Science.gov

Sample records for 100hz repetition rate

  1. High-average-power 100-Hz repetition rate table-top soft x-ray lasers

    NASA Astrophysics Data System (ADS)

    Rocca, Jorge J.; Reagan, Brendan A.; Wernsing, Keith; Wang, Yong; Yin, Liang; Wang, Shoujun; Berrill, Mark; Woolston, Mark R.; Curtis, Alden H.; Furch, Federico J. A.; Shlyaptsev, Vyacheslav N.; Luther, Brad M.; Patel, Dinesh; Marconi, Mario C.; Menoni, Carmen S.

    2013-09-01

    The table-top generation of high average power coherent soft x-ray radiation in a compact set up is of high interest for numerous applications. We have demonstrated the generation of bright soft x-ray laser pulses at 100 Hz repetition rate with record-high average power from compact plasma amplifiers excited by an ultrafast diode-pumped solid state laser. Results of compact λ=18.9nm Ni-like Mo and λ=13.9nm Ni-like Ag lasers operating at 100 Hz repetition rate are discussed.

  2. 100 Hz repetition rate, high average power, plasma-based soft x-ray lasers

    NASA Astrophysics Data System (ADS)

    Reagan, Brendan; Wernsing, Keith; Baumgarten, Cory; Berrill, Mark; Durivage, Leon; Furch, Federico; Curtis, Alden; Luther, Bradley; Patel, Dinesh; Menoni, Carmen; Shlyaptsev, Vyacheslav; Rocca, Jorge

    2013-10-01

    Numerous applications demand high average power / high repetition rate compact sources of coherent soft x-ray radiation. We report the demonstration table-top soft x-ray lasers at wavelengths ranging from 10.9 nm to 18.9 nm from plasmas created at 100 Hz repetition rate. Results includes a record average power of 0.15 mW at λ = 18.9 nm from a laser-produced Mo plasma and 0.1 mW average power at λ = 13.9 nm from a Ag plasma. These soft x-ray lasers are driven by collisional electron impact excitation in elongated line focus plasmas a few mm in length heated by a compact, directly diode-pumped, chirped pulse amplification Yb:YAG laser that produces 1 J pulses of ps duration at 100 Hz repetition rate. Pulses from this laser irradiate the surface of polished metal targets producing transient population inversions on the 4d1S0 --> 4p1P1 transition of Ni-like ions. Tailoring of the temporal profile of the driver laser pulse is observed to significantly increase soft x-ray laser output power as well as allow the generation of shorter wavelength lasers with reduced pump energy. Work was supported by the NSF ERC for Extreme Ultraviolet Science and Technology using equipment developed under NSF Award MRI-ARRA 09-561, and by the AMOS program of the Office of Basic Energy Sciences, US Department of Energy.

  3. Hour-long continuous operation of a tabletop soft x-ray laser at 50-100 Hz repetition rate.

    PubMed

    Reagan, Brendan A; Li, Wei; Urbanski, Lukasz; Wernsing, Keith A; Salsbury, Chase; Baumgarten, Cory; Marconi, Mario C; Menoni, Carmen S; Rocca, Jorge J

    2013-11-18

    We report the uninterrupted operation of an 18.9 nm wavelength tabletop soft x-ray laser at 100 Hz repetition rate for extended periods of time. An average power of about 0.1 mW was obtained by irradiating a Mo target with pulses from a compact diode-pumped chirped pulse amplification Yb:YAG laser. Series of up to 1.8 x 10(5) consecutive laser pulses of ~1 µJ energy were generated by displacing the surface of a high shot-capacity rotating molybdenum target by ~2 µm between laser shots. As a proof-of-principle demonstration of the use of this compact ultrashort wavelength laser in applications requiring a high average power coherent beam, we lithographically printed an array of nanometer-scale features using coherent Talbot self-imaging. PMID:24514347

  4. High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths

    NASA Astrophysics Data System (ADS)

    Reagan, Brendan A.; Berrill, Mark; Wernsing, Keith A.; Baumgarten, Cory; Woolston, Mark; Rocca, Jorge J.

    2014-05-01

    Efficient excitation of dense plasma columns at 100-Hz repetition rate using a tailored pump pulse profile produced a tabletop soft-x-ray laser average power of 0.1 mW at λ = 13.9 nm and 20 μW at λ = 11.9 nm from transitions of Ni-like Ag and Ni-like Sn, respectively. Lasing on several other transitions with wavelengths between 10.9 and 14.7 nm was also obtained using 0.9-J pump pulses of 5-ps duration from a compact diode-pumped chirped pulse amplification Yb:YAG laser. Hydrodynamic and atomic plasma simulations show that the pump pulse profile, consisting of a nanosecond ramp followed by two peaks of picosecond duration, creates a plasma with an increased density of Ni-like ions at the time of peak temperature that results in a larger gain coefficient over a temporally and spatially enlarged space leading to a threefold increase in the soft-x-ray laser output pulse energy. The high average power of these compact soft-x-ray lasers will enable applications requiring high photon flux. These results open the path to milliwatt-average-power tabletop soft-x-ray lasers.

  5. Demonstration of a 100 Hz repetition rate gain-saturated diode-pumped table-top soft x-ray laser.

    PubMed

    Reagan, Brendan A; Wernsing, Keith A; Curtis, Alden H; Furch, Federico J; Luther, Bradley M; Patel, Dinesh; Menoni, Carmen S; Rocca, Jorge J

    2012-09-01

    We demonstrate the operation of a gain-saturated table-top soft x-ray laser at 100 Hz repetition rate. The laser generates an average power of 0.15 mW at λ=18.9  nm, the highest laser power reported to date from a sub-20-nm wavelength compact source. Picosecond laser pulses of 1.5 μJ energy were produced at λ=18.9  nm by amplification in a Mo plasma created by tailoring the temporal intensity profile of single pump pulses with 1 J energy produced by a diode-pumped chirped pulse amplification Yb:YAG laser. Lasing was also obtained in the 13.9 nm line of Ni-like Ag. These results increase by an order of magnitude the repetition rate of plasma-based soft x-ray lasers opening the path to milliwatt average power table-top lasers at sub-20 nm wavelengths. PMID:22940970

  6. Demonstration of a 100 Hz Repetition Rate Soft X-Ray Laser and Gain-Saturated Sub-10 nm Table-Top Lasers

    NASA Astrophysics Data System (ADS)

    Rocca, J. J.; Reagan, B. A.; Wang, Y.; Alessi, D.; Wernsing, K.; Luther, B. M.; Curtis, M. A.; Berrill, M.; Martz, D.; Wang, S.; Yin, L.; Furch, F.; Woolston, M.; Patel, D.; Shlyaptsev, V. N.; Menoni, C. S.

    We report the first operation of a table-top soft x-ray laser at 100 Hz repetition rate. This gain saturated laser produces 0.15 mW average power in the 18.9 nm line of nickel-like molybdenum in the form of 1.5 μJ pulses. This is the highest average power reported to date from a compact coherent soft x-ray laser source operating at wavelengths shorter than 20 nm. The soft x-ray laser is excited by a diode-pumped chirped pulse amplification Yb:YAG laser that produces 1 J pulses of 5 ps duration. We have also demonstrated the efficient generation of sub-9 nm wavelength laser pulses of microjoule energy at 1 Hz repetition rate with a table-top laser. Gain-saturated lasing was obtained at 8.85 nm in nickel-like lanthanum ions. Isoelectronic scaling along the lanthanide series resulted in lasing at wavelengths as short as 7.36 nm. Simulations show that the collisionally broadened atomic transitions in these dense plasmas can support the amplification of sub-picosecond soft x-ray laser pulses.

  7. 1-J operation of monolithic composite ceramics with Yb:YAG thin layers: multi-TRAM at 10-Hz repetition rate and prospects for 100-Hz operation.

    PubMed

    Divoky, Martin; Tokita, Shigeki; Hwang, Sungin; Kawashima, Toshiyuki; Kan, Hirofumi; Lucianetti, Antonio; Mocek, Tomas; Kawanaka, Junji

    2015-03-15

    Experimental amplification of 10-ns pulses to energy of 1 J at repetition rate of 10-100 Hz in cryogenic multipass total-reflection active-mirror (TRAM) amplifier is reported for the first time. By using a monolithic multi-TRAM, which is a YAG ceramic composite with three thin Yb:YAG active layers, efficient energy extraction was achieved without parasitic lasing. A detailed measurement of output characteristics of the laser amplifier is presented; results are discussed and compared with numerical calculations. PMID:25768130

  8. Miniature pulse tube cooler at 100HZ

    NASA Astrophysics Data System (ADS)

    Chen, Houlei; Xu, Nana; Yin, Chuanlin; Cai, Jinghui; Liang, Jingtao

    2012-06-01

    Miniature pulse tube coolers operating at 100Hz have been designed and manufactured. The regenerator is designed by REGEN 3.2, and the inertance tube is simulated by DeltaE. An in-line prototype is manufactured according to the theoretical design parameters initially. On that basis, a coaxial cooler is developed and with double inlet it gains higher cooling performance.

  9. Fast repetition rate (FRR) flasher

    DOEpatents

    Kolber, Z.; Falkowski, P.

    1997-02-11

    A fast repetition rate (FRR) flasher is described suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz. 14 figs.

  10. Fast repetition rate (FRR) flasher

    DOEpatents

    Kolber, Zbigniew; Falkowski, Paul

    1997-02-11

    A fast repetition rate (FRR) flasher suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between Successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz.

  11. Sounds in the Ocean at 1-100 Hz

    NASA Astrophysics Data System (ADS)

    Wilcock, William S. D.; Stafford, Kathleen M.; Andrew, Rex K.; Odom, Robert I.

    2014-01-01

    Very-low-frequency sounds between 1 and 100 Hz propagate large distances in the ocean sound channel. Weather conditions, earthquakes, marine mammals, and anthropogenic activities influence sound levels in this band. Weather-related sounds result from interactions between waves, bubbles entrained by breaking waves, and the deformation of sea ice. Earthquakes generate sound in geologically active regions, and earthquake T waves propagate throughout the oceans. Blue and fin whales generate long bouts of sounds near 20 Hz that can dominate regional ambient noise levels seasonally. Anthropogenic sound sources include ship propellers, energy extraction, and seismic air guns and have been growing steadily. The increasing availability of long-term records of ocean sound will provide new opportunities for a deeper understanding of natural and anthropogenic sound sources and potential interactions between them.

  12. Sounds in the ocean at 1-100 Hz.

    PubMed

    Wilcock, William S D; Stafford, Kathleen M; Andrew, Rex K; Odom, Robert I

    2014-01-01

    Very-low-frequency sounds between 1 and 100 Hz propagate large distances in the ocean sound channel. Weather conditions, earthquakes, marine mammals, and anthropogenic activities influence sound levels in this band. Weather-related sounds result from interactions between waves, bubbles entrained by breaking waves, and the deformation of sea ice. Earthquakes generate sound in geologically active regions, and earthquake T waves propagate throughout the oceans. Blue and fin whales generate long bouts of sounds near 20 Hz that can dominate regional ambient noise levels seasonally. Anthropogenic sound sources include ship propellers, energy extraction, and seismic air guns and have been growing steadily. The increasing availability of long-term records of ocean sound will provide new opportunities for a deeper understanding of natural and anthropogenic sound sources and potential interactions between them. PMID:23876176

  13. High repetition rate sealed CO2 TEA lasers using heterogeneous catalysts

    NASA Technical Reports Server (NTRS)

    Price, H. T.; Shaw, S. R.

    1987-01-01

    The significant operational advantages offered by CO2 lasers, operating in the 10.6 micron region of the spectrum, over current solid state lasers, emitting in the near IR region, have prompted increased interest in the development of compact, reliable, rugged CO2 laser sources. Perhaps the most critical aspect associated with achieving a laser compatible with military use is the development of lasers which require no gas replenishment. Sealed, single shot, CO2 TEA lasers have been available for a number of years. Stark et al were first to demonstrate reliable sealed operation in single shot CO2 TEA lasers in 1975 using gas catalysis. GEC Avionics reported the compact, environmentally qualified, MKIII CO2 TEA laser with a pulse life of greater than 10 to the 6th power pulses in 1980. A sealed laser lifetime of greater than 10 to the 6th power pulses is acceptable for single shot cases, such as direct detection rangefinders for tank laser sights. However, in many other applications, such as tracking of fast moving targets, it is essential that a repetition rate of typically 30Hz to 100Hz is employed. In such cases, a pulse lifetime of 10 to the 6th power pulses is no longer sufficient and a minimum pulse lifetime 10 to the 7th power pulses is essential to ensure a useful service life. In 1983 Stark el al described a sealed, 100Hz CO2 TEA laser, with a life of greater than 2.6 x 10 to the 6th power, which employed heterogeneous catalysis. Following this pioneering work, GEC Avionics has been engaged in the development of sealed high repetition rate lasers with a pulse lifetime of 20 million pulses.

  14. Test results for 320 nm and 390 nm remote sensing sources using a 150 mJ, 100 Hz repetition rate, injection-seeded diode-pumped Nd:YAG slab-laser developed by Coherent Technologies, Inc.

    SciTech Connect

    Armstrong, Darrell Jewell

    2005-07-01

    This report describes results of tests using a laser system designed by Coherent Technologies, Inc., in conjunction with Sandia developed nonlinear optics technology. Test results are described for three different optical parametric oscillators built at Sandia. The report concludes with recommendations for future work.

  15. High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy.

    PubMed

    Tümmler, J; Jung, R; Stiel, H; Nickles, P V; Sandner, W

    2009-05-01

    We are reporting on the development of a diode-pumped chirped-pulse-amplification (CPA) laser system based on Yb:YAG thin-disk technology with a repetition rate of 100 Hz and output pulse energy in the joule range. The focus lies with the first results of the preamplifier--a regenerative amplifier (RA) and a multipass amplifier (MP). The system consists of a front end including the CPA stretcher followed by an amplifier chain based on Yb:YAG thin-disk amplifiers and the CPA compressor. It is developed in the frame of our x-ray laser (XRL) program and fulfills all requirements for pumping a plasma-based XRL in grazing incidence pumping geometry. Of course it can also be used for other interesting applications. With the RA pulse energies of more than 165 mJ can be realized. At a repetition rate of 100 Hz a stability of 0.8% (1sigma) over a period of more than 45 min has been measured. The optical-to-optical efficiency is 14%. The following MP amplifier can increase the pulse energy to more than 300 mJ. A nearly bandwidth-limited recompression to less than 2 ps could be demonstrated. PMID:19412278

  16. Compact Pulsed X-Ray Generator Operated At High Repetitive Rates

    NASA Astrophysics Data System (ADS)

    Isobe, Hiroshi; Sato, Eiichi; Kimura, Shingo; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1990-01-01

    A repetitive pulsed x-ray generator achieved with a compact diode utilizing a new type of cathode for biomedical radiography is described. This generator consisted of the following components: a high-voltage power supply, two ceramic condensers of about 850pF, a repetitive impulse switching system, a turbo molecular pump, and an x-ray tube. Since the high-voltage pulser employed a modified Marx circuit, this pulser produced twice the potential of the condenser charging voltage. The x-ray tube was of the demountable-diode type which was connected to the turbo molecular pump and consisted of the following components: a rod-shaped anode tip made of tungsten, a plane cathode made of aluminum and carbon, and a vacuum vessel made of glass with a diameter of 50mm. Two condensers were charged from 30 to 100kV, and the output of this pulser ranged from 50 to 180kV. The x-ray pulse widths primarily increased according to increases in the anode-cathode (A-C space) and their values ranged from 20 to 100ns. The repetitive rate was determined by the condenser capacity, the charging voltage, and the current capacity of the power supply, and its maximum value was about 100Hz. The time integrated x-ray intensities were less than 4.0pC/kg at 0.5m per pulse when the discharge capacity of about 430pF (Marx Circuit) was employed. The effective focal spot size was determined by the diameter of anode tip and its value ranged from 0.5 to 3.0mm in diameter.

  17. Properties of water surface discharge at different pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Ruma, Hosseini, S. H. R.; Yoshihara, K.; Akiyama, M.; Sakugawa, T.; Lukeš, P.; Akiyama, H.

    2014-09-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H2O2) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H2O2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  18. Properties of water surface discharge at different pulse repetition rates

    SciTech Connect

    Ruma,; Yoshihara, K.; Hosseini, S. H. R. Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-09-28

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H₂O₂) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H₂O₂ and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  19. High average power, high repetition rate table-top soft x-ray lasers for applications in nanoscience and nanotechnology

    NASA Astrophysics Data System (ADS)

    Reagan, Brendan; Wernsing, Keith; Baumgarten, Cory; Durivage, Leon; Berrill, Mark; Curtis, Alden; Furch, Federico; Luther, Brad; Woolston, Mark; Patel, Dinesh; Menoni, Carmen; Shlyaptsev, Vyacheslav; Rocca, Jorge

    2014-03-01

    There is great interest in table-top sources of bright coherent soft x-ray radiation for nanoscale applications. We report the demonstration of a compact, high repetition rate soft x-ray laser operating at wavelengths between 10.9nm to 18.9nm, including the generation of 0.15mW average power at λ = 18.9nm and 0.1mW average power at λ = 13.9nm. These short wavelength lasers were driven by an all diode pumped, chirped pulse amplification laser based on cryogenically-cooled Yb:YAG amplifiers that produces 1 Joule, picosecond duration pulses at 100 Hz repetition rate. Irradiation of solid targets results in the production of plasmas with large transient population inversions on the 4d1S0 --> 4p1P1 transition of Ni-like ions. Optimization of this high repetition rate laser combined with the development of high shot capacity, rotating targets has allowed the uninterrupted operation of this soft x-ray laser for hundreds of thousands of consecutive shots, making it suitable for a number of applications requiring high photon flux at short wavelengths. Work was supported by the NSF ERC for Extreme Ultraviolet Science and Technology using equipment developed under NSF Award MRI-ARRA 09-561, and by the AMOS program of the Office of Basic Energy Sciences, US Department of Energy.

  20. Flexible high-repetition-rate ultrafast fiber laser

    PubMed Central

    Mao, Dong; Liu, Xueming; Sun, Zhipei; Lu, Hua; Han, Dongdong; Wang, Guoxi; Wang, Fengqiu

    2013-01-01

    High-repetition-rate pulses have widespread applications in the fields of fiber communications, frequency comb, and optical sensing. Here, we have demonstrated high-repetition-rate ultrashort pulses in an all-fiber laser by exploiting an intracavity Mach-Zehnder interferometer (MZI) as a comb filter. The repetition rate of the laser can be tuned flexibly from about 7 to 1100 GHz by controlling the optical path difference between the two arms of the MZI. The pulse duration can be reduced continuously from about 10.1 to 0.55 ps with the spectral width tunable from about 0.35 to 5.7 nm by manipulating the intracavity polarization controller. Numerical simulations well confirm the experimental observations and show that filter-driven four-wave mixing effect, induced by the MZI, is the main mechanism that governs the formation of the high-repetition-rate pulses. This all-fiber-based laser is a simple and low-cost source for various applications where high-repetition-rate pulses are necessary. PMID:24226153

  1. High-repetition-rate short-pulse gas discharge.

    PubMed

    Tulip, J; Seguin, H; Mace, P N

    1979-09-01

    A high-average-power short-pulse gas discharge is described. This consists of a volume-preionized transverse discharge of the type used in gas lasers driven by a Blumlein energy storage circuit. The Blumlein circuit is fabricated from coaxial cable, is pulse-charged from a high-repetition-rate Marx-bank generator, and is switched by a high-repetition-rate segmented rail gap. The operation of this discharge under conditions typical of rare-gas halide lasers is described. A maximum of 900 pps was obtained, giving a power flow into the discharge of 30 kW. PMID:18699678

  2. Short-cavity high-repetition-rate CO2 laser

    NASA Astrophysics Data System (ADS)

    Klopper, Wouter; Bagrova, Kalina; du Pisanie, Johan; Ronander, Einar; Meyer, Jan A.; von Bergmann, Hubertus M.

    1994-09-01

    We report on the construction and optimization of a TEA CO2 laser with a discharge volume of 15 cm3 and cavity length of 20 cm. Such a short cavity facilitates single longitudinal mode operation. A roots blower is employed to achieve the necessary gas flow rate for high-repetition-frequency operation in a compact design. Output has been obtained at 1 kHz and a stable discharge to a repetition rate of 2 kHz has been demonstrated. The laser is part of a program aimed at the development of an efficient laser system for molecular laser isotope separation. Additional applications in materials processing are envisioned.

  3. A gigawatt level repetitive rate adjustable magnetic pulse compressor

    NASA Astrophysics Data System (ADS)

    Li, Song; Gao, Jing-Ming; Yang, Han-Wu; Qian, Bao-Liang; Li, Ze-Xin

    2015-08-01

    In this paper, a gigawatt level repetitive rate adjustable magnetic pulse compressor is investigated both numerically and experimentally. The device has advantages of high power level, high repetitive rate achievability, and long lifetime reliability. Importantly, dominate parameters including the saturation time, the peak voltage, and even the compression ratio can be potentially adjusted continuously and reliably, which significantly expands the applicable area of the device and generators based on it. Specifically, a two-stage adjustable magnetic pulse compressor, utilized for charging the pulse forming network of a high power pulse generator, is designed with different compression ratios of 25 and 18 through an optimized design process. Equivalent circuit analysis shows that the modification of compression ratio can be achieved by just changing the turn number of the winding. At the same time, increasing inductance of the grounded inductor will decrease the peak voltage and delay the charging process. Based on these analyses, an adjustable compressor was built and studied experimentally in both the single shot mode and repetitive rate mode. Pulses with peak voltage of 60 kV and energy per pulse of 360 J were obtained in the experiment. The rise times of the pulses were compressed from 25 μs to 1 μs and from 18 μs to 1 μs, respectively, at repetitive rate of 20 Hz with good repeatability. Experimental results show reasonable agreement with analyses.

