telescopes. The TWIN Telescope Wettzell 1 (TTW1), the first of the new 13.2 m diameter telescope pair at the Geodetic Observatory Wettzell, Germany, is currently in its commissioning phase. The technology behind this radio telescope including the receiving system and the tri-band feed horn is depicted. Since VLBI telescopes must operate at least in pairs, the existing 20 m diameter Radio Telescope Wettzell (RTW) is used together with TTW1 for practical tests. In addition, selected long baseline setups are investigated. Correlation results portraying the data quality achieved during first initial experiments are discussed. Finally, the local 123 m baseline between the old RTW telescope and the new TTW1 is analyzed and compared with an existing high-precision local survey. Our initial results are very satisfactory for X-band group delays featuring a 3D distance agreement between VLBI data analysis and local ties of 1 to 2 mm in the majority of the experiments. However, S-band data, which suffer much from local radio interference due to WiFi and mobile communications, are about 10 times less precise than X-band data and require further analysis, but evidence is provided that S-band data are well-usable over long baselines where local radio interference patterns decorrelate. PMID:26263991

  5. Initial Results Obtained with the First TWIN VLBI Radio Telescope at the Geodetic Observatory Wettzell

    PubMed Central

    Schüler, Torben; Kronschnabl, Gerhard; Plötz, Christian; Neidhardt, Alexander; Bertarini, Alessandra; Bernhart, Simone; la Porta, Laura; Halsig, Sebastian; Nothnagel, Axel

    2015-01-01

    Geodetic Very Long Baseline Interferometry (VLBI) uses radio telescopes as sensor networks to determine Earth orientation parameters and baseline vectors between the telescopes. The TWIN Telescope Wettzell 1 (TTW1), the first of the new 13.2 m diameter telescope pair at the Geodetic Observatory Wettzell, Germany, is currently in its commissioning phase. The technology behind this radio telescope including the receiving system and the tri-band feed horn is depicted. Since VLBI telescopes must operate at least in pairs, the existing 20 m diameter Radio Telescope Wettzell (RTW) is used together with TTW1 for practical tests. In addition, selected long baseline setups are investigated. Correlation results portraying the data quality achieved during first initial experiments are discussed. Finally, the local 123 m baseline between the old RTW telescope and the new TTW1 is analyzed and compared with an existing high-precision local survey. Our initial results are very satisfactory for X-band group delays featuring a 3D distance agreement between VLBI data analysis and local ties of 1 to 2 mm in the majority of the experiments. However, S-band data, which suffer much from local radio interference due to WiFi and mobile communications, are about 10 times less precise than X-band data and require further analysis, but evidence is provided that S-band data are well-usable over long baselines where local radio interference patterns decorrelate. PMID:26263991

  6. Initial Results Obtained with the First TWIN VLBI Radio Telescope at the Geodetic Observatory Wettzell.

    PubMed

    Schüler, Torben; Kronschnabl, Gerhard; Plötz, Christian; Neidhardt, Alexander; Bertarini, Alessandra; Bernhart, Simone; la Porta, Laura; Halsig, Sebastian; Nothnagel, Axel

    2015-07-30

    Geodetic Very Long Baseline Interferometry (VLBI) uses radio telescopes as sensor networks to determine Earth orientation parameters and baseline vectors between the telescopes. The TWIN Telescope Wettzell 1 (TTW1), the first of the new 13.2 m diameter telescope pair at the Geodetic Observatory Wettzell, Germany, is currently in its commissioning phase. The technology behind this radio telescope including the receiving system and the tri-band feed horn is depicted. Since VLBI telescopes must operate at least in pairs, the existing 20 m diameter Radio Telescope Wettzell (RTW) is used together with TTW1 for practical tests. In addition, selected long baseline setups are investigated. Correlation results portraying the data quality achieved during first initial experiments are discussed. Finally, the local 123 m baseline between the old RTW telescope and the new TTW1 is analyzed and compared with an existing high-precision local survey. Our initial results are very satisfactory for X-band group delays featuring a 3D distance agreement between VLBI data analysis and local ties of 1 to 2 mm in the majority of the experiments. However, S-band data, which suffer much from local radio interference due to WiFi and mobile communications, are about 10 times less precise than X-band data and require further analysis, but evidence is provided that S-band data are well-usable over long baselines where local radio interference patterns decorrelate.

  7. Preliminary Space VLBI Requirements for Observing Time on Ground Radio Telescopes

    NASA Technical Reports Server (NTRS)

    Meier, David L.; Murphy, David W.; Preston, Robert A.

    1992-01-01

    An initial estimate has been made of the observing time required on ground radio telescopes by the space VLBI missions Radioastron and VSOP. Typical science programs have been adopted for both missions.

  8. Design and Performance of a Wideband Radio Telescope

    NASA Technical Reports Server (NTRS)

    Weinreb, Sander; Imbriale, William A.; Jones, Glenn; Mani, Handi

    2012-01-01

    The Goldstone Apple Valley Radio Telescope (GAVRT) is an outreach project, a partnership involving NASA's Jet Propulsion Laboratory (JPL), the Lewis Center for Educational Research (LCER), and the Apple Valley Unified School District near the NASA Goldstone deep space communication complex. This educational program currently uses a 34-meter antenna, DSS12, at Goldstone for classroom radio astronomy observations via the Internet. The current program utilizes DSS12 in two narrow frequency bands around S-band (2.3 GHz) and X-band (8.45 GHz), and is used by a training program involving a large number of secondary school teachers and their classrooms. To expand the program, a joint JPL/LCER project was started in mid-2006 to retrofit an additional existing 34-meter beam-waveguide antenna, DSS28, with wideband feeds and receivers to cover the 0.5-to- 14-GHz frequency bands. The DSS28 antenna has a 34-meter diameter main reflector, a 2.54-meter subreflector, and a set of beam waveguide mirrors surrounded by a 2.43-meter tube. The antenna was designed for high power and a narrow frequency band around 7.2 GHz. The performance at the low end of the frequency band desired for the educational program would be extremely poor if the beam waveguide system was used as part of the feed system. Consequently, the 34-meter antenna was retrofitted with a tertiary offset mirror placed at the vertex of the main reflector. The tertiary mirror can be rotated to use two wideband feeds that cover the 0.5-to-14-GHz band. The earlier designs for both GAVRT and the DSN only used narrow band feeds and consequently, only covered a small part of the S- and X-band frequencies. By using both a wideband feed and wideband amplifiers, the entire band from 0.5 to 14 GHz is covered, expanding significantly the science activities that can be studied using this system.

  9. An intercontinental array--a next-generation radio telescope.

    PubMed

    Swenson, G W; Kellermann, K I

    1975-06-27

    It is difficult to estimate accurately the cost of constructing a large scientific instrument that involves many techniques. On the other hand, most of the component parts of the VLBA consist of antennas and electronic systems that already exist or are being fabricated. The kind of 25-m antennas being constructed for the VLA will cost about $900,000 each and will work at wavelengths as short as 1 cm. A multifrequency radiometer, hydrogen maser frequency standard, small control computer, control building, and wide-band instrumentation recorder bring the cost to about $1.5 million per element, or $15 million for a ten-element array using tape recorders. A multistation playback facility, with ten recorders and enough correlators to handle all interferometer pairs simultaneously, together with the necessary computers to control the processor and reduce the data, may add $5 million. The total cost is thus about $20 million at current prices, including an adequate supply of magnetic tape. This is comparable to the cost of existing large radio telescopes and arrays. An array that used a geostationary communication satellite to transmit the data to a real-time correlator would cost $30 million to $50 million more, but this is still within the price range of other space astronomy projects. It is thus feasible to construct at reasonable cost an intercontinental very long baseline array which has sub-milliarcsecond resolution. This would complement the Very Large Array now being constructed (4), which is much more sensitive to objects of low surface brightness. This next step would permit the study of the universe with unprecedented angular resolution.

  10. An intercontinental array--a next-generation radio telescope.

    PubMed

    Swenson, G W; Kellermann, K I

    1975-06-27

    It is difficult to estimate accurately the cost of constructing a large scientific instrument that involves many techniques. On the other hand, most of the component parts of the VLBA consist of antennas and electronic systems that already exist or are being fabricated. The kind of 25-m antennas being constructed for the VLA will cost about $900,000 each and will work at wavelengths as short as 1 cm. A multifrequency radiometer, hydrogen maser frequency standard, small control computer, control building, and wide-band instrumentation recorder bring the cost to about $1.5 million per element, or $15 million for a ten-element array using tape recorders. A multistation playback facility, with ten recorders and enough correlators to handle all interferometer pairs simultaneously, together with the necessary computers to control the processor and reduce the data, may add $5 million. The total cost is thus about $20 million at current prices, including an adequate supply of magnetic tape. This is comparable to the cost of existing large radio telescopes and arrays. An array that used a geostationary communication satellite to transmit the data to a real-time correlator would cost $30 million to $50 million more, but this is still within the price range of other space astronomy projects. It is thus feasible to construct at reasonable cost an intercontinental very long baseline array which has sub-milliarcsecond resolution. This would complement the Very Large Array now being constructed (4), which is much more sensitive to objects of low surface brightness. This next step would permit the study of the universe with unprecedented angular resolution. PMID:17772586

  11. Search for molecular bremsstrahlung radiation signals in Ku band with coincidental operations of radio telescopes with air shower detectors

    NASA Astrophysics Data System (ADS)

    Ogio, Shoichi; Yamamoto, Tokonatsu; Kuramoto, Kazuyuki; Iijima, Takashi; Akimune, Hidetoshi; Fujii, Toshihiro; Sakurai, Nobuyuki; Fukushima, Masaki; Sagawa, Hiroyuki

    2013-06-01

    Microwave radiation from extensive air showers is expected to provide a new technique to observe UHECR. We insatlled and operate radio telescopes in Osaka and at Telescope Array site in Utah, USA. In Osaka, we are coincidentally operating two Ku band radio telescopes with an air shower array which consists of nine plastic scintillators with about 10 m separation. In Utah, we installed two telescopes just beside the Black Rock Mesa fluorescence detector (FD) station of the Telescope Array experiment, and we operated the radio telescopes coincidentally with FD event triggers. We report the experimental setups and the results of these measurements.

  12. Solar observations with a low frequency radio telescope

    NASA Astrophysics Data System (ADS)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  13. Surface figure measurements of radio telescopes with a shearing interferometer.

    PubMed

    Serabyn, E; Phillips, T G; Masson, C R

    1991-04-01

    A new technique for determining the surface figure of large submillimeter wavelength telescopes is presented, which is based on measuring the telescope's focal plane diffraction pattern with a shearing interferometer. In addition to the instrumental theory, results obtained using such an interferometer on the 10.4-m diam telescope of the Caltech Submillimeter Observatory are discussed. Using wavelengths near 1 mm, a measurement accuracy of 9 microm, or lambda/115, has been achieved, and the rms surface accuracy has been determined to be just under 30 microm. The distortions of the primary reflector with changing elevation angle have also been measured and agree well with theoretical predictions of the dish deformation.

  14. The new 64m Sardinia Radio Telescope and VLBI facilities in Italy

    NASA Astrophysics Data System (ADS)

    Giovannini, Gabriele; Feretti, Luigina; Prandoni, Isabella; Giroletti, Marcello

    2015-08-01

    The Sardinia Radio Telescope (SRT) is a new major radio astronomical facility available in Italy for single dish and interferometric observations. It represents a flexible instrument for Radio Astronomy, Geodynamical studies and Space Science, either in single dish or VLBI mode. The SRT combines a 64m steerable collecting area, one of the largest all over the World with state-of-the-art technology (including an active surface) to enable high efficiency observations up to the 3-mm band.This new radio telescope together with the two 32m antennas in Noto and Medicina can be used for VLBI observations on a national basis (VLBIT). Data can be correlated in a short time (in real time soon) thanks to fiber-optics connection among the radio telescopes and the software correlator installed at the Radio Astronomy Institute in Bologna (IRA/INAF). In the poster I will present capabilities of the SRT telescope as well as the VLBIT project and I will shortly discuss the scientific prospects of the VLBIT.

  15. Synchronized observations by using the STEREO and the largest ground-based decametre radio telescope

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Stanislavsky, A. A.; Rucker, H. O.; Lecacheux, A.; Mann, G.; Bougeret, J.-L.; Kaiser, M. L.; Briand, C.; Zarka, P.; Abranin, E. P.; Dorovsky, V. V.; Koval, A. A.; Mel'nik, V. N.; Mukha, D. V.; Panchenko, M.

    2013-08-01

    We consider the approach to simultaneous (synchronous) solar observations of radio emission by using the STEREO-WAVES instruments (frequency range 0.125-16 MHz) and the largest ground-based low-frequency radio telescope. We illustrate it by the UTR-2 radio telescope implementation (10-30 MHz). The antenna system of the radio telescope is a T-shape-like array of broadband dipoles and is located near the village Grakovo in the Kharkiv region (Ukraine). The third observation point on the ground in addition to two space-based ones improves the space-mission performance capabilities for the determination of radio-emission source directivity. The observational results from the high sensitivity antenna UTR-2 are particularly useful for analysis of STEREO data in the condition of weak event appearances during solar activity minima. In order to improve the accuracy of flux density measurements, we also provide simultaneous observations with a large part of the UTR-2 radio telescope array and its single dipole close to the STEREO-WAVES antennas in sensitivity. This concept has been studied by comparing the STEREO data with ground-based records from 2007-2011 and shown to be effective. The capabilities will be useful in the implementation of new instruments (LOFAR, LWA, MWA, etc.) and during the future Solar Orbiter mission.

  16. Solar Wind observations using the Mexican Array Radio Telescope (MEXART)

    NASA Astrophysics Data System (ADS)

    Romero-Hernandez, E.; Gonzalez-Esparza, A.; Villanueva, P.; Aguilar-Rodriguez, E.; Mejia-Ambriz, J. C.; Mexart

    2013-05-01

    The Mexican Array Radiotelescope (MEXART) is an instrument devoted to observations of radio sources to study large-scale structures in the solar wind employing the Interplanetary Scintillation (IPS) technique. We report recent IPS observations, from January to April of 2013, including an analysis of the scintillation index and the estimation of solar wind velocities for a set of radio sources. We track the first ICMEs registered by the MEXART. We are initiating a continuos operation for a complete monitoring of IPS radio sources that will complement solar wind studies based on in-situ observations.

  17. Design and Construction of a New 1420 MHz Receiver System for a 12-meter Radio Telescope

    NASA Astrophysics Data System (ADS)

    Lemley, Cameron; Castelaz, M. W.

    2014-01-01

    During the summer of 2013, a new 1420 MHz receiver system was designed and constructed for the 12-meter radio telescope at the Pisgah Astronomical Research Institute (PARI). The new radio receiver system consists of a feedhorn (which is a duplicate of the feedhorn that is currently installed on PARI’s 4.6-meter radio telescope), a low-noise amplifier, a bandpass filter, a downconverter, a SpectraCyber 1420 MHz Hydrogen Line Spectrometer, CommScope CNT-600 braided coaxial cable, and a power supply. Each component was individually tested on the preexisting 4.6-meter radio telescope receiver system before being installed on the 12-meter telescope. This testing process revealed that the spectrometer that was intended for use in the new 12-meter receiver system would require 12-bit software, which was acquired soon thereafter. The new receiver system was then assembled on a rolling cart for further testing. After the 1420 MHz receiver system was moved outside, it successfully detected its first extraterrestrial radio signal. The next step of this project was the installation of the feedhorn at the focus of the 12-meter parabolic reflector and the mounting of the additional receiver system components inside the radio frequency (RF) room of the 12-meter telescope. Following its installation on the 12-meter telescope, the new receiver system was connected to the PARI network via ethernet using a device called a SitePlayer Telnet. The 12-meter telescope was focused by taking continuum scans of Virgo A during its meridian crossing. The positioning of the feedhorn had to be adjusted several times before the new radio receiver system was precisely focused. After focusing the 12-meter telescope, spectra were taken of both the Orion Nebula and the Crab Nebula to test the abilities of the new 1420 MHz receiver system. As a final test of both the angular resolution and time resolution of the new radio receiver system, the 12-meter telescope was used to observe the pulsar PSR J

  18. Prototype 10-meter radio telescope antenna and mount design

    NASA Technical Reports Server (NTRS)

    Leighton, R. B.

    1976-01-01

    A prototype radio antenna of 10.4 meters diameter and 0.41 meter focal length, intended for use at the shortest radio wavelengths transmitted by the atmosphere, was successfully completed. The surface accuracy is at least four times better than that of any existing antenna in this size class: 50 micrometer rms. A prototype mount is being constructed and will be ready by early 1976. The development of an improved antenna of identical size, but heavier weight has been continued.

  19. The five-hundred-meter aperture spherical radio telescope (FAST) project

    NASA Astrophysics Data System (ADS)

    Nan, Rendong; Li, Di

    2013-04-01

    Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese "mega-science" project to build the largest single dish radio telescope in the world. Its engineering concept and design pave a new road to realize a huge single dish in an effective way. Being the most sensitive single dish radio telescope, FAST will enable astronomers to jump-start many science goals, such as surveying the neutral hydrogen in the Milky Way and other galaxies, detecting faint pulsars, hearing the possible signals from other civilizations, etc. The feasibility studies for FAST have been carried out for 14 years, supported by Chinese and international astronomy communities. The National Development and Reform Commission approved the funding proposal of FAST in 2007 with a capital budget close to 700 million RMB. The project time is 5.5 years from the commencement of work in March of 2011 and the first light is expected in 2016.

  20. VLBI2010 - Current status of the TWIN radio telescope project at Wettzell, Germany

    NASA Astrophysics Data System (ADS)

    Neidhardt, A.; Kronschnabl, G.; Klügel, T.; Hase, H.; Pausch, K.; Göldi, W.; VLBI Team Wettzell

    2011-07-01

    The Twin Telescope Wettzell Project is carried out by BKG during the period of 2008-2011. The design of the TTW was based on the VLBI2010 concept of an IVS Working Group. In the first project year the final design was fixed after numerous simulations to meet the technical specifications needed for the VLBI2010 concept. For the construction of the radio telescopes at the Geodetic Observatory Wettzell a thorough soil analysis was made in order to define the most suitable locations.. Since 2009 the construction work is ongoing and close to its end. In parallel several acceptance tests of different telescope parts had been conducted, e.g. azimuth bearings. The new radio telescopes are almost completely assembled and the time schedule is kept. For the last project year the design of the receiver parts needs to be finished and the construction and installation are on the agenda.

  1. Adding Context to James Webb Space Telescope Surveys with Current and Future 21 cm Radio Observations

    NASA Astrophysics Data System (ADS)

    Beardsley, A. P.; Morales, M. F.; Lidz, A.; Malloy, M.; Sutter, P. M.

    2015-02-01

    Infrared and radio observations of the Epoch of Reionization promise to revolutionize our understanding of the cosmic dawn, and major efforts with the JWST, MWA, and HERA are underway. While measurements of the ionizing sources with infrared telescopes and the effect of these sources on the intergalactic medium with radio telescopes should be complementary, to date the wildly disparate angular resolutions and survey speeds have made connecting proposed observations difficult. In this paper we develop a method to bridge the gap between radio and infrared studies. While the radio images may not have the sensitivity and resolution to identify individual bubbles with high fidelity, by leveraging knowledge of the measured power spectrum we are able to separate regions that are likely ionized from largely neutral, providing context for the JWST observations of galaxy counts and properties in each. By providing the ionization context for infrared galaxy observations, this method can significantly enhance the science returns of JWST and other infrared observations.

  2. Search for molecular bremsstrahlung radiation signals in Ku band with coincidental operations of radio telescopes with air shower detectors

    NASA Astrophysics Data System (ADS)

    Ogio, S.; Yamamoto, T.; Kuramoto, K.; Iijima, T.; Akimune, H.; Fujii, T.; Sakurai, N.; Fukushima, M.; Sagawa, H.

    2013-02-01

    Microwave radiation from extensive air showers is expected to provide a new technique to observe UHECR. We developed three set of radio telescopes in Osaka, in Kobe and at Telescope Array site in Utah, USA. In Osaka, we are coincidentally operating two Ku band radio telescopes with an air shower array which consists of nine plastic scintillators with about 10 m separation. In Kobe, we have started the operation of twelve radio telescopes of 1.2 m diameter in March 2012. In Utah, we installed two telescopes just beside the Black Rock Mesa fluorescence detector (FD) station of the Telescope Array experiment, and we operated the radio telescopes coincidentally with FD event triggers. We report the experimental setups and the results of these measurements.

  3. The Position and Attitude of Sub-reflector Modeling for TM65 m Radio Telescope

    NASA Astrophysics Data System (ADS)

    Sun, Z. X.; Chen, L.; Wang, J. Q.

    2016-01-01

    In the course of astronomical observations, with changes in angle of pitch, the large radio telescope will have different degrees of deformation in the sub-reflector support, back frame, main reflector etc, which will lead to the dramatic decline of antenna efficiency in both high and low elevation. A sub-reflector system of the Tian Ma 65 m radio telescope has been installed in order to compensate for the gravitational deformations of the sub-reflector support and the main reflector. The position and attitude of the sub-reflector are variable in order to improve the pointing performance and the efficiency at different elevations. In this paper, it is studied that the changes of position and attitude of the sub-reflector have influence on the efficiency of antenna in the X band and Ku band. A model has been constructed to determine the position and attitude of the sub-reflector with elevation, as well as the point compensation model, by observing the radio source. In addition, antenna efficiency was tested with sub-reflector position adjusted and fixed. The results show that the model of sub-reflector can effectively improve the efficiency of the 65 m radio telescope. In X band, the aperture efficiency of the radio telescope reaches more than 60% over the entire elevation range.

  4. Observations of OH in comet Levy with the Nancay radio telescope

    NASA Technical Reports Server (NTRS)

    Bockelee-Morvan, Dominique; Colom, P.; Crovisier, Jacques; Gerard, E.; Bourgois, G.

    1992-01-01

    Due to extremely favorable excitation conditions, comet Levy (1990c) exhibited in August-September 1990 the strongest OH 18-cm signal ever recorded in a comet at the Nancay radio telescope. This unique opportunity was used to measure the OH satellite lines at 1612 and 1721 MHz, to perform extensive mapping of the OH radio emission and to make a sensitive evaluation of the cometary magnetic field, of the H2O outflow velocity and of the OH production rate.

  5. RFI profiles of prime candidate sites for the first radio astronomical telescope in Malaysia

    NASA Astrophysics Data System (ADS)

    Abidin, Zamri Zainal; Bahari Ramadzan Syed Adnan, Syed; Ibrahim, Zainol Abidin

    2010-03-01

    Radio astronomy is a very young research field in South East Asia. There has not been a research-grade radio telescope built in this part of the world yet. A plan has been proposed by the University of Malaya's Radio Cosmology Research Laboratory to build a medium-sized radio telescope in order to eventually join the global projects of the Very Long Baseline Interferometry (VLBI) Network and Square Kilometer Array (SKA). Main parameters taken into consideration in finding the main prime candidate sites involves features that produce Radio Frequency Interference (RFI). These features are mainly telecommunication and satellite navigation signals and population density. Other important features considered are rainfall level, land contour and availability for future collaboration with institutions at the chosen sites. In this paper we described the experimental procedure and the RFI measurement on our five prime candidate's sites in Malaysia, covering frequency band from 1 MHz to 2000 MHz. The levels and sources of RFI on these sites were monitored and analyzed. The RFI level in Langkawi showed the lowest average of -100.33dBm(4.4×106Jy). These RFI have been found to fluctuate relatively lowly (between 1 dB m and 2 dB m). This site is also ideally located close to the Langkawi National Observatory and we recommend that this site as the best site to build the first research-grade radio telescope in this region.

  6. Temperature deformations of the mirror of a radio telescope antenna

    NASA Technical Reports Server (NTRS)

    Avdeyev, V. I.; Grach, S. A.; Kozhakhmetov, K. K.; Kostenko, F. I.

    1979-01-01

    The stress informed state of the mirror of an antenna, with a diameter of 3 m, for a radio interferometer used in space, and located in a temperature field is examined. The mirror represents a parabolic shell, consisting of 19 identical parts. The problem is based on representations of the thermoelasticity of thin shells.

  7. Gain and Polarization Properties of a Large Radio Telescope from Calculation and Measurement: The John A. Galt Telescope

    NASA Astrophysics Data System (ADS)

    Du, X.; Landecker, T. L.; Robishaw, T.; Gray, A. D.; Douglas, K. A.; Wolleben, M.

    2016-11-01

    Measurement of the brightness temperature of extended radio emission demands knowledge of the gain (or aperture efficiency) of the telescope and measurement of the polarized component of the emission requires correction for the conversion of unpolarized emission from sky and ground to apparently polarized signal. Radiation properties of the John A. Galt Telescope at the Dominion Radio Astrophysical Observatory were studied through analysis and measurement in order to provide absolute calibration of a survey of polarized emission from the entire northern sky from 1280 to 1750 MHz, and to understand the polarization performance of the telescope. Electromagnetic simulation packages CST and GRASP-10 were used to compute complete radiation patterns of the telescope in all Stokes parameters, and thereby to establish gain and aperture efficiency. Aperture efficiency was also evaluated using geometrical optics and ray tracing analysis and was measured based on the known flux density of Cyg A. Measured aperture efficiency varied smoothly with frequency between values of 0.49 and 0.54; GRASP-10 yielded values 6.5% higher but with closely similar variation with frequency. Overall error across the frequency band is 3%, but values at any two frequencies are relatively correct to ∼1%. Dominant influences on aperture efficiency are the illumination taper of the feed radiation pattern and the shadowing of the reflector from the feed by the feed-support struts. A model of emission from the ground was developed based on measurements and on empirical data obtained from remote sensing of the Earth from satellite-borne telescopes. This model was convolved with the computed antenna response to estimate conversion of ground emission into spurious polarized signal. The computed spurious signal is comparable to measured values, but is not accurate enough to be used to correct observations. A simpler model, in which the ground is considered as an unpolarized emitter with a brightness

  8. The Role of the Goldstone Apple Valley Radio Telescope Project in Promoting Scientific Efficacy among Middle and High School Students.

    ERIC Educational Resources Information Center

    Ibe, Mary; Deutscher, Rebecca

    This study investigated the effects on student scientific efficacy after participation in the Goldstone Apple Valley Radio Telescope (GAVRT) project. In the GAVRT program, students use computers to record extremely faint radio waves collected by the telescope and analyze real data. Scientific efficacy is a type of self-knowledge a person uses to…

  9. Communicating astronomy in a small island state: The unique role of the Mauritius Radio Telescope

    NASA Astrophysics Data System (ADS)

    Saddul-Hauzaree, S.

    2008-06-01

    The Mauritius Radio Telescope (MRT) is a 2 km x 1 km T-shaped aperture synthesis array that can generate radio images of the southern sky at 151.6 MHz. The sky surveyed can be in the declination range of -70o to -10o. It is located at Bras d'Eau, northeast of Mauritius at latitude 20oS and longitude 60oE. The MRT is a joint project of the University of Mauritius, the Indian Institute of Astrophysics and the Raman Research Institute. One of the main objectives of the MRT is to generate public interest in astronomy. Thus, it is involved in a wide range of onsite outreach activities for young school children. More mature students visiting the telescope learn about sky observation with a radio telescope, get to explore some sets of data, interact with the scientific personnel, get the opportunity to have hands-on experience with image manipulation and can ask a lot of questions on astronomy. This poster gives an overview of the Mauritius Radio Telescope and the attempts of MRT ito communicate astronomy to students as a process and not just as a vast expanse of knowledge. The challenges and dilemmas faced by MRT in conveying astronomy to the general public in a small island state are investigated and presented.

  10. Revealing the Hidden Wave: Using the Very Small Radio Telescope to Teach High School Physics

    ERIC Educational Resources Information Center

    Doherty, Michael; Fish, Vincent L.; Needles, Madeleine

    2011-01-01

    Scientists and teachers have worked together to produce teaching materials for the Very Small Radio Telescope (VSRT), an easy-to-use, low-cost apparatus that can be used in multiple laboratory experiments in high school and university physics and astronomy classes. In this article, we describe the motivation for the VSRT and several of the…

  11. Very long baseline interferometry using a radio telescope in Earth orbit

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.; Edwards, C. D.; Linfield, R. P.

    1987-01-01

    Successful Very Long Baseline Interferometry (VLBI) observations at 2.3 GHz were made using an antenna aboard an Earth-orbiting spacecraft as one of the receiving telescopes. These observations employed the first deployed satellite (TDRSE-E for East) of the NASA Tracking and Data Relay Satellite System (TDRSS). Fringes were found for 3 radio sources on baselines between TDRSE and telescopes in Australia and Japan. The purpose of this experiment and the characteristics of the spacecraft that are related to the VLBI observations are described. The technical obstacles to maintaining phase coherence between the orbiting antenna and the ground stations, as well as the calibration schemes for the communication link between TDRSE and its ground station at White Sands, New Mexico are explored. System coherence results and scientific results for the radio source observations are presented. Using all available calibrations, a coherence of 84% over 700 seconds was achieved for baselines to the orbiting telescope.

  12. Radio Telescope Focal Container for the Russian VLBI Network of New Generation

    NASA Technical Reports Server (NTRS)

    Ipatov, Alexander; Mardyshkin, Vyacheslav; Cherepanov, Andrey; Chernov, Vitaly; Diky, Dmitry; Khvostov, Evgeny; Yevstigneyev, Alexander

    2010-01-01

    This article considers the development of the structure of receivers for Russian radio telescopes. The development of these radio telescopes is undertaken within the project for creating a Russian small-antenna-based radio interferometer of new generation. It is shown that for small antennas (10. 12 meter) the principal unit, which provides the best SNR, is the so-called focal container placed at primary focus. It includes the primary feed, HEMT LNA, and cryogenic cooling system down to 20. K. A new multi-band feed based on traveling wave resonators is used. It has small dimensions, low weight, and allows working with circular polarizations. Thus it can be placed into focal container and cooled with the LNA. A sketch of the focal container, with traveling-wave-resonator feed, and calculations of the expected parameters of the multi-band receiver are presented.

  13. Calibration and Imaging for the Next Generation of Radio Synthesis Telescopes

    NASA Astrophysics Data System (ADS)

    Cornwell, T. J.

    2007-10-01

    The next big improvements in scientific capability in radio astronomy are expected to come from large increases in sensitivity and field of view, leading to telescopes that are ideally suited to surveying the radio sky. For the last fifteen years radio astronomers around the world have been competing and collaborating to come up with designs for a Square Kilometer Array (SKA), which will be roughly fifty times more sensitive than the Very Large Array and three orders of magnitude faster at surveying. The challenge of building such a telescope at a relatively affordable cost (1 Billion Euros) has led to a number of innovative designs. The common element of the leading designs is an increasing reliance on digital technology for beam forming. In this paper, I review the two main areas of innovation, aperture arrays and phased array feeds, and describe how these solve some problems but raise others, particularly for calibration and imaging.

  14. The novel design for giant spherical radio telescope with active main reflector.

    NASA Astrophysics Data System (ADS)

    Qiu, Yuhai

    1998-04-01

    A novel design for a giant spherical radio telescope is suggested. Instead of using a complex feed system for the correction of the aberration (such as the Arecibo Gregorian subreflector), an active main reflector is proposed. The part of main reflector which is illuminated by the feed is continually adjusted to fit the paraboloid of revolution in real-time when tracking the radio source. Thus a simple feed for a parabolic antenna can be used for this system. This concept is applied in the design of a large spherical radio telescope having a total reflecting spherical surface 500 m in diameter (radius of curvature 300 m), while an usable aperture 300 m. The main advantages in this design are large zenith-angle coverage, a simple feeding system (so that it is easy to achieve broad bandwidth and full polarization) and low cost.

  15. The Five-hundred-meter Aperture Spherical radio Telescope project and its early science opportunities

    NASA Astrophysics Data System (ADS)

    Li, Di; Nan, Rendong; Pan, Zhichen

    2013-03-01

    The National Astronomical Observatories, Chinese Academy of Science (NAOC), has started building the largest antenna in the world. Known as FAST, the Five-hundred-meter Aperture Spherical radio Telescope is a Chinese mega-science project funded by the National Development and Reform Commission (NDRC). FAST also represents part of Chinese contribution to the international efforts to build the square kilometer array (SKA). Upon its finishing around September of 2016, FAST will be the most sensitive single-dish radio telescope in the low frequency radio bands between 70 MHz and 3 GHz. The design specifications of FAST, its expected capabilities, and its main scientific aspirations were described in an overview paper by Nan et al. (2011). In this paper, we briefly review the design and the key science goals of FAST, speculate the likely limitations at the initial stages of FAST operation, and discuss the opportunities for astronomical discoveries in the so-called early science phase.

  16. A synthetic aperture radio telescope for ICME observations as a potential payload of SPORT

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Sun, W.; Liu, H.; Xiong, M.; Liu, Y. D.; Wu, J.

    2013-12-01

    We introduce a potential payload for the Solar Polar ORbit Telescope (SPORT), a space weather mission proposed by the National Space Science Center, Chinese Academy of Sciences. This is a synthetic aperture radio imager designed to detect radio emissions from interplanetary coronal mass ejections (ICMEs), which is expected to be an important instrument to monitor the propagation and evolution of ICMEs. The radio telescope applies a synthetic aperture interferometric technique to measure the brightness temperature of ICMEs. Theoretical calculations of the brightness temperature utilizing statistical properties of ICMEs and the background solar wind indicate that ICMEs within 0.35 AU from the Sun are detectable by a radio telescope at a frequency <= 150 MHz with a sensitivity of <=1 K. The telescope employs a time shared double rotation scan (also called a clock scan), where two coplanar antennas revolve around a fixed axis at different radius and speed, to fulfill sampling of the brightness temperature. An array of 4+4 elements with opposite scanning directions are developed for the radio telescope to achieve the required sensitivity (<=1K) within the imaging refreshing time (~30 minutes). This scan scheme is appropriate for a three-axis stabilized spacecraft platform while keeping a good sampling pattern. We also discuss how we select the operating frequency, which involves a trade-off between the engineering feasibility and the scientific goal. Our preliminary results indicate that the central frequency of 150 MHz with a bandwidth of 20 MHz, which requires arm lengths of the two groups of 14m and 16m, respectively, gives an angular resolution of 2°, a field of view of ×25° around the Sun, and a time resolution of 30 minutes.

  17. Discovery of Radio Pulsations from the X-ray Pulsar JO205+6449 in Supernova Remnant 3C58 with the Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Camilo, F.; Stairs, I. H.; Lorimer, D. R.; Backer, D. C.; Ransom, S. M.; Klein, B.; Wielebinski, R.; Kramer, M.; McLaughlin, M. A.; Arzoumanian, Z.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report the discovery with the 100m Green Bank Telescope of 65 ms radio pulsations from the X-ray pulsar J0205+6449 at the center of supernova remnant 3C58, making this possibly the youngest radio pulsar known. From our observations at frequencies of 820 and 1375 MHz, the free electron column density to USSR J0205+6449 is found to be 140.7 +/- 0.3/cc pc. The barycentric pulsar period P and P(dot) determined from a phase-coherent timing solution are consistent with the values previously measured from X-ray observations. The averaged radio profile of USSR J0205+6449 consists of one sharp pulse of width = 3 ms = 0.05 P. The pulsar is an exceedingly weak radio source, with pulse-averaged flux density in the 1400 MHz band of approximately 45 micro-Jy and a spectral index of approximately -2.1. Its radio luminosity of approximately 0.5 may kpc(exp 2) at 1400 MHz is lower than that of approximately 99% of known pulsar and is the lowest among known young pulsars.

  18. A symbiotic approach to SETI observations: use of maps from the Westerbork Synthesis Radio Telescope

    NASA Technical Reports Server (NTRS)

    Tarter, J. C.; Israel, F. P.

    1982-01-01

    High spatial resolution continuum radio maps produced by the Westerbork Synthesis Radio Telescope (WSRT) of The Netherlands at frequencies near the 21 cm HI line have been examined for anomalous sources of emmission coincident with the locations of nearby bright stars. From a total of 542 stellar positions investigated, no candidates for radio stars or ETI signals were discovered to formal limits on the minimum detectable signal ranging from 7.7 x 10(-22) W/m2 to 6.4 x 10(-24) W/m2. This preliminary study has verified that data collected by radio astronomers at large synthesis arrays can profitably be analysed for SETI signals (in a non-interfering manner) provided only that the data are available in the form of a more or less standard two dimensional map format.

  19. A symbiotic approach to SETI observations: use of maps from the Westerbork Synthesis Radio Telescope.

    PubMed

    Tarter, J C; Israel, F P

    1982-01-01

    High spatial resolution continuum radio maps produced by the Westerbork Synthesis Radio Telescope (WSRT) of The Netherlands at frequencies near the 21 cm HI line have been examined for anomalous sources of emmission coincident with the locations of nearby bright stars. From a total of 542 stellar positions investigated, no candidates for radio stars or ETI signals were discovered to formal limits on the minimum detectable signal ranging from 7.7 x 10(-22) W/m2 to 6.4 x 10(-24) W/m2. This preliminary study has verified that data collected by radio astronomers at large synthesis arrays can profitably be analysed for SETI signals (in a non-interfering manner) provided only that the data are available in the form of a more or less standard two dimensional map format.

  20. On the assurance of the design accuracy of the space radio telescope RadioAstron

    NASA Astrophysics Data System (ADS)

    Fedorchuk, S. D.; Arkhipov, M. Yu.

    2014-09-01

    The results are given of the theoretical calculations and the results of measurements of the shape of the reflecting surface of the space telescope conducted during the manufacture of individual elements and assembly of the product as a whole.

  1. FAST - Five hundred meter Aperture Spherical radio Telescope

    NASA Astrophysics Data System (ADS)

    Nan, Ren-Dong

    2009-01-01

    The idea of sitting a large spherical dish in Karst depression is rooted in Arecibo telescope hosted by the NAIC of Cornell University. FAST is an Arecibo-type antenna with 3 outstanding aspects: the unique karst depression as the site; the active main reflector which corrects spherical aberration on the ground to achieve full polarization and wide band without involving complex feed system; and the light focus cabin driven by cables and servomechanism plus a parallel robot as secondary adjustable system to carry the most precise parts of the receivers. These design features will enable FAST to jumpstart many of science goals, such as HI neutral hydrogen line survey, pulsar survey, largest station in VLBI network, spectral line observations and Search for alien's technologies. The feasibility studies for FAST have been carried out for 14 years, being supported by Chinese and world astronomical communities. Funding for Project FAST has been approved by the National Development and Reform commission NDRC in July of 2007 with a capital budget 600 millions RMB and a project time of 5.5 years from the foundation. The first light is expected to be in early 2014. This work is supported by the Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant No. 10433020). More than a hundred research personnel from over thirty research teams were involved in this research. On behalf of project FAST, I wish to make special recognition to their diligent work and great contribution to the project.

  2. New dual-reflector feed system for the Nancay radio telescope

    NASA Astrophysics Data System (ADS)

    Granet, Christophe; James, Graeme L.; Pezzani, Jacques

    1997-09-01

    A new compact dual-reflector Gregorian feed system has been designed to improve the overall performance of the Nancay radio telescope. To operate continuously within the 1.0-3.5-GHz band, two wideband compact corrugated horns are used. The new feed system improves the sensitivity of the telescope by a factor between 2 and 3. To verify the theoretical design, a 1/20th-scale model was constructed and tested. The measured results were in excellent agreement with the predicted values.

  3. Radio telescopes as the detectors of super-high-energy neutrinos

    NASA Technical Reports Server (NTRS)

    Dagkesamansky, R. D.; Zheleznykh, I. M.

    1991-01-01

    The registration of super high energy neutrinos is a very difficult and also very important problem that requires construction of detectors with large effective target masses. Askaryan pointed out the possibility of registering cascades in dense media by the Cherenkov radio emission of an excess of negative charges in the cascades which arose in interaction between high energy particles and the atoms of medium. The telescopes for cosmic high energy neutrino detection by radioemission of cascades induced underground, but whose development continues in the atmosphere were proposed by others. The effective target masses of such detectors could be approx. 10(exp 9) tons and more. The properties of Cherenkov radio emission of cascades and the properties of ice in the Antarctic Region make it possible to propose Radio Antarctic Muon and Neutrino Detection (RAMAND): antennas should be placed on the ice surface of approx. 10 sq km to search for radio signals for neutrino (muon) cascades of energy. It is evident from data given that the largest radio telescopes gives the opportunity for registration of the cascades induced by neutrinos with the energies E is greater than or = 10(exp 20) eV.

  4. Constraints on the flux of ultra-high energy neutrinos from Westerbork Synthesis Radio Telescope observations

    NASA Astrophysics Data System (ADS)

    Buitink, S.; Scholten, O.; Bacelar, J.; Braun, R.; de Bruyn, A. G.; Falcke, H.; Singh, K.; Stappers, B.; Strom, R. G.; Yahyaoui, R. Al

    2010-10-01

    Context. Ultra-high energy (UHE) neutrinos and cosmic rays initiate particle cascades underneath the Moon's surface. These cascades have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequency window for observation of these pulses with radio telescopes on the Earth is around 150 MHz. Aims: By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHE neutrino flux. Methods: The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a sampling frequency of 40 MHz. The narrowband radio interference is digitally filtered out and the dispersive effect of the Earth's ionosphere is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, the detection efficiency for pulses of various strength is calculated. Results: With 47.6 hours of observation time, we are able to set a limit on the UHE neutrino flux. This new limit is an order of magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit.

  5. Time and Frequency Synchronization on the Virac Radio Telescope RT-32

    NASA Astrophysics Data System (ADS)

    Bezrukovs, V.

    2016-04-01

    One of the main research directions of Ventspils International Radio Astronomy Centre (VIRAC) is radio astronomy and astrophysics. The instrumental base for the centre comprised two fully steerable parabolic antennas, RT-16 and RT-32 (i.e. with the mirror diameter of 16 m and 32 m). After long reconstruction, radio telescope RT-32 is currently equipped with the receiving and data acquisition systems that allow observing in a wide frequency range from 327 MHz to 9 GHz. New Antenna Control Unit (ACU) allows stable, fast and precise pointing of antenna. Time and frequency distribution service provide 5, 10 and 100 MHz reference frequency, 1PPS signals and precise time stamps by NTP protocol and in the IRIG-B format by coaxial cable. For the radio astronomical observations, main requirement of spatially Very Long Base Line Interferometric (VLBI) observations for the observatory is precise synchronization of the received and sampled data and linking to the exact time stamps. During October 2015, radio telescope RT-32 performance was tested in several successful VLBI experiments. The obtained results confirm the efficiency of the chosen methods of synchronization and the ability to reproduce them on similar antennas.

  6. A 3mm band SIS receiver for the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Ladu, A.; Pisanu, T.; Navarrini, A.; Marongiu, P.; Valente, G.

    2014-07-01

    We present the optical and mechanical design of a 3mm band SIS receiver for the Gregorian focus of the Sardinia Radio Telescope (SRT). The receiver, was designed and built at IRAM and deployed on the IRAM for the Plateau de Bure Interferometer antennas until 2006. Following its decommissioning the receiver was purchased by the INAFAstronomical Observatory of Cagliari with the aim to adapt its optics for test of the performance of the new 64-m diameter Sardinia Radio Telescope (SRT) in the 3 mm band (84 - 116 GHz). The instrument will be installed in the rotating turret inside of the Gregorian focal room of SRT. The dimensions of the focal room, the horn position in the lower side of the cryostat and the vessel for the liquid helium impose very hard constraints to the optical and mechanical mounting structure of the receiver inside the cabin. We present the receiver configuration and how we plan to install it on SRT.

  7. High-Tech 'Heart' of New-Generation Radio Telescope Passes First Test

    NASA Astrophysics Data System (ADS)

    2008-08-01

    The Expanded Very Large Array (EVLA), part of the National Radio Astronomy Observatory (NRAO), took a giant step toward completion on August 7 with successful testing of advanced digital hardware designed to combine signals from its upgraded radio-telescope antennas to produce high resolution images of celestial objects. Successful Moment NRAO Crew Views Successful Computer Display Of WIDAR "First Fringes" Seated, front to back: Barry Clark, Ken Sowinski, Michael Rupen, Kevin Ryan. Standing, front to rear: Mark McKinnon, Rick Perley, Hichem Ben Frej. CREDIT: Dave Finley, NRAO/AUI/NSF Click on image for larger file. By upgrading the 1970s-era electronics of its original Very Large Array (VLA), NRAO is creating a major new radio telescope that is ten times more sensitive than before. Using the EVLA, astronomers will observe fainter and more-distant objects than previously possible and use vastly improved analysis tools to decipher their physics. The heart of the new electronics that makes this transformation possible is a high-performance, special-purpose supercomputer, called the WIDAR Correlator. It has been designed and is being built by the National Research Council of Canada at the Dominion Radio Astrophysical Observatory (DRAO) of the Herzberg Institute for Astrophysics, and serves as Canada's contribution to the EVLA project. The design of the correlator incorporates an NRC-patented new digital electronic architecture. The successful test, at the VLA site 50 miles west of Socorro, New Mexico, used prototype correlator electronics to combine the signals from two upgraded VLA antennas to turn them into a single, high-resolution telescope system, called an interferometer. The technical term for this achievement is called "first fringes." Each upgraded EVLA antenna produces 100 times more data than an original VLA antenna. When all 27 antennas are upgraded, they will pump data into the WIDAR correlator at a rate equal to 48 million digital telephone calls. To

  8. Recognizing magnetic structures by present and future radio telescopes with Faraday rotation measure synthesis

    NASA Astrophysics Data System (ADS)

    Beck, R.; Frick, P.; Stepanov, R.; Sokoloff, D.

    2012-07-01

    Context. Modern radio telescopes allow us to record a large number of spectral channels. The application of a Fourier transform to spectropolarimetric data in radio continuum, Faraday rotation measure (RM) synthesis, yields the “Faraday spectrum”, which hosts valuable information about the magneto-ionic medium along the line of sight. Aims: We investigate whether the method of wavelet-based RM synthesis can help us to identify structures of regular and turbulent magnetic fields in extended magnetized objects, such as galaxies and galaxy clusters. Methods: The analysis of spectropolarimetric radio observations of multi-scale targets calls for a corresponding mathematical technique. Wavelets allow us to reformulate the RM synthesis method in a scale-dependent way and to visualize the data as a function of Faraday depth and scale. Results: We present observational tests to recognize magnetic field structures. A region with a regular magnetic field generates a broad “disk” in Faraday space, with two “horns” when the distribution of cosmic-ray electrons is broader than that of the thermal electrons. Each field reversal generates one asymmetric “horn” on top of the “disk”. A region with a turbulent field can be recognized as a “Faraday forest” of many components. These tests are applied to the spectral ranges of various synthesis radio telescopes. We argue that the ratio of maximum to minimum wavelengths determines the range of scales that can be identified in Faraday space. Conclusions: A reliable recognition of magnetic field structures in spiral galaxies or galaxy clusters requires the analysis of data cubes in position-position-Faraday depth space (“PPF cubes”), observed over a wide and continuous frequency range, allowing the recognition of a wide range of scales as well as high resolution in Faraday space. The planned Square Kilometre Array (SKA) will fulfill this condition and will be close to representing a perfect

  9. Performance of a Quad-Ridged Feed in a Wideband Radio Telescope

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Akgiray, Ahmed

    2011-01-01

    A new quad-ridged, flared horn achieving nearly constant beamwidth and excellent return loss over a 6:1 frequency bandwidth is described. The system performance in two Radio Telescopes: 1) A 12-meter symmetric dual shaped reflector system intended for geodetic very long baseline interferometry and 2) A 15-meter offset dual shaped reflector intended for the SKA is presented showing it to be excellent wideband feed choice.

  10. Cassegrainian/Gregorian-type null correctors for surface measurements of radio telescope reflectors.

    PubMed

    Greve, A

    1997-08-01

    The (sub)millimeter wavelength radio observatory of the next generation will probably be an interferometer array of some 50 telescopes with parabolic reflectors 10-15 m in diameter. At this scale of mass production it is convenient to have at hand for workshop assembly a reflector surface measurement technique that is precise and easy to operate. We discuss the possibility of reflector measurements based on 10.6-microm CO2 laser interferometry using Cassegrainian/Gregorian-type null correctors.

  11. Reoptimization of the Ohio State University radio telescope for the NASA SETI program

    NASA Technical Reports Server (NTRS)

    Dixon, R. S.

    1991-01-01

    The Ohio State University radiotelescope is the second largest radio telescope in the United States, equivalent in collecting area (2200 sq m) to a 175-foot diameter dish. For the past 17 years it has been dedicated fulltime to SETI, and it is now being considered by NASA for selection as the NASA dedicated SETI observatory. The telescope was originally designed, optimized, and used as an all-sky survey instrument to create detailed maps and catalogs of the radio astronomical sky. For the SETI Program, some re-optimizations are required. Right ascension tracking for one to two hours (depending on the declination) was achieved by exploiting the exceptionally large f/d ratio of the telescope. The feed horns were mounted on a large moveable, rubber-tired cart which is capable of a total motion of 100 feet. The cart can carry many horns, making possible simultaneous observations at many sky directions and frequency ranges. Rapid declination movement and its automation will be accomplished through simplification of the existing braking system, and replacement of older mechanical sensors by modern electronic inclinometers and proximity detectors. Circular polarization capability will be achieved through an increase in the number of horizontal wires in the reflector mesh, or addition of a finer mesh on top of the existing one. The telescope has great inherent resistance to radio frequency interference, due to its ground-mounted feed horns and shielding by the large reflectors of half the horizon. The resistance was recently increased further by installation of rolled-edges and diffraction-trapping gratings on the feed horns. If further shielding should be required, inexpensive side shields could be added to the telescope, making it a totally closed structure on all four sides.

  12. Reliability-centered maintenance for ground-based large optical telescopes and radio antenna arrays

    NASA Astrophysics Data System (ADS)

    Marchiori, G.; Formentin, F.; Rampini, F.

    2014-07-01

    In the last years, EIE GROUP has been more and more involved in large optical telescopes and radio antennas array projects. In this frame, the paper describes a fundamental aspect of the Logistic Support Analysis (LSA) process, that is the application of the Reliability-Centered Maintenance (RCM) methodology for the generation of maintenance plans for ground-based large optical telescopes and radio antennas arrays. This helps maintenance engineers to make sure that the telescopes continue to work properly, doing what their users require them to do in their present operating conditions. The main objective of the RCM process is to establish the complete maintenance regime, with the safe minimum required maintenance, carried out without any risk to personnel, telescope and subsystems. At the same time, a correct application of the RCM allows to increase the cost effectiveness, telescope uptime and items availability, and to provide greater understanding of the level of risk that the organization is managing. At the same time, engineers shall make a great effort since the initial phase of the project to obtain a telescope requiring easy maintenance activities and simple replacement of the major assemblies, taking special care on the accesses design and items location, implementation and design of special lifting equipment and handling devices for the heavy items. This maintenance engineering framework is based on seven points, which lead to the main steps of the RCM program. The initial steps of the RCM process consist of: system selection and data collection (MTBF, MTTR, etc.), definition of system boundaries and operating context, telescope description with the use of functional block diagrams, and the running of a FMECA to address the dominant causes of equipment failure and to lay down the Critical Items List. In the second part of the process the RCM logic is applied, which helps to determine the appropriate maintenance tasks for each identified failure mode. Once

  13. Subreflector model depending on elevation for the Tianma 65m Radio Telescope

    NASA Astrophysics Data System (ADS)

    Sun, Zheng-Xiong; Wang, Jin-Qing; Chen, Lan

    2016-08-01

    A subreflector adjustment system for the Tianma 65 m radio telescope, administered by Shanghai Astronomical Observatory, has been installed to compensate for gravitational deformation of the main reflector and the structure supporting the subreflector. The position and attitude of the subreflector are variable in order to improve the efficiency at different elevations. The subreflector model has the goal of improving the antenna's performance. A new fitting formulation which is different from the traditional formulation is proposed to reduce the fitting error in the Y direction. The only difference in the subreflector models of the 65m radio telescope is the bias of a constant term in the Z direction. We have investigated the effect of movements of the subreflector on the pointing of the antenna. The results of these performance measurements made by moving the antenna in elevation show that the subreflector model can effectively improve the efficiency of the 65 m radio telescope at each elevation. An antenna efficiency of about 60% at the Ku band is reached in the whole angular range of elevation.

  14. Reflector adjustment for a large radio telescope based on active optics

    NASA Astrophysics Data System (ADS)

    Li, Tongying; Zhang, Zhenchao; Li, Aihua; Wang, You

    2012-09-01

    The reflector deformation caused by gravity, temperature, humidity, wind loading and so on can reduce the global performance of a large radio telescope. In this paper, considering the characteristics of the primary reflector of a 13.7 m millimeter-wave telescope a novel reflector adjustment method based on active optics has therefore been proposed to control the active surface of the reflector through the communication between the active surface computer and embedded intelligent controller with a large quantity of displacement actuators, in which the active surface computer estimates and controls the real time active surface figure at any elevation angle, reduces or eliminates the adverse effects of the reflector deformation to increase the resolution and sensitivity of the radio telescope due to the more radio signals collected. A Controller Area Network /Ethernet protocol converter is designed for the communication between the active surface control computer as a host computer in Ethernet and the displacement actuator controller in Controller Area Network. The displacement actuator is driven by a stepper motor and controlled by an intelligent controller with the data from the active surface computer. The closed-loop control of the stepper motor improves the control accuracy greatly through the feedback link based on the optical encoder.

  15. Safe and secure remote control for the Twin Radio Telescope Wettzell

    NASA Astrophysics Data System (ADS)

    Neidhardt, A.; Ettl, M.; Mühlbauer, M.; Kronschnabl, G.; Alef, W.; Himwich, E.; Beaudoin, C.; Plötz, C.; Lovell, J.

    2013-08-01

    More VLBI stations, more experiments, more data and a faster analysis for a real-time monitoring of earth parameters and reference frames are the goals of the future VLBI2010 network. One key technology is e-VLBI. But also the control might follow to adapt and to manage these new challenges. Therefore the Technische Universität München (TUM), Germany realizes concepts for continuous quality monitoring and station remote control in cooperation with the Max Planck Institute for Radio Astronomy, Germany. The development is funded by the European Seventh Framework program in the three year project “Novel EXploration Pushing Robust e-VLBI Services (NEXPReS)” of the European VLBI Network (EVN). Within this project, the TUM focuses on developments for a safe, secure and reliable remote control (e-RemoteCtrl) of the NASA Field System with authentication, authorization and user roles to operate and automate radio telescopes, like the new Twin Radio Telescope Wettzell (TTW) at the Geodetic Observatory Wettzell, Germany. One of these telescopes will become operative this year, so that this is a first real-life test for the new control software and realizations.

  16. Observations of IPS radio sources at 140 MHz with the Mexican Array Radio Telescope (MEXART)

    NASA Astrophysics Data System (ADS)

    Mejia-Ambriz, Julio-Cesar; Villanueva-Hernandez, Pablo; Gonzalez-Esparza, Americo; Aguilar-Rodriguez, Ernesto; Mendoza-Torrez, Jose Eduardo; Carrillo-Vargas, Armando; Andrade-Mascote, Ernesto

    The MEXART is a dedicated transit station to perform Interplanetary Scintillation (IPS) ob-servations. The array of 4096 full wavelenght dipoles has a collecting area of 9600 square meters, the operation frequency is 140 MHz with a bandwidth of 2 MHz. Recently we began the IPS observations with the instrument. We report a list of IPS radio sources observed at 140 MHz. We perform an analysis of the scintillation index (m) versus the elongation angle to obtain the first g values given by the instrument for some radio sources. We report the single station solar wind velocity fitting model adapted at 140 MHz based on Manoharan and Ananthakrishnan (1990).

  17. A SURVEY OF RADIO RECOMBINATION LINES USING THE OOTY RADIO TELESCOPE AT 328 MHz IN THE INNER GALAXY

    SciTech Connect

    Baddi, Raju

    2012-02-15

    A survey of radio recombination lines in the Galactic plane with longitude -32 Degree-Sign < l < +80 Degree-Sign and latitude b < {+-}3 Degree-Sign using Ooty Radio Telescope (ORT) at 328 MHz is reported. ORT observations were made using a New Digital Backend (NDB) recently added to the telescope. With the NDB ORT had a beam of 2.{sup 0}3 Multiplication-Sign 2.{sup 0}2 sec({delta}) and a passband of {approx}1 MHz in the spectral line mode. The above-mentioned Galactic region was divided into {approx}2 Degree-Sign Multiplication-Sign 2 Degree-Sign patches with the ORT beam pointed to the center. The ORT observations form a study of the distribution of extended low-density warm-ionized medium (ELDWIM) in the inner Galaxy using H271{alpha} RLs. By obtaining kinematical distances using V{sub LSR} of the H271{alpha} RLs, the distribution of ELDWIM clouds within the inner Galaxy has been deduced for the region given above.

  18. Robust constraint on a drifting proton-to-electron mass ratio at z=0.89 from methanol observation at three radio telescopes.

    PubMed

    Bagdonaite, J; Daprà, M; Jansen, P; Bethlem, H L; Ubachs, W; Muller, S; Henkel, C; Menten, K M

    2013-12-01

    A limit on a possible cosmological variation of the proton-to-electron mass ratio μ is derived from methanol (CH3OH) absorption lines in the benchmark PKS1830-211 lensing galaxy at redshift z=0.89 observed with the Effelsberg 100-m radio telescope, the Institute de Radio Astronomie Millimétrique 30-m telescope, and the Atacama Large Millimeter/submillimeter Array. Ten different absorption lines of CH3OH covering a wide range of sensitivity coefficients K(μ) are used to derive a purely statistical 1σ constraint of Δμ/μ=(1.5±1.5)×10(-7) for a lookback time of 7.5 billion years. Systematic effects of chemical segregation, excitation temperature, frequency dependence, and time variability of the background source are quantified. A multidimensional linear regression analysis leads to a robust constraint of Δμ/μ=(-1.0±0.8(stat)±1.0(sys))×10(-7). PMID:24476248

  19. Robust constraint on a drifting proton-to-electron mass ratio at z=0.89 from methanol observation at three radio telescopes.