  4. A gigawatt level repetitive rate adjustable magnetic pulse compressor.

    PubMed

    Li, Song; Gao, Jing-Ming; Yang, Han-Wu; Qian, Bao-Liang; Li, Ze-Xin

    2015-08-01

    In this paper, a gigawatt level repetitive rate adjustable magnetic pulse compressor is investigated both numerically and experimentally. The device has advantages of high power level, high repetitive rate achievability, and long lifetime reliability. Importantly, dominate parameters including the saturation time, the peak voltage, and even the compression ratio can be potentially adjusted continuously and reliably, which significantly expands the applicable area of the device and generators based on it. Specifically, a two-stage adjustable magnetic pulse compressor, utilized for charging the pulse forming network of a high power pulse generator, is designed with different compression ratios of 25 and 18 through an optimized design process. Equivalent circuit analysis shows that the modification of compression ratio can be achieved by just changing the turn number of the winding. At the same time, increasing inductance of the grounded inductor will decrease the peak voltage and delay the charging process. Based on these analyses, an adjustable compressor was built and studied experimentally in both the single shot mode and repetitive rate mode. Pulses with peak voltage of 60 kV and energy per pulse of 360 J were obtained in the experiment. The rise times of the pulses were compressed from 25 μs to 1 μs and from 18 μs to 1 μs, respectively, at repetitive rate of 20 Hz with good repeatability. Experimental results show reasonable agreement with analyses. PMID:26329219

  5. The Effect of Syllable Repetition Rate on Vocal Characteristics

    ERIC Educational Resources Information Center

    Topbas, Oya; Orlikoff, Robert F.; St. Louis, Kenneth O.

    2012-01-01

    This study examined whether mean vocal fundamental frequency ("F"[subscript 0]) or speech sound pressure level (SPL) varies with changes in syllable repetition rate. Twenty-four young adults (12 M and 12 F) repeated the syllables/p[inverted v]/,/p[inverted v]t[schwa]/, and/p[inverted v]t[schwa]k[schwa]/at a modeled "slow" rate of approximately one…

  6. Orbit compensation for the time-varying elliptically polarized wiggler with switching frequency at 100 hz

    SciTech Connect

    Singh, O.; Krinsky, S.

    1997-07-01

    In October 1996, the elliptically polarized wiggler, installed in the X13 straight section of the NSLS X-ray ring, was commissioned at an operating frequency of 100 hz. This wiggler generates circularly polarized photons in the energy range of 0.1 to 10 keV with AC modulation of polarization helicity. The vertical magnetic field is produced by a hybrid permanent magnet structure, and the horizontal magnetic field is generated by an electromagnet capable of switching at frequencies up to 100 hz. Here, the authors discuss the compensation of the residual vertical and horizontal orbit motion utilizing a time-domain algorithm employing a function generator to drive trim coils at the wiggler ends, and the wideband high precision orbit measurement system of the X-ray ring. The residual orbit motion has been reduced to a level below 1 micron, and the device has been run in regular operations with no negative effect on other users.

  7. 100-Hz Electroacupuncture but not 2-Hz Electroacupuncture is Preemptive Against Postincision Pain in Rats.

    PubMed

    Silva, Marcelo Lourenço; Silva, Josie Resende Torres; Prado, Wiliam Alves

    2016-08-01

    Preemptive analgesia involves introducing an analgesic before noxious stimulation. Electroacupuncture (EA) activates descending mechanisms that modulate nociceptive inputs into the spinal dorsal horn. This study evaluated whether preoperative EA is more effective than postoperative EA in reducing incision pain in rats. The nociceptive threshold to mechanical stimulation was utilized to examine the effects of an intraperitoneal injection of saline (0.1 mL/kg) or naloxone (1 mg/kg) on antinociception induced by a 20-minute period of 2-Hz or 100-Hz EA applied to the Zusanli (ST36) and Sanyinjiao (SP6) acupoints before surgical incision, or 10 minutes after or 100 minutes after surgical incision of the hind paw. The extent of mechanical hyperalgesia after the incision was significantly attenuated by the application of 100-Hz EA preoperatively, but not by its application at 10 minutes or 100 minutes postoperatively. By contrast, 2-Hz EA was effective against postoperative hyperalgesia when applied 10 minutes or 100 minutes after surgery but not when it was applied preoperatively. Only the effect of 2-Hz EA applied 10 minutes after surgery was sensitive to naloxone. The present study showed for the first time that 100-Hz EA, but not 2-Hz EA, exerts a nonopioidergic preemptive effect against postincision pain in rats. PMID:27555225

  8. High repetition rate plasma mirror device for attosecond science

    SciTech Connect

    Borot, A.; Douillet, D.; Iaquaniello, G.; Lefrou, T.; Lopez-Martens, R.; Audebert, P.; Geindre, J.-P.

    2014-01-15

    This report describes an active solid target positioning device for driving plasma mirrors with high repetition rate ultra-high intensity lasers. The position of the solid target surface with respect to the laser focus is optically monitored and mechanically controlled on the nm scale to ensure reproducible interaction conditions for each shot at arbitrary repetition rate. We demonstrate the target capabilities by driving high-order harmonic generation from plasma mirrors produced on glass targets with a near-relativistic intensity few-cycle pulse laser system operating at 1 kHz. During experiments, residual target surface motion can be actively stabilized down to 47 nm (root mean square), which ensures sub-300-as relative temporal stability of the plasma mirror as a secondary source of coherent attosecond extreme ultraviolet radiation in pump-probe experiments.

  9. High repetition rate plasma mirror device for attosecond science

    NASA Astrophysics Data System (ADS)

    Borot, A.; Douillet, D.; Iaquaniello, G.; Lefrou, T.; Audebert, P.; Geindre, J.-P.; Lopez-Martens, R.

    2014-01-01

    This report describes an active solid target positioning device for driving plasma mirrors with high repetition rate ultra-high intensity lasers. The position of the solid target surface with respect to the laser focus is optically monitored and mechanically controlled on the nm scale to ensure reproducible interaction conditions for each shot at arbitrary repetition rate. We demonstrate the target capabilities by driving high-order harmonic generation from plasma mirrors produced on glass targets with a near-relativistic intensity few-cycle pulse laser system operating at 1 kHz. During experiments, residual target surface motion can be actively stabilized down to 47 nm (root mean square), which ensures sub-300-as relative temporal stability of the plasma mirror as a secondary source of coherent attosecond extreme ultraviolet radiation in pump-probe experiments.

  10. High repetition rate plasma mirror device for attosecond science.

    PubMed

    Borot, A; Douillet, D; Iaquaniello, G; Lefrou, T; Audebert, P; Geindre, J-P; Lopez-Martens, R

    2014-01-01

    This report describes an active solid target positioning device for driving plasma mirrors with high repetition rate ultra-high intensity lasers. The position of the solid target surface with respect to the laser focus is optically monitored and mechanically controlled on the nm scale to ensure reproducible interaction conditions for each shot at arbitrary repetition rate. We demonstrate the target capabilities by driving high-order harmonic generation from plasma mirrors produced on glass targets with a near-relativistic intensity few-cycle pulse laser system operating at 1 kHz. During experiments, residual target surface motion can be actively stabilized down to 47 nm (root mean square), which ensures sub-300-as relative temporal stability of the plasma mirror as a secondary source of coherent attosecond extreme ultraviolet radiation in pump-probe experiments. PMID:24517742

  11. Bipolar high-repetition-rate high-voltage nanosecond pulser

    SciTech Connect

    Tian Fuqiang; Wang Yi; Shi Hongsheng; Lei Qingquan

    2008-06-15

    The pulser designed is mainly used for producing corona plasma in waste water treatment system. Also its application in study of dielectric electrical properties will be discussed. The pulser consists of a variable dc power source for high-voltage supply, two graded capacitors for energy storage, and the rotating spark gap switch. The key part is the multielectrode rotating spark gap switch (MER-SGS), which can ensure wider range modulation of pulse repetition rate, longer pulse width, shorter pulse rise time, remarkable electrical field distortion, and greatly favors recovery of the gap insulation strength, insulation design, the life of the switch, etc. The voltage of the output pulses switched by the MER-SGS is in the order of 3-50 kV with pulse rise time of less than 10 ns and pulse repetition rate of 1-3 kHz. An energy of 1.25-125 J per pulse and an average power of up to 10-50 kW are attainable. The highest pulse repetition rate is determined by the driver motor revolution and the electrode number of MER-SGS. Even higher voltage and energy can be switched by adjusting the gas pressure or employing N{sub 2} as the insulation gas or enlarging the size of MER-SGS to guarantee enough insulation level.

  12. High-pulse-repetition-rate HF laser with plate electrodes

    SciTech Connect

    Andramanov, A V; Kabaev, S A; Lazhintsev, B V; Nor-Arevyan, V A; Pisetskaya, A V; Selemir, Victor D

    2006-03-31

    A high-pulse-repetition-rate electric-discharge HF laser with inductive-capacitive discharge stabilisation in the active H{sub 2}-SF{sub 6}-He mixture is studied. The multisectional discharge gap with a total length of 250 mm is formed by pairs of anode-cathode plates arranged in a zigzag pattern. The width of the discharge gap between each pair of plates is {approx}1 mm and its height is {approx}12 mm. The laser-beam cross section at the output cavity mirror is {approx}9 mm x 11 mm. The maximum laser pulse energy and the maximum laser efficiency for the H{sub 2}-SF{sub 6} mixture are 14.3 mJ and 2.1%, respectively. The addition of He to the mixture reduced the laser pulse energy by 10%-15%. The maximum gas velocity in the gap between the electrodes achieves 20 m s{sup -1}. The limiting pulse repetition rate f{sub lim} for which a decrease in the laser pulse energy is still not observed is {approx}2kHz for the H{sub 2}-SF{sub 6} mixture and {approx}2.4kHz for the H{sub 2}-SF{sub 6}-He mixture. The average output power {approx}27 W is obtained for a pulse repetition rate of 2.4 kHz. (lasers)

  13. Closed cycle high-repetition-rate pulsed HF laser

    NASA Astrophysics Data System (ADS)

    Harris, Michael R.; Morris, A. V.; Gorton, Eric K.

    1997-04-01

    The design and performance of a closed cycle high repetition rate HF laser is described. A short pulse, glow discharge is formed in a 10 SF6:1 H2 gas mixture at a total pressure of approximately 110 torr within a 15 by 0.5 by 0.5 cm3 volume. Transverse, recirculated gas flow adequate to enable repetitive operation up to 3 kHz is imposed by a centrifugal fan. The fan also forces the gas through a scrubber cell to eliminate ground state HF from the gas stream. An automated gas make-up system replenishes spent gas removed by the scrubber. Typical mean laser output powers up to 3 W can be maintained for extended periods of operation.

  14. Laser stimulation of auditory neurons at high repetition rate

    NASA Astrophysics Data System (ADS)

    Izzo, Agnella D.; Littlefield, Philip; Walsh, Joseph T., Jr.; Webb, Jim; Ralph, Heather; Bendett, Mark; Jansen, E. Duco; Richter, Claus-Peter

    2007-02-01

    Pulsed, mid-infrared lasers can evoke neural activity from motor as well as sensory neurons in vivo. Lasers allow more selective spatial resolution of stimulation than the conventional electrical stimulation. To date, few studies have examined pulsed, mid-infrared neural stimulation and very little of the available optical parameter space has been studied. We found that pulse durations as short as 20 ?s elicit a compound action potential from the gerbil cochlea. Moreover, stimulation thresholds are not a function of absolute energy or absolute power deposited. Compound action potential peak-to-peak amplitude remained constant over extended periods of stimulation. Stimulation occurred up six hours continuously and up to 50 Hz in repetition rate. Single fiber experiments were made using repetition rates of up to 1 kHz. Action potentials occurred 2.5-4 ms after the laser pulse. Maximum rates of discharge were up to 250 action potentials per second. With increasing stimulation rate (300 Hz), the action potentials did not respond strictly after the light pulse. The results from these experiments are important for designing the next generation of neuroprostheses, specifically cochlear implants.

  15. High voltage high repetition rate pulse using Marx topology

    NASA Astrophysics Data System (ADS)

    Hakki, A.; Kashapov, N.

    2015-06-01

    The paper describes Marx topology using MOSFET transistors. Marx circuit with 10 stages has been done, to obtain pulses about 5.5KV amplitude, and the width of the pulses was about 30μsec with a high repetition rate (PPS > 100), Vdc = 535VDC is the input voltage for supplying the Marx circuit. Two Ferrite ring core transformers were used to control the MOSFET transistors of the Marx circuit (the first transformer to control the charging MOSFET transistors, the second transformer to control the discharging MOSFET transistors).

  16. High-repetition-rate CF/sub 4/ laser

    SciTech Connect

    Telle, J.

    1981-01-01

    A 16 ..mu..m CF/sub 4/ laser oscillator has operated at 1 kHz in a cooled static cell. Threshold pump energies required from the low pressure, Q-switched, cw discharge CO/sub 2/ laser were as low as 60 ..mu..J. The laser cavity employed the multiple-pass off-axis path resonator in a ring configuration. CF/sub 4/ laser power at 615 cm/sup -1/ and a 1 kHz repetition rate exceeded 300 ..mu..W.

  17. 1-kHz-repetition-rate femtosecond Raman laser

    NASA Astrophysics Data System (ADS)

    Didenko, N. V.; Konyashchenko, A. V.; Kostryukov, P. V.; Losev, L. L.; Pazyuk, V. S.; Tenyakov, S. Yu

    2016-07-01

    A femtosecond Raman laser utilising compressed hydrogen is experimentally investigated under pumping by radiation from a 1-kHz-repetition-rate Ti : sapphire laser. In the regime of double-pulse pumping, the conditions are determined, which correspond to the minimal energy dispersion of Stokes pulses. The optical scheme is realised, which is capable of ensuring the long-term stability of the average power of the first Stokes component with a variation of less than 2%. The Stokes pulses are produced with a pulse duration of 60 fs and energy of 0.26 mJ at a conversion efficiency of 14%.

  18. Final Report, Photocathodes for High Repetition Rate Light Sources

    SciTech Connect

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes b) Development and testing of a diamond amplifier for photocathodes c) Tests of both cathodes in superconducting RF photoguns and copper RF photoguns

  19. Dual-rod, 100 Hz, 388 mJ nanosecond Nd:YAG oscillator.

    PubMed

    Liu, Qiang; Liu, Jianhui; Gong, Mali

    2011-03-10

    We report a large mode volume unstable resonator working at 100 Hz. The resonator is combined with a variable reflectivity convex mirror and a high-reflective convex mirror. The cavity mirrors are used to compensate for the thermal lensing effect of the two Nd:YAG laser rods, which are pumped by high-energy high-repetition-rate diode lasers. A 90° quartz rotator is placed between the two laser rods to compensate for the thermal depolarization. In the experiment, output of as high as 388 mJ is obtained at 100 Hz with slope efficiency of 36%. The pulse width is 15 ns, and the beam quality factor is M(x)(2)=3.2, M(y)(2)=2.8. PMID:21394190

  20. Atmospheric Electric Field Measurements at 100 Hz and High Frequency Electric Phenomena

    NASA Astrophysics Data System (ADS)

    Conceição, Ricardo; Gonçalves da Silva, Hugo; Matthews, James; Bennett, Alec; Chubb, John

    2016-04-01

    Spectral response of Atmospheric Electric Potential Gradient (PG), symmetric to the Atmospheric Electric Field, gives important information about phenomena affecting these measurements with characteristic time-scales that appear in the spectra as specific periodicities. This is the case of urban pollution that has a clear weekly dependence and reveals itself on PG measurements by a ~7 day periodicity (Silva et al., 2014). While long-term time-scales (low frequencies) have been exhaustively explored in literature, short-term time-scales (high frequencies), above 1 Hz, have comparatively received much less attention (Anisimov et al., 1999). This is mainly because of the technical difficulties related with the storage of such a huge amount of data (for 100 Hz sampling two days of data uses a ~1 Gb file) and the response degradation of the field-meters at such frequencies. Nevertheless, important Electric Phenomena occurs for frequencies above 1 Hz that are worth pursuing, e.g. the Schumann Resonances have a signature of worldwide thunderstorm activity at frequencies that go from ~8 up to ~40 Hz. To that end the present work shows preliminary results on PG measurements at 100 Hz that took place on two clear-sky days (17th and 18th June 2015) on the South of Portugal, Évora (38.50° N, 7.91° W). The field-mill used is a JCI 131F installed in the University of Évora campus (at 2 m height) with a few trees and two buildings in its surroundings (~50 m away). This device was developed by John Chubb (Chubb, 2014) and manufactured by Chilworth (UK). It was calibrated in December 2013 and recent work by the author (who is honored in this study for his overwhelming contribution to atmospheric electricity) reveals basically a flat spectral response of the device up to frequencies of 100 Hz (Chubb, 2015). This makes this device suitable for the study of High Frequency Electric Phenomena. Anisimov, S.V., et al. (1999). On the generation and evolution of aeroelectric structures

  1. Synthesis, characterization and evaluation of CO-oxidation catalysts for high repetition rate CO2 TEA lasers

    NASA Technical Reports Server (NTRS)

    Moser, Thomas P.

    1990-01-01

    An extremely active class of noble metal catalysts supported on titania was developed and fabricated at Hughes for the recombination of oxygen (O2) and carbon monoxide (CO) in closed-cycle CO2 TEA lasers. The incipient wetness technique was used to impregnate titania and alumina pellets with precious metals including platinum and palladium. In particular, the addition of cerium (used as an oxygen storage promoter) produced an extremely active Pt/Ce/TiO2 catalyst. By comparison, the complementary Pt/Ce/ gamma-Al2O3 catalyst was considerably less active. In general, chloride-free catalyst precursors proved critical in obtaining an active catalyst while also providing uniform metal distributions throughout the support structure. Detailed characterization of the Pt/Ce/TiO2 catalyst demonstrated uniform dendritic crystal growth of the metals throughout the support. Electron spectroscopy for Chemical Analysis (ESCA) analysis was used to characterize the oxidation states of Pt, Ce and Ti. The performance of the catalysts was evaluated with an integral flow reactor system incorporating real time analysis of O2 and CO. With this system, the transient and steady-state behavior of the catalysts were evaluated. The kinetic evaluation was complemented by tests in a compact, closed-cycle Hughes CO2 TEA laser operating at a pulse repetition rate of 100 Hz with a catalyst temperature of 75 to 95 C. The Pt/Ce/TiO2 catalyst was compatible with a C(13)O(16)2 gas fill.

  2. Multiterawatt femtosecond laser system with kilohertz pulse repetition rate

    SciTech Connect

    Petrov, V V; Pestryakov, E V; Laptev, A V; Petrov, V A; Kuptsov, G V; Trunov, V I; Frolov, S A

    2014-05-30

    The basic principles, layout and components are presented for a multiterawatt femtosecond laser system with a kilohertz pulse repetition rate f, based on their parametric amplification and laser amplification of picosecond radiation that pumps the stages of the parametric amplifier. The results of calculations for a step-by-step increase in the output power from the LBO crystal parametric amplifier channel up to the multiterawatt level are presented. By using the developed components in the pump channel of the laser system, the parameters of the regenerative amplifier with the output energy ∼1 mJ at the wavelength 1030 nm and with f = 1 kHz are experimentally studied. The optical scheme of the diode-pumped multipass cryogenic Yb:Y{sub 2}O{sub 3} laser ceramic amplifier is developed and its characteristics are determined that provide the output energy within the range 0.25 – 0.35 J. (lasers)

  3. Multiterawatt femtosecond laser system with kilohertz pulse repetition rate

    NASA Astrophysics Data System (ADS)

    Petrov, V. V.; Pestryakov, E. V.; Laptev, A. V.; Petrov, V. A.; Kuptsov, G. V.; Trunov, V. I.; Frolov, S. A.

    2014-05-01

    The basic principles, layout and components are presented for a multiterawatt femtosecond laser system with a kilohertz pulse repetition rate f, based on their parametric amplification and laser amplification of picosecond radiation that pumps the stages of the parametric amplifier. The results of calculations for a step-by-step increase in the output power from the LBO crystal parametric amplifier channel up to the multiterawatt level are presented. By using the developed components in the pump channel of the laser system, the parameters of the regenerative amplifier with the output energy ~1 mJ at the wavelength 1030 nm and with f = 1 kHz are experimentally studied. The optical scheme of the diode-pumped multipass cryogenic Yb:Y2O3 laser ceramic amplifier is developed and its characteristics are determined that provide the output energy within the range 0.25 - 0.35 J.

  4. Heart rate variability with repetitive exposure to music.

    PubMed

    Iwanaga, Makoto; Kobayashi, Asami; Kawasaki, Chie

    2005-09-01

    Previous studies of physiological responses to music showed inconsistent results, which might be attributable to methodological differences. Heart rate variability has been used to assess activation of the sympathetic and the parasympathetic nervous systems. The present study aimed to examine heart rate variability with repetitive exposure to sedative or excitative music. The participants were 13 undergraduate or graduate students who were each exposed to three conditions sedative music (SM), excitative music (EM), and no music (NM) on different days. Each participant underwent four sessions of one condition in a day. Sedative music and no music each induced both high relaxation and low tension subjectively. However, excitative music decreased perceived tension and increased perceived relaxation as the number of sessions increased. The low-frequency (LF) component of heart rate variability (HRV) and the LF/HF (high-frequency) ratio increased during SM and EM sessions but decreased during NM sessions. The HF component of HRV during SM was higher than that during EM but the same as that during NM. These findings suggest that excitative music decreased the activation of the parasympathetic nervous system. PMID:16038775

  5. Fast repetition rate (FRR) fluorometer and method for measuring fluorescence and photosynthetic parameters

    DOEpatents

    Kolber, Z.; Falkowski, P.

    1995-06-20

    A fast repetition rate fluorometer device and method for measuring in vivo fluorescence of phytoplankton or higher plants chlorophyll and photosynthetic parameters of phytoplankton or higher plants is revealed. The phytoplankton or higher plants are illuminated with a series of fast repetition rate excitation flashes effective to bring about and measure resultant changes in fluorescence yield of their Photosystem II. The series of fast repetition rate excitation flashes has a predetermined energy per flash and a rate greater than 10,000 Hz. Also, disclosed is a flasher circuit for producing the series of fast repetition rate flashes. 14 figs.

  6. Fast repetition rate (FRR) fluorometer and method for measuring fluorescence and photosynthetic parameters

    DOEpatents

    Kolber, Zbigniew; Falkowski, Paul

    1995-06-20

    A fast repetition rate fluorometer device and method for measuring in vivo fluorescence of phytoplankton or higher plants chlorophyll and photosynthetic parameters of phytoplankton or higher plants by illuminating the phytoplankton or higher plants with a series of fast repetition rate excitation flashes effective to bring about and measure resultant changes in fluorescence yield of their Photosystem II. The series of fast repetition rate excitation flashes has a predetermined energy per flash and a rate greater than 10,000 Hz. Also, disclosed is a flasher circuit for producing the series of fast repetition rate flashes.

  7. High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion.

    PubMed

    Cho, Kevin Y; Satija, Aman; Pourpoint, Timothée L; Son, Steven F; Lucht, Robert P

    2014-01-20

    Imaging dynamic multiphase combusting events is challenging. Conventional techniques can image only a single plane of an event, capturing limited details. Here, we report on a three-dimensional, time-resolved, OH planar laser-induced fluorescence (3D OH PLIF) technique that was developed to measure the relative OH concentration in multiphase combustion flow fields. To the best of our knowledge, this is the first time a 3D OH PLIF technique has been reported in the open literature. The technique involves rapidly scanning a laser sheet across a flow field of interest. The overall experimental system consists of a 5 kHz OH PLIF system, a high-speed detection system (image intensifier and CMOS camera), and a galvanometric scanning mirror. The scanning mirror was synchronized with a 500 Hz triangular sweep pattern generated using Labview. Images were acquired at 5 kHz corresponding to six images per mirror scan, and 1000 scans per second. The six images obtained in a scan were reconstructed into a volumetric representation. The resulting spatial resolution was 500×500×6 voxels mapped to a field of interest covering 30  mm×30  mm×8  mm. The novel 3D OH PLIF system was applied toward imaging droplet combustion of methanol gelled with hydroxypropyl cellulose (HPC) (3 wt. %, 6 wt. %), as well as solid propellant combustion, and impinging jet spray combustion. The resulting 3D dataset shows a comprehensive view of jetting events in gelled droplet combustion that was not observed with high-speed imaging or 2D OH PLIF. Although the scan is noninstantaneous, the temporal and spatial resolution was sufficient to view the dynamic events in the multiphase combustion flow fields of interest. The system is limited by the repetition rate of the pulsed laser and the step response time of the galvanometric mirror; however, the repetition rates are sufficient to resolve events in the order of 100 Hz. Future upgrade includes 40 kHz pulsed UV laser system, which can reduce

  8. Extreme-ultraviolet ultrafast ARPES at high repetition rates

    NASA Astrophysics Data System (ADS)

    Buss, Jan; Wang, He; Xu, Yiming; Stoll, Sebastian; Zeng, Lingkun; Ulonska, Stefan; Denlinger, Jonathan; Hussain, Zahid; Jozwiak, Chris; Lanzara, Alessandra; Kaindl, Robert

    Time- and angle-resolved photoemission spectroscopy (trARPES) represents a powerful approach to resolve the electronic structure and quasiparticle dynamics in complex materials, yet is often limited in either momentum space (incident photon energy), probe sensitivity (pulse repetition rate), or energy resolution. We demonstrate a novel table-top trARPES setup that combines a bright 50-kHz source of narrowband, extreme ultraviolet (XUV) pulses at 22.3 eV with UHV photoemission instrumentation to sensitively access dynamics for a large momentum space. The output of a high-power Ti:sapphire amplifier is split to provide the XUV probe and intense photoexcitation (up to mJ/cm2) . A vacuum beamline delivers spectral and flux characterization, differential pumping, as well as XUV beam steering and toroidal refocusing onto the sample with high incident flux of 3x1011 ph/s. Photoemission studies are carried out in a customized UHV chamber equipped with a hemispherical analyzer (R4000), six-axis sample cryostat, and side chambers for sample loading, storage and preparation. An ARPES energy resolution down to 70 meV with the direct XUV output is demonstrated. We will discuss initial applications of this setup including Fermi surface mapping and trARPES of complex materials.

  9. Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz.

    PubMed Central

    Hölzel, R

    1997-01-01

    The determination of complete electrorotation spectra of living cells has been made possible by the development of a quadrature generator and an electrode assembly that span the frequency range between 100 Hz and 1.6 GHz. Multiple spectra of single cells of the yeast Saccharomyces cerevisiae have been measured at different medium conductivities ranging from 0.7 to 550 microS cm-1. A spherical four-shell model was applied that simulated the experimental data well and disclosed the four-layer structure of the cell envelope attributed to the plasma membrane, the periplasmic space, and a thick inner and a thin outer wall region. Below 10 kHz an additional rotation effect was found, which changed its direction depending on the ionic strength of the medium. This is supposed to be connected with properties of the cell surface and its close vicinity. From the four-shell simulation the following physical properties of cell compartments could be derived: specific capacitance of plasma membrane (0.76 microF cm-2), periplasmic space (0.5 microF cm-2), and outer wall region (0.1 microF cm-2). The conductivity of cytoplasm, plasma membrane, and inner wall region were found to vary with medium ionic strength from 9 to 12 mS cm-1, 5.8 nS cm-1 to approximately 50 nS cm-1, and 6 microS cm-1 to 240 microS cm-1, respectively. Images FIGURE 2 PMID:9251826

  10. Interaction of repetitively pulsed high energy laser radiation with matter

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, M.

    1986-05-01

    Laser target interaction processes and methods of improving the overall energy balance are discussed. This can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed using a pulsed CO2 laser at mean powers up to 2 KW and repetition rates up to 100 Hz. The rates of temperature rise of aluminum for example are increased by more than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements are found for the overall absorptivities, that are increased by more than an order of magnitude.

  11. Measurements and mechanisms investigation of seismic wave attenuation for frequencies between 1 and 100 Hz

    NASA Astrophysics Data System (ADS)

    Tisato, N.; Madonna, C.; Saenger, E. H.

    2012-04-01

    Seismic wave attenuation at low frequencies in the earth crust has been explained by partial saturation as well as permeability models. We present results obtained by the Broad Band Attenuation Vessel (BBAV) which measures seismic wave attenuation using the sub-resonance method in the frequency range 0.01 - 100 Hz. The apparatus also allows the investigation of attenuation mechanisms related to fluid flow by means of five pore pressure sensors placed in the specimen. This allows continuous local measurements of pore pressure changes generated by stress field changes. Measurements were performed on 76 mm diameter, 250 mm long, 20% porosity, and ~500 mD permeability Berea sandstone samples. The confining pressure was varied between 0 and 20 MPa, and the specimens were saturated with water between 0% and 90%. Attenuation measurements show dependence with saturation. For instance, when samples are at dry conditions they exhibit attenuation values around 0.01, the same sample saturated with 90% water shows attenuation values between 0.018 and 0.028 across the entire frequency range. Attenuation is also confining pressure dependent. For instance, variations of confining pressure ranging between 0 and 8 MPa lead to quality factors between 40 and 10 at 60 Hz and 60% water saturation. Best fits on these measurements reveal that the corner frequency of the attenuation mechanism decreases from ~800 to ~200 Hz with increasing confining pressure. Using calibration measurements with Aluminum the possibility of apparatus resonances can be ruled out. Local pore pressure measurements corroborate this observation showing pore pressure evolution as a function of saturation. The results are discussed and interpreted in light of known attenuation mechanisms for partially saturated rocks (patchy saturation and squirt flow). We rule out the possibility of patchy saturation occurrence, but squirt flow would offer an explanation. The confining pressure dependence could be the result of

  12. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    DOEpatents

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  13. High-repetition-rate, recirculating hydrogen fluoride/deuterium fluoride laser

    SciTech Connect

    Rudko, R.I.; Drozdowicz, Z.; Linhares, S.; Bua, D.

    1982-04-01

    A compact, gas-efficient, pulsed chemical laser operated with HF, DF, or HF and DF simultaneously, is described. This laser produced over 1 mJ/pulse up to over 4000 pps repetition rates with maximum average power over 4.5 W. Maximum repetition rate was 10 000 pulse/s.

  14. Mode locking of fiber lasers at high repetition rates

    NASA Astrophysics Data System (ADS)

    Usechak, Nicholas G.

    Mode-locked fiber lasers have become indispensable tools in many fields as their use is no longer relegated to the optics community. In the future, their size will decrease and their applications will become far more prevalent than they are today. At present, the field is undergoing a cardinal shift as these devices have become commercially available in the last decade. This has put an emphasis on long-term performance and reliability as these devices are beginning to be integrated into complex systems in areas as diverse as medical optics, micro-machining, forensics, and tracking as well as their obvious use as laboratory tools or sources in telecommunications. This is also resulting in a transition from research to engineering. Since the field of mode-locked lasers has been extensively studied for over forty years, one may expect that little has been overlooked. However, since the mode-locking phenomena is governed by nonlinear partial differential equations, a rich degree of effects exist and the field has not yet been exhausted. During the past two decades, the main emphasis has been on short-pulse generation; however, the main thrust of research is likely to change to producing high-power devices, which will result in limiting effects and thermal issues that are currently ignored for low-power sources. Finally, detailed studies have generally been performed numerically as analytic solutions only exist in limiting cases. In this thesis, mode-locked fiber lasers are studied experimentally, numerically, and theoretically. The experimental work focuses on high-repetition rate, mode-locked cavities, which are then modeled numerically. A semi-analytic tool, which goes beyond the prior theories and includes all of the effects experienced by steady-state, mode-locked pulses as they propagate in a laser cavity, is also derived. The only caveats to this approach are an assumption of the pulse shape and the requirement that it not change during propagation through the

  15. Pathway to a lower cost high repetition rate ignition facility

    SciTech Connect

    Obenschain, S.P.; Colombant, D.G.; Schmitt, A.J.; Sethian, J.D.; McGeoch, M. W.

    2006-05-15

    An approach to a high-repetition ignition facility based on direct drive with the krypton-fluoride laser is presented. The objective is development of a 'Fusion Test Facility' that has sufficient fusion power to be useful as a development test bed for power plant materials and components. Calculations with modern pellet designs indicate that laser energies well below a megajoule may be sufficient. A smaller driver would result in an overall smaller, less complex and lower cost facility. While this facility might appear to have most direct utility to inertial fusion energy, the high flux of neutrons would also be able to address important issues concerning materials and components for other approaches to fusion energy. The physics and technological basis for the Fusion Test Facility are presented along with a discussion of its applications.

  16. High-pulse-repetition-rate UV lasers with the inductance-capacitance discharge stabilisation

    SciTech Connect

    Andramanov, A V; Kabaev, S A; Lazhintsev, B V; Nor-Arevyan, V A; Pisetskaya, A V; Selemir, Victor D

    2009-02-28

    Compact high-pulse-repetition-rate XeF and KrF excimer lasers and an N{sub 2} laser with plate electrodes and the inductive-capacitance discharge stabilisation are studied. The composition and pressure of the active medium of lasers are optimised for obtaining the maximum output energy and maximum pulse repetition rate at comparatively low (no more than 19 m s{sup -1}) active-medium flow rates in the interelectrode gap. The pulse repetition rate achieved 4-5 kHz for the relative root-mean-square deviation of the laser pulse energy less than 2%. It is found that the energy of the N{sub 2}-laser pulses changes periodically under the action of acoustic perturbations appearing at high pulse repetition rates. It is shown that the use of the inductance-capacitance stabilisation of the discharge provides the increase in the maximum pulse repetition rate by 0.5-1.5 kHz (depending on the active medium type). It is found that the stability of the output energy and maximum pulse repetition rate depend on the location of preionisation sparks with respect to the gas flow direction. Some ways for the development of the technology of plate electrodes and inductance-capacitance discharge stabilisation are proposed. (lasers)

  17. Coherent quasi-CW 153-nm light source at high repetition rate

    NASA Astrophysics Data System (ADS)

    Nomura, Yutaka; Ito, Yoshiaki; Ozawa, Akira; Wang, Xiaoyang; Chen, Chuangtian; Shin, Shik; Watanabe, Shuntaro; Kobayashi, Yohei

    2012-02-01

    We present a quasi-cw laser in vacuum ultraviolet region at megahertz repetition rate. The narrowband pulses generated from an ytterbium-fiber laser system at 33 MHz repetition rate at the central wavelength of 1074 nm is frequency-converted by successive stages of LBO crystals and KBBF crystals. The generated radiation at 153 nm has the shortest wavelength achieved through phase-matched frequency conversion processes in nonlinear optical crystals to our knowledge.

  18. Slow Ca2+ wave stimulation using low repetition rate femtosecond pulsed irradiation

    NASA Astrophysics Data System (ADS)

    Iwanaga, S.; Smith, N. I.; Fujita, K.; Kawata, S.

    2006-01-01

    We demonstrated stimulation of Ca2+ in living cells by near-infrared laser pulses operated at sub-MHz repetition rates. HeLa cells were exposed to focused 780 nm femtosecond pulses, generated by a titanium-sapphire laser and adjusted by an electro-optical modulator. We found that the laser-induced Ca2+ waves could be generated over three orders of magnitude in repetition rates, with required laser pulse energy varying by less than one order of magnitude. Ca2+ wave speed and gradients were reduced with repetition rate, which allows the technique to be used to modulate the strength and speed of laser-induced effects. By lowering the repetition rate, we found that the laser-induced Ca2+ release is partially mediated by reactive oxygen species (ROS). Inhibition of ROS was successful only at low repetition rates, with the implication that ROS scavengers may in general be depleted in experiments using high repetition rate laser irradiation.

  19. A K-alpha x-ray source using high energy and high repetition rate laser system for phase contrast imaging

    PubMed Central

    Fourmaux, Sylvain; Kieffer, Jean-Claude; Kincaid, Russell; Krol, Andrzej

    2009-01-01

    K-alpha x-ray sources from laser produced plasmas provide completely new possibilities for x-ray phase-contrast imaging applications. By tightly focusing intense femtosecond laser pulses onto a solid target K-alpha x-ray pulses are generated through the interaction of energetic electrons created in the plasma with the bulk target. In this paper, we present a continuous and efficient Mo K-alpha x-ray source produced by a femtosecond laser system operating at 100 Hz repetition rate with maximum pulse energy of 110 mJ before compression. The source has an x-ray conversion efficiency of greater than 10−5 into K-alpha line emission. In preparation for phase contrast imaging applications, the size of the resultant K-alpha x-ray emission spot has been also characterized. The source exhibits sufficient spatial coherence to observe phase contrast. We observe a relatively small broadening of the K-alpha source size compared to the size of the laser beam itself. Detailed characterization of the source including the x-ray spectrum and the x-ray average yield along with phase contrast images of test objects will be presented. PMID:20046807

  20. Argon gas concentration effects on nanostructured molybdenum nitride layer growth using 100 Hz pulsed dc glow discharge

    NASA Astrophysics Data System (ADS)

    Ikhlaq, U.; Ahmad, R.; Saleem, S.; Shah, M. S.; Umm-i-Kalsoom; Khan, N.; Khalid, N.

    2012-08-01

    The effect of argon concentration (10%-40%) on the surface properties of molybdenum is studied in nitrogen-argon mixture using 100 Hz pulsed dc glow discharge. The analysis is carried out by using X-ray diffractometer (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and Vickers microhardness tester to investigate surface properties of the nitrided samples. XRD results exhibit the formation of molybdenum nitrides. Crystallite size analysis and SEM morphology confirm the growth of nanostructured molybdenum nitride layers. Moreover, significant increase in surface hardness (by a factor of about two times) is found when the sample is treated for 30% argon in nitrogen-argon mixed plasma.

  1. Mapping and mining interictal pathological gamma (30–100 Hz) oscillations with clinical intracranial EEG in patients with epilepsy

    PubMed Central

    Smart, Otis; Maus, Douglas; Marsh, Eric; Dlugos, Dennis; Litt, Brian; Meador, Kimford

    2012-01-01

    Localizing an epileptic network is essential for guiding neurosurgery and antiepileptic medical devices as well as elucidating mechanisms that may explain seizure-generation and epilepsy. There is increasing evidence that pathological oscillations may be specific to diseased networks in patients with epilepsy and that these oscillations may be a key biomarker for generating and indentifying epileptic networks. We present a semi-automated method that detects, maps, and mines pathological gamma (30–100 Hz) oscillations (PGOs) in human epileptic brain to possibly localize epileptic networks. We apply the method to standard clinical iEEG (<100 Hz) with interictal PGOs and seizures from six patients with medically refractory epilepsy. We demonstrate that electrodes with consistent PGO discharges do not always coincide with clinically determined seizure onset zone (SOZ) electrodes but at times PGO-dense electrodes include secondary seizure-areas (SS) or even areas without seizures (NS). In 4/5 patients with epilepsy surgery, we observe poor (Engel Class 4) post-surgical outcomes and identify more PGO-activity in SS or NS than in SOZ. Additional studies are needed to further clarify the role of PGOs in epileptic brain. PMID:23105174

  2. High rate PLD of diamond-like-carbon utilizing high repetition rate visible lasers

    SciTech Connect

    McLean, W. II; Fehring, E.J.; Dragon, E.P.; Warner, B.E.

    1994-09-15

    Pulsed Laser Deposition (PLD) has been shown to be an effective method for producing a wide variety of thin films of high-value-added materials. The high average powers and high pulse repetition frequencies of lasers under development at LLNL make it possible to scale-up PLD processes that have been demonstrated in small systems in a number of university, government, and private laboratories to industrially meaningful, economically feasible technologies. A copper vapor laser system at LLNL has been utilized to demonstrate high rate PLD of high quality diamond-like-carbon (DLC) from graphite targets. The deposition rates for PLD obtained with a 100 W laser were {approx} 2000 {mu}m{center_dot}cm{sup 2}/h, or roughly 100 times larger than those reported by chemical vapor deposition (CVD) or physical vapor deposition (PVD) methods. Good adhesion of thin (up to 2 pm) films has been achieved on a small number of substrates that include SiO{sub 2} and single crystal Si. Present results indicate that the best quality DLC films can be produced at optimum rates at power levels and wavelengths compatible with fiber optic delivery systems. If this is also true of other desirable coating systems, this PLD technology could become an extremely attractive industrial tool for high value added coatings.

  3. Design of a low emittance and high repetition rate S-band photoinjector

    NASA Astrophysics Data System (ADS)

    Han, Jang-Hui

    2014-09-01

    As an electron beam injector of X-ray free-electron lasers (FELs), photoinjectors have been developed for the past few decades. Such an injector starting with a photocathode RF gun provides high brightness beams and therefore it is being adopted as an injector of X-ray FELs. In this paper we show how to improve photoinjector performance in terms of emittance and repetition rates by means of injector components optimization, especially with the gun. Transverse emittance at the end of an injector is reduced by optimizing the gun design, gun solenoid position, and accelerating section position. The repetition rate of an injector mainly depends on the gun. It is discussed that a repetition rate of 1 kHz at a normal-conducting S-band photoinjector is feasible by adopting a coaxial RF coupler and improving cooling-water channels surrounding the gun.

  4. 3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Kerse, Can; Kalaycıoğlu, Hamit; Elahi, Parviz; Akçaalan, Önder; Ilday, F. Ömer

    2016-05-01

    We report on an all-fiber Yb laser amplifier system with an intra-burst repetition rate of 3.5 GHz. The system is able to produce minimum of 15-ns long bursts containing approximately 50 pulses with a total energy of 215 μJ at a burst repetition rate of 1 kHz. The individual pulses are compressed down to the subpicosecond level. The seed signal from a 108 MHz fiber oscillator is converted to approximately 3.5 GHz by a multiplier consisting of six cascaded 50/50 couplers, and then amplified in ten stages. The highly cascaded amplification suppresses amplified spontaneous emission at low repetition rates. Nonlinear interactions between overlapping pulses within a burst is also discussed.

  5. Near- infrared, mode-locked waveguide lasers with multi-GHz repetition rates

    NASA Astrophysics Data System (ADS)

    Choudhary, A.; Lagatsky, A. A.; Zhang, Z. Y.; Zhou, K. J.; Wang, Q.; Hogg, R. A.; Pradeesh, K.; Rafailov, E. U.; Resan, B.; Oehler, A. E. H.; Weingarten, K. J.; Sibbett, W.; Brown, C. T. A.; Shepherd, D. P.