    PubMed

    Bagdonaite, J; Daprà, M; Jansen, P; Bethlem, H L; Ubachs, W; Muller, S; Henkel, C; Menten, K M

    2013-12-01

    A limit on a possible cosmological variation of the proton-to-electron mass ratio μ is derived from methanol (CH3OH) absorption lines in the benchmark PKS1830-211 lensing galaxy at redshift z=0.89 observed with the Effelsberg 100-m radio telescope, the Institute de Radio Astronomie Millimétrique 30-m telescope, and the Atacama Large Millimeter/submillimeter Array. Ten different absorption lines of CH3OH covering a wide range of sensitivity coefficients K(μ) are used to derive a purely statistical 1σ constraint of Δμ/μ=(1.5±1.5)×10(-7) for a lookback time of 7.5 billion years. Systematic effects of chemical segregation, excitation temperature, frequency dependence, and time variability of the background source are quantified. A multidimensional linear regression analysis leads to a robust constraint of Δμ/μ=(-1.0±0.8(stat)±1.0(sys))×10(-7).

  20. Using a Satellite Swarm for building a Space-based Radio Telescope for Low Frequencies

    NASA Astrophysics Data System (ADS)

    Bentum, Mark; Boonstra, A. J.; Verhoeven, C. J. M.; van der Veen, A. J.; Gill, E. K. A.; Saks, N.; Falcke, H.; Klein-Wolt, M.; Rajan, R. T.; Wijnholds, S. J.; Arts, M.; van't Klooster, K.; Beliün, F.; Meijerink, A.; Monna, B.; Rotteveel, J.; Boer, M. A.; Bongers, E.; Boom, E.; van Tuijl, E.; van Staveren, A.

    In radio astronomy, as in astronomy in general, a wide range of frequencies is observed as each spectral band offers a unique window to study astrophysical phenomena. In the recent years, new observatories have been designed and built at the extreme limits of the radio spectrum. For the low frequencies several Earth-based radio telescopes are constructed at this moment. In the Netherlands, the Low Frequency Array (LOFAR) is being constructed at this moment and will be operational later this year. LOFAR observes the sky between 30 and 240 MHz. Observing at even lower frequencies is very interesting, but, due to the influence of the Earth's ionosphere this is not possible from Earth. Thus, the only option to observe low frequencies is a telescope in space. In the past several studies have been conducted on a low-frequency space-based radio tele-scope. In the recent ESA project Distributed Aperture Array for Radio Astronomy in Space (DARIS), such a mission was studied in detail. The study focused on a moderate-size three-dimensional satellite constellation operating as a coherent large-aperture synthesis array. The DARIS project is presented in a separate conference contribution. In the DARIS project the focus was on technology available at this moment, with an outlook and technological development plan/roadmap to be exploited for the future. Using current-day technologies, a space-based low-frequency array would be bulky and, thus, costly. A logical next step would be to investigate possibilities to miniaturize the electronics and use very small satellites, perhaps even nano satellites with masses between 1-10 kg to build the radio tele-scope. The approach is to use a swarm of satellites to establish a virtual telescope to perform the astronomical task. This is investigated in the NWO/STW-funded OLFAR (Orbiting Low Frequency Array) project. The OLFAR radio telescope will be composed of an antenna array based on satellites deployed at a location where the Earth

  1. A high speed networked signal processing platform for multi-element radio telescopes

    NASA Astrophysics Data System (ADS)

    Prasad, Peeyush; Subrahmanya, C. R.

    2011-08-01

    A new architecture is presented for a Networked Signal Processing System (NSPS) suitable for handling the real-time signal processing of multi-element radio telescopes. In this system, a multi-element radio telescope is viewed as an application of a multi-sensor, data fusion problem which can be decomposed into a general set of computing and network components for which a practical and scalable architecture is enabled by current technology. The need for such a system arose in the context of an ongoing program for reconfiguring the Ooty Radio Telescope (ORT) as a programmable 264-element array, which will enable several new observing capabilities for large scale surveys on this mature telescope. For this application, it is necessary to manage, route and combine large volumes of data whose real-time collation requires large I/O bandwidths to be sustained. Since these are general requirements of many multi-sensor fusion applications, we first describe the basic architecture of the NSPS in terms of a Fusion Tree before elaborating on its application for the ORT. The paper addresses issues relating to high speed distributed data acquisition, Field Programmable Gate Array (FPGA) based peer-to-peer networks supporting significant on-the fly processing while routing, and providing a last mile interface to a typical commodity network like Gigabit Ethernet. The system is fundamentally a pair of two co-operative networks, among which one is part of a commodity high performance computer cluster and the other is based on Commercial-Off The-Shelf (COTS) technology with support from software/firmware components in the public domain.

  2. A dynamic thermal model for design and control of an 800-element open-air radio telescope

    NASA Astrophysics Data System (ADS)

    Bremer, Michael; Greve, Albert

    2011-09-01

    In earlier work we have described the thermal modelling for design and control of a fully insulated, and sometimes ventilated, high precision radio telescope. For such an insulated telescope the modelling of the time-variable dynamic influence of the thermal environment (air, sky and ground radiation, insolation) is relatively simple. The modelling becomes however quite complex for an open-air radio telescope where each individual member of the reflector backup structure (BUS) and the support structure (fork or yoke) is exposed under a different and time-dependent aspect angle to the thermal environment, which applies in particular to solar radiation. We present a time-dependent 800-element thermal model of an open-air telescope. Using the IRAM 30-m radio telescope as the basic mechanical structure, we explain how the temperature induced, real-time pointing and reflector surface deformations can be derived when using as input the day of the year, the thermal environment, and the geographic position of the telescope and its changing pointing direction. Thermal modelling and results similar to those reported here can be used for radio telescope design and real-time control of pointing and surface adjustment of a telescope with active panels.

  3. The Goldstone Apple Valley Radio Telescope Program-Students Partner with Scientists

    NASA Astrophysics Data System (ADS)

    MacLaren, David; Hofstadter, M.; GAVRT Team

    2007-10-01

    The Goldstone Apple Valley Radio Telescope (GAVRT) Project provides students an opportunity to experience real science. It is also an opportunity for scientists to obtain time on a radio telescope. Via the Internet, students use a 34-meter dish retired from NASA's Deep Space Network to collect data. Approximately 3,500 students participate per year, located in 29 states, 13 countries, and 3 U.S. territories. Students have collaborated with scientists to study a variety of objects and in support of several spacecraft. GAVRT students helped calibrate Cassini's passive radiometer during its 2000-2001 flyby of Jupiter. Students participated in radar observations to help characterize the landing sites for the Opportunity and Spirit rovers. In December 2007 students will participate in radar measurements of possible future landing sites for the Mars Science Laboratory. From 2003 to the present students have been collecting quasar data as part of a study of the interstellar medium. Short-term fluctuations in quasar brightness are thought to be caused by scintillations due to scattering in interstellar plasmas rather than being intrinsic to the quasars themselves. In 2007 students and teachers submitted a proposal to investigate how the mass of black holes at the center of Active Galactic Nuclei (AGN) might correlate to their radio and infrared emissions. This proposal was awarded Director's Discretionary Time on the Spitzer Space Telescope. Students are conducting ground-based observations of the jovian magnetosphere. These data will be valuable to the Juno mission, helping it find clues about the formation of our solar system and adding to the 40 plus year record of the jovian synchrotron emission. GAVRT students also monitor the radio brightness of Uranus, searching for predicted seasonal variability. GAVRT is a partnership involving NASA, the Jet Propulsion Laboratory, and the Lewis Center for Education Research in Apple Valley, California.

  4. Using the Very Large Array (VLA) and other radio telescopes to perform a parasitic Search for Extraterrestrial Intelligence (SETI)

    NASA Technical Reports Server (NTRS)

    Tarter, J.

    1985-01-01

    This paper describes several attempts to utilize various radio telescopes in a manner that we term "parasitic," that is in a manner that does not interrupt or seriously impact the standard astronomical observing programs in progress at the radio observatories. In the extreme case, only recorded astronomical data are accessed off-line, after the fact, without any burden on the observatory at all.

  5. Using the Very Large Array (VLA) and other radio telescopes to perform a parasitic search for extraterrestrial intelligence (SETI)

    NASA Technical Reports Server (NTRS)

    Tarter, J. C.

    1984-01-01

    This paper describes several attempts to utilize various radio telescopes in a manner that is termed 'parasitic', that is in a manner that does not interrupt or seriously impact the standard astronomical observing programs in progress at the radio observatories. In the extreme case, only recorded astronomical data are accessed off-line, after the fact, without any burden on the observatory at all.

  6. Using the Very Large Array (VLA) and other radio telescopes to perform a parasitic Search for Extraterrestrial Intelligence (SETI).

    PubMed

    Tarter, J

    1985-01-01

    This paper describes several attempts to utilize various radio telescopes in a manner that we term "parasitic," that is in a manner that does not interrupt or seriously impact the standard astronomical observing programs in progress at the radio observatories. In the extreme case, only recorded astronomical data are accessed off-line, after the fact, without any burden on the observatory at all.

  7. Protecting the Moon Farside Radio-Telescopes from RFI Produced at the Future Lagrangian-Points

    NASA Astrophysics Data System (ADS)

    Pluchino, S.; Antonietti, N.; Maccone, C.

    The coming space colonization will involve the possibility of establishing Space Stations (Gateways in the NASA jargon) at some Lagrangian Points in the vicinity of the Earth (5 points in the Earth-Moon system plus 2 more in the Sun-Earth system). Independently of this, the Moon's farside is the only place around the Earth that man-made radio frequency interferences (RFI) clearly cannot reach. In other words, a radio telescope or an array of antennas located in the centre of the Moon's farside would be able to achieve radio observations enormously clean and sensitive. In this paper we study the problems of radio wave diffraction that arise from the future RFI produced at the Lagrangian Points with particular regard to the frequency bands that are important in radio astronomical research. It is hoped that the future exploitation of the Moon's farside by several space- faring nations will take into account the “ecological” need to preserve at least the central part of the Moon's farside. This is understood to mean the creation of an official RFI-Free Zone within a circle centered at crater Daedalus (i.e. at around the antipode of the Earth) and extending 30 degrees in both latitude and longitude.

  8. GREEN BANK TELESCOPE AND SWIFT X-RAY TELESCOPE OBSERVATIONS OF THE GALACTIC CENTER RADIO MAGNETAR SGR J1745–2900

    SciTech Connect

    Lynch, Ryan S.; Archibald, Robert F.; Kaspi, Victoria M.; Scholz, Paul

    2015-06-20

    We present results from eight months of Green Bank Telescope 8.7 GHz observations and nearly 18 months of Swift X-ray telescope observations of the radio magnetar SGR J1745–2900. We tracked the radio and X-ray flux density, polarization properties, profile evolution, rotation, and single-pulse behavior. We identified two main periods of activity. The first is characterized by approximately 5.5 months of relatively stable evolution in radio flux density, rotation, and profile shape, while in the second these properties varied substantially. Specifically, a third profile component emerged and the radio flux also became more variable. The single pulse properties also changed, most notably with a larger fraction of pulses with pulse widths ∼5–20 ms in the erratic state. Bright single pulses are well described by a log-normal energy distribution at low energies, but with an excess at high energies. The 2–10 keV flux decayed steadily since the initial X-ray outburst, while the radio flux remained stable to within ∼20% during the stable state. A joint pulsar timing analysis of the radio and X-ray data shows a level of timing noise unprecedented in a radio magnetar, though during the time covered by the radio data alone the timing noise was at a level similar to that observed in other radio magnetars. While SGR J1745–2900 is similar to other radio magnetars in many regards, it differs by having experienced a period of relative stability in the radio that now appears to have ended, while the X-ray properties evolved independently.

  9. "RadioAstron"-A telescope with a size of 300 000 km: Main parameters and first observational results

    NASA Astrophysics Data System (ADS)

    Kardashev, N. S.; Khartov, V. V.; Abramov, V. V.; Avdeev, V. Yu.; Alakoz, A. V.; Aleksandrov, Yu. A.; Ananthakrishnan, S.; Andreyanov, V. V.; Andrianov, A. S.; Antonov, N. M.; Artyukhov, M. I.; Arkhipov, M. Yu.; Baan, W.; Babakin, N. G.; Babyshkin, V. E.; Bartel', N.; Belousov, K. G.; Belyaev, A. A.; Berulis, J. J.; Burke, B. F.; Biryukov, A. V.; Bubnov, A. E.; Burgin, M. S.; Busca, G.; Bykadorov, A. A.; Bychkova, V. S.; Vasil'kov, V. I.; Wellington, K. J.; Vinogradov, I. S.; Wietfeldt, R.; Voitsik, P. A.; Gvamichava, A. S.; Girin, I. A.; Gurvits, L. I.; Dagkesamanskii, R. D.; D'Addario, L.; Giovannini, G.; Jauncey, D. L.; Dewdney, P. E.; D'yakov, A. A.; Zharov, V. E.; Zhuravlev, V. I.; Zaslavskii, G. S.; Zakhvatkin, M. V.; Zinov'ev, A. N.; Ilinen, Yu.; Ipatov, A. V.; Kanevskii, B. Z.; Knorin, I. A.; Casse, J. L.; Kellermann, K. I.; Kovalev, Yu. A.; Kovalev, Yu. Yu.; Kovalenko, A. V.; Kogan, B. L.; Komaev, R. V.; Konovalenko, A. A.; Kopelyanskii, G. D.; Korneev, Yu. A.; Kostenko, V. I.; Kotik, A. N.; Kreisman, B. B.; Kukushkin, A. Yu.; Kulishenko, V. F.; Cooper, D. N.; Kut'kin, A. M.; Cannon, W. H.; Larionov, M. G.; Lisakov, M. M.; Litvinenko, L. N.; Likhachev, S. F.; Likhacheva, L. N.; Lobanov, A. P.; Logvinenko, S. V.; Langston, G.; McCracken, K.; Medvedev, S. Yu.; Melekhin, M. V.; Menderov, A. V.; Murphy, D. W.; Mizyakina, T. A.; Mozgovoi, Yu. V.; Nikolaev, N. Ya.; Novikov, B. S.; Novikov, I. D.; Oreshko, V. V.; Pavlenko, Yu. K.; Pashchenko, I. N.; Ponomarev, Yu. N.; Popov, M. V.; Pravin-Kumar, A.; Preston, R. A.; Pyshnov, V. N.; Rakhimov, I. A.; Rozhkov, V. M.; Romney, J. D.; Rocha, P.; Rudakov, V. A.; Räisänen, A.; Sazankov, S. V.; Sakharov, B. A.; Semenov, S. K.; Serebrennikov, V. A.; Schilizzi, R. T.; Skulachev, D. P.; Slysh, V. I.; Smirnov, A. I.; Smith, J. G.; Soglasnov, V. A.; Sokolovskii, K. V.; Sondaar, L. H.; Stepan'yants, V. A.; Turygin, M. S.; Turygin, S. Yu.; Tuchin, A. G.; Urpo, S.; Fedorchuk, S. D.; Finkel'shtein, A. M.; Fomalont, E. B.; Fejes, I.; Fomina, A. N.; Khapin, Yu. B.; Tsarevskii, G. S.; Zensus, J. A.; Chuprikov, A. A.; Shatskaya, M. V.; Shapirovskaya, N. Ya.; Sheikhet, A. I.; Shirshakov, A. E.; Schmidt, A.; Shnyreva, L. A.; Shpilevskii, V. V.; Ekers, R. D.; Yakimov, V. E.

    2013-03-01

    The Russian Academy of Sciences and Federal Space Agency, together with the participation of many international organizations, worked toward the launch of the RadioAstron orbiting space observatory with its onboard 10-m reflector radio telescope from the Baikonur cosmodrome on July 18, 2011. Together with some of the largest ground-based radio telescopes and a set of stations for tracking, collecting, and reducing the data obtained, this space radio telescope forms a multi-antenna ground-space radio interferometer with extremely long baselines, making it possible for the first time to study various objects in the Universe with angular resolutions a million times better than is possible with the human eye. The project is targeted at systematic studies of compact radio-emitting sources and their dynamics. Objects to be studied include supermassive black holes, accretion disks, and relativistic jets in active galactic nuclei, stellar-mass black holes, neutron stars and hypothetical quark stars, regions of formation of stars and planetary systems in our and other galaxies, interplanetary and interstellar plasma, and the gravitational field of the Earth. The results of ground-based and inflight tests of the space radio telescope carried out in both autonomous and ground-space interferometric regimes are reported. The derived characteristics are in agreement with the main requirements of the project. The astrophysical science program has begun.

  10. Very long baseline interferometric observations made with an orbiting radio telescope

    NASA Technical Reports Server (NTRS)

    Levy, G. S.; Linfield, R. P.; Ulvestad, J. S.; Edwards, C. D.; Jordan, J. F., Jr.; Di Nardo, J.; Christensen, C. S.; Preston, R. A.; Skjerve, L. J.; Blaney, K. B.

    1986-01-01

    An orbiting spacecraft and ground observatories have been used to obtain interferometric observations of cosmic radio sources. The Tracking and Data Relay Satellite System (TDRSS) was used as the orbiting observatory in conjunction with two 64-meter radio telescopes at ground observatories, one in Australia and one in Japan. The quasars 1730-130 (NRAO 530), 1510-089, and 1741-038 were observed at a frequency of 2.3 gigahertz, and a maximum projected baseline of 1.4 earth diameters was achieved. All quasar observations for which valid data were acquired resulted in detected fringes. Many of the techniques proposed for a dedicated very long baseline interferometry observatory in space were used successfully in this experiment.

  11. Spectral observations of active region sources with RATAN-600 and WSRT. [Westerbork Synthesis Radio Telescope

    NASA Technical Reports Server (NTRS)

    Alissandrakis, C. E.; Gel'frejkh, G. B.; Borovik, V. N.; Korzhavin, A. N.; Bogod, V. M.; Nindos, A.; Kundu, M. R.

    1993-01-01

    We present spectral observations of neutral line and sunspot associated sources obtained with the RATAN-600 radio telescope and the WSRT in the wavelength range of 2 to 6 cm. Sources associated with large sunspots have flat spectra, while neutral line sources have very steep spectra. In the case of a large spot we estimated the magnetic field to be at least 2700 G at the base of the transition region and 1800 G in the low corona. We consider possible interpretations of the radio emission above the neutral lines. Gyroresonance emission at the fourth harmonic is inadequate, whereas emission from a small population of nonthermal electrons (total number 10 exp 30 to 10 exp 31) with a delta = 3 power law distribution seems to be sufficient.

  12. Very long baseline interferometric observations made with an orbiting radio telescope.

    PubMed

    Levy, G S; Linfield, R P; Ulvestad, J S; Edwards, C D; Jordan, J F; DI Nardo, S J; Christensen, C S; Preston, R A; Skjerve, L J; Stavert, L R; Burke, B F; Whitney, A R; Cappallo, R J; Rogers, A E; Blaney, K B; Maher, M J; Ottenhoff, C H; Jauncey, D L; Peters, W L; Nishimura, T; Hayashi, T; Takano, T; Yamada, T; Hirabayashi, H; Morimoto, M; Inoue, M; Shiomi, T; Kawaguchi, N; Kunimori, H

    1986-10-10

    An orbiting spacecraft and ground observatories have been used to obtain interferometric observations of cosmic radio sources. The Tracking and Data Relay Satellite System (TDRSS) was used as the orbiting observatory in conjunction with two 64- meter radio telescopes at ground observatories, one in Australia and one in Japan. The quasars 1730-130 (NRAO 530), 1510-089, and 1741-038 were observed at a frequency of 2.3 gigahertz, and a maximum projected baseline of 1.4 earth diameters was achieved. All quasar observations for which valid data were acquired resulted in detected fringes. Many of the techniques proposed for a dedicated very long baseline interferometry observatory in space were used successfully in this experiment.

  13. Biggest Radio-Telescope in Northern Europe, the RT-32 in Latvia

    NASA Astrophysics Data System (ADS)

    Monstein, Christian

    2014-08-01

    Hidden in the dense coastal forests of Slítere a mysterious ex-Soviet spy center is now used for science. Almost everyone including me who entered the site of the two large radio telescopes called Irbene, are amazed by the surrealistic atmosphere of the abandoned ghost town and two large radio dish antennas in the middle of nowhere. This article will tell more about this site; see also [1]. As the Cold War between the US and USSR entered the space age, the need for Space espionage led to the Soviets designing ways to track and decode signals from US satellites. The project began in 1967 when the remote areas of the Ventspils district were allocated for secret buildup of a site codenamed "Starlet". The location was chosen because of low population and dense forest areas of Slí;tere that also were part of the Soviet border zone - ensuring that no strangers could ever discover it.

  14. Limit on the ultrahigh-energy cosmic-ray flux with the Westerbork synthesis radio telescope

    SciTech Connect

    Veen, S. ter; James, C. W.; Buitink, S.; Falcke, H.; Mevius, M.; Scholten, O.; Vries, K. D. de; Singh, K.; Stappers, B.

    2010-11-15

    A particle cascade (shower) in a dielectric, for example, as initiated by an ultra-high-energy cosmic ray, will have an excess of electrons which will emit coherent Cerenkov radiation, known as the Askaryan effect. In this work we study the case in which such a particle shower occurs in a medium just below its surface. We show, for the first time, that the radiation transmitted through the surface is independent of the depth of the shower below the surface when observed from far away, apart from trivial absorption effects. As a direct application we use the recent results of the NuMoon project, where a limit on the neutrino flux for energies above 10{sup 22} eV was set using the Westerbork Synthesis Radio Telescope by measuring pulsed radio emission from the Moon, to set a limit on the flux of ultra-high-energy cosmic rays.

  15. Radio OH observations of P/Halley with the NRAO 43-m telescope

    NASA Technical Reports Server (NTRS)

    Claussen, M. J.; Schloerb, F. Peter

    1987-01-01

    Results of the radio OH emission from Comet Halley obtained with the 43-m NRAO telescope over the period from July 1985 to May 1986 show the global properties to be close to those predicted by Schloerb and Gerard (1985). The OH production rates are found to be well correlated with heliocentric magnitude estimates and to roughly follow the production rates determined from UV OH observations. After correction for the Greenstein effect, the mean velocities suggest that there is anisotropic outgassing of the parent molecule. An increase in the linewidths of the OH emission near and after perihelion is also noted.

  16. Cassegrainian/Gregorian-type null correctors for surface measurements of radio telescope reflectors.

    PubMed

    Greve, A

    1997-08-01

    The (sub)millimeter wavelength radio observatory of the next generation will probably be an interferometer array of some 50 telescopes with parabolic reflectors 10-15 m in diameter. At this scale of mass production it is convenient to have at hand for workshop assembly a reflector surface measurement technique that is precise and easy to operate. We discuss the possibility of reflector measurements based on 10.6-microm CO2 laser interferometry using Cassegrainian/Gregorian-type null correctors. PMID:18259343

  17. Rayleigh beacon for measuring the surface profile of a radio telescope.

    PubMed

    Padin, S

    2014-12-01

    Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A λ=3  mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds.

  18. Rayleigh beacon for measuring the surface profile of a radio telescope.

    PubMed

    Padin, S

    2014-12-01

    Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A λ=3  mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds. PMID:25607971

  19. Development of a Multi-frequency Interferometer Telescope for Radio Astronomy (MITRA)

    NASA Astrophysics Data System (ADS)

    Ingala, Dominique Guelord Kumamputu

    2015-03-01

    This dissertation describes the development and construction of the Multi-frequency Interferometer Telescope for Radio Astronomy (MITRA) at the Durban University of Technology. The MITRA station consists of 2 antenna arrays separated by a baseline distance of 8 m. Each array consists of 8 Log-Periodic Dipole Antennas (LPDAs) operating from 200 MHz to 800 MHz. The design and construction of the LPDA antenna and receiver system is described. The receiver topology provides an equivalent noise temperature of 113.1 K and 55.1 dB of gain. The Intermediate Frequency (IF) stage was designed to produce a fixed IF frequency of 800 MHz. The digital Back-End and correlator were implemented using a low cost Software Defined Radio (SDR) platform and Gnu-Radio software. Gnu-Octave was used for data analysis to generate the relevant received signal parameters including total power, real, and imaginary, magnitude and phase components. Measured results show that interference fringes were successfully detected within the bandwidth of the receiver using a Radio Frequency (RF) generator as a simulated source. This research was presented at the IEEE Africon 2013 / URSI Session Mauritius, and published in the proceedings.

  20. New Az/El mount for Haystack Observatory's Small Radio Telescope kit

    NASA Astrophysics Data System (ADS)

    Cobb, M. L.

    2005-12-01

    The Small Radio Telescope (SRT) kit was designed by Haystack Observatory as part of their educational outreach effort. The SRT uses a custom designed FFT based radio spectrometer receiver with a controller to position a 2.3m dish to make various radio astronomy observations including the 21 cm spin flip line of atomic hydrogen. Because there is no sizable commercial market for a two dimensional mount for dishes of this size, finding an appropriate provider as been a recurring problem for the project. Originally, the kit used a modified motor mount from Kaultronics called the H180. Two of these motors were combined by a specially designed adaptor to allow motion in azimuth and elevation. When Kaultronics was bought out by California Amplifier they discontinued production of the H180. The next iteration used a compact unit called the alfa-spid which was made in Germany and imported through Canada. The alfa-spid was designed to point various ham radio antennas and proved problematic with 2.3m dishes. Most recently the CASSI (Custom Astronomical Support Services, Inc.) corporation has designed and certified a robust Az/El mount capable of supporting dishes up to 12 feet (3.6m) with 100 MPH wind loads. This paper presents the design and operating characteristics of the new CASSI mount. The CASSI mount is now shipped with the SRT kit and should serve the project well for the foreseeable future.

  1. A year of operation of Melibea e-Callisto Solar Radio Telescope

    NASA Astrophysics Data System (ADS)

    Russu, A.; Gómez-Herrero, R.; Prieto, M.; Monstein, C.; Ivanov, H.; Rodríguez-Pacheco, J.; Blanco, J. J.

    2015-08-01

    The e-CALLISTO (Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory) is a worldwide radio-spectrograph network with 24 hours a day solar radio burst monitoring. The e-CALLISTO network is led by the Swiss Federal Institute of Technology Zurich (ETHZ Zurich), which work up collaborations with local host institutions. In 2013 the University of Alcalá joined the e-CALLISTO network with the installation of two Solar Radio Telescopes (SRT): the EA4RKU-SRT that was located at the University of Alcalá from January 2013 till June 2013 and the Melibea-SRT that is located at Peralejos de las Truchas (Guadalajara) in operation from June 2013. The Spanish e-Callisto SRTs provide routine data to the network. We present examples of type III and type II radio-bursts observed by Melibea during its first year of operation and study their relation with soft X-ray flares observed by GOES and Coronal Mass Ejections (CMEs) and Solar Energetic Particle (SEP) events observed by space-borne instrumentation.

  2. Giving High School Students a Research Grade Radio Telescope to Control; Motivational Results from Access to Real Scientific Tools

    NASA Astrophysics Data System (ADS)

    Kohrs, Russell; Langston, G.; Heatherly, S.

    2013-01-01

    Have you ever wondered what it might be like to place control of a six-story building in the hands of eager high school students? This past summer, the USNO 20m telescope at the National Radio Astronomy Observatory, Green Bank, WV was brought back online for just such a purpose. This telescope is equipped with an X-band receiver, capable of observing center frequencies from 8-10 GHz and is the first radio telescope accessible by students and observers through the SKYNET telescope network. Operated remotely with a queue-based system, students can now collect real radio data for any range of projects. This past summer, five lessons were written that were tailor-made for student exploration of radio astronomy. Each lesson explores various radio objects in the context of an action-packed sci-fi adventure. Some of the work required to bring the 20m online for student use will be discussed here, but the main focus of this presentation will be how this work has been received by the author’s own students in its first classroom application. Topics that are normally difficult to discuss with students in an inquiry-based classroom setting, such as HII regions, synchrotron radiation, lunar temperature profiles, and galactic supermassive black holes were addressed in the classroom using the lessons developed by the author for the 20m as well as data collected by students using the telescope via SKYNET.

  3. Back to the future: science and technology directions for radio telescopes of the twenty-first century

    NASA Astrophysics Data System (ADS)

    Cordes, James M.

    2009-08-01

    The early days of radio astronomy showed incredibly diverse experimentation in ways to sample the electromagnetic spectrum at radio wavelengths. In addition to obtaining adequate sensitivity by building large collection areas, a primary goal also was to achieve sufficient angular resolution to localize radio sources for multi-wavelength identification. This led to many creative designs and the invention of aperture synthesis and VLBI. Some of the basic telescope types remain to the present day, now implemented across the entire radio spectrum from wavelengths of tens of meters to submillimeter wavelengths. In recent years, as always, there is still the drive for greater sensitivity but a primary goal is now to achieve very large fields of view to complement high resolution and frequency coverage, leading to a new phase of experimentation. This is the “back to the future” aspect of current research and development for next-generation radio telescopes. In this paper I summarize the scientific motivations for development of new technology and telescopes since about 1990 and going forward for the next decade and longer. Relevant elements include highly optimized telescope optics and feed antenna designs, innovative fabrication methods for large reflectors and dipole arrays, digital implementations, and hardware vs. software processing. The emphasis will be on meter and centimeter wavelength telescopes but I include a brief discussion of millimeter wavelengths to put the longer wavelength enterprises into perspective. I do not discuss submillimeter wavelengths because they are covered in other papers.

  4. National Radio Astronomy Observatory Announces Closure of Millimeter-Wave Telescope

    NASA Astrophysics Data System (ADS)

    2000-02-01

    The National Radio Astronomy Observatory (NRAO) will close down its millimeter-wavelength telescope on Kitt Peak, Arizona, in July 2000, Director Paul Vanden Bout announced today. The closure will affect the activities of 24 NRAO employees. The Arizona telescope, known as the 12 Meter Telescope because of the diameter of its dish antenna, is the only millimeter-wavelength instrument in the U.S. that is operated full-time as a national facility, open to all scientists. The action was made necessary by the current and anticipated budget for the Observatory, Vanden Bout said. "We are forced to reduce the scope of our activities," Vanden Bout said. The NRAO also operates the Very Large Array and Very Long Baseline Array from its facilities in New Mexico and is completing construction of the Green Bank Telescope in West Virginia. The 12 Meter Telescope is used to observe electromagnetic radiation with wavelengths of a few millimeters down to one millimeter, a region that lies between what is traditionally considered radio waves and infrared radiation. The NRAO is currently participating in an international partnership to develop the Atacama Large Millimeter Array (ALMA), an array of 64 antennas to observe at millimeter wavelengths from a 16,500-foot-high location in northern Chile. "We understood that ALMA eventually would replace the 12 Meter Telescope, but we had hoped to continue operating the 12 Meter until ALMA began interim operations, probably sometime in 2005. That is not possible, and we are forced to close the 12 Meter this year," Vanden Bout said. More than 150 scientists use the 12 Meter Telescope for their research every year. The NRAO's Tucson-based employees have been notified of the Observatory's decision. Some of the NRAO employees in Tucson already are working on the ALMA project. Over the next few months, the NRAO will seek to transfer 12 Meter staff to the ALMA project or to other positions within the Observatory, where that is possible. Where

  5. Developments of next generation monitor and control systems for radio telescopes

    NASA Astrophysics Data System (ADS)

    Kodilkar, J.; Uprade, R.; Nayak, S.; Wadadekar, Y.; Chengalur, J.; Gupta, Y.

    2013-04-01

    As part of the ongoing upgrade of the GMRT observatory, the monitor and control (M&C) system is being upgraded to a modern specification driven system. The basic building block of the proposed M&C framework is a SACE node which provides command, response and event data streaming interfaces to the child and parent nodes running locally or remotely in a heterogeneous operating system environment. A prototype M&C system formed by hierarchically composing SACE nodes at different levels has been successfully tested at the GMRT. For the recently built 15m antenna at NCRA, a generic, web based M&C system has been developed which allows remote, authenticated operation. We discuss issues relevant to the development of the next generation M&C systems for radio telescopes using the lessons learned from these two systems. We also summarize flexible, reusable and cost-effective approaches using off the shelf packages and technologies used in generic frameworks, which can contribute to form the basis for M&C systems of very large radio telescopes like the SKA.

  6. PONDER - A Real time software backend for pulsar and IPS observations at the Ooty Radio Telescope

    NASA Astrophysics Data System (ADS)

    Naidu, Arun; Joshi, Bhal Chandra; Manoharan, P. K.; Krishnakumar, M. A.

    2015-06-01

    This paper describes a new real-time versatile backend, the Pulsar Ooty Radio Telescope New Digital Efficient Receiver (PONDER), which has been designed to operate along with the legacy analog system of the Ooty Radio Telescope (ORT). PONDER makes use of the current state of the art computing hardware, a Graphical Processing Unit (GPU) and sufficiently large disk storage to support high time resolution real-time data of pulsar observations, obtained by coherent dedispersion over a bandpass of 16 MHz. Four different modes for pulsar observations are implemented in PONDER to provide standard reduced data products, such as time-stamped integrated profiles and dedispersed time series, allowing faster avenues to scientific results for a variety of pulsar studies. Additionally, PONDER also supports general modes of interplanetary scintillation (IPS) measurements and very long baseline interferometry data recording. The IPS mode yields a single polarisation correlated time series of solar wind scintillation over a bandwidth of about four times larger (16 MHz) than that of the legacy system as well as its fluctuation spectrum with high temporal and frequency resolutions. The key point is that all the above modes operate in real time. This paper presents the design aspects of PONDER and outlines the design methodology for future similar backends. It also explains the principal operations of PONDER, illustrates its capabilities for a variety of pulsar and IPS observations and demonstrates its usefulness for a variety of astrophysical studies using the high sensitivity of the ORT.

  7. FERMI LARGE AREA TELESCOPE VIEW OF THE CORE OF THE RADIO GALAXY CENTAURUS A

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Atwood, W. B.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Bastieri, D.; Baughman, B. M.; Brandt, T. J.; Bonamente, E. E-mail: fukazawa@hep01.hepl.hiroshima-u.ac.j

    2010-08-20

    We present {gamma}-ray observations with the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope of the nearby radio galaxy Centaurus A (Cen A). The previous EGRET detection is confirmed, and the localization is improved using data from the first 10 months of Fermi science operation. In previous work, we presented the detection of the lobes by the LAT; in this work, we concentrate on the {gamma}-ray core of Cen A. Flux levels as seen by the LAT are not significantly different from that found by EGRET, nor is the extremely soft LAT spectrum ({Gamma} = 2.67 {+-} 0.10{sub stat} {+-} 0.08{sub sys} where the photon flux is {Phi} {proportional_to} E {sup -{Gamma}}). The LAT core spectrum, extrapolated to higher energies, is marginally consistent with the non-simultaneous HESS spectrum of the source. The LAT observations are complemented by simultaneous observations from Suzaku, the Swift Burst Alert Telescope and X-ray Telescope, and radio observations with the Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry program, along with a variety of non-simultaneous archival data from a variety of instruments and wavelengths to produce a spectral energy distribution (SED). We fit this broadband data set with a single-zone synchrotron/synchrotron self-Compton model, which describes the radio through GeV emission well, but fails to account for the non-simultaneous higher energy TeV emission observed by HESS from 2004 to 2008. The fit requires a low Doppler factor, in contrast to BL Lac objects which generally require larger values to fit their broadband SEDs. This indicates that the {gamma}-ray emission originates from a slower region than that from BL Lac objects, consistent with previous modeling results from Cen A. This slower region could be a slower moving layer around a fast spine, or a slower region farther out from the black hole in a decelerating flow. The fit parameters are also consistent with Cen A being able to accelerate

  8. Design of a radio telescope surface segment actuator based on a form-closed eccentric cam

    NASA Astrophysics Data System (ADS)

    Smith, David R.

    2014-07-01

    As radio telescopes have reached larger diameters and higher frequencies, it is typically not possible to meet their surface accuracy specifications using passive homology-based designs. The most common solution to this problem in the current generation of large, high-frequency radio telescopes is to employ a system of linear actuators to correct the surface shape of the primary reflector. The exact specifications of active surface actuators vary with the telescope. However, they have many common features, some of which drive their design. In general, these actuators must provide precise and repeatable positioning under significant loads during operation and they must withstand even higher loads for survival conditions. For general safety, they typically must hold position in the event of a power failure and must incorporate position limits, whether electrical, mechanical, or both. Because the number of actuators is generally high for large active surfaces (hundreds or even thousands of actuators), they must also be reliable and of reasonable individual cost. Finally, for maximum flexibility in their installation, they must be compact. This paper presents a concept for an active surface actuator based on a form-closed eccentric cam (kinematically, a Scotch Yoke mechanism). Such a design is limited in stroke, but offers potential advantages in terms of manufacture, compactness, measurement, and survival loading. The paper demonstrates that some of the expected advantages cannot be practically realized, due to dimensions that are driven by survival loading conditions. As a result, this concept is likely to offer an advantage over conventional screw-type actuators only for cases where actuator runaway and stall are the driving considerations.

  9. 21-cm Observations with the Morehead Radio Telescope: Involving Undergraduates in Observing Programs

    NASA Astrophysics Data System (ADS)

    Malphrus, B. K.; Combs, M. S.; Kruth, J.

    2000-12-01

    Herein we report astronomical observations made by undergraduate students with the Morehead Radio Telescope (MRT). The MRT, located at Morehead State University, Morehead, Kentucky, is small aperture (44-ft.) instrument designed by faculty, students, and industrial partners to provide a research instrument and active laboratory for undergraduate astronomy, physics, pre-engineering, and computer science students. Small aperture telescopes like the MRT have numerous advantages as active laboratories and as research instruments. The benefits to students are based upon a hands-on approach to learning concepts in astrophysics and engineering. Students are provided design and research challenges and are allowed to pursue their own solutions. Problem-solving abilities and research design skills are cultivated by this approach. Additionally, there are still contributions that small aperture centimeter-wave instruments can make. The MRT operates over a 6 MHz bandwidth centered at 1420 MHz (21-cm), which corresponds to the hyperfine transition of atomic hydrogen (HI). The HI spatial distribution and flux density associated with cosmic phenomena can be observed and mapped. The dynamics and kinematics of celestial objects can be investigated by observing over a range of frequencies (up to 2.5 MHz) with a 2048-channel back-end spectrometer, providing up to 1 KHz frequency resolution. The sensitivity and versatility of the telescope design facilitate investigation of a wide variety of cosmic phenomena, including supernova remnants, emission and planetary nebulae, extended HI emission from the Milky Way, quasars, radio galaxies, and the sun. Student observations of galactic sources herein reported include Taurus A, Cygnus X, and the Rosette Nebula. Additionally, we report observations of extragalactic phenomena, including Cygnus A, 3C 147, and 3C 146. These observations serve as a performance and capability test-bed of the MRT. In addition to the astronomical results of these

  10. Study on a novel panel support concept for radio telescopes with active surface

    NASA Astrophysics Data System (ADS)

    Yang, Dehua; Zhou, Guohua; Okoh, Daniel; Li, Guoping; Cheng, Jingquan

    2010-07-01

    Generally, panels of radio telescopes are mainly shaped in trapezoid and each is supported/positioned by four adjustors beneath its vertexes. Such configuration of panel supporting system is essentially hyper-static, and the panel is overconstrained from a kinematic point of view. When the panel is to be adjusted and/or actuated, it will suffer stress from its adjusters and hence its shape is to be distorted. This situation is not desirable for high precision panels, such as glass based panels especially used for sub-millimeter and shorter wavelength telescopes with active optics/active panel technology. This paper began with a general overview of panel patterns and panel supports of existing radio telescopes. Thereby, we proposed a preferable master-slave active surface concept for triangular and/or hexagonal panel pattern. In addition, we carry out panel error sensitivity analysis for all the 6 degrees of freedom (DOF) of a panel to identify what DOFs are most sensitive for an active surface. And afterwards, based on the error sensitivity analysis, we suggested an innovative parallel-series concept hexapod well fitted for an active panel to correct for all of its 6 rigid errors. A demonstration active surface using the master-slave concept and the hexapod manifested a great save in cost, where only 486 precision actuators are needed for 438 panels, which is 37% of those actuators needed by classic segmented mirror active optics. Further, we put forward a swaying-arm based design concept for the related connecting joints between panels, which ensures that all the panels attached on to it free from over-constraints when they are positioned and/or actuated. Principle and performance of the swaying-arm connecting mechanism are elaborated before a practical cablemesh based prototype active surface is presented with comprehensive finite element analysis and simulation.

  11. DSS-28: a novel wide bandwidth radio telescope devoted to educational outreach

    NASA Astrophysics Data System (ADS)

    Jones, Glenn; Weinreb, Sander; Mani, Hamdi; Smith, Stephen; Teitelbaum, Lawrence; Hofstadter, Mark; Kuiper, Thomas B. H.; Imbriale, William A.; Dorcey, Ryan; Leflang, John

    2010-07-01

    We have recently equipped the 34-meter DSS-28 radio telescope at the Goldstone Deep Space Communications Complex with a novel wide bandwidth radiometer and digital signal processor as part of the Goldstone Apple Valley Radio Telescope (GAVRT) educational outreach program operated by the Jet Propulsion Laboratory and the Lewis Center for Educational Research. The system employs a cryogenically cooled wide bandwidth quad-ridge feed and InP low noise amplifiers to achieve excellent noise performance from 2.7 to 14 GHz; a fractional bandwidth better than 4:1. Four independently tunable dual-polarization receivers each down-convert a 2 GHz block to baseband, providing access to 8 GHz of instantaneous bandwidth. A flexible FPGA-based signal processor has been constructed using CASPER FPGA hardware and tools to take advantage of this enormous bandwidth. This system demonstrates many of the enabling wide bandwidth technologies that will be crucial to maximizing the utility of future large centimeter-wavelength arrays, in particular the Square Kilometer Array. The GAVRT program has previously used narrow bandwidth total power radiometers to study flux variability of quasars and the outer planets. The versatility of DSS-28 will enable other projects including spectroscopy and SETI. Finally, the wide instantaneous bandwidth available makes this system uniquely suited for studying transient radio pulses. A configuration of the digital signal processor has been developed which provides the capability of recording a burst of raw baseband voltage data triggered by a real-time incoherent dedispersion system which is very sensitive to pulses from a known source, such as the Crab Nebula pulsar.

  12. A COMBINED LOW-RADIO FREQUENCY/X-RAY STUDY OF GALAXY GROUPS. I. GIANT METREWAVE RADIO TELESCOPE OBSERVATIONS AT 235 MHz AND 610 MHz

    SciTech Connect

    Giacintucci, Simona; O'Sullivan, Ewan; Vrtilek, Jan; David, Laurence P.; Mazzotta, Pasquale; Gitti, Myriam; Jones, Christine; Forman, William R.; Raychaudhury, Somak; Ponman, Trevor; Venturi, Tiziana; Athreya, Ramana M.; Clarke, Tracy E.; Murgia, Matteo; Ishwara-Chandra, C. H.

    2011-05-10

    We present new Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz of 18 X-ray bright galaxy groups. These observations are part of an extended project, presented here and in future papers, which combines low-frequency radio and X-ray data to investigate the interaction between central active galactic nuclei (AGNs) and the intra-group medium (IGM). The radio images show a very diverse population of group-central radio sources, varying widely in size, power, morphology, and spectral index. Comparison of the radio images with Chandra and XMM-Newton X-ray images shows that groups with significant substructure in the X-ray band and marginal radio emission at {approx}>1 GHz host low-frequency radio structures that correlate with substructures in IGM. Radio-filled X-ray cavities, the most evident form of AGN/IGM interaction in our sample, are found in half of the systems and are typically associated with small, low-, or mid-power double radio sources. Two systems, NGC5044 and NGC4636, possess multiple cavities, which are isotropically distributed around the group center, possibly due to group weather. In other systems the radio/X-ray correlations are less evident. However, the AGN/IGM interaction can manifest itself through the effects of the high-pressure medium on the morphology, spectral properties, and evolution of the radio-emitting plasma. In particular, the IGM can confine fading radio lobes in old/dying radio galaxies and prevent them from dissipating quickly. Evidence for radio emission produced by former outbursts that co-exist with current activity is found in six groups of the sample.

  13. ADDING CONTEXT TO JAMES WEBB SPACE TELESCOPE SURVEYS WITH CURRENT AND FUTURE 21 cm RADIO OBSERVATIONS

    SciTech Connect

    Beardsley, A. P.; Morales, M. F.; Lidz, A.; Malloy, M.; Sutter, P. M.

    2015-02-20

    Infrared and radio observations of the Epoch of Reionization promise to revolutionize our understanding of the cosmic dawn, and major efforts with the JWST, MWA, and HERA are underway. While measurements of the ionizing sources with infrared telescopes and the effect of these sources on the intergalactic medium with radio telescopes should be complementary, to date the wildly disparate angular resolutions and survey speeds have made connecting proposed observations difficult. In this paper we develop a method to bridge the gap between radio and infrared studies. While the radio images may not have the sensitivity and resolution to identify individual bubbles with high fidelity, by leveraging knowledge of the measured power spectrum we are able to separate regions that are likely ionized from largely neutral, providing context for the JWST observations of galaxy counts and properties in each. By providing the ionization context for infrared galaxy observations, this method can significantly enhance the science returns of JWST and other infrared observations.

  14. Reliability of 1.8-meter solar radio telescope at Metsähovi Radio Observatory for long-term solar monitoring

    NASA Astrophysics Data System (ADS)

    Uunila, Minttu; Kallunki, Juha

    2015-09-01

    Our aim is to prove that long time series of solar observations measured with Metsähovi Radio Observatory's 1.8-meter solar radio telescope, RT-1.8, at 11.2 GHz are reliable, and that the data can be used for solar cyclicity studies. We give a detailed description of RT-1.8 and its calibration. We compare 14 years of Metsähovi Radio Observatory's solar data from solar cycles 23 and 24 to both Dominion Radio Astrophysical Observatory (DRAO 2015), Penticton, Canada 2.8 GHz and Nobeyama Solar Radio Observatory (NSRO 2015), Nobeyama, Japan 9.4 and 17.0 GHz data. Our results show high correlation between all data sets.

  15. THE ALLEN TELESCOPE ARRAY FLY'S EYE SURVEY FOR FAST RADIO TRANSIENTS

    SciTech Connect

    Siemion, Andrew P.V.; Bower, Geoffrey C.; Wagner, Mark I.; Werthimer, Dan; Backer, Don; Foster, Griffin; McMahon, Peter L.; Cordes, Jim; Van Leeuwen, Joeri

    2012-01-10

    The relatively unexplored fast radio transient parameter space is known to be home to a variety of interesting sources, including pulsars, pulsar giant pulses, and non-thermal emission from planetary magnetospheres. In addition, a variety of hypothesized but as-yet-unobserved phenomena such as primordial black hole evaporation and prompt emission associated with coalescing massive objects have been suggested. The 2007 announcement by Lorimer et al. of the detection of a bright (30 Jy) radio pulse that was inferred to be of extragalactic origin and the subsequent consternation have demonstrated both the need for wide-field surveys characterizing the fast-transient parameter space and the potential utility of bright radio pulses as probes of the interstellar medium and intergalactic medium. Here we present results from the 450 hr, 150 deg{sup 2} Fly's Eye survey for bright dispersed radio pulses at the Allen Telescope Array (ATA). The Fly's Eye Spectrometer produces 128 channel power spectra over a 209 MHz bandwidth, centered at 1430 MHz, on 44 independent signal paths originating with 30 independent ATA antennae. Data were dedispersed between 0 and 2000 pc cm{sup -3} and searched for pulses with dispersion measures greater than 50 pc cm{sup -3} between 625 {mu}s and 5 s in duration. No pulses were detected in the survey, implying a limiting rate of less than 2 sky{sup -1} hr{sup -1} for 10 ms duration pulses having apparent energy densities greater than 440 kJy {mu}s, or mean flux densities greater than 44 Jy. Here we present details of the instrument, experiment, and observations, including a discussion of our results in light of other single pulse searches.

  16. The Morehead State University 18 Meter Radio Telescope Project: Involving Undergraduates in Observational Astrophysics

    NASA Astrophysics Data System (ADS)

    Malphrus, B. K.; Combs, M. S.; Kruth, J.

    2002-12-01

    The Space Science Center at Morehead State University is in the process of developing a large aperture (18-21 meter) cm-wave radio telescope, the Morehead Radio Telescope (MRT). The telescope will be located in the mountainous region of Eastern Kentucky. The instrument will serve as a research instrument and active laboratory for undergraduate astronomy, physics, pre-engineering, and computer science students. The antenna system will be engaged in science programs (in astrophysics) and in satellite mission support services (telemetry, tracking, and control). The benefits to students are based upon a hands-on approach to learning concepts in astrophysics and engineering. Additionally, there are still research contributions that small aperture centimeter-wave instruments can make including long-term observations of microvariability in AGNs, observations of transient events, and surveys. The MRT will operate three receiver systems including an L-band receiver (1.4-1.7 GHz) covering the "water hole", an S-band receiver (2.2-2.4 GHz) and a Ku-band receiver (11.2- 12.7 GHz) for continuum observations and satellite telemetry. The technical specifications for the instrument have been developed and an RFP has been issued inviting antenna vendors to submit proposals. The reflector will have a surface accuracy of 0.020 inches RMS over the entire surface, which will support relatively high frequency (Ku-band) observations. The antenna system will be full-motion and have a slew speed of 2 deg per second and an acceleration of 2 deg per second2. The HI and OH spatial distribution associated with cosmic phenomena will be investigated as well as dynamics and kinematics (particularly in HI) by observing over a range of frequencies (up to 2.5 MHz) with a 2048-channel back-end spectrometer, providing up to 1 KHz frequency resolution. The sensitivity and versatility of the telescope design will facilitate investigation of a wide variety of cosmic phenomena. The MRT is funded by

  17. Discovery of millisecond pulsars in radio searches of southern Fermi Large Area Telescope sources

    NASA Astrophysics Data System (ADS)

    Keith, M. J.; Johnston, S.; Ray, P. S.; Ferrara, E. C.; Saz Parkinson, P. M.; Çelik, Ö.; Belfiore, A.; Donato, D.; Cheung, C. C.; Abdo, A. A.; Camilo, F.; Freire, P. C. C.; Guillemot, L.; Harding, A. K.; Kramer, M.; Michelson, P. F.; Ransom, S. M.; Romani, R. W.; Smith, D. A.; Thompson, D. J.; Weltevrede, P.; Wood, K. S.

    2011-06-01

    Using the Parkes Radio Telescope, we have carried out deep observations of 11 unassociated gamma-ray sources. Periodicity searches of these data have discovered two millisecond pulsars, PSR J1103-5403 (1FGL J1103.9-5355) and PSR J2241-5236 (1FGL J2241.9-5236), and a long-period pulsar, PSR J1604-44 (1FGL J1604.7-4443). In addition, we searched for but did not detect any radio pulsations from six gamma-ray pulsars discovered by the Fermi satellite to a level of ˜0.04 mJy (for pulsars with a 10 per cent duty cycle). The timing of the millisecond pulsar PSR J1103-5403 has shown that its position is 9 arcmin from the centroid of the gamma-ray source. Since these observations were carried out, independent evidence has shown that 1FGL J1103.9-5355 is associated with the flat spectrum radio source PKS 1101-536. It appears certain that the pulsar is not associated with the gamma-ray source, despite the seemingly low probability of a chance detection of a radio millisecond pulsar. We consider that PSR J1604-44 is a chance discovery of a weak, long-period pulsar and is unlikely to be associated with 1FGL J1604.7-4443. PSR J2241-5236 has a spin period of 2.2 ms and orbits a very low mass companion with a 3.5-h orbital period. The relatively high flux density and low dispersion measure of PSR J2241-5236 make it an excellent candidate for high precision timing experiments. The gamma rays of 1FGL J2241.9-5236 have a spectrum that is well modelled by a power law with an exponential cut-off, and phase binning with the radio ephemeris results in a multipeaked gamma-ray pulse profile. Observations with Chandra have identified a coincident X-ray source within 0.1 arcsec of the position of the pulsar obtained by radio timing.

  18. The Hitachi and Takahagi 32 m radio telescopes: Upgrade of the antennas from satellite communication to radio astronomy

    NASA Astrophysics Data System (ADS)

    Yonekura, Yoshinori; Saito, Yu; Sugiyama, Koichiro; Soon, Kang Lou; Momose, Munetake; Yokosawa, Masayoshi; Ogawa, Hideo; Kimura, Kimihiro; Abe, Yasuhiro; Nishimura, Atsushi; Hasegawa, Yutaka; Fujisawa, Kenta; Ohyama, Tomoaki; Kono, Yusuke; Miyamoto, Yusuke; Sawada-Satoh, Satoko; Kobayashi, Hideyuki; Kawaguchi, Noriyuki; Honma, Mareki; Shibata, Katsunori M.; Sato, Katsuhisa; Ueno, Yuji; Jike, Takaaki; Tamura, Yoshiaki; Hirota, Tomoya; Miyazaki, Atsushi; Niinuma, Kotaro; Sorai, Kazuo; Takaba, Hiroshi; Hachisuka, Kazuya; Kondo, Tetsuro; Sekido, Mamoru; Murata, Yasuhiro; Nakai, Naomasa; Omodaka, Toshihiro

    2016-10-01

    The Hitachi and Takahagi 32 m radio telescopes (former satellite communication antennas) were so upgraded as to work at 6, 8, and 22 GHz. We developed the receiver systems, IF systems, back-end systems (including samplers and recorders), and reference systems. We measured the performance of the antennas. The system temperature including the atmosphere toward the zenith, T_sys^{ast }, is measured to be ˜30-40 K for 6 GHz and ˜25-35 K for 8 GHz. T_sys^{ast } for 22 GHz is measured to be ˜40-100 K in winter and ˜150-500 K in summer seasons, respectively. The aperture efficiency is 55%-75% for Hitachi at 6 GHz and 8 GHz, and 55%-65% for Takahagi at 8 GHz. The beam sizes at 6 GHz and 8 GHz are ˜4.6° and ˜3.8°, respectively. The side-lobe level is less than 3%-4% at 6 and 8 GHz. Pointing accuracy was measured to be better than ˜0.3° for Hitachi and ˜0.6° for Takahagi. We succeeded in VLBI observations in 2010 August, indicating good performance of the antenna. We started single-dish monitoring observations of 6.7 GHz methanol maser sources in 2012 December, and found several new sources showing short-term periodic variation of the flux density.

  19. The Hitachi and Takahagi 32 m radio telescopes: Upgrade of the antennas from satellite communication to radio astronomy

    NASA Astrophysics Data System (ADS)

    Yonekura, Yoshinori; Saito, Yu; Sugiyama, Koichiro; Soon, Kang Lou; Momose, Munetake; Yokosawa, Masayoshi; Ogawa, Hideo; Kimura, Kimihiro; Abe, Yasuhiro; Nishimura, Atsushi; Hasegawa, Yutaka; Fujisawa, Kenta; Tomoaki, Oyama; Kono, Yusuke; Miyamoto, Yusuke; Sawada-Satoh, Satoko; Hideyuki, Kobayashi; Kawaguchi, Noriyuki; Honma, Mareki; Shibata, Katsunori M.; Sato, Katsuhisa; Ueno, Yuji; Jike, Takaaki; Tamura, Yoshiaki; Hirota, Tomoya; Miyazaki, Atsushi; Niinuma, Kotaro; Sorai, Kazuo; Takaba, Hiroshi; Hachisuka, Kazuya; Kondo, Tetsuro; Sekido, Mamoru; Murata, Yasuhiro; Nakai, Naomasa; Omodaka, Toshihiro

    2016-05-01

    The Hitachi and Takahagi 32 m radio telescopes (former satellite communication antennas) were so upgraded as to work at 6, 8, and 22 GHz. We developed the receiver systems, IF systems, back-end systems (including samplers and recorders), and reference systems. We measured the performance of the antennas. The system temperature including the atmosphere toward the zenith, T_sys^{ast }, is measured to be ˜30-40 K for 6 GHz and ˜25-35 K for 8 GHz. T_sys^{ast } for 22 GHz is measured to be ˜40-100 K in winter and ˜150-500 K in summer seasons, respectively. The aperture efficiency is 55%-75% for Hitachi at 6 GHz and 8 GHz, and 55%-65% for Takahagi at 8 GHz. The beam sizes at 6 GHz and 8 GHz are ˜4{^'.}6 and ˜3{^'.}8, respectively. The side-lobe level is less than 3%-4% at 6 and 8 GHz. Pointing accuracy was measured to be better than ˜0{^'.}3 for Hitachi and ˜0{^'.}6 for Takahagi. We succeeded in VLBI observations in 2010 August, indicating good performance of the antenna. We started single-dish monitoring observations of 6.7 GHz methanol maser sources in 2012 December, and found several new sources showing short-term periodic variation of the flux density.

  20. Technical considerations on using the large Nancay radio telescope for SETI

    NASA Technical Reports Server (NTRS)

    Gulkis, S.; Biraud, F.; Heidmann, J.; Tarter, J.

    1990-01-01

    The Nancay decimetric Radio Telescope (NRT) in Nancay, France, is described, and its potential use for Search for Extraterrestrial Intelligence (SETI) observations is discussed. The conclusion reached is that the NRT is well suited for SETI observations because of its large collecting area, its large sky coverage, and its wideband frequency capability. However, a number of improvements are necessary in order to take full advantage of the system in carrying out an efficient SETI program. In particular, system sensitivity should be increased. This can be achieved through a series of improvements to the system, including lowering the ground pickup noise through the use of ground reflectors and more efficient feed design, and by using low-noise amplifier front ends.