    2014-02-01

    In this work, we discuss mode-locking results obtained with low-loss, ion-exchanged waveguide lasers. With Yb3+-doped phosphate glass waveguide lasers, a repetition rate of up to 15.2 GHz was achieved at a wavelength of 1047 nm with an average power of 27 mW and pulse duration of 811 fs. The gap between the waveguide and the SESAM introduced negative group velocity dispersion via the Gires Tournois Interferometer (GTI) effect which allowed the soliton mode-locking of the device. A novel quantum dot SESAM was used to mode-lock Er3+, Yb3+-doped phosphate glass waveguide lasers around 1500 nm. Picosecond pulses were achieved at a maximum repetition rate of 6.8 GHz and an average output power of 30 mW. The repetition rate was tuned by more than 1 MHz by varying the pump power.

  6. Single Longitudinal Mode, High Repetition Rate, Q-switched Ho:YLF Laser for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bai, Yingxin; Yu, Jirong; Petzar, Paul; Petros, M.; Chen, Songsheng; Trieu, Bo; Lee, Nyung; Singh, U.

    2009-01-01

    Ho:YLF/LuLiF lasers have specific applications for remote sensing such as wind-speed measurement and carbon dioxide (CO2) concentration measurement in the atmosphere because the operating wavelength (around 2 m) is located in the eye-safe range and can be tuned to the characteristic lines of CO2 absorption and there is strong backward scattering signal from aerosol (Mie scattering). Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of with a repetition rate of 5 Hz and pulse energy of 75 mJ [1]. For highly precise CO2 measurements with coherent detection technique, a laser with high repetition rate is required to averaging out the speckle effect [2]. In addition, laser efficiency is critically important for the air/space borne lidar applications, because of the limited power supply. A diode pumped Ho:Tm:YLF laser is difficult to efficiently operate in high repetition rate due to the large heat loading and up-conversion. However, a Tm:fiber laser pumped Ho:YLF laser with low heat loading can be operated at high repetition rates efficiently [3]. No matter whether wind-speed or carbon dioxide (CO2) concentration measurement is the goal, a Ho:YLF/LuLiF laser as the transmitter should operate in a single longitudinal mode. Injection seeding is a valid technique for a Q-switched laser to obtain single longitudinal mode operation. In this paper, we will report the new results for a single longitudinal mode, high repetition rate, Q-switched Ho:YLF laser. In order to avoid spectral hole burning and make injection seeding easier, a four mirror ring cavity is designed for single longitudinal mode, high repetition rate Q-switched Ho:YLF laser. The ramp-fire technique is chosen for injection seeding.

  7. A contactless microwave-based diagnostic tool for high repetition rate laser systems

    SciTech Connect

    Braggio, C.; Borghesani, A. F.

    2014-02-15

    We report on a novel electro-optic device for the diagnostics of high repetition rate laser systems. It is composed of a microwave receiver and of a second order nonlinear crystal, whose irradiation with a train of short laser pulses produces a time-dependent polarization in the crystal itself as a consequence of optical rectification. This process gives rise to the emission of microwave radiation that is detected by a receiver and is analyzed to infer the repetition rate and intensity of the pulses. We believe that this new method may overcome some of the limitations of photodetection techniques.

  8. High power, high repetition rate, few picosecond Nd:LuVO₄ oscillator with cavity dumping.

    PubMed

    Gao, Peng; Guo, Jie; Li, Jinfeng; Lin, Hua; Yu, Haohai; Zhang, Huaijin; Liang, Xiaoyan

    2015-12-28

    We investigate the potential use of Nd:LuVO4 in high average power, high repetition rate ultrafast lasers. Maximum mode-locked average power of 28 W is obtained at the repetition rate of 58 MHz. The shortest pulse duration is achieved at 4 ps without dispersion compensation. With a cavity dumping technique, the pulse energy is scaling up to 40.7 μJ at 300 kHz and 14.3 μJ at 1.5 MHz. PMID:26831955

  9. High-order harmonic generation at a repetition rate of 100 kHz

    SciTech Connect

    Lindner, F.; Stremme, W.; Schaetzel, M. G.; Grasbon, F.; Paulus, G. G.; Walther, H.; Hartmann, R.; Strueder, L.

    2003-07-01

    We report high-order harmonic generation (HHG) in rare gases using a femtosecond laser system with a very high repetition rate (100 kHz) and low pulse energy (7 {mu}J). To our knowledge, this is the highest repetition rate reported to date for HHG. The tight focusing geometry required to reach sufficiently high intensities implies low efficiency of the process. Harmonics up to the 45th order are nevertheless generated and detected. We show evidence of clear separation and selection of quantum trajectories by moving the gas jet with respect to the focus, in agreement with the theoretical predictions of the semiclassical model of HHG.

  10. Fibre laser with a subterahertz repetition rate of ultrashort pulses in the telecom range

    NASA Astrophysics Data System (ADS)

    Andrianov, A. V.; Mylnikov, V. M.; Koptev, M. Yu; Muravyev, S. V.; Kim, A. V.

    2016-04-01

    We have investigated a new fibre laser configuration for the generation of ultrashort pulses at a repetition rate far exceeding the fundamental cavity frequency. The laser configuration includes a nonlinear amplifying mirror as an artificial saturable absorber for mode locking and a spectral comb filter for pulse separation stabilisation. Generation of trains and sequences of ultrashort pulses at a repetition rate tunable in the range 8 – 200 GHz has been demonstrated experimentally. The pulses generated by the laser have been shown to retain an ordered, equidistant structure on a nanosecond timescale.

  11. Injector Beam Dynamics for a High-Repetition Rate 4th-Generation Light Source

    SciTech Connect

    Papadopoulos, C. F.; Corlett, J.; Emma, P.; Filippetto, D.; Penn, G.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Venturini, M.; Wells, R.

    2013-05-20

    We report on the beam dynamics studies and optimization methods for a high repetition rate (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beamcompression and reservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.

  12. Advances in high repetition rate, ultra-short, gigawatt laser systems for time-resolved spectroscopy

    SciTech Connect

    DiMauro, L.F.

    1991-12-31

    The objective of this article is to emphasize the current advances in the development of high-repetition rate amplifier pumps. Although this review highlights amplifier pump development, any recent data from achieved outputs via the tunable amplifier section is also discussed. The first section describes desirable parameters attributable to the pump amplifier while the rest of the article deals with specific examples for various options. The pump amplifiers can be characterized into two distinct classes; those achieving operation in the hundred hertz regime and those performing at repetition rates {ge}1kHz. 23 refs., 4 figs.

  13. Advances in high repetition rate, ultra-short, gigawatt laser systems for time-resolved spectroscopy

    SciTech Connect

    DiMauro, L.F.

    1991-01-01

    The objective of this article is to emphasize the current advances in the development of high-repetition rate amplifier pumps. Although this review highlights amplifier pump development, any recent data from achieved outputs via the tunable amplifier section is also discussed. The first section describes desirable parameters attributable to the pump amplifier while the rest of the article deals with specific examples for various options. The pump amplifiers can be characterized into two distinct classes; those achieving operation in the hundred hertz regime and those performing at repetition rates {ge}1kHz. 23 refs., 4 figs.

  14. Picosecond supercontinuum laser with consistent emission parameters over variable repetition rates from 1 to 40 MHz

    NASA Astrophysics Data System (ADS)

    Schönau, Thomas; Siebert, Torsten; Härtel, Romano; Klemme, Dietmar; Lauritsen, Kristian; Erdmann, Rainer

    2013-02-01

    An freely triggerable picosecond visible supercontinuum laser source is presented that allows for a uniform spectral profile and equivalent pulse characteristics over variable repetition rates from 1 to 40MHz. The system features PM Yb3+-doped fiber amplification of a picosecond gain-switched seed diode at 1062 nm. The pump power in the multi-stage amplifier is actively adjusted by a microcontroller for a consistent peak power of the amplified signal in the full range of repetition rates. The length of the PCF is scaled to deliver a homogeneous spectrum and minimized distortion of the temporal pulse shape.

  15. Effects of the κ-opioid receptor on the inhibition of 100 Hz electroacupuncture on cocaine-induced conditioned place preference

    PubMed Central

    Hou, Bingjun

    2016-01-01

    The administration of 100 Hz electroacupuncture has been demonstrated to suppress cocaine-induced conditioned place preference (CPP) in rats, and there is evidence that the κ-opioid receptor may have a role in cocaine addiction. The present study sought to explore the mechanisms underlying the inhibitory effects of 100 Hz electroacupuncture on cocaine-induced CPP in rats. A rat model of cocaine-induced CPP was used in the present study to investigate the following: i) Naloxone treatment (5 and 10 mg/kg) following 100 Hz electroacupuncture-mediated inhibition on cocaine-induced CPP, revealing that a high dose (10 mg/kg) of naloxone blocked the inhibitory effects of 100 Hz electroacupuncture on cocaine-induced CPP; ii) nor-binaltorphimine (nor-BNI) on 100 Hz electroacupuncture-mediated inhibition on cocaine-induced CPP, which indicated that administration of 10 µg/5 µl and 0.3 µg/1 µl nor-BNI intracerebroventricularly and via the nucleus accumbens, respectively, reversed the inhibitory effects of 100 Hz electroacupuncture on cocaine-induced CPP, and that injection of nor-BNI in different brain areas of rats blocks the inhibitory effects of electroacupuncture on cocaine-induced CPP; and iv) 100 Hz electroacupuncture on the mRNA expression levels of the κ-opioid receptor in the rat nucleus accumbens and amygdala, which established that mRNA expression levels of κ-opioid receptor in the nucleus accumbens were increased with 100 Hz electroacupuncture plus cocaine-induced CPP. Overall, the results of the present study indicated that 100 Hz electroacupuncture was able to suppress cocaine-induced CPP via the κ-opioid receptor in the nucleus accumbens. PMID:27588082

  16. Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique

    NASA Astrophysics Data System (ADS)

    Ikhlaq, U.; R., Ahmad; Shafiq, M.; Saleem, S.; S. Shah, M.; Hussain, T.; A. Khan, I.; K., Abbas; S. Abbas, M.

    2014-10-01

    Molybdenum is nitrided by a 100-Hz pulsed DC glow discharge technique for various time durations and fill gas pressures to study the effects on the surface properties of molybdenum. X-ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) are used for the structural and morphological analysis of the nitrided layers. Vickers' microhardness tester is utilized to investigate surface microhardness. Phase analysis shows the formation of more molybdenum nitride molecules for longer nitriding durations at fill gas pressures of 2 mbar and 3 mbar (1 bar = 105 Pa). A considerable increase in surface microhardness (approximately by a factor of 2) is observed for longer duration (10 h) and 2-mbar pressure. Longer duration (10 h) and 2-mbar fill gas pressure favors the formation of homogeneous, smooth, hard layers by the incorporation of more nitrogen.

  17. High repetition rate femtosecond laser forming sub-10 µm diameter interconnection vias

    NASA Astrophysics Data System (ADS)

    Tan, B; Panchatsharam, S; Venkatakrishnan, K

    2009-03-01

    Laser ablative microvia formation has been widely accepted as an effective manufacturing method for interconnect via formation. Current conventional nanosecond laser microvia formation has reached its limit in terms of minimum via diameter and machining quality. Femtosecond laser has been investigated intensively for its superior machining quality and capability of producing much smaller features. However, the traditional femtosecond laser has very low power and is thus unable to meet the throughput requirement. In this paper we report ablative microvia formation using femtosecond lasers at megahertz repetition rates. Laser ablation was demonstrated for the first time for sub-10 µm interconnection via drilling at a throughput of 10 000 vias per second. A systematic study of the influence of a high repetition rate in femtosecond laser micromachining of silicon was carried out. The experiments were performed using an Yb-doped fibre amplified/oscillator laser with 1030 nm wavelength in an air environment. The effects of a high repetition rate on microvia formation were observed at ~300 fs for silicon substrates. Laser parameters along with threshold energy, via diameter, ablation depth, ablation rate and via quality were studied in detail to accentuate the need of femtosecond lasers for forming sub-10 µm diameter microvias. The experimental results show that femtosecond laser pulses with high repetition rates show unequivocally the advantages of short-pulse laser ablation for high-precision applications in micrometre-scale dimensions.

  18. Wide-field medium-repetition-rate multiphoton microscopy reduces photodamage of living cells.

    PubMed

    Macias-Romero, C; Zubkovs, V; Wang, S; Roke, S

    2016-04-01

    Demands of higher spatial and temporal resolutions in linear and nonlinear imaging keep pushing the limits of optical microscopy. We showed recently that a multiphoton microscope with 200 kHz repetition rate and wide-field illumination has a 2-3 orders of magnitude improved throughput compared to a high repetition rate confocal scanning microscope. Here, we examine the photodamage mechanisms and thresholds in live cell imaging for both systems. We first analyze theoretically the temperature increase in an aqueous solution resulting from illuminating with different repetition rates (keeping the deposited energy and irradiated volume constant). The analysis is complemented with photobleaching experiments of a phenolsulfonphthalein (phenol red) solution. Combining medium repetition rates and wide-field illumination promotes thermal diffusivity, which leads to lower photodamage and allows for higher peak intensities. A three day proliferation assay is also performed on living cells to confirm these results: dwell times can be increased by a factor of 3×10(6) while still preserving cell proliferation. By comparing the proliferation data with the endogenous two-photon fluorescence decay, we propose to use the percentage of the remaining endogenous two-photon fluorescence after exposure as a simple in-situ viability test. These findings enable the possibility of long-term imaging and reduced photodamage. PMID:27446668

  19. Wide-field medium-repetition-rate multiphoton microscopy reduces photodamage of living cells

    PubMed Central

    Macias-Romero, C.; Zubkovs, V.; Wang, S.; Roke, S.

    2016-01-01

    Demands of higher spatial and temporal resolutions in linear and nonlinear imaging keep pushing the limits of optical microscopy. We showed recently that a multiphoton microscope with 200 kHz repetition rate and wide-field illumination has a 2–3 orders of magnitude improved throughput compared to a high repetition rate confocal scanning microscope. Here, we examine the photodamage mechanisms and thresholds in live cell imaging for both systems. We first analyze theoretically the temperature increase in an aqueous solution resulting from illuminating with different repetition rates (keeping the deposited energy and irradiated volume constant). The analysis is complemented with photobleaching experiments of a phenolsulfonphthalein (phenol red) solution. Combining medium repetition rates and wide-field illumination promotes thermal diffusivity, which leads to lower photodamage and allows for higher peak intensities. A three day proliferation assay is also performed on living cells to confirm these results: dwell times can be increased by a factor of 3×106 while still preserving cell proliferation. By comparing the proliferation data with the endogenous two-photon fluorescence decay, we propose to use the percentage of the remaining endogenous two-photon fluorescence after exposure as a simple in-situ viability test. These findings enable the possibility of long-term imaging and reduced photodamage.

  20. High Repetition Rate and Frequency Stabilized Ho:YLF Laser for CO2 Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Bai, Yingxin; Yu, Jirong; Petros, M.; Petzar, Pau; Trieu, Bo; Lee, Hyung; Singh, U.

    2009-01-01

    High repetition rate operation of an injection seeded Ho:YLF laser has been demonstrated. For 1 kHz operation, the output pulse energy reaches 5.8mJ and the optical-to-optical efficiency is 39% when the pump power is 14.5W.

  1. Multipass dye-cell amplifier for high-repetition-rate femtosecond optical pulses

    SciTech Connect

    Nickel, D.; Kuehlke, D.; von der Linde, D.

    1989-01-01

    We describe a dye-cell amplifier pumped by a copper-vapor laser at a 8.4-kHz repetition rate. This system avoids possible problems and restrictions arising from nozzle performance in commonly used jet-stream amplifiers. We obtained a nearly diffraction-limited beam with pulses of 60 fsec and energies of up to 50 ..mu..J.

  2. Effect of the pulse repetition rate on fiber-assisted tissue ablation

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook

    2016-07-01

    The effect of the pulse repetition rate on ablation performance was evaluated ex vivo at various fiber sweeping speeds for an effective 532-nm laser prostatectomy. Three pulse repetition rates (7.5, 15, and 30 kHz) at 100 W were delivered to bovine liver tissue at three sweeping speeds (2, 4, and 6 mm/s) to achieve bulky tissue removal. Ablation performance was quantitatively compared in terms of the ablation volume and the coagulation thickness. The lowest pulse repetition rate of 7.5 kHz attained the highest ablation volume (101.5 ± 12.0 mm3) and the thinnest coagulation (0.7 ± 0.1 mm) along with superficial carbonization. The highest pulse repetition rate of 30 kHz was associated with the least tissue removal (65.8 ± 5.0 mm3) and the deepest thermal denaturation (1.1 ± 0.2 mm). Quantitative evaluations of laser parameters can be instrumental in facilitating ablation efficiency and maintaining hemostatic coagulation during treatment of large-sized benign prostate hyperplasia.

  3. High-repetition-rate oscillators based on athermal glass rods and on birefringence correction techniques

    NASA Astrophysics Data System (ADS)

    Jackel, Steven M.; Kaufman, Alon; Lallouz, Raphael

    1994-09-01

    A high-repetition-rate oscillator, based on a flashlamp-pumped Q-100- clad athermal phosphate glass rod in a stable cavity, was developed to act as the driver for a high-repetition-rate Nd:glass laser system. Although the athermal properties compensated to a large extent for thermal lensing, birefringence losses in a conventional linear cavity containing a polarizer, as required for Q-switched operation, reduced pulse energy by up to a factor of 3 when the repetition rate was increased from single shot to 50% of fracture-limit pump conditions. Several birefringence compensation techniques were evaluated with the best results obtained in a reentrant (Y-cavity) design, with a Faraday rotator to partially compensate for birefringence and a mirror to reinsert polarizer-rejected light, so that the light quadruple passed the laser head per cavity round-trip and egressed through the output mirror (the only oscillator exit port). Birefringence losses were then reduced to 20%. High-repetition-rate TEM 00 operation was obtained by using a long (223-cm) cavity, and by placing the Faraday rotator/laser head together with a large mode selection aperture next to the curved back mirror.

  4. Spectral distortion of dual-comb spectrometry due to repetition rate fluctuation

    NASA Astrophysics Data System (ADS)

    Hong-Lei, Yang; Hao-Yun, Wei; Yan, Li

    2016-04-01

    Dual-comb spectrometry suffers the fluctuations of parameters in combs. We demonstrate that the repetition rate is more important than any other parameter, since the fluctuation of the repetition rate leads to a change of difference in the repetition rate between both combs, consequently causing the conversion factor variation and spectral frequency misalignment. The measured frequency noise power spectral density of the repetition rate exhibits an integrated residual frequency modulation of 1.4 Hz from 1 Hz to 100 kHz in our system. This value corresponds to the absorption peak fluctuation within a root mean square value of 0.19 cm‑1 that is verified by both simulation and experimental result. Further, we can also simulate spectrum degradation as the fluctuation varies. After modifying misaligned spectra and averaging, the measured result agrees well with the simulated spectrum based on the GEISA database. Project supported by the State Key Laboratory of Precision Measurement Technology & Instruments of Tsinghua University and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205147).

  5. Estimation of Promotion, Repetition and Dropout Rates for Learners in South African Schools

    ERIC Educational Resources Information Center

    Uys, Daniël Wilhelm; Alant, Edward John Thomas

    2015-01-01

    A new procedure for estimating promotion, repetition and dropout rates for learners in South African schools is proposed. The procedure uses three different data sources: data from the South African General Household survey, data from the Education Management Information Systems, and data from yearly reports published by the Department of Basic…

  6. Multi-gigahertz repetition rate ultrafast waveguide lasers mode-locked with graphene saturable absorbers

    NASA Astrophysics Data System (ADS)

    Obraztsov, P. A.; Okhrimchuk, A. G.; Rybin, M. G.; Obraztsova, E. D.; Garnov, S. V.

    2016-08-01

    We report the development of an approach to build compact waveguide lasers that operate in the stable fundamental mode-locking regime with multigigahertz repetition rates. The approach is based on the use of depressed cladding multi- or single-mode waveguides fabricated directly in the active laser crystal using the femtosecond laser inscription method and a graphene saturable absorber. Using this approach we achieve the stable self-starting mode-locking operation of a diode-pumped waveguide Nd:YAG laser that delivers picosecond pulses at a repetition rate of up to 11.5 GHz with an average power of 12 mW at a central wavelength of 1064 nm. The saturable absorbers are formed through the chemical vapor deposition of single-layer graphene on the output coupler mirror or directly on the end facet of the laser crystal. The stable self-starting mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with an intracavity interferometer. The method developed for the creation of compact ultrashort pulse laser generators with gigahertz repetition rates can be extended further and applied for the development of compact high-repetition rate lasers that operate at a wide range of IR wavelengths.

  7. Operation and thermal modeling of the ISIS H- source from 50 to 2 Hz repetition rates

    NASA Astrophysics Data System (ADS)

    Pereira, H.; Faircloth, D.; Lettry, J.