  1. NGC 1976 in the Radio Range with the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas L.; Bania, Thomas M.; Balser, Dana S.

    2015-01-01

    NGC 1976 (Orion A) is the best studied HII region in the Milky Way and therefore it is often used to test models of HII regions. In particular, the radial dependence of the electron temperature is able to distinguish between different models. Optical determinations of electron temperature in the outer regions are affected by scattered light from the center. We have observed the radio recombination line (RRL) and continuum emission near 5 GHz at 4 arc minutes East, West and South of the peak HII region emission in NGC 1976 using the Green Bank Telescope (GBT). The Full Width to Half Power at the observing frequency, 5 GHz, was 2 arc minutes. The result is that the average electron temperature for these offset positions is = 7200 ± 300 K, significantly lower than the electron temperature of the peak position = 8200 ± 300 K, consistent with the HII region model of Wilson et al. (2012).

  2. Optic-electronic sensor for measuring the deformations of the axle at the radio-telescope

    NASA Astrophysics Data System (ADS)

    Konyakhin, Igor; Turgalieva, Tatyana V.; Li, Renpu

    2014-05-01

    The improved autocollimation sensors for measuring angular deformations of the large constructions as elevation axle and the azimuth columns of the radio telescopes are analyzed. Two new types of the reflector for autocollimation sensors are researched. The first type of the reflector is the composition of the anamorphic prism and ordinary cube-corner retroreflector. This reflector generates the narrow beam, as result the work distance and the range of measurement of the sensor increases. The second type of the reflectors is the tetrahedral reflector with flat reflecting sides and invariant axis. For this reflector the small value of the conversion coefficient is the realization of the measurements on the large work distances. The technical characteristics of the experimental setups of new reflectors are presented. The features of the anamorphic prism and tetrahedral reflector as the reflectors for autocollimation angular sensors are discussed.

  3. The Establishment of Pointing Model for the TM65 m Radio Telescope

    NASA Astrophysics Data System (ADS)

    Lin-feng, Yu; Jin-qing, Wang; Rong-bing, Zhao; Jian, Dong; Xiu-ting, Zuo; Wei, Gou; Qing-hui, Liu; Qing-yuan, Fan

    2015-10-01

    The method to establish the pointing model of the 65-meter radio telescope of Shanghai Astronomical Observatory (TM65 m) is described. The single-point data are collected by means of "cross scan", then, they are fitted with a model including both the Gaussian and nonlinear terms. It is also simulated and analyzed how the antenna beam is broadened in the scanning process because of the angular size of a source. And the orbit prediction of sources is used to improve the modelling efficiency. Finally, an eight-parameter pointing model is built after fitting all the collected single-point errors. It is verified that the model works well in the X band and other low-frequency bands, the pointing accuracy at the X band attains 12.36 arcsec.

  4. A broad-band flux scale for low-frequency radio telescopes

    NASA Astrophysics Data System (ADS)

    Scaife, Anna M. M.; Heald, George H.

    2012-06-01

    We present parametrized broad-band spectral models valid at frequencies between 30 and 300 MHz for six bright radio sources selected from the 3C survey, spread in right ascension from 0 to 24 h. For each source, data from the literature are compiled and tied to a common flux density scale. These data are then used to parametrize an analytic polynomial spectral calibration model. The optimal polynomial order in each case is determined using the ratio of the Bayesian evidence for the candidate models. Maximum likelihood parameter values for each model are presented, with associated errors, and the percentage error in each model as a function of frequency is derived. These spectral models are intended as an initial reference for science from the new generation of low-frequency telescopes now coming online, with particular emphasis on the Low Frequency Array (LOFAR).

  5. Permanent Monitoring of the Reference Point of the 20m Radio Telescope Wettzell

    NASA Technical Reports Server (NTRS)

    Neidhardt, Alexander; Losler, Michael; Eschelbach, Cornelia; Schenk, Andreas

    2010-01-01

    To achieve the goals of the VLBI2010 project and the Global Geodetic Observing System (GGOS), an automated monitoring of the reference points of the various geodetic space techniques, including Very Long Baseline Interferometry (VLBI), is desirable. The resulting permanent monitoring of the local-tie vectors at co-location stations is essential to obtain the sub-millimeter level in the combinations. For this reason a monitoring system was installed at the Geodetic Observatory Wettzell by the Geodetic Institute of the University of Karlsruhe (GIK) to observe the 20m VLBI radio telescope from May to August 2009. A specially developed software from GIK collected data from automated total station measurements, meteorological sensors, and sensors in the telescope monument (e.g., Invar cable data). A real-time visualization directly offered a live view of the measurements during the regular observation operations. Additional scintillometer measurements allowed refraction corrections during the post-processing. This project is one of the first feasibility studies aimed at determining significant deformations of the VLBI antenna due to, for instance, changes in temperature.

  6. The discovery of strong extragalactic polarization using the Parkes Radio Telescope

    NASA Astrophysics Data System (ADS)

    Bracewell, Ronald N.

    2002-12-01

    By the end of 1961, interferometry to arc-minute precision in the East-West direction had resolved the compact source at the centre of Centaurus A into two equal components spaced about 5‧ in right ascension and with measured widths. Were they on the dark bar of the associated extragalactic nebula, NGC 5128, and perhaps indicatios of a toroidal source, or were they in the perpendicular direction and on their way out to feed the extended radio source Centaurus A? The 6‧.7 pencil beam of the Parkes Radio Telescope, employed in an unusual scanning mode, was capable of just separating the peaks and resolving the ambiguity in declination. In 1962 April, I carried out the first observations of linear polarization in Centaurus A using the Parkes antenna, and these were soon followed by other observations made by Brian Cooper and Marcus Price and then by Frank Gardner and John Whiteoak. Because the research papers reporting these pioneering observations were not published in chronological order and the dates of the observations and submission of the manuscripts ware not mentioned in them there has been considerable confusion surrounding the discovery history of Centaurus A polarization at Parkes, and this has been compounded by a misleading contemporary newspaper report, uninformed folklore, and conflicting recollectioms printed 30 years after the event. This paper clarifies the situation by presenting a first-hand account of the original observations and associated publications.

  7. Jet emission in young radio sources: A Fermi large area telescope gamma-ray view

    SciTech Connect

    Migliori, G.; Siemiginowska, A.; Kelly, B. C.; Stawarz, Ł.; Celotti, A.; Begelman, M. C.

    2014-01-10

    We investigate the contribution of the beamed jet component to the high-energy emission in young and compact extragalactic radio sources, focusing for the first time on the γ-ray band. We derive predictions on the γ-ray luminosities associated with the relativistic jet assuming a leptonic radiative model. The high-energy emission is produced via Compton scattering by the relativistic electrons in a spherical region at the considered scales (≲10 kpc). Simulations show a wide range of γ-ray luminosities, with intensities up to ∼10{sup 46}-10{sup 48} erg s{sup –1} depending on the assumed jet parameters. We find a highly linear relation between the simulated X-ray and γ-ray luminosities that can be used to select candidates for γ-ray detection. We compare the simulated luminosity distributions in the radio, X-ray, and γ-ray regimes with observations for the largest sample of X-ray-detected young radio quasars. Our analysis of ∼4-yr Fermi Large Area Telescope (LAT) data does not yield any statistically significant detections. However, the majority of the model-predicted γ-ray fluxes for the sample are near or below the current Fermi-LAT flux threshold and compatible with the derived upper limits. Our study gives constraints on the minimum jet power (L {sub jet,} {sub kin}/L {sub disk} > 0.01) of a potential jet contribution to the X-ray emission in the most compact sources (≲ 1 kpc) and on the particle-to-magnetic field energy density ratio that are in broad agreement with equipartition assumptions.

  8. Jet Emission in Young Radio Sources: A Fermi Large Area Telescope Gamma-Ray View

    NASA Astrophysics Data System (ADS)

    Migliori, G.; Siemiginowska, A.; Kelly, B. C.; Stawarz, Ł.; Celotti, A.; Begelman, M. C.

    2014-01-01

    We investigate the contribution of the beamed jet component to the high-energy emission in young and compact extragalactic radio sources, focusing for the first time on the γ-ray band. We derive predictions on the γ-ray luminosities associated with the relativistic jet assuming a leptonic radiative model. The high-energy emission is produced via Compton scattering by the relativistic electrons in a spherical region at the considered scales (lsim10 kpc). Simulations show a wide range of γ-ray luminosities, with intensities up to ~1046-1048 erg s-1 depending on the assumed jet parameters. We find a highly linear relation between the simulated X-ray and γ-ray luminosities that can be used to select candidates for γ-ray detection. We compare the simulated luminosity distributions in the radio, X-ray, and γ-ray regimes with observations for the largest sample of X-ray-detected young radio quasars. Our analysis of ~4-yr Fermi Large Area Telescope (LAT) data does not yield any statistically significant detections. However, the majority of the model-predicted γ-ray fluxes for the sample are near or below the current Fermi-LAT flux threshold and compatible with the derived upper limits. Our study gives constraints on the minimum jet power (L jet, kin/L disk > 0.01) of a potential jet contribution to the X-ray emission in the most compact sources (lsim 1 kpc) and on the particle-to-magnetic field energy density ratio that are in broad agreement with equipartition assumptions.

  9. Discovery and Follow-up of Rotating Radio Transients with the Green Bank and LOFAR Telescopes

    NASA Astrophysics Data System (ADS)

    Karako-Argaman, C.; Kaspi, V. M.; Lynch, R. S.; Hessels, J. W. T.; Kondratiev, V. I.; McLaughlin, M. A.; Ransom, S. M.; Archibald, A. M.; Boyles, J.; Jenet, F. A.; Kaplan, D. L.; Levin, L.; Lorimer, D. R.; Madsen, E. C.; Roberts, M. S. E.; Siemens, X.; Stairs, I. H.; Stovall, K.; Swiggum, J. K.; van Leeuwen, J.

    2015-08-01

    We have discovered 21 Rotating Radio Transients (RRATs) in data from the Green Bank Telescope (GBT) 350 MHz Drift-scan and the Green Bank North Celestial Cap pulsar surveys using a new candidate sifting algorithm. RRATs are pulsars with sporadic emission that are detected through their bright single pulses rather than Fourier domain searches. We have developed RRATtrap, a single-pulse sifting algorithm that can be integrated into pulsar survey data analysis pipelines in order to find RRATs and Fast Radio Bursts. We have conducted follow-up observations of our newly discovered sources at several radio frequencies using the GBT and Low Frequency Array, yielding improved positions and measurements of their periods, dispersion measures (DMs), and burst rates, as well as phase-coherent timing solutions for four of them. The new RRATs have DMs ranging from 15 to 97 {pc} {{cm}}-3, periods of 240 ms to 3.4 s, and estimated burst rates of 20 to 400 pulses hr-1 at 350 MHz. We use this new sample of RRATs to perform statistical comparisons between RRATs and canonical pulsars in order to shed light on the relationship between the two populations. We find that the DM and spatial distributions of the RRATs agree with those of the pulsars found in the same survey. We find evidence that slower pulsars (i.e., P\\gt 200 ms) are preferentially more likely to emit bright single pulses than are faster pulsars (P\\lt 200 ms), although this conclusion is tentative. Our results are consistent with the proposed link between RRATs, transient pulsars, and canonical pulsars as sources in various parts of the pulse activity spectrum.

  10. Radio astronomy - The next decade

    SciTech Connect

    Kellermann, K.I. )

    1991-09-01

    Discoveries made over the past several decades by radio astronomers include radio galaxies, quasars, pulsars, gravitational lenses, energetic bursts from the sun and Jupiter, the greenhouse effect on Venus, the rotation of Mercury, giant molecular clouds, violent activity in galactic nuclei, and cosmic background radiation. This paper discusses the development of ever more powerful radio telescopes, which include the VLA operated by NRAO near Socorro (New Mexico); the new NRAO's 100-m Green Bank Telescope being constructed in Green Bank (West Virginia); and the proposed Millimeter Array, which will consist of 40 antennas, each 8-m across, arranged in any of four different ways depending on the size of the region under study. Consideration is also given to methods for increasing the resolving power and image quality of radio telescopes, with special attention given to very-long-baseline interferometry.

  11. The Expanded Very Large Array: A Radio Telescope for the 21st Century

    NASA Astrophysics Data System (ADS)

    2000-06-01

    The world's most productive and widely-used radio telescope, the National Science Foundation's Very Large Array (VLA), can be improved tenfold with an expansion project proposed by the National Radio Astronomy Observatory (NRAO). "This project will ensure that the scientific community has a state-of-the-art research tool to meet the astronomical research challenges of the 21st Century," said Paul Vanden Bout, NRAO Director. Aerial View of the VLA Plans for the Expanded VLA (EVLA) and its potential for new scientific contributions were described today in a series of presentations at the American Astronomical Society's meeting in Rochester, NY. The EVLA project plans to replace dated equipment left over from the VLA's original construction in the 1970s and add eight new radio- telescope dish antennas to the current, 27-dish system. It received a strong endorsement last month when the Astronomy and Astrophysics Survey Committee of the National Academy of Sciences gave the project one of its highest ratings as a priority for the next decade in its report entitled "Astronomy and Astrophysics in the New Millennium." "The Survey Committee's endorsement shows that the astronomical research community strongly supports the Expanded VLA," said NRAO astronomer Jim Ulvestad, who spoke to reporters at the AAS meeting. "The VLA has long been a unique and critical resource for all of astronomy, and we look forward to turning it into a dramatic, new research tool." The VLA Expansion Project will use modern electronics and computer technology to greatly improve the VLA's ability to observe faint celestial objects and to analyze their radio emissions. A set of eight new dish antennas, added to the current 27-antenna system, will allow the VLA to produce images with ten times greater detail. The project will build on the VLA's current infrastructure, including its 230-ton dish antennas, the railroad tracks for moving those antennas, and the existing buildings and access roads. The

  12. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  13. New-generation data acquisition and control system for continuum radio-astronomic observations with RATAN-600 radio telescope: Development, observations, and measurements

    NASA Astrophysics Data System (ADS)

    Tsybulev, P. G.

    2011-01-01

    A new Data Acquisition and Control System for performing continuum radio-astronomical observations with the RATAN-600 radio telescope is presented. One of the "building blocks" of the system is the Embedded Radiometric Data Acquisition System (ER-DAS) developed at the RATAN-600. It is a measurement facility meant for digitizing and reducing radiometer signals and for transmitting the result of these operations via Ethernet networks. ER-DAS system is shown to have a low self-noise level and to lack 1/ f-type noise. The measurement facility is shown to operate efficiently in radio-astronomical observations. Radiometric measurements of the parameters of high-sensitivity radiometers are illustrated in the case of the measurements of radiometer gain fluctuations.

  14. The New ALMA Prototype 12 M Telescope of the Arizona Radio Observatory

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.; Folkers, Thomas W.; Emerson, Nicholas J.; Freund, Robert; Lauria, Eugene F.; Forbes, David; Reiland, George P.; McColl, Martin

    2016-06-01

    The Arizona Radio Observatory (ARO) recently acquired the European 12 m prototype antenna of the Atacama Large Millimeter Array (ALMA) project from the European Southern Observatory (ESO). The antenna was located at the Very Large Array (VLA) site near Socorro, New Mexico. In November 2013, the 97 ton antenna was transported to Kitt Peak, Arizona in two major parts: the 40 ft. reflector and the base/receiver cabin. The antenna, which replaced the former NRAO 12 m telescope, was reassembled in the dome at Kitt Peak. Recommissioning began in January 2014, and scientific observations commenced in early 2015. The instrument is now fully operational with a measured surface accuracy of 53 microns, rms, and a pointing accuracy of 2 arc seconds. Further antenna improvements are in progress. The new 12 m currently supports a dual polarization, 3 mm receiver (84-116 GHz) with ALMA Band 3 sideband-separating mixers. A multiband receiver also covering the 4 mm (67 – 90 GHz), 2 mm (130-180 GHz) and 1 mm (210-280 GHz) regions with dual polarization, sideband-separating mixers is currently under construction. A new digital backend, the ARO Wideband Spectrometer (AROWS: 4 x 4 GHz total bandwidth ), is also in the development stage.

  15. Hubble Space Telescope imaging of a radio-quiet galaxy at redshift z = 3.4

    NASA Technical Reports Server (NTRS)

    Giavalisco, Mauro; Macchetto, F. Duccio; Madau, Piero; Sparks, William B.

    1995-01-01

    We have observed with the Wide Field/Planetary Camera (WF/PC) on the Hubble Space Telescope (HST) a radio-quiet Ly alpha-emitting galaxy at redshift z = 3.428 (G2 below). The images probe the rest-frame UV light around 1250 A with an angular resolution of approx. = 0.1 sec, corresponding to 1.4 h(exp -1, sub 50) kpc at redshift z = 3.4 (in this Letter we use q(sub 0) = 0 and H(sub 0) = 50 h(exp -1, sub 50) km/s/Mpc). The light profile of the central approx. 10h(exp -1, sub 50) kpc region is well fitted by an r(exp 1/4) law with r(sub e) approx. = 1.3 h(exp -1, sub 50) kpc, suggesting a dynamically relaxed state. The outer regions are characterized by the presence of substructures, such as an elongated formation and low surface brightness nebulosities. The isophotal analysis shows no evidence of an active galactic nuclei (AGN)-like unresolved source in the center. The structural properties of G2 are consistent with a dynamically hot stellar system observed during an early phase of star formation, very likely the progenitor of an elliptical or the bulge of a spiral galaxy.

  16. Current and Planned Solar Wind Observations Using the EISCAT and LOFAR Radio-Telescope Systems

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Fallows, R. A.; Jensen, E. A.; Breen, A.; Xiong, M.; Jackson, B. V.

    2011-12-01

    Remote-sensing observations of the inner heliosphere using the technique of interplanetary scintillation (IPS) provide essential information on the velocity and density of developing solar wind structure. For many years, observations of IPS have been undertaken with the European Incoherent SCATter (EISCAT) radio telescopes based across Northern Scandinavia. We are presently developing the IPS experiment for use on new and upcoming cutting-edge instrumentation. Such instrumentation includes the LOw Frequency ARray (LOFAR) which is situated primarily in the Netherlands with additional stations currently sited across central Europe. Using data sets from various IPS-capable systems, the University of California, San Diego (UCSD) three-dimensional (3-D) tomographic-reconstruction and visualisation algorithms can yield reconstruction results for comparison with multi-point it{in-situ} measurements from spacecraft. This makes it possible to study the structure of the inner heliosphere as a whole, including the isolation of individual features or events such as interplanetary coronal mass ejections (ICMEs), stream interaction regions (SIRs), or their interactions with the ambient solar wind as well as the ambient wind itself. We are also testing the Faraday rotation (FR) response at low frequencies using LOFAR. Combined, these techniques have large implications and capabilities for space-weather forecasting. This work is focused on the global structure of the inner heliosphere during the minimum and rise phases of the current solar cycle.

  17. IPS observation system for the Miyun 50 m radio telescope and its commissioning observation

    NASA Astrophysics Data System (ADS)

    Zhu, Xin-Ying; Zhang, Xi-Zhen; Zhang, Hong-Bo; Kong, De-Qing; Qu, Hui-Peng

    2012-07-01

    Ground-based observation of Interplanetary Scintillation (IPS) is an important approach for monitoring solar wind. A ground-based IPS observation system has been newly implemented on a 50 m radio telescope at Miyun station, managed by the National Astronomical Observatories, Chinese Academy of Sciences. This observation system has been constructed for the purpose of observing solar wind speed and the associated scintillation index by using the normalized cross-spectrum of a simultaneous dual-frequency IPS measurement. The system consists of a universal dual-frequency front-end and a dual-channel multi-function back-end specially designed for IPS. After careful calibration and testing, IPS observations on source 3C 273B and 3C 279 have been successfully carried out. The preliminary observation results show that this newly-developed observation system is capable of performing IPS observation. The system's sensitivity for IPS observation can reach over 0.3 Jy in terms of an IPS polarization correlator with 4 MHz bandwidth and 2 s integration time.

  18. UNC SKYNET adds NRAO 20m Radio Telescope: Dynamic Research and Funding

    NASA Astrophysics Data System (ADS)

    Langston, Glen; Hosmer, L.; Heatherly, S.; Towner, A. P.; Reichart, D.; Haipslip, J.

    2013-01-01

    The University of North Carolina (UNC) and NRAO have teamed up to deliver dynamic, realtime optical and Radio observations of the universe, using the web-based SKYNET queuing system developed at UNC. A 20m telescope is outfitted with cryogenically cooled receivers and a reprogrammable spectrometer. To get started see: http://www.gb.nrao.edu/20m/fantastic/ for connections to the observing system, educational activities and opportunities to purchase observing time. The SKYNET goal is to provide the finest research tools to high schools, colleges and independent researchers. This is accomplished through the capabilities to use existing observing modes and through reprogram the University of California, Berkeley's Field Programmable Gate Array (FPGA) systems for custom digital hardware development. This provides a door for engineering and computer science students to create real-time, high capability data acquisition and processing tools. We will demo the 20m observing system and its capabilities. The NSF funded this construction project with the goal of making the network self funding. We are looking for collaborators with targeted research projects wanting to take advantage of the powerful observing tools.

  19. The New ALMA Prototype 12 M Telescope of the Arizona Radio Observatory

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.; Folkers, Thomas W.; Emerson, Nicholas J.; Freund, Robert; Lauria, Eugene F.; Forbes, David; Reiland, George P.; McColl, Martin

    2016-06-01

    The Arizona Radio Observatory (ARO) recently acquired the European 12 m prototype antenna of the Atacama Large Millimeter Array (ALMA) project from the European Southern Observatory (ESO). The antenna was located at the Very Large Array (VLA) site near Socorro, New Mexico. In November 2013, the 97 ton antenna was transported to Kitt Peak, Arizona in two major parts: the 40 ft. reflector and the base/receiver cabin. The antenna, which replaced the former NRAO 12 m telescope, was reassembled in the dome at Kitt Peak. Recommissioning began in January 2014, and scientific observations commenced in early 2015. The instrument is now fully operational with a measured surface accuracy of 53 microns, rms, and a pointing accuracy of 2 arc seconds. Further antenna improvements are in progress. The new 12 m currently supports a dual polarization, 3 mm receiver (84-116 GHz) with ALMA Band 3 sideband-separating mixers. A multiband receiver also covering the 4 mm (67 - 90 GHz), 2 mm (130-180 GHz) and 1 mm (210-280 GHz) regions with dual polarization, sideband-separating mixers is currently under construction. A new digital backend, the ARO Wideband Spectrometer (AROWS: 4 x 4 GHz total bandwidth ), is also in the development stage.

  20. Simultaneous Chandra X ray, Hubble Space Telescope Ultraviolet, and Ulysses Radio Observations of Jupiter's Aurora

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Lugaz, N.; Waite, J. H., Jr.; Cravens, T. E.; Gladstone, G. R.; Ford, P.; Grodent, D.; Bhardwaj. A.; MacDowall, R. J.; Desch, M. D. 8; Majeed, T.

    2005-01-01

    Observations of Jupiter carried out by the Chandra Advanced CCD Imaging Spectrometer (ACIS-S) instrument over 24-26 February 2003 show that the auroral X-ray spectrum consists of line emission consistent with high-charge states of precipitating ions, and not a continuum as might be expected from bremsstrahlung. The part of the spectrum due to oxygen peaks around 650 eV, which indicates a high fraction of fully stripped oxygen in the precipitating ion flux. A combination of the OVIII emission lines at 653 eV and 774 eV, as well as the OVII emission lines at 561 eV and 666 eV, are evident in the measure auroral spectrum. There is also line emission at lower energies in the spectral region extending from 250 to 350 eV, which could be from sulfur and/or carbon. The Jovian auroral X-ray spectra are significantly different from the X-ray spectra of comets. The charge state distribution of the oxygen ions implied by the measured auroral X-ray spectra strongly suggests that independent of the source of the energetic ions, magnetospheric or solar wind, the ions have undergone additional acceleration. This spectral evidence for ion acceleration is also consistent with the relatively high intensities of the X rays compared with the available phase space density of the (unaccelerated) source populations of solar wind or magnetospheric ions at Jupiter, which are orders of magnitude too small to explain the observed emissions. The Chandra X-ray observations were executed simultaneously with observations at ultraviolet wavelengths by the Hubble Space Telescope and at radio wavelengths by the Ulysses spacecraft. These additional data sets suggest that the source of the X rays is magnetospheric in origin and that the precipitating particles are accelerated by strong field-aligned electric fields, which simultaneously create both the several-MeV energetic ion population and the relativistic electrons observed in situ by Ulysses that are correlated with approx.40 min quasi

  1. Tracking of Mars Express and Venus Express spacecraft with VLBI radio telescopes

    NASA Astrophysics Data System (ADS)

    Molera Calvés, G.; Pogrebenko, S. V.; Wagner, J.; Cimò, G.; Gurvits, L.; Duev, D.

    2010-12-01

    The ESA Mars Express and Venus Express spacecraft (S/C) have been observed for the last two years with the European VLBI radio telescopes of Metsähovi (FI), Wettzell (GE), Yebes (SP), Medicina, Matera, Noto (IT), Puschino (RU) and Onsala (SW). The campaign is in the framework of the assessment study and preparation of the European VLBI Network to the upcoming ESA and other deep space missions. It also offers new opportunities for applications of radio astronomy techniques to planetary science, geophysics and geodesy. Observations are carried out either in single- or multi-dish modes when S/C is locked to the ESA’s ESTRACK ground stations (Cebreros or New Nortia) observing the two way link. Data are recorded locally at the stations using standard VLBI equipment and transferred to the Metsähovi for processing. Further on, the data are transferred from Metsähovi to Joint Institute for VLBI in Europe for further post-analysis. High dynamic range of the S/C signal detections allowed us to determine the apparent topocentric frequency of the S/C carrier line and accompanying ranging tones down to milli-Hz spectral accuracy and to extract the phase of the S/C signal carrier line. With multi-station observations, the respective phases can be calibrated on the per-baseline basis using VLBI phase referencing technique and observations of background quasars close to S/C in their celestial position using far-field VLBI delay model for quasars and near-field model for S/C. The post-analysis of the S/C tracking data enables us to study several parameters of the S/C signals. Of these, the phase fluctuations of the signal can be used for characterization of the interplanetary plasma density fluctuations along the signal propagation line at different spatial and temporal scales and different solar elongations. These fluctuations are well represented by a near-Kolmogorov spectrum. Multi-station observations can distinguish the contributions of propagation effects in the plasma

  2. A real-time coherent dedispersion pipeline for the giant metrewave radio telescope

    NASA Astrophysics Data System (ADS)

    De, Kishalay; Gupta, Yashwant

    2016-02-01

    A fully real-time coherent dedispersion system has been developed for the pulsar back-end at the Giant Metrewave Radio Telescope (GMRT). The dedispersion pipeline uses the single phased array voltage beam produced by the existing GMRT software back-end (GSB) to produce coherently dedispersed intensity output in real time, for the currently operational bandwidths of 16 MHz and 32 MHz. Provision has also been made to coherently dedisperse voltage beam data from observations recorded on disk. We discuss the design and implementation of the real-time coherent dedispersion system, describing the steps carried out to optimise the performance of the pipeline. Presently functioning on an Intel Xeon X5550 CPU equipped with a NVIDIA Tesla C2075 GPU, the pipeline allows dispersion free, high time resolution data to be obtained in real-time. We illustrate the significant improvements over the existing incoherent dedispersion system at the GMRT, and present some preliminary results obtained from studies of pulsars using this system, demonstrating its potential as a useful tool for low frequency pulsar observations. We describe the salient features of our implementation, comparing it with other recently developed real-time coherent dedispersion systems. This implementation of a real-time coherent dedispersion pipeline for a large, low frequency array instrument like the GMRT, will enable long-term observing programs using coherent dedispersion to be carried out routinely at the observatory. We also outline the possible improvements for such a pipeline, including prospects for the upgraded GMRT which will have bandwidths about ten times larger than at present.

  3. Detection of Solar Wind Disturbances: Mexican Array Radio Telescope IPS Observations at 140 MHz

    NASA Astrophysics Data System (ADS)

    Romero-Hernandez, E.; Gonzalez-Esparza, J. A.; Aguilar-Rodriguez, E.; Ontiveros-Hernandez, V.; Villanueva-Hernandez, P.

    2015-09-01

    The interplanetary scintillation (IPS) technique is a remote-sensing method for monitoring solar-wind perturbations. The Mexican Array Radio Telescope (MEXART) is a single-station instrument operating at 140 MHz, fully dedicated to performing solar-wind studies employing the IPS technique. We report MEXART solar-wind measurements (scintillation indices and solar-wind velocities) using data obtained during the 2013 and 2014 campaigns. These solar-wind measurements were calculated employing a new methodology based on the wavelet transform (WT) function. We report the variation of the scintillation indices versus the heliocentric distance for two IPS sources (3C48 and 3C147). We found different average conditions of the solar-wind density fluctuations in 2013 and 2014. We used the fittings of the radial dependence of the scintillation index to calculate g-indices. Based on the g-index value, we identified 17 events that could be associated with strong compression regions in the solar wind. We present the first ICME identifications in our data. We associated 14 IPS events with preceding CME counterparts by employing white-light observations from the Large Angle and Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) spacecraft. We found that most of the IPS events, detected during the solar maximum of Cycle 24 were associated with complex CME events. For the IPS events associated with single CME counterparts, we found a deceleration tendency of the CMEs as they propagate in the interplanetary medium. These results show that the instrument detects solar-wind disturbances, and the WT methodology provides solar-wind information with good accuracy. The MEXART observations will complement solar-wind IPS studies using other frequencies, and the tracking of solar-wind disturbances by other stations located at different longitudes.

  4. All-Stokes Parameterization of the Main Beam and First Sidelobe for the Arecibo Radio Telescope

    NASA Astrophysics Data System (ADS)

    Heiles, Carl; Perillat, Phil; Nolan, Michael; Lorimer, Duncan; Bhat, Ramesh; Ghosh, Tapasi; Howell, Ellen; Lewis, Murray; O'Neil, Karen; Salter, Chris; Stanimirovic, Snezana

    2001-10-01

    Radio astronomical measurements of extended emission require knowledge of the beam shape and response because the measurements need correction for quantities such as beam efficiency and beamwidth. We describe a scheme that characterizes the main beam and sidelobe in all Stokes parameters employing parameters that allow reconstruction of the complete beam patterns and, also, afford an easy way to see how the beam changes with azimuth, zenith angle, and time. For the main beam in Stokes I, the parameters include the beamwidth, ellipticity and its orientation, coma and its orientation, the point-source gain, and the integrated gain (or, equivalently, the main-beam efficiency); for the other Stokes parameters, the beam parameters include beam squint and beam squash. For the first sidelobe ring in Stokes I, the parameters include an eight-term Fourier series describing the height, radius, and radial width; for the other Stokes parameters they include only the sidelobe's fractional polarization. We illustrate the technique by applying it to the Arecibo telescope. The main-beam width is smaller and the sidelobe levels higher than for a uniformly illuminated aperture of the same effective area. These effects are modeled modestly well by a blocked aperture, with the blocked area equal to about 10% of the effective area (this corresponds to 5% physical blockage). In polarized emission, the effects of beam squint (difference in pointing direction between orthogonal polarizations) and squash (difference in beamwidth between orthogonal polarizations) do not correspond to theoretical expectation and are higher than expected; these effects are almost certainly caused by the blockage. The first sidelobe is highly polarized because of blockage. These polarization effects lead to severe contamination of maps of polarized emission by spatial derivatives in brightness temperature.

  5. Optimization of 100-meter Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Strain, Douglas

    1994-01-01

    Candidate designs for NRAO's 100-m clear-aperture radio telescope were evaluated and optimized by JPL using JPL-developed structural optimization and analysis software. The weight of a non-optimum design was reduced from 9.4 million pounds to 9.2 million pounds. The half-pathlength error due to gravity deformations was reduced from 0.041-inch rms to 0.034-inch rms.

  6. The Morehead Radio Telescope: Design and Fabrication of a Research Instrument for Undergraduate Faculty and Student Research in Radio Frequency Astrophysics

    NASA Astrophysics Data System (ADS)

    Malphrus, B. K.

    1996-12-01

    Faculty and students of the Departments of Physical Sciences and Industrial Education and Technology at Morehead State University have designed and assembled the Morehead Radio Telescope (MRT) to provide a research instrument for undergraduate astronomy and physics students and an active laboratory for physics, engineering, and computer science undergraduates and faculty. The instrument will function as a research and educational instrument for undergraduate students, faculty, and science teachers throughout Kentucky. The goals of the MRT program are to enhance the curricula in physics, physical science, electronics, and science education programs by serving to provide: 1.) a research instrument for investigations in astronomy and astrophysics; 2.) an active laboratory in astronomy, physics, electrical engineering, and computer science; and 3.) a research instrument and laboratory for science teacher education and inservice programs. The MRT utilizes a 40-foot parabolic reflector, a low-noise hydrogen line receiver and a fully- automated alt-azimuth positioning system. The telescope incorporates a modular design in which components may be easily removed for use in laboratory investigations and for student research and design projects. The performance characteristics of the telescope allow a varied and in-depth scientific program. The sensitivity and versatility of the telescope design facilitate the investigation of a wide variety of astrophysically interesting phenomena.

  7. A SEARCH FOR RAPIDLY SPINNING PULSARS AND FAST TRANSIENTS IN UNIDENTIFIED RADIO SOURCES WITH THE NRAO 43 METER TELESCOPE

    SciTech Connect

    Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire; Langston, Glen

    2013-04-15

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications for models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.

  8. Sardinia Radio Telescope wide-band spectral-polarimetric observations of the galaxy cluster 3C 129

    NASA Astrophysics Data System (ADS)

    Murgia, M.; Govoni, F.; Carretti, E.; Melis, A.; Concu, R.; Trois, A.; Loi, F.; Vacca, V.; Tarchi, A.; Castangia, P.; Possenti, A.; Bocchinu, A.; Burgay, M.; Casu, S.; Pellizzoni, A.; Pisanu, T.; Poddighe, A.; Poppi, S.; D'Amico, N.; Bachetti, M.; Corongiu, A.; Egron, E.; Iacolina, N.; Ladu, A.; Marongiu, P.; Migoni, C.; Perrodin, D.; Pilia, M.; Valente, G.; Vargiu, G.

    2016-10-01

    We present new observations of the galaxy cluster 3C 129 obtained with the Sardinia Radio Telescope in the frequency range 6000-7200 MHz, with the aim to image the large-angular-scale emission at high-frequency of the radio sources located in this cluster of galaxies. The data were acquired using the recently commissioned ROACH2-based backend to produce full-Stokes image cubes of an area of 1°×1° centred on the radio source 3C 129. We modelled and deconvolved the telescope beam pattern from the data. We also measured the instrumental polarization beam patterns to correct the polarization images for off-axis instrumental polarization. Total intensity images at an angular resolution of 2.9 arcmin were obtained for the tailed radio galaxy 3C 129 and for 13 more sources in the field, including 3C 129.1 at the galaxy cluster centre. These data were used, in combination with literature data at lower frequencies, to derive the variation of the synchrotron spectrum of 3C 129 along the tail of the radio source. If the magnetic field is at the equipartition value, we showed that the lifetimes of radiating electrons result in a radiative age for 3C 129 of tsyn ≃ 267 ± 26 Myr. Assuming a linear projected length of 488 kpc for the tail, we deduced that 3C 129 is moving supersonically with a Mach number of M = vgal/cs = 1.47. Linearly polarized emission was clearly detected for both 3C 129 and 3C 129.1. The linear polarization measured for 3C 129 reaches levels as high as 70 per cent in the faintest region of the source where the magnetic field is aligned with the direction of the tail.

  9. Fermi Large Area Telescope Detection of Extended Gamma-Ray Emission from the Radio Galaxy Fornax A

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiaro, G.; Ciprini, S.; Cohen, J. M.; Cohen-Tanugi, J.; Costanza, F.; Cutini, S.; D’Ammando, F.; Davis, D. S.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Georganopoulos, M.; Giglietto, N.; Giordano, F.; Giroletti, M.; Godfrey, G.; Green, D.; Grenier, I. A.; Guiriec, S.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Jogler, T.; Jóhannesson, G.; Kensei, S.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lubrano, P.; Magill, J. D.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Negro, M.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Schmid, J.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Stawarz, Ł.; Takahashi, H.; Thayer, J. B.; Thompson, D. J.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.; Wood, M.; Zimmer, S.

    2016-07-01

    We report the Fermi Large Area Telescope detection of extended γ-ray emission from the lobes of the radio galaxy Fornax A using 6.1 years of Pass 8 data. After Centaurus A, this is now the second example of an extended γ-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to be \\lt 14% of the total γ-ray flux. A preferred alignment of the γ-ray elongation with the radio lobes was demonstrated by rotating the radio lobes template. We found no significant evidence for variability on ˜0.5 year timescales. Taken together, these results strongly suggest a lobe origin for the γ-rays. With the extended nature of the \\gt 100 {{MeV}} γ-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the γ-ray fluxes by factors of about ˜2–3, depending on the EBL model adopted. An additional γ-ray spectral component is thus required, and could be due to hadronic emission arising from proton–proton collisions of cosmic rays with thermal plasma within the radio lobes.

  10. Fermi Large Area Telescope Detection of Extended Gamma-Ray Emission from the Radio Galaxy Fornax A

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiaro, G.; Ciprini, S.; Cohen, J. M.; Cohen-Tanugi, J.; Costanza, F.; Cutini, S.; D'Ammando, F.; Davis, D. S.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Georganopoulos, M.; Giglietto, N.; Giordano, F.; Giroletti, M.; Godfrey, G.; Green, D.; Grenier, I. A.; Guiriec, S.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Jogler, T.; Jóhannesson, G.; Kensei, S.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lubrano, P.; Magill, J. D.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Negro, M.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Schmid, J.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Stawarz, Ł.; Takahashi, H.; Thayer, J. B.; Thompson, D. J.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.; Wood, M.; Zimmer, S.

    2016-07-01

    We report the Fermi Large Area Telescope detection of extended γ-ray emission from the lobes of the radio galaxy Fornax A using 6.1 years of Pass 8 data. After Centaurus A, this is now the second example of an extended γ-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to be \\lt 14% of the total γ-ray flux. A preferred alignment of the γ-ray elongation with the radio lobes was demonstrated by rotating the radio lobes template. We found no significant evidence for variability on ˜0.5 year timescales. Taken together, these results strongly suggest a lobe origin for the γ-rays. With the extended nature of the \\gt 100 {{MeV}} γ-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the γ-ray fluxes by factors of about ˜2-3, depending on the EBL model adopted. An additional γ-ray spectral component is thus required, and could be due to hadronic emission arising from proton-proton collisions of cosmic rays with thermal plasma within the radio lobes.

  11. Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes

    NASA Astrophysics Data System (ADS)

    Sotomayor-Beltran, C.; Sobey, C.; Hessels, J. W. T.; de Bruyn, G.; Noutsos, A.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Beck, R.; Bell, M. E.; Bell, M. R.; Bentum, M. J.; Bernardi, G.; Best, P.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J.; Brouw, W. N.; Brüggen, M.; Ciardi, B.; de Gasperin, F.; Dettmar, R.-J.; van Duin, A.; Duscha, S.; Eislöffel, J.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Grit, T.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Keane, E.; Kohler, J.; Kramer, M.; Kondratiev, V. I.; Koopmans, L. V. E.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Macario, G.; Markoff, S.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pilia, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Serylak, M.; Sluman, J.; Stappers, B. W.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Vermeulen, R.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2013-04-01

    Faraday rotation measurements using the current and next generation of low-frequency radio telescopes will provide a powerful probe of astronomical magnetic fields. However, achieving the full potential of these measurements requires accurate removal of the time-variable ionospheric Faraday rotation contribution. We present ionFR, a code that calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. ionFR uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. We describe applications of this code for the calibration of radio polarimetric observations, and demonstrate the high accuracy of its modeled ionospheric Faraday rotations using LOFAR pulsar observations. These show that we can accurately determine some of the highest-precision pulsar rotation measures ever achieved. Precision rotation measures can be used to monitor rotation measure variations - either intrinsic or due to the changing line-of-sight through the interstellar medium. This calibration is particularly important for nearby sources, where the ionosphere can contribute a significant fraction of the observed rotation measure. We also discuss planned improvements to ionFR, as well as the importance of ionospheric Faraday rotation calibration for the emerging generation of low-frequency radio telescopes, such as the SKA and its pathfinders.

  12. Analysis of Tracking Measuring Method of Focus Cabin of Five-hundred-meter Aperture Spherical radio Telescope(FAST)

    NASA Astrophysics Data System (ADS)

    Yuan, Hui; Zhu, Lichun

    2015-08-01

    FAST (Five-hundred-meter Aperture Spherical radio Telescope) project is one of the Chinese mega-Science Projects to build the largest single dish radio telescope in the world. FAST has three outstanding innovation aspects: in the karst depression which is large to host the 500-meter telescope, an active main reflector correcting for spherical aberration on the ground to achieve a full polarization is being built, the light-weight feed focus cabin in which a parallel robot as a secondary adjustable system to move with high precision is driven by cables and servomechanism plus. The part of main reflector which is illuminated by the feed is continually adjusted to fit the paraboloid of revolution in real time when tracking the radio source. How to get high precise real-time feedback data of moving focus cabin’s position when tracking the source is one of the crucial problems for the astronomical observation.At present 24 steady basis pillars for measurement whose position coordinates are already known, have been built in the construction field of FAST. Total stations will be installed on one of those pillars, and prisms will be installed on focus cabin. The purpose of this study was to assess the accuracy and reliability of two measuring method: the space distance intersection calculation method and polar measuring method. The space distance intersection calculation method is only using multiple measuring distances between three pillars and prism and known coordinates of pillars to calculate the prism’s coordinates, the polar measurement is using the measuring distance and angles to get the prism’s coordinate.

  13. BVR Photometry Of An Inverted-spectrum, Flat-spectrum Radio Source With The Rowan 0.4-meter Telescope

    NASA Astrophysics Data System (ADS)

    Guerra, Erick; Diekewicz, A.

    2012-01-01

    Several galaxies have been selected for an exploratory campaign with 0.4-meter telescope atop Science Hall at Rowan University. These galaxies exhibit inverted radio spectra on the basis of fluxes in the GB6 and VLA FIRST catalogs and have SDSS magnitudes in g-band less than 15.5. The results of BVR photometry of one of these galaxies, CGCG 215-024, are presented. These are the first results from an ongoing campaign to expand the function of the observatory atop Science Hall. Efforts to mitigate bulding vibration and light pollution in future work will be presented. The authors would like to acknowledge Ric and Jean Edelman for their gift that funded the 0.4-meter telescope.

  14. Near-infrared Hubble Space Telescope polarimetry of a complete sample of narrow-line radio galaxies

    NASA Astrophysics Data System (ADS)

    Ramírez, E. A.; Tadhunter, C. N.; Axon, D.; Batcheldor, D.; Packham, C.; Lopez-Rodriguez, E.; Sparks, W.; Young, S.

    2014-10-01

    We present an analysis of 2.05 μm Hubble Space Telescope polarimetric data for a sample of 13 nearby Fanaroff-Riley type II (FRII) 3CR radio sources (0.03 < z < 0.11) that are classified as narrow-line radio galaxies (NLRG) at optical wavelengths. We find that the compact cores of the NLRG in our sample are intrinsically highly polarized in the near-infrared (near-IR) (6 < P2.05 μm < 60 per cent), with the electric vector (E-vector) perpendicular to the radio axis in 54 per cent of the sources. The levels of extinction required to produce near-IR polarization by the dichroic extinction mechanism are consistent with the measured values recently reported in Ramírez et al., provided that this mechanism has its maximum efficiency. This consistency suggests that the nuclear polarization could be due to dichroic extinction. In this case, toroidal magnetic fields that are highly coherent would be required in the circumnuclear tori to align the elongated dust grains responsible for the dichroic extinction. However, it is not entirely possible to rule out other polarization mechanisms (e.g. scattering, synchrotron emission) with our observations at only one near-IR wavelength. Therefore, further polarimetry observations at mid-IR and radio wavelengths will be required to test whether all the near-IR polarization is due to dichroic extinction.

  15. A Giant Metrewave Radio Telescope Multifrequency Radio Study of the Isothermal Core of the Poor Galaxy Cluster AWM 4

    NASA Astrophysics Data System (ADS)

    Giacintucci, Simona; Vrtilek, Jan M.; Murgia, Matteo; Raychaudhury, Somak; O'Sullivan, Ewan J.; Venturi, Tiziana; David, Laurence P.; Mazzotta, Pasquale; Clarke, Tracy E.; Athreya, Ramana M.

    2008-07-01

    We present a detailed radio morphological study and spectral analysis of the wide-angle tail radio source 4C +24.36 associated with the dominant galaxy in the relaxed galaxy cluster AWM 4. Our study is based on new high-sensitivity GMRT observations at 235, 327, and 610 MHz and on literature and archival data at other frequencies. We find that the source major axis is likely oriented at a small angle with respect to the plane of the sky. The wide-angle tail morphology can be reasonably explained by adopting a simple hydrodynamical model in which both ram pressure (driven by the motion of the host galaxy) and buoyancy forces contribute to bend the radio structure. The spectral index progressively steepens along the source major axis from α ~ 0.3 in the region close to the radio nucleus to beyond 1.5 in the lobes. The results of the analysis of the spectral index image allow us to derive an estimate of the radiative age of the source of ~160 Myr. The cluster X-ray-emitting gas has a relaxed morphology and short cooling time, but its temperature profile is isothermal out to at least 160 kpc from the center. Therefore, we seek evidence of energy ejection from the central AGN to prevent catastrophic cooling. We find that the energy injected by 4C +24.36 in the form of synchrotron luminosity during its lifetime is far less than the energy required to maintain the high gas temperature in the core. We also find that it is not possible for the central source to eject the requisite energy in the intracluster gas in terms of the enthalpy of buoyant bubbles of relativistic fluid, without creating discernible large cavities in the existing X-ray XMM-Newton observations.

  16. Dynamic scheduling and planning parallel observations on large Radio Telescope Arrays with the Square Kilometre Array in mind

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes

    2011-12-01

    Scheduling, the task of producing a time table for resources and tasks, is well-known to be a difficult problem the more resources are involved (a NP-hard problem). This is about to become an issue in Radio astronomy as observatories consisting of hundreds to thousands of telescopes are planned and operated. The Square Kilometre Array (SKA), which Australia and New Zealand bid to host, is aiming for scales where current approaches -- in construction, operation but also scheduling -- are insufficent. Although manual scheduling is common today, the problem is becoming complicated by the demand for (1) independent sub-arrays doing simultaneous observations, which requires the scheduler to plan parallel observations and (2) dynamic re-scheduling on changed conditions. Both of these requirements apply to the SKA, especially in the construction phase. We review the scheduling approaches taken in the astronomy literature, as well as investigate techniques from human schedulers and today's observatories. The scheduling problem is specified in general for scientific observations and in particular on radio telescope arrays. Also taken into account is the fact that the observatory may be oversubscribed, requiring the scheduling problem to be integrated with a planning process. We solve this long-term scheduling problem using a time-based encoding that works in the very general case of observation scheduling. This research then compares algorithms from various approaches, including fast heuristics from CPU scheduling, Linear Integer Programming and Genetic algorithms, Branch-and-Bound enumeration schemes. Measures include not only goodness of the solution, but also scalability and re-scheduling capabilities. In conclusion, we have identified a fast and good scheduling approach that allows (re-)scheduling difficult and changing problems by combining heuristics with a Genetic algorithm using block-wise mutation operations. We are able to explain and eradicate two problems in the

  17. Terrestrial monitoring of a radio telescope reference point using comprehensive uncertainty budgeting. Investigations during CONT14 at the Onsala Space Observatory

    NASA Astrophysics Data System (ADS)

    Lösler, Michael; Haas, Rüdiger; Eschelbach, Cornelia

    2016-05-01

    During the 15-day-long global very long baseline interferometry campaign CONT14, a terrestrial monitoring campaign was carried out at the Onsala Space Observatory. The goal of these efforts was to monitor the reference point of the Onsala 20 m radio telescope during normal telescope operations. Parts of the local site network as well as a number of reflectors that were mounted on the 20 m radio telescope were observed in an automated and continual way using the in-house-developed software package HEIMDALL. The analysis of the observed data was performed using a new concept for a coordinate-based network adjustment to allow the full adjustment process in a true Cartesian global reference frame. The Akaike Information Criterion was used to select the preferable functional model for the network adjustment. The comprehensive stochastic model of this network adjustment process considers over 25 parameters, and, to describe the persistence of the observations performed during the monitoring with a very high measurement frequency, includes also time-dependent covariances. In total 15 individual solutions for the radio telescope reference point were derived, based on monitoring observations during the normal operation of the radio telescope. Since the radio telescope was moving continually, the influence of timing errors was studied and considered in the adjustment process. Finally, recursive filter techniques were introduced to combine the 15 individual solutions. Accuracies at the sub-millimeter level could be achieved for the radio telescope reference point. Thus, the presented monitoring concept fulfills the requirement proposed by the global geodetic observing system.

  18. a Simulation Tool Assisting the Design of a Close Range Photogrammetry System for the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Buffa, F.; Pinna, A.; Sanna, G.

    2016-06-01

    The Sardinia Radio Telescope (SRT) is a 64 m diameter antenna, whose primary mirror is equipped with an active surface capable to correct its deformations by means of a thick network of actuators. Close range photogrammetry (CRP) was used to measure the self-load deformations of the SRT primary reflector from its optimal shape, which are requested to be minimized for the radio telescope to operate at full efficiency. In the attempt to achieve such performance, we conceived a near real-time CRP system which requires the cameras to be installed in fixed positions and at the same time to avoid any interference with the antenna operativeness. The design of such system is not a trivial task, and to assist our decision we therefore developed a simulation pipeline to realistically reproduce and evaluate photogrammetric surveys of large structures. The described simulation environment consists of (i) a detailed description of the SRT model, included the measurement points and the camera parameters, (ii) a tool capable of generating realistic images accordingly to the above model, and (iii) a self-calibrating bundle adjustment to evaluate the performance in terms of RMSE of the camera configurations.

  19. System and method for phase retrieval for radio telescope and antenna control

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2013-01-01

    Disclosed herein are systems, methods, and non-transitory computer-readable storage media for radio phase retrieval. A system practicing the method gathers first data from radio waves associated with an object observed via a first aperture, gathers second data from radio waves associated with the object observed via an introduced second aperture associated with the first aperture, generates reduced noise data by incoherently subtracting the second data from the first data, and performs phase retrieval for the radio waves by modeling the reduced noise data using a single Fourier transform. The first and second apertures are at different positions, such as side by side. This approach can include determining a value Q which represents a ratio of wavelength times a focal ratio divided by pixel spacing. This information can be used to accurately measure and correct alignment errors or other optical system flaws in the apertures.

  20. Discovery of the Millisecond Pulsar PSR J2043+1711 in a Fermi Source with the Nancay Radio Telescope

    NASA Technical Reports Server (NTRS)

    Guillemot, L.; Freire, P. C. C.; Cognard, I.; Johnson, T. J.; Takahashi, Y.; Kataoka, J.; Desvignes, G.; Camilo, F.; Ferrara, E. C.; Harding, A. K.; Janssen, G. H.; Keith, M.; Kerr, M.; Kramer, M.; Parent, D.; Ransom, S. M.; Ray, P. S.; Saz Parkinson, P. M.; Smith, D. A.; Stappers, W.; Theureau, G.

    2012-01-01

    We report the discovery of the millisecond pulsar PSR J2043+1711 in a search of a Fermi Large Area Telescope (LAT) source with no known associations, with the Nancay Radio Telescope. The new pulsar, confirmed with the Green Bank Telescope, has a spin period of 2.38 ms, is relatively nearby (d approx. < 2 kpc) and is in a 1.48-d orbit around a low-mass companion, probably an He-type white dwarf. Using an ephemeris based on Arecibo, Nancay and Westerbork timing measurements, pulsed gamma-ray emission was detected in the data recorded by the Fermi LAT. The gamma-ray light curve and spectral properties are typical of other gamma-ray millisecond pulsars seen with Fermi. X-ray observations of the pulsar with Suzaku and the Swift X-ray Telescope yielded no detection. At 1.4 GHz, we observe strong flux density variations because of interstellar diffractive scintillation; however, a sharp peak can be observed at this frequency during bright scintillation states. At 327 MHz, the pulsar is detected with a much higher signal-to-noise ratio and its flux density is far more steady. However, at that frequency the Arecibo instrumentation cannot yet fully resolve the pulse profile. Despite that, our pulse time-of-arrival measurements have a post-fit residual rms of 2 micro s. This and the expected stability of this system have made PSR J2043+1711 one of the first new Fermi-selected millisecond pulsars to be added to pulsar gravitational wave timing arrays. It has also allowed a significant measurement of relativistic delays in the times of arrival of the pulses due to the curvature of space-time near the companion, but not yet with enough precision to derive useful masses for the pulsar and the companion. Nevertheless, a mass for the pulsar between 1.7 and 2.0 solar Mass can be derived if a standard millisecond pulsar formation model is assumed. In this paper, we also present a comprehensive summary of pulsar searches in Fermi LAT sources with the Nancay Radio Telescope to date.

  1. A Radio Synoptic Survey Telescope for the Next Decade and Beyond: A Square-Kilometer Array Concept

    NASA Astrophysics Data System (ADS)

    Myers, Steven T.

    2007-12-01

    The "Radio Synoptic Survey Telescope” (RSST) is a concept being developed in the US, in collaboration with the International SKA partners, as a proposal for a mid-frequency Square Kilometer Array (SKA) . This poster presents a preliminary sketch of the concept meant to encourage community feedback. The RSST would have the sensitivity to detect HI in normal galaxies out to a redshift z>1.5 (requiring a "square kilometer” of collecting area or more). It would also have high continuum polarimetric sensitivity for deep imaging and AGN studies. The core frequency coverage is proposed to be 0.4-1.4 GHz to cover HI to z=2.5 (a "Hydrogen Cosmological Evolution Telescope") with the possibility of extension of the upper frequency limit to 3 GHz or higher (a "Gravity Astrophysics Telescope"). Evaluation and costing of the various options will be an area of focus in the next few years. The RSST would operate primarily in Synoptic Survey mode, with the majority of the observing time ( 75% or more) devoted to large surveys that scan the sky on day to week cadences. There would likely be 10%-25% of time available for follow-up targeted observations and general observer projects. Examples of key surveys include (but are not exclusive to): (1) Cosmological HI Large Deep Survey; (2) Deep Continuum Survey; and a (3) Transient Monitoring Program. These surveys would be largely commensal, and would consist of sub-surveys of different regions to different depths. Science targets include "billion galaxy” cosmological redshift surveys (e.g. Baryon Acoustic Oscillations for dark energy studies), HI evolution studies, rotation measure surveys, radio supernova and GRB searches, pulsar searches and studies, and the discovery of new phenomena. Preliminary designs are based on development underway by the US-SKA consortium, the International SKA, and the general US radio astronomy community.

  2. Mechanical determinants of 100-m sprint running performance.

    PubMed

    Morin, Jean-Benoît; Bourdin, Muriel; Edouard, Pascal; Peyrot, Nicolas; Samozino, Pierre; Lacour, Jean-René

    2012-11-01

    Sprint mechanics and field 100-m performances were tested in 13 subjects including 9 non-specialists, 3 French national-level sprinters and a world-class sprinter, to further study the mechanical factors associated with sprint performance. 6-s sprints performed on an instrumented treadmill allowed continuous recording of step kinematics, ground reaction forces (GRF), and belt velocity and computation of mechanical power output and linear force-velocity relationships. An index of the force application technique was computed as the slope of the linear relationship between the decrease in the ratio of horizontal-to-resultant GRF and the increase in velocity. Mechanical power output was positively correlated to mean 100-m speed (P < 0.01), as was the theoretical maximal velocity production capability (P < 0.011), whereas the theoretical maximal force production capability was not. The ability to apply the resultant force backward during acceleration was positively correlated to 100-m performance (r (s) > 0.683; P < 0.018), but the magnitude of resultant force was not (P = 0.16). Step frequency, contact and swing time were significantly correlated to acceleration and 100-m performance (positively for the former, negatively for the two latter, all P < 0.05), whereas aerial time and step length were not (all P > 0.21). Last, anthropometric data of body mass index and lower-limb-to-height ratio showed no significant correlation with 100-m performance. We concluded that the main mechanical determinants of 100-m performance were (1) a "velocity-oriented" force-velocity profile, likely explained by (2) a higher ability to apply the resultant GRF vector with a forward orientation over the acceleration, and (3) a higher step frequency resulting from a shorter contact time. PMID:22422028

  3. Improved flux limits for neutrinos with energies above 10(22) eV from observations with the Westerbork Synthesis Radio Telescope.

    PubMed

    Scholten, O; Buitink, S; Bacelar, J; Braun, R; de Bruyn, A G; Falcke, H; Singh, K; Stappers, B; Strom, R G; al Yahyaoui, R

    2009-11-01

    Particle cascades initiated by ultrahigh energy neutrinos in the lunar regolith will emit an electromagnetic pulse with a time duration of the order of nanoseconds through a process known as the Askaryan effect. It has been shown that in an observing window around 150 MHz there is a maximum chance for detecting this radiation with radio telescopes commonly used in astronomy. In 50 h of observation time with the Westerbork Synthesis Radio Telescope array we have set a new limit on the flux of neutrinos, summed over all flavors, with energies in excess of 4x10(22) eV.

  4. Improved flux limits for neutrinos with energies above 10(22) eV from observations with the Westerbork Synthesis Radio Telescope.

    PubMed

    Scholten, O; Buitink, S; Bacelar, J; Braun, R; de Bruyn, A G; Falcke, H; Singh, K; Stappers, B; Strom, R G; al Yahyaoui, R

    2009-11-01

    Particle cascades initiated by ultrahigh energy neutrinos in the lunar regolith will emit an electromagnetic pulse with a time duration of the order of nanoseconds through a process known as the Askaryan effect. It has been shown that in an observing window around 150 MHz there is a maximum chance for detecting this radiation with radio telescopes commonly used in astronomy. In 50 h of observation time with the Westerbork Synthesis Radio Telescope array we have set a new limit on the flux of neutrinos, summed over all flavors, with energies in excess of 4x10(22) eV. PMID:20365914

  5. Testing of 100 mK bolometers for space applications

    NASA Technical Reports Server (NTRS)

    Murray, A. G.; Ade, P. A. R.; Bhatia, R. S.; Griffin, M. J.; Maffei, B.; Nartallo, R.; Beeman, J. W.; Bock, J.; Lange, A.; DelCastillo, H.

    1996-01-01

    Electrical and optical performance data are presented for a prototype 100 mK spider-web bolometer operating under very low photon backgrounds. These data are compared with the bolometer theory and are used to estimate the expected sensitivity of such a detector used for low background space astronomy. The results demonstrate that the sensitivity and speed of response requirements of the bolometer instruments proposed for these missions can be met by 100 mK spider-web bolometers using neutron transmutation doped germanium as the temperature sensitive element.

  6. Optical properties of high-frequency radio sources from the Australia Telescope 20 GHz (AT20G) Survey

    NASA Astrophysics Data System (ADS)

    Mahony, Elizabeth K.; Sadler, Elaine M.; Croom, Scott M.; Ekers, Ronald D.; Bannister, Keith W.; Chhetri, Rajan; Hancock, Paul J.; Johnston, Helen M.; Massardi, Marcella; Murphy, Tara

    2011-11-01

    Our current understanding of radio-loud active galactic nuclei (AGN) comes predominantly from studies at frequencies of 5 GHz and below. With the recent completion of the Australia Telescope 20 GHz (AT20G) survey, we can now gain insight into the high-frequency radio properties of AGN. This paper presents supplementary information on the AT20G sources in the form of optical counterparts and redshifts. Optical counterparts were identified using the SuperCOSMOS data base and redshifts were found from either the 6dF Galaxy Survey or the literature. We also report 144 new redshifts. For AT20G sources outside the Galactic plane, 78.5 per cent have optical identifications and 30.9 per cent have redshift information. The optical identification rate also increases with increasing flux density. Targets which had optical spectra available were examined to obtain a spectral classification. There appear to be two distinct AT20G populations; the high luminosity quasars that are generally associated with point-source optical counterparts and exhibit strong emission lines in the optical spectrum, and the lower luminosity radio galaxies that are generally associated with passive galaxies in both the optical images and spectroscopic properties. It is suggested that these different populations can be associated with different accretion modes (cold-mode or hot-mode). We find that the cold-mode sources have a steeper spectral index and produce more luminous radio lobes, but generally reside in smaller host galaxies than their hot-mode counterparts. This can be attributed to the fact that they are accreting material more efficiently. Lastly, we compare the AT20G survey with the S-cubed semi-empirical (S3-SEX) models and conclude that the S3-SEX models need refining to correctly model the compact cores of AGN. The AT20G survey provides the ideal sample to do this.

  7. A New Astronomical Facility for Peru: Converting a Telecommunication's 32 Meter Parabolic Antenna into a Radio Telescope

    NASA Astrophysics Data System (ADS)

    Ishitsuka, J. K.; Ishitsuka, M.; Inoue, M.; Kaifu, N.; Miyama, S.; Tsuboi, M.; Ohishi, M.; Fujisawa, K.; Kasuga, T.; Kondo, T.; Horiuchi, S.; Umemoto, T.; Miyoshi, M.; Miyazawa, K.; Bushimata, T.; Vidal, E. D.

    2006-08-01

    In 1984 Nippon Electric Company constructed an INTELSAT antenna at 3,370 meters above the sea level on the Peruvian Andes. Entel Peru, the Peruvian telecommunications company, managed the antenna station until 1993. This year the government transferred the station to a private telecommunications company, Telefónica del Peru. Since the satellite communications were rapidly replaced by transoceanic fiber optics, the beautiful 32 meters parabolic antenna has been unused since 2002.. In cooperation with the National Astronomical Observatory of Japan we began to convert the antenna into a radio telescope. Because researches on interstellar medium around Young Stellar Objects (YSO) will be able to observe the methanol masers that emit at 6.7 GHz, initially we will monitor the 6.7 GHz methanol masers and survey the southern sky. An ambient temperature receiver with Trx= 60 K was developed at Nobeyama Radio Observatory and is ready to be installed. The antenna control system is the Field System FS9 software installed in a Linux PC. An interface between the antenna and the PC was developed at Kashima Space Research Center in Japan. In the near future we plan to install the 2 GHz, 8 GHz, 12 GHz and 22 GHz receivers. The unique location and altitude of the Peruvian Radio Observatory will be useful for VLBI observations in collaboration with global arrays such as the VLBA array for astronomical observation and geodetic measurements. For Peru where few or almost no astronomical observational instruments are available for research, the implementation of the first radio observatory is a big and challenging step, and foster sciences at graduate and postgraduate levels of universities. Worldwide telecommunications antennas possibly are unused and with relative few investment could be transformed into a useful observational instrument.

  8. GIANT METREWAVE RADIO TELESCOPE DETECTION OF TWO NEW H I 21 cm ABSORBERS AT z ≈ 2

    SciTech Connect

    Kanekar, N.

    2014-12-20

    I report the detection of H I 21 cm absorption in two high column density damped Lyα absorbers (DLAs) at z ≈ 2 using new wide-band 250-500 MHz receivers on board the Giant Metrewave Radio Telescope. The integrated H I 21 cm optical depths are 0.85 ± 0.16 km s{sup –1} (TXS1755+578) and 2.95 ± 0.15 km s{sup –1} (TXS1850+402). For the z = 1.9698 DLA toward TXS1755+578, the difference in H I 21 cm and C I profiles and the weakness of the radio core suggest that the H I 21cm absorption arises toward radio components in the jet, and that the optical and radio sightlines are not the same. This precludes an estimate of the DLA spin temperature. For the z = 1.9888 DLA toward TXS1850+402, the absorber covering factor is likely to be close to unity, as the background source is extremely compact, with the entire 5 GHz emission arising from a region of ≤ 1.4 mas in size. This yields a DLA spin temperature of T{sub s} = (372 ± 18) × (f/1.0) K, lower than typical T{sub s} values in high-z DLAs. This low spin temperature and the relatively high metallicity of the z = 1.9888 DLA ([Zn/H] =(– 0.68 ± 0.04)) are consistent with the anti-correlation between metallicity and spin temperature that has been found earlier in damped Lyα systems.

  9. Ray-tracing and physical-optics analysis of the aperture efficiency in a radio telescope.

    PubMed

    Olmi, Luca; Bolli, Pietro

    2007-07-01

    The performance of telescope systems working at microwave or visible-IR wavelengths is typically described in terms of different parameters according to the wavelength range. Most commercial ray-tracing packages have been specifically designed for use with visible-IR systems and thus, though very flexible and sophisticated, do not provide the appropriate parameters to fully describe microwave antennas and to compare with specifications. We demonstrate that the Strehl ratio is equal to the phase efficiency when the apodization factor is taken into account. The phase efficiency is the most critical contribution to the aperture efficiency of an antenna and the most difficult parameter to optimize during the telescope design. The equivalence between the Strehl ratio and the phase efficiency gives the designer/user of the telescope the opportunity to use the faster commercial ray-tracing software to optimize the design. We also discuss the results of several tests performed to check the validity of this relationship that we carried out using a ray-tracing software, ZEMAX, and a full Physical Optics software, GRASP9.3, applied to three different telescope designs that span a factor of approximately 10 in terms of D/lambda. The maximum measured discrepancy between phase efficiency and Strehl ratio varies between approximately 0.4% and 1.9% up to an offset angle of >40 beams, depending on the optical configuration, but it is always less than 0.5% where the Strehl ratio is >0.95.

  10. No Radio Flaring Detected from Cygnus X-3 at 3 GHz by Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Williams, P. K. G.; Bower, G. C.; Tomsick, J. A.; Bodaghee, A.; Corbet, R. H. D.

    2011-01-01

    Following the announcement of a 98 GHz flare from the microquasar Cygnus X-3 (ATel #3130), we observed it with the Allen Telescope Array (Welch et al., 2009 Proc. IEEE 97 1438 for 2.5 hours beginning at 2011 January 28.848 UT (MJD 55589.848), about 4.0 hours after the 98 GHz observations concluded.

  11. Ray-tracing and physical-optics analysis of the aperture efficiency in a radio telescope.

    PubMed

    Olmi, Luca; Bolli, Pietro

    2007-07-01

    The performance of telescope systems working at microwave or visible-IR wavelengths is typically described in terms of different parameters according to the wavelength range. Most commercial ray-tracing packages have been specifically designed for use with visible-IR systems and thus, though very flexible and sophisticated, do not provide the appropriate parameters to fully describe microwave antennas and to compare with specifications. We demonstrate that the Strehl ratio is equal to the phase efficiency when the apodization factor is taken into account. The phase efficiency is the most critical contribution to the aperture efficiency of an antenna and the most difficult parameter to optimize during the telescope design. The equivalence between the Strehl ratio and the phase efficiency gives the designer/user of the telescope the opportunity to use the faster commercial ray-tracing software to optimize the design. We also discuss the results of several tests performed to check the validity of this relationship that we carried out using a ray-tracing software, ZEMAX, and a full Physical Optics software, GRASP9.3, applied to three different telescope designs that span a factor of approximately 10 in terms of D/lambda. The maximum measured discrepancy between phase efficiency and Strehl ratio varies between approximately 0.4% and 1.9% up to an offset angle of >40 beams, depending on the optical configuration, but it is always less than 0.5% where the Strehl ratio is >0.95. PMID:17571151

  12. Monitoring of Cyg X-3 giant flare with Medicina and the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Egron, E.; Pellizzoni, A.; Giroletti, M.; Righini, S.; Orlati, A.; Iacolina, M. N.; Navarrini, A.; Buttu, M.; Migoni, C.; Melis, A.; Concu, R.; Vargiu, G. P.; Bachetti, M.; Pilia, M.; Trois, A.; Loru, S.; Marongiu, M.

    2016-09-01

    Following the detection of Cyg X-3 entering in an ultra soft X-ray state, a forthcoming giant flare was predicted by Trushkin et al. (ATel #9416). In fact, a significant radio flux increase was detected three weeks later, on 14-16 September 2016 (ATel #9502).

  13. Low-noise room-temperature and cryogenic mixers for 80-120 GHz. [design for use on radio telescope

    NASA Technical Reports Server (NTRS)

    Kerr, A. R.

    1975-01-01

    A description is given of two new mixers designed to operate in the 80-120-GHz range on 36-ft radio telescope. It is shown that for a hard-driven diode the parasitic resistance and capacitance are the primary factors influencing the design of the diode mount. A room-temperature mixer is described which achieves a single-sideband (SSB) conversion loss (L) of 5.5 dB, and a SSB noise temperature (Tm) of 500 K (excluding the IF contribution) with a 1.4-GHz IF. A cryogenically cooled version, using a quartz structure to support the diode chip and contact whisker, achieves values of L = 5.8 dB and Tm = 300 K with a 4.75-GHz IF. The mixers use high-quality Schottky-barrier diodes in a one-quarter-height waveguide mount.

  14. Development of the remote diagnosis system of the solar radio telescope

    NASA Astrophysics Data System (ADS)

    Kawashima, Susumu; Shinohara, Noriyuki; Sekiguchi, Hideaki

    2005-04-01

    "The remote diagnosis system" which we have developed is the one to monitor the operation conditions of two systems of solar radio observation (Nobeyama Radioheliograph and Nobeyama Radio Polarimeters) from the remote place. Under the condition of very limited human power, it is necessary to minimize the load of observers without degrading data quality. Thereupon, we have mulled measures to alleviate the load of observers, and worked out "the remote diagnosis system" which enables us to monitor the operation conditions and detect troubles, if any, in early stages, even if we are away from the observatory building where control system are concentrated. The plan was materialized by adopting an access through the INTERNET to the section where needed information for diagnosis is gathered.

  15. Analysis of the GPS Observations of the Site Survey at Sheshan 25-m Radio Telescope in August 2008

    NASA Technical Reports Server (NTRS)

    Liu, L.; Cheng, Z. Y.; Li, J. L.

    2010-01-01

    The processing of the GPS observations of the site survey at Sheshan 25-m radio telescope in August 2008 is reported. Because each session in this survey is only about six hours, not allowing the subdaily high frequency variations in the station coordinates to be reasonably smoothed, and because there are serious cycle slips in the observations and a large volume of data would be rejected during the software automatic adjustment of slips, the ordinary solution settings of GAMIT needed to be adjusted by loosening the constraints in the a priori coordinates to 10 m, adopting the "quick" mode in the solution iteration, and combining Cview manual operation with GAMIT automatic fixing of cycle slips. The resulting coordinates of the local control polygon in ITRF2005 are then compared with conventional geodetic results. Due to large rotations and translations in the two sets of coordinates (geocentric versus quasi-topocentric), the seven transformation parameters cannot be solved for directly. With various trial solutions it is shown that with a partial pre-removal of the large parameters, high precision transformation parameters can be obtained with post-fit residuals at the millimeter level. This analysis is necessary to prepare the follow-on site and transformation survey of the VLBI and SLR telescopes at Sheshan

  16. Bent-tailed Radio Sources in the Australia Telescope Large Area Survey of the Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Dehghan, S.; Johnston-Hollitt, M.; Franzen, T. M. O.; Norris, R. P.; Miller, N. A.

    2014-11-01

    Using the 1.4 GHz Australia Telescope Large Area Survey, supplemented by the 1.4 GHz Very Large Array images, we undertook a search for bent-tailed (BT) radio galaxies in the Chandra Deep Field South. Here we present a catalog of 56 detections, which include 45 BT sources, 4 diffuse low-surface-brightness objects (1 relic, 2 halos, and 1 unclassified object), and a further 7 complex, multi-component sources. We report BT sources with rest-frame powers in the range 1022 <= P 1.4 GHz <= 1026 W Hz-1, with redshifts up to 2 and linear extents from tens of kiloparsecs up to about 1 Mpc. This is the first systematic study of such sources down to such low powers and high redshifts and demonstrates the complementary nature of searches in deep, limited area surveys as compared to shallower, large surveys. Of the sources presented here, one is the most distant BT source yet detected at a redshift of 2.1688. Two of the sources are found to be associated with known clusters: a wide-angle tail source in A3141 and a putative radio relic which appears at the infall region between the galaxy group MZ 00108 and the galaxy cluster AMPCC 40. Further observations are required to confirm the relic detection, which, if successful, would demonstrate this to be the least powerful relic yet seen with P 1.4 GHz = 9 × 1022 W Hz-1. Using these data, we predict future 1.4 GHz all-sky surveys with a resolution of ~10 arcsec and a sensitivity of 10 μJy will detect of the order of 560,000 extended low-surface-brightness radio sources of which 440,000 will have a BT morphology.

  17. Bent-tailed radio sources in the australia telescope large area survey of the Chandra deep field south

    SciTech Connect

    Dehghan, S.; Johnston-Hollitt, M.; Franzen, T. M. O.; Norris, R. P.; Miller, N. A.

    2014-11-01

    Using the 1.4 GHz Australia Telescope Large Area Survey, supplemented by the 1.4 GHz Very Large Array images, we undertook a search for bent-tailed (BT) radio galaxies in the Chandra Deep Field South. Here we present a catalog of 56 detections, which include 45 BT sources, 4 diffuse low-surface-brightness objects (1 relic, 2 halos, and 1 unclassified object), and a further 7 complex, multi-component sources. We report BT sources with rest-frame powers in the range 10{sup 22} ≤ P {sub 1.4} {sub GHz} ≤ 10{sup 26} W Hz{sup –1}, with redshifts up to 2 and linear extents from tens of kiloparsecs up to about 1 Mpc. This is the first systematic study of such sources down to such low powers and high redshifts and demonstrates the complementary nature of searches in deep, limited area surveys as compared to shallower, large surveys. Of the sources presented here, one is the most distant BT source yet detected at a redshift of 2.1688. Two of the sources are found to be associated with known clusters: a wide-angle tail source in A3141 and a putative radio relic which appears at the infall region between the galaxy group MZ 00108 and the galaxy cluster AMPCC 40. Further observations are required to confirm the relic detection, which, if successful, would demonstrate this to be the least powerful relic yet seen with P {sub 1.4} {sub GHz} = 9 × 10{sup 22} W Hz{sup –1}. Using these data, we predict future 1.4 GHz all-sky surveys with a resolution of ∼10 arcsec and a sensitivity of 10 μJy will detect of the order of 560,000 extended low-surface-brightness radio sources of which 440,000 will have a BT morphology.

  18. Providing hydrogen maser timing stability to orbiting VLBI radio telescope observations by post-measurement compensation of linked frequency standard imperfections

    NASA Technical Reports Server (NTRS)

    Springett, James C.

    1994-01-01

    Orbiting VLBI (OVLBI) astronomical observations are based upon measurements acquired simultaneously from ground-based and earth-orbiting radio telescopes. By the mid-1990s, two orbiting VLBI observatories, Russia's Radioastron and Japan's VSOP, will augment the worldwide VLBI network, providing baselines to earth radio telescopes as large as 80,000 km. The challenge for OVLBI is to effectuate space to ground radio telescope data cross-correlation (the observation) to a level of integrity currently achieved between ground radio telescopes. VLBI radio telescopes require ultrastable frequency and timing references in order that long term observations may be made without serious cross-correlation loss due to frequency source drift and phase noise. For this reason, such instruments make use of hydrogen maser frequency standards. Unfortunately, space-qualified hydrogen maser oscillators are currently not available for use on OVLBI satellites. Thus, the necessary long-term stability needed by the orbiting radio telescope may only be obtained by microwave uplinking a ground-based hydrogen maser derived frequency to the satellite. Although the idea of uplinking the frequency standard intrinsically seems simple, there are many 'contaminations' which degrade both the long and short term stability of the transmitted reference. Factors which corrupt frequency and timing accuracy include additive radio and electronic circuit thermal noise, slow or systematic phase migration due to changes of electronic circuit temporal operating conditions (especially temperature), ionosphere and troposphere induced scintillations, residual Doppler-incited components, and microwave signal multipath propagation. What is important, though, is to realize that ultimate stability does not have to be achieved in real-time. Instead, information needed to produce a high degree of coherence in the subsequent cross-correlation operation may be derived from a two-way coherent radio link, recorded and later

  19. A Kinematics Analysis Of Three Best 100 M Performances Ever

    PubMed Central

    Krzysztof, Maćkała; Mero, Antti

    2013-01-01

    The purpose of this investigation was to compare and determine the relevance of the morphological characteristics and variability of running speed parameters (stride length and stride frequency) between Usain Bolt’s three best 100 m performances. Based on this, an attempt was made to define which factors determine the performance of Usain Bolt’s sprint and, therefore, distinguish him from other sprinters. We analyzed the previous world record of 9.69 s set in the 2008 Beijing Olympics, the current record of 9.58 s set in the 2009 Berlin World Championships in Athletics and the O lympic record of 9.63 s set in 2012 London Olympics Games by Usain Bolt. The application of VirtualDub Programme allowed the acquisition of basic kinematical variables such as step length and step frequency parameters of 100 m sprint from video footage provided by NBC TV station, BBC TV station. This data was compared with other data available on the web and data published by the Scientific Research Project Office responsible on behalf of IAAF and the German Athletics Association (DVL). The main hypothesis was that the step length is the main factor that determines running speed in the 10 and 20 m sections of the entire 100 m distance. Bolt’s anthropometric advantage (body height, leg length and liner body) is not questionable and it is one of the factors that makes him faster than the rest of the finalists from each three competitions. Additionally, Bolt’s 20 cm longer stride shows benefit in the latter part of the race. Despite these factors, he is probably able to strike the ground more forcefully than rest of sprinters, relative to their body mass, therefore, he might maximize his time on the ground and to exert the same force over this period of time. This ability, combined with longer stride allows him to create very high running speed - over 12 m/s (12.05 – 12.34 m/s) in some 10 m sections of his three 100 m performances. These assumption confirmed the application of

  20. A kinematics analysis of three best 100 m performances ever.

    PubMed

    Krzysztof, Maćkała; Mero, Antti

    2013-03-01

    The purpose of this investigation was to compare and determine the relevance of the morphological characteristics and variability of running speed parameters (stride length and stride frequency) between Usain Bolt's three best 100 m performances. Based on this, an attempt was made to define which factors determine the performance of Usain Bolt's sprint and, therefore, distinguish him from other sprinters. We analyzed the previous world record of 9.69 s set in the 2008 Beijing Olympics, the current record of 9.58 s set in the 2009 Berlin World Championships in Athletics and the O lympic record of 9.63 s set in 2012 London Olympics Games by Usain Bolt. The application of VirtualDub Programme allowed the acquisition of basic kinematical variables such as step length and step frequency parameters of 100 m sprint from video footage provided by NBC TV station, BBC TV station. This data was compared with other data available on the web and data published by the Scientific Research Project Office responsible on behalf of IAAF and the German Athletics Association (DVL). The main hypothesis was that the step length is the main factor that determines running speed in the 10 and 20 m sections of the entire 100 m distance. Bolt's anthropometric advantage (body height, leg length and liner body) is not questionable and it is one of the factors that makes him faster than the rest of the finalists from each three competitions. Additionally, Bolt's 20 cm longer stride shows benefit in the latter part of the race. Despite these factors, he is probably able to strike the ground more forcefully than rest of sprinters, relative to their body mass, therefore, he might maximize his time on the ground and to exert the same force over this period of time. This ability, combined with longer stride allows him to create very high running speed - over 12 m/s (12.05 - 12.34 m/s) in some 10 m sections of his three 100 m performances. These assumption confirmed the application of Ballerieich

  1. New technologies and new performances of the JCMT radio-telescope: a preliminary design study

    NASA Astrophysics Data System (ADS)

    Mian, S.; De Lorenzi, S.; Ghedin, L.; Rampini, F.; Marchiori, G.; Craig, S.

    2012-09-01

    With a diameter of 15m the James Clerk Maxwell Telescope (JCMT) is the largest astronomical telescope in the world designed specifically to operate in the submillimeter wavelength region of the spectrum. It is situated close to the summit of Mauna Kea, Hawaii, at an altitude of 4092m. Its primary reflector currently consists of a steel geodesic supporting structure and pressed aluminium panels on a passive mount. The major issues of the present reflector are its thermal stability and its panels deterioration. A preliminary design study for the replacement of the JCMT antenna dish is here presented. The requested shape error for the new reflector is <20μm RMS. The proposed solution is based on a semi-monocoque backing structure made of CFRP and on high precision electroformed panels. The choice of CFRP for the backing structure allows indeed to improve the antenna performance in terms of both stiffness and thermal stability, so that the required surface accuracy of the primary can be achieved even by adopting a passive panels system. Moreover thanks to CFRP, a considerable weight reduction of the elevation structure can be attained. The performance of the proposed solution for the JCMT antenna has been investigated through FE analyses and the assessed deformation of the structure under different loading cases has been taken into account for subsequent error budgeting. Results show that the proposed solution is in line with the requested performance. With this new backing structure, the JCMT would have the largest CFRP reflector ever built.

  2. Direct imaging of planetary systems with a ground-based radio telescope array

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.

    1994-01-01

    The National Radio Astronomy Observatory's proposed Millimeter Array (MMA) will bring unprecedented sensitivity, angular resolution, and image dynamic range to the millimeter wavelength region of the spectrum. An obvious question is whether such an instrument could be used to detect planets orbiting nearby stars. The techniques of aperture synthesis imaging developed for centimeter wavelength radio arrays are capable of producing images whose dynamic ranges greatly exceed the brightness ratio of a solar-type star and a Jupiter-like planet at sub-millimeter or millimeter wavelengths. The angular resolution required to separate a star and planet at a few pc distance can be obtained with baselines of several km. The greatest challenge is sensitivity. At the highest possible observing frequencies (approximately 300 GHz for typical high, dry sites, and approximately 900 GHz from the Antarctic plateau), the proposed MMA will be unable to detect the thermal emission from a Jupiter-like planet a few pc away. An upgraded MMA operating near 300 GHz with twice the currently proposed number of antennas, a 20% fractional bandwidth, and improved receivers could detect Jupiter at 4 pc in a few months. Building such an array on the Antarctic plateau and operating at approximately 900 GHz would allow Jupiter at 4 pc to be detected in approximately one day of observing time.

  3. Deep Hubble Space Telescope imaging of a compact radio galaxy at z = 2.390

    NASA Technical Reports Server (NTRS)

    Windhorst, Rogier; Mathis, Douglas F.; Keel, William C.

    1992-01-01

    The radio galaxy with the highest redshift in the Leiden-Berkeley Deep Survey, 53W002, is described and examined in terms of UV profile in relation to an early-type galaxy. The HST WFC images have a resolution of 0.2 arcsec FWHM, and the I- and V-band structures are assessed. The source is elongated in a manner similar to the Ly alpha cloud in V, and the structure is highly compact in I. The present object with a young starburst has very high central UV surface brightnesses relative to nearby luminous early-type galaxies, while the light profiles are similar. The data are concluded to suggest that 53W002 is a young galaxy that has a regular light profile at z = 2.390 even though it has been forming stars since not more than about 0.5 Gyr before z = 2.390. Such a scenario is consistent with concurrent dynamical collapse and star formation in the compact radio galaxy.

  4. Digital Signal Processing for Large Radio Telescopes: The Challenge of Power Consumption and How To Solve It

    NASA Astrophysics Data System (ADS)

    D'Addario, Larry

    2014-04-01

    Radio astronomy is on the verge of a huge expansion of capabilities as we move toward the SKA era. This is happening in three ways simultaneously: building more collecting aperture; increasing field of view to support surveys, sometimes covering the entire sky at once; and increasing instantaneous bandwidth from 30% (original VLA) to 300%. All of these put increased demands on the signal processing needed to combine and analyze the signals so as to produce products that facilitate scientific interpretation. A straightforward scaling of what has previously been done leads to machines that are not only large and expensive, but that consume more power than can be provided within a reasonable telescope operating budget. For example, the largest correlator so far built is that of the ALMA telescope in Chile. It handles N=64 antennas at a bandwidth of B=8 GHz and consumes about 65 kW (correlation only). If the same technology were used to build a correlator for N=3000, B=1 GHz, and 100 simultaneous beams, as is desired in SKA Phase 2, it would use about 1.8 GW. At present rates, that power would cost more than $2 billion per year. That does not include power to drive the antennas nor for post-correlation processing. This paper discusses only the digital electronics of a large telescope, starting at the A-to-D converters and including filter banks, beam formers, and correlators. It is shown that their power consumption can be reduced to a small fraction of the total used by the telescope. We get some help from Moore's Law, but it is not nearly enough; two more things must be done. First, careful attention must be paid to the signal processing architecture so as to minimize power-wasting operations. It turns out that much more power is used to move data from place to place and to store and retrieve it in temporary buffers than for arithmetic operations. Minimizing power does not necessarily minimize construction cost, but it is likely to minimize life-cycle cost. Second

  5. The low-noise 115-GHz receiver on the Columbia-GISS 4-ft radio telescope

    NASA Technical Reports Server (NTRS)

    Cong, H.-I.; Kerr, A. R.; Mattauch, R. J.

    1979-01-01

    The superheterodyne millimeter-wave radiometer on the Columbia-GISS 4-ft telescope is described. This receiver uses a room-temperature Schottky diode mixer, with a resonant-ring filter as LO diplexer. The diplexer has low signal loss, efficient LO power coupling, and suppresses most of the LO noise at both sidebands. The receiver IF section has a parametric amplifier as its first stage with sufficient gain to overcome the second-stage amplifier noise. A broad-banded quarter-wave impedance transformer minimizes the mismatch between mixer and paramp. At 115 GHz, the SSB receiver noise temperature is 860 K, which is believed to be the lowest figure so far reported for a room-temperature receiver at this frequency.

  6. Computer-aided design of reflector antennas - The Green Bank Radio Telescope

    NASA Astrophysics Data System (ADS)

    Terada, Marco A. B.; Stutzman, Warren L.

    1998-03-01

    This paper presents an evaluation of the electrical performance of the Green Bank Telescope (GBT) reflector antenna, operating as single- and dual-offset configurations, as well as a general overview of the GBT system. The GBT dual-offset Gregorian configuration is designed for low cross polarization (XPOL) using the dual-offset reflector antenna (DORA) synthesis package code. The procedure implemented in DORA to upgrade an existing main reflector to a low cross-polarized dual-offset Gregorian reflector antenna is also described. All computed patterns were obtained with the parabolic reflector analysis code (PRAC) program, and with the commercial code GRASP7. The GBT radiation patterns and performance values indicate that low XPOL performance can be achieved with a dual-offset configuration, provided that a low XPOL feed is used. The GBT configuration is employed as a case example for the aforementioned procedure.

  7. Selected determinants of acceleration in the 100m sprint.

    PubMed

    Maćkała, Krzysztof; Fostiak, Marek; Kowalski, Kacper

    2015-03-29

    The goal of this study was to examine the relationship between kinematics, motor abilities, anthropometric characteristics, and the initial (10 m) and secondary (30 m) acceleration phases of the 100 m sprint among athletes of different sprinting performances. Eleven competitive male sprinters (10.96 s ± 0.36 for 100 with 10.50 s fastest time) and 11 active students (12.20 s ± 0.39 for 100 m with 11.80 s fastest time) volunteered to participate in this study. Sprinting performance (10 m, 30 m, and 100 m from the block start), strength (back squat, back extension), and jumping ability (standing long jump, standing five-jumps, and standing ten-jumps) were tested. An independent t-test for establishing differences between two groups of athletes was used. The Spearman ranking correlation coefficient was computed to verify the association between variables. Additionally, the Ward method of hierarchical cluster analysis was applied. The recorded times of the 10 and 30 m indicated that the strongest correlations were found between a 1-repetition maximum back squat, a standing long jump, standing five jumps, standing ten jumps (r = 0.66, r = 0.72, r = 0.66, and r = 0.72), and speed in the 10 m sprint in competitive athletes. A strong correlation was also found between a 1-repetition maximum back squat and a standing long jump, standing five jumps, and standing ten jumps (r = 0.88, r = 0.87 and r = 0.85), but again only for sprinters. The most important factor for differences in maximum speed development during both the initial and secondary acceleration phase among the two sub-groups was the stride frequency (p<0.01).

  8. Selected Determinants of Acceleration in the 100m Sprint

    PubMed Central

    Maćkała, Krzysztof; Fostiak, Marek; Kowalski, Kacper

    2015-01-01

    The goal of this study was to examine the relationship between kinematics, motor abilities, anthropometric characteristics, and the initial (10 m) and secondary (30 m) acceleration phases of the 100 m sprint among athletes of different sprinting performances. Eleven competitive male sprinters (10.96 s ± 0.36 for 100 with 10.50 s fastest time) and 11 active students (12.20 s ± 0.39 for 100 m with 11.80 s fastest time) volunteered to participate in this study. Sprinting performance (10 m, 30 m, and 100 m from the block start), strength (back squat, back extension), and jumping ability (standing long jump, standing five-jumps, and standing ten-jumps) were tested. An independent t-test for establishing differences between two groups of athletes was used. The Spearman ranking correlation coefficient was computed to verify the association between variables. Additionally, the Ward method of hierarchical cluster analysis was applied. The recorded times of the 10 and 30 m indicated that the strongest correlations were found between a 1-repetition maximum back squat, a standing long jump, standing five jumps, standing ten jumps (r = 0.66, r = 0.72, r = 0.66, and r = 0.72), and speed in the 10 m sprint in competitive athletes. A strong correlation was also found between a 1-repetition maximum back squat and a standing long jump, standing five jumps, and standing ten jumps (r = 0.88, r = 0.87 and r = 0.85), but again only for sprinters. The most important factor for differences in maximum speed development during both the initial and secondary acceleration phase among the two sub-groups was the stride frequency (p<0.01). PMID:25964817

  9. Selected determinants of acceleration in the 100m sprint.

    PubMed

    Maćkała, Krzysztof; Fostiak, Marek; Kowalski, Kacper

    2015-03-29

    The goal of this study was to examine the relationship between kinematics, motor abilities, anthropometric characteristics, and the initial (10 m) and secondary (30 m) acceleration phases of the 100 m sprint among athletes of different sprinting performances. Eleven competitive male sprinters (10.96 s ± 0.36 for 100 with 10.50 s fastest time) and 11 active students (12.20 s ± 0.39 for 100 m with 11.80 s fastest time) volunteered to participate in this study. Sprinting performance (10 m, 30 m, and 100 m from the block start), strength (back squat, back extension), and jumping ability (standing long jump, standing five-jumps, and standing ten-jumps) were tested. An independent t-test for establishing differences between two groups of athletes was used. The Spearman ranking correlation coefficient was computed to verify the association between variables. Additionally, the Ward method of hierarchical cluster analysis was applied. The recorded times of the 10 and 30 m indicated that the strongest correlations were found between a 1-repetition maximum back squat, a standing long jump, standing five jumps, standing ten jumps (r = 0.66, r = 0.72, r = 0.66, and r = 0.72), and speed in the 10 m sprint in competitive athletes. A strong correlation was also found between a 1-repetition maximum back squat and a standing long jump, standing five jumps, and standing ten jumps (r = 0.88, r = 0.87 and r = 0.85), but again only for sprinters. The most important factor for differences in maximum speed development during both the initial and secondary acceleration phase among the two sub-groups was the stride frequency (p<0.01). PMID:25964817

  10. LQG controller design using GUI: application to antennas and radio-telescopes

    PubMed

    Maneri; Gawronski

    2000-01-01

    The Linear Quadratic Gaussian (LQG) algorithm has been used to control the JPL's beam wave-guide, and 70-m antennas. This algorithm significantly improves tracking precision in a wind disturbed environment. Based on this algorithm and the implementation experience a Matlab based Graphical User Interface (GUI) was developed to design the LQG controllers applicable to antennas and radiotelescopes. The GUI is described in this paper. It consists of two parts the basic LQG design and the fine-tuning of the basic design using a constrained optimization algorithm. The presented GUI was developed to simplify the design process, to make the design process user-friendly, and to enable design of an LQG controller for one with a limited control engineering background. The user is asked to manipulate the GUI sliders and radio buttons to watch the antenna performance. Simple rules are given at the GUI display.

  11. Radio continuum observations of local star-forming galaxies using the Caltech Continuum Backend on the green bank telescope

    SciTech Connect

    Rabidoux, Katie; Pisano, D. J.; Kepley, Amanda A.; Johnson, Kelsey E.; Balser, Dana S.

    2014-01-01

    We observed radio continuum emission in 27 local (D < 70 Mpc) star-forming galaxies with the Robert C. Byrd Green Bank Telescope between 26 GHz and 40 GHz using the Caltech Continuum Backend. We obtained detections for 22 of these galaxies at all four sub-bands and four more marginal detections by taking the average flux across the entire bandwidth. This is the first detection (full or marginal) at these frequencies for 22 of these galaxies. We fit spectral energy distributions (SEDs) for all of the four sub-band detections. For 14 of the galaxies, SEDs were best fit by a combination of thermal free-free and nonthermal synchrotron components. Eight galaxies with four sub-band detections had steep spectra that were only fit by a single nonthermal component. Using these fits, we calculated supernova rates, total number of equivalent O stars, and star formation rates within each ∼23'' beam. For unresolved galaxies, these physical properties characterize the galaxies' recent star formation on a global scale. We confirm that the radio-far-infrared correlation holds for the unresolved galaxies' total 33 GHz flux regardless of their thermal fractions, though the scatter on this correlation is larger than that at 1.4 GHz. In addition, we found that for the unresolved galaxies, there is an inverse relationship between the ratio of 33 GHz flux to total far-infrared flux and the steepness of the galaxy's spectral index between 1.4 GHz and 33 GHz. This relationship could be an indicator of the timescale of the observed episode of star formation.

  12. The Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Prestage, R. M.; Constantikes, K. T.; Hunter, T. R.; King, L. J.; Lacasse, R. J.; Lockman, F. J.; Norrod, R. D.

    2009-08-01

    The Robert C. Byrd Green Bank Telescope of the National Radio Astronomy Observatory is the world's premiere single-dish radio telescope operating at centimeter to long millimeter wavelengths. This paper describes the history, construction, and main technical features of the telescope.

  13. Power-efficient ultra wideband LNAs for the world's largest radio telescope

    NASA Astrophysics Data System (ADS)

    Panahi, M.; Bhaumik, S.; George, D.

    2014-12-01

    This paper reports two Low Noise Amplifiers (LNA) for Aperture Array system of the international Square Kilometre Array (SKA) project. LNA design for SKA is a step change in traditional LNA design approach for radio astronomy applications as the defining aspects of performance are low noise along with low power consumption and adequate gain. The LNAs are designed, fabricated and characterised for frequency range of 20 -1000 MHz. One LNA has single ended input to single ended output configuration (LNA1) while the other LNA has balanced input to single ended output (LNA2). The S-parameter, noise figure (NF) and large signal response of the LNAs are measured at room temperature. Both LNAs show flat gain of higher than 30 dB over specified frequency range. Average NF values of LNA1 and LNA2 are 0.55 dB and 0.75 dB respectively. Mixed mode S-parameter response based on theoretical analysis of differential configuration is presented. The LNAs have exceptionally low power consumption of less than 25 mW; 20 times lower than the other reported LNAs available for the SKA and also covering complete frequency band with less than 1 dB NF. Therefore implication of these LNAs is a significant step forward as the projected number of LNAs required for the lower frequency band of SKA Aperture Array system is 5,600,000 (Dewdney et al., Proc. IEEE 97(8), 1482-1496, 2009; Faulkner et al. 2010).

  14. Design of broadband antenna elements for a low-frequency radio telescope using Pareto genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Kerkhoff, A.; Ling, H.

    2009-12-01

    We apply Pareto genetic algorithm (GA) optimization to the design of antenna elements for use in the Long Wavelength Array (LWA), a large, low-frequency radio telescope currently under development. By manipulating antenna geometry, the Pareto GA simultaneously optimizes the received Galactic background or “sky” noise level and radiation patterns of the antenna over all frequencies. Geometrical constraints are handled explicitly in the GA in order to guarantee the realizability, and to impart control over the monetary cost of the generated designs. The antenna elements considered are broadband planar dipoles arranged horizontally over the ground. It is demonstrated that the Pareto GA approach generates a set of designs, which exhibit a wide range of trade-offs between the two design objectives, and satisfy all constraints. Multiple GA executions are performed to determine how antenna performance trade-offs are affected by different geometrical constraint values, feed impedance values, radiating element shapes and orientations, and ground conditions. Two different planar dipole antenna designs are constructed, and antenna input impedance and sky noise drift scan measurements are performed to validate the results of the GA.

  15. Study of mutual occultation phenomena of the Galilean satellites at radio wavelengths

    NASA Astrophysics Data System (ADS)

    Pluchino, S.; Salerno, E.; Pupillo, G.; Schillirò, F.; Kraus, A.; Mack, K.-H.

    2010-01-01

    We present preliminary results for our study of mutual phenomena of the Galilean satellites performed at radio wavelengths with the Medicina and Noto antennas of the Istituto di Radioastronomia - INAF, and with the Effelsberg 100-m radio telescope of the Max-Planck-Institute for Radioastronomy, Bonn. Measurements of the radio flux density variation during the mutual occultations of Io by Europa and Ganymede were carried out during the PHEMU09 campaign at 22 GHz and 43 GHz. Flux density variations observed at radio wavelengths are consistent with the typical optical patterns measured when partial occultations occur.

  16. Calibrating short-timescale tropospheric phase fluctuations seen by a radio telescope: Limits from subreflector and Cassegrain feed ring radiometer placement

    NASA Astrophysics Data System (ADS)

    Linfield, Roger

    2002-10-01

    Water vapor radiometers (WVRs) measure tropospheric brightness temperatures and use those measurements to infer path delay. Calibration of short-timescale phase fluctuations at a radio telescope requires that the WVR and radio telescope sample a similar volume of the troposphere. Using a statistical (Kolmogorov frozen flow) model of tropospheric fluctuations, the short-timescale calibration capability of two WVR configurations has been quantified. The first configuration is a WVR mounted, with its own antenna, on the back side of the main radio telescope subreflector, giving a conical beam that is coaxial with the main cylindrical near-field beam of the large telescope. The second configuration uses a Cassegrain feed ring, with the WVR and radio astronomy feeds at different positions on the ring. This second configuration gives a cylindrical calibration near-field beam, offset in angle to the main cylindrical beam. An important application of short-timescale phase calibration is improving the coherence of high-frequency interferometric observations. For two cases of current/near future interest (86 GHz very long baseline interferometry with the Very Long Baseline Array; 350 GHz observations with the Atacama Large Millimeter Array, ALMA), useful calibration could be achieved with either geometry (coaxial conical beam or offset cylindrical beam). For a coaxial conical beam, a 2° WVR beam width would allow significant coherence improvement, but a beam width <=1° (full width at half maximum) is needed for optimum performance. For an offset cylindrical beam, the desired angular offset (on the sky) is <=1° for 43 GHz Very Large Array observations, or <=0.3° for 350 GHz ALMA observations.

  17. Practical Limits in the Sensitivity-Linearity Trade-off for Radio Telescope Front Ends in the HF and VHF-low Bands

    NASA Astrophysics Data System (ADS)

    Tillman, R. H.; Ellingson, S. W.; Brendler, J.

    2016-03-01

    Radio telescope front ends must have simultaneously low noise and sufficiently-high linearity to accommodate interfering signals. Typically these are opposing design goals. For modern radio telescopes operating in the HF (3-30MHz) and VHF-low (30-88MHz) bands, the problem is more nuanced in that front end noise temperature may be a relatively small component of the system temperature, and increased linearity may be required due to the particular interference problems associated with this spectrum. In this paper, we present an analysis of the sensitivity-linearity trade-off at these frequencies, applicable to existing commercially-available monolithic microwave integrated circuit (MMIC) amplifiers in single-ended, differential, and parallelized configurations. This analysis and associated findings should be useful in the design and upgrade of front ends for low frequency radio telescopes. The analysis is demonstrated explicitly for one of the better-performing amplifiers encountered in this study, the Mini-Circuits PGA-103, and is confirmed by hardware measurements. We also present a design based on the Mini-Circuits HELA-10 amplifier, which is better-suited for applications where linearity is a primary concern.

  18. Multifrequency Analysis of Intraday Variability in Quasars and BL Lacs II: First results from the Effelsberg 100-m radiotelescope.

    NASA Astrophysics Data System (ADS)

    Cimò, G.; Fuhmann, L.; Krichbaum, T.; Kraus, A.; Witzel, A.

    Variability of flat-spectrum quasars on timescales of weeks to years is a useful instrument to study the inner regions of these objects. Variability on shorter timescales, less than one day (Intraday Variability, IDV), was discovered in the middle of the eighties (Witzel et al. 1986, Heeschen et al. 1987). It was found (Quirrenbach et al. 1992) that about 30% of compact flat-spectrum objects show such intraday variability (IDV). The observed rapid variations imply, via the light travel time argument, a very small source size and a very high apparent brightness temperature (up to 1021K, if we consider this variations source intrinsic). In order to explain the apparent violation of the inverse-Compton limit three different scenarios have been proposed: refractive interstellar scattering, source intrinsic processes and an intrinsic violation of this limit. The sizes of intraday variable sources at cm-wavelength are typically smaller than the scattering size set by the ISM in our galaxy, hence IDV sources should show refractive scattering effects (e.g.. 0917+62: Rickett et al. 1995). We present total intensity and polarization data obtained with the Effelsberg 100-m radiotelescope at 2.8, 6 and 11cm during a broad band observing campaign (involving numerous other observatories around the world; see the Fuhrmann's contribution about Westerbork data) carried out in March 2000. We briefly describe the observations and the data reduction procedure pointing on the analysis of the results by presenting structure functions and power spectra from these data. Additionally we show a first comparison of the Effelsberg observations with the data at 3mm coming from Pico Veleta (30m telescope) and optical measurements carried out with the Calar Alto 2.2m telescope, which were also involved in this campaign. Broad band correlations could help to discriminate among the causes of the IDV phenomenon. In fact at mm-wavelength the variability should be free from interstellar scattering

  19. Z45: A new 45-GHz band dual-polarization HEMT receiver for the NRO 45-m radio telescope

    NASA Astrophysics Data System (ADS)

    Nakamura, Fumitaka; Ogawa, Hideo; Yonekura, Yoshinori; Kimura, Kimihiko; Okada, Nozomi; Kozu, Minato; Hasegawa, Yutaka; Tokuda, Kazuki; Ochiai, Tetsu; Mizuno, Izumi; Dobashi, Kazuhito; Shimoikura, Tomomi; Kameno, Seiji; Taniguchi, Kotomi; Shinnaga, Hiroko; Takano, Shuro; Kawabe, Ryohei; Nakajima, Taku; Iono, Daisuke; Kuno, Nario; Onishi, Toshikazu; Momose, Munetake; Yamamoto, Satoshi

    2015-12-01

    We developed a dual-linear-polarization HEMT (High Electron Mobility Transistor) amplifier receiver system of the 45-GHz band (hereafter Z45), and installed it in the Nobeyama 45-m radio telescope. The receiver system is designed to conduct polarization observations by taking the cross-correlation of two linearly polarized components, from which we process full Stokes spectroscopy. We aim to measure the magnetic field strength through the Zeeman effect of the emission line of CCS (JN = 43-32) toward pre-protostellar cores. A linear-polarization receiver system has a smaller contribution of instrumental polarization components to the Stokes V spectra than that of the circular polarization system, so that it is easier to obtain the Stokes V spectra. The receiver has an RF frequency of 42-46 GHz and an intermediate frequency (IF) band of 4-8 GHz. The typical noise temperature is about 50 K, and the system noise temperature ranges from 100 to 150 K over the frequency of 42-46 GHz. The receiver system is connected to two spectrometers, SAM45 and PolariS. SAM45 is a highly flexible FX-type digital spectrometer with a finest frequency resolution of 3.81 kHz. PolariS is a newly developed digital spectrometer with a finest frequency resolution of 60 Hz, and which has a capability to process the full-Stokes spectroscopy. The half-power beam width (HPBW) was measured to be 37″ at 43 GHz. The main beam efficiency of the Gaussian main beam was derived to be 0.72 at 43 GHz. The SiO maser observations show that the beam pattern is reasonably round at about 10% of the peak intensity and the side-lobe level was less than 3% of the peak intensity. Finally, we present some examples of astronomical observations using Z45.

  20. Coordinated observations of PHEMU at radio wavelengths.

    NASA Astrophysics Data System (ADS)

    Pluchino, S.; Schillirò, F.; Salerno, E.; Pupillo, G.; Kraus, A.; Mack, K.-H.

    We present preliminary results for our study of mutual phenomena of the Galilean satellites performed at radio wavelengths with the Medicina and Noto antennas of the Istituto di Radioastronomia \\textendash{} INAF, and with the Effelsberg 100-m radio telescope of the Max-Planck-Institute for Radioastronomy. Measurements of the radio flux density variation occurred during the mutual occultations of Io by Europa and Ganymede were carried out during the PHEMU09 campaign at K- and Q-band. Flux density variations observed for the first time at radio wavelengths are consistent with the typical optical patterns measured when partial occultations occurred. The flux density drops indicate a non-linear dependence with the percentage of overlapped area.

  1. Research Experience for Teachers at NRAO-Green Bank: Calibration of Data from the Green Bank Telescope and Classroom Activities in Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Johnson, C. H.; Maddalena, R. J.

    2002-12-01

    The NSF-funded "Research Experience for Teachers" project provides teachers an opportunity to work on a current scientific or engineering research project. This paper will present the results of research conducted with the Robert C. Byrd Green Bank Telescope (GBT) as well as classroom activities that will use GBT data. In order to determine the accuracy of the calibration of receivers on cm-wave radio telescopes, engineers must periodically determine the equivalent temperature of a receiver's calibration noise diode. The traditional methods utilize hot-cold loads and usually achieve an accuracy of no better than 5%, have a very coarse frequency resolution, and require days of labor. Using observations with the GBT of standard astronomical flux calibrators, we measured the noise diode temperatures for four receivers that cover 1 to 10 GHz. By comparing the detected power from the calibrators to that generated by the noise diodes we were able to determine the temperature of the noise diodes to an accuracy of 1% with very good frequency resolution (1 MHz). The astronomically determined values agree, with few exceptions, to the less accurate values generated by the receiver engineer. In contrast to the methods employed by engineers, the astronomical determinations took only a few hours. Using data collected from the GBT and the NRAO 140-foot telescope, high-school students at Breck School in Golden Valley, MN will use the Hands-On Universe (HOU) software to analyze fits files containing data from a 100 square-degree region of the Orion Nebula. Instead of always relying on optical images from personal observations or the HOU groups at Lawrence Hall of Science or Yerkes, students can now use radio images. Comparing radio images with those derived at optical wavelengths should prove enlightening for students, many of whom have misconceptions concerning radio astronomy.

  2. Discovery of Pulsed Gamma Rays from the Young Radio Pulsar PSR J1028-5819 with the Fermi Large Area Telescope

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, Guido; Baring, Matthew G.; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, Thompson H.; Caliandro, G.A.; /more authors..

    2009-05-15

    Radio pulsar PSR J1028-5819 was recently discovered in a high-frequency search (at 3.1 GHz) in the error circle of the Energetic Gamma-Ray Experiment Telescope (EGRET) source 3EG J1027-5817. The spin-down power of this young pulsar is great enough to make it very likely the counterpart for the EGRET source. We report here the discovery of {gamma}-ray pulsations from PSR J1028-5819 in early observations by the Large Area Telescope (LAT) on the Fermi Gamma-Ray Space Telescope. The {gamma}-ray light curve shows two sharp peaks having phase separation of 0.460 {+-} 0.004, trailing the very narrow radio pulse by 0.200 {+-} 0.003 in phase, very similar to that of other known {gamma}-ray pulsars. The measured {gamma}-ray flux gives an efficiency for the pulsar of {approx}10-20% (for outer magnetosphere beam models). No evidence of a surrounding pulsar wind nebula is seen in the current Fermi data but limits on associated emission are weak because the source lies in a crowded region with high background emission. However, the improved angular resolution afforded by the LAT enables the disentanglement of the previous COS-B and EGRET source detections into at least two distinct sources, one of which is now identified as PSR J1028-5819.

  3. Measurements of an Antenna Surface for a Millimeter-Wave Space Radio Telescope. II. Metal Mesh Surface for Large Deployable Reflector

    NASA Astrophysics Data System (ADS)

    Kamegai, Kazuhisa; Tsuboi, Masato

    2013-02-01

    Large deployable antennas with a mesh surface woven by fine metal wires are an important technology for communications satellites and space radio telescopes. However, it is difficult to make metal mesh surfaces with sufficient radio-frequency (RF) performance for frequencies higher than millimeter waves. In this paper, we present the RF performance of metal mesh surfaces at 43 GHz. For this purpose, we developed an apparatus to measure the reflection coefficient, transmission coefficient, and radiative coefficient of the mesh surface. The reflection coefficient increases as a function of the metal mesh surface tension, whereas the radiative coefficient decreases. The anisotropic aspects of the reflection coefficient and the radiative coefficient are also clearly seen. They depend on the front and back sides of the metal mesh surface and the rotation angle. The transmission coefficient was measured to be almost constant. The measured radiative coefficients and transmission coefficients would cause significant degradation of the system noise temperature. In addition, we carried out an astronomical observation of a well-known SiO maser source, R Cas, by using a metal mesh mirror on the NRO 45-m radio telescope Coudé system. The metal mesh mirror considerably increases the system noise temperature, and slightly decreases the peak antenna temperature. These results are consistent with laboratory measurements.

  4. Construction Milestone Announced on Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    2000-04-01

    The National Radio Astronomy Observatory announces completion of a major construction milestone on the world's largest fully steerable radio telescope - the National Science Foundation's Green Bank Telescope (GBT). The last of 2,004 aluminum surface panels was recently installed on the GBT's two-acre (100 m x 110 m) collecting dish. The telescope is located at NRAO's Green Bank site, in rural Pocahontas County, West Virginia. The GBT will be used to study everything from the formation of galaxies in the early universe, to the chemical make-up of the dust and gas inside galaxies and in the voids that separate them, to the birth processes of stars. In conjunction with other instruments, it will help make highly accurate radar maps of some familiar objects in our own solar system. The GBT is an engineering marvel. At 485 feet tall, it is comparable in height to the Washington Monument. It weighs 16 million pounds, yet by swiveling the dish in both azimuth and elevation, it can be pointed to any point in the sky with exquisite accuracy. Additionally, the telescope's two-acre collecting dish has many novel features. Most radio telescopes in use today use receivers suspended above the dish by four struts. These struts block some of the surface of the dish, scattering some of the incoming radio waves from celestial objects under study. The GBT's offset feedarm has no struts to block incoming radio waves. The GBT also boasts an active surface. The surface of the dish is composed of 2,004 panels. On the underside of the dish, actuators are located at each corner (i.e., intersection of four panels). These actuators are motors that move the surface panels up and down, keeping the (paraboloid) shape of the dish precisely adjusted, no matter what the tilt of the telescope. The combination of its unblocked aperture and active surface promise that the GBT will display extremely high sensitivity to faint radio signals. The GBT itself is not the only precious national resource in

  5. Giant Metrewave Radio Telescope observations of neutral atomic hydrogen gas in the COSMOS field at z ˜ 0.37

    NASA Astrophysics Data System (ADS)

    Rhee, Jonghwan; Lah, Philip; Chengalur, Jayaram N.; Briggs, Frank H.; Colless, Matthew

    2016-08-01

    We present the results of H I spectral stacking analysis of Giant Metrewave Radio Telescope (GMRT) observations targeting the Cosmological Evolution Survey (COSMOS) field. The GMRT data cube contains 474 field galaxies with redshifts known from the zCOSMOS-bright 10 k catalogue. Spectra for the galaxies are co-added and the stacked spectrum allows us to make a ˜3σ measurement of the average H I mass. Using this average H I mass, along with the integral optical B-band luminosity of the galaxies and the luminosity density of the COSMOS field, a volume normalization is applied to obtain the cosmic H I mass density (ΩH I). We find a cosmic H I mass density of ΩH I = (0.42 ± 0.16) × 10-3 at z ˜ 0.37, which is the highest redshift measurement of ΩH I ever made using H I spectral stacking. The value we obtained for ΩH I at z ˜ 0.37 is consistent with that measured from large blind 21-cm surveys at z = 0, as well as measurements from other H I stacking experiments at lower redshifts. Our measurement, in conjunction with earlier measurements, indicates that there has been no significant evolution of H I gas abundance over the last 4 Gyr. A weighted mean of ΩH I from all 21-cm measurements at redshifts z ≲ 0.4 gives ΩH I = (0.35 ± 0.01) × 10-3. The ΩH I measured (from H I 21-cm emission measurements) at z ≲ 0.4 is, however, approximately half that measured from damped Lyman-α absorption (DLA) systems at z ≳ 2. Deeper surveys with existing and upcoming instruments will be critical to understand the evolution of ΩH I in the redshift range intermediate between z ˜ 0.4 and the range probed by DLA observations.

  6. HI studies of extremely metal-deficient galaxies - II. Giant Metrewave Radio Telescope observations of SBS 1129+576

    NASA Astrophysics Data System (ADS)

    Ekta; Chengalur, Jayaram N.; Pustilnik, Simon A.

    2006-10-01

    We present Giant Metrewave Radio Telescope HI observations of an extremely metal-deficient galaxy SBS 1129+576. SBS 1129+576 has a weighted mean oxygen abundance of 12 + log (O/H) = 7.41 +/- 0.07, or 1/18 of the solar value. Our HI observations show that the galaxy is strongly interacting with a companion (projected separation ~27 kpc) galaxy, SBS 1129+577. HI emission from a third, smaller galaxy, SDSS J113227.68+572142.3, is also present in the data cube. We study the HI morphology and kinematics of this small group at angular resolutions ranging from ~40 to 8arcsec. The low-resolution map shows a bridge of emission connecting the two larger galaxies and a large one-armed spiral distortion of the disc of SBS 1129+577. We measure HI masses of ~4.2 × 108, ~2.7 × 109 and ~2.1 × 108Msolar for SBS 1129+576, SBS 1129+577 and the gas in the bridge, respectively. Assuming that most of the bridge gas originally came from SBS 1129+576, approximately one-third of its original gas mass has been stripped off. The third smaller galaxy has an HI mass of (MHI ~ 1.1 × 107Msolar) and does not show any sign of interaction with the other two galaxies. The higher-resolution maps show that SBS 1129+577 has a central bar and a ring surrounding the bar; there is also a hint of an integral-shaped warp in SBS 1129+576. All these features are very likely to have been induced by the tidal interaction. In both SBS 1129+576 and SBS 1129+577, there is, in general, a good correspondence between regions with high HI column density and those with ongoing star formation. The two brightest HII regions in SBS 1129+576 have (inclination-corrected) gas column densities of ~1.6 × 1021 and ~1.8 × 1021 atoms cm-2, respectively. The inclination-corrected HI column density near the HII regions in SBS 1129+577 is generally above ~2.0 × 1021 atoms cm-2. These values are close to the threshold density for star formation observed in other blue compact galaxies. In contrast to SBS 1129+576 and SBS 1129

  7. B And V Photometry Of A Inverted-spectrum And Flat-spectrum Radio Sources With The Rowan 0.4-meter Telescope

    NASA Astrophysics Data System (ADS)

    Guerra, Erick; Pultar, R.