    2013-02-01

    CERN's Linac4 accelerator H- ion source, currently under construction, will operate at a 2 Hz repetition rate, with pulse length of 0.5 ms and a beam current of 80 mA. Its reliability must exceed 99 % with a mandatory 3 month uninterrupted operation period. A Penning ion source is successfully operated at ISIS; at 50 Hz repetition rate it reliably provides 55 mA H- pulses of 0.25 ms duration over 1 month. The discharge plasma ignition is very sensitive to the temperatures of the discharge region, especially of its cathode. The investigation by modeling and measurement of operation parameters suitable for arc ignition and H- production at 2 Hz is of paramount importance and must be understood prior to the implementation of discharge ion sources in the Linac4 accelerator. In its original configuration, the ISIS H- source delivers beam only if the repetition rate is above 12.5 Hz, this paper describes the implementation of a temperature control of the discharge region aiming at lower repetition rate operation. The experimental results of the modified source successfully operated down to 1.6 Hz and providing 30 mA H- pulses of 0.75 ms duration are presented. A thermal modeling of the ISIS ion source gives insight to the relevant parameters. The analysis demonstrates the adaptability of discharge sources for the operating conditions of the Linac4.

  8. Long pulse and high repetition rate operation of a relativistic klystron amplifier

    SciTech Connect

    Levine, J.S.; Harteneck, B.D.

    1994-12-31

    The authors are developing an L-band (1.3 GHz) high current relativistic klystron amplifier for both long pulse ({ge} 500 ns) and high repetition rate ({ge} 200 pps) capabilities. In repetitive operation, it has produced 3.3 kW of average power in 80 ns FWHM pulses of 250 MW peak power at 200 pps. They are currently transferring this same klystron to a single-shot, long-pulse driver to demonstrate its operation with a {ge} 500 ns electrical pulse.

  9. Novel self-switched high-repetition-rate HF(DF) laser

    NASA Astrophysics Data System (ADS)

    Harris, Michael R.; Jackson, David J.; Milsom, Philip K.

    1998-05-01

    We present results obtained from a new class of self- switching, high repetition rate, HF (DF) laser. The laser utilizes a magnetically stabilized longitudinal discharge, transverse to a high velocity gas flow. The gas mixture is pre-mixed, and consists of He, SF6 and H2(D2) in the ratio 1000:9:2 at a total pressure of around 52 torr. A centrifugal fan recirculates the gas and provides a linear flow velocity of 80 ms-1 in the gain region. Permanent magnets provide the stabilizing magnetic field of approximately 1400 Gauss. This magnetic field ensures that the discharge and optic axes are co-linear. The discharge length is 30 cm, and the gas flow channel 0.5 cm in height. Conventional stable resonators were used to extract the laser energy. We show that the self-switching behavior is a result of the negative I-V characteristic in the positive column of a constricted SF6 discharge, coupled with the current limitations imposed by the external electrical circuit. It is found that the switching frequency, and therefore lasing repetition rate, can be controlled via either the applied discharge current or the RC time constant for the external circuit. Higher discharge currents and shorter time constants both result in higher pulse repetition frequencies. We have demonstrated self-switched lasing at repetition rates from 400 Hz up to 17 kHz.

  10. 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser

    PubMed Central

    Oh, W. Y.; Yun, S. H.; Tearney, G. J.; Bouma, B. E.

    2009-01-01

    We demonstrate an ultrahigh-speed wavelength-swept semiconductor laser using a polygon-based wavelength scanning filter. With a polygon rotational speed of 900 revolutions per second, a continuous wavelength tuning rate of 9200 nm/ms and a tuning repetition rate of 115 kHz were achieved. The wavelength tuning range of the laser was 80 nm centered at 1325 nm, and the average polarized output power was 23 mW. PMID:16350273

  11. Green's function approximation from cross-correlations of 20-100 Hz noise during a tropical storm.

    PubMed

    Brooks, Laura A; Gerstoft, Peter

    2009-02-01

    Approximation of Green's functions through cross-correlation of acoustic signals in the ocean, a method referred to as ocean acoustic interferometry, is potentially useful for estimating parameters in the ocean environment. Travel times of the main propagation paths between hydrophone pairs were estimated from interferometry of ocean noise data that were collected on three L-shaped arrays off the New Jersey coast while Tropical Storm Ernesto passed nearby. Examination of the individual noise spectra and their mutual coherence reveals that the coherently propagating noise is dominated by signals of less than 100 Hz. Several time and frequency noise normalization techniques were applied to the low frequency data in order to determine the effectiveness of each technique for ocean acoustic applications. Travel times corresponding to the envelope peaks of the noise cross-correlation time derivatives of data were extracted from all three arrays, and are shown to be in agreement with the expected direct, surface-reflected, and surface-bottom-reflected interarray hydrophone travel times. The extracted Green's function depends on the propagating noise. The Green's function paths that propagate horizontally are extracted from long distance shipping noise, and during the storm the more vertical paths are extracted from breaking waves. PMID:19206850

  12. A four kHz repetition rate compact TEA CO2 laser

    NASA Astrophysics Data System (ADS)

    Zheng, Yijun; Tan, Rongqing

    2013-09-01

    A compact transversely excited atmospheric (TEA) CO2 laser with high repetition-rate was reported. The size of the laser is 380 mm×300 mm×200 mm, and the discharge volume is 12×103 mm3. The laser cavity has a length of 320mm and consists of a totally reflective concave mirror with a radius of curvature of 4 m (Cu metal substrate coated with Au) and a partially reflecting mirror. The ultraviolet preionization makes the discharge even and stable,the output energy can be as high as 28 mJ under the circumstance of free oscillation, and the width of the light pulse is 60ns.To acquire the high wind velocity, a turbocharger is used in the system of the fast-gas flow cycle. When the wind speed is 100m/s, the repetition rate of the transversely excited atmospheric CO2 laser is up to 2 kHz. On this basis, a dual modular structure with two sets of the gas discharge unit is adopted to obtain a higher pulse repetition frequency output. The dual discharge unit composed two sets of electrodes and two sets of turbo fan. Alternate trigger technology is used to make the two sets of discharge module work in turn with repetition frequency of 2 kHz, the discharge interval of two sets of the gas discharge unit can be adjusted continuously from 20 microseconds to 250 microseconds. Under the conditions of maintaining the other parameters constant, the repetition frequency of the laser pulse is up to 4 kHz. The total size of laser with dual modular structure is 380mm×520mm×200mm, and the discharge volume is 24×103 mm3 with the cavity length of 520mm.

  13. Design and Development of High-Repetition-Rate Satellite Laser Ranging System

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Jung; Bang, Seong-Cheol; Sung, Ki-Pyoung; Lim, Hyung-Chul; Jung, Chan-Gyu; Kim, In-Yeung; Choi, Jae-Seung

    2015-09-01

    The Accurate Ranging System for Geodetic Observation ? Mobile (ARGO-M) was successfully developed as the first Korean mobile Satellite Laser Ranging (SLR) system in 2012, and has joined in the International Laser Ranging Service (ILRS) tracking network, DAEdeoK (DAEK) station. The DAEK SLR station was approved as a validated station in April 2014, through the ILRS station ¡°data validation¡± process. The ARGO-M system is designed to enable 2 kHz laser ranging with millimeter-level precision for geodetic, remote sensing, navigation, and experimental satellites equipped with Laser Retroreflector Arrays (LRAs). In this paper, we present the design and development of a next generation high-repetition-rate SLR system for ARGO-M. The laser ranging rate up to 10 kHz is becoming an important issue in the SLR community to improve ranging precision. To implement high-repetition-rate SLR system, the High-repetition-rate SLR operation system (HSLR-10) was designed and developed using ARGO-M Range Gate Generator (A-RGG), so as to enable laser ranging from 50 Hz to 10 kHz. HSLR-10 includes both hardware controlling software and data post-processing software. This paper shows the design and development of key technologies of high-repetition-rate SLR system. The developed system was tested successfully at DAEK station and then moved to Sejong station, a new Korean SLR station, on July 1, 2015. HSLR-10 will begin normal operations at Sejong station in the near future.

  14. The influence of the repetition rate on the nanosecond pulsed pin-to-pin microdischarges

    NASA Astrophysics Data System (ADS)

    Huang, Bang-Dou; Takashima, Keisuke; Zhu, Xi-Ming; Pu, Yi-Kang

    2014-10-01

    The effect of repetition rate on a nanosecond atmospheric pressure discharge is investigated. The discharge is generated between two pins in a mixture of Ne and Ar. The voltage, current, power waveforms and the temporally and spatially resolved electron density and an ‘effective’ electron temperature are measured, with a pulse interval between 1.5 and 200 µs. It is found that not only does the repetition rate have a strong influence on the breakdown voltage and the peak discharge power, but it can also affect the rise rate of the volume averaged electron density and its peak value. Temporally and spatially resolved measurement of the electron density and the effective electron temperature show that the spatial distributions of both quantities are also influenced by the repetition rate. In the initial discharge period of all cases, the sharp rise of the electron density correlates with the drastic drop of the effective electron temperature. It is suggested that the residual charges have a strong impact on the axial distribution of the electric field and energetic electrons between the electrodes during the breakdown period, as illustrated by a simple sheath model.

  15. New high repetition rate, high energy 308 nm excimer laser for material processing

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Klaft, Ingo; Schmidt, Kai; Bragin, Igor; Albrecht, Hans-Stephan

    2007-02-01

    High power excimer lasers are well established as work horses for various kinds of micro material processing. The applications are ranging from drilling holes, trench formation, thin film ablation to the crystallization of amorphous-Si into polycrystalline-Si. All applications use the high photon energy and large pulse power of the excimer technology. The increasing demand for micro scale products has let to the demand for UV lasers which support high throughput production. We report the performance parameters of a newly developed XeCl excimer laser with doubled repetition rate compared to available lasers. The developed laser system delivers up to 900 mJ stabilized pulse energy at 600 Hz repetition rate. The low jitter UV light source operates with excellent energy stability. The outstanding energy stability was reached by using a proprietary solid-state pulser discharge design.

  16. Comparison of two high-repetition-rate pulsed CO/sub 2/ laser discharge geometries

    SciTech Connect

    Faszer, W.; Tulip, J.; Seguin, H.

    1980-11-01

    Two discharge geometries are commonly used for pumping high-repetition-rate transversely excited atmosphere (TEA) lasers. One uses solid electrodes with preionization provided by downstream spark pins. The other uses a solid electrode and a screen electrode with preionization provided by an auxiliary discharge behind the screen. In this study the performance of the two systems was compared. The repetition rate at which arcing occurs was found to increase linearly with flow velocity but decrease with increasing energy density. It was also dependent on system geometry and the spark pin preionized system performed better than the auxiliary discharge preionized system. Data are given for discharges in N/sub 2/, CO/sub 2/, He, and a CO/sub 2/ laser mixture.

  17. Group velocity locked vector dissipative solitons in a high repetition rate fiber laser.

    PubMed

    Luo, Yiyang; Li, Lei; Liu, Deming; Sun, Qizhen; Wu, Zhichao; Xu, Zhilin; Tang, Dingyuan; Fu, Songnian; Zhao, Luming

    2016-08-01

    Vectorial nature of dissipative solitons (DSs) with high repetition rate is studied for the first time in a normal-dispersion fiber laser. Despite the fact that the formed DSs are strongly chirped and the repetition rate is greater than 100 MHz, polarization locked and polarization rotating group velocity locked vector DSs can be formed under 129.3 MHz fundamental mode-locking and 258.6 MHz harmonic mode-locking of the fiber laser, respectively. The two orthogonally polarized components of these vector DSs possess distinctly different central wavelengths and travel together at the same group velocity in the laser cavity, resulting in a gradual spectral edge and small steps on the optical spectrum, which can be considered as an auxiliary indicator of the group velocity locked vector DSs. Moreover, numerical simulations well confirm the experimental observations and further reveal the impact of the net cavity birefringence on the properties of the formed vector DSs. PMID:27505834

  18. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    PubMed

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power. PMID:24007048

  19. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power

    NASA Astrophysics Data System (ADS)

    Binh, P. H.; Trong, V. D.; Renucci, P.; Marie, X.

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  20. Upscaling of X-Ray Laser Repetition Rate Using an OPCPA Architecture

    NASA Astrophysics Data System (ADS)

    Jia, Fei; Staub, Felix; Balmer, Jürg

    We present a novel design of a hybrid amplification chain for pumping a Sn target producing ˜μJ coherent soft-X-ray pulses at few-Hz repetition rate. The driver aims to generate multi-joule energy at the central wavelength of 1053 nm and consists of optical-parametric chirped-pulse amplification (OPCPA) combined with diode-pumped Nd:YLF amplifiers. The soft-X-ray laser at the wavelength of 11.9 nm is produced by focusing the infrared beam into a line focus on a solid Sn target. Benefiting from this hybrid pump scheme and grazing-incidence pump geometry (GRIP), such a system has the potential to upscale the repetition rate of soft-X-ray lasers from single shot to the few-Hz region.

  1. High-order harmonic generation using a high-repetition-rate turnkey laser.

    PubMed

    Lorek, E; Larsen, E W; Heyl, C M; Carlström, S; Paleček, D; Zigmantas, D; Mauritsson, J

    2014-12-01

    We generate high-order harmonics at high pulse repetition rates using a turnkey laser. High-order harmonics at 400 kHz are observed when argon is used as target gas. In neon, we achieve generation of photons with energies exceeding 90 eV (∼13 nm) at 20 kHz. We measure a photon flux of up to 4.4 × 10(10) photons per second per harmonic in argon at 100 kHz. Many experiments employing high-order harmonics would benefit from higher repetition rates, and the user-friendly operation opens up for applications of coherent extreme ultra-violet pulses in new research areas. PMID:25554271

  2. High-order harmonic generation using a high-repetition-rate turnkey laser

    SciTech Connect

    Lorek, E. Larsen, E. W.; Heyl, C. M.; Carlström, S.; Mauritsson, J.; Paleček, D.; Zigmantas, D.

    2014-12-15

    We generate high-order harmonics at high pulse repetition rates using a turnkey laser. High-order harmonics at 400 kHz are observed when argon is used as target gas. In neon, we achieve generation of photons with energies exceeding 90 eV (∼13 nm) at 20 kHz. We measure a photon flux of up to 4.4 × 10{sup 10} photons per second per harmonic in argon at 100 kHz. Many experiments employing high-order harmonics would benefit from higher repetition rates, and the user-friendly operation opens up for applications of coherent extreme ultra-violet pulses in new research areas.

  3. Optical breakdown of multilayer thin-films induced by ultrashort pulses at MHz repetition rates.

    PubMed

    Angelov, Ivan B; von Pechmann, Maximilian; Trubetskov, Michael K; Krausz, Ferenc; Pervak, Vladimir

    2013-12-16

    Multilayer coatings composed of TiO(2), Ta(2)O(5), HfO(2), or Al(2)O(3) as high-index materials and SiO(2) as low-index material were investigated for laser-induced damage using 1 ps, 5 µJ pulses generated by a mode-locked Yb:YAG thin-disk oscillator operating at a wavelength of 1030 nm and repetition rate of 11.5 MHz. Previously reported linear band gap dependence of damage threshold at kHz repetition rates was confirmed also for the MHz regime. Additionally, we studied the effect of electric field distribution inside of the layer stack. We did not observe any significant influence of thermal effects on the laser-induced damage threshold in this regime. PMID:24514719

  4. High repetition rate gain-switched Er:YAG ceramic laser at 1645 nm

    NASA Astrophysics Data System (ADS)

    Chen, B. H.; Zhang, J. N.; Zhao, Y. G.; Zhang, J.; Tang, D. Y.; Shen, D. Y.

    2016-02-01

    We report on a gain-switched Er:YAG ceramic laser resonantly pumped by an acousto-optically modulated Er, Yb co-doped fiber laser at 1532 nm. The laser produced stable pulse trains at 1645 nm with pulse repetition rate tunable between 13-100 kHz and corresponding pulse width of 480-450 ns under a pump power-level of 8.7 W. At the 100 kHz of repetition rate, over 2.2 W of average output power was generated for 6.5 W of incident pump power, corresponding to a slope efficiency of 40% with respect to incident pump power.

  5. Single-pass high-harmonic generation at 20.8 MHz repetition rate.

    PubMed

    Vernaleken, Andreas; Weitenberg, Johannes; Sartorius, Thomas; Russbueldt, Peter; Schneider, Waldemar; Stebbings, Sarah L; Kling, Matthias F; Hommelhoff, Peter; Hoffmann, Hans-Dieter; Poprawe, Reinhart; Krausz, Ferenc; Hänsch, Theodor W; Udem, Thomas

    2011-09-01

    We report on single-pass high-harmonic generation (HHG) with amplified driving laser pulses at a repetition rate of 20.8 MHz. An Yb:YAG Innoslab amplifier system provides 35 fs pulses with 20 W average power at 1030 nm after external pulse compression. Following tight focusing into a xenon gas jet, we observe the generation of high-harmonic radiation of up to the seventeenth order. Our results show that state-of-the-art amplifier systems have become a promising alternative to cavity-assisted HHG for applications that require high repetition rates, such as frequency comb spectroscopy in the extreme UV. PMID:21886233

  6. Demonstration of a desk-top size high repetition rate soft x-ray laser.

    PubMed

    Heinbuch, S; Grisham, M; Martz, D; Rocca, J J

    2005-05-30

    We have demonstrated a new type of high repetition rate 46.9 nm capillary discharge laser that fits on top of a small desk and that it does not require a Marx generator for its excitation. The relatively low voltage required for its operation allows a reduction of nearly one order of magnitude in the size of the pulsed power unit relative to previous capillary discharge lasers. Laser pulses with an energy of ~ 13 microJ are generated at repetition rates up to 12 Hz. About (2-3) x 10 4 laser shots can be generated with a single capillary. This new type of portable laser is an easily accessible source of intense short wavelength laser light for applications. PMID:19495315

  7. Continuous high-repetition-rate operation of collisional soft-x-ray lasers with solid targets.

    PubMed

    Weith, A; Larotonda, M A; Wang, Y; Luther, B M; Alessi, D; Marconi, M C; Rocca, J J; Dunn, J

    2006-07-01

    We have generated a laser average output power of 2 microW at a wavelength of 13.9 nm by operating a tabletop laser-pumped Ni-like Ag laser at a 5 Hz repetition rate, using a solid helicoidal target that is continuously rotated and advanced to renew the target surface between shots. More than 2 x 10(4) soft-x-ray laser shots were obtained by using a single target. Similar results were obtained at 13.2 nm in Ni-like Cd with a Cd-coated target. This scheme will allow uninterrupted operation of laser-pumped tabletop collisional soft-x-ray lasers at a repetition rate of 10 Hz for a period of hours, enabling the generation of continuous high average soft-x-ray powers for applications. PMID:16770410

  8. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    SciTech Connect

    Höppner, H.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.

  9. A High Power and High Repetition Rate Modelocked Ti-Sapphire Laser for Photoinjectors

    SciTech Connect

    J. Hansknecht; M. Poelker

    2001-07-01

    A high power cw mode-locked Ti-sapphire laser has been constructed to drive the Jefferson Lab polarized photoinjector and provide > 500 mW average power with 50 ps pulsewidths at 499 MHz or 1497 MHz pulse repetition rates. This laser allows efficient, high current synchronous photoinjection for extended periods of time before intrusive steps must be taken to restore the quantum efficiency of the strained layer GaAs photocathode. The use of this laser has greatly enhanced the maximum high polarization beam current capability and operating lifetime of the Jefferson Lab photoinjector compared with previous performance using diode laser systems. A novel modelocking technique provides a simple means to phase-lock the optical pulse train of the laser to the accelerator and allows for operation at higher pulse repetition rates to {approx} 3 GHz without modification of the laser cavity. The laser design and characteristics are described below.

  10. A Dynamic Feedback Model for High Repetition Rate LINAC-Driven FELS

    SciTech Connect

    Mellado Munoz, M.; Doolittle, L.; Emma, P.; Huang, G.; Ratti, A.; Serrano, C.; Byrd, J. M.

    2012-05-20

    One of the concepts for the next generation of linacdriven FELs is a CW superconducting linac driving an electron beam with MHz repetition rates. One of the challenges for next generation FELs is improve the stability of the xray pulses by improving the shot-to-shot stability of the energy, charge, peak current, and timing jitter of the electron beam. A high repetition rate FEL with a CW linac presents an opportunity to use a variety of broadband feedbacks to stabilize the beam parameters. To understand the performance of such a feedback system, we are developing a dynamic model of the machine with a focus on the longitudinal beam properties. The model is being developed as an extension of the LITrack code and includes the dynamics of the beam-cavity interaction, RF feedback, beam-based feedback, and multibunch effects. In this paper, we present a detailed description of this model.

  11. High Repetition Rate, LINAC-Based Nuclear Resonance Fluorescence FY 2008 Final Report

    SciTech Connect

    Scott M Watson; Mathew T Kinlaw; James L Jones; Alan W. Hunt; Glen A. Warren

    2008-12-01

    This summarizes the first year of a multi-laboratory/university, multi-year effort focusing on high repetition rate, pulsed LINAC-based nuclear resonance fluorescence (NRF) measurements. Specifically, this FY2008 effort centered on experimentally assessing NRF measurements using pulsed linear electron accelerators, operated at various repetition rates, and identifying specific detection requirements to optimize such measurements. Traditionally, interest in NRF as a detection technology, which continues to receive funding from DHS and DOE/NA-22, has been driven by continuous-wave (CW), Van de Graff-based bremsstrahlung sources. However, in addition to the relatively sparse present-day use of Van de Graff sources, only limited NRF data from special nuclear materials has been presented; there is even less data available regarding shielding effects and photon source optimization for NRF measurements on selected nuclear materials.