    2010-05-01

    Several galaxies have been selected for an exploratory campaign with 0.4-meter telescope atop Science Hall at Rowan University. These galaxies exhibit inverted radio spectra on the basis of fluxes in the GB6 and VLA FIRST catalogs and have SDSS magnitudes in g-band less than 15.5. The results of V and R band photometry of theses galaxies are presented. Photometry from multiple nights will be examined to explore variability on the timescales of days or weeks. Targets in the sample include Markarian 668 and NGC 5635. These are the first results from an ongoing campaign to expand the function of the observatory atop Science Hall. The authors would like to acknowledge Ric and Jean Edelman for their gift that funded the 0.4-meter telescope.

  8. Innovative and Improved Efficiency on the Design of a control System SOftware for CBSS 6m Radio Telescope using LabView in Nigeria

    NASA Astrophysics Data System (ADS)

    EKEOMA Opara, Fidelis

    2015-08-01

    Software has been provided for controlling the antenna and selection of sources in a 6m radio telescope. In this work the most challenging aspect is the maintainance of the pointing accuracy of the final structure with pointing tolerance of about 0.0003 or 1 arcsecond. Using LabView, the voltage through the I/Q is read with a DAQ virtual instrument. The values are then calculated with the dish at its zero position, hence the control system is fully implemented and tested to work at full efficiency.

  9. OH radio observations of comets P/Brorsen-Metcalf (1989o), Okazaki-Levy-Rudenko (1989r), Aarseth-Brewington (1989a1), and Austin (1989c1) at the Nancay radio telescope

    NASA Technical Reports Server (NTRS)

    Bockelee-Morvan, D.; Crovisier, J.; Gerard, E.; Bourgois, G.

    1990-01-01

    The 1667 MHz and 1665 MHz transitions of the OH radical were recently monitored in several comets with the Nancay radio telescope: P/Brorsen-Metcalf (1989o) (August 4 to October 31, 1989), Okazaki-Levy-Rudenko (1989r) (October 3 to December 2, 1989), Aarseth-Brewington (1989a1) (December 8 to 30, 1989), and Austin (1989c1) (February 15 to June 14, 1990). Present gas expansion measurements obtained from the analysis of the line shapes are presented and the long term variations of the water production rate, as measured from the OH radio lines. On October 13, 1989, the occultation of a background source by comet Okazaki-Levy-Rudenko (1989r) was fortuitously observed. A preliminary report of this observation is given. Further analysis of the data is continuing.

  10. Simultaneous Observations of Giant Pulses from the Crab Pulsar, with the Murchison Widefield Array and Parkes Radio Telescope: Implications for the Giant Pulse Emission Mechanism.

    NASA Astrophysics Data System (ADS)

    Oronsaye, S. I.; Ord, S. M.; Bhat, N. D. R.; Tremblay, S. E.; McSweeney, S. J.; Tingay, S. J.; van Straten, W.; Jameson, A.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.

    2015-08-01

    We report on observations of giant pulses from the Crab pulsar performed simultaneously with the Parkes radio telescope and the incoherent combination of the Murchison Widefield Array (MWA) antenna tiles. The observations were performed over a duration of approximately one hour at a center frequency of 1382 MHz with 340 MHz bandwidth at Parkes, and at a center frequency of 193 MHz with 15 MHz bandwidth at the MWA. Our analysis has led to the detection of 55 giant pulses at the MWA and 2075 at Parkes above a threshold of 3.5σ and 6.5σ, respectively. We detected 51% of the MWA giant pulses at the Parkes radio telescope, with spectral indices in the range of -3.6\\gt α \\gt -4.9 ({S}ν \\propto {ν }α ). We present a Monte Carlo analysis supporting the conjecture that the giant pulse emission in the Crab is intrinsically broadband, the less than 100% correlation being due to the relative sensitivities of the two instruments and the width of the spectral index distribution. Our observations are consistent with the hypothesis that the spectral index of giant pulses is drawn from normal distribution of standard deviation 0.6, but with a mean that displays an evolution with frequency from -3.00 at 1382 MHz, to -2.85 at 192 MHz.

  11. The Beaming Structures of Jupiter’s Decametric Common S-bursts Observed from the LWA1, NDA, and URAN2 Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Imai, Masafumi; Lecacheux, Alain; Clarke, Tracy E.; Higgins, Charles A.; Panchenko, Mykhaylo; Dowell, Jayce; Imai, Kazumasa; Brazhenko, Anatolii I.; Frantsuzenko, Anatolii V.; Konovalenko, Alexandr A.

    2016-08-01

    On 2015 February 21, simultaneous observations of Jupiter's decametric radio emission between 10 and 33 MHz were carried out using three powerful low-frequency radio telescopes: the Long Wavelength Array Station One in the USA, the Nançay Decameter Array in France, and the URAN2 telescope in Ukraine. We measured the lag times of short-bursts (S-bursts) for 105 minutes of data over effective baselines of up to 8460 km by using cross-correlation analysis of the spectrograms from each instrument. Of particular interest is the measurement of the beaming thickness of S-bursts, testing if either flashlight- or beacon-like beaming is emanating from Jupiter. We find that the lag times for all pairs drift slightly as time elapses, in agreement with expectations from the flashlight-like beaming model. This leads to a new constraint of the minimum beaming thickness of 2.″66. Also, we find that most of the analyzed data abound with S-bursts, whose occurrence probability peaks at 17-18 MHz.

  12. The Beaming Structures of Jupiter’s Decametric Common S-bursts Observed from the LWA1, NDA, and URAN2 Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Imai, Masafumi; Lecacheux, Alain; Clarke, Tracy E.; Higgins, Charles A.; Panchenko, Mykhaylo; Dowell, Jayce; Imai, Kazumasa; Brazhenko, Anatolii I.; Frantsuzenko, Anatolii V.; Konovalenko, Alexandr A.

    2016-08-01

    On 2015 February 21, simultaneous observations of Jupiter's decametric radio emission between 10 and 33 MHz were carried out using three powerful low-frequency radio telescopes: the Long Wavelength Array Station One in the USA, the Nançay Decameter Array in France, and the URAN2 telescope in Ukraine. We measured the lag times of short-bursts (S-bursts) for 105 minutes of data over effective baselines of up to 8460 km by using cross-correlation analysis of the spectrograms from each instrument. Of particular interest is the measurement of the beaming thickness of S-bursts, testing if either flashlight- or beacon-like beaming is emanating from Jupiter. We find that the lag times for all pairs drift slightly as time elapses, in agreement with expectations from the flashlight-like beaming model. This leads to a new constraint of the minimum beaming thickness of 2.″66. Also, we find that most of the analyzed data abound with S-bursts, whose occurrence probability peaks at 17–18 MHz.

  13. Deep Hubble Space Telescope imaging of 53W044 - An S0 radio galaxy at z = 0.311

    NASA Technical Reports Server (NTRS)

    Keel, William C.; Windhorst, Rogier A.

    1993-01-01

    Images of the Wide Field Camera (WFC) and Faint-Object Camera (FOC) of the radio galaxy 53W044 are presented. The WFC images are used to examine the structure of the galaxy, and show evidence for a significant disk, on the basis of which 53W044 is classified as an S0. This radio galaxy is near the maximum radio power associated with sources in S0 host galaxies. The FOC image is combined with ground-based spectroscopy to study 53W044's stellar population, which appears normal for an E/S0 galaxy of modest luminosity. No evidence is found for a significant contribution from a nuclear blue-continuum source, and the stellar population is old with a continuum level at 2100 A, consistent with what is seen in nearby radio galaxies.

  14. Optical identifications of radio sources with accurate positions using the United Kingdom Schmidt Telescope (UKST) IIIa-J plates

    NASA Technical Reports Server (NTRS)

    Savage, A.

    1986-01-01

    Several programs are making use of UKST Sky Survey plates to identify southern radio sources. The fine-grain modern plates and accurate radio positions give a much improved identification rate. It seems that it will very soon be possible to determine whether or not there is a quasar redshift cut-off at z of about 4. There is an urgent need for more accurate fundamental reference star positions in the South.

  15. Hubble Space Telescope Near-infrared Snapshot Survey of 3CR Radio Source Counterparts. II. An Atlas and Inventory of the Host Galaxies, Mergers, and Companions

    NASA Astrophysics Data System (ADS)

    Floyd, David J. E.; Axon, David; Baum, Stefi; Capetti, Alessandro; Chiaberge, Marco; Macchetto, Duccio; Madrid, Juan; Miley, George; O'Dea, Christopher P.; Perlman, Eric; Quillen, Alice; Sparks, William; Tremblay, Grant

    2008-07-01

    We present the second part of an H-band (1.6 μm) "atlas" of z < 0.3 3CR radio galaxies, using the Hubble Space Telescope Near Infrared Camera and Multi-Object Spectrometer (HST NICMOS2). We present new imaging for 21 recently acquired sources and host galaxy modeling for the full sample of 101 (including 11 archival)—an 87% completion rate. Two different modeling techniques are applied, following those adopted by the galaxy morphology and the quasar host galaxy communities. Results are compared and found to be in excellent agreement, although the former breaks down in the case of sources with strong active galactic nuclei (AGNs). Companion sources are tabulated, and the presence of mergers, tidal features, dust disks, and jets are cataloged. The tables form a catalog for those interested in the structural and morphological dust-free host galaxy properties of the 3CR sample, and for comparison with morphological studies of quiescent galaxies and quasar host galaxies. Host galaxy masses are estimated and found to typically lie at around 2 × 1011 M⊙. In general, the population is found to be consistent with the local population of quiescent elliptical galaxies, but with a longer tail to low Sérsic index, mainly consisting of low-redshift (z < 0.1) and low-radio-power (FR I) sources. A few unusually disky FR II host galaxies are picked out for further discussion. Nearby external sources are identified in the majority of our images, many of which we argue are likely to be companion galaxies or merger remnants. The reduced NICMOS data are now publicly available from our Web site. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under NASA contract NAS5-26555.

  16. A K-band spectroscopic focal plane array for the Robert C. Byrd Green Bank radio telescope

    NASA Astrophysics Data System (ADS)

    Morgan, Matthew; White, Steve; Lockman, Jay; Bryerton, Eric; Saini, Kamaljeet; Norrod, Rorger; Simon, Bob; Srikanth, Sivasankaran; Anderson, Gary; Pisano, Daniel

    2008-08-01

    This paper presents the design and current status of a K-Band Focal Plane Array (KFPA) for the Green Bank Telescope (GBT). The prototype array will go online with 7 independent dual-polarized beams, but the design target is a fully-populated instrument with approximately 60 beams on the sky. This project presents a number of technical challenges, including the architecture of a cryostat capable of supporting 60 independent receivers, design of high- performance components that fit behind the aperture of a compact feedhorn, and stable transmission of the large-volume of receiver data from the telescope to a remote building for back-end processing.

  17. The Radio JOVE Project - Shoestring Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  18. A Giant Metrewave Radio Telescope/Chandra view of IRAS 09104+4109: a type 2 QSO in a cooling flow

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Ewan; Giacintucci, Simona; Babul, Arif; Raychaudhury, Somak; Venturi, Tiziana; Bildfell, Chris; Mahdavi, Andisheh; Oonk, J. B. R.; Murray, Norman; Hoekstra, Henk; Donahue, Megan

    2012-08-01

    IRAS 09104+4109 is a rare example of a dust enshrouded type 2 quasi-stellar object (QSO) in the centre of a cool-core galaxy cluster. Previous observations of this z = 0.44 system showed that, as well as powering the hyperluminous infrared emission of the cluster-central galaxy, the QSO is associated with a double-lobed radio source. However, the steep radio spectral index and misalignment between the jets and ionized optical emission suggested that the orientation of the QSO had recently changed. We use a combination of new, multiband Giant Metrewave Radio Telescope observations and archival radio data to confirm that the jets are no longer powered by the QSO, and estimate their age to be 120-160 Myr. This is in agreement with the ˜70-200 Myr age previously estimated for star formation in the galaxy. Previously unpublished Very Long Baseline Array data reveal a 200 pc scale double radio source in the galaxy core which is more closely aligned with the current QSO axis and may represent a more recent period of jet activity. These results suggest that the realignment of the QSO, the cessation of jet activity and the onset of rapid star formation may have been caused by a gas-rich galaxy merger. X-ray observations reveal a spiral structure in the intracluster medium (ICM) which suggests that the cluster is in the process of relaxation after a tidal encounter or merger with another system; such a merger could provide a mechanism for transporting a gas-rich galaxy into the cluster core without stripping its cold gas. A Chandra X-ray observation confirms the presence of cavities associated with the radio jets, and we estimate the energy required to inflate them to be ˜7.7 ×1060 erg. The mechanical power of the jets is sufficient to balance radiative cooling in the cluster, provided that they are efficiently coupled to the ICM. We find no evidence of direct radiative heating and conclude that the QSO either lacks the radiative luminosity to heat the ICM, or that it

  19. The Measurement and Analysis of System Noise Temperatures of the TM65m Radio Telescope at Low Frequency Bands1,2

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Qing; Yu, Lin-Feng; Zhao, Rong-Bing; Jiang, Dong-Rong; Lou, Fang-Xun; Lao, Bao-Qiang; Li, Bing; Dong, Jian; Fan, Qing-Yuan; Qian, Zhi-Han; Liu, Qing-Hui; Jiang, Yong-Bin

    2015-07-01

    At first, the receiving system of the Tianma 65m radio telescope (TM65m in brief) and its noise characteristics at the L, S, C, and X four frequency bands are described. Then, a few measuring methods of system noise temperature are discussed, and the major factors affecting the noise temperature measurement are analyzed, including the errors caused by the non-linearity, feed network insertion loss, mismatch, and so on. With the Y-factor method the noise temperature of the noise source calibrated in the laboratory is verified, indicating that its accuracy attains ∼0.2K. Finally, the system noise temperatures actually measured at the four frequency bands and an analysis on the result are given.

  20. The Radio/Gamma-Ray Connection in Active Galactic Nuclei in the Era of the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Angelakis, E.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Gehrels, N.; Hays, E.; MeEnery, J. E.; Scargle, J. D.; Thompson, D. J.

    2011-01-01

    We present a detailed statistical analysis of the correlation between radio and gamma-ray emission of the active galactic nuclei (AGNs) detected by Fermi during its first year of operation, with the largest data sets ever used for this purpose.We use both archival interferometric 8.4 GHz data (from the Very Large Array and ATCA, for the full sample of 599 sources) and concurrent single-dish 15 GHz measurements from the OwensValley RadioObservatory (OVRO, for a sub sample of 199 objects). Our unprecedentedly large sample permits us to assess with high accuracy the statistical significance of the correlation, using a surrogate data method designed to simultaneously account for common-distance bias and the effect of a limited dynamical range in the observed quantities. We find that the statistical significance of a positive correlation between the centimeter radio and the broadband (E > 100 MeV) gamma-ray energy flux is very high for the whole AGN sample, with a probability of <10(exp -7) for the correlation appearing by chance. Using the OVRO data, we find that concurrent data improve the significance of the correlation from 1.6 10(exp -6) to 9.0 10(exp -8). Our large sample size allows us to study the dependence of correlation strength and significance on specific source types and gamma-ray energy band. We find that the correlation is very significant (chance probability < 10(exp -7)) for both flat spectrum radio quasars and BL Lac objects separately; a dependence of the correlation strength on the considered gamma-ray energy band is also present, but additional data will be necessary to constrain its significance.

  1. THE RADIO/GAMMA-RAY CONNECTION IN ACTIVE GALACTIC NUCLEI IN THE ERA OF THE FERMI LARGE AREA TELESCOPE

    SciTech Connect

    Ackermann, M.; Ajello, M.; Allafort, A.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Angelakis, E.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Bastieri, D.; Bonamente, E.; Bouvier, A.; Brigida, M.; Bruel, P. E-mail: giroletti@ira.inaf.it

    2011-11-01

    We present a detailed statistical analysis of the correlation between radio and gamma-ray emission of the active galactic nuclei (AGNs) detected by Fermi during its first year of operation, with the largest data sets ever used for this purpose. We use both archival interferometric 8.4 GHz data (from the Very Large Array and ATCA, for the full sample of 599 sources) and concurrent single-dish 15 GHz measurements from the Owens Valley Radio Observatory (OVRO, for a sub sample of 199 objects). Our unprecedentedly large sample permits us to assess with high accuracy the statistical significance of the correlation, using a surrogate data method designed to simultaneously account for common-distance bias and the effect of a limited dynamical range in the observed quantities. We find that the statistical significance of a positive correlation between the centimeter radio and the broadband (E > 100 MeV) gamma-ray energy flux is very high for the whole AGN sample, with a probability of <10{sup -7} for the correlation appearing by chance. Using the OVRO data, we find that concurrent data improve the significance of the correlation from 1.6 x 10{sup -6} to 9.0 x 10{sup -8}. Our large sample size allows us to study the dependence of correlation strength and significance on specific source types and gamma-ray energy band. We find that the correlation is very significant (chance probability < 10{sup -7}) for both flat spectrum radio quasars and BL Lac objects separately; a dependence of the correlation strength on the considered gamma-ray energy band is also present, but additional data will be necessary to constrain its significance.

  2. Report on the ESO Workshop ''mm-wave VLBI with ALMA and Radio Telescopes around the World''

    NASA Astrophysics Data System (ADS)

    Falcke, H.; Laing, R.; Testi, L.; Zensus, A.

    2012-09-01

    Very long baseline interferometry at millimetre/submillimetre wavelengths (mm-VLBI) offers the highest achievable spatial resolution at any wavelength in astronomy and the inclusion of ALMA into a global network will bring unprecedented sensitivity. The workshop on mm-VLBI reviewed the broad range of science topics, from imaging the event horizon of the black hole at the centre of the Galaxy, through masers in the Milky Way and distant galaxies to jets in radio galaxies. Plans were laid to develop a science case and a European organisation to promote mm-VLBI including ALMA.

  3. A very low frequency radio astronomy observatory on the Moon

    NASA Technical Reports Server (NTRS)

    Douglas, James N.; Smith, Harlan J.

    1988-01-01

    Because of terrestrial ionospheric absorption, very little is known of the radio sky beyond 10 m wavelength. An extremely simple, low cost very low frequency radio telescope is proposed, consisting of a large array of short wires laid on the lunar surface, each wire equipped with an amplifier and a digitizer, and connected to a common computer. The telescope could do simultaneous multifrequency observations of much of the visible sky with high resolution in the 10 to 100 m wavelength range, and with lower resolution in the 100 to 1000 m range. It would explore structure and spectra of galactic and extragalactic point sources, objects, and clouds, and would produce detailed quasi-three-dimensional mapping of interstellar matter within several thousand parsecs of the Sun.

  4. A 4mm spectroscopic dual-beam receiver for the Robert C. Byrd green bank radio telescope

    NASA Astrophysics Data System (ADS)

    White, Steven; Frayer, David; Stennes, Mike; Simon, Robert; Watts, Galen; Norrod, Roger; Bryerton, Eric; Srikanth, Sivasankaran; Pospieszalski, Marian

    2012-09-01

    With a 100-meter aperture, and recent improvements to its surface accuracy and servo system upgrades, the Robert C. Byrd Green Bank Telescope is the most sensitive telescope operating at 90 GHz. A dual-feed heterodyne receiver is developed for observations at the lower frequency end of the 3-4mm atmospheric window (67 to 93 GHz). The science goals are primarily molecular spectroscopic studies of star formation and astrochemistry both internal and external to the Milky Way galaxy. Studies of the structural and physical properties of star-forming, cold-cloud cores will be revolutionized with molecular spectroscopy of the deuterium and other important species within the band. Essential for spectroscopy is the ability to remove slow gain and atmospheric variations. An optical table external to the cooled components rotates into the path of either beam an ambient temperature load, an offset mirror for viewing an internal cold load, or a quarter-wave plate that produces circular polarization for VLBI observations. A composite waveguide window comprised of HDPE, Zitex, and z-cut quartz provides a high-strength, low-loss medium for transmission of the signal to the cooled corrugated feed horn. An orthomode transducer separates the polarization components which are amplified by low noise HEMT amplifiers. Warm W-band MMIC amplifiers are required to compensate a negative gain slope and to reduce noise contributions from the down conversion to the GBT IF frequencies. Initial science results and receiver performance during commissioning observations will be presented along with details of the component design.

  5. Bistatic Sounding of High-Latitude Ionospheric Irregularities Using a Decameter EKB Radar and an UTR-2 Radio Telescope: First Results

    NASA Astrophysics Data System (ADS)

    Berngardt, O. I.; Kutelev, K. A.; Kurkin, V. I.; Grkovich, K. V.; Yampolsky, Yu. M.; Kashcheyev, A. S.; Kashcheyev, S. B.; Galushko, V. G.; Grigorieva, S. A.; Kusonsky, O. A.

    2015-11-01

    We present the first results of the joint Russian-Ukrainian experiments for recording of signals from the EKB radar of the Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences (Arti observatory of the Institute of Geophysics of the Ural Branch of the Russian Academy of Sciences, Sverdlovsk region, Russia) at a distance of over 1600 km by using a coherent receiving system and a high-gain phased array of the UTR-2 radio telescope (S.Ya. Braude Radioastronomical Observatory (RAO) of the Institute of Radio Astronomy of the Ukrainian National Academy of Sciences (IRA UNAS), Kharkov region, Ukraine). It is shown that two pulse sequences that are identical to the transmitted EKB radar signal, but arrive with different delays were observed at the reception point. The sequence which was received first corresponded to the direct-signal propagation along the great-circle arc. The second sequence was received with delays corresponding to a path length of 2800 to 3400 km and was the result of scattering of the transmitted radar signal by high-latitude ionospheric irregularities. The Doppler frequency shift of the scattered signal was range-dependent and varied from -3 to +4 Hz, which corresponded to the radial component of the ionospheric irregularity velocity from -43 to +58 m/s. To interpret the results of the experiments, we numerically simulated the signal propagation based on the actual ionospheric conditions at an appropriate time. Ionospheric characteristics were retrieved by the vertical ionospheric sounding technique, with the ionosonde located in close proximity to the EKB radar. Comparison between monostatic radar diagnostic results and bistatic sounding results has shown a good agreement of the retrieved parameters of the high-latitude ionospheric irregularities.

  6. A Giant Metrewave Radio Telescope search for associated H I 21 cm absorption in high-redshift flat-spectrum sources

    NASA Astrophysics Data System (ADS)

    Aditya, J. N. H. S.; Kanekar, Nissim; Kurapati, Sushma

    2016-02-01

    We report results from a Giant Metrewave Radio Telescope search for `associated' redshifted H I 21 cm absorption from 24 active galactic nuclei (AGNs), at 1.1 < z < 3.6, selected from the Caltech-Jodrell Bank Flat-spectrum (CJF) sample. 22 out of 23 sources with usable data showed no evidence of absorption, with typical 3σ optical depth detection limits of ≈0.01 at a velocity resolution of ≈30 km s-1. A single tentative absorption detection was obtained at z ≈ 3.530 towards TXS 0604+728. If confirmed, this would be the highest redshift at which H I 21 cm absorption has ever been detected. Including 29 CJF sources with searches for redshifted H I 21 cm absorption in the literature, mostly at z < 1, we construct a sample of 52 uniformly selected flat-spectrum sources. A Peto-Prentice two-sample test for censored data finds (at ≈3σ significance) that the strength of H I 21 cm absorption is weaker in the high-z sample than in the low-z sample; this is the first statistically significant evidence for redshift evolution in the strength of H I 21 cm absorption in a uniformly selected AGN sample. However, the two-sample test also finds that the H I 21 cm absorption strength is higher in AGNs with low ultraviolet or radio luminosities, at ≈3.4σ significance. The fact that the higher luminosity AGNs of the sample typically lie at high redshifts implies that it is currently not possible to break the degeneracy between AGN luminosity and redshift evolution as the primary cause of the low H I 21 cm opacities in high-redshift, high-luminosity AGNs.

  7. Ethnicity and spatiotemporal parameters of bilateral and unilateral transtibial amputees in a 100-m sprint.

    PubMed

    Hobara, Hiroaki; Hashizume, Satoru; Kobayashi, Yoshiyuki; Usami, Yuko; Mochimaru, Masaaki

    2016-01-01

    Similar to able-bodied sprinters, most of the medals for the 100-m sprint in past Paralympic Games and IPC Athletics World Championships were dominated by West African (WA) and Caucasian (CC) amputee sprinters, not Asian (AS) sprinters. Although these results indicate differences in sprint performance due to ethnicity, little is known about the ethnicity and spatiotemporal parameters of the 100-m sprint for amputee sprinters. The purpose of this study was to investigate the differences in the spatiotemporal parameters of WA, CC and AS sprinters with bilateral and unilateral transtibial amputations during a 100-m sprint. We analyzed 6 WA, 28 CC, and 10 AS amputee sprinters from publicly available Internet broadcasts. For each sprinter's run, the average speed, average step length, and step frequency were calculated by using the number of steps in conjunction with the official race time. No significant differences were found in the spatiotemporal parameters of the 100-m sprint for the WA and CC groups. On the other hand, the average speed of the AS group was significantly lower because of its shorter step length during the 100-m sprint. The results suggest that WA and CC sprinters would perform similarly during a 100-m sprint, but AS sprinters would not. PMID:27066362

  8. Ethnicity and spatiotemporal parameters of bilateral and unilateral transtibial amputees in a 100-m sprint.

    PubMed

    Hobara, Hiroaki; Hashizume, Satoru; Kobayashi, Yoshiyuki; Usami, Yuko; Mochimaru, Masaaki

    2016-01-01

    Similar to able-bodied sprinters, most of the medals for the 100-m sprint in past Paralympic Games and IPC Athletics World Championships were dominated by West African (WA) and Caucasian (CC) amputee sprinters, not Asian (AS) sprinters. Although these results indicate differences in sprint performance due to ethnicity, little is known about the ethnicity and spatiotemporal parameters of the 100-m sprint for amputee sprinters. The purpose of this study was to investigate the differences in the spatiotemporal parameters of WA, CC and AS sprinters with bilateral and unilateral transtibial amputations during a 100-m sprint. We analyzed 6 WA, 28 CC, and 10 AS amputee sprinters from publicly available Internet broadcasts. For each sprinter's run, the average speed, average step length, and step frequency were calculated by using the number of steps in conjunction with the official race time. No significant differences were found in the spatiotemporal parameters of the 100-m sprint for the WA and CC groups. On the other hand, the average speed of the AS group was significantly lower because of its shorter step length during the 100-m sprint. The results suggest that WA and CC sprinters would perform similarly during a 100-m sprint, but AS sprinters would not.

  9. A study of the strong pulses detected from PSR B0656+14 using the Urumqi 25-m radio telescope at 1540 MHz

    NASA Astrophysics Data System (ADS)

    Tao, Guo-Cun; Esamdin, Ali; Hu, Hui-Dong; Qian, Mao-Fei; Li, Jing; Wang, Na

    2012-12-01

    We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010. In 44 h of observational data, a total of 67 pulses with signal-to-noise ratios above a 5σ threshold were detected. The peak flux densities of these pulses are 58 to 194 times that of the average profile, and their pulse energies are 3 to 68 times that of the average pulse. These pulses are clustered around phases about 5° ahead of the peak of the average profile. Compared with the width of the average profile, they are relatively narrow, with the full widths at half-maximum ranging from 0.28° to 1.78°. The distribution of pulse-energies follows a lognormal distribution. These sporadic strong pulses detected from PSR B0656+14 have different characteristics from both typical giant pulses and its regular pulses.

  10. Learning radio astronomy by doing radio astronomy

    NASA Astrophysics Data System (ADS)

    Vaquerizo Gallego, J. A.

    2011-11-01

    PARTNeR (Proyecto Académico con el Radio Telescopio de NASA en Robledo, Academic Project with the NASA Radio Telescope at Robledo) is an educational program that allows high school and undergraduate students to control a 34 meter radio telescope and conduct radio astronomical observations via the internet. High-school teachers who join the project take a course to learn about the science of radio astronomy and how to use the antenna as an educational resource. Also, teachers are provided with learning activities they can do with their students and focused on the classroom implementation of the project within an interdisciplinary framework. PARTNeR provides students with firsthand experience in radio astronomy science. Thus, remote radio astronomical observations allow students to learn with a first rate scientific equipment the basics of radio astronomy research, aiming to arouse scientific careers and positive attitudes toward science. In this contribution we show the current observational programs and some recent results.

  11. Multi-epoch Measurements of the Galactic Center 6667 MHz) and the Blazar 0716+714 (1 & 3 MHz) taken from the Allen Telescope Array at Hat Creek Radio Observatory in 2013

    NASA Astrophysics Data System (ADS)

    Castellanos, Aaron; Harp, G.

    2014-01-01

    The Allen Telescope Array (ATA) is a 42 radio dish array located in Hat Creek, CA and is used to search for traces of Extraterrestrial Intelligence (SETI) and to study the interstellar medium. The ATA has taken multi-epoch measurements of the Galactic Center 6667 MHz) and the intraday variable Blazar 0716+714 (1 & 3MHz) and are imaged on 10 second timescales to search for intensity fluctuations on timescales 10s and beyond. We utilize software developed and focused on antenna system temperatures to minimize Radio Frequency Interference (RFI) in order to enhance calibration and signal variability. We will discuss potential radio bursts from the Galactic Center, possibly originating from the descent of the gas cloud G2 into the Galactic Center.

  12. Extragalactic Radio Sources

    ERIC Educational Resources Information Center

    Kellerman, Kenneth I.

    1973-01-01

    Discusses new problems arising from the growing observational data through radio telescope arrays, involving the origin of radio sources, apparent superluminal velocities, conversion of radio sources to relativistic particles, and the nature of compact opaque and extended transparent sources. New physics may be needed to answer these cosmological…

  13. The 26 December 2001 Solar Event Responsible for GLE63. I. Observations of a Major Long-Duration Flare with the Siberian Solar Radio Telescope

    NASA Astrophysics Data System (ADS)

    Grechnev, V. V.; Kochanov, A. A.

    2016-10-01

    Ground level enhancements (GLEs) of cosmic-ray intensity occur, on average, once a year. Because they are rare, studying the solar sources of GLEs is especially important to approach understanding their origin. The SOL2001-12-26 eruptive-flare event responsible for GLE63 seems to be challenging in some aspects. Deficient observations limited our understanding of it. Analysis of additional observations found for this event provided new results that shed light on the flare configuration and evolution. This article addresses the observations of this flare with the Siberian Solar Radio Telescope (SSRT). Taking advantage of its instrumental characteristics, we analyze the detailed SSRT observations of a major long-duration flare at 5.7 GHz without cleaning the images. The analysis confirms that the source of GLE63 was associated with an event in active region 9742 that comprised two flares. The first flare (04:30 - 05:03 UT) reached a GOES importance of about M1.6. Two microwave sources were observed, whose brightness temperatures at 5.7 GHz exceeded 10 MK. The main flare, up to an importance of M7.1, started at 05:04 UT and occurred in strong magnetic fields. The observed microwave sources reached a brightness temperature of about 250 MK. They were not static. After appearing on the weaker-field periphery of the active region, the microwave sources moved toward each other nearly along the magnetic neutral line, approaching the stronger-field core of the active region, and then moved away from the neutral line like expanding ribbons. These motions rule out an association of the non-thermal microwave sources with a single flaring loop.

  14. THE ALLEN TELESCOPE ARRAY TWENTY-CENTIMETER SURVEY-A 690 DEG{sup 2}, 12 EPOCH RADIO DATA SET. I. CATALOG AND LONG-DURATION TRANSIENT STATISTICS

    SciTech Connect

    Croft, Steve; Bower, Geoffrey C.; Backer, Don; Bauermeister, Amber; Blitz, Leo; Bock, Douglas; Cheng, Calvin; Dexter, Matt; Engargiola, Greg; Fields, Ed; Ackermann, Rob; Atkinson, Shannon; Backus, Peter; Bradford, Tucker; Davis, Mike; Dreher, John; Barott, William C.; Cork, Chris; Fleming, Matt; DeBoer, Dave

    2010-08-10

    We present the Allen Telescope Array Twenty-centimeter Survey (ATATS), a multi-epoch (12 visits), 690 deg{sup 2} radio image and catalog at 1.4 GHz. The survey is designed to detect rare, very bright transients as well as to verify the capabilities of the ATA to form large mosaics. The combined image using data from all 12 ATATS epochs has rms noise {sigma} = 3.94 mJy beam{sup -1} and dynamic range 180, with a circular beam of 150'' FWHM. It contains 4408 sources to a limiting sensitivity of 5{sigma} = 20 mJy beam{sup -1}. We compare the catalog generated from this 12 epoch combined image to the NRAO VLA Sky Survey (NVSS), a legacy survey at the same frequency, and find that we can measure source positions to better than {approx}20''. For sources above the ATATS completeness limit, the median flux density is 97% of the median value for matched NVSS sources, indicative of an accurate overall flux calibration. We examine the effects of source confusion due to the effects of differing resolution between ATATS and NVSS on our ability to compare flux densities. We detect no transients at flux densities greater than 40 mJy in comparison with NVSS and place a 2{sigma} upper limit of 0.004 deg{sup -2} on the transient rate for such sources. These results suggest that the {approx}>1 Jy transients reported by Matsumara et al. may not be true transients, but rather variable sources at their flux density threshold.

  15. Spatiotemporal Variables of Able-bodied and Amputee Sprinters in Men's 100-m Sprint.

    PubMed

    Hobara, H; Kobayashi, Y; Mochimaru, M

    2015-06-01

    The difference in world records set by able-bodied sprinters and amputee sprinters in the men's 100-m sprint is still approximately 1 s (as of 28 March 2014). Theoretically, forward velocity in a 100-m sprint is the product of step frequency and step length. The goal of this study was to examine the hypothesis that differences in the sprint performance of able-bodied and amputee sprinters would be due to a shorter step length rather than lower step frequency. Men's elite-level 100-m races with a total of 36 able-bodied, 25 unilateral and 17 bilateral amputee sprinters were analyzed from the publicly available internet broadcasts of 11 races. For each run of each sprinter, the average forward velocity, step frequency and step length over the whole 100-m distance were analyzed. The average forward velocity of able-bodied sprinters was faster than that of the other 2 groups, but there was no significant difference in average step frequency among the 3 groups. However, the average step length of able-bodied sprinters was significantly longer than that of the other 2 groups. These results suggest that the differences in sprint performance between 2 groups would be due to a shorter step length rather than lower step frequency.

  16. A 100 m/320 Gbps SDM FSO link with a doublet lens scheme

    NASA Astrophysics Data System (ADS)

    Li, Chung-Yi; Lu, Hai-Han; Lu, Ting-Chien; Wu, Chang-Jen; Chu, Chien-An; Lin, Hung-Hsien; Cheng, Ming-Te

    2016-07-01

    A 100 m/320 Gbps space-division-multiplexing (SDM) free-space optical (FSO) link with a doublet lens scheme is proposed and experimentally demonstrated. The transmission capacity of FSO links is increased significantly by the SDM topology, and the transmission distance of FSO links is greatly extended by the doublet lens scheme. An FSO link of eight channels over a 100 m free-space link with a total transmission rate of 320 Gbps (40 Gbps/λ  ×  8λ  =  320 Gbps) is achieved. With the assistance of a low noise amplifier (LNA) and clock/data recovery (CDR) at the receiving site, a good bit error rate (BER) performance and a clear eye diagram are obtained at 100 m/320 Gbps. The proposed 100 m/320 Gbps SDM FSO link is shown to be a notable option to provide the advantages of long transmission distances and high transmission rates for optical wireless communications.

  17. PARTNeR: Radio astromony for students

    NASA Astrophysics Data System (ADS)

    Blasco, C.; Vaquerizo, J. A.

    2008-06-01

    PARTNeR stands for Proyecto Academico con el Radiotelescopio de NASA en Robledo (the Academic Project with NASA's radio telescope at Robledo), and allows students to perform radio astronomy observations. High school and university students can access the PARTNeR radio telescope via the internet. The students can operate the antenna from their own school or university and perform radio astronomy observations.

  18. Radio Jove: Jupiter Radio Astronomy for Citizens

    NASA Astrophysics Data System (ADS)

    Higgins, Charles; Thieman, J. R.; Flagg, R.; Reyes, F. J.; Sky, J.; Greenman, W.; Brown, J.; Typinski, D.; Ashcraft, T.; Mount, A.

    2014-01-01

    Radio JOVE is a hands-on educational activity that brings the radio sounds of the Sun, Jupiter, the Milky Way Galaxy, and terrestrial radio noise to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with professional radio observatories in real-time over the Internet. Our website (http://radiojove.gsfc.nasa.gov) includes science information, construction manuals, observing guides, and education resources for teachers and students. Radio Jove is continually expanding its participants with over 1800 kits sold to more than 70 countries worldwide. Recently some of our most dedicated observers have upgraded their Radio Jove antennas to semi-professional observatories. We have spectrographs and wide band antennas, some with 8 MHz bandwidth and some with dual polarization capabilities. In an effort to add to the science literature, these observers are coordinating their efforts to pursue some basic questions about Jupiter’s radio emissions (radio source locations, spectral structure, long term changes, etc.). We can compare signal and ionosphere variations using the many Radio Jove observers at different locations. Observers are also working with members of the Long Wavelength Array Station 1 (LWA1) radio telescope to coordinate observations of Jupiter; Radio Jove is planning to make coordinated observations while the Juno Mission is active beginning in 2015. The Radio Jove program is overviewed, its hardware and software are highlighted, recent sample observations are shown, and we demonstrate that we are capable of real citizen science.

  19. The GBT precision telescope control system

    NASA Astrophysics Data System (ADS)

    Prestage, Richard M.; Constantikes, Kim T.; Balser, Dana S.; Condon, James J.

    2004-10-01

    The NRAO Robert C. Byrd Green Bank Telescope (GBT) is a 100m diameter advanced single dish radio telescope designed for a wide range of astronomical projects with special emphasis on precision imaging. Open-loop adjustments of the active surface, and real-time corrections to pointing and focus on the basis of structural temperatures already allow observations at frequencies up to 50GHz. Our ultimate goal is to extend the observing frequency limit up to 115GHz; this will require a two dimensional tracking error better than 1.3", and an rms surface accuracy better than 210μm. The Precision Telescope Control System project has two main components. One aspect is the continued deployment of appropriate metrology systems, including temperature sensors, inclinometers, laser rangefinders and other devices. An improved control system architecture will harness this measurement capability with the existing servo systems, to deliver the precision operation required. The second aspect is the execution of a series of experiments to identify, understand and correct the residual pointing and surface accuracy errors. These can have multiple causes, many of which depend on variable environmental conditions. A particularly novel approach is to solve simultaneously for gravitational, thermal and wind effects in the development of the telescope pointing and focus tracking models. Our precision temperature sensor system has already allowed us to compensate for thermal gradients in the antenna, which were previously responsible for the largest "non-repeatable" pointing and focus tracking errors. We are currently targetting the effects of wind as the next, currently uncompensated, source of error.

  20. Is it useful to assess annual effective doses that are less than 100 mSv?

    SciTech Connect

    Strom, Daniel J.; Cameron, John R.

    2002-03-07

    It is useful to assess annual effective doses less than 100 mSv. Beyond the''score-keeping'' needs of regulatory compliance, there are at least seven other valid reasons for performing personnel monitoring, many of which fall into the category of''no news is good news,'' or more aptly,''null news, as long as you can prove it, is good news.'' These are performance measures for contractual compliance, diagnosis of problems with radiation protection programs, health surveillance and occupational epidemiology, prevention of and support for litigation, demonstration of management commitment and safety, worker counseling, ensuring peace of mind. Furthermore, it is shown that there is very reasonable expectation that detriment may be associated with doses smaller than 100 mSv per year.

  1. Efficient Dual Head Nd:YAG 100mJ Oscillator for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Coyle, Donald B.; Stysley, Paul R.; Kay, Richard b.; Poulios, Demetrios

    2007-01-01

    A diode pumped, Nd:YAG laser producing 100 mJ Q-switched pulses and employing a dual-pump head scheme in an unstable resonator configuration is described. Each head contains a side pumped zig-zag slab and four 6-bar QCW 808 nm diodes arrays which are de-rated 23%. Denoting 'z' as the lasing axis, the pump directions were along the x-axis in one head and the y-axis in the other, producing a circularized thermal lens, more typical in laser rod-based cavities. The dual head design's effective thermal lens is now corrected with a proper HR mirror curvature selection. This laser has demonstrated over 100 mJ output with high optical efficiency (24%), good TEM(sub 00) beam quality, and high pointing stability.

  2. System for rapid detection and mapping of gas plumes on 100 m scales: examination of some technical and economic issues

    NASA Astrophysics Data System (ADS)

    Fischer, Marc L.; Drescher, Anushka C.; Gadgil, Ashok J.; Yost, Michael G.

    1995-05-01

    We consider the design of a system combining computed tomography and Fourier Transform Infrared Spectroscopy (CT/FTIR) to detect and map the concentration of multicontaminant gas plumes in ambient air over a 100 m square area. Several factors affecting the accuracy of the reconstructed map and the detection limits that can be achieved in the field are discussed. The estimated cost and capabilities of the system are compared with those of a more conventional gas monitoring system that might operate over a similar spatial extent. The paper includes a description of a proposed system that is designed to produce a map of multiple gaseous contaminants with a resolution of 12 m X 12 m in a time of approximately 10 minutes by sequentially measuring the contaminant concentrations along 48 intersecting beam paths and then reconstructing the map using a CT algorithm adapted to detect Gaussian plumes. The optical elements consist of an FTIR mounted on a steerable telescope platform, a second remote steerable mirror platform, and 32 fixed retro-reflectors.

  3. Modeling of Women's 100-M Dash World Record: Wind-Aided or Not?

    ERIC Educational Resources Information Center

    Hazelrigg, Conner; Waibel, Bryson; Baker, Blane

    2015-01-01

    On July 16, 1988, Florence Griffith Joyner (FGJ) shattered the women's 100-m dash world record (WR) with a time of 10.49 s, breaking the previous mark by an astonishing 0.27 s. By all accounts FGJ dominated the race that day, securing her place as the premiere female sprinter of that era, and possibly all time. In the aftermath of such an…

  4. Evaluation of the EFCOM SC-100M/120M/125M wireless underwater communicator

    NASA Astrophysics Data System (ADS)

    Middleton, J. R.

    1982-04-01

    In June 1981, the EFCOM SC-100M/120M/125M wireless communications system was evaluated in conjunction with the AGA DIVATOR 324 Full-Face Mask by the Navy Experimental Diving Unit. The purpose was to determine the systems suitability for U.S. Navy use with open-circuit Self-Contained Underwater Breathing Apparatus (SCUBA). The EFCOM system was evaluated for intelligibility, reliability and human engineering.

  5. The Influence of Different Hand Paddle Size on 100-m Front Crawl Kinematics

    PubMed Central

    López-Plaza, Daniel; Alacid, Fernando; López-Miñarro, Pedro A.; Muyor, José M.

    2012-01-01

    The purpose of this study was to determine the influence of different sizes of hand paddles on kinematic parameters during a 100 m freestyle swimming performance in elite swimmers. Nine elite swimmers (19.1 ± 1.9 years) completed three tests of 100 m without paddles, with small paddles (271.27 cm2) and with large paddles (332.67 cm2), respectively. One video camera was used to record the performance during the three trials. The mean swimming velocity, stroke rate and stroke length were measured in the central 10 meters of each 50 m length. The results showed that stroke length tended to increase significantly when wearing hand paddles (p < 0.05) during both the first and second 50 m sections whereas the increase in swimming velocity occurred only in the second 50 m (p < 0.05). Conversely, the stroke rate showed a slight decreasing trend with increasing paddle size. During the 100 m freestyle trial the stroke kinematics were changed significantly as a result of the increase in propelling surface size when hand paddles were worn. PMID:23486988

  6. Simultaneous radar and aircraft observations of mixed-phase cloud at the 100-m-scale

    NASA Astrophysics Data System (ADS)

    Field, P.; Hogan, R.; Brown, P.; Illingworth, A.; Choularton, T.; Kaye, P.; Hirst, E.; Greenaway, R.

    2003-04-01

    Determination of cloud phase is important for predicting the radiative impact of clouds. Previous work by some of the authors has shown that even the presence of thin (~100 m) supercooled liquid layers above and below ice cloud significantly increase the reflection of solar radiation to space. We present 100-m-scale in situ and simultaneous radar observations of mixed-phase clouds over the UK. Particle sphericity, as determined by the aircraft mounted Small Ice Detector, appears to be a good indication of phase in these types of cloud where any newly produced ice will quickly grow in highly ice supersaturated conditions into non-spherical particles. During 1-d aircraft transects the dominant phase of the cloud was determined in contiguous 100 m horizontal segments. The resulting structure reveals that mixed-phase clouds can exhibit alternating regions of ice and liquid of varying horizontal scale that may be the result of the 1-d transect of the aircraft intercepting undulating liquid layers or turbulent activity. High differential reflectivity signals measured by the radar can be indicative of the nearby presence of liquid water giving rise to highly ice saturated conditions conducive to the growth of pristine crystals with high axial ratios. Although this is the case for discrete cloud layers it is not always true within a deep frontal cloud.

  7. Data Assimilation of PROBA-V 100 m and 300 m.

    NASA Astrophysics Data System (ADS)

    Gilliams, S. J. B.; Kempeneers, P.

    2015-12-01

    One of the goals of the FP7 SIGMA projects is the extension of remote sensing time series to better monitor agricultural productivity at global scale. Extending these time series can be seen in differnt ways; on the one hand we are looking at the integration of different existing data sets with equal resolution e.g. SPOT-VGT and PROBA-V 1km resolution, or building new time series for Eta and Soil moisture. on the other hand we are also updating methods to extend existing time series with respect to their resolution and revisting frequency. The research presentend here will focus on the latter, focussing on the integration of PROBA-V 100 and 300m. The PROBA-V microsatellite is designed to offer a global coverage of land surfaces at four spectral bands at a spatial resolution of 300 m and 1 km with a daily revisit for latitudes 75°N to 56°S [1]. Due to the specific design, data can also be acquired at 100 m for a reduced swath, providing partial coverage (global coverage only every 5 days). This study proposes a data assimilation method that combines the 100 m data at the reduced swath with PROBA-V 300 m resolution data at the full swath. The resulting product is a synthetic product at 100 m spatial resolution, with a potential revisit time equal to the 300 m products (S10@300). Here, we concentrate on a ten day composite product (K10@100), to mitigate the effect of clouds. The goal of the proposed method is to produce continuous and cloud free time series of PROBA-V data at 100 m spatial resolution. The S10@300 and S10@100 ten day composits serve as input, with respective spatial resolutions of 300 m and 100 m. Whereas the S10@300 is obtained from all sensors onbaord the PROBA-V platform, the S10@100 is the product from the central viewing sensor only. Due to a combination of the reduced swath and potential cloud cover, the S10@100 is typically sparse (gaps). The data assimilation method follows the approach proposed in that is based on a Kalman filter. It is a

  8. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller

    1991-01-01

    The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.

  9. Normative Spatiotemporal Parameters During 100-m Sprints in Amputee Sprinters Using Running-Specific Prostheses.

    PubMed

    Hobara, Hiroaki; Potthast, Wolfgang; Müller, Ralf; Kobayashi, Yoshiyuki; Heldoorn, Thijs A; Mochimaru, Masaaki

    2016-02-01

    The aim of this study was to develop a normative sample of step frequency and step length during maximal sprinting in amputee sprinters. We analyzed elite-level 100-m races of 255 amputees and 93 able-bodied sprinters, both men and women, from publicly-available Internet broadcasts. For each sprinter's run, the average forward velocity, step frequency, and step length over the 100-m distance were analyzed by using the official record and number of steps in each race. The average forward velocity was greatest in able-bodied sprinters (10.04 ± 0.17 m/s), followed by bilateral transtibial (8.77 ± 0.27 m/s), unilateral transtibial (8.65 ± 0.30 m/s), and transfemoral amputee sprinters (7.65 ± 0.38 m/s) in men. Differences in velocity among 4 groups were associated with step length (able-bodied vs transtibial amputees) or both step frequency and step length (able-bodied vs transfemoral amputees). Although we also found that the velocity was greatest in able-bodied sprinters (9.10 ± 0.14 m/s), followed by unilateral transtibial (7.08 ± 0.26 m/s), bilateral transtibial (7.06 ± 0.48 m/s), and transfemoral amputee sprinters (5.92 ± 0.33 m/s) in women, the differences in the velocity among the groups were associated with both step frequency and step length. Current results suggest that spatiotemporal parameters during a 100-m race of amputee sprinters is varied by amputation levels and sex. PMID:26251966

  10. Normative Spatiotemporal Parameters During 100-m Sprints in Amputee Sprinters Using Running-Specific Prostheses.

    PubMed

    Hobara, Hiroaki; Potthast, Wolfgang; Müller, Ralf; Kobayashi, Yoshiyuki; Heldoorn, Thijs A; Mochimaru, Masaaki

    2016-02-01

    The aim of this study was to develop a normative sample of step frequency and step length during maximal sprinting in amputee sprinters. We analyzed elite-level 100-m races of 255 amputees and 93 able-bodied sprinters, both men and women, from publicly-available Internet broadcasts. For each sprinter's run, the average forward velocity, step frequency, and step length over the 100-m distance were analyzed by using the official record and number of steps in each race. The average forward velocity was greatest in able-bodied sprinters (10.04 ± 0.17 m/s), followed by bilateral transtibial (8.77 ± 0.27 m/s), unilateral transtibial (8.65 ± 0.30 m/s), and transfemoral amputee sprinters (7.65 ± 0.38 m/s) in men. Differences in velocity among 4 groups were associated with step length (able-bodied vs transtibial amputees) or both step frequency and step length (able-bodied vs transfemoral amputees). Although we also found that the velocity was greatest in able-bodied sprinters (9.10 ± 0.14 m/s), followed by unilateral transtibial (7.08 ± 0.26 m/s), bilateral transtibial (7.06 ± 0.48 m/s), and transfemoral amputee sprinters (5.92 ± 0.33 m/s) in women, the differences in the velocity among the groups were associated with both step frequency and step length. Current results suggest that spatiotemporal parameters during a 100-m race of amputee sprinters is varied by amputation levels and sex.

  11. The relationship between extension of the metatarsophalangeal joint and sprint time for 100 m Olympic athletes.

    PubMed

    Krell, Jason B; Stefanyshyn, Darren J

    2006-02-01

    Selected kinematic variables of the foot segments and the metatarsophalangeal (MTP) joint were investigated in relation to sprinting performance among 100 m sprint athletes at the 2000 Summer Olympic Games. It was hypothesized that the kinematics of the MTP joint, and forefoot and rearfoot segments, are related to sprint performance for both male and female athletes. Kinematic sagittal plane data were collected using two digital video cameras recording at 120 fields per second. It was determined that faster male sprinters experienced higher maximal rates of MTP extension, and faster female sprinters touch down with higher posterior sole angles and take off with lower posterior sole angles.

  12. Simultaneous radar and aircraft observations of mixed-phase cloud at the 100 m scale

    NASA Astrophysics Data System (ADS)

    Field, P. R.; Hogan, R. J.; Brown, P. R. A.; Illingworth, A. J.; Choularton, T. W.; Kaye, P. H.; Hirst, E.; Greenaway, R.

    2004-07-01

    Three UK C-130 aircraft flights performed in conjunction with the Chilbolton Advanced Meteorological Radar were carried out in mixed-phase clouds. The aircraft instrumentation included the Small Ice Detector (SID) and Nevzorov probe that are both capable of discriminating between liquid and ice phase. It was found that particle sphericity measured by the SID could be successfully used as a proxy for particle phase. Using a combination of the SID and other probes it is possible to determine whether a 100 m cloud segment is ice, liquid or mixed-phase. Regions as short as 100 m exhibited mixed-phase characteristics. There was generally good agreement between water phase indicated by the SID and Nevzorov probes, with any differences arising from the fact that the SID provides a number-weighted estimate of dominant phase, while the Nevzorov probe provides a mass-weighted estimate. The radar and aircraft observations show that when high values of differential reflectivity are observed the nearby presence of liquid water is indicated. When large ice crystals are present in deeper cloud they can suppress the differential reflectivity signal. Therefore the absence of a high differential reflectivity signal does not necessarily mean that liquid water is absent.

  13. 9.58 and 10.49: nearing the citius end for 100 m?

    PubMed

    Haugen, Thomas; Tønnessen, Espen; Seiler, Stephen

    2015-03-01

    Human upper performance limits in the 100-m sprint remain the subject of much debate. The aim of this commentary is to highlight the vulnerabilities of prognoses from historical trends by shedding light on the mechanical and physiological limitations associated with human sprint performance. Several conditions work against the athlete with increasing sprint velocity; air resistance and braking impulse in each stride increase while ground-contact time typically decreases with increasing running velocity. Moreover, muscle-force production declines with increasing speed of contraction. Individual stature (leg length) strongly limits stride length such that conditioning of senior sprinters with optimized technique mainly must be targeted to enhance stride frequency. More muscle mass means more power and thereby greater ground-reaction forces in sprinting. However, as the athlete gets heavier, the energy cost of accelerating that mass also increases. This probably explains why body-mass index among world-class sprinters shows low variability and averages 23.7±1.5 and 20.4±1.4 for male and female sprinters, respectively. Performance development of world-class athletes indicates that ~8% improvement from the age of 18 represents the current maximum trainability of sprint performance. However, drug abuse is a huge confounding factor associated with such analyses, and available evidence suggests that we are already very close to "the citius end" of 100-m sprint performance.

  14. RadioAstron Space-VLBI observation of SN2014J and the possible AGN in M82

    NASA Astrophysics Data System (ADS)

    Sokolovsky, Kirill V.; Voytsik, Petr A.; Alakoz, Alexei V.; Asaki, Yoshiharu; Bach, Uwe; Feiler, Roman; Gawronski, Marcin P.; Giroletti, Marcello; Kharinov, Mikhail A.; Ipatov, Alexander V.; Kutkin, Alexander M.; Rahimov, Ismail A.; Schinzel, Frank K.; Wolak, Pawel

    2014-06-01

    The Type Ia supernova SN2014J (ATel #5786, CBET #3792) appeared in M82 around 2014 January 14.75 UT (Zheng et al., arXiv:1401.7968). On 2014 March 27 05:20-06:00 UT (71.5d after explosion) it was observed with the RadioAstron Space-VLBI array consisting of the 10m Space radio telescope (Kardashev et al., 2013 ARep, 57, 153) operating simultaneously at 1.6 and 4.8 GHz, the Effelsberg 100m (observing at 4.8 GHz), Usuda 64m (1.6 GHz), Kalyazin 64m (1.6 and 4.8 GHz), Torun 32m (1.6 GHz), and Svetloe 32m (4.8 GHz) telescopes. ...

  15. Modeling of Women's 100-m Dash World Record: Wind-Aided or Not?

    NASA Astrophysics Data System (ADS)

    Hazelrigg, Conner; Waibel, Bryson; Baker, Blane

    2015-11-01

    On July 16, 1988, Florence Griffith Joyner (FGJ) shattered the women's 100-m dash world record (WR) with a time of 10.49 s, breaking the previous mark by an astonishing 0.27 s. By all accounts FGJ dominated the race that day, securing her place as the premiere female sprinter of that era, and possibly all time. In the aftermath of such an extraordinary performance, track officials immediately assumed that her posted time was wind aided—that is, attained under tailwind conditions beyond the legal limit of 2.0 m/s for world records. However, wind-measuring devices at the track site showed zero wind conditions during her WR performance. Before and during FGJ's race, other wind-measuring devices indicated speeds exceeding 4.0 m/s at the site of the triple jump runway, located on the same field as the running track. Video clips of flags placed near the starting line of FGJ's race also revealed tailwind conditions. Using available data from that era, the study here incorporates modeling techniques to compute velocity and position as functions of time for no wind and tailwind conditions. Modeling under no wind conditions produces a 100-m time of 10.70 s, a performance clearly attainable by FGJ during this stage of her sprinting career. Incorporating tailwinds of 4.0 m/s into the computations reduces this time by approximately 0.20 s, in close agreement with FGJ's record-breaking performance. These results strongly suggest that tailwinds of order 4 m/s were present during FGJ's world record race even though wind-measuring devices at the track site did not register these speeds. In spite of such strong evidence to support a wind-aided race on July 16, 1988, FGJ remains one of the top female sprinters in history and would likely hold the WR even today, given that she attained a non-wind-aided 100-m time of 10.61 s on the day following her WR performance.

  16. Alignment and phasing of deployable telescopes

    NASA Technical Reports Server (NTRS)

    Woolf, N. J.; Ulich, B. L.

    1983-01-01

    The experiences in coaligning and phasing the Multi-Mirror Telescope (MMT), together with studies in setting up radio telescopes, are presented. These experiences are discussed, and on the basis they furnish, schemes are suggested for coaligning and phasing four large future telescopes with complex primary mirror systems. These telescopes are MT2, a 15-m-equivalent MMT, the University of California Ten Meter Telescope, the 10 m sub-mm wave telescope of the University of Arizona and the Max Planck Institute for Radioastronomy, and the Large Deployable Reflector, a future space telescope for far-IR and sub-mm waves.

  17. A Compact Instrument for Remote Raman and Fluorescence Measurements to a Radial Distance of 100 m

    NASA Technical Reports Server (NTRS)

    Sharma, S. K.; Misra, A. K.; Lucey, P. g.; McKay, C. P.

    2005-01-01

    Compact remote spectroscopic instruments that could provide detailed information about mineralogy, organic and biomaterials on a planetary surface over a relatively large area are desirable for NASA s planetary exploration program. Ability to explore a large area on the planetary surfaces as well as in impact craters from a fixed location of a rover or lander will enhance the probability of selecting target rocks of high scientific contents as well as desirable sites in search of organic compounds and biomarkers on Mars and other planetary bodies. We have developed a combined remote inelastic scattering (Raman) and laser-induced fluorescence emission (LIFE) compact instrument capable of providing accurate information about minerals, organic and biogenic materials to a radial distance of 100 m. Here we present the Raman and LIFE (R-LIFE) data set.