  12. 503MHz repetition rate femtosecond Yb: fiber ring laser with an integrated WDM collimator.

    PubMed

    Wang, Aimin; Yang, Hongyu; Zhang, Zhigang

    2011-12-01

    We demonstrate 503MHz fundamental high repetition rate operation in a ring cavity passively mode-locked Yb:fiber laser incorporating a novel wavelength-division-multiplexing collimator and a piece of all-solid photonic bandgap fiber. The Yb doped fiber was directly fabricated as one fiber pigtail into the functional collimator, greatly shortening the cavity length and facilitating the splicing operation. A 5cm long photonic bandgap fiber with abnormal dispersion at the lasing wavelength (centered at 1030nm) decreases the net dispersion for shorter output pulses. The spectral bandwidth of the pulse was 34nm. The direct output pulse was measured to be 156fs and the dechirped pulse was about 76fs. With this innovative Yb:fiber pigtailed WDM collimator, the ring cavity laser has the potential to work at a repetition rate up to GHz. PMID:22273932

  13. Compact, high-repetition-rate OPCPA system for high harmonic generation

    NASA Astrophysics Data System (ADS)

    Matyschok, Jan; Binhammer, Thomas; Lang, Tino; Prochnow, Oliver; Rausch, Stefan; Rudawski, Piotr; Harth, Anne; Miranda, Miguel; Guo, Chen; Lorek, Eleonora; Mauritsson, Johan; Arnold, Cord L.; L'Huillier, Anne; Morgner, Uwe

    2014-03-01

    A compact, high-repetition rate optical parametric chirped pulse amplifier system emitting CEP-stable, few-cycle pulses with 10 μJ of pulse energy is reported for the purpose of high-order harmonic generation. The system is seeded from a commercially available, CEP-stabilized Ti:sapphire oscillator, delivering an octave-spanning spectrum from 600-1200 nm. The oscillator output serves on the one hand as broadband signal for the parametric amplification process and on the other hand as narrowband seed for an Ytterbium-based fiber preamplifier with subsequent main amplifiers and frequency doubling. Broadband parametric amplification up to 17 μJ at 200 kHz repetition rate was achieved in two 5 mm BBO crystals using non-collinear phase matching in the Poynting-vector-walk-off geometry. Efficient pulse compression down to 6.3 fs is achieved with chirped mirrors leading to a peak power exceeding 800 MW. We observed after warm-up time a stability of < 0.5 % rms over 100 min. Drifts of the CE-phase in the parametric amplifier part could be compensated by a slow feedback to the set point of the oscillator phase lock. The CEP stability was measured to be better than 80 mrad over 15 min (3 ms integration time). The experimentally observed output spectra and energies could be well reproduced by simulations of the parametric amplification process based on a (2+1)-dimensional nonlinear propagation code, providing important insight for future repetition rate scaling of OPCPA systems. The system is well-suited for attosecond science experiments which benefit from the high repetition rate. First results for high-order harmonic generation in argon will be presented.

  14. Dual-color three-dimensional STED microscopy with a single high-repetition-rate laser

    PubMed Central

    Han, Kyu Young; Ha, Taekjip

    2016-01-01

    We describe a dual-color three-dimensional stimulated emission depletion (3D-STED) microscopy employing a single laser source with a repetition rate of 80 MHz. Multiple excitation pulses synchronized with a STED pulse were generated by a photonic crystal fiber and the desired wavelengths were selected by an acousto-optic tunable filter with high spectral purity. Selective excitation at different wavelengths permits simultaneous imaging of two fluorescent markers at a nanoscale resolution in three dimensions. PMID:26030581

  15. Steady State Microbunching for High Brilliance and High Repetition Rate Storage Ring-Based Light Sources

    SciTech Connect

    Chao, Alex; Ratner, Daniel; Jiao, Yi; /Beijing, Inst. High Energy Phys.

    2012-09-06

    Electron-based light sources have proven to be effective sources of high brilliance, high frequency radiation. Such sources are typically either linac-Free Electron Laser (FEL) or storage ring types. The linac-FEL type has high brilliance (because the beam is microbunched) but low repetition rate. The storage ring type has high repetition rate (rapid beam circulation) but comparatively low brilliance or coherence. We propose to explore the feasibility of a microbunched beam in a storage ring that promises high repetition rate and high brilliance. The steady-state-micro-bunch (SSMB) beam in storage ring could provide CW sources for THz, EUV, or soft X-rays. Several SSMB mechanisms have been suggested recently, and in this report, we review a number of these SSMB concepts as promising directions for high brilliance, high repetition rate light sources of the future. The trick of SSMB lies in the RF system, together with the associated synchrotron beam dynamics, of the storage ring. Considering various different RF arrangements, there could be considered a number of scenarios of the SSMB. In this report, we arrange these scenarios more or less in order of the envisioned degree of technical challenge to the RF system, and not in the chronological order of their original references. Once the stored beam is steady-state microbunched in a storage ring, it passes through a radiator repeatedly every turn (or few turns). The radiator extracts a small fraction of the beam energy as coherent radiation with a wavelength corresponding to the microbunched period of the beam. In contrast to an FEL, this radiator is not needed to generate the microbunching (as required e.g. by SASE FELs or seeded FELs), so the radiator can be comparatively simple and short.

  16. Studies of a Linac Driver for a High Repetition Rate X-Ray FEL

    SciTech Connect

    Venturini, M.; Corlett, J.; Doolittle, L.; Filippetto, D.; Papadopoulos, C.; Penn, G.; Prosnitz, D.; Qiang, J.; Reinsch, M.; Ryne, R.; Sannibale, F.; Staples, J.; Wells, R.; Wurtele, J.; Zolotorev, M.; Zholents, A.

    2011-06-01

    We report on on-going studies of a superconducting CW linac driver intended to support a high repetition rate FEL operating in the soft x-rays spectrum. We present a pointdesign for a 1.8 GeV machine tuned for 300 pC bunches and delivering low-emittance, low-energy spread beams as needed for the SASE and seeded beamlines.

  17. Temporal dynamics of repetition suppression to individual faces presented at a fast periodic rate.

    PubMed

    Nemrodov, Dan; Jacques, Corentin; Rossion, Bruno

    2015-10-01

    Periodic presentation of visual stimuli leads to a robust electrophysiological response on the human scalp exactly at the periodic stimulation frequency, a response defined as a "steady-state visual evoked potential" (SSVEP, Regan, 1966). However, recent studies have shown that SSVEPs over the (right) occipito-temporal cortex are reduced when the same individual face is repeated at periodic rates of 3 to 9 Hz compared to when different faces are presented (Rossion, 2014). Here, we characterized the temporal dynamics of this repetition suppression effect. We presented different face identities at a rate of 5.88 Hz (stimulus onset asynchrony of 170 ms) for 15 s, followed by the repetition of the exact same face at this rate for 35 s. Compared to a stimulation sequence with different faces only, there was a large and specific decrease of the 5.88 Hz response when the same face was repeated at that rate. This effect was observed over the left and right occipito-temporal cortex, but not over medial occipital electrode sites where SSVEPs are typically measured. In the right hemisphere, this decrease occurred abruptly, i.e., within half a second following the introduction of the same-identity stimulation, with no further decrease until the end of the stimulation. These observations indicate that the SSVEP recorded over high-level visual areas to periodic stimulation is not steady but rather adapts immediately and fully following the repetition of the same individual face, supporting a bottom-up, stimulus-driven account of repetition suppression effects. PMID:26113059

  18. High-repetition-rate high-power variable-bandwidth dye laser

    SciTech Connect

    Lavi, S.; Amit, M.; Bialolanker, G.; Miron, E.; Levin, L.A.

    1985-07-01

    An efficient high-repetition-rate dye laser is described which has a bandwidth that can be tailored to match typical atomic inhomogeneous linewidths. The dye laser is pumped by a 4-kHz 2--6 mJ/pulse copper vapor laser. The total efficiency of the dye laser (oscillator and amplifier) is 45% for rhodamine 6G and 30% for rhodamine B.

  19. The role of excitation parameters in high repetition-rate N2-TE lasers

    NASA Astrophysics Data System (ADS)

    Kukhlevsky, S. V.; Kozma, L.

    1993-09-01

    We have studied the effects of decreasing the excitation duration on the pulse-repetition-rate (PRR) capabilities of a low-pressure ( P<200 Torr) N2-TE laser. It was found that maximum PRR increases with decreasing duration of the discharge current. PRR as high as 1000 Hz has been obtained in the sealed-off non-flowing regime of laser operation. These findings are adequately explained by the time dependence of the arc-discharge formation.

  20. Effects of shifts in the rate of repetitive stimulation on sustained attention

    NASA Technical Reports Server (NTRS)

    Krulewitz, J. E.; Warm, J. S.; Wohl, T. H.

    1975-01-01

    The effects of shifts in the rate of presentation of repetitive neutral events (background event rate) were studied in a visual vigilance task. Four groups of subjects experienced either a high (21 events/min) or a low (6 events/min) event rate for 20 min and then experienced either the same or the alternate event rate for an additional 40 min. The temporal occurrence of critical target signals was identical for all groups, irrespective of event rate. The density of critical signals was 12 signals/20 min. By the end of the session, shifts in event rate were associated with changes in performance which resembled contrast effects found in other experimental situations in which shift paradigms were used. Relative to constant event rate control conditions, a shift from a low to a high event rate depressed the probability of signal detections, while a shift in the opposite direction enhanced the probability of signal detections.

  1. All-optical repetition rate multiplication of pseudorandom bit sequences by employing power coupler and equalizer

    NASA Astrophysics Data System (ADS)

    Sun, Zhenchao; Wang, Zhi; Wu, Chongqing; Wang, Fu; Li, Qiang

    2015-10-01

    A scheme for all-optical repetition rate multiplication of pseudorandom bit sequences (PRBS) is demonstrated with a precision delay feedback loop cascaded with a terahertz optical asymmetric demultiplexer (TOAD)-based power equalizer. Its feasibility has been verified by experiments, which show a multiplication for PRBS at cycle 2^7-1 from 2.5 to 10 Gb/s. This scheme can be employed for the rate multiplication of a much longer cycle PRBS at a much higher bit rate over 40 Gb/s if the time-delay, the loss, and the dispersion of an optical delay line are all precisely managed.

  2. High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter

    NASA Astrophysics Data System (ADS)

    Green, B.; Kovalev, S.; Asgekar, V.; Geloni, G.; Lehnert, U.; Golz, T.; Kuntzsch, M.; Bauer, C.; Hauser, J.; Voigtlaender, J.; Wustmann, B.; Koesterke, I.; Schwarz, M.; Freitag, M.; Arnold, A.; Teichert, J.; Justus, M.; Seidel, W.; Ilgner, C.; Awari, N.; Nicoletti, D.; Kaiser, S.; Laplace, Y.; Rajasekaran, S.; Zhang, L.; Winnerl, S.; Schneider, H.; Schay, G.; Lorincz, I.; Rauscher, A. A.; Radu, I.; Mährlein, S.; Kim, T. H.; Lee, J. S.; Kampfrath, T.; Wall, S.; Heberle, J.; Malnasi-Csizmadia, A.; Steiger, A.; Müller, A. S.; Helm, M.; Schramm, U.; Cowan, T.; Michel, P.; Cavalleri, A.; Fisher, A. S.; Stojanovic, N.; Gensch, M.

    2016-02-01

    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields and the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. We benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution.

  3. High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter

    PubMed Central

    Green, B.; Kovalev, S.; Asgekar, V.; Geloni, G.; Lehnert, U.; Golz, T.; Kuntzsch, M.; Bauer, C.; Hauser, J.; Voigtlaender, J.; Wustmann, B.; Koesterke, I.; Schwarz, M.; Freitag, M.; Arnold, A.; Teichert, J.; Justus, M.; Seidel, W.; Ilgner, C.; Awari, N.; Nicoletti, D.; Kaiser, S.; Laplace, Y.; Rajasekaran, S.; Zhang, L.; Winnerl, S.; Schneider, H.; Schay, G.; Lorincz, I.; Rauscher, A. A.; Radu, I.; Mährlein, S.; Kim, T. H.; Lee, J. S.; Kampfrath, T.; Wall, S.; Heberle, J.; Malnasi-Csizmadia, A.; Steiger, A.; Müller, A. S.; Helm, M.; Schramm, U.; Cowan, T.; Michel, P.; Cavalleri, A.; Fisher, A. S.; Stojanovic, N.; Gensch, M.

    2016-01-01

    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields and the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. We benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution. PMID:26924651

  4. High repetition rate fiber amplifier pumped sub-20 fs optical parametric amplifier.

    PubMed

    Rothhardt, J; Hädrich, S; Schimpf, D N; Limpert, J; Tünnermann, A

    2007-12-10

    We report on a high repetition rate noncollinear optical parametric amplifier system (NOPA) based on a cavity dumped Ti:Sapphire oscillator providing the signal, and an Ytterbium-doped fiber amplifier pumping the device. Temporally synchronized NOPA pump pulses are created via soliton generation in a highly nonlinear photonic crystal fiber. This soliton is fiber amplified to high pulse-energies at high repetition rates. The broadband Ti:Sapphire laser pulses are parametrically amplified either directly or after additional spectral broadening. The approach of fiber-based pump-pulse generation from a femtosecond laser, that emits in the spectral region of NOPA-gain, offers enhanced long-term stability and pulse quality compared to conventional techniques, such as signal pulse generation from a high power laser system via filamentation in bulk media. The presented system produces high-energy ultra-short pulses with pulse-durations down to 15.6 fs and pulse-energies up to 500 nJ at a repetition rate as high as 2 MHz. PMID:19550960

  5. High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter.

    PubMed

    Green, B; Kovalev, S; Asgekar, V; Geloni, G; Lehnert, U; Golz, T; Kuntzsch, M; Bauer, C; Hauser, J; Voigtlaender, J; Wustmann, B; Koesterke, I; Schwarz, M; Freitag, M; Arnold, A; Teichert, J; Justus, M; Seidel, W; Ilgner, C; Awari, N; Nicoletti, D; Kaiser, S; Laplace, Y; Rajasekaran, S; Zhang, L; Winnerl, S; Schneider, H; Schay, G; Lorincz, I; Rauscher, A A; Radu, I; Mährlein, S; Kim, T H; Lee, J S; Kampfrath, T; Wall, S; Heberle, J; Malnasi-Csizmadia, A; Steiger, A; Müller, A S; Helm, M; Schramm, U; Cowan, T; Michel, P; Cavalleri, A; Fisher, A S; Stojanovic, N; Gensch, M

    2016-01-01

    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields and the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. We benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution. PMID:26924651

  6. High repetition rate laser-induced breakdown spectroscopy using acousto-optically gated detection

    NASA Astrophysics Data System (ADS)

    Pořízka, Pavel; Klessen, Benjamin; Kaiser, Jozef; Gornushkin, Igor; Panne, Ulrich; Riedel, Jens

    2014-07-01

    This contribution introduces a new type of setup for fast sample analysis using laser-induced breakdown spectroscopy (LIBS). The novel design combines a high repetition rate laser (up to 50 kHz) as excitation source and an acousto-optical modulator (AOM) as a fast switch for temporally gating the detection of the emitted light. The plasma radiation is led through the active medium of the AOM where it is diffracted on the transient ultrasonic Bragg grid. The diffracted radiation is detected by a compact Czerny-Turner spectrometer equipped with a CCD line detector. Utilizing the new combination of high repetition rate lasers and AOM gated detection, rapid measurements with total integration times of only 10 ms resulted in a limit of detection (LOD) of 0.13 wt.% for magnesium in aluminum alloys. This short integration time corresponds to 100 analyses/s. Temporal gating of LIP radiation results in improved LODs and consecutively higher sensitivity of the LIBS setup. Therefore, an AOM could be beneficially utilized to temporally detect plasmas induced by high repetition rate lasers. The AOM in combination with miniaturized Czerny-Turner spectrometers equipped with CCD line detectors and small footprint diode pumped solid state lasers results in temporally gateable compact LIBS setups.

  7. High repetition rate laser-induced breakdown spectroscopy using acousto-optically gated detection

    SciTech Connect

    Pořízka, Pavel; Kaiser, Jozef

    2014-07-15

    This contribution introduces a new type of setup for fast sample analysis using laser-induced breakdown spectroscopy (LIBS). The novel design combines a high repetition rate laser (up to 50 kHz) as excitation source and an acousto-optical modulator (AOM) as a fast switch for temporally gating the detection of the emitted light. The plasma radiation is led through the active medium of the AOM where it is diffracted on the transient ultrasonic Bragg grid. The diffracted radiation is detected by a compact Czerny-Turner spectrometer equipped with a CCD line detector. Utilizing the new combination of high repetition rate lasers and AOM gated detection, rapid measurements with total integration times of only 10 ms resulted in a limit of detection (LOD) of 0.13 wt.% for magnesium in aluminum alloys. This short integration time corresponds to 100 analyses/s. Temporal gating of LIP radiation results in improved LODs and consecutively higher sensitivity of the LIBS setup. Therefore, an AOM could be beneficially utilized to temporally detect plasmas induced by high repetition rate lasers. The AOM in combination with miniaturized Czerny-Turner spectrometers equipped with CCD line detectors and small footprint diode pumped solid state lasers results in temporally gateable compact LIBS setups.

  8. High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter

    DOE PAGESBeta

    Green, B.; Kovalev, S.; Asgekar, V.; Geloni, G.; Lehnert, U.; Golz, T.; Kuntzsch, M.; Bauer, C.; Hauser, J.; Voigtlaender, J.; et al

    2016-02-29

    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields andmore » the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. In conclusion, we benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution.« less

  9. Effects of repetition rate and impulsiveness of simulated helicopter rotor noise on annoyance

    NASA Technical Reports Server (NTRS)

    Powell, C. A.; Mccurdy, D. A.

    1982-01-01

    Annoyance judgements were obtained for computer generated stimuli simulative of helicopter impulsive rotor noise to investigate effects of repetition rate and impulsiveness. Each of the 82 different stimuli was judged at 3 sound pressure levels by 48 subjects. Impulse repetition rates covered a range from 10 Hz to 115 Hz; crest factors covered a range from 3.2 dB to 19.3 dB. Increases in annoyance with increases in repetition rate were found which were not predicted by common loudness or annoyance metrics and which were independent of noise level. The ability to predict effects of impulsiveness varied between the noise metrics and was found to be dependent on noise level. The ability to predict the effects of impulsiveness was not generally improved by any of several proposed impulsiveness corrections. Instead, the effects of impulsiveness were found to be systematically related to the frequency content of the stimuli. A modified frequency weighting was developed which offers improved annoyance prediction.

  10. Novel Resistance Training-Specific Rating of Perceived Exertion Scale Measuring Repetitions in Reserve.

    PubMed

    Zourdos, Michael C; Klemp, Alex; Dolan, Chad; Quiles, Justin M; Schau, Kyle A; Jo, Edward; Helms, Eric; Esgro, Ben; Duncan, Scott; Garcia Merino, Sonia; Blanco, Rocky

    2016-01-01

    The primary aim of this study was to compare rating of perceived exertion (RPE) values measuring repetitions in reserve (RIR) at particular intensities of 1 repetition maximum (RM) in experienced (ES) and novice squatters (NS). Furthermore, this investigation compared average velocity between ES and NS at the same intensities. Twenty-nine individuals (24.0 ± 3.4 years) performed a 1RM squat followed by a single repetition with loads corresponding to 60, 75, and 90% of 1RM and an 8-repetition set at 70% 1RM. Average velocity was recorded at 60, 75, and 90% 1RM and on the first and last repetitions of the 8-repetition set. Subjects reported an RPE value that corresponded to an RIR value (RPE-10 = 0-RIR, RPE-9 = 1-RIR, and so forth). Subjects were assigned to one of the 2 groups: (a) ES (n = 15, training age: 5.2 ± 3.5 years) and (b) NS (n = 14, training age: 0.4 ± 0.6 years). The mean of the average velocities for ES was slower (p ≤ 0.05) than NS at 100% and 90% 1RM. However, there were no differences (p > 0.05) between groups at 60, 75%, or for the first and eighth repetitions at 70% 1RM. In addition, ES recorded greater RPE at 1RM than NS (p = 0.023). In ES, there was a strong inverse relationship between average velocity and RPE at all percentages (r = -0.88, p < 0.001), and a strong inverse correlation in NS between average velocity and RPE at all intensities (r = -0.77, p = 0.001). Our findings demonstrate an inverse relationship between average velocity and RPE/RIR. Experienced squatter group exhibited slower average velocity and higher RPE at 1RM than NS, signaling greater efficiency at high intensities. The RIR-based RPE scale is a practical method to regulate daily training load and provide feedback during a 1RM test. PMID:26049792

  11. Characteristics of a velvet cathode under high repetition rate pulse operation

    SciTech Connect

    Xun Tao; Zhang Jiande; Yang Hanwu; Zhang Zicheng; Fan Yuwei

    2009-10-15

    As commonly used material for cold cathodes, velvet works well in single shot and low repetition rate (rep-rate) high-power microwave (HPM) sources. In order to determine the feasibility of velvet cathodes under high rep-rate operation, a series of experiments are carried out on a high-power diode, driven by a {approx}300 kV, {approx}6 ns, {approx}100 {omega}, and 1-300 Hz rep-rate pulser, Torch 02. Characteristics of vacuum compatibility and cathode lifetime under different pulse rep-rate are focused on in this paper. Results of time-resolved pressure history, diode performance, shot-to-shot reproducibility, and velvet microstructure changes are presented. As the rep-rate increases, the equilibrium pressure grows hyperlinearly and the velvet lifetime decreases sharply. At 300 Hz, the pressure in the given diode exceeded 1 Pa, and the utility shots decreased to 2000 pulses for nonstop mode. While, until the velvet begins to degrade, the pulse-to-pulse instability of diode voltage and current is quite small, even under high rep-rate conditions. Possible reasons for the operation limits are discussed, and methods to improve the performance of a rep-rate velvet cathode are also suggested. These results may be of interest to the repetitive HPM systems with cold cathodes.