  18. Towards a 100mA Superconducting RF Photoinjector for BERLinPro

    SciTech Connect

    Neumann, Axel; Anders, W; Burrill, Andrew; Jankowiak, Andreas; Kamps, T; Knobloch, Jens; Kugeler, Oliver; Lauinger, P; Matveenko, A N; Schmeisser, M; Volker, J; Ciovati, Gianluigi; Kneisel, Peter; Nietubyc, R; Schubert, S G; Smedley, John; Sekutowicz, Jacek; Volkov, V; Will, I; Zaplatin, Evgeny

    2013-09-01

    For BERLinPro, a 100 mA CW-driven SRF energy recovery linac demonstrator facility, HZB needs to develop a photo-injector superconducting cavity which delivers a at least 1mm*mr emittance beam at high average current. To address these challenges of producing a high peak brightness beam at high repetition rate, at first HZB tested a fully superconducting injector with a lead cathode*,followed now by the design of a SC cavity allowing operation up to 4 mA using CW-modified TTF-III couplers and inserting a normal conducting high quantum efficiency cathode using the HZDR-style insert scheme. This talk will present the latest results and an overview of the measurements with the lead cathode cavity and will describe the design and optimization process, the first production results of the current design and an outlook to the further development steps towards the full power version.

  19. On the performance of Usain Bolt in the 100 m sprint

    NASA Astrophysics Data System (ADS)

    Hernández Gómez, J. J.; Marquina, V.; Gómez, R. W.

    2013-09-01

    Many university texts on mechanics consider the effect of air drag force, using the slowing down of a parachute as an example. Very few discuss what happens when the drag force is proportional to both u and u2. In this paper we deal with a real problem to illustrate the effect of both terms on the speed of a runner: a theoretical model of the world-record 100 m sprint of Usain Bolt during the 2009 World Championships in Berlin is developed, assuming a drag force proportional to u and to u2. The resulting equation of motion is solved and fitted to the experimental data obtained from the International Association of Athletics Federations, which recorded Bolt's position with a laser velocity guard device. It is worth noting that our model works only for short sprints.

  20. Simultaneous multifrequency radio observations of the Galactic Centre magnetar SGR J1745-2900

    NASA Astrophysics Data System (ADS)

    Torne, P.; Eatough, R. P.; Karuppusamy, R.; Kramer, M.; Paubert, G.; Klein, B.; Desvignes, G.; Champion, D. J.; Wiesemeyer, H.; Kramer, C.; Spitler, L. G.; Thum, C.; Güsten, R.; Schuster, K. F.; Cognard, I.

    2015-07-01

    We report on simultaneous observations of the magnetar SGR J1745-2900 at frequencies ν = 2.54-225 GHz using the Nançay 94-m equivalent, Effelsberg 100-m, and IRAM 30-m radio telescopes. We detect SGR J1745-2900 up to 225 GHz, the highest radio frequency detection of pulsed emission from a neutron star to date. Strong single pulses are also observed from 4.85 up to 154 GHz. At the millimetre band we see significant flux density and spectral index variabilities on time scales of tens of minutes, plus variability between days at all frequencies. Additionally, SGR J1745-2900 was observed at a different epoch at frequencies ν = 296-472 GHz using the APEX 12-m radio telescope, with no detections. Over the period MJD 56859.83-56862.93 the fitted spectrum yields a spectral index of <α> = -0.4 ± 0.1 for a reference flux density = 1.1 ± 0.2 mJy (with Sν ∝ να), a flat spectrum alike those of the other radio-loud magnetars. These results show that strongly magnetized neutron stars can be effective radio emitters at frequencies notably higher to what was previously known and that pulsar searches in the Galactic Centre are possible in the millimetre band.

  1. Next-generation radio telescope of the 12- to 15-m class for the future large-interferometer arrays in the southern hemisphere

    NASA Astrophysics Data System (ADS)

    Plathner, Dietmar E.

    1998-07-01

    Based on the quality proven technologies applied on the IRAM 15 m Plateau de Bure telescopes strategies have been developed to design antennas for the future large arrays in the southern hemisphere which shall operate at frequencies as high as 850 GHz and have a very large collecting area. For this type of antenna space frames were applied wherever possible as the full cross-section of their push-pull members is used for load transfer. Thus giving maximum stiffness at minimum weight to the proposed telescope structures. The lowest eigenfrequency is therefore predicted to be in the order of 12 Hz. Similar high performances are expected under the specified windloads at the chosen site in the Atacama Desert probably at an altitude of 5000 m. Such an exposed location requires simple, low maintenance telescopes despite of their high performance requirements, so that e.g. all active thermal stabilization is avoided by the use of low expansion carbon fiber composite material for critical members. Finally an opto-mechanical metrology system is applied which replaces the standard 'on- bord' encoders and makes the control of the telescopes independent of structural deformations in the mount. An overall surface error of 25 micrometer rms for a 12 to 15 m class telescope can be obtained and the resulting pointing error under wind load is in the order of 0.4 arcsec.

  2. Space Telescope.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  3. Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey

    2007-05-01

    The Allen Telescope Array (ATA) is a pioneering centimeter-wavelength radio telescope that will produce science that cannot be done with any other instrument. The ATA is the first radio telescope designed for commensal observing; it will undertake the most comprehensive and sensitive SETI surveys ever done as well as the deepest and largest area continuum and spectroscopic surveys. Science operations will commence this year with a 42-element array. The ATA will ultimately comprise 350 6-meter dishes at Hat Creek in California, and will make possible large, deep radio surveys that were not previously feasible. The telescope incorporates many new design features including hydroformed antenna surfaces, a log-periodic feed covering the entire range of frequencies from 500 MHz to 11.2 GHz, low noise, wide-band amplifiers with a flat response over the entire band. The full array has the sensitivity of the Very Large Array but with a survey capability that is greater by an order of magnitude due to the wide field of view of the 6-meter dishes. Even with 42 elements, the ATA will be one of the most powerful radio survey telescopes. Science goals include the Five GHz sky survey (FiGSS) to match the 1.4-GHz NRAO VLA Sky Survey (NVSS) and the Sloan Digital Sky Survey within the first year of operation with the 42 element array, and a deep all-sky survey of extragalactic hydrogen to investigate galaxy evolution and intergalactic gas accretion. Transient and variable source surveys, pulsar science, spectroscopy of new molecular species in the galaxy, large-scale mapping of galactic magnetic filaments, and wide-field imaging of comets and other solar system objects are among the other key science objectives of the ATA. SETI surveys will reach sufficient sensitivity to detect an Arecibo planetary radar from 1,000,000 stars to distances of 300 pc.

  4. Crop suitability monitoring for improved yield estimations with 100m PROBA-V data

    NASA Astrophysics Data System (ADS)

    Özüm Durgun, Yetkin; Gilliams, Sven; Gobin, Anne; Duveiller, Grégory; Djaby, Bakary; Tychon, Bernard

    2015-04-01

    This study has been realised within the framework of a PhD targeting to advance agricultural monitoring with improved yield estimations using SPOT VEGETATION remotely sensed data. For the first research question, the aim was to improve dry matter productivity (DMP) for C3 and C4 plants by adding a water stress factor. Additionally, the relation between the actual crop yield and DMP was studied. One of the limitations was the lack of crop specific maps which leads to the second research question on 'crop suitability monitoring'. The objective of this work is to create a methodological approach based on the spectral and temporal characteristics of PROBA-V images and ancillary data such as meteorology, soil and topographic data to improve the estimation of annual crop yields. The PROBA-V satellite was launched on 6th May 2013, and was designed to bridge the gap in space-borne vegetation measurements between SPOT-VGT (March 1998 - May 2014) and the upcoming Sentinel-3 satellites scheduled for launch in 2015/2016. PROBA -V has products in four spectral bands: BLUE (centred at 0.463 µm), RED (0.655 µm), NIR (0.845 µm), and SWIR (1.600 µm) with a spatial resolution ranging from 1km to 300m. Due to the construction of the sensor, the central camera can provide a 100m data product with a 5 to 8 days revisiting time. Although the 100m data product is still in test phase a methodology for crop suitability monitoring was developed. The multi-spectral composites, NDVI (Normalised Difference Vegetation Index) (NIR_RED/NIR+RED) and NDII (Normalised Difference Infrared Index) (NIR-SWIR/NIR+SWIR) profiles are used in addition to secondary data such as digital elevation data, precipitation, temperature, soil types and administrative boundaries to improve the accuracy of crop yield estimations. The methodology is evaluated on several FP7 SIGMA test sites for the 2014 - 2015 period. Reference data in the form of vector GIS with boundaries and cover type of agricultural fields are

  5. Deficit of reactor antineutrinos at distances smaller than 100 m and inverse β decay

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Höllwieser, R.; Troitskaya, N. I.; Wellenzohn, M.; Zherebtsov, O. M.; Serebrov, A. P.

    2013-11-01

    We analyze a change in a deficit of reactor antineutrinos at distances smaller than 100m by changing the lifetime of the neutron from τn=885.7s to τn=879.6s, calculated for the axial coupling constants λ=-1.2694 and λ=-1.2750, respectively, to get a result corresponding the new world average value τn=880.1(1.1)s. We calculate the angular distribution and cross section for the inverse β decay, taking into account the contributions of the “weak magnetism” and the neutron recoil to next-to-leading order in the large baryon mass expansion and the radiative corrections of order α/π˜10-3, calculated to leading order in the large baryon mass expansion. We obtain an increase of a deficit of reactor antineutrinos of about 0.734%. We discuss a universality of radiative corrections to order α to the neutrino (antineutrino) reactions induced by weak charged currents, pointed out by Kurylov, Ramsey-Musolf, and Vogel [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.67.035502 67, 035502 (2003)], and calculate the antineutrino-energy spectrum of the neutron β- decay to order α/π and taking into account the contributions of the weak magnetism and the proton recoil.

  6. The effect of fatigue on the underwater arm stroke motion in the 100-m front crawl.

    PubMed

    Suito, Hiroshi; Ikegami, Yasuo; Nunome, Hiroyuki; Sano, Shinya; Shinkai, Hironari; Tsujimoto, Norio

    2008-11-01

    The purpose of this study was to indicate the effect of fatigue on the underwater right arm stroke motion during the 100-m front crawl. The arm stroke motions of eight male competitive swimmers were captured three-dimensionally at 60 Hz in the positions of 15 m and 65 m from the start. The hand velocity, the arm angular velocities and the relative contribution of the arm angular velocities to the hand velocity were computed at each instant during the arm stroke motion. A significant decrease of the hand velocity and the peak angular velocity of shoulder adduction were observed in the second half than in the first half. The contribution of shoulder adduction was especially large in the pull phase and subsequently that of shoulder horizontal abduction became dominant in the push phase. However, in the second half, the contribution of shoulder adduction tended to decrease while that of shoulder internal rotation tended to increase. Thus, it is quite likely that the arm stroke motion of swimmers were driven to be influenced by induced fatigue and resulted in an increase in the contribution of shoulder internal rotation to compensate the decreased contribution of shoulder adduction angular velocity. PMID:19075300

  7. Spatiotemporal Parameters of 100-m Sprint in Different Levels of Sprinters with Unilateral Transtibial Amputation

    PubMed Central

    Hobara, Hiroaki; Hashizume, Satoru; Kobayashi, Yoshiyuki; Mochmaru, Masaaki

    2016-01-01

    The aim of this study was to investigate differences of the spatiotemporal parameters in a 100-m sprint among elite, sub-elite, and non-elite sprinters with a unilateral transtibial amputation. Using publicly available Internet broadcasts, we analyzed 125, 19, and 33 records from 30 elite, 12 sub-elite, and 22 non-elite sprinters, respectively. For each sprinter’s run, the average velocity, step frequency, and step length were calculated using the number of steps in conjunction with the official race time. Average velocity was greatest in elite sprinters (8.71±0.32 m/s), followed by the sub-elite (8.09±0.06 m/s) and non-elite groups (7.72±0.27 m/s). Although there was a significant difference in average step frequency between the three groups, the effect size was small and the relative difference among the three groups was 3.1%. Statistical analysis also revealed that the average step length was longest in elite sprinters, followed by the sub-elite and non-elite groups. These results suggest that the differences in sprint performance between the three groups is mainly due to the average step length rather than step frequency. PMID:27701443

  8. Identification and Attribution of Global Wind Speed Trends at 100m

    NASA Astrophysics Data System (ADS)

    McGraw, Zachary; Smith, Ronald; Storelvmo, Trude

    2016-04-01

    Recent studies have found evidence that global climate change significantly alters the strength of large-scale wind patterns. Any enduring trends over large regions are potentially of value to understand due to their implications for the wind energy industry. In this study we identify and evaluate global wind speed trends at the wind turbine hub height (~100m) through the use of CMIP5 models, standard reanalyses (ERA-Interim, NCEP2) and a uniquely high-resolution analysis dataset (Vestas Mesoscale Library). By analyzing how wind speeds change across the globe throughout the period 1900-2100 (with emphasis on the satellite era, 1979-2014), we assess the significance of multi-decadal wind speed trends in the context of natural spatial and temporal variability. Our results show substantial differences in regional trends between different datasets though several regions including the Southern Hemisphere mid-latitudes and the Caribbean show consistently substantial changing wind speeds during the satellite era. Wind speed trends tend to diminish over large time scales and follow spatial patterns that link multi-decadal trends to the evolving behaviors of internal variability modes, especially those of ENSO and the Southern Annular Mode (SAM).

  9. Space situational awareness applications for radio astronomy assets

    NASA Astrophysics Data System (ADS)

    Watts, Galen; Ford, John M.; Ford, H. Alyson

    2015-05-01

    The National Radio Astronomy Observatory (NRAO) builds, operates, and maintains a suite of premier radio antennas, including the 100m aperture Green Bank Telescope, the largest fully-steerable antenna in the world. For more than five decades the NRAO has focused on astrophysics, providing researchers with the most advanced instruments possible: large apertures, extremely low-noise receivers, and signal processors with high frequency and time resolution. These instruments are adaptable to Space Situational Awareness (SSA) tasks such as radar detection of objects in near-Earth and cis-Lunar space, high accuracy orbit determination, object surveillance with passive methods, and uplink and downlink communications. We present the capabilities of antennas and infrastructure at the NRAO Green Bank Observatory in the context of SSA tasks, and discuss what additions and modifications would be necessary to achieve SSA goals while preserving existing radio astronomy performance. We also discuss how the Green Bank Observatory's surrounding topography and location within the National Radio Quiet Zone will enhance SSA endeavors.

  10. The Radio Jove Project

    NASA Technical Reports Server (NTRS)

    Thieman, J. R.

    2010-01-01

    The Radio love Project is a hands-on education and outreach project in which students, or any other interested individuals or groups build a radio telescope from a kit, operate the radio telescope, transmit the resulting signals through the internet if desired, analyze the results, and share the results with others through archives or general discussions among the observers. Radio love is intended to provide an introduction to radio astronomy for the observer. The equipment allows the user to observe radio signals from Jupiter, the Sun, the galaxy, and Earth-based radiation both natural and man-made. The project was started through a NASA Director's Discretionary Fund grant more than ten years ago. it has continued to be carried out through the dedicated efforts of a group of mainly volunteers. Dearly 1500 kits have been distributed throughout the world. Participation can also be done without building a kit. Pre-built kits are available. Users can also monitor remote radio telescopes through the internet using free downloadable software available through the radiosky.com website. There have been many stories of prize-winning projects, inspirational results, collaborative efforts, etc. We continue to build the community of observers and are always open to new thoughts about how to inspire the observers to still greater involvement in the science and technology associated with Radio Jove.

  11. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Deboer, David; Ackermann, Rob; Blitz, Leo; Bock, Douglas; Bower, Geoffrey; Davis, Michael; Dreher, John; Engargiola, Greg; Fleming, Matt; Keleta, Girmay; Harp, Gerry; Lugten, John; Tarter, Jill; Thornton, Doug; Wadefalk, Niklas; Weinreb, Sander; Welch, William J.

    2004-06-01

    The Allen Telescope Array, a joint project between the SETI Institute and the Radio Astronomy Laboratory at the University of California Berkeley, is currently under development and construction at the Hat Creek Radio Observatory in northern California. It will consist of 350 6.1-m offset Gregorian antennas in a fairly densely packed configuration, with minimum baselines of less than 10 m and a maximum baseline of about 900 m. The dual-polarization frequency range spans from about 500 MHz to 11 GHz, both polarizations of which are transported back from each antenna. The first generation processor will provide 32 synthesized beams of 104 MHz bandwidth, eight at each of four tunings, as well as outputs for a full-polarization correlator at two of the tunings at the same bandwidth. This paper provides a general description of the Allen Telescope Array.

  12. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Flanagan, Kathryn A.

    2012-01-01

    Space telescopes have been a dominant force in astrophysics and astronomy over the last two decades. As Lyman Spitzer predicted in 1946, space telescopes have opened up much of the electromagnetic spectrum to astronomers, and provided the opportunity to exploit the optical performance of telescopes uncompromised by the turbulent atmosphere. This special section of Optical Engineering is devoted to space telescopes. It focuses on the design and implementation of major space observatories from the gamma-ray to far-infrared, and highlights the scientific and technical breakthroughs enabled by these telescopes. The papers accepted for publication include reviews of major space telescopes spanning the last two decades, in-depth discussions of the design considerations for visible and x-ray telescopes, and papers discussing concepts and technical challenges for future space telescopes.

  13. The TexOx-1000 redshift survey of radio sources I: the TOOT00 region

    NASA Astrophysics Data System (ADS)

    Vardoulaki, Eleni; Rawlings, Steve; Hill, Gary J.; Mauch, Tom; Inskip, Katherine J.; Riley, Julia; Brand, Kate; Croft, Steve; Willott, Chris J.

    2010-01-01

    We present optical spectroscopy, near-infrared (mostly K-band) and radio (151-MHz and 1.4-GHz) imaging of the first complete region (TOOT00) of the TexOx-1000 (TOOT) redshift survey of radio sources. The 0.0015-sr (~5 deg2) TOOT00 region is selected from pointed observations of the Cambridge Low-Frequency Survey Telescope at 151 MHz at a flux density limit of ~=100 mJy, approximately five times fainter than the 7C Redshift Survey (7CRS), and contains 47 radio sources. We have obtained 40 spectroscopic redshifts (~85 per cent completeness). Adding redshifts estimated for the seven other cases yields a median redshift zmed ~ 1.25. We find a significant population of objects with Fanaroff-Riley type I (FRI) like radio structures at radio luminosities above both the low-redshift FRI/II break and the break in the radio luminosity function. The redshift distribution and subpopulations of TOOT00 are broadly consistent with extrapolations from the 7CRS/6CE/3CRR data sets underlying the SKADS Simulated Skies Semi-Empirical Extragalactic Data base, S3-SEX.

  14. VizieR Online Data Catalog: Radio observations of Galactic WISE HII regions (Anderson+, 2015)

    NASA Astrophysics Data System (ADS)

    Anderson, L. D.; Armentrout, W. P.; Johnstone, B. M.; Bania, T. M.; Balser, D. S.; Wenger, T. V.; Cunningham, V.

    2016-01-01

    We draw our targets from the MIR objects in the WISE catalog of Anderson+, 2014, J/ApJS/212/1. We also include in our sample Sharpless H II regions (Sharpless 1959, VII/20). See section 2 for further details. Our observations were made with the GBT 100m telescope from 2012 July through 2014 August. There are seven radio recombination lines (RRLs) that can be cleanly observed simultaneously with the GBT in the X-band: H87α to H93α. We average these seven RRLs (each at two orthogonal polarizations) to create a single average RRL spectrum. We followed the same GBT observational procedure as in the original HRDS (Green Bank Telescope H II Region Discovery Survey (GBT HRDS; Bania et al. 2010ApJ...718L.106B). (3 data files).

  15. Overview of the 100 mA average-current RF photoinjector

    NASA Astrophysics Data System (ADS)

    Nguyen, D. C.; Colestock, P. L.; Kurennoy, S. S.; Rees, D. E.; Regan, A. H.; Russell, S.; Schrage, D. L.; Wood, R. L.; Young, L. M.; Schultheiss, T.; Christina, V.; Cole, M.; Rathke, J.; Shaw, J.; Eddy, C.; Holm, R.; Henry, R.; Yater, J.

    2004-08-01

    High-average-power FELs require high-current, low-emittance and low-energy-spread electron beams. These qualities have been achieved with RF photoinjectors operating at low-duty factors. To date, a high-average-current RF photoinjector operating continuously at 100% duty factor is yet to be demonstrated. The principal challenges of a high-duty-factor normal-conducting RF photoinjector are related to applying a high accelerating gradient continuously, thus generating large ohmic losses in the cavity walls, cooling the injector cavity walls and the high-power RF couplers, and finding a photocathode with reasonable Q.E. that can survive the poor vacuum of the RF photoinjector. We present the preliminary design of a normal-conducting 700 MHz photoinjector with solenoid magnetic fields for emittance compensation. The photoinjector is designed to produce 2.7 MeV electron beams at 3 nC bunch charge and 35 MHz repetition rate (100 mA average current). The photoinjector consists of a 2 {1}/{2}-cell, π-mode, RF cavity with on-axis electric coupling, and a non-resonant vacuum plenum. Heat removal in the resonant cells is achieved via dense arrays of internal cooling passages capable of handling high-velocity water flows. Megawatt RF power is coupled into the injector through two tapered ridge-loaded waveguides. PARMELA simulations show that the 2 {1}/{2}-cell injector can produce a 7 μm emittance directly. Transverse plasma oscillations necessitate additional acceleration and a second solenoid to realign the phase space envelopes of different axial slices at higher energy, resulting in a normalized rms emittance of 6.5 μm and 34 keV rms energy spread. We are developing a novel cesiated p-type GaN photocathode with 7% quantum efficiency at 350 nm and a cesium dispenser to replenish the cathode with cesium through a porous silicon carbide substrate. These performance parameters will be necessary for the design of the 100 kW FEL.

  16. X-Ray Testing Constellation-X Optics at MSFC's 100-m Facility

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Baker, Markus; Content, David; Freeman, Mark; Glenn, Paul; Gubarev, Mikhail; Hair, Jason; Jones, William; Joy, Marshall

    2003-01-01

    In addition to the 530-m-long X-Ray Calibration Facility (XRCF), NASA's Marshall Space Flight Center (MSFC) operates a 104-m-long (source-to-detector) X-ray-test facility. Originally developed and still occasionally used for stray-light testing of visible-fight optical systems, the so-called "Stray-Light Facility" now serves primarily as a convenient and inexpensive facility for performance evaluation and calibration of X-ray optics and detectors. The facility can accommodate X-ray optics up to about 1-m diameter and 12-m focal length. Currently available electron-impact sources at the facility span the approximate energy range 0.2 to 100 keV, thus supporting testing of soft- and hard-X-ray optics and detectors. Available MSFC detectors are a front-illuminated CCD (charge-coupled device) and a scanning CZT (cadmium--zinc--telluride) detector, with low-energy cut-offs of about 0.8 and 3 keV, respectively. In order to test developmental optics for the Constellation-X Project, led by NASA's Goddard Space Flight Center (GSFC), MSFC undertook several enhancements to the facility. Foremost among these was development and fabrication of a five-degree-of-freedom (5-DoF) optics mount and control system, which translates and tilts the user-provided mirror assembly suspended from its interface plate. Initial Constellation-X tests characterize the performance of the Optical Alignment Pathfinder Two (OAP2) for the large Spectroscopy X-ray Telescope (SXT) and of demonstration mirror assemblies for the Hard X-ray Telescope (HXT). With the Centroid Detector Assembly (CDA), used for precision alignment of the Chandra (nee AXAF) mirrors, the Constellation-X SXT Team optically aligned the individual mirrors of the OAPZ at GSFC. The team then developed set-up and alignment procedures, including transfer of the alignment from the optical alignment facility at GSFC to the X-ray test facility at MSFC, using a reference flat and fiducials. The OAPZ incorporates additional ancillary

  17. An Introduction to Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Burke, Bernard F.; Graham-Smith, Francis

    2009-09-01

    Preface; 1. Introduction; 2. The nature of the radio signal; 3. Signals, noise, radiometers and spectrometers; 4. Single-aperture radio telescopes; 5. The two-element interferometer; 6. Aperture synthesis; 7. Radiation, propagation and absorption of radio waves; 8. The local universe; 9. The interstellar medium; 10. Galactic dynamics; 11. Stars; 12. Pulsars; 13. Radio galaxies and quasars; 14. Cosmology fundamentals; 15. The angular structure of the CMB; 16. Cosmology: discrete radio sources and gravitational lensing; 17. The future of radio astronomy; Appendixes; References; Index.

  18. An Introduction to Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Burke, Bernard F.; Graham-Smith, Francis

    2014-02-01

    Preface; 1. Introduction; 2. The nature of the radio signal; 3. Signals, noise, radiometers and spectrometers; 4. Single-aperture radio telescopes; 5. The two-element interferometer; 6. Aperture synthesis; 7. Radiation, propagation and absorption of radio waves; 8. The local universe; 9. The interstellar medium; 10. Galactic dynamics; 11. Stars; 12. Pulsars; 13. Radio galaxies and quasars; 14. Cosmology fundamentals; 15. The angular structure of the CMB; 16. Cosmology: discrete radio sources and gravitational lensing; 17. The future of radio astronomy; Appendixes; References; Index.

  19. Wheel drives for large telescopes: save the cost and keep the performance over hydrostatic bearings

    NASA Astrophysics Data System (ADS)

    Campbell, Marvin F.

    2014-07-01

    The use of steel wheels on steel tracks has been around since steel was invented, and before that it was iron wheels on iron tracks. Not to be made obsolete by the passage of time, this approach for moving large objects is still valid, even optimal, but the detailed techniques for achieving high performance and long life have been much improved. The use of wheel-and-track designs has been very popular in radio astronomy for the largest of the large radio telescopes (RT), including such notables as the 305m Arecibo RT, the 100m telescopes at Effelsberg, Germany (at 3600 tonnes) and the Robert C. Byrd, Greenbank Telescope (GBT, 7600 tonnes) at Greenbank, West Virginia. Of course, the 76m Lovell Telescope at Jodrell Bank is the grandfather of all large aperture radio telescopes that use wheel drives. Smaller sizes include NRAO's Very Long Baseline Array (VLBA) telescopes at 25m and others. Wheel drives have also been used on large radars of significance such as the 410 tonne Ground Based Radar-Prototype (GBR-P) and the 150 foot (45.7m) Altair Radar, and the 2130 tonne Sea Based X-Band Radar (SBX). There are also many examples of wheel driven communications antennas of 18 meters and larger. All of these instruments have one thing in common: they all use steel wheels that run in a circle on one or more flat, level, steel tracks. This paper covers issues related to designing for wheel driven systems. The intent is for managing motion to sub arc-second levels, and for this purpose it is primary for the designer to manage measurement and alignment errors, and to establish repeatability through dimensional control, structural and drive stiffness management, adjustability and error management. In a practical sense, there are very few, if any, fabricators that can machine structural and drive components to sufficiently small decimal places to matter. In fact, coming within 2-3 orders of magnitude of the precision needed is about the best that can be expected. Further, it is

  20. Millimetre observations of comets P/Brorsen-Metcalf (1989o) and Austin (1989c1) with the IRAM 30-m radio telescope

    NASA Technical Reports Server (NTRS)

    Colom, P.; Despois, D.; Bockelee-Morvan, D.; Crovisier, J.; Paubert, G.

    1990-01-01

    Millimeter observations with the IRAM 30 m telescope were conducted in comet P/Brorsen-Metcalf (1989o) on September 1989 and Austin (1989c1) on April and May 1990. The HCN J(1-0) and J(3-2) lines were detected in both comets. The HCN production rate relative to water in P/Brorsen-Metcalf is comparable to that previously measured in comet P/Halley, while that inferred in comet Austin might be smaller by a factor of two. The H2CO(3 sub 12 - 2 sub 11) transition, marginally observed in comet P/Brorsen-Metcalf, was firmly detected in May 1990 in comet Austin. Observations performed at offset positions suggest that the source of H2CO might be distributed. The H2CO abundance is on the order of 0.5 percent that of water for both comets, assuming a scalelength of 10(exp 4) km at 1 AU from the Sun for the distributed source. During the May observing period of comet Austin, two new species were detected for the first time in a comet: hydrogen sulfide (H2S) through its 1(sub 10) - 1(sub 01) ortho line at 169 GHz, and methanol (CH3OH) through J(3-2) delta K = 0 transitions at 145 GHz. Preliminary estimates of their abundances are 1.5 x 10(exp -3) for H2S and 8 x 10(exp -3) for CH3OH.

  1. Single-transverse-mode near-IR superluminescent diodes with cw output power up to 100 mW

    SciTech Connect

    Andreeva, E V; Il'chenko, S N; Kostin, Yu O; Yakubovich, S D

    2014-10-29

    A series of light-emitting modules based on single-mode quantum-well superluminescent diodes with centre emission wavelengths of about 790, 840, 960 and 1060 nm and a cw output power up to 100 mW in free space is developed. A sufficiently long service life of these devices is demonstrated. (lasers)

  2. Telescope Equipment

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Renaissance Telescope for high resolution and visual astronomy has five 82-degree Field Tele-Vue Nagler Eyepieces, some of the accessories that contribute to high image quality. Telescopes and eyepieces are representative of a family of optical equipment manufactured by Tele-Vue Optics, Inc.

  3. AGN variability in the radio band

    NASA Astrophysics Data System (ADS)

    Max-Moerbeck, Walter

    2016-08-01

    Variability is an important and defining characteristic of AGN, that along with their broadband spectral energy distribution make their study interesting and challenging. A complete understanding of the physics of these objects requires monitoring observations over the whole electromagnetic spectrum, and includes studying their properties at a given band and also the relationship between multiple wavelengths. Here we present the main results obtained so far with the ongoing OVRO 40m blazar monitoring program at 15 GHz with twice a week cadence. This program started in mid-2007 and is currently monitoring about 1800 blazars, including most of the bright blazars north of declination -20 degrees. These results include: characterization of the variability in the radio band; its relationship with optical and gamma-ray properties; and its relationship to gamma-ray emission as observed with Fermi-LAT, which can provide constrains on the location of the gamma-ray emission region. We will also discuss our ongoing work on the characterization of radio variability using the power spectral density. For this, we are using 8 years of OVRO 40m data for ~1200 sources, and also F-GAMMA monitoring data taken with the Effelsberg 100m telescope for 60 sources with about monthly cadence monitoring data at 8 frequencies between 2.6 and 43.0 GHz. These studies will provide an improved understanding of blazar variability, a better basis to evaluate the statistics of correlated variability between different emission bands, and a long and consistent record of radio observations to be used in gamma-ray and multi-wavelength investigations.

  4. The future for radio astronomy

    NASA Astrophysics Data System (ADS)

    Breton, Rene P.; Hassall, Tom

    2013-12-01

    THE TRANSIENT UNIVERSE Rene P Breton and Tom Hassall argue that, while radio astronomy has always involved transient phenomena, exploration of this part of the electromagnetic spectrum has been falling behind because of the lack of data. But the advent of a new generation of radio telescopes such as LOFAR, could change that.

  5. Radio Astronomy at the Byurakan Astrophysical Observatory, the Institute of Radio Physics and Electronics of the Academy of Sciences of the Armenian SSR and Other Armenian Organisations

    NASA Astrophysics Data System (ADS)

    Sanamian, V. A.

    The establishment and development of radio astronomy in Armenia is described in detail. Information about the radio telescopes of the Byurakan Astrophysical Observatory (BAO) is summarised. The main results of radio-astronomy studies carried out by BAO staff are described, including a number that used large Soviet and foreign radio telescopes, primarily studies of active galaxies.

  6. The Birth and Development of Radio Astronomy Studies of the Sun at the Siberian Institute of Terrestrial Magnetism, the Ionosphere and Radio-Wave Propagation

    NASA Astrophysics Data System (ADS)

    Smol'kov, G. Y.

    The history of the organisation of the Department of Radio Astronomy at the Siberian Institute of Terrestrial Magnetism, the Ionosphere and Radio-Wave Propagation (SibIZMIRAN) is described, together with the principles behind the construction of the Siberian Solar Radio Telescope and the results of observations of the solar radio emission at decimetre wavelengths using this telescope.

  7. 100 M.a. remagnetization as a dating tool for deformation and cleavage in the Central High Atlas (Morocco)

    NASA Astrophysics Data System (ADS)

    Calvin, P.; Casas, A. M.; Villalain, J. J.; Moussaid, B.

    2015-12-01

    The High Atlas is an intracontinental chain developed as a result of the inversion of Mesozoic basins during the Cenozoic. Its structure is characterized by ENE-WSW tight anticlines limited by wide synclines. In the central sector of the chain, a pervasive tectonic foliation affects Jurassic limestones and marls. There is a controversy about the age of this tectonic foliation and its relationship with either a Late Jurassic or Cenozoic compressional events. The Jurassic carbonates of the Central High Atlas (CHA) show a widespread syntectonic remagnetization carried by magnetite and dated at 100 M.a. by comparing the paleomagnetic direction obtained by small circle intersection (SCI) method with the apparent polar wander path in NW Africa coordinates. Once the 100 M.a. paleomagnetic direction is known, the obtained paleomagnetic direction remagnetization in each site can be used to restore the bedding at the time of the acquisition. In each site, the in situ mean direction of remagnetization defines a small circle (SC) in a complete rotation about the strike of the bedding. This SC gives all possible original directions of the magnetization and if all deformation events are coaxial and without vertical rotation (as it is the case in the study area) all the SC contains the 100 M.a. expected direction. Then, the angle between the 100 M.a. and the in situ paleomagnetic direction along the small circle, equals the angle of rotation of each bed to ultimately find their dips (paleodip) at 100 M.a. Since the consistency between folding and cleavage can be examined from their geometrical relationship, and bedding can be restored to its 100 M.a. geometry (paleodips obtained from paleomagnetic analysis), two end-members exist for the different examined folds: (i) cleavage is consistent with present-day bedding orientation and attitude of bedding was acquired after remagnetization (Cenozoic cleavage), (ii) cleavage is consistent with bedding, but dip of bedding was acquired

  8. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    DeBoer, David R.; Welch, William J.; Dreher, John; Tarter, Jill; Blitz, Leo; Davis, Michael; Fleming, Matt; Bock, Douglas; Bower, Geoffrey; Lugten, John; Girmay-Keleta, G.; D'Addario, Larry R.; Harp, Gerry R.; Ackermann, Rob; Weinreb, Sander; Engargiola, Greg; Thornton, Doug; Wadefalk, Niklas

    2004-10-01

    The Allen Telescope Array, originally called the One Hectare Telescope (1hT) [1] will be a large array radio telescope whose novel characteristics will be a wide field of view (3.5 deg-GHz HPBW), continuous frequency coverage of 0.5 - 11 GHz, four dual-linear polarization output bands of 100 MHz each, four beams in each band, two 100 MHz spectral correlators for two of the bands, and hardware for RFI mitigation built in. Its scientific motivation is for deep SETI searches and, at the same time, a variety of other radio astronomy projects, including transient (e.g. pulsar) studies, HI mapping of the Milky Way and nearby galaxies, Zeeman studies of the galactic magnetic field in a number of transitions, mapping of long chain molecules in molecular clouds, mapping of the decrement in the cosmic background radiation toward galaxy clusters, and observation of HI absorption toward quasars at redshifts up to z=2. The array is planned for 350 6.1-meter dishes giving a physical collecting area of about 10,000 square meters. The large number of components reduces the price with economies of scale. The front end receiver is a single cryogenically cooled MIMIC Low Noise Amplifier covering the whole band. The feed is a wide-band log periodic feed of novel design, and the reflector system is an offset Gregorian for minimum sidelobes and spillover. All preliminary and critical design reviews have been completed. Three complete antennas with feeds and receivers are under test, and an array of 33 antennas is under construction at the Hat Creek Radio Observatory for the end of 2004. The present plan is to have a total of about 200 antennas completed by the summer of 2006 and the balance of the array finished before the end of the decade.

  9. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Schloerb, F. Peter

    2008-07-01

    This paper, presented on behalf of the Large Millimeter Telescope (LMT) project team, describes the status and near-term plans for the telescope and its initial instrumentation. The LMT is a bi-national collaboration between Mexico and the USA, led by the Instituto Nacional de Astrofísica, Optica y Electronica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50m-diameter millimeter-wave radio telescope. Construction activities are nearly complete at the 4600m LMT site on the summit of Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. First-light at centimeter wavelengths on astronomical sources was obtained in November 2006. Installation of precision surface segments for millimeter-wave operation is underway, with the inner 32m-diameter of the surface now complete and ready to be used to obtain first light at millimeter wavelengths in 2008. Installation of the remainder of the reflector will continue during the next year and be completed in 2009 for final commissioning of the antenna. The full LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  10. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Hughes, D. H.; Schloerb, F. P.; LMT Project Team

    2009-05-01

    This paper, presented on behalf of the Large Millimeter Telescope (LMT) project team, describes the status and near-term plans for the telescope and its initial instrumentation. The LMT is a bi-national collaboration between México and the USA, led by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50 m diameter millimeter-wave radio telescope. Construction activities are nearly complete at the LMT site, at an altitude of ˜ 4600 m on the summit of Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. First-light at centimeter wavelengths on astronomical sources was obtained in November 2006. Installation of precision surface segments for millimeter-wave operation is underway, with the inner 32 m diameter of the surface now complete and ready to be used to obtain first-light at millimeter wavelengths in 2008. Installation of the remainder of the reflector will continue during the next year and be completed in 2009 for final commissioning of the antenna. The full LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  11. The Effects of Different Warm-up Volumes on the 100-m Swimming Performance: A Randomized Crossover Study.

    PubMed

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Viana, João L; Teixeira, Ana M; Marinho, Daniel A

    2015-11-01

    The aim of this study was to compare the effect of 3 different warm-up (WU) volumes on 100-m swimming performance. Eleven male swimmers at the national level completed 3 time trials of 100-m freestyle on separate days and after a standard WU, a short WU (SWU), or a long WU (LWU) in a randomized sequence. All of them replicated some usual sets and drills, and the WU totaled 1,200 m, the SWU totaled 600 m, and the LWU totaled 1,800 m. The swimmers were faster after the WU (59.29 seconds; confidence interval [CI] 95%, 57.98-60.61) and after the SWU (59.38 seconds; CI 95%, 57.92-60.84) compared with the LWU (60.18 seconds; CI 95%, 58.53-61.83). The second 50-m lap after the WU was performed with a higher stroke length (effect size [ES] = 0.77), stroke index (ES = 1.26), and propelling efficiency (ES = 0.78) than that after the SWU. Both WU and SWU resulted in higher pretrial values of blood lactate concentrations [La] compared with LWU (ES = 1.58 and 0.74, respectively), and the testosterone:cortisol levels were increased in WU compared with LWU (ES = 0.86). In addition, the trial after WU caused higher [La] (ES ≥ 0.68) and testosterone:cortisol values compared with the LWU (ES = 0.93). These results suggest that an LWU could impair 100-m freestyle performance. The swimmers showed higher efficiency during the race after a 1200-m WU, suggesting a favorable situation. It highlighted the importance of the [La] and hormonal responses to each particular WU, possibly influencing performance and biomechanical responses during a 100-m race. PMID:26506059

  12. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2011-01-01

    The science of astronomy depends on modern-day temples called telescopes. Astronomers make pilgrimages to remote mountaintops where these large, intricate, precise machines gather light that rains down from the Universe. Bit, since Earth is a bright, turbulent planet, our finest telescopes are those that have been launched into the dark stillness of space. These space telescopes, named after heroes of astronomy (Hubble, Chandra, Spitzer, Herschel), are some of the best ideas our species has ever had. They show us, over 13 billion years of cosmic history, how galaxies and quasars evolve. They study planets orbiting other stars. They've helped us determine that 95% of the Universe is of unknown composition. In short, they tell us about our place in the Universe. The next step in this journey is the James Webb Space Telescope, being built by NASA, Europe, and Canada for a 2018 launch; Webb will reveal the first galaxies that ever formed.

  13. SNAP telescope

    SciTech Connect

    Lampton, Michael L.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro, R.; Ealet, A.; Ellis,R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar,A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland,S.E.; Huterer, D.; Karcher, A.; Kim, A.G.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder, E.V.; Loken,S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi,H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto,E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  14. Designing power supplies for 2.5 MV, 100 mADC for Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Reginato, L. L.; Ayers, J.; Johnson, R.; Peters, C.; Stevenson, R.

    1997-02-01

    Renewed interest by several major university medical centers (UCSF, Stanford, U. of Washington, Loma Linda) in conducting Boron Neutron Capture Therapy (BNCT) led to the investigation of generating a continuous proton beam with 2.5 MeV of energy and up to 100 mA of current. The power supply for the Heavy Ion Injector (Adam) at LBNL operated at lower currents from its completion in 1970 until it was shut down in 1993. This power supply consisted of 64 stages of shunt-fed multipliers (Dynamitron) and seemed to offer an attractive first step for BNCT experiments. The Adam power supply was reactivated in June of 1995 and extensive tests were performed to establish its maximum capability. After the tests were completed, it became clear that 100 mA was well beyond the capability of this power source and that even 10-20 mA would require extensive modifications. After some initial conceptual design studies, it was decided that the air-coupled transformer with multiple secondaries warranted some serious investigations and could offer the best chance for achieving 100 mA.

  15. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Hughes, David H.; Jáuregui Correa, Juan-Carlos; Schloerb, F. Peter; Erickson, Neal; Romero, Jose Guichard; Heyer, Mark; Reynoso, David Huerta; Narayanan, Gopal; Perez-Grovas, Alfonso Serrano; Souccar, Kamal; Wilson, Grant; Yun, Min

    2010-07-01

    This paper describes the current status of the Large Millimeter Telescope (LMT), the near-term plans for the telescope and the initial suite of instrumentation. The LMT is a bi-national collaboration between Mexico and the USA, led by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50m-diameter millimeter-wave radio telescope. Construction activities are nearly complete at the 4600m LMT site on the summit of Volcán Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. The commissioning and scientific operation of the LMT is divided into two major phases. As part of phase 1, the installation of precision surface segments for millimeter-wave operation within the inner 32m-diameter of the LMT surface is now complete. The alignment of these surface segments is underway. The telescope (in its 32-m diameter format) will be commissioned later this year with first-light scientific observations at 1mm and 3mm expected in early 2011. In phase 2, we will continue the installation and alignment of the remainder of the reflector surface, following which the final commissioning of the full 50-m LMT will take place. The LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  16. The Greenland Telescope

    NASA Astrophysics Data System (ADS)

    Grimes, Paul; Blundell, Raymond

    2012-09-01

    In the spring of 2010, the Academia Sinica Institute of Astronomy and Astrophysics, and the Smithsonian Astrophysical Observatory, acquired the ALMA North America prototype antenna - a state-of-the-art 12-m diameter dish designed for submillimeter astronomy. Together with the MIT-Haystack Observatory and the National Radio Astronomy Observatory, the plan is to retrofit this antenna for cold-weather operation and equip it with a suite of instruments designed for a variety of scientific experiments and observations. The primary scientific goal is to image the shadow of the Super-Massive Black Hole in M87 in order to test Einstein’s theory of relativity under extreme gravity. This requires the highest angular resolution, which can only be achieved by linking this antenna with others already in place to form a telescope almost the size of the Earth. We are therefore developing plans to install this antenna at the peak of the Greenland ice-sheet. This location will produce an equivalent North-South separation of almost 9,000 km when linked to the ALMA telescope in Northern Chile, and an East-West separation of about 6,000 km when linked to SAO and ASIAA’s Submillimeter Array on Mauna Kea, Hawaii, and will provide an angular resolution almost 1000 times higher than that of the most powerful optical telescopes. Given the quality of the atmosphere at the proposed telescope location, we also plan to make observations in the atmospheric windows at 1.3 and 1.5 THz. We will present plans to retrofit the telescope for cold-weather operation, and discuss potential instrumentation and projected time-line.

  17. Radio outburst of BL Lacertae

    NASA Astrophysics Data System (ADS)

    Buemi, C. S.; Leto, P.; Trigilio, C.; Umana, G.; Giroletti, M.; Orienti, M.; Raiteri, C. M.; Villata, M.; Bach, U.

    2013-04-01

    We report on extremely high radio flux of BL Lacertae at 43 and 8 GHz. Observations at 43 GHz with the 32 m radio telescope in Noto (Italy) revealed a flux density of 10.5 +/- 0.2 Jy on 2013 April 10.65, while observations at 8 GHz with the 32 m radio telescope in Medicina (Italy) detected a flux density of 8.2 +/- 0.7 Jy on April 12.22. These extremely high radio fluxes show that the radio activity likely correlated to the strong optical, near-infrared, and gamma-ray activity of 2011-2012 (see ATels #4028, #4031, #4155, #4271, #4277, #4349, #4565, #4600), and X-ray activity of late 2012 (ATels #4557, #4627), is far to be exhausted.

  18. Observations of Solar Radio Transients

    NASA Astrophysics Data System (ADS)

    Paige, Giorla

    2011-05-01

    A low frequency radio telescope has been recently been constructed on the campus of the The College of New Jersey (TCNJ) and has begun conducting observations at 20MHz as part of NASA'a Radio Jove program. This instrument is capable of observations of solar radio emission including strong prompt radio emission associated with solar burst events. We will discuss solar observations conducted with this instrument as well as an effort to conduct coincident observations with the Eight-meter-wavelength Transient Array (ETA) and the Long Wavelength Array (LWA).

  19. Long-range high-speed visible light communication system over 100-m outdoor transmission utilizing receiver diversity technology

    NASA Astrophysics Data System (ADS)

    Wang, Yiguang; Huang, Xingxing; Shi, Jianyang; Wang, Yuan-quan; Chi, Nan

    2016-05-01

    Visible light communication (VLC) has no doubt become a promising candidate for future wireless communications due to the increasing trends in the usage of light-emitting diodes (LEDs). In addition to indoor high-speed wireless access and positioning applications, VLC usage in outdoor scenarios, such as vehicle networks and intelligent transportation systems, are also attracting significant interest. However, the complex outdoor environment and ambient noise are the key challenges for long-range high-speed VLC outdoor applications. To improve system performance and transmission distance, we propose to use receiver diversity technology in an outdoor VLC system. Maximal ratio combining-based receiver diversity technology is utilized in two receivers to achieve the maximal signal-to-noise ratio. A 400-Mb/s VLC transmission using a phosphor-based white LED and a 1-Gb/s wavelength division multiplexing VLC transmission using a red-green-blue LED are both successfully achieved over a 100-m outdoor distance with the bit error rate below the 7% forward error correction limit of 3.8×10-3. To the best of our knowledge, this is the highest data rate at 100-m outdoor VLC transmission ever achieved. The experimental results clearly prove the benefit and feasibility of receiver diversity technology for long-range high-speed outdoor VLC systems.

  20. Swimming Stroke Mechanical Efficiency and Physiological Responses of 100-m Backstroke with and without the use of paddles.

    PubMed

    Messinis, Spilios; Beidaris, Nikos; Messinis, Spyros; Soultanakis, Helen; Botonis, Petros; Platanou, Theodoros

    2014-03-27

    The use of swimming aids during training contributes to greater swimming efficiency by the improvement of the swimming specific power of the athlete. The purpose of this study was to compare the swimming stroke technical characteristics and the physiological responses of swimming 100-m backstroke, with and without the use of paddles at maximum and sub-maximum intensities at the same swimming speed. Eight swimmers competing at the national level participated in this study. The measurements took place at 4 different sessions. At every session, each participant swam individually one 100-m backstroke swimming trial with or without paddles at the same speed and two levels of intensity (100% and 85% of maximum speed). The results revealed lower stroke length, greater stroke number and gliding length without the use of swimming paddles at both intensities. Blood lactate concentration (10.03±2.96 vs. 5.85±2.23 mmol/l) and Rating of Perceived Exertion (17.43±2.07 vs. 12±2.82) were greater without the use of swimming paddles only at 100% of maximum speed. Thus, swimming backstroke with paddles compared to unaided swimming, at a similar speed, showed a greater efficiency at maximal but not at sub-maximal intensity. PMID:25031685

  1. Swimming Stroke Mechanical Efficiency and Physiological Responses of 100-m Backstroke with and without the use of paddles

    PubMed Central

    Messinis, Spilios; Beidaris, Nikos; Messinis, Spyros; Soultanakis, Helen; Botonis, Petros; Platanou, Theodoros

    2014-01-01

    The use of swimming aids during training contributes to greater swimming efficiency by the improvement of the swimming specific power of the athlete. The purpose of this study was to compare the swimming stroke technical characteristics and the physiological responses of swimming 100-m backstroke, with and without the use of paddles at maximum and sub-maximum intensities at the same swimming speed. Eight swimmers competing at the national level participated in this study. The measurements took place at 4 different sessions. At every session, each participant swam individually one 100-m backstroke swimming trial with or without paddles at the same speed and two levels of intensity (100% and 85% of maximum speed). The results revealed lower stroke length, greater stroke number and gliding length without the use of swimming paddles at both intensities. Blood lactate concentration (10.03±2.96 vs. 5.85±2.23 mmol/l) and Rating of Perceived Exertion (17.43±2.07 vs. 12±2.82) were greater without the use of swimming paddles only at 100% of maximum speed. Thus, swimming backstroke with paddles compared to unaided swimming, at a similar speed, showed a greater efficiency at maximal but not at sub-maximal intensity. PMID:25031685

  2. Infrared telescope

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Hendricks, J. B.

    1985-01-01

    The development of the Infrared Telescope for Spacelab 2 is discussed. The design, development, and testing required to interface a stationary superfluid helium dewar with a scanning cryostate capable of operating in the zero-g environment in the space shuttle bay is described.

  3. Telescopic hindsight

    NASA Astrophysics Data System (ADS)

    Cox, Laurence

    2014-08-01

    In reply to the physicsworld.com blog post "Cosmic blunders that have held back science" (2 June, http://ow.ly/xwC7C), about an essay by the astronomer Avi Loeb in which he criticized, among others, his Harvard University predecessor Edward Pickering, who claimed in 1909 that telescopes had reached their optimal size.

  4. Selecting Your First Telescope.

    ERIC Educational Resources Information Center

    Harrington, Sherwood

    1982-01-01

    Designed for first-time telescope purchasers, provides information on how a telescope works; major telescope types (refractors, reflectors, compound telescopes); tripod, pier, altazimuth, and equatorial mounts; selecting a telescope; visiting an astronomy club; applications/limitations of telescope use; and tips on buying a telescope. Includes a…

  5. The Radio JOVE Project

    NASA Astrophysics Data System (ADS)

    Garcia, L.; Thieman, J.; Higgins, C.

    1999-09-01

    Radio JOVE is an interactive educational activity which brings the radio sounds of Jupiter and the Sun to students, teachers, and the general public. This is accomplished through the construction of a simple radio telescope kit and the use of a real-time radio observatory on the Internet. Our website (http://radiojove.gsfc.nasa.gov/) will contain science information, instruction manuals, observing guides, and education resources for students and teachers. Our target audience is high school science classes, but subjects can be tailored to college undergraduate physics and astronomy courses or even to middle school science classes. The goals of the project are: 1) Educate people about planetary and solar radio astronomy, space physics, and the scientific method 2) Provide teachers and students with a hands-on radio astronomy exercise as a science curriculum support activity by building and using a simple radio telescope receiver/antenna kit 3) Create the first ever online radio observatory which provides real-time data for those with internet access 4) Allow interactions among participating schools by facilitating exchanges of ideas, data, and observing experiences. Our current funding will allow us to impact 100 schools by partially subsidizing their participation in the program. We expect to expand well beyond this number as publicity and general interest increase. Additional schools are welcome to fully participate, but we will not be able to subsidize their kit purchases. We hope to make a wide impact among the schools by advertising through appropriate newsletters, space grant consortia, the INSPIRE project (http://image.gsfc.nasa.gov/poetry/inspire/), electronic links, and science and education meetings. We would like to acknoledge support from the NASA/GSFC Director's Discretionary Fund, the STScI IDEAS grant program and the NASA/GSFC Space Science Data Operations Office.

  6. Study on fault diagnose expert system for large astronomy telescope

    NASA Astrophysics Data System (ADS)

    Liu, Jia-jing; Luo, Ming-Cheng; Tang, Peng-yi; Wu, Wen-qing; Zhang, Guang-yu; Zhang, Hong-fei; Wang, Jian

    2014-08-01

    The development of astronomical techniques and telescopes currently entered a new vigorous period. The telescopes have trends of the giant, complex, diversity of equipment and wide span of control despite of optical, radio space telescopes. That means, for telescope observatory, the control system must have these specifications: flexibility, scalability, distributive, cross-platform and real-time, especially the fault locating and fault processing is more important when fault or exception arise. Through the analysis of the structure of large telescopes, fault diagnosis expert system of large telescope based on the fault tree and distributed log service is given.

  7. Remote access and operation of telescopes by the scientific users

    NASA Astrophysics Data System (ADS)

    Edwards, P. G.; Amy, S.; Brodrick, D.; Carretti, E.; Hoyle, S.; Indermuehle, B.; McConnell, D.; Mader, S.; Mirtschin, P.; Preisig, B.; Smith, M.; Stevens, J.; Wark, R.; Wieringa, M.; Wu, X.

    2014-08-01

    The Australia Telescope National Facility operates three radio telescopes: the Parkes 64m Telescope, the Australia Telescope Compact Array (ATCA), and the Mopra 22m Telescope. Scientific operation of all these is conducted by members of the investigating teams rather than by professional operators. All three can now be accessed and controlled from any location served by the internet, the telescopes themselves being unattended for part or all of the time. Here we describe the rationale, advantages, and means of implementing this operational model.

  8. Discovery of megaparsec-scale, low surface brightness nonthermal emission in merging galaxy clusters using the green bank telescope

    SciTech Connect

    Farnsworth, Damon; Rudnick, Lawrence; Brown, Shea; Brunetti, Gianfranco

    2013-12-20

    We present results from a study of 12 X-ray bright clusters at 1.4 GHz with the 100 m Green Bank Telescope. After subtraction of point sources using existing interferometer data, we reach a median (best) 1σ rms sensitivity level of 0.01 (0.006) μJy arcsec{sup –2}, and find a significant excess of diffuse, low surface brightness emission in 11 of 12 Abell clusters observed. We also present initial results at 1.4 GHz of A2319 from the Very Large Array. In particular, we find: (1) four new detections of diffuse structures tentatively classified as two halos (A2065, A2069) and two relics (A2067, A2073); (2) the first detection of the radio halo in A2061 at 1.4 GHz, which qualifies this as a possible ultra-steep spectrum halo source with a synchrotron spectral index of α ∼ 1.8 between 327 MHz and 1.4 GHz; (3) a ∼2 Mpc radio halo in the sloshing, minor-merger cluster A2142; (4) a >2× increase of the giant radio halo extent and luminosity in the merging cluster A2319; (5) a ∼7× increase to the integrated radio flux and >4× increase to the observed extent of the peripheral radio relic in A1367 to ∼600 kpc, which we also observe to be polarized on a similar scale; (6) significant excess emission of ambiguous nature in three clusters with embedded tailed radio galaxies (A119, A400, A3744). Our radio halo detections agree with the well-known X-ray/radio luminosity correlation, but they are larger and fainter than current radio power correlation studies would predict. The corresponding volume-averaged synchrotron emissivities are 1-2 orders of magnitude below the characteristic value found in previous studies. Some of the halo-like detections may be some type of previously unseen, low surface brightness radio halo or blend of unresolved shock structures and sub-Mpc-scale turbulent regions associated with their respective cluster merging activity. Four of the five tentative halos contain one or more X-ray cold fronts, suggesting a possible connection between gas

  9. FOREGROUND PREDICTIONS FOR THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM FROM MEASUREMENTS OF FAINT INVERTED RADIO SOURCES AT 5 GHz

    SciTech Connect

    Schneider, Michael D.; Becker, Robert H.; De Vries, Willem; White, Richard L.

    2012-05-10

    We present measurements of a population of matched radio sources at 1.4 and 5 GHz down to a flux limit of 1.5 mJy in 7 deg{sup 2} of the NOAO Deep Field South. We find a significant fraction of sources with inverted spectral indices that all have 1.4 GHz fluxes less than 10 mJy and are therefore too faint to have been detected and included in previous radio source count models that are matched at multiple frequencies. Combined with the matched source population at 1.4 and 5 GHz in 1 deg{sup -2} in the ATESP survey, we update models for the 5 GHz differential number counts and distributions of spectral indices in 5 GHz flux bins that can be used to estimate the unresolved point source contribution to the cosmic microwave background temperature anisotropies. We find a shallower logarithmic slope in the 5 GHz differential counts than in previously published models for fluxes {approx}< 100 mJy as well as larger fractions of inverted spectral indices at these fluxes. Because the Planck flux limit for resolved sources is larger than 100 mJy in all channels, our modified number counts yield at most a 10% change in the predicted Poisson contribution to the Planck temperature power spectrum. For a flux cut of 5 mJy with the South Pole Telescope and a flux cut of 20 mJy with the Atacama Cosmology Telescope, we predict a {approx}30% and {approx}10% increase, respectively, in the radio source Poisson power in the lowest frequency channels of each experiment relative to that predicted by previous models.

  10. Optical aperture synthesis with electronically connected telescopes.

    PubMed

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D

    2015-04-16

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths.

  11. Development of a 100 mJ, 5 Hz, flashlamp-pumped, Cr,Tm:YAG coherent lidar transmitter

    NASA Technical Reports Server (NTRS)

    Henderson, S.; Johnson, S.

    1993-01-01

    A contract to develop a 100 mJ, 5 Hz, flashlamp-pumped Cr,Tm:YAG coherent lidar transmitter has been awarded to Coherent Technologies, Inc. (CTI). The lidar transmitter will operate at an eyesafe wavelength of 2.01 microns. The development complements work being performed under an SBIR Phase II with Electro-Optics Technology (EOT). EOT is developing continuous wave, low and medium power Tm:YAG oscillators of a unique design. One of the low power oscillators will be used as the injection seeder/local oscillator in the CIT lidar transmitter. The lidar transmitter will require the addition of a receiver section. Once completed, the lidar will be used in atmospheric performance studies, allowing comparison with that of the more mature CO2 lidar technology. The focus of current research and plans for next year are presented.

  12. Acceleration of 100 mA of H{sup {minus}} in a single channel electrostatic quadrupole accelerator

    SciTech Connect

    Kwan, J.W.; Ackerman, G.D.; Chan, C.F.; Cooper, W.S.; de Vries, G.J.; Steele, W.F.; Stuart, M.E.; Vella, M.C.; Wells, R.P.; Inoue, T.; Okumura, Y.; Mizuno, M.

    1995-07-01

    Neutral beams for the next generation tokamaks will be based on multiampere negative ion beams with a beam energy of about 1.0 MeV and pulse lengths of a thousand seconds. High intensity dc beams at these levels of beam energy will require extensive development in electrostatic accelerators. At Lawrence Berkeley Laboratory, a two-module electrostatic quadrupole (ESQ) accelerator was built to accelerate ions to 200 keV. In this experiment, up to 100 mA of H{sup {minus}} beam current was obtained from a Japan Atomic Energy Research Institute cesiated volume source using a multiaperture preaccelerator which merged 19 beamlets into a single circular beam at the entrance to the ESQ accelerator. The H{sup {minus}} beam was accelerated by the ESQ to accelerate 200 keV without any significant beam loss or emittance growth. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  13. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    NASA Astrophysics Data System (ADS)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  14. VO2 Kinetics in All-out Arm Stroke, Leg Kick and Whole Stroke Front Crawl 100-m Swimming.

    PubMed

    Rodríguez, F A; Lätt, E; Jürimäe, J; Maestu, J; Purge, P; Rämson, R; Haljaste, K; Keskinen, K L; Jürimäe, T

    2016-03-01

    The VO2 response to extreme-intensity exercise and its relationship with sports performance are largely unexplored. This study investigated the pulmonary VO2 kinetics during all-out 100-m front crawl whole stroke swimming (S), arm stroke (A) and leg kick (L). 26 male and 10 female competitive swimmers performed an all-out S trial followed by A and L of equal duration in random order. Breath-by-breath VO2 was measured using a snorkel attached to a portable gas analyzer. Mean (±SD) primary component parameters and peak blood lactate (Lapeak) during S, A, and L were, respectively: time delay (s), 14.2 ± 4.7, 14.3 ± 4.5, 15.6 ± 5.1; amplitude (ml·kg(-1)·min(-1)), 46.8 ± 6.1, 37.3 ± 6.9, 41.0 ± 4.7; time constant (τ, s): 9.2 ± 3.2, 12.4 ± 4.7, 10.1 ± 3.2; Lapeak (mmol·l(-1)), 6.8 ± 3.1, 6.3 ± 2.5, 7.9 ± 2.8. During A and L respectively, 80% and 87% of amplitude in S was reached, whereas A+L were 68% greater than in S. 100-m performance was associated to shorter cardiodynamic phase and greater VO2 amplitude and Lapeak (accounting up to 61% of performance variance), but not to τ. We conclude that (i) VO2 gain was proportional to exercise intensity and muscle mass involved, (ii) kicking is metabolically less efficient, and (iii) the main limiting factor of peak VO2 appears to be O2 delivery and not muscle extraction. PMID:26575404

  15. VO2 Kinetics in All-out Arm Stroke, Leg Kick and Whole Stroke Front Crawl 100-m Swimming.

    PubMed

    Rodríguez, F A; Lätt, E; Jürimäe, J; Maestu, J; Purge, P; Rämson, R; Haljaste, K; Keskinen, K L; Jürimäe, T

    2016-03-01

    The VO2 response to extreme-intensity exercise and its relationship with sports performance are largely unexplored. This study investigated the pulmonary VO2 kinetics during all-out 100-m front crawl whole stroke swimming (S), arm stroke (A) and leg kick (L). 26 male and 10 female competitive swimmers performed an all-out S trial followed by A and L of equal duration in random order. Breath-by-breath VO2 was measured using a snorkel attached to a portable gas analyzer. Mean (±SD) primary component parameters and peak blood lactate (Lapeak) during S, A, and L were, respectively: time delay (s), 14.2 ± 4.7, 14.3 ± 4.5, 15.6 ± 5.1; amplitude (ml·kg(-1)·min(-1)), 46.8 ± 6.1, 37.3 ± 6.9, 41.0 ± 4.7; time constant (τ, s): 9.2 ± 3.2, 12.4 ± 4.7, 10.1 ± 3.2; Lapeak (mmol·l(-1)), 6.8 ± 3.1, 6.3 ± 2.5, 7.9 ± 2.8. During A and L respectively, 80% and 87% of amplitude in S was reached, whereas A+L were 68% greater than in S. 100-m performance was associated to shorter cardiodynamic phase and greater VO2 amplitude and Lapeak (accounting up to 61% of performance variance), but not to τ. We conclude that (i) VO2 gain was proportional to exercise intensity and muscle mass involved, (ii) kicking is metabolically less efficient, and (iii) the main limiting factor of peak VO2 appears to be O2 delivery and not muscle extraction.

  16. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Dreher, J.

    2006-12-01

    The ATA will be a massively parallel array of 350 6-m antennas operating from 0.5 GHz to 11.3 GHz. It will be a superb instrument for both surveys and for imaging large, complex sources. By exploiting recent drops in the cost of electronics and by adopting the simplest possible design, the cost of the ATA will be significantly less than that of existing 100-m class telescopes. The ATA offers a very large primary field of view that may be imaged with a spectralline correlator and, at the same time, be studied with 16 dual-polarization pencil beams. The ATA also will have unique capabilities for very high fidelity imaging and for RFI excision. Central to the design is a high performance, yet cost effective, antenna with a Gregorian reflector system, connected to a novel ultrawide- band, log-periodic feed. Analog fiber is used to eliminate most of the electronics that are located at the antennas in more conventional arrays, allowing for a massively parallel signal processing design that offers enormous flexibility. A 42-element version of the ATA will begin observing in 2006.

  17. Exploring the nature of radio relics and halos in galaxy clusters through GHz radio observations

    NASA Astrophysics Data System (ADS)

    Trasatti, M.

    2014-11-01

    Clusters of galaxies are the largest gravitationally bound systems in the Universe. A fraction of them hosts diffuse Mpc-scale synchrotron sources (referred to as radio relics and radio halos) not related to any discrete cluster member, but rather to the diffuse medium. The emission from these sources helps in unambiguously prove the presence of weak magnetic fields and non-thermal plasma in the intra-cluster medium (ICM) of galaxy clusters, coexisting with the hot thermal component emitting X-rays. The radio emitting electrons, given their relatively short lifetime respect to the extent of these sources, must have undergone some form of acceleration. It is widely believed that they are connected to the most energetic phenomena in the Universe, mergers between clusters, during which shocks and turbulence may develop in the ICM leading eventually to the acceleration of particles through Fermi mechanisms. Both phenomena are, indeed, mostly observed in galaxy clusters with a disturbed dynamical state. However, the details of the acceleration mechanisms are still greatly debated. According to the proposed models, the currently known radio relics and halos are the most energetic cases, for which relatively high-frequency observations are necessary in order to test the models expectations. However, for most of them the highest studied frequency is 1.4 GHz. In this thesis we studied the properties of this kind of sources at frequencies > 1 GHz. We mainly focused on two clusters, Abell 1656 (best known as the Coma cluster) and Abell 2256, known to possess both a radio relic and a radio halo. We observed a wide field on the Coma cluster, covering both the peripheral relic and the central halo, with the Effelsberg 100-m telescope at 1400 MHz. Moreover, the Coma relic field and the Coma halo field have been covered separately with respectively a 3-pointing and a 9-pointing mosaics performed with the WSRT at 2273 MHz. We have observed the cluster Abell 2256 with the Effelsberg

  18. Radio astronomy with very large arrray.

    PubMed

    Hjellming, R M; Bignell, R C

    1982-06-18

    The construction of the Very Large Array of radio telescopes has been completed, and this new research instrument is now being used to make radio images of astronomical objects with a resolution comparable to or better than that of ground-based optical telescopes. The role of the Very Large Array in current and future research is discussed both in principle and in terms of a sample of observing projects.

  19. Radio astrometry from the Moon

    NASA Technical Reports Server (NTRS)

    Linfield, R. P.

    1992-01-01

    An array of three radio telescopes on the Moon, separated by 100-1000 km, could measure the positions of compact radio sources 50-100 times more accurately than can be done on Earth. These measurements would form an all-sky reference frame of extreme precision (5-10 micro-arcsec) and stability, with applications to the dynamics of the solar system, our galaxy, and nearby galaxies.

  20. Radio Journalism.

    ERIC Educational Resources Information Center

    Bittner, John R.; Bittner, Denise A.

    This book, a how-to-do-it guide for the novice and the professional alike, deals with several aspects of radio journalism: producing documentaries, preparing and announcing radio news, ethics and responsibility, regulation of radio journalism, and careers. It traces the history and growth of radio news, shows its impact on the public, and…

  1. 100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam

    NASA Astrophysics Data System (ADS)

    Oto, Takao; Banal, Ryan G.; Kataoka, Ken; Funato, Mitsuru; Kawakami, Yoichi

    2010-11-01

    Ultraviolet light sources, represented by excimer and mercury lamps, are currently used for various applications, including water purification/sterilization, biotechnology, photolithography and surface modification. However, they have the disadvantages of limited portability, low emission efficiency and the presence of harmful constituents. Finding a compact, efficient and environmentally friendly alternative ultraviolet light source is therefore of considerable technological interest. Aluminium-nitride-based semiconductors show promise as materials for this purpose, but because of difficulties in controlling electronic conductivity, in light-emitting diodes are hampered by low external quantum efficiencies. Here, we use an electron-beam pumping technique, demonstrating an output of 100 mW and a record power efficiency of ~40% from AlxGa1-xN/AlN quantum wells emitting at ~240 nm. This achievement is attributed to carrier confinement within the high-quality quantum wells, as well as the appropriate design of sample structures for electron-beam pumping, and may be a milestone in the path to realizing next-generation ultraviolet light sources with great ecological and economic benefits.

  2. Performance and energy costs associated with scaling infrared heater arrays for warming field plots from 1 to 100 m

    SciTech Connect

    Kimball B. A.; Lewin K.; Conley, M. M.

    2012-04-01

    To study the likely effects of global warming on open-field vegetation, hexagonal arrays of infrared heaters are currently being used for low-stature (<1 m) plants in small ({le}3 m) plots. To address larger ecosystem scales, herein we show that excellent uniformity of the warming can be achieved using nested hexagonal and rectangular arrays. Energy costs depend on the overall efficiency (useable infrared energy on the plot per electrical energy in), which varies with the radiometric efficiency (infrared radiation out per electrical energy in) of the individual heaters and with the geometric efficiency (fraction of thermal radiation that falls on useable plot area) associated with the arrangement of the heaters in an array. Overall efficiency would be about 26% at 4 ms{sup -1} wind speed for a single hexagonal array over a 3-m-diameter plot and 67% for a 199-hexagon honeycomb array over a 100-m-diameter plot, thereby resulting in an economy of scale.

  3. Comets at radio wavelengths

    NASA Astrophysics Data System (ADS)

    Crovisier, Jacques; Bockelée-Morvan, Dominique; Colom, Pierre; Biver, Nicolas

    2016-11-01

    Comets are considered as the most primitive objects in the Solar System. Their composition provides information on the composition of the primitive solar nebula, 4.6 Gyr ago. The radio domain is a privileged tool to study the composition of cometary ices. Observations of the OH radical at 18 cm wavelength allow us to measure the water production rate. A wealth of molecules (and some of their isotopologues) coming from the sublimation of ices in the nucleus have been identified by observations in the millimetre and submillimetre domains. We present an historical review on radio observations of comets, focusing on the results from our group, and including recent observations with the Nançay radio telescope, the IRAM antennas, the Odin satellite, the Herschel space observatory, ALMA, and the MIRO instrument aboard the Rosetta space probe. xml:lang="fr"

  4. The Radio JOVE Project - An Inexpensive Introduction to Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Higgins, C.

    2004-12-01

    The Radio JOVE project began over six years ago as an education-centered program to inspire secondary school students' interest in space science through hands-on radio astronomy. The project was begun on small grants from the Goddard Space Flight Center Director's Discretionary Fund, the Initiative to Develop Education through Astronomy and Space Science (IDEAS) program, and the American Astronomical Society. Students build a radio receiver and antenna kit capable of receiving Jovian, solar, and galactic emissions at a frequency of 20.1 MHz. More than 600 of these kits have been distributed to students and interested observers (ages 10 through adult) in over 30 countries. For those who are not comfortable building their own kit, the Radio JOVE project has made it possible to monitor real-time data and streaming audio online from professional radio telescopes in Florida (http://jupiter.kochi-ct.jp) and Hawaii http://jupiter.wcc.hawaii.edu/newradiojove/main.html). Freely downloadable software called Radio-Skypipe (http://radiosky.com) emulates a chart recorder to monitor ones own radio telescope or the telescopes of other observers worldwide who send out their data over the Internet. Inexpensive spectrographs have been developed for the professional telescopes in Hawaii and Florida and freely downloadable spectrograph display software is available to receive this research-quality data. We believe the amateur network data to be of value to the research community and would like to have students more directly connected to ongoing research projects to enhance their interest in participating. Results of the project and plans for the future will be highlighted.

  5. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.; Allen Telescope Array Team

    2010-01-01

    The ATA is a 42-element centimeter wavelength array located in Hat Creek, California and jointly operated by UC Berkeley Radio Astronomy Laboratory and the SETI Institute. Since the ATA dedication in Fall 2007, activities have been focused on commissioning the array, retrofitting a handful of components including the feed, developing an operations model, creation of pipeline processing for correlator imaging data, early science observations, and launching of the major surveys for which the telescope was built. The retrofit of the feed improves feed mechanical robustness as well as high frequency performance. Science programs launched include imaging radio transient and static sky surveys (ATATS and PiGSS), commensal SETI and transient surveys of the Galactic Center, targeted SETI observations of nearby stars, the Fly's Eye transient survey, broadband spectra of nearby star-forming galaxies, polarimetric observations of bright radio sources, observations of hydrogen in nearby galaxies and galaxy groups, molecular line observations in the Galaxy, and observations of Jupiter and the Moon. The baseline Square Kilometer Array (SKA) design, a large-N-small-diameter (LNSD) array with wide-band single-pixel feeds and an offset Gregorian antenna, bears a strong resemblance to the ATA. Additional ATA contributions to the SKA include configuration studies for LNSD arrays, the use of fiber optics for broadband data transmission, the use of flexible FPGA-based digital electronics, passive cooling of antennas, and implementation of commensal observing modes. The ATA is currently used for exploration of calibration and imaging algorithms necessary for the SKA. I will summarize current technical status and performance, the results from early science and surveys, and ATA contributions to SKA development.

  6. A Teaching Lab in Radio Astronomy

    ERIC Educational Resources Information Center

    Smith, Kirk R.; Cudaback, David D.

    1976-01-01

    Describes a study in which participants in a summer institute for secondary science teachers performed a series of experiments with a radio telescope. Concludes that a radio astronomy teaching facility would encourage students to use their own initiative and strategy in working with the scientific concepts involved. (MLH)

  7. Radio Map of the Andromeda Galaxy.

    PubMed

    Macleod, J M

    1964-07-24

    The University of Illinois radio telescope has resolved the 610.5 Mcy/sec disk component of radio emission from the large galaxy M 31 into several discrete concentrations. In two cases, these correspond to the crossing of the optical major axis by spiral arms. A spur of emission extends southeast from the galaxy near the minor axis.

  8. Green Bank (National Radio Astronomical Observatory)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Located in Green Bank, Pocahontas County, West Virginia. The site of the world's largest fully steerable radio telescope, which was under construction during 1999 and 2000. The National Radio Astronomy Observatory (NRAO) is a facility of the US National Science Foundation, and is operated under a cooperative agreement by Associated Universities, Inc. (AUI)....

  9. The Golden Years of Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Kellermann, Kenneth I.

    2016-01-01

    The 1960s were the Golden Years of Radio Astronomy. During this decade a new generation of young scientists discovered quasars, pulsars, the cosmic microwave background, cosmic masers, giant molecular clouds, radio source variability, superluminal motion, radio recombination lines, the rotation of Mercury and Venus, the Venus Greenhouse effect, Jupiter's radiation belts, and opened up the high redshift Universe. On the technical side, the 1960s saw the completion of the NRAO 140-ft and 300-ft radio telescopes, the Haystack, Arecibo and Parkes antennas, the Owens Valley Interferometer, the first practical demonstrations of aperture synthesis, VLBI, and CLEAN, the Cambridge 1-mile radio telescope, the most precise tests of GR light bending, and the introduction of the 4th test of GR. Following sessions at the recent IAU 29th General Assembly on the "Golden Years of Radio Astronomy," we will discuss the circumstances surrounding these transformational discoveries which changed the course of modern astronomy.

  10. Neutrino telescopes

    SciTech Connect

    Costantini, H.

    2012-09-15

    Neutrino astrophysics offers a new possibility to observe our Universe: high-energy neutrinos, produced by the most energetic phenomena in our Galaxy and in the Universe, carry complementary (if not exclusive) information about the cosmos: this young discipline extends in fact the conventional astronomy beyond the usual electromagnetic probe. The weak interaction of neutrinos with matter allows them to escape from the core of astrophysical objects and in this sense they represent a complementary messenger with respect to photons. However, their detection on Earth due to the small interaction cross section requires a large target mass. The aim of this article is to review the scientific motivations of the high-energy neutrino astrophysics, the detection principles together with the description of a running apparatus, the experiment ANTARES, the performance of this detector with some results, and the presentation of other neutrino telescope projects.

  11. The Radio Jove Project: Citizen Science Contributes to Jupiter Decametric Radio Research

    NASA Astrophysics Data System (ADS)

    Thieman, J.; Higgins, C. A.; Sky, J.; Cecconi, B.; Garcia, L. N.

    2014-12-01

    The Radio Jove Project is a hands-on educational activity in which students, teachers, and the general public build a simple radio telescope, usually from a kit, to observe single frequency decameter wavelength radio emissions from Jupiter, the Sun, the galaxy, and the Earth. Regular monitoring of Jupiter and solar radio storms is typical, and Radio Jove amateur observations have improved in their scientific utility. Some observers have upgraded their equipment to make spectroscopic observations in the frequency band from 15-30 MHz. These observations can be particularly useful when made in conjunction with professional telescopes such as the Long Wavelength Array (LWA), the Nancay Decametric Array, the Ukrainian UTR-2 Radio Telescope, etc. The coming Juno mission to Jupiter will observe the radio emissions while in orbit at Jupiter and will benefit from the Earth-based perspective provided by frequent monitoring of the emissions. With these goals in mind work is now underway to provide simple methods of archiving the Radio Jove observations for use by the amateur and professional radio science community in scientifically useful and easily analyzed formats. The data will be ingested to both Radio Jove specific databases and to archives containing a variety of "waves" data. Methods are being developed to assure the scientific validity of contributed data such as certification of the observers. Amateur scientists have made overwhelming contributions to optical astronomy and we believe the same is possible within the radio astronomy community as well.

  12. Detection of Radio Transients from Supernovae

    NASA Astrophysics Data System (ADS)

    Schmitt, Christian

    2011-05-01

    A core-collapse supernova (SN) would produce an expanding shell of charged particles which interact with the surrounding magnetic field of the progenitor star producing a transient radio pulse. Approximately one supernova event per century is expected in a galaxy. The radio waves emitted are detectable by a new generation of low-frequency radio telescope arrays. We present details of an ongoing search for such events by the Eight-meter-wavelength Transient Array (ETA) and the Long Wavelength Array (LWA).

  13. CONSTRAINING RADIO EMISSION FROM MAGNETARS

    SciTech Connect

    Lazarus, P.; Kaspi, V. M.; Dib, R.; Champion, D. J.; Hessels, J. W. T.

    2012-01-10

    We report on radio observations of five magnetars and two magnetar candidates carried out at 1950 MHz with the Green Bank Telescope in 2006-2007. The data from these observations were searched for periodic emission and bright single pulses. Also, monitoring observations of magnetar 4U 0142+61 following its 2006 X-ray bursts were obtained. No radio emission was detected for any of our targets. The non-detections allow us to place luminosity upper limits of L{sub 1950} {approx}< 1.60 mJy kpc{sup 2} for periodic emission and L{sub 1950,single} {approx}< 7.6 Jy kpc{sup 2} for single pulse emission. These are the most stringent limits yet for the magnetars observed. The resulting luminosity upper limits together with previous results are discussed, as is the importance of further radio observations of radio-loud and radio-quiet magnetars.

  14. Radio Detection of Air Showers with LOFAR and AERA

    NASA Astrophysics Data System (ADS)

    Hörandel, Jörg R.

    Radio detection of extensive air showers is a new method to measure the properties of high-energy cosmic rays. Recent results are reviewed from the LOFAR radio telescope and the Auger Engineering Radio Array (AERA) at the Pierre Auger Observatory.

  15. Exploring the Dynamic Radio Sky

    NASA Astrophysics Data System (ADS)

    Mooley, Kunal P.; Hallinan, Gregg; Frail, Dale A.; Myers, Steven T.; Kulkarni, Shrinivas R.; Bourke, Stephen; Horesh, Assaf

    2015-01-01

    Most of what is currently known about slow radio transients (supernovae, gamma-ray bursts, tidal disruption events, stellar flares, etc.) has come via radio follow-up of objects identified by synoptic telescopes at optical, X-ray or gamma-ray wavelengths. However, with the ability to capture obscured, unbeamed and magnetically-driven phenomena, radio surveys offer unique discovery strong diagnostic for cosmic transients. For the first time, we are systematically exploring the dynamic radio sky on timescales between one day to several years using multi-epoch large surveys with the Karl G. Jansky Array (VLA). We have carried out surveys in the COSMOS deep field as well as wide fields like Stripe 82. I have developed a unique infrastructure for near-real-time calibration, imaging, transient search, transient vetting, rapid multiwavelength follow-up, and contemporaneous optical surveys to better characterize radio transient phenomena. A large part of my thesis includes the commissioning of a new observing mode at the VLA: On-The-Fly Mosaicking. This mode has significantly improved the survey efficiency of the VLA, and it is a driver for VLASS, the future all-sky survey planned with this telescope. Through our radio surveys we have discovered several fascinating transients that are unique to the radio. These surveys have established the VLA as an efficient transient discovery machine. My thesis has enormous implications for how to design efficient transient surveys for the next generation of radio interferometer facilities like ASKAP, MeerKAT, WSRT/Apertif and LOFAR. My work has also provided answers to key problems such as the rates of transients, demographics of variability of radio sources including AGN, and false-positive foreground for future searches for the radio counterparts of gravitational-wave (GW) sources.

  16. Highlighting the history of Japanese radio astronomy. 3: Early solar radio research at the Tokyo Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Nakajima, Hiroshi; Ishiguro, Masato; Orchiston, Wayne; Akabane, Kenji; Enome, Shinzo; Hayashi, Masa; Kaifu, Norio; Nakamura, Tsuko; Tsuchiya, Atsushi

    2014-03-01

    The radio astronomy group at the Tokyo Astronomical Observatory was founded in 1948 immediately after WWII, and decided to put its main research efforts into solar radio astronomy. The first radio telescope was completed in 1949 and started routine observations at 200 MHz. Since then, the group has placed its emphasis on observations at meter and decimeter wavelengths, and has constructed various kinds of radio telescopes and arrays operating at frequencies ranging from 60 to 800 MHz. In addition, radio telescopes operating at 3, 9.5 and 17 GMHz were constructed. In parallel with the observationally-based research, theoretical research on solar radio emission also was pursued. In this paper, we review the instrumental, observational and theoretical developments in solar radio astronomy at the Tokyo Astronomical Observatory in the important period from 1949 through to the 1960s.

  17. Radio Loud AGNs are Mergers

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco; Gilli, Roberto; Lotz, Jennifer M.; Norman, Colin

    2015-06-01

    We measure the merger fraction of Type 2 radio-loud and radio-quiet active galactic nuclei (AGNs) at z\\gt 1 using new samples. The objects have Hubble Space Telescope (HST) images taken with Wide Field Camera 3 (WFC3) in the IR channel. These samples are compared to the 3CR sample of radio galaxies at z\\gt 1 and to a sample of non-active galaxies. We also consider lower redshift radio galaxies with HST observations and previous generation instruments (NICMOS and WFPC2). The full sample spans an unprecedented range in both redshift and AGN luminosity. We perform statistical tests to determine whether the different samples are differently associated with mergers. We find that all (92%-14%+8%) radio-loud galaxies at z\\gt 1 are associated with recent or ongoing merger events. Among the radio-loud population there is no evidence for any dependence of the merger fraction on either redshift or AGN power. For the matched radio-quiet samples, only 38%-15+16 are merging systems. The merger fraction for the sample of non-active galaxies at z\\gt 1 is indistinguishable from radio-quiet objects. This is strong evidence that mergers are the triggering mechanism for the radio-loud AGN phenomenon and the launching of relativistic jets from supermassive black holes (SMBHs). We speculate that major black hole (BH)-BH mergers play a major role in spinning up the central SMBHs in these objects.

  18. Internet Resources for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Andernach, H.

    A subjective overview of Internet resources for radio-astronomical information is presented. Basic observing techniques and their implications for the interpretation of publicly available radio data are described, followed by a discussion of existing radio surveys, their level of optical identification, and nomenclature of radio sources. Various collections of source catalogues and databases for integrated radio source parameters are reviewed and compared, as well as the web interfaces to interrogate the current and ongoing large-area surveys. Links to radio observatories with archives of raw (uv-) data are presented, as well as services providing images, both of individual objects or extracts (``cutouts'') from large-scale surveys. While the emphasis is on radio continuum data, a brief list of sites providing spectral line data, and atomic or molecular information is included. The major radio telescopes and surveys under construction or planning are outlined. A summary is given of a search for previously unknown optically bright radio sources, as performed by the students as an exercise, using Internet resources only. Over 200 different links are mentioned and were verified, but despite the attempt to make this report up-to-date, it can only provide a snapshot of the situation as of mid-1998.

  19. Relations between surface conductance and spectral vegetation indices at intermediate (100 m2 to 15 km2) length scales

    NASA Astrophysics Data System (ADS)

    Sellers, Piers J.; Heiser, Mark D.; Hall, Forrest G.

    1992-11-01

    The theoretical analysis of Sellers et al. (1992) indicates that the relative response of the unstressed canopy conductance (g*c) to changes in incident (nonsaturating) PAR flux (F0) should be proportional to some spectral vegetation indices (SVI), specifically the simple ratio (SR) vegetation index, for vegetation covers of similar physiology and physiognomy; or ∇F ≡ (∂g*c/∂F0) ∝ SR. This relationship was tested using the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) flux station data set (g*c) and the FIFE Landsat thematic mapper image data (SVI). The flux station data were used to invert a soil-plant-atmosphere model (the simple biosphere model (SiB) of Sellers et al., 1986) to derive estimates of g*c separate from the soil evaporation contribution and corrected for the "stress" effects of vapor pressure deficit and soil moisture deficit. The Landsat imagery was sampled to produce SR vegetation index values for small areas (90 × 90 m) centered on each flux station. The derived ∇F and SR values were found to be near-linearly related on a site-by-site basis. Differences between sites are thought to be related to the fractional cover of C3 versus C4 vegetation so that ∇S,F ≡ (∂∇F/∂(SR)) ∝ V3, where V3 is the fractional cover of C3 vegetation. The above equations form the basis for a simple biophysically based model of canopy-scale conductance. The model was applied on the flux station scale (100 m)2 and was also used to calculate fluxes for the entire FIFE site (15 × 15 km)2; the latter results were compared with airborne flux measurements. It is demonstrated that because the proposed relationship between ∇F and SR is near-linear, the calculation of evapotranspiration rates for large areas using this model is effectively scale-invariant.

  20. JSC Particle Telescope

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.

    2003-01-01

    This paper presents a detailed description of the Johnson Space Center's Particle Telescope. Schematic diagrams of the telescope geometry and an electronic block diagram of the detector telescopes' components are also described.

  1. Auxiliary control systems for Pachmarhi array of Cverenkov telescopes

    NASA Astrophysics Data System (ADS)

    Gothe, K. S.; Acharya, B. S.; Bhat, P. N.; Chitnis, V. R.; D'Souza, A. I.; Francis, P. J.; John, A. V.; Joshi, S. R.; Majumdar, P.; Nagesh, B. K.; Pose, M. S.; Purohit, P. N.; Rahman, M. A.; Rao, K. K.; Rao, S. K.; Sharma, S. K.; Singh, B. B.; Stanislaus, A. J.; Sudershanan, P. V.; Upadhya, S. S.; Venkateshmurthy, B. L.; Vishwanath, P. R.

    2002-03-01

    Pachmarhi Array of Cverenkov Telescopes (PACT) consists of 25 Telescopes deployed over an area of 100m x 80m. The experiment is based on atmospheric Cverenkov technique to detect Very High Energy celestial gamma-rays using wavefront sampling method. Each telescope consists of 7 large area parabolic mirrors mounted para-axially on an equatorial mount and a fast photo-multiplier tube at the focus of each mirror. For efficient operation of the experiment 3 automated control systems were developed and installed, viz. Automated Computerized Telescope Orientation System (ACTOS) to control the pointing and tracking of individual telescopes, Automatic Photo-multiplier Exposure System (APES) to facilitate the exposure of photo-tubes only during observations, and Computerized Automated Rate Adjustment and Monitoring System (CARAMS) to ensure uniform gains for all the phototube - mirror systems. The design features and performance of each of these systems are discussed.

  2. Radio emission from supernovae.

    NASA Astrophysics Data System (ADS)

    Weiler, K. W.; Panagia, N.; Sramek, R. A.; Van Dyk, S. D.; Stockdale, C. J.; Williams, C. L.

    Study of radio supernovae over the past 30 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. Along with reviewing these general properties of the radio emission from supernovae, we present our extensive observations of the radio emission from supernova (SN) 1993J in M 81 (NGC 3031) made with the Very Large Array and other radio telescopes. The SN 1993J radio emission evolves regularly in both time and frequency, and the usual interpretation in terms of shock interaction with a circumstellar medium (CSM) formed by a pre-supernova stellar wind describes the observations rather well considering the complexity of the phenomenon. However: 1) The highest frequency measurements at 85 - 110 GHz at early times (<40 days) are not well fitted by the parameterization which describes the cm wavelength measurements. 2) At a time ˜3100 days after shock breakout, the decline rate of the radio emission steepens from (t+beta ) beta ˜ -0.7 to beta ˜ -2.7 without change in the spectral index (nu +alpha ; alpha ˜ -0.81). This decline is best described not as a power-law, but as an exponential decay with an e-folding time of ˜ 1100 days. 3) The best overall fit to all of the data is a model including both non-thermal synchrotron self-absorption (SSA) and a thermal free-free absorbing (FFA) components at early times, evolving to a constant spectral index, optically thin decline rate, until a break in that decline rate at day ˜3100, as mentioned above.

  3. [Evaluation of heart impact in the 100 m extreme intensity sport using near-infrared non-invasive muscle oxygen detecting device and sports heart rate detection technology].

    PubMed

    Wang, Pei-Yong; Long, Fei-Xiao; Fu, Lan-Ying; Li, Yue; Ding, Hai-Shu; Qu, An-Lian; Zhou, Xiao-Ping

    2010-02-01

    Using continuous two wavelength near-infrared technology to detect the variation in the consistency of oxygen hemoglobin in the muscle and the sports heart rate wireless real time collection technology, we devised the real time muscle tissue oxygenation and instantaneous heart rate experiment scheme and implemented it for the process of the 100 m run with two parameters given simultaneously. The experiment shows that the concentration of the oxygen hemoglobin in the muscle tissue continues decreasing after the end of the 100 m run, and the time interval between the moment when the concentration of the oxygen hemoglobin attains the minimum value and the moment when the athletes finish the 100 m run is (6.65 +/- 1.10) sec; while the heart rate continues increasing after the end of the 100 m run, and the time interval between the moment when the heart rate attains the maximum value and the moment when the athletes finish the 100 m run is (8.00 +/- 1.57) sec. The results show that the two wavelength near-infrared tissue oxygenation detection technology and the sports heart rate real time collection equipment can accurately measure the sports tissue oxygenation and the heart rate in the extreme intensity sport, and reveal the process of muscle oxygen transportation and consumption and its dynamic character with the heart rate in the extreme intensity sport.

  4. High-School Solar Radio Astronomy Project in Mexico Based on Radio Jove

    NASA Astrophysics Data System (ADS)

    Garcia Cole, A.; Gonzalez-Esparza, J. A.; Andrade, E.; Carrillo, A.

    2007-05-01

    Inspired by the RADIO JOVE project (http:radiojove.gsfc.nasa.gov) we propose a curse in solar radio astronomy for the high school system (CCH) at UNAM. The aim of this curse is to introduce solar radio astronomy to students and teachers, building their own radio telescope, and participating in radio astronomical measurements becoming familiar with the emissions of the Sun and Jupiter. The project is also based on the observations from the Mexican Array Radio Telescope(www.mexart.unam.mx) and the real time data from the Virtual Earth Sun Observatory (www.veso.unam.mx) at the Instituto de Geofisica-UNAM. The aim of this Project is to adapt the materials to the high school system in Mexico.

  5. Radio Galaxy Zoo: host galaxies and radio morphologies derived from visual inspection

    NASA Astrophysics Data System (ADS)

    Banfield, J. K.; Wong, O. I.; Willett, K. W.; Norris, R. P.; Rudnick, L.; Shabala, S. S.; Simmons, B. D.; Snyder, C.; Garon, A.; Seymour, N.; Middelberg, E.; Andernach, H.; Lintott, C. J.; Jacob, K.; Kapińska, A. D.; Mao, M. Y.; Masters, K. L.; Jarvis, M. J.; Schawinski, K.; Paget, E.; Simpson, R.; Klöckner, H.-R.; Bamford, S.; Burchell, T.; Chow, K. E.; Cotter, G.; Fortson, L.; Heywood, I.; Jones, T. W.; Kaviraj, S.; López-Sánchez, Á. R.; Maksym, W. P.; Polsterer, K.; Borden, K.; Hollow, R. P.; Whyte, L.

    2015-11-01

    We present results from the first 12 months of operation of Radio Galaxy Zoo, which upon completion will enable visual inspection of over 170 000 radio sources to determine the host galaxy of the radio emission and the radio morphology. Radio Galaxy Zoo uses 1.4 GHz radio images from both the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) and the Australia Telescope Large Area Survey (ATLAS) in combination with mid-infrared images at 3.4 μm from the Wide-field Infrared Survey Explorer (WISE) and at 3.6 μm from the Spitzer Space Telescope. We present the early analysis of the WISE mid-infrared colours of the host galaxies. For images in which there is >75 per cent consensus among the Radio Galaxy Zoo cross-identifications, the project participants are as effective as the science experts at identifying the host galaxies. The majority of the identified host galaxies reside in the mid-infrared colour space dominated by elliptical galaxies, quasi-stellar objects and luminous infrared radio galaxies. We also find a distinct population of Radio Galaxy Zoo host galaxies residing in a redder mid-infrared colour space consisting of star-forming galaxies and/or dust-enhanced non-star-forming galaxies consistent with a scenario of merger-driven active galactic nuclei (AGN) formation. The completion of the full Radio Galaxy Zoo project will measure the relative populations of these hosts as a function of radio morphology and power while providing an avenue for the identification of rare and extreme radio structures. Currently, we are investigating candidates for radio galaxies with extreme morphologies, such as giant radio galaxies, late-type host galaxies with extended radio emission and hybrid morphology radio sources.

  6. Gamma-ray burster counterparts - Radio

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Cline, Thomas L.; Desai, U. D.; Teegarden, B. J.; Atteia, J.-L.; Barat, C.; Estulin, I. V.; Evans, W. D.; Fenimore, E. E.; Hurley, K.

    1989-01-01

    Many observers and theorists have suggested that gamma-ray bursters (GRBs) are related to highly magnetized rotating, neutron stars, in which case an analogy with pulsars implies that GRBs would be prodigious emitters of polarized radio emission during quiescence. The paper reports on a survey conducted with the Very Large Array radio telescope of 10 small GRB error regions for quiescent radio emission at wavelengths of 2, 6, and 20 cm. The sensitivity of the survey varied from 0.1 to 0.8 mJy. The observations did indeed reveal four radio sources inside the GRB error regions.

  7. Observing Solar and Jovian Radio Bursts

    NASA Astrophysics Data System (ADS)

    Grippaldi, Joseph

    2011-05-01

    A recently constructed low frequency radio telescope has been constructed on the campus of the The College of New Jersey (TCNJ) has recently begun conducting observations at 20MHz as part of NASA'a Radio Jove program. This instrument is capable of observations of Jovian radio emission including strong prompt radio emission associated with the Jovian moon Io. We will discuss Jovian observations conducted with this instrument as an effort to conduct coincident observation with the Eight-meter-wavelength Transient Array (ETA) and the Long Wavelength Array (LWA).

  8. Radio OH spectroscopic mapping survey of 26 comets: Trends in outflow velocity and collisional quenching

    NASA Astrophysics Data System (ADS)

    Lovell, Amy J.; Howell, Ellen S.

    2015-11-01

    Between 2000-2015, we obtained 18cm OH spectra of 26 comets, using the Arecibo Observatory 305m Gordon Telescope and the National Radio Astronomy Observatory 100m R. W. Byrd Green Bank Telescope (GBT). Spectra of both long-period and periodic comets were obtained at 1667 and 1665 MHz (18cm wavelength) with a beam resolution of 2.9 arcminutes at Arecibo and 7.4 arcminutes at GBT. Heliocentric distances for comets in the sample range between 0.4 to 2.8 AU, with gas production rates from 0.1--30 x 1028 mol/s. A wide range of gas velocities are observed, from 0.5 to nearly 2 km/s, with the highest variability in outflow velocities for comets at heliocentric distances less than 1 AU. Mapping observations provide a direct constraint on the radius within which there is collisional quenching, an important factor in estimating total water production rates, and a useful constraint on coma density. We find that collisional quenching varies considerably, and generally exceeds what might be expected theoretically, so it is best when observations make a direct constraint on this value. We will present aggregate velocity, gas production, and quenching results from this comet survey, derived from a kinetic model utilizing Monte Carlo simulations.

  9. The Future of Radio astronomy

    NASA Astrophysics Data System (ADS)

    Ekers, R. D.

    2001-12-01

    Five decades ago, astronomers finally broke free of the boundaries of light when a new science, radio astronomy, was born. This new way of "seeing" rapidly uncovered a range of unexpected objects in the cosmos. This was our first view of the non-thermal universe, and our first unobscured view of the universe. In its short life, radio astronomy has had an unequalled record of discovery, including four Nobel prizes: Big-Bang radiation, neutron stars, aperture synthesis and gravitational radiation. Radio telescopes have followed the pattern of exponential growth generally seen in flourishing areas of science and technology and there is no technical reason for this not to continue, but to do so will require a shift in technology that will set new challenges. New technologies have made it possible to construct an affordable radio telescope with collecting area of one square km the SKA. Such a telescope would be so powerful that we could expand our knowledge of the universe from the earliest stages of its formation through to planetary exploration with greatly enhanced spacecraft communications. The SKA will join the new generation of telescopes at other wavebands with the sensitivity and resolution to image the earliest phases of galaxy formation, as well as greatly extending the range of unique science accessible at radio wavelengths. We already know how to build an SKA, the issue is how to build the most cost effective SKA, and how to maximize the science we can do with it. The path we have chosen to achieve this vision is through international collaboration. Following the pattern of other successful international collaborations in science we have started this process early, and we are already benefiting from the level of innovation generated by our international interactions.

  10. The Optically Unbiased GRB Host (TOUGH) Survey. VI. Radio Observations at z <~ 1 and Consistency with Typical Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Michałowski, M. J.; Kamble, A.; Hjorth, J.; Malesani, D.; Reinfrank, R. F.; Bonavera, L.; Castro Cerón, J. M.; Ibar, E.; Dunlop, J. S.; Fynbo, J. P. U.; Garrett, M. A.; Jakobsson, P.; Kaplan, D. L.; Krühler, T.; Levan, A. J.; Massardi, M.; Pal, S.; Sollerman, J.; Tanvir, N. R.; van der Horst, A. J.; Watson, D.; Wiersema, K.

    2012-08-01

    The objective of this paper is to determine the level of obscured star formation activity and dust attenuation in a sample of gamma-ray burst (GRB) hosts, and to test the hypothesis that GRB hosts have properties consistent with those of the general star-forming galaxy populations. We present a radio continuum survey of all z < 1 GRB hosts in The Optically Unbiased GRB Host (TOUGH) sample supplemented with radio data for all (mostly pre-Swift) GRB-SN hosts discovered before 2006 October. We present new radio data for 22 objects and have obtained a detection for three of them (GRB 980425, 021211, 031203; none in the TOUGH sample), increasing the number of radio-detected GRB hosts from two to five. The star formation rate (SFR) for the GRB 021211 host of ~825 M ⊙ yr-1, the highest ever reported for a GRB host, places it in the category of ultraluminous infrared galaxies. We found that at least ~63% of GRB hosts have SFR < 100 M ⊙ yr-1 and at most ~8% can have SFR > 500 M ⊙ yr-1. For the undetected hosts the mean radio flux (<35 μJy 3σ) corresponds to an average SFR < 15 M ⊙ yr-1. Moreover, >~ 88% of the z <~ 1 GRB hosts have ultraviolet dust attenuation A UV < 6.7 mag (visual attenuation AV < 3 mag). Hence, we did not find evidence for large dust obscuration in a majority of GRB hosts. Finally, we found that the distributions of SFRs and A UV of GRB hosts are consistent with those of Lyman break galaxies, Hα emitters at similar redshifts, and of galaxies from cosmological simulations. The similarity of the GRB population with other star-forming galaxies is consistent with the hypothesis that GRBs, a least at z <~ 1, trace a large fraction of all star formation, and are therefore less biased indicators than once thought. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Large Programme 177.A-0591), the Australian Telescope Compact Array, the Giant Metrewave Radio Telescope, the Very Large Array, and the Westerbork

  11. Radio wave.

    PubMed

    Elkin, V

    1992-01-01

    In developing countries with high rates of poverty and illiteracy, radio is emerging as an excellent medium for delivering information on health issues, family planning, nutrition, and agricultural development. Since radio does not require wired electricity, it can reach remote rural populations. Surveys have found that between 50-75% of poor rural households in developing countries own radios, and the majority listen to educational radio at least once a week. A program that reaches the urban poor outside of Lima, Peru, has been instrumental in controlling the spread of cholera. A Bolivian station broadcasts 8 hours of literacy, health, agricultural, and cultural programming a day to an audience of more than 2 million Aymara Indians. Small village radio stations with a broadcast range of 15 miles can be established for under US$400 and can generally achieve sustainability through local fundraising events such as raffles. In many cases, listeners have become broadcasters at their local radio stations.

  12. Are the infrared-faint radio sources pulsars?

    NASA Astrophysics Data System (ADS)

    Cameron, A. D.; Keith, M.; Hobbs, G.; Norris, R. P.; Mao, M. Y.; Middelberg, E.

    2011-07-01

    Infrared-faint radio sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50 per cent duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  13. Deep Antarctic ice as a neutrino telescope

    SciTech Connect

    Barwick, S.; Halzen, F.

    1992-12-31

    At present scientists do not know of any cost-effective method to commission neutrino telescopes with effective area of order 1 km{sup 2}. The authors draw attention to the possibility of using large volumes of ice as a low-noise particle detector sensing the Cherenkov light from neutrino-induced electromagnetic showers. A program to map the optical clarity of polar ice at depths ranging from 300 meters to 1 kilometer is already underway. They also discuss the possibility of using of radio and acoustic methods to transform large volumes of ice into a neutrino telescope.

  14. Radio sociology

    NASA Astrophysics Data System (ADS)

    Swenson, George W., Jr.

    1996-04-01

    A work was conducted, using radio telemetry, to locate a migrating, radio-tagged, sharp-shinned hawk. The hawk was monitored through the noise radiation it created. The hawk was found. During this study, it was found that the concentration of population corresponds with areas of increased noise temperature. Through this study, a bigger study was planned. The study would involved the relationship between a place's radiation signature and its other attributes, such as economic type, population, geographic concentration. The method of radio sociology would be used to track the sources of radio noise.

  15. The acute effects of static stretching on the sprint performance of collegiate men in the 60- and 100-m dash after a dynamic warm-up.

    PubMed

    Kistler, Brandon M; Walsh, Mark S; Horn, Thelma S; Cox, Ronald H

    2010-09-01

    Previous research has shown that static stretching has an inhibitory effect on sprinting performances up to 50 m. The purpose of this study was to see what would happen to these effects at longer distances such as those seen in competition. This study used a within-subjects design to investigate the effects of passive static stretching vs. no stretching on the 60- and 100-m sprint performance of college track athletes after a dynamic warm-up. Eighteen male subjects completed both the static stretching and the no stretching conditions in counterbalanced order across 2 days of testing. On each day, all subjects first completed a generalized dynamic warm-up routine that included a self-paced 800-m run, followed by a series of dynamic movements, sprint, and hurdle drills. At the end of this generalized warm-up, athletes were assigned to either a static stretching or a no-stretching condition. They then immediately performed 2 100-m trials with timing gates set up at 20, 40, 60, and 100 m. Results revealed a significant slowing in performance with static stretching (p < 0.039) in the second 20 (20-40) m of the sprint trials. After the first 40 m, static stretching exhibited no additional inhibition of performance in a 100-m sprint. However, although there was no additional time loss, athletes never gained back the time that was originally lost in the first portion of the trials. Therefore, in strict terms of performance, it seems harmful to include static stretching in the warm-up protocol of collegiate male sprinters in distances up to 100 m.

  16. Radio studies of extragalactic supernovae.

    PubMed

    Weiler, K W; Sramek, R A; Panagia, N

    1986-03-14

    Some exploding stars (supernovae) are powerful emitters of centimeter radio radiation. Detailed observations have shown that these supernovae quickly become detectable in the radio range, first at shorter wavelengths (higher frequencies) and later at progressively longer and longer wavelengths (lower frequencies). This part of the phenomenon appears to be well explained by a monotonic decrease in the amount of ionized material surrounding the radio-emitting regions as the shock from the explosion travels outward. The radio emission itself is of a nonthermal, synchrotron origin, as is the case in most bright cosmic radio sources. Once the absorption effects become negligible, the radio intensity declines with time until reaching the detection limit of the telescope. Models suggest that the absorbing material originates in a dense wind of matter lost by the supernova progenitor star, or by its companion if it is in a binary system, in the last stages of evolution before the explosion. The synchrotron radio emission can be generated either externally by the shock wave from the explosion propagating through this same high density stellar wind or internally by a rapidly rotating neutron star, which is the collapsed core of the exploded star. Present results appear to favor the former model for at least the first several years after the supernova explosion, although the latter model remains viable.

  17. Development of Radio Astronomy at Centre for Basic Space Science Observatory, Nsukka Nigeria

    NASA Astrophysics Data System (ADS)

    Aliyu, Nasiru; Okere, Bonaventure I.; Lanre, Daniyan O.; Ezechi, Nwachukwu E.

    2015-08-01

    Radio telescopes for research, teaching and learning at Centre for Basic Space Science (CBSS) observatory are currently in place of development. A small parabolic radio telescope with diameter of 3.0 m working at 1420 MHz is already available for general purpose of radio astronomical observations. In addition, a Radio Jove telescope with dual dipole antenna working at 20 MHz and Sudden Ionospheric Disturbance (SID) monitor working at 24 KHz are also available. It is suitable to monitor daily solar burst, solar flares as well as Jupiter decametric emission. More over, CBSS radio interferometers are now under construction. It consists of non-tracking Radio Jove array and SID monitor as well as two radio telescope tracking interferometers. The latter is planned to utilize up to 4 antennas. Multi frequency receivers are made available at 24 KHz, 20 and 1420 MHz and will be used for VLBI in the near future.

  18. Radio polarization and sub-millimeter observations of the Sombrero galaxy (NGC 4594). Large-scale magnetic field configuration and dust emission

    NASA Astrophysics Data System (ADS)

    Krause, M.; Wielebinski, R.; Dumke, M.

    2006-03-01

    We observed the nearby early-type spiral galaxy NGC 4594 (M 104, Sombrero galaxy) with the Very Large Array at 4.86 GHz, with the Effelsberg 100-m telescope at 8.35 GHz as well as with the Heinrich Hertz Telescope at 345 GHz in radio continuum. The 4.86 and 8.35 GHz data contain polarization information and hence information about the magnetic fields: we detected a large-scale magnetic field which is to our knowledge the first detection of a large-scale magnetic field in an Sa galaxy in the radio range. The magnetic field orientation in M 104 is predominantly parallel to the disk but has also vertical components at larger z-distances from the disk. This field configuration is typical for normal edge-on spiral galaxies. The 345 GHz data pertain to the cold dust content of the galaxy. Despite the optical appearance of the object with the huge dust lane, its dust content is smaller than that of more late-type spirals.

  19. MUSTANG, a 90 GHz Continuum Receiver for the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Dicker, Simon; Mason, B. S.; Korngut, P. M.; Ade, P. A. R.; Aguirre, J.; Ames, T. J.; Benford, D. J.; Chen, T. C.; Chervenak, J. A.; Compiegne, M.; Cotton, W. D.; Devlin, M. J.; Figueroa-Feliciano, E.; Irwin, K. D.; Maher, S.; Martin, P. G.; Mello, M.; Moseley, S. H.; Staguhn, J.; Tucker, C.; White, S. D.

    2008-05-01

    MUSTANG, the MUltiplexed SQUID TES Array at Ninety GHz, is an 8 by 8 array of TES bolometers designed as a user instrument for the 100 m diameter Green Bank radio telescope (GBT). MUSTANG is the GBT's first 90 GHz instrument and its first focal plane array. As a continuum receiver on a large single dish, MUSTANG offers a unique combination of 8 arcsecond angular resolution and high sensitivity to extended structure. In this poster we present an overview of MUSTANG. Observations of a range of objects including M87 and the Crab nebula will be used to illustrate MUSTANG's capabilities. Our first scientific observations in the spring of 2008 were of the Orion star forming region. These results will be presented in greater detail in a separate talk by Philip Korngut. Currently, work is under way to improve the high frequency performance of the GBT and there are plans to increase MUSTANG's sensitivity further. A paper containing more technical details will appear in the proceedings of the SPIE conference on astronomical instrumentation (Dicker et. al. 2008). MUSTANG will be available for proposals by the general astronomical community in the winter high frequency season of 2008/2009. Calls for proposals will be announced at NRAO's website, www.gb.nrao.edu.

  20. Toward Active X-ray Telescopes II

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Aldroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Johnson-Wilke, Raegan L.; Kolodziejczak, Jeffery J.; Lillie, Charles F.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Sanmartin, Daniel Rodriguez; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan E.; Ulmer, Melville P.; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2012-01-01

    In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the sensitivity for detection of cosmic x-ray sources has improved by ten orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (greater than 1 m2) and finer angular resolution (less than 1.). Combined with the special requirements of grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically challenging.requiring precision fabrication, alignment, and assembly of large areas (greater than 100 m2) of lightweight (approximately 1 kg m2 areal density) mirrors. Achieving precise and stable alignment and figure control may entail active (in-space adjustable) x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes progress toward active x-ray telescopes.

  1. Radio Emission from Supernovae

    NASA Astrophysics Data System (ADS)

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; van Dyk, Schuyler D.; Williams, Christopher L.; Stockdale, Christopher J.; Kelley, Matthew T.

    2007-10-01

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect clumpiness of the circumstellar material. Along with reviewing these general properties of the radio emission from supernovae, we present our extensive observations of the radio emission from supernova (SN) 1993J in M 81 (NGC 3031) made with the Very Large Array and other radio telescopes. The SN 1993J radio emission evolves regularly in both time and frequency, and the usual interpretation in terms of shock interaction with a circumstellar medium (CSM) formed by a pre-supernova stellar wind describes the observations rather well considering the complexity of the phenomenon. However: 1) The highest frequency measurements at 85-110 GHz at early times (<40 days) are not well fitted by the parameterization which describes the cm wavelength measurements rather well. 2) At mid-cm wavelengths there is often deviation from the fitted radio light curves, particularly near the peak flux density, and considerable shorter term deviations in the declining portion when the emission has become optically thin. 3) At a time ~3100 days after shock breakout, the decline rate of the radio emission steepens from (t+β)β~-0.7 to β~-2.7 without change in the spectral index (ν+αα~-0.81). However, this decline is best described not as a power-law, but as an exponential decay starting at day ~3100 with an e-folding time of ~1100 days. 4) The best overall fit to all of the data is

  2. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars. PMID:17836594

  3. College Radio.

    ERIC Educational Resources Information Center

    Sauls, Samuel J.

    As with commercial stations, the underlying premise of the college radio station is to serve the community, whether it be the campus community or the community at large, but in unique ways often geared to underserved niches of the population. Much of college radio's charm lies in its unpredictable nature and constant mutations. The stations give…

  4. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Niell, A. E.

    1981-01-01

    The activities of the DSN in support of Radio and Radar Astronomy Operations during September through December 1980 are described. Emphasis is on a report of an experiment selected for use of the DSN by the radio Astronomy Experiment Selection Panel: that of VLBI observations of the energetic galactic object SS-433.

  5. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Schaffer, R. D.; Gorenstein, M. V.

    1981-01-01

    The activities of the Deep Space Network in support of Radio Astronomy Operations during April and May 1981 are reported. Work in progres in support of an experiment selected for use of the DSN by the Radio Astronomy Experiment Selection Panel, Twin Quasi-Stellar Object VLBI, is reported.

  6. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Gulkis, S.

    1981-01-01

    The activities of the Deep Space Network in support of radio astronomy operations during the first quarter of 1981 are reported. Results of the use of a low noise maser are presented, as well as updates in DSN support of experiments sanctioned by the Radio Astronomy Experiment Selection Panel.

  7. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.; Manchester, R. N.

    1980-01-01

    The activities of the Deep Space Network in support of radio and radar astronomy operations during July and August 1980 are reported. A brief update on the OSS-sponsored planetary radio astronomy experiment is provided. Also included are two updates, one each from Spain and Australia on current host country activities.

  8. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars.

  9. GLAST Large Area Telescope Multiwavelength Planning

    SciTech Connect

    Reimer, O.; Michelson, P.F.; Cameron, R.A.; Digel, S.W.; Thompson, D.J.; Wood, K.S.

    2007-01-03

    Gamma-ray astrophysics depends in many ways on multiwavelength studies. The Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) Collaboration has started multiwavelength planning well before the scheduled 2007 launch of the observatory. Some of the high-priority multiwavelength needs include: (1) availability of contemporaneous radio and X-ray timing of pulsars; (2) expansion of blazar catalogs, including redshift measurements; (3) improved observations of molecular clouds, especially at high galactic latitudes; (4) simultaneous broad-band blazar monitoring; (5) characterization of gamma-ray transients, including gamma ray bursts; (6) radio, optical, X-ray and TeV counterpart searches for reliable and effective sources identification and characterization. Several of these activities are needed to be in place before launch.

  10. GLAST Large Area Telescope Multiwavelength Planning

    NASA Technical Reports Server (NTRS)

    Reimer, O.; Michelson, P. F.; Cameron, R. A.; Digel, S. W.; Thompson, D. J.; Wood, K. S.

    2007-01-01

    Gamma-ray astrophysics depends in many ways on multiwavelength studies. The Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) Collaboration has started multiwavelength planning well before the scheduled 2007 launch of the observatory. Some of the high-priority multiwavelength needs include: (1) availability of contemporaneous radio and X-ray timing of pulsars; (2) expansion of blazar catalogs, including redshift measurements; (3) improved observations of molecular clouds, especially at high galactic latitudes; (4) simultaneous broad-spectrum blazar monitoring; (5) characterization of gamma-ray transients, including gamma ray bursts; (6) radio, optical, X-ray and TeV counterpart searches for reliable and effective sources identification and characterization. Several of these activities are needed to be in place before launch.

  11. Radio detections of southern ultracool dwarfs

    NASA Astrophysics Data System (ADS)

    Lynch, C.; Murphy, T.; Ravi, V.; Hobbs, G.; Lo, K.; Ward, C.

    2016-04-01

    We report the results of a volume-limited survey using the Australia Telescope Compact Array to search for transient and quiescent radio emission from 15 Southern hemisphere ultracool dwarfs. We detect radio emission from 2MASSW J0004348-404405 increasing the number of radio loud ultracool dwarfs to 22. We also observe radio emission from 2MASS J10481463-3956062 and 2MASSI J0339352-352544, two sources with previous radio detections. The radio emission from the three detected sources shows no variability or flare emission. Modelling this quiescent emission we find that it is consistent with optically thin gyrosynchrotron emission from a magnetosphere with an emitting region radius of (1-2)R*, magnetic field inclination 20°-80°, field strength ˜10-200 G, and power-law electron density ˜104-108 cm-3. Additionally, we place upper limits on four ultracool dwarfs with no previous radio observations. This increases the number of ultracool dwarfs studied at radio frequencies to 222. Analysing general trends of the radio emission for this sample of 15 sources, we find that the radio activity increases for later spectral types and more rapidly rotating objects. Furthermore, comparing the ratio of the radio to X-ray luminosities for these sources, we find 2MASS J10481463-3956062 and 2MASSI J0339352-352544 violate the Güdel-Benz relation by more than two orders of magnitude.