  12. High frequency (1-100 HZ) noise and signal recorded at different depths in a mine, northwest Adirondacks, NY

    NASA Astrophysics Data System (ADS)

    Barstow, Noël; Carter, Jerry A.; Pomeroy, Paul W.; Sutton, George H.; Chael, Eric P.; Leahy, Patrick J.

    Seismograms of noise recorded simultaneously at the surface and at two subsurface stations (335m and 945m below surface level) show that high frequency (1-100 Hz) background noise is reduced at the subsurface stations. Seismometers at all three stations are well coupled to hard crystalline bedrock. Most of the noise reduction occurs between the surface and 335m depth. Between 1 and 3 Hz, seismic noise correlates well with wind speed at all levels. Above 3 Hz, wind speed up to 8 m/sec does not influence high frequency noise levels at 335m or 945m depths. At the surface, however, high frequency noise is associated with wind speeds in excess of 2 m/s. A site resonance is characteristic of the surface spectra, but is not characteristic of the subsurface sites. Spectral signal-to-noise (S/N) ratios, measured for S-waves from a regional earthquake (Δ = 530 km, mb = 4.1), are roughly equal from 1-10 Hz at all depths. Above 10 Hz, however, S/N is greater at the subsurface stations with S/N greater than 1 up to 30 Hz for the surface station, ≈ 50 Hz for the 335m station, and ≈ 70 Hz for the 945m station. Results indicate the advantage of employing high frequency sensors sufficiently below the surface to reduce the level of noise and to improve the S/N ratio in the high frequency range. Such an advantage could be critically important for nuclear test detection and discrimination.

  13. High frequency (1-100 Hz) noise and signal recorded at different depths in a mine, northwest Adirondacks, NY

    SciTech Connect

    Barstow, N.; Carter, J.A.; Pomeroy, P.W.; Sutton, G.H. ); Chael, E.P.; Leahy, P.J. )

    1990-05-01

    Seismograms of noise recorded simultaneously at the surface and at two subsurface stations (335m and 945m below surface level) show that high frequency (1-100 Hz) background noise is reduced at the subsurface stations. Seismometers at all three stations are well coupled to hard crystalline bedrock. Most of the noise reduction occurs between the surface and 335m depth. Between 1 and 3 Hz, seismic noise correlates well with wind speed at all levels. Above 3 Hz, wind speed up to 8 m/sec does not influence high frequency noise levels at 335m or 945m depths. At the surface, however, high frequency noise is associated with wind speeds in excess of 2 m/s. A site resonance is characteristic of the surface spectra, but is not characteristic of the subsurface sites. Spectral signal-to-noise (S/N) ratios, measured for S-waves from a regional earthquake ({Delta} = 530 km, m{sub b} = 4.1), are roughly equal from 1-10 Hz at all depths. Above 10 Hz, however, S/N is greater at the subsurface stations with S/N greater than 1 up to 30 Hz for the surface station, {approx} 50 Hz for the 335m station, and {approx} 70 Hz for the 945m station. Results indicate the advantage of employing high frequency sensors sufficiently below the surface to reduce the level of noise and to improve the S/N ratio in the high frequency range. Such an advantage could be critically important for nuclear test detection and discrimination.

  14. Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Manfred

    1986-10-01

    The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.

  15. Optimization of graffiti removal on natural stone by means of high repetition rate UV laser

    NASA Astrophysics Data System (ADS)

    Fiorucci, M. P.; López, A. J.; Ramil, A.; Pozo, S.; Rivas, T.

    2013-08-01

    The use of laser for graffiti removal is a promising alternative to conventional cleaning methods, though irradiation parameters must be carefully selected in order to achieve the effective cleaning without damaging the substrate, especially when referring to natural stone. From a practical point of view, once a safe working window is selected, it is necessary to determine the irradiation conditions to remove large paint areas, with minimal time consumption. The aim of this paper is to present a systematic procedure to select the optimum parameters for graffiti removal by means of the 3rd harmonic of a high repetition rate nanosecond Nd:YVO4 laser. Ablation thresholds of four spray paint colors were determined and the effect of pulse repetition frequency, beam diameter and line scan separation was analyzed, obtaining a set of values which optimize the ablation process.

  16. Very high repetition-rate electro-optical cavity-dumped Nd: YVO4 laser with optics and dynamics stabilities

    NASA Astrophysics Data System (ADS)

    Liu, Xuesong; Shi, Zhaohui; Huang, Yutao; Fan, Zhongwei; Yu, Jin; Zhang, Jing; Hou, Liqun

    2015-02-01

    In this paper, a very high repetition-rate, short-pulse, electro-optical cavity-dumped Nd: YVO4 laser is experimentally and theoretically investigated. The laser performance is optimized from two aspects. Firstly, the laser resonator is designed for a good thermal stability under large pump power fluctuation through optics methods. Secondly, dynamics simulation as well as experiments verifies that cavity dumping at very high repetition rate has better stability than medium/high repetition rate. At 30 W, 880 nm pump power, up to 500 kHz, constant 5 ns, stable 1064 nm fundamental-mode laser pulses can be obtained with 10 W average output power.

  17. Front end for high-repetition rate thin disk-pumped OPCPA beamline at ELI-beamlines

    NASA Astrophysics Data System (ADS)

    Green, Jonathan T.; Novák, Jakub; Antipenkov, Roman; Batysta, František; Zervos, Charalampos; Naylon, Jack A.; Mazanec, TomáÅ.¡; Horáček, Martin; Bakule, Pavel; Rus, Bedřich

    2015-02-01

    The ELI-Beamlines facility, currently under construction in Prague, Czech Republic, will house multiple high power laser systems with varying pulse energies, pulse durations, and repetition rates. Here we present the status of a high repetition rate beamline currently under construction with target parameters of 20 fs pulse duration, 100 mJ pulse energy, and 1 kHz repetition rate. Specifically we present the Yb:YAG thin disk lasers which are intended to pump picosecond OPCPA, synchronization between pump and signal pulses in the OPCPA, and the first stages of OPCPA.

  18. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOEpatents

    Neev, J.; Da Silva, L.B.; Matthews, D.L.; Glinsky, M.E.; Stuart, B.C.; Perry, M.D.; Feit, M.D.; Rubenchik, A.M.

    1998-02-24

    A method and apparatus are disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment. 8 figs.

  19. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOEpatents

    Neev, Joseph; Da Silva, Luiz B.; Matthews, Dennis L.; Glinsky, Michael E.; Stuart, Brent C.; Perry, Michael D.; Feit, Michael D.; Rubenchik, Alexander M.

    1998-01-01

    A method and apparatus is disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment.

  20. All-optical repetition rate multiplication of pseudorandom bit sequences based on cascaded TOADs

    NASA Astrophysics Data System (ADS)

    Sun, Zhenchao; Wang, Zhi; Wu, Chongqing; Wang, Fu; Li, Qiang

    2016-03-01

    A scheme for all-optical repetition rate multiplication of pseudorandom bit sequences (PRBS) is demonstrated with all-optical wavelength conversion and optical logic gate 'OR' based on cascaded Tera-Hertz Optical Asymmetric Demultiplexers (TOADs). Its feasibility is verified by multiplication experiments from 500 Mb/s to 4 Gb/s for 23-1 PRBS and from 1 Gb/s to 4 Gb/s for 27-1 PRBS. This scheme can be employed for rate multiplication for much longer cycle PRBS at much higher bit rate over 40 Gb/s when the time-delay, the loss and the dispersion of the optical delay line are all precisely managed. The upper limit of bit rate will be restricted by the recovery time of semiconductor optical amplifier (SOA) finally.

  1. High repetition rate Q-switched radially polarized laser with a graphene-based output coupler

    NASA Astrophysics Data System (ADS)

    Li, Lifei; Zheng, Xinliang; Jin, Chenjie; Qi, Mei; Chen, Xiaoming; Ren, Zhaoyu; Bai, Jintao; Sun, Zhipei

    2014-12-01

    We demonstrate a Q-switched radially polarized all-solid-state laser by transferring a graphene film directly onto an output coupler. The laser generates Q-switched radially polarized beam (QRPB) with a pulse width of 192 ns and 2.7 W average output power. The corresponding single pulse energy is up to 16.2 μJ with a high repetition rate of 167 kHz. The M2 factor and the polarization purity are ˜2.1 and 96%, respectively. Our QRPB source is a simple and low-cost source for a variety of applications, such as industrial material processing, optical trapping, and microscopy.

  2. High-repetition-rate Cr:Nd:GSGG active-mirror amplifier.

    PubMed

    Kelly, J H; Smith, D L; Lee, J C; Jacobs, S D; Smith, D J; Lambropoulos, J C; Shoup Iii, M J

    1987-12-01

    We have designed, constructed, and operated a 3.8-cm clear-aperture Cr:Nd:GSGG active-mirror amplifier. We believe this to be the first active mirror that uses a crystalline host and the largest-aperture Cr:Nd:GSGG amplifier yet reported. We have measured a small-signal gain of 1.6. The wave front has been measured and found to be less than three waves of defocus at repetition rates of up to 10 Hz. Surface displacements were measured and compared with theory. Depolarization was less than 2.5% at maximum power at any location in the clear aperture. PMID:19741940

  3. Broadly tunable, low timing jitter, high repetition rate optoelectronic comb generator

    PubMed Central

    Metcalf, A. J.; Quinlan, F.; Fortier, T. M.; Diddams, S. A.; Weiner, A. M.

    2016-01-01

    We investigate the low timing jitter properties of a tunable single-pass optoelectronic frequency comb generator. The scheme is flexible in that both the repetition rate and center frequency can be continuously tuned. When operated with 10 GHz comb spacing, the integrated residual pulse-to-pulse timing jitter is 11.35 fs (1 Hz to 10 MHz) with no feedback stabilization. The corresponding phase noise at 1 Hz offset from the photodetected 10 GHz carrier is −100 dBc/Hz. PMID:26865734

  4. High repetition rate optical switch using an electroabsorption modulator in TOAD configuration

    NASA Astrophysics Data System (ADS)

    Huo, Li; Yang, Yanfu; Lou, Caiyun; Gao, Yizhi

    2007-07-01

    A novel optical switch featured with high repetition rate, short switching window width, and high contrast ratio is proposed and demonstrated for the first time by placing an electroabsorption modulator (EAM) in a terahertz optical asymmetric demultiplexer (TOAD) configuration. The feasibility and main characteristics of the switch are investigated by numerical simulations and experiments. With this EAM-based TOAD, an error-free return-to-zero signal wavelength conversion with 0.62 dB power penalty at 20 Gbit/s is demonstrated.

  5. Optimal repetition rates of excitation pulses in a Tm-vapour laser

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. A.; Gerasimov, V. V.; Pavlinskii, A. V.

    2011-01-01

    The optimal excitation pulse repetition rates (PRRs) for a gas-discharge Tm-vapour laser with indirect population of upper laser levels are determined. It is shown that, under the same excitation conditions, the optimal PRRs increase with a decrease in the energy defect between the upper laser acceptor level and the nearest resonant donor level. The reasons for the limitation of the optimal PRRs in Tm-vapour laser are discussed. It is shown that the maximum average power of Tm-vapour laser radiation may exceed several times the Cu-vapour laser power under the same excitation conditions and in identical gas-discharge tubes.

  6. Application of the Repetitions in Reserve-Based Rating of Perceived Exertion Scale for Resistance Training

    PubMed Central

    Cronin, John; Storey, Adam; Zourdos, Michael C.

    2016-01-01

    ABSTRACT RATINGS OF PERCEIVED EXERTION ARE A VALID METHOD OF ESTIMATING THE INTENSITY OF A RESISTANCE TRAINING EXERCISE OR SESSION. SCORES ARE GIVEN AFTER COMPLETION OF AN EXERCISE OR TRAINING SESSION FOR THE PURPOSES OF ATHLETE MONITORING. HOWEVER, A NEWLY DEVELOPED SCALE BASED ON HOW MANY REPETITIONS ARE REMAINING AT THE COMPLETION OF A SET MAY BE A MORE PRECISE TOOL. THIS APPROACH ADJUSTS LOADS AUTOMATICALLY TO MATCH ATHLETE CAPABILITIES ON A SET-TO-SET BASIS AND MAY MORE ACCURATELY GAUGE INTENSITY AT NEAR-LIMIT LOADS. THIS ARTICLE OUTLINES HOW TO INCORPORATE THIS NOVEL SCALE INTO A TRAINING PLAN. PMID:27531969

  7. Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Si Fodil, Rachid; Amrani, Foued; Yang, Changxi; Kellou, Abdelhamid; Grelu, Ph.

    2016-07-01

    We experimentally investigate multipulse regimes obtained within a passively-mode-locked fiber laser that includes a Mach-Zehnder (MZ) interferometer. By adjusting the time delay imbalance of the MZ, ultrashort pulse trains at multi-GHz repetition rates are generated. We compare the observed dynamics with high-harmonic mode locking, and show that the multi-GHz pulse trains display an inherent instability, which has been overlooked. By using a recirculation loop containing the MZ, we demonstrate a significant improvement of the pulse train stability.

  8. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    PubMed

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal. PMID:24690803

  9. Plasmon-enhanced photocathode for high brightness and high repetition rate x-ray sources.

    PubMed

    Polyakov, A; Senft, C; Thompson, K F; Feng, J; Cabrini, S; Schuck, P J; Padmore, H A; Peppernick, S J; Hess, W P

    2013-02-15

    In this Letter, we report on the efficient generation of electrons from metals using multiphoton photoemission by use of nanostructured plasmonic surfaces to trap, localize, and enhance optical fields. The plasmonic surface increases absorption over normal metals by more than an order of magnitude, and due to the localization of fields, this results in over 6 orders of magnitude increase in effective nonlinear quantum yield. We demonstrate that the achieved quantum yield is high enough for use in rf photoinjectors operating as electron sources for MHz repetition rate x-ray free electron lasers. PMID:25166390

  10. 85.7 MHz repetition rate mode-locked semiconductor disk laser: fundamental and soliton bound states.

    PubMed

    Butkus, M; Viktorov, E A; Erneux, T; Hamilton, C J; Maker, G; Malcolm, G P A; Rafailov, E U

    2013-10-21

    Mode-locked optically pumped semiconductor disk lasers (SDLs) are in strong demand for applications in bio-medical photonics, chemistry, space communications and non-linear optics. However, the wider spread of SDLs was constrained as they are operated in high repetition rates above 200 MHz due to short carrier lifetimes in the semiconductors. Here we demonstrate experimentally and theoretically that it is possible to overcome the limitation of fast carrier relaxation and show significant reduction of repetition rate down to 85.7 MHz by exploiting phase-amplitude coupling effect. In addition, a low repetition rate SDL serves as a test-bed for bound soliton state previously unknown for semiconductor devices. The breakthrough to sub-100 MHz repetition rate will open a whole new window of development opportunities. PMID:24150392

  11. High-repetition-rate plate-electrode CO{sub 2} laser

    SciTech Connect

    Andramanov, Aleksandr V; Voevodin, Denis D; Vysotskii, Andrei V; Kabaev, Sergei A; Lazhintsev, Boris V; Nor-Arevyan, Vladimir A; Pisetskaya, Anastasiya V; Selemir, Victor D

    2009-12-31

    A high-repetition-rate CO{sub 2} laser with the inductive-capacitive discharge stabilisation is studied for the first time. A multisection discharge gap of length 250 mm was formed by pairs of anode - cathode plates arranged in the form of a broken line. The width of the discharge region between each pair of the plates was {approx} 1.3 mm and height {approx} 12 mm. The cross section of the laser beam on the output mirror of the resonator was {approx} 6 x 8 mm. The maximum output energy of the laser using the CO{sub 2}:N{sub 2}:He=32:32:96 Torr mixture was 15.9 mJ, the lasing efficiency being 1.7%. For a relatively low gas flow rate of 19 m s{sup -1}, a CO{sub 2} laser pulse repetition rate of 3 kHz was achieved, the relative root-mean-square deviation of the pulse energy being within 5%. The average output power of the laser was {approx} 40 W. (lasers)

  12. High Repetition Rate Pulsed 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Uprendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta; Petzar, Paul J.; Trieu, Bo C.; Lee, Hyung

    2009-01-01

    A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed at NASA Langley Research Center. Such a laser transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of approximately 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. The measured standard deviation of the laser frequency jitter is about 3 MHz.

  13. Experimental study on GaP surface damage threshold induced by a high repetition rate femtosecond laser

    SciTech Connect

    Li Yi; Liu Feng; Li Yanfeng; Chai Lu; Xing Qirong; Hu Minglie; Wang Chingyue

    2011-05-01

    The surface damage threshold of undoped bulk <110> GaP induced by a high repetition rate femtosecond pulse at 1040 nm with a duration of 61 fs was studied. The threshold value was obtained by a linear fit of the incident single pulse fluence and was confirmed with a breakdown test around the threshold level. The result will be useful in high intensity, high repetition rate laser applications and ultrafast processes.

  14. BEAM DYNAMICS STUDIES OF A HIGH-REPETITION RATE LINAC-DRIVER FOR A 4TH GENERATION LIGHT SOURCE

    SciTech Connect

    Ventturini, M.; Corlett, J.; Emma, P.; Papadopoulos, C.; Penn, G.; Placidi, M.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Sun, C.; Wells, R.

    2012-05-18

    We present recent progress toward the design of a super-conducting linac driver for a high-repetition rate FEL-based soft x-ray light source. The machine is designed to accept beams generated by the APEX photo-cathode gun operating with MHz-range repetition rate and deliver them to an array of SASE and seeded FEL beamlines. We review the current baseline design and report results of beam dynamics studies.

  15. The effects of laser repetition rate on femtosecond laser ablation of dry bone: a thermal and LIBS study.

    PubMed

    Gill, Ruby K; Smith, Zachary J; Lee, Changwon; Wachsmann-Hogiu, Sebastian

    2016-01-01

    The aim of this study is to understand the effect of varying laser repetition rate on thermal energy accumulation and dissipation as well as femtosecond Laser Induced Breakdown Spectroscopy (fsLIBS) signals, which may help create the framework for clinical translation of femtosecond lasers for surgical procedures. We study the effect of repetition rates on ablation widths, sample temperature, and LIBS signal of bone. SEM images were acquired to quantify the morphology of the ablated volume and fsLIBS was performed to characterize changes in signal intensity and background. We also report for the first time experimentally measured temperature distributions of bone irradiated with femtosecond lasers at repetition rates below and above carbonization conditions. While high repetition rates would allow for faster cutting, heat accumulation exceeds heat dissipation and results in carbonization of the sample. At repetition rates where carbonization occurs, the sample temperature increases to a level that is well above the threshold for irreversible cellular damage. These results highlight the importance of the need for careful selection of the repetition rate for a femtosecond laser surgery procedure to minimize the extent of thermal damage to surrounding tissues and prevent misclassification of tissue by fsLIBS analysis. PMID:26260774

  16. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    DOE PAGESBeta

    Höppner, H.; Hage, A.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Prandolini, M. J.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to manymore » hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.« less

  17. Ultrafast XUV Pulses at High Repetition Rate for Time Resolved Photoelectron Spectroscopy of Surface Dynamics

    NASA Astrophysics Data System (ADS)

    Corder, Christopher; Zhao, Peng; Li, Xinlong; Muraca, Amanda R.; Kershis, Matthew D.; White, Michael G.; Allison, Thomas K.

    2016-05-01

    Ultrafast photoelectron studies of surface dynamics are often limited by low repetition rates. At Stony Brook we have built a cavity-enhanced high-harmonic generation XUV source that delivers ultrafast pulses to a surface science apparatus for photoelectron spectroscopy. We begin with a Ytterbium fiber laser at a repetition rate of 78 MHz and up to 90 W of average power. After compression the pulses have μJ's of energy with < 180 fs pulse width. We then use an enhancement cavity with a finesse of a few hundred to build up to the peak intensity required for high harmonic generation. The enhancement cavity is a six mirror double folded bow-tie geometry with a focus of 15 μm at a Krypton gas jet, followed by a Sapphire crystal at Brewster's angle for the fundamental to allow outcoupling of the harmonics. A single harmonic is selected using a time-preserving monochromator to maintain the short pulses, and is sent to an ultra high vacuum chamber with sample preparation and diagnostic tools as well as an electron energy spectrometer. This allows us to study the electronic dynamics of semiconductor surfaces and their interfaces with adsorbed molecules which enable various charge transfer effects. Supported by AFOSR.

  18. EUV emission of Xe-clusters excited by a high-repetition rate burst mode laser

    NASA Astrophysics Data System (ADS)

    Stiel, Holger; Vogt, Ulrich; Ter-Avetisyan, Sargis; Schnurer, Matthias; Will, Ingo; Nickles, Peter V.