  12. Search for Gamma Rays above 100 TeV from the Crab Nebula with the Tibet Air Shower Array and the 100 m2 muon Detector

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Bi, X. J.; Chen, D.; Chen, T. L.; Chen, W. Y.; Cui, S. W.; Danzengluobu; Ding, L. K.; Feng, C. F.; Feng, Zhaoyang; Feng, Z. Y.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; He, Z. T.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Jia, H. Y.; Jiang, L.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Kozai, M.; Labaciren; Le, G. M.; Li, A. F.; Li, H. J.; Li, W. J.; Liu, C.; Liu, J. S.; Liu, M. Y.; Lu, H.; Meng, X. R.; Miyazaki, T.; Mizutani, K.; Munakata, K.; Nakajima, T.; Nakamura, Y.; Nanjo, H.; Nishizawa, M.; Niwa, T.; Ohnishi, M.; Ohta, I.; Ozawa, S.; Qian, X. L.; Qu, X. B.; Saito, T.; Saito, T. Y.; Sakata, M.; Sako, T. K.; Shao, J.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Wang, H.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yamauchi, K.; Yang, Z.; Yasue, S.; Yuan, A. F.; Yuda, T.; Zhai, L. M.; Zhang, H. M.; Zhang, J. L.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhang, Ying; Zhaxisangzhu; Zhou, X. X.; Tibet ASγ Collaboration

    2015-11-01

    A 100 m2 muon detector (MD) was successfully constructed under the existing Tibet air shower (AS) array in the late fall of 2007. The sensitivity of the Tibet AS array to cosmic gamma rays can be improved by selecting muon-poor events with the MD. Our MC simulation of the MD response reasonably agrees with the experimental data in terms of the charge distribution for one-muon events and the background rejection power. Using the data collected by the Tibet AS array and the 100 m2 MD taken from 2008 March to 2010 February, we search for continuous gamma-ray emission from the Crab Nebula above ˜100 TeV. No significant excess is found, and the most stringent upper limit is obtained above 140 TeV.

  13. Search for 100 TeV gamma rays from the Crab Nebula with the Tibet Air Shower Array and the 100 m2 muon detector

    NASA Astrophysics Data System (ADS)

    Sako, Takashi

    2016-07-01

    The 100 m ^{2} muon detector (MD) was constructed under the Tibet air shower (AS) array in the late autumn of 2007. By selecting muon-poor events with the MD, the sensitivity of the Tibet AS array to cosmic gamma rays can be improved. Our MC simulation of the MD response is in reasonable agreement with the experimental data, with regard to the charge distribution for one-muon events and the background rejection power. Using the data taken from 2008 March to 2010 February by the Tibet AS array and the 100 m ^{2} MD, we search for continuous 100 TeV gamma-ray emission from the Crab Nebula. No significant excess is detected, and the world's best upper limit is obtained above 140 TeV.

  14. SEARCH FOR GAMMA RAYS ABOVE 100 TeV FROM THE CRAB NEBULA WITH THE TIBET AIR SHOWER ARRAY AND THE 100 m{sup 2} MUON DETECTOR

    SciTech Connect

    Amenomori, M.; Bi, X. J.; Chen, W. Y.; Ding, L. K.; Feng, Zhaoyang; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, H. B.; Huang, J.; Chen, D.; Chen, T. L.; Danzengluobu; Hu, Haibing; Cui, S. W.; He, Z. T.; Feng, C. F.; Feng, Z. Y.; Hibino, K.; Hotta, N.; Collaboration: Tibet ASγ Collaboration; and others

    2015-11-10

    A 100 m{sup 2} muon detector (MD) was successfully constructed under the existing Tibet air shower (AS) array in the late fall of 2007. The sensitivity of the Tibet AS array to cosmic gamma rays can be improved by selecting muon-poor events with the MD. Our MC simulation of the MD response reasonably agrees with the experimental data in terms of the charge distribution for one-muon events and the background rejection power. Using the data collected by the Tibet AS array and the 100 m{sup 2} MD taken from 2008 March to 2010 February, we search for continuous gamma-ray emission from the Crab Nebula above ∼100 TeV. No significant excess is found, and the most stringent upper limit is obtained above 140 TeV.

  15. Optical aperture synthesis with electronically connected telescopes

    PubMed Central

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.

    2015-01-01

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705

  16. Optical aperture synthesis with electronically connected telescopes.

    PubMed

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D

    2015-01-01

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705

  17. Telescopes and space exploration

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Maran, S. P.

    1976-01-01

    The necessity for different types of telescopes for astronomical investigations is discussed. Major findings in modern astronomy by ground-based and spaceborne telescopes are presented. Observations of the Crab Nebula, solar flares, interstellar gas, and the Black Hole are described. The theory of the oscillating universe is explored. Operating and planned telescopes are described.

  18. The space telescope

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers concerning the development of the Space Telescope which were presented at the Twenty-first Annual Meeting of the American Astronautical Society in August, 1975 are included. Mission planning, telescope performance, optical detectors, mirror construction, pointing and control systems, data management, and maintenance of the telescope are discussed.

  19. Close to 100 Gbps discrete multitone transmission over 100m of multimode fiber using a single transverse mode 850nm VCSEL

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Zhou, Xian; Ma, Yanan; Luo, Jun; Zhong, Kangping; Qiu, Shaofeng; Feng, Zhiyong; Luo, Yazhi; Agustin, Mikel; Ledentsov, Nikolay; Kropp, Joerg; Shchukin, Vitaly; Ledentsov, Nikolay N.; Eddie, Iain; Chao, Lu

    2016-03-01

    Discrete Multitone Transmission (DMT) transmission over standard multimode fiber (MMF) using high-speed single (SM) and multimode (MM) Vertical-Cavity Surface-Emitting Lasers (VCSELs) is studied. Transmission speed in the range of 72Gbps to 82Gbps over 300m -100m distances of OM4 fiber is realized, respectively, at Bit-Error-Ratio (BER) <5e-3 and the received optical power of only -5dBm. Such BER condition requires only 7% overhead for the conversion to error-free operation using single Bose-Chaudhuri-Hocquenghem forward error correction (BCH-FEC) coding and decoding. SM VCSEL is demonstrated to provide a much higher data transmission capacity over MMF. For 100m MMF transmission SM VCSEL allows 82Gbps as compared to MM VCSEL resulting in only 34Gbps at the same power (-5dBm). Furthermore, MM VCSEL link at 0dBm is still restricted at 100m distance by 63Gbps while SM VCSEL can exceed 100Gbps at such power levels. We believe that with further improvement in SM VCSELs and fiber coupling >100Gbps data transmission over >300m MMF distances at the BER levels matching the industry standards will become possible.

  20. ATST telescope mount: telescope of machine tool

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  1. Radio Loud AGNs are Mergers

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco; Gilli, Roberto; Lotz, Jennifer M.; Norman, Colin

    2015-06-01

    We measure the merger fraction of Type 2 radio-loud and radio-quiet active galactic nuclei (AGNs) at z\\gt 1 using new samples. The objects have Hubble Space Telescope (HST) images taken with Wide Field Camera 3 (WFC3) in the IR channel. These samples are compared to the 3CR sample of radio galaxies at z\\gt 1 and to a sample of non-active galaxies. We also consider lower redshift radio galaxies with HST observations and previous generation instruments (NICMOS and WFPC2). The full sample spans an unprecedented range in both redshift and AGN luminosity. We perform statistical tests to determine whether the different samples are differently associated with mergers. We find that all (92%-14%+8%) radio-loud galaxies at z\\gt 1 are associated with recent or ongoing merger events. Among the radio-loud population there is no evidence for any dependence of the merger fraction on either redshift or AGN power. For the matched radio-quiet samples, only 38%-15+16 are merging systems. The merger fraction for the sample of non-active galaxies at z\\gt 1 is indistinguishable from radio-quiet objects. This is strong evidence that mergers are the triggering mechanism for the radio-loud AGN phenomenon and the launching of relativistic jets from supermassive black holes (SMBHs). We speculate that major black hole (BH)–BH mergers play a major role in spinning up the central SMBHs in these objects.

  2. Workshop on Radio Transients

    NASA Astrophysics Data System (ADS)

    Croft, Steve; Gaensler, Bryan

    2012-04-01

    abstract-type="normal">SummaryWe are entering a new era in the study of variable and transient radio sources. This workshop discussed the instruments and the strategies employed to study those sources, how they are identified and classified, how results from different surveys can be compared, and how radio observations tie in with those at other wavelengths. The emphasis was on learning what common ground there is between the plethora of on-going projects, how methods and code can be shared, and how best practices regarding survey strategy could be adopted. The workshop featured the four topics below. Each topic commenced with a fairly brief introductory talk, which then developed into discussion. By way of preparation, participants had been invited to upload and discuss one slide per topic to a wiki ahead of the workshop. 1. Telescopes, instrumentation and survey strategy. New radio facilities and on-going projects (including upgrades) are both studying the variability of the radio sky, and searching for transients. The discussion first centred on the status of those facilities, and on projects with a time-domain focus, both ongoing and planned, before turning to factors driving choices of instrumentation, such as phased array versus single pixel feeds, the field of view, spatial and time resolution, frequency and bandwidth, depth, area, and cadence of the surveys. 2. Detection, pipelines, and classification. The workshop debated (a) the factors that influence decisions to study variability in the (u,v) plane, in images, or in catalogues, (b) whether, and how much, pipeline code could potentially be shared between one project and another, and which software packages are best for different approaches, (c) how data are stored and later accessed, and (d) how transients and variables are defined and classified. 3. Statistics, interpretation, and synthesis. It then discussed how (i) the choice of facility and strategy and (ii) detection and classification schemes

  3. ATA50 telescope: hardware

    NASA Astrophysics Data System (ADS)

    Yeşilyaprak, C.; Yerli, S. K.; Aksaker, N.; Yildiran, Y.; Güney, Y.; Güçsav, B. B.; Özeren, F. F.; Kiliç, Y.; Shameoni, M. N.; Fişek, S.; Kiliçerkan, G.; Nasiroğlu, İ.; Özbaldan, E. E.; Yaşar, E.

    2014-12-01

    ATA50 Telescope is a new telescope with RC optics and 50 cm diameter. It was supported by Atatürk University Scientific Research Project (2010) and established at about 2000 meters altitude in city of Erzurum in Turkey last year. The observations were started a few months ago under the direction and control of Atatürk University Astrophysics Research and Application Center (ATASAM). The technical properties and infrastructures of ATA50 Telescope are presented and we have been working on the robotic automation of the telescope as hardware and software in order to be a ready-on-demand candidate for both national and international telescope networks.

  4. Space Infrared Telescope Facility (SIRTF) telescope overview

    NASA Technical Reports Server (NTRS)

    Schember, Helene; Manhart, Paul; Guiar, Cecilia; Stevens, James H.

    1991-01-01

    The Space Infrared Telescope Facility (SIRTF) will be the first true infrared observatory in space, building upon the technical and scientific experience gained through its two NASA survey-oriented predecessors: the Infrared Astronomical Satellite and the Cosmic Background Explorer. During its minimum five year lifetime, the SIRTF will perform pointed scientific observations at wavelengths from 1.8 to 1200 microns with an increase in sensitivity over previous missions of several orders of magnitude. This paper discusses a candidate design for the SIRTF telescope, encompassing optics, cryostat, and instrument accommodation, which has been undertaken to provide a fulcrum for the development of functional requirements, interface definition, risk assessment and cost. The telescope optics employ a baffled Ritchey-Chretien Cassegrain system with a 1-m class primary mirror, an active secondary mirror, and a stationary facetted tertiary mirror. The optics are embedded in a large superfluid He cryostat designed to maintain the entire telescope-instrument system at temperatures below 3 K.

  5. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Shaffer, R. D.

    1983-01-01

    Deep Space Network (DSN) 26- and 64-meter antenna stations were utilized in support of Radio Astronomy Experiment Selection Panel experiments. Within a time span of 10 days, in May 1983 (267.75 hours total), nine RAES experiments were supported. Most of these experiments involved multifacility interferometry using Mark 3 data recording terminals and as many as six non-DSN observatories. Investigations of black holes, quasars, galaxies, and radio sources are discussed.

  6. Amateur Planetary Radio Data Archived for Science and Education: Radio Jove

    NASA Astrophysics Data System (ADS)

    Thieman, J.; Cecconi, B.; Sky, J.; Garcia, L. N.; King, T. A.; Higgins, C. A.; Fung, S. F.

    2015-12-01

    The Radio Jove Project is a hands-on educational activity in which students, teachers, and the general public build simple radio telescopes, usually from a kit, to observe single frequency decameter wavelength radio emissions from Jupiter, the Sun, the galaxy, and the Earth usually with simple dipole antennas. Some of the amateur observers have upgraded their receivers to spectrographs and their antennas have become more sophisticated as well. The data records compare favorably to more sophisticated professional radio telescopes such as the Long Wavelength Array (LWA) and the Nancay Decametric Array. Since these data are often carefully calibrated and recorded around the clock in widely scattered locations they represent a valuable database useful not only to amateur radio astronomers but to the professional science community as well. Some interesting phenomena have been noted in the data that are of interest to the professionals familiar with such records. The continuous monitoring of radio emissions from Jupiter could serve as useful "ground truth" data during the coming Juno mission's radio observations of Jupiter. Radio Jove has long maintained an archive for thousands of Radio Jove observations, but the database was intended for use by the Radio Jove participants only. Now, increased scientific interest in the use of these data has resulted in several proposals to translate the data into a science community data format standard and store the data in professional archives. Progress is being made in translating Radio Jove data to the Common Data Format (CDF) and also in generating new observations in that format as well. Metadata describing the Radio Jove data would follow the Space Physics Archive Search and Extract (SPASE) standard. The proposed archive to be used for long term preservation would be the Planetary Data System (PDS). Data sharing would be achieved through the PDS and the Paris Astronomical Data Centre (PADC) and the Virtual Wave Observatory (VWO

  7. Radio halos in future surveys in the radio continuum

    NASA Astrophysics Data System (ADS)

    Cassano, R.; Brunetti, G.; Norris, R. P.; Röttgering, H. J. A.; Johnston-Hollitt, M.; Trasatti, M.

    2012-12-01

    Aims: Giant radio halos are Mpc-scale synchrotron sources detected in a significant fraction of massive and merging galaxy clusters. The statistical properties of radio halos can be used to discriminate among various models for the origin of non-thermal particles in galaxy clusters. Therefore, theoretical predictions are important as new radio telescopes are about to begin to survey the sky at low and high frequencies with unprecedented sensitivity. Methods: We carry out Monte Carlo simulations to model the formation and evolution of radio halos in a cosmological framework and extend previous calculations based on the hypothesis of turbulent-acceleration. We adopt a phenomenological approach by assuming that radio halos are either generated in turbulent merging clusters, or are purely hadronic sources generated in more relaxed clusters, "off-state" halos. Results: The models predict that the luminosity function of radio halos at high radio luminosities is dominated by the contribution of halos generated in turbulent clusters. The generation of these halos becomes less efficient in less massive systems causing a flattening of the luminosity function at lower radio luminosities, as also pointed out in previous studies. However, we find that potentially this can be more than compensated for by the intervening contribution of "off-state" halos that dominate at lower radio luminosities. We derive the expected number of halos to explore the potential of the EMU+WODAN surveys that will be carried out with ASKAP and Aperitif, respectively, in the near future. By restricting to clusters at redshifts ≤ 0.6, we show that the planned EMU+WODAN surveys at 1.4 GHz have the potential to detect up to about 200 new radio halos, increasing their number by one order of magnitude. A fraction of these sources will be "off-state" halos that should be found at flux level f1.4 ≤ 10 mJy, presently accessible only to deep pointed observations. We also explore the synergy between surveys

  8. A third bright radio flare of SS433 during 2016

    NASA Astrophysics Data System (ADS)

    Trushkin, S. A.; Nizhelskij, N. A.; Tsybulev, P. G.; Zhekanis, G. V.

    2016-09-01

    During this year we have detected three powerful radio flares from SS433 with the RATAN-600 radio telescope. The last one began on 05 September (MJD57636.72) and reached 1 Jy at 4.8 GHz and 0.6 Jy at 11.2 GHz on 9 September (MJD57640.72).

  9. The First Steps of Radio Astronomy in Czestochowa

    NASA Astrophysics Data System (ADS)

    Jarosik, M.; Starzyński, S.; Szcześniak, M.; Szcześniak, R.; Ceglarek, A.

    2007-12-01

    In the paper, technical documentation and the principle of operation is presented. "KLAUDIA" radio telescope was built in Rabka in 2007 and it is used to receive secondary radio waves, emitted by the Earth's ionosphere at frequency of 40 kHz.

  10. Numerical models of extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.; Norman, Michael L.; Clarke, David A.

    1991-01-01

    When supercomputer-implemented numerical simulations analyzing the nonlinear physics inherent in the hydrodynamic and MHD equations are applied to extragalactic radio sources, many of the complex structures observed on telescopic images are reproduced. Attention is presently given to recently obtained results from 2D and 3D numerical simulations of the formation and evolution of extended radio morphologies; these numerical models allow the exploration of such physical phenomena as the role of magnetic fields in the dynamics and emissivity of extended radio galaxies, intermittent outflow from the cores of active galaxies, fluid-jet instabilities, and the bending of collimated outflows by motion through the intergalactic medium.

  11. Twin-Telescope Wettzell (TTW)

    NASA Astrophysics Data System (ADS)

    Hase, H.; Dassing, R.; Kronschnabl, G.; Schlüter, W.; Schwarz, W.; Lauber, P.; Kilger, R.

    2007-07-01

    Following the recommendations made by the VLBI2010 vision report of the IVS, a proposal has been made to construct a Twin Telescope for the Fundamental Station Wettzell in order to meet the future requirements of the next VLBI generation. The Twin Telescope consists of two identical radiotelescopes. It is a project of the Federal Agency for Cartography and Geodesy (BKG). This article summarizes the project and some design ideas for the Twin-Telescope. %ZALMA (2005). Technical Specification for Design, Manufacturing, Transport and Integration on Site of the ALMA ANTENNAS, Doc. ALMA-34.00.00.00.006-BSPE. Behrend, D. (2006). VLBI2010 Antenna Specs, Data sheet. DeBoer, D. (2001). The ATA Offset Gregorian Antenna, ATA Memo #16, February 10. Imbriale, W.A. (2006). Design of a Wideband Radio Telescope, Jet Propulsion Laboratory and S. Weinreb and H. Mandi, California Institute of Technology. Kilger, R. (2007). TWIN-Design studies, Presentation for the IVS board members (internal document),Wettzell. Kronschnabl, G. (2006). Subject: Memo from Bill Petrachenko, E-mail to the Twin-Working Group (in German), July. Lindgren, ETS-Lindgren (2005). The Model 3164-05 Open Boundary Quadridge Horn, Data Sheet. Niell, A., A. Whitney, W. Petrachenko, W. Schlüter, N. Vandenberg, H.Hase, Y. Koyama, C. Ma, H. Schuh, G. Tucari (2006). in: IVS Annual Report 2005, pg. 13-40, NASA/TP-2006-214136, April. Olsson, R., Kildal, P.-S., and Weinreb, S. (2006). IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, February. Petrachenko, B. (2006). The Case For and Against Multiple Antennas at a Site, IVS Memorandum, 2006-019v01. Petrachenko, B. (2006). IVS Memorandum, 2006-016v01. RFSpin (2004). Double Ridged Waveguide Horn-Model DRH20, Antenna Specifications, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Crossed Log- Periodic Antennas HL024A1/S1, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Log-Periodic Antennas HL050/HL050S1, Data Sheet. Rogers, A.E.E. (2006). Simulations of broadband

  12. Radio emission from supernova remnants

    NASA Astrophysics Data System (ADS)

    Dubner, Gloria; Giacani, Elsa

    2015-09-01

    The explosion of a supernova releases almost instantaneously about 10^{51} ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from an SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critically discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analysis of the prospects for future research with the latest-generation radio telescopes.

  13. SIM.M.FF-S7: Final report on SIM/ANDIMET supplementary comparison for volume of liquids at 100 mL and 100 μL

    NASA Astrophysics Data System (ADS)

    Trujillo, S.; Maldonado, J. M.; Vega, M. C.; Santalla, E.; Sica, A.; Cantero, D.; Salazar, M.; Morales, A.; Solano, P.; Rodríguez, L. D.

    2016-01-01

    A SIM/ANDIMET comparison for liquid volume using two 100 mL pycnometers and two 100 μL piston pipettes was performed between January 2012 and October 2013. The National Metrology Institute (NMI) of Bolivia was the coordinating laboratory and the Mexican NMI provided technical assistance. The participating labs were IBMETRO (Bolivia), INM (Colombia), INEN (Ecuador), INDECOPI (Peru), LACOMET (Costa Rica), LATU (Uruguay), INTN (Paraguay), and CENAM (Mexico). Based on measurements made by CENAM at the beginning and end of the comparison, the transfer standards were stable during the comparison within 0.0001 mL for the 100 mL pycnometers and 0.03 μL for the 100 μL pipettes. For 100 mL, six of the eight participants agreed within ± 0.003 % and had standardized degrees of equivalence (EN) less than 1. Two participants (INEN and INM) had EN values greater than 1. For the 100 μL pipettes, the results were corrected for the influence of altitude and seven of the eight participants agreed within ± 0.3 %. Results from INEN and some from INM and IBMETRO had EN values greater than 1 for the 100 μL pipettes. Uncertainties recommended by Guideline DKD-R 8-1 for micropipettes were included. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  14. JWST pathfinder telescope integration

    NASA Astrophysics Data System (ADS)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-08-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI and T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  15. Automated telescope scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1988-01-01

    With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.

  16. JWST Pathfinder Telescope Integration

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-01-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  17. Hartebeesthoek Radio Astronomy Observatory (HartRAO)

    NASA Technical Reports Server (NTRS)

    Nickola, Marisa; Gaylard, Mike; Quick, Jonathan; Combrinck, Ludwig

    2013-01-01

    HartRAO provides the only fiducial geodetic site in Africa, and it participates in global networks for VLBI, GNSS, SLR, and DORIS. This report provides an overview of geodetic VLBI activities at HartRAO during 2012, including the conversion of a 15-m alt-az radio telescope to an operational geodetic VLBI antenna.

  18. South Pole Telescope optics.

    PubMed

    Padin, S; Staniszewski, Z; Keisler, R; Joy, M; Stark, A A; Ade, P A R; Aird, K A; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; Dobbs, M A; Halverson, N W; Heimsath, S; Hills, R E; Holzapfel, W L; Lawrie, C; Lee, A T; Leitch, E M; Leong, J; Lu, W; Lueker, M; McMahon, J J; Meyer, S S; Mohr, J J; Montroy, T E; Plagge, T; Pryke, C; Ruhl, J E; Schaffer, K K; Shirokoff, E; Spieler, H G; Vieira, J D

    2008-08-20

    The South Pole Telescope is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, millimeter-wave, bolometer array receiver. The telescope has an unusual optical system with a cold stop around the secondary. The design emphasizes low scattering and low background loading. All the optical components except the primary are cold, and the entire beam from prime focus to the detectors is surrounded by cold absorber. PMID:18716649

  19. South Pole Telescope optics.

    PubMed

    Padin, S; Staniszewski, Z; Keisler, R; Joy, M; Stark, A A; Ade, P A R; Aird, K A; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; Dobbs, M A; Halverson, N W; Heimsath, S; Hills, R E; Holzapfel, W L; Lawrie, C; Lee, A T; Leitch, E M; Leong, J; Lu, W; Lueker, M; McMahon, J J; Meyer, S S; Mohr, J J; Montroy, T E; Plagge, T; Pryke, C; Ruhl, J E; Schaffer, K K; Shirokoff, E; Spieler, H G; Vieira, J D

    2008-08-20

    The South Pole Telescope is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, millimeter-wave, bolometer array receiver. The telescope has an unusual optical system with a cold stop around the secondary. The design emphasizes low scattering and low background loading. All the optical components except the primary are cold, and the entire beam from prime focus to the detectors is surrounded by cold absorber.

  20. LISA Telescope Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The results of a LISA telescope sensitivity analysis will be presented, The emphasis will be on the outgoing beam of the Dall-Kirkham' telescope and its far field phase patterns. The computed sensitivity analysis will include motions of the secondary with respect to the primary, changes in shape of the primary and secondary, effect of aberrations of the input laser beam and the effect the telescope thin film coatings on polarization. An end-to-end optical model will also be discussed.

  1. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Mahoney, M. J.; Jacobson, A. R.; Knowles, S. H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities.

  2. Telescope performance verification

    NASA Astrophysics Data System (ADS)

    Swart, Gerhard P.; Buckley, David A. H.

    2004-09-01

    While Systems Engineering appears to be widely applied on the very large telescopes, it is lacking in the development of many of the medium and small telescopes currently in progress. The latter projects rely heavily on the experience of the project team, verbal requirements and conjecture based on the successes and failures of other telescopes. Furthermore, it is considered an unaffordable luxury to "close-the-loop" by carefully analysing and documenting the requirements and then verifying the telescope's compliance with them. In this paper the authors contend that a Systems Engineering approach is a keystone in the development of any telescope and that verification of the telescope's performance is not only an important management tool but also forms the basis upon which successful telescope operation can be built. The development of the Southern African Large Telescope (SALT) has followed such an approach and is now in the verification phase of its development. Parts of the SALT verification process will be discussed in some detail to illustrate the suitability of this approach, including oversight by the telescope shareholders, recording of requirements and results, design verification and performance testing. Initial test results will be presented where appropriate.

  3. The Volatile Composition of Comet C/2003 K4 (LINEAR) at Near-IR Wavelengths—Comparisons with Results from the NanÇay Radio Telescope and from the Odin, Spitzer, and SOHO Space Observatories

    NASA Astrophysics Data System (ADS)

    Paganini, L.; Mumma, M. J.; Villanueva, G. L.; DiSanti, M. A.; Bonev, B. P.

    2015-07-01

    We observed comet C/2003 K4 (LINEAR) using NIRSPEC at the Keck Observatory on UT 2004 November 28, when the comet was at 1.28 AU from the Sun (post-perihelion) and 1.38 AU from Earth. We detected six gaseous species (H2O, OH*, C2H6, CH3OH, CH4, and HCN) and obtained upper limits for three others (H2CO, C2H2, and NH3). Our results indicate a water production rate of (1.72 ± 0.18) × 1029 molecules s-1, in reasonable agreement with production rates from SOHO (on the same day), Odin (one day earlier), and Nançay (about two weeks earlier). We also report abundances (relative to water) for seven trace species: CH3OH (˜1.8%), CH4 (˜0.9%), and C2H6 (˜0.4%) that were consistent with mean values among Oort cloud (OC) comets, while NH3 (<0.55%), HCN (˜0.07%), H2CO (<0.07%), and C2H2 (<0.04%) were “lower” than the mean values in other OC comets. We extracted inner-coma rotational temperatures for four species (H2O, C2H6, CH3OH, and CH4), all of which are consistent with 70 K (within 1σ). The extracted ortho-para ratio for water was 3.0 ± 0.15, corresponding to spin temperatures larger than 39 K (at the 1σ level) and agreeing with those obtained with the Spitzer Space Telescope at the 2σ level.

  4. THE VOLATILE COMPOSITION OF COMET C/2003 K4 (LINEAR) AT NEAR-IR WAVELENGTHS—COMPARISONS WITH RESULTS FROM THE NANÇAY RADIO TELESCOPE AND FROM THE ODIN, SPITZER, AND SOHO SPACE OBSERVATORIES

    SciTech Connect

    Paganini, L.; Mumma, M. J.; Villanueva, G. L.; DiSanti, M. A.; Bonev, B. P.

    2015-07-20

    We observed comet C/2003 K4 (LINEAR) using NIRSPEC at the Keck Observatory on UT 2004 November 28, when the comet was at 1.28 AU from the Sun (post-perihelion) and 1.38 AU from Earth. We detected six gaseous species (H{sub 2}O, OH*, C{sub 2}H{sub 6}, CH{sub 3}OH, CH{sub 4}, and HCN) and obtained upper limits for three others (H{sub 2}CO, C{sub 2}H{sub 2}, and NH{sub 3}). Our results indicate a water production rate of (1.72 ± 0.18) × 10{sup 29} molecules s{sup −1}, in reasonable agreement with production rates from SOHO (on the same day), Odin (one day earlier), and Nançay (about two weeks earlier). We also report abundances (relative to water) for seven trace species: CH{sub 3}OH (∼1.8%), CH{sub 4} (∼0.9%), and C{sub 2}H{sub 6} (∼0.4%) that were consistent with mean values among Oort cloud (OC) comets, while NH{sub 3} (<0.55%), HCN (∼0.07%), H{sub 2}CO (<0.07%), and C{sub 2}H{sub 2} (<0.04%) were “lower” than the mean values in other OC comets. We extracted inner-coma rotational temperatures for four species (H{sub 2}O, C{sub 2}H{sub 6}, CH{sub 3}OH, and CH{sub 4}), all of which are consistent with 70 K (within 1σ). The extracted ortho-para ratio for water was 3.0 ± 0.15, corresponding to spin temperatures larger than 39 K (at the 1σ level) and agreeing with those obtained with the Spitzer Space Telescope at the 2σ level.

  5. Pulsed Radio Emission from PSR J1119-6127 re-activated

    NASA Astrophysics Data System (ADS)

    Burgay, M.; Possenti, A.; Kerr, M.; Esposito, P.; Rea, N.; Zelati, F. Coti; Israel, G. L.; Johnston, S.

    2016-08-01

    Prompted by the disappearance of the pulsed radio emission from the known pulsar PSR J1119-6127 (Burgay et al., Atel #9286; Majid et al. Atel #9321), we have undertaken a program at the Parkes radio telescope to investigate any further evolution of the radio emission from the neutron star.

  6. Information Content in Radio Waves: Student Investigations in Radio Science

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  7. LUTE telescope structural design

    NASA Technical Reports Server (NTRS)

    Ruthven, Gregory

    1993-01-01

    The major objective of the Lunar Ultraviolet Transit Experiment (LUTE) Telescope Structural Design Study was to investigate the feasibility of designing an ultralightweight 1-m aperture system within optical performance requirements and mass budget constraints. This study uses the results from our previous studies on LUTE as a basis for further developing the LUTE structural architecture. After summarizing our results in Section 2, Section 3 begins with the overall logic we used to determine which telescope 'structural form' should be adopted for further analysis and weight estimates. Specific telescope component analysis showing calculated fundamental frequencies and how they compare with our derived requirements are included. 'First-order' component stress analyses to ensure telescope optical and structural component (i.e. mirrors & main bulkhead) weights are realistic are presented. Layouts of both the primary and tertiary mirrors showing dimensions that are consistent with both our weight and frequency calculations also form part of Section 3. Section 4 presents our calculated values for the predicted thermally induced primary-to-secondary mirror despace motion due to the large temperature range over which LUTE must operate. Two different telescope design approaches (one which utilizes fused quartz metering rods and one which assumes the entire telescope is fabricated from beryllium) are considered in this analysis. We bound the secondary mirror focus mechanism range (in despace) based on these two telescope configurations. In Section 5 we show our overall design of the UVTA (Ultraviolet Telescope Assembly) via an 'exploded view' of the sub-system. The 'exploded view' is annotated to help aid in the understanding of each sub-assembly. We also include a two view layout of the UVTA from which telescope and telescope component dimensions can be measured. We conclude our study with a set of recommendations not only with respect to the LUTE structural architecture

  8. Sensivity studies for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Collado, Tarek Hassan

    2015-06-01

    Since the creation of the first telescope in the 17th century, every major discovery in astrophysics has been the direct consequence of the development of novel observation techniques, opening new windows in the electromagnetic spectrum. After Karl Jansky discovered serendipitously the first radio source in 1933, Grote Reber built the first parabolic radio telescope in his backyard, planting the seed of a whole new field in astronomy. Similarly, new technologies in the 1950s allowed the establishment of other fields, such as the infrared, ultraviolet or the X-rays. The highest energy end of the electromagnetic spectrum, the γ-ray range, represents the last unexplored window for astronomers and should reveal the most extreme phenomena that take place in the Universe. Given the technical complexity of γ-ray detection and the extremely relative low fluxes, γ-ray astronomy has undergone a slower development compared to other wavelengths. Nowadays, the great success of consecutive space missions together with the development and refinement of new detection techniques from the ground, has allowed outstanding scientific results and has brought gamma-ray astronomy to a worthy level in par with other astronomy fields. This work is devoted to the study and improvement of the future Cherenkov Telescope Array (CTA), the next generation of ground based γ-ray detectors, designed to observe photons with the highest energies ever observed from cosmic sources.

  9. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  10. Goddard Robotic Telescope

    NASA Astrophysics Data System (ADS)

    Sakamoto, Takanori; Donato, Davide; Gehrels, Neil; Okajima, Takashi; Ukwatta, Tilan N.

    2009-05-01

    We are constructing the 14'' fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up the Swift/Fermi Gamma-Ray Bursts (GRBs) and 2) to perform the coordinated optical observations of the Fermi/Large Area Telescope (LAT) Active Galactic Nuclei (AGN). Our telescope system consists of the 14'' Celestron Optical Telescope Assembly (OTA), the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JMI's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R and I filters. With the focal reducer, 20'×20' field of view has been achieved. The observatory dome is the Astro Haven's 7 ft clam-shell dome. We started the scientific observations on mid-November 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  11. Video Telescope Operating Microscopy.

    PubMed

    Divers, Stephen J

    2015-09-01

    Exotic pet veterinarians frequently have to operate on small animals, and magnification is commonly used. Existing endoscopy equipment can be used with a mechanical arm and telescope to enable video telescope operating microscopy. The additional equipment items and their specifics are described, and several case examples are provided. PMID:26117519

  12. Goddard Robotic Telescope

    SciTech Connect

    Sakamoto, Takanori; Donato, Davide; Gehrels, Neil; Okajima, Takashi; Ukwatta, Tilan N.

    2009-05-25

    We are constructing the 14'' fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up the Swift/Fermi Gamma-Ray Bursts (GRBs) and 2) to perform the coordinated optical observations of the Fermi/Large Area Telescope (LAT) Active Galactic Nuclei (AGN). Our telescope system consists of the 14'' Celestron Optical Telescope Assembly (OTA), the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JMI's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R and I filters. With the focal reducer, 20'x20' field of view has been achieved. The observatory dome is the Astro Haven's 7 ft clam-shell dome. We started the scientific observations on mid-November 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  13. Video Telescope Operating Microscopy.

    PubMed

    Divers, Stephen J

    2015-09-01

    Exotic pet veterinarians frequently have to operate on small animals, and magnification is commonly used. Existing endoscopy equipment can be used with a mechanical arm and telescope to enable video telescope operating microscopy. The additional equipment items and their specifics are described, and several case examples are provided.

  14. Three revolutions in cosmical science from the telescope to the Sputnik

    SciTech Connect

    Alfven, H. )

    1989-01-01

    The changes in astronomy brought about by the telescope, the radio telescope, and the Sputnik are discussed. The concept of the plasma universe introduced by the development of the Sputnik is explained and compared to previous concepts of the universe. The possibility of a fourth revolution in our concept of the universe is addressed. 17 refs.

  15. Hubble Space Telescope overview

    NASA Technical Reports Server (NTRS)

    Polidan, Ronald S.

    1991-01-01

    A general overview of the performance and current status of the Hubble Space Telescope is presented. Most key spacecraft subsystems are operating well, equaling or exceeding specifications. Spacecraft thermal properties, power, and communications, are superb. The only spacecraft subsystem to have failed, a gyro, is briefly discussed. All science instruments are functioning extremely well and are returning valuable scientific data. The two significant problems effecting the Hubble Space Telescope science return, the pointing jitter produced by thermally induced bending of the solar array wings and the optical telescope assembly spherical aberration, are discussed and plans to repair both problems are mentioned. The possible restoration of full optical performance of the axial scientific instruments through the use of the Corrective Optics Space Telescope Axial Replacement, currently under study for the 1993 servicing mission, is discussed. In addition, an overview of the scientific performance of the Hubble Space Telescope is presented.

  16. The European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Collados, M.; Bettonvil, F.; Cavaller, L.; Ermolli, I.; Gelly, B.; Pérez, A.; Socas-Navarro, H.; Soltau, D.; Volkmer, R.; EST Team

    The European Solar Telescope (EST) is a project to design, build and operate an European Solar 4-meter class telescope to be located in the Canary Islands, with the participation of institutions from fifteen European countries gathered around the consortium EAST (European Association for Solar Telescopes). The project main objective up to the present has been the development of the conceptual design study (DS) of a large aperture Solar Telescope. The study has demonstrated the scientific, technical and financial feasibility of EST. The DS has been possible thanks to the co-financing allocated specifically by the EU and the combined efforts of all the participant institutions. Different existing alternatives have been analysed for all telescope systems and subsystems, and decisions have been taken on the ones that are most compatible with the scientific goals and the technical strategies. The present status of some subsystems is reviewed in this paper.

  17. Fiber-linked telescope array: description and laboratory tests of a two-channel prototype.

    PubMed

    Alleman, J J; Reynaud, F; Connes, P

    1995-05-01

    We present a complete two-telescope version of a fiber-linked coherent array that is meant to be used for mounting on the dish of a radio telescope. This was built with 20-cm amateur telescopes and includes three different servo subsystems for guiding, nulling of the air path difference, and fiber length control. Laboratory tests of the fully integrated system in front of a star simulator are described.

  18. Fiber-linked telescope array: description and laboratory tests of a two-channel prototype

    NASA Astrophysics Data System (ADS)

    Alleman, J. J.; Reynaud, F.; Connes, P.

    1995-05-01

    We present a complete two-telescope version of a fiber-linked coherent array that is meant to be used for mounting on the dish of a radio telescope. This was built with 20-cm amateur telescopes and includes three different servo subsystems for guiding, nulling of the air path difference, and fiber length control. Laboratory tests of the fully integrated system in front of a star simulator are described.

  19. Enhancing GLAST Science Through Complementary Radio Observations

    NASA Astrophysics Data System (ADS)

    Ulvestad, James S.

    2006-12-01

    Radio astronomical observations with state-of-the-art instrumentation will be critical for achieving the maximum science return from the GLAST mission. Radio nterferometers with baselines of thousands of kilometers, such as the Very Long Baseline Array (VLBA), will provide sub-milliarcsecond imaging of GLAST blazars. High-frequency VLBA imaging, repeatable at intervals of days to weeks, will image the region where gamma-ray flares occur in blazars and help determine the location of the gamma-ray emission. Multi-frequency arcsecond-scale imaging with interferometers having baselines of one to tens of kilometers, particularly the Very Large Array, will provide efficient discrimination among the candidates for unidentified gamma-ray sources. Pulsar timing with single-dish radio telescopes such as the Green Bank Telescope will enable accurate registration of gamma-ray photons with pulsar ephemerides for studies of the pulsar emission mechanisms. Along with these contemporaneous radio/GLAST observing programs, we will discuss briefly some of the recent radio programs that have been conducted in preparation for GLAST launch. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  20. SUPPLEMENTARY COMPARISON: NORAMET intercomparison of volume standards at 50 mL and 100 mL (SIM.M.FF-S1)

    NASA Astrophysics Data System (ADS)

    Jacques, C.; Trujillo Juarez, S.; Maldonado, J. M.; Bean, V.

    2003-01-01

    An intercomparison of volume standards, 50 mL and 100 mL pycnometers, was decided on at the NORAMET Technical Contacts Meeting of 8-9 June 1998. The participating laboratories were CENAM, NIST, and NRC. NRC acted as the pilot laboratory. The comparison was done between April 1999 and October 1999. The pycnometers were not protected against evaporation by a supplementary cap. Even with this handicap, the three laboratories agreed with one another very well. The difference between maximum and minimum reported volumes never exceeded 0.014%. This comparison was assigned the number SIM.M.FF-S1. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the SIM, according to the provisions of the Mutual Recognition Arrangement (MRA).

  1. Total body 100-mGy X-irradiation does not induce Alzheimer's disease-like pathogenesis or memory impairment in mice

    PubMed Central

    Wang, Bing; Tanaka, Kaoru; Ji, Bin; Ono, Maiko; Fang, Yaqun; Ninomiya, Yasuharu; Maruyama, Kouichi; Izumi-Nakajima, Nakako; Begum, Nasrin; Higuchi, Makoto; Fujimori, Akira; Uehara, Yoshihiko; Nakajima, Tetsuo; Suhara, Tetsuya; Ono, Tetsuya; Nenoi, Mitsuru

    2014-01-01

    The cause and progression of Alzheimer's disease (AD) are poorly understood. Possible cognitive and behavioral consequences induced by low-dose radiation are important because humans are exposed to ionizing radiation from various sources. Early transcriptional response in murine brain to low-dose X-rays (100 mGy) has been reported, suggesting alterations of molecular networks and pathways associated with cognitive functions, advanced aging and AD. To investigate acute and late transcriptional, pathological and cognitive consequences of low-dose radiation, we applied an acute dose of 100-mGy total body irradiation (TBI) with X-rays to C57BL/6J Jms mice. We collected hippocampi and analyzed expression of 84 AD-related genes. Mouse learning ability and memory were assessed with the Morris water maze test. We performed in vivo PET scans with 11C-PIB, a radiolabeled ligand for amyloid imaging, to detect fibrillary amyloid beta peptide (Aβ) accumulation, and examined characteristic AD pathologies with immunohistochemical staining of amyloid precursor protein (APP), Aβ, tau and phosphorylated tau (p-tau). mRNA studies showed significant downregulation of only two of 84 AD-related genes, Apbb1 and Lrp1, at 4 h after irradiation, and of only one gene, Il1α, at 1 year after irradiation. Spatial learning ability and memory were not significantly affected at 1 or 2 years after irradiation. No induction of amyloid fibrillogenesis or changes in APP, Aβ, tau, or p-tau expression was detected at 4 months or 2 years after irradiation. TBI induced early or late transcriptional alteration in only a few AD-related genes but did not significantly affect spatial learning, memory or AD-like pathological change in mice. PMID:23908553

  2. Total body 100-mGy X-irradiation does not induce Alzheimer's disease-like pathogenesis or memory impairment in mice.

    PubMed

    Wang, Bing; Tanaka, Kaoru; Ji, Bin; Ono, Maiko; Fang, Yaqun; Ninomiya, Yasuharu; Maruyama, Kouichi; Izumi-Nakajima, Nakako; Begum, Nasrin; Higuchi, Makoto; Fujimori, Akira; Uehara, Yoshihiko; Nakajima, Tetsuo; Suhara, Tetsuya; Ono, Tetsuya; Nenoi, Mitsuru

    2014-01-01

    The cause and progression of Alzheimer's disease (AD) are poorly understood. Possible cognitive and behavioral consequences induced by low-dose radiation are important because humans are exposed to ionizing radiation from various sources. Early transcriptional response in murine brain to low-dose X-rays (100 mGy) has been reported, suggesting alterations of molecular networks and pathways associated with cognitive functions, advanced aging and AD. To investigate acute and late transcriptional, pathological and cognitive consequences of low-dose radiation, we applied an acute dose of 100-mGy total body irradiation (TBI) with X-rays to C57BL/6J Jms mice. We collected hippocampi and analyzed expression of 84 AD-related genes. Mouse learning ability and memory were assessed with the Morris water maze test. We performed in vivo PET scans with (11)C-PIB, a radiolabeled ligand for amyloid imaging, to detect fibrillary amyloid beta peptide (Aβ) accumulation, and examined characteristic AD pathologies with immunohistochemical staining of amyloid precursor protein (APP), Aβ, tau and phosphorylated tau (p-tau). mRNA studies showed significant downregulation of only two of 84 AD-related genes, Apbb1 and Lrp1, at 4 h after irradiation, and of only one gene, Il1α, at 1 year after irradiation. Spatial learning ability and memory were not significantly affected at 1 or 2 years after irradiation. No induction of amyloid fibrillogenesis or changes in APP, Aβ, tau, or p-tau expression was detected at 4 months or 2 years after irradiation. TBI induced early or late transcriptional alteration in only a few AD-related genes but did not significantly affect spatial learning, memory or AD-like pathological change in mice.

  3. A Radio-Frequency-over-Fiber link for large-array radio astronomy applications

    NASA Astrophysics Data System (ADS)

    Mena, J.; Bandura, K.; Cliche, J.-F.; Dobbs, M.; Gilbert, A.; Tang, Q. Y.

    2013-10-01

    A prototype 425-850 MHz Radio-Frequency-over-Fiber (RFoF) link for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) is presented. The design is based on a directly modulated Fabry-Perot (FP) laser, operating at ambient temperature, and a single-mode fiber. The dynamic performance, gain stability, and phase stability of the RFoF link are characterized. Tests on a two-element interferometer built at the Dominion Radio Astrophysical Observatory for CHIME prototyping demonstrate that RFoF can be successfully used as a cost-effective solution for analog signal transport on the CHIME telescope and other large-array radio astronomy applications.

  4. Two Easily Made Astronomical Telescopes.

    ERIC Educational Resources Information Center

    Hill, M.; Jacobs, D. J.

    1991-01-01

    The directions and diagrams for making a reflecting telescope and a refracting telescope are presented. These telescopes can be made by students out of plumbing parts and easily obtainable, inexpensive, optical components. (KR)

  5. The large binocular telescope.

    PubMed

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010. PMID:20517352

  6. The large binocular telescope.

    PubMed

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010.

  7. Sprite Luminosity and Radio Noise

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Evans, A.; Mezentsev, A.; van der Velde, O.; Soula, S.

    2013-12-01

    Sprites are composed of individual streamer discharges (e.g., Pasko, 2010) which split into streamer tips (McHarg et al., 2010) with diameters 50-100 m at 60-80 km height (Kanmae et al., 2012). The sprite luminosity coincides in time and space with extremely low frequency electromagnetic radiation <3 kHz in excellent agreement with theory (Cummer and Fullekrug, 2001). This theory is based on current flowing in the body of sprites at 70-80 km height associated with large streamer densities (Pasko et al., 1998). A more detailed study shows specifically that the exponential growth and splitting of streamers at 70-80 km height results in an electron multiplication associated with the acceleration of electrons to a few eV. The accelerated electrons radiate a small amount of electromagnetic energy and the incoherent superposition of many streamers causes the observed electromagnetic radiation (Qin et al., 2012). It has been predicted that this newly recognized physical mechanism might also result in low frequency ( 30-300 kHz) electromagnetic radiation emanating from sprite streamers near 40 km height in the stratosphere, albeit with very small magnetic fields 10^{-17}-10^{-12} T from a single streamer (Qin et al., 2012). The presence of this predicted radiation was promptly confirmed by low frequency radio noise measurements during dancing sprites with a very sensitive radio receiver (Fullekrug et al., 2013). Specifically, it was found that the sprite luminosity coincides with sudden enhancements of the radio noise. These initial observations are extended here with a more detailed analysis to study the spatial coherence of the radio noise recorded with a novel network of sensitive radio receivers deployed during field work in the summer 2013. This network of radio receivers is used to study the relationship between the radio noise and the sprite luminosity observed with video cameras. The sprite luminosity is inferred from video recordings by use of sophisticated image

  8. Radio Quiet Protection at the Australian Square Kilometre array site

    NASA Astrophysics Data System (ADS)

    Harvey-Smith, Lisa

    2015-08-01

    Radio astronomy relies on the detection of very faint signals from the universe. Many radio telescopes are now detrimentally affected by radio frequency interference (RFI), which results from a wide range of active spectrum users such as communications, aviation and satellites. This is why many new radio observatories are being sited at increasingly remote locations.The site for the Square Kilometre Array and its pathfinders in Australia is the Murchison Radio-Astronomy Observatory (MRO). The MRO is located more than 350km from the nearest population centre and has a large radio-quiet zone that is managed under a range of legislative agreements.In this talk I will describe the radio quiet zone, what protection it gives, how it works and how astronomers interact with the spectrum management authorities.

  9. Millisecond solar radio spikes observed at 1420 MHz

    NASA Astrophysics Data System (ADS)

    Dabrowski, B. P.; Kus, A. J.

    We present results from observations of narrowband solar millisecond radio spikes at 1420 MHz. Observing data were collected between February 2000 and December 2001 with the 15-m radio telescope at the Centre for Astronomy Nicolaus Copernicus University in Torun, Poland, equipped with a radio spectrograph that covered the 1352-1490 MHz frequency band. The radio spectrograph has 3 MHz frequency resolution and 80 microsecond time resolution. We analyzed the individual radio spike duration, bandwidth and rate of frequency drift. A part of the observed spikes showed well-outlined subtle structures. On dynamic radio spectrograms of the investigated events we notice complex structures formed by numerous individual spikes known as chains of spikes and distinctly different structure of columns. Positions of active regions connected with radio spikes emission were investigated. It turns out that most of them are located near the center of the solar disk, suggesting strong beaming of the spikes emission.

  10. A 31 GHz Survey of Low-Frequency Selected Radio Sources

    NASA Astrophysics Data System (ADS)

    Mason, B. S.; Weintraub, L.; Sievers, J.; Bond, J. R.; Myers, S. T.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.

    2009-10-01

    The 100 m Robert C. Byrd Green Bank Telescope and the 40 m Owens Valley Radio Observatory telescope have been used to conduct a 31 GHz survey of 3165 known extragalactic radio sources over 143 deg2 of the sky. Target sources were selected from the NRAO VLA Sky Survey in fields observed by the Cosmic Background Imager (CBI); most are extragalactic active galactic nuclei (AGNs) with 1.4 GHz flux densities of 3-10 mJy. The resulting 31 GHz catalogs are presented in full online. Using a maximum-likelihood analysis to obtain an unbiased estimate of the distribution of the 1.4-31 GHz spectral indices of these sources, we find a mean 31-1.4 GHz flux ratio of 0.110 ± 0.003 corresponding to a spectral index of α = -0.71 ± 0.01 (S ν vprop να) 9.0% ± 0.8% of sources have α > - 0.5 and 1.2% ± 0.2% have α > 0. By combining this spectral-index distribution with 1.4 GHz source counts, we predict 31 GHz source counts in the range 1 mJy < S 31 < 4 mJy, N(>S 31) = (16.7 ± 1.7) deg-2(S 31/1 mJy)-0.80±0.07. We also assess the contribution of mJy-level (S 1.4 GHz < 3.4 mJy) radio sources to the 31 GHz cosmic microwave background power spectrum, finding a mean power of ell(ell + 1)C src ell/(2π) = 44 ± 14 μK2 and a 95% upper limit of 80 μK2 at ell = 2500. Including an estimated contribution of 12 μK2 from the population of sources responsible for the turn-up in counts below S 1.4 GHz = 1 mJy, this amounts to 21% ± 7% of what is needed to explain the CBI high-ell excess signal, 275 ± 63 μK2. These results are consistent with other measurements of the 31 GHz point-source foreground.

  11. Telescopic vision contact lens

    NASA Astrophysics Data System (ADS)

    Tremblay, Eric J.; Beer, R. Dirk; Arianpour, Ashkan; Ford, Joseph E.

    2011-03-01

    We present the concept, optical design, and first proof of principle experimental results for a telescopic contact lens intended to become a visual aid for age-related macular degeneration (AMD), providing magnification to the user without surgery or external head-mounted optics. Our contact lens optical system can provide a combination of telescopic and non-magnified vision through two independent optical paths through the contact lens. The magnified optical path incorporates a telescopic arrangement of positive and negative annular concentric reflectors to achieve 2.8x - 3x magnification on the eye, while light passing through a central clear aperture provides unmagnified vision.

  12. Cooled infrared telescope development

    NASA Technical Reports Server (NTRS)

    Young, L. S.

    1976-01-01

    The feasibility of the design concept for a 1-m-aperture, cryogenically cooled telescope for Spacelab is assessed. The device makes use of double-folded Gregorian reflective optics. The planned cryogen is helium, and beryllium will be used for the 1.2 m primary mirror. Results of studies based on smaller instruments indicate that no new technology will be required to construct a Shuttle Infrared Telescope Facility which will offer improvement over the sensitivity of conventional telescopes by a factor of 1000 at 10 micrometers.

  13. Multi-use lunar telescopes

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Hine, Butler; Genet, Russell; Genet, David; Talent, David; Boyd, Louis; Trueblood, Mark; Filippenko, Alexei V. (Editor)

    1991-01-01

    The objective of multi-use telescopes is to reduce the initial and operational costs of space telescopes to the point where a fair number of telescopes, a dozen or so, would be affordable. The basic approach is to develop a common telescope, control system, and power and communications subsystem that can be used with a wide variety of instrument payloads, i.e., imaging CCD cameras, photometers, spectrographs, etc. By having such a multi-use and multi-user telescope, a common practice for earth-based telescopes, development cost can be shared across many telescopes, and the telescopes can be produced in economical batches.

  14. VizieR Online Data Catalog: Radio continuum and gas reservoir in NGC 3998 (Frank+, 2016)

    NASA Astrophysics Data System (ADS)

    Frank, B. S.; Morganti, R.; Oosterloo, T.; Nyland, K.; Serra, P.

    2016-06-01

    The study of the radio continuum and HI emission of NGC 3998 was done with deep radio observations at L-band using the WSRT telescope. Here we provide the radio continuum image and spectral line cube as presented in the paper. The radio continuum was imaged using uniform (robust=-2) weighting, and is at a resolution of roughly 15". The HI data cube was imaged using a robustness of 0.4, with a taper of 30". (2 data files).

  15. The Influence of Wind Turbines on Radio Astronomical Observations in Irbene

    NASA Astrophysics Data System (ADS)

    Bezrukovs, D.

    2016-04-01

    The reflection and diffraction of external communication and navigational transmitters from tall constructions and moving blades of wind turbines produce some short-pulse additional electromagnetic interference strong enough to fully disturb radio astronomical observations. The problem of short-pulse electromagnetic interference is distinctive to all radio telescopes surrounded by wind turbines. This problem became significant for Ventspils International Radio Astronomy Centre (VIRAC) after new wind park "Platene" of Winergy Ltd. was built in 2012 and radio telescopes RT-16 and RT-32 renovated and equipped with cryogenic high sensitive receivers. The paper deals with the analysis and evaluation of intensities and probabilities of short-pulse interferences produced by wind park "Platene" and its possible impact on radio astronomical observations at VIRAC radio telescopes.

  16. The AMiBA Hexapod Telescope Mount

    NASA Astrophysics Data System (ADS)

    Koch, Patrick M.; Kesteven, Michael; Nishioka, Hiroaki; Jiang, Homin; Lin, Kai-Yang; Umetsu, Keiichi; Huang, Yau-De; Raffin, Philippe; Chen, Ke-Jung; Ibañez-Romano, Fabiola; Chereau, Guillaume; Huang, Chih-Wei Locutus; Chen, Ming-Tang; Ho, Paul T. P.; Pausch, Konrad; Willmeroth, Klaus; Altamirano, Pablo; Chang, Chia-Hao; Chang, Shu-Hao; Chang, Su-Wei; Han, Chih-Chiang; Kubo, Derek; Li, Chao-Te; Liao, Yu-Wei; Liu, Guo-Chin; Martin-Cocher, Pierre; Oshiro, Peter; Wang, Fu-Cheng; Wei, Ta-Shun; Wu, Jiun-Huei Proty; Birkinshaw, Mark; Chiueh, Tzihong; Lancaster, Katy; Lo, Kwok Yung; Martin, Robert N.; Molnar, Sandor M.; Patt, Ferdinand; Romeo, Bob

    2009-04-01

    The Array for Microwave Background Anisotropy (AMiBA) is the largest hexapod astronomical telescope in current operation. We present a description of this novel hexapod mount with its main mechanical components—the support cone, universal joints, jack screws, and platform—and outline the control system with the pointing model and the operating modes that are supported. The AMiBA hexapod mount performance is verified based on optical pointing tests and platform photogrammetry measurements. The photogrammetry results show that the deformations in the inner part of the platform are less than 120 μm rms. This is negligible for optical pointing corrections, radio alignment, and radio phase errors for the currently operational seven-element compact configuration. The optical pointing error in azimuth and elevation is successively reduced by a series of corrections to about 0farcm 4 rms which meets our goal for the seven-element target specifications.

  17. Detecting axionlike particles with gamma ray telescopes.

    PubMed

    Hooper, Dan; Serpico, Pasquale D

    2007-12-01

    We propose that axionlike particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma-ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the "Hillas criterion", such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1-100 GeV range and by ground-based gamma-ray telescopes in the TeV range.

  18. Planetary Radar with the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Ford, Alyson; Ford, John M.; Watts, Galen

    2014-11-01

    The large aperture and sensitive receivers of the National Radio Astronomy Observatory's Robert C. Byrd Green Bank Telescope (GBT) make it an attractive receiving station for bistatic radar experiments. Consequently, it has been used as a receive station for radar observations since its commissioning in 2001. The GBT is equipped with receivers for all common planetary radar transmitters at P, S, and X band, as well as for future radars at up to 86 GHz. We describe the technical capabilities of the GBT and its instrumentation in terms of its tracking and RF performance, the available radar backends, and select science results obtained through the use of the GBT.

  19. Detecting axionlike particles with gamma ray telescopes.

    PubMed

    Hooper, Dan; Serpico, Pasquale D

    2007-12-01

    We propose that axionlike particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma-ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the "Hillas criterion", such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1-100 GeV range and by ground-based gamma-ray telescopes in the TeV range. PMID:18233353

  20. Space Telecommunications Radio System STRS Cognitive Radio

    NASA Technical Reports Server (NTRS)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.