    2002-10-01

    In this contribution we describe a laser plasma source for Extreme Ultraviolet Lithography (EUVL) based on a Xe-cluster target. Although Xe-clusters as target systems for EUVL are known for some time, no attempts have been made for a systematic study of the influence of the laser parameters on the EUV-emission at a well defined Xe-aggregation. The MBI burst mode laser used offers some unique features: Within one burst (duration 800 μs) the repetition rate of single laser pulses can be adjusted between 30 and 1000 kHz. The average power per burst is about 5 kW at the maximum energy of 4 J/burst. The pulse duration of a single pulse can be adjusted from the ps- to ns-range. We have examined the EUV-emission from the Xe-cluster target within one burst of the laser as a function of single pulse intensity and repetition rate. Based on the measured EUV-spectra the conversion efficiency at 13.4 nm wavelength in dependence on pulse duration in the range from 30 ps to 3 ns were estimated.

  19. Coherent dual-comb interferometry with quasi-integer-ratio repetition rates.

    PubMed

    Hébert, Nicolas Bourbeau; Boudreau, Sylvain; Genest, Jérôme; Deschênes, Jean-Daniel

    2014-11-17

    We demonstrate a generalized method for dual-comb interferometry that involves the use of two frequency combs with quasi-integer-ratio repetition rates. We use a 16.67 MHz comb to probe an 80-cm-long ring cavity and a 100 MHz comb to asynchronously sample its impulse response. The resulting signal can be seen as six time-multiplexed independent interferograms. We perform a deconvolution of the photodetector's impulse response to prevent any crosstalk between these multiplexed data sets. The measurement is then demultiplexed and corrected with referencing signals. We obtain a measurement with a spectral point spacing of 16.67 MHz and a spectral SNR of 55 dB by averaging 15,000 interferograms, corresponding to a measurement time of 500 s. Compared to conventional dual-comb spectroscopy, this generalized technique allows to either reduce the spectral point spacing or the acquisition time by changing the repetition rate of only one of the combs. PMID:25402154

  20. A high repetition rate laser-heavy water based neutron source

    NASA Astrophysics Data System (ADS)

    Hah, Jungmoo; He, Zhaohan; Nees, John; Krushelnick, Karl; Thomas, Alexander; CenterUltrafast Optical Science Team

    2015-11-01

    Neutrons have numerous applications in diverse areas, such as medicine, security, and material science. For example, sources of MeV neutrons may be used for active interrogation for nuclear security applications. Recently, alternative ways to generate neutron flux have been studied. Among them, ultrashort laser pulse interactions with dense plasma have attracted significant attention as compact, pulse sources of neutrons. To generate neutrons using a laser through fusion reactions, thin solid density targets have been used in a pitcher-catcher arrangement, using deuterated plastic for example. However, the use of solid targets is limited for high-repetition rate operation due to the need to refresh the target for every laser shot. Here, we use a free flowing heavy water target with a high repetition rate (500 Hz) laser without a catcher. From the interaction between a 10 micron scale diameter heavy water stream with the Lambda-cubed laser system at the Univ. of Michigan (12mJ, 800nm, 35fs), deuterons collide with each other resulting in D-D fusion reactions generating 2.45 MeV neutrons. Under best conditions a time average of ~ 105 n/s of neutrons are generated.

  1. Comparison of high repetition rate Q-switched 355nm ultraviolet lasers with EOM and AOM

    NASA Astrophysics Data System (ADS)

    Lu, Tingting; Li, Xiaolei; Zang, Huaguo; Zhu, Xiaolei

    2013-05-01

    Two kinds of Q-switched ultraviolet lasers using an acousto-optic modulator and an electro-optic modulator in the same cavity structure are demonstrated, with type I phase-matched LBO as second harmonic generation crystal and type II phase-matched LBO as third harmonic generation crystal. For acousto-optic Q-switched UV laser-a maximum average power of 6.3W with the shortest pulse width of 12 ns was obtained at the repetition rate of 22 kHz when the pump power reached 52.4 W. The optical conversion efficiency was up to 12%. Then we used a La3Ga5SiO14 crystal electro-optic modulator to replace the acousto-optic modulator. The 1.29W output power at 355nm wavelength was obtained at the repetition rate of 10 kHz when the pump power was increased to 20.4W, and the UV laser pulse width was as short as 9.6ns.The optical conversion efficiency was up to 6.3%.

  2. Diagnostic for a high-repetition rate electron photo-gun and first measurements

    NASA Astrophysics Data System (ADS)

    Filippetto, D.; Doolittle, L.; Huang, G.; Norum, E.; Portmann, G.; Qian, H.; Sannibale, F.

    2015-05-01

    The APEX electron source at LBNL combines the high-repetition-rate with the high beam brightness typical of photoguns, delivering low emittance electron pulses at MHz frequency. Proving the high beam quality of the beam is an essential step for the success of the experiment, opening the doors of the high average power to brightness-hungry applications as X-Ray FELs, MHz ultrafast electron diffraction etc.. As first step, a complete characterization of the beam parameters is foreseen at the Gun beam energy of 750 keV. Diagnostics for low and high current measurements have been installed and tested, and measurements of cathode lifetime and thermal emittance in a RF environment with mA current performed. The recent installation of a double slit system, a deflecting cavity and a high precision spectrometer, allow the exploration of the full 6D phase space. Here we discuss the present layout of the machine and future upgrades, showing the latest results at low and high repetition rate, together with the tools and techniques used.

  3. Long-pulse high-repetition-rate transversely excited CO2 laser for material processing

    NASA Astrophysics Data System (ADS)

    Okita, Yuji; Yasuoka, Koichi; Ishii, Akira; Tamagawa, Tohru

    1994-05-01

    Using a TE-CO2 laser, we could obtain a long-pulsed laser beam of low initial spike by controlling the discharge current by a pulse forming network and optimizing the gas composition, discharge length to resonator length ratio, and output mirror reflectivity. The maximum laser output was 1.1 J; the initial spike energy, 100 kW; the tail output, 56 kW; and the 16 (mu) sec (FWHM). The maximum repetition rate was 500 Hz. A new type of circuit with small pre-ionization current made it possible to operate the laser at a high repetition rate so as to prolong the laser life. When a 5-inch lens was used, the laser power density at the focal point was 1*108 W/cm2, making it possible to use the laser with an unusually high energy density without causing the breakdown of air insulation. In fact, we succeeded in fine- cutting a 0.5 mm thick alumina ceramic with the laser. It was found that unlike other working methods, the newly developed laser does not cause cracks in ceramic work pieces.

  4. Coupling effects of the number of pulses, pulse repetition rate and fluence during laser PMMA ablation

    NASA Astrophysics Data System (ADS)

    Liu, Z. Q.; Feng, Y.; Yi, X.-S.

    2000-10-01

    Poly(methyl methacrylate) (PMMA) was ablated using a 248-nm long-pulsed KrF excimer laser operating at a pulse repetition rate (PRR) of 2 and 10 Hz, and fluence varying from 0.4 to 2 J/cm 2. The coupling effects of multiple shots, PRR, and fluence are found and discussed on the etching depth data and topography of PMMA. An increase in either PRR, or fluence or the number of pulses can accelerate the etching efficiency in terms of ablation rate, as a result of strengthened thermal effects. Quality of the craters such as roughness, porosity and contamination is sensitively dependent on the specific laser operating conditions. Basically, increasing the PRR and the number of pulses gives rise to a crater with smoother and less porous bottom.

  5. Binaural interaction in low-frequency neurons in inferior colliculus of the cat. I. Effects of long interaural delays, intensity, and repetition rate on interaural delay function.

    PubMed

    Kuwada, S; Yin, T C

    1983-10-01

    Detailed, quantitative studies were made of the interaural phase sensitivity of 197 neurons with low best frequency in the inferior colliculus (IC) of the barbiturate-anesthetized cat. We analyzed the responses of single cells to interaural delays in which tone bursts were delivered to the two ears via sealed earphones and the onset of the tone to one ear with respect to the other was varied. For most (80%) cells the discharge rate is a cyclic function of interaural delay at a period corresponding to that of the stimulating frequency. The cyclic nature of the interaural delay curve indicates that these cells are sensitive to the interaural phase difference. These cells are distributed throughout the low-frequency zone of the IC, but they are less numerous in the medial and caudal zones. Cells with a wide variety of response patterns will exhibit interaural phase sensitivities at stimulating frequencies up to 3,100 Hz, although above 2,500 Hz the number of such cells decrease markedly. Using dichotic stimuli we could study the cell's sensitivity to the onset delay and interaural phase independently. The large majority of IC cells respond only to changes in interaural phase, with no sensitivity to the onset delay. However, a small number (7%) of cells exhibit a sensitivity to the onset delay as well as to the interaural phase disparity, and most of these cells show an onset response. The effects of changing the stimulus intensity equally to both ears or of changing the interaural intensity difference on the mean interaural phase were studied. While some neurons are not affected by level changes, others exhibit systematic phase shifts for both average and interaural intensity variations, and there is a continuous distribution of sensitivities between these extremes. A few cells also showed systematic changes in the shape of the interaural delay curves as a function of interaural intensity difference, especially at very long delays. These shifts can be interpreted as a

  6. Autonomic Nervous System Reactivity During Speech Repetition Tasks: Heart Rate Variability and Skin Conductance.

    PubMed

    Mackersie, Carol L; Calderon-Moultrie, Natalie

    2016-01-01

    Cognitive and emotional challenges may elicit a physiological stress response that can include arousal of the sympathetic nervous system (fight or flight response) and withdrawal of the parasympathetic nervous system (responsible for recovery and rest). This article reviews studies that have used measures of electrodermal activity (skin conductance) and heart rate variability (HRV) to index sympathetic and parasympathetic activity during auditory tasks. In addition, the authors present results from a new study with normal-hearing listeners examining the effects of speaking rate on changes in skin conductance and high-frequency HRV (HF-HRV). Sentence repetition accuracy for normal and fast speaking rates was measured in noise using signal to noise ratios that were adjusted to approximate 80% accuracy (+3 dB fast rate; 0 dB normal rate) while monitoring skin conductance and HF-HRV activity. A significant increase in skin conductance level (reflecting sympathetic nervous system arousal) and a decrease in HF-HRV (reflecting parasympathetic nervous system withdrawal) were observed with an increase in speaking rate indicating sensitivity of both measures to increased task demand. Changes in psychophysiological reactivity with increased auditory task demand may reflect differences in listening effort, but other person-related factors such as motivation and stress may also play a role. Further research is needed to understand how psychophysiological activity during listening tasks is influenced by the acoustic characteristics of stimuli, task demands, and by the characteristics and emotional responses of the individual. PMID:27355761

  7. Producing ultrashort Terahertz to UV photons at high repetition rates for research into materials

    SciTech Connect

    G. R. Neil; C. Behre; S. V. Benson; G. Biallas; J. Boyce; L.A. Dillon-Townes; D. Douglas; H. F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; C. Hernandez-Garcia; K. Jordan; M. J. Kelley; L. Merminga; J. Mammosser; N. Nishimori; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; R. Walker; G. P. Williams; and S. Zhang

    2005-11-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on a Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power (see G. P. Williams, this conference). The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser vapor deposition, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of

  8. Design of laser beam expander in underwater high-repetition-rate range-gated imaging system

    NASA Astrophysics Data System (ADS)

    Zhong, Wei; Zhang, Xiaohui

    2015-10-01

    Active underwater imaging systems, using an artificial light source for underwater target illumination, have preferable practical value in military and civil domain. Back-scattering of water impacts imaging system performance by reducing image contrast, and this is especially bad when the light source is close to the camera. Range-gated technique can effectively rejecting the back-scattering of water and improve the range of underwater target detection, while it can only collect image at certain distance for every laser impulse. High-repetition-rate green laser is a better light source in underwater range-gated imaging system. It has smaller pulse energy, while it can improve the imaging result. In order to illuminate the proper area underwater according to the different distance between the laser source and targets, there must be a magnifying-ratio variable beam expander to adjust the divergent angle of the laser. Challenges associated with magnifying-ratio computation and designing of beam expander are difficult to overcome due to the obvious refraction and forward-scattering of water. An efficiency computing method is presented to obtain the magnifying-ratio of beam expander. The illuminating area of laser beam can be computed according to the refraction index and beam spread function (BSF) which has already considered forward-scattering process. The magnifying-ratio range of beam expander should be 0.925~3.09 in order to obtain about φ1m illuminating area when the distance between laser and target is 10~40m. A magnifying-ratio variable beam expander is designed according to computation. Underwater experiments show that this beam expander plays an effective role on illuminating in underwater high-repetition-rate range-rated Imaging system.

  9. Repetition rate operation of an improved magnetically insulated transmission line oscillator

    SciTech Connect

    Fan Yuwei; Zhong Huihuang; Li Zhiqiang; Shu Ting; Yang Hanwu; Zhou Heng; Yuan Chengwei; Zhou Weihong; Luo Ling

    2008-08-15

    In order to investigate the performances of repetition rate (rep-rate) operation of an improved magnetically insulated transmission line oscillator (MILO), a series of experiments are carried out on the improved MILO device, which is driven by a 40 {omega}, 50 ns rep-rate pulser, TORCH-01. Polymer velvet and graphite cathodes are tested, respectively, in the experiments, whose diameters and lengths are the same. The results of experimental comparison between them are presented in the paper. Both cathodes are tested at electric field strengths of about 300 kV/cm. The applied voltage has 60 ns duration with a rise time of 10 ns. This paper focuses on the performance of the voltage and current characteristics, the shot-to-shot reproducibility, the pressure evolution of the diode, and the lifetime of the cathodes, not upon the radiated microwave power. The experimental results show that the graphite cathode is superior to the velvet cathode in the lifetime and the shot-to-shot reproducibility during the rep-rate operation, and it is a promising cathode for the MILO device under the rep-rate conditions.

  10. Variable Thickness Liquid Crystal Films for High Repetition Rate Laser Applications

    NASA Astrophysics Data System (ADS)

    Poole, Patrick; Willis, Christopher; Cochran, Ginevra; Hanna, Randall; Andereck, C. David; Schumacher, Douglass

    2015-05-01

    The presentation of a clean target or target substrate at high repetition rates is of importance to a number of photoelectron spectroscopy and free electron laser applications, often in high vacuum environments. Additionally, high intensity laser facilities are approaching the 10 Hz shot rate at petawatt powers, but are currently unable to insert targets at these rates. We have developed liquid crystal films to address this need for high rep rate targets while preserving the planar geometry advantageous to many applications. The molecular ordering of liquid crystal is variable with temperature and can be manipulated to form a layered thin film. In this way temperature and volume control can be used to vary film thickness in vacuo and on-demand between 10 nm and over 10 μm. These techniques were previously applied to a single-shot ion acceleration experiment in, where target thickness critically determines the physics of the acceleration. Here we present an automatic film formation device that utilizes a linear sliding rail to form liquid crystal films within the aforementioned range at rates up to 0.1 Hz. The design ensures film formation location within 2 μm RMS, well within the Rayleigh range of even short f-number systems. Details of liquid crystal films and this target formation device will be shown as well as recent experimental data from the Scarlet laser facility at OSU. This work was supported by DARPA through a grant from AMRDEC.

  11. Generation of Electron Bunches at Low Repetition Rates Using a Beat-Frequency Technique

    SciTech Connect

    Poelker, Matt; Grames, Joseph; Hansknecht, John; Kazimi, Reza; Musson, John

    2007-05-01

    Even at a continuous wave facility such as CEBAF at Jefferson Lab, an electron beam with long time intervals (tens of ns) between individual bunches can be useful, for example to isolate sources of background via time of flight detection or to measure the energy of neutral particles that cannot be separated with a magnetic field. This paper describes a demonstrated method to quickly and easily deliver bunches with repetition rates of 20 to 100 MHz corresponding to time intervals between 10 to 50 ns (respectively). This is accomplished by changing the ON/OFF frequency of the RF-pulsed drive laser by a small amount (f/f < 20%), resulting in a bunch frequency equal to the beat frequency between the radio frequencies of the drive laser and the photoinjector chopper system.

  12. High power high repetition rate VCSEL array side-pumped pulsed blue laser

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Robert; Zhao, Pu; Chen, Tong; Xu, Bing; Watkins, Laurence; Seurin, Jean-Francois; Xu, Guoyang; Miglo, Alexander; Wang, Qing; Ghosh, Chuni

    2013-03-01

    High power, kW-class, 808 nm pump modules based on the vertical-cavity surface-emitting laser (VCSEL) technology were developed for side-pumping of solid-state lasers. Two 1.2 kW VCSEL pump modules were implemented in a dual side-pumped Q-switched Nd:YAG laser operating at 946 nm. The laser output was frequency doubled in a BBO crystal to produce pulsed blue light. With 125 μs pump pulses at a 300 Hz repetition rate 6.1 W QCW 946 nm laser power was produced. The laser power was limited by thermal lensing in the Nd:YAG rod.

  13. Femtosecond-induced micostructures in Magnesium- doped Lithium Niobate crystals with high repetition rate

    NASA Astrophysics Data System (ADS)

    Kan, Hongli; Zhang, Shuanggen; Zhai, Kaili; Ma, Xiurong; Luo, Yiming; Hu, Minglie; Wang, Qingyue

    2016-02-01

    In this paper, heat accumulation effect of MgO: LN crystal irradiated by femtosecond pulses was analyzed by a developed thermal conduction model in terms of the spatial and temporal distribution of the absorbed laser energy. Using the focused femtosecond pulses about 61 fs at 1040 nm with a repetition rate of 52 MHz, ablation morphologies under different exposure time and average power were obtained experimentally. The measured laser-induced damage threshold of X-, Y- and Z-cut MgO: LN crystals are 0.82 mJ/cm2, 0.74 mJ/cm2 and 0.76 mJ/cm2, respectively, and based on the measurement achieved in the Lab the differences in the ablation morphologies were analyzed in detail.

  14. Femtosecond pump/supercontinuum-probe setup with 20 kHz repetition rate.

    PubMed

    Auböck, Gerald; Consani, Cristina; Monni, Roberto; Cannizzo, Andrea; van Mourik, Frank; Chergui, Majed

    2012-09-01

    We developed a fast multichannel detection system for pump-probe spectroscopy, capable of detecting single shot super-continuum spectra at the repetition rate (10-50 kHz) of an amplified femtosecond laser system. By tandem pumping the amplifier with three pump lasers we obtain very low noise operation, with less than 0.1% rms intensity fluctuations at the output of the amplifier. We also propose an alternative way of chopping the pump beam. With a synchronized scanning mirror two spots in the sample are illuminated by the train of pump pulses in an alternating fashion, such that when both spots are interrogated by the probe pulse, the duty cycle of the experiment is doubled. PMID:23020360

  15. Thyratron characteristics under high di/dt and high-repetition-rate operation

    SciTech Connect

    Ball, D.; Hill, J.; Kan, T.

    1981-05-11

    Power conditioning systems for high peak and average power, high repetition rate discharge excited lasers involve operation of modulator components in unconventional regimes. Reliable operation of switches and energy storage elements under high voltage and high di/dt conditions is a pacing item for laser development at the present time. To test and evaluate these components a Modulator Component Test Facility (MCTF) was constructed. The MCTF consists of a command charge system, energy storage capacitors, thyratron switch with inverse thyratron protection, and a resistive load. The modulator has initially been operated at voltages up to 60 kV at 600 Hz. Voltage, current, and calorimetric diagnostics are provided for major modulator components. Measurements of thyratron characteristics under high di/dt operation are presented. Commutation energy loss and di/dt have been measured as functions of the tube hydrogen pressure.

  16. High-power, high-repetition-rate femtosecond pulses tunable in the visible.

    PubMed

    Ellingson, R J; Tang, C L

    1993-03-15

    We demonstrate a Ti:sapphire-pumped intracavity-doubled optical parametric oscillator (OPO) that generates a total of up to 240 mW of sub-100-fs pulses tunable in the visible. The OPO consists of a 1.5-mm-thick KTiPO(4) (KTP) crystal configured in a ring cavity that is synchronously pumped by a self-mode-locked Ti:sapphire laser operating at an 81-MHz repetition rate and 2.1-W average power, producing 115-fs pulses at lambda = 790 nm. Intracavity doubling of the OPO is accomplished by inserting a 47-microm-thick beta-BaB(2)O(4) crystal into an additional focus in the OPO cavity. We demonstrate continuous tuning of the second-harmonic output from 580 to 657 nm. The potential tuning range of this intracavity-doubled KTP OPO is approximately 500 to 800 nm. PMID:19802161

  17. Saturated 13.2 nm high-repetition-rate laser in nickellike cadmium

    NASA Astrophysics Data System (ADS)

    Rocca, J. J.; Wang, Y.; Larotonda, M. A.; Luther, B. M.; Berrill, M.; Alessi, D.

    2005-10-01

    We report gain-saturated operation of a 13.2 nm tabletop laser in Ni-like Cd at a 5 Hz repetition rate. A gain-length product G×L=17.6 was obtained by heating a precreated plasma with 8 ps duration Ti:sapphire laser pulses with an energy of only 1 J impinging at a grazing angle of 23°. With an average power of ˜1 µW, this laser is an attractive coherent source for at-wavelength metrology of extreme UV lithography optics and other applications. [Note: Due to a production error in the print version abstract, the value "1 µW" is incorrectly stated as "1 mW." This value is stated correctly in the online PDF.

  18. Pump-seed synchronization for MHz repetition rate, high-power optical parametric chirped pulse amplification.

    PubMed

    Fattahi, Hanieh; Teisset, Catherine Yuriko; Pronin, Oleg; Sugita, Atsushi; Graf, Roswitha; Pervak, Vladimir; Gu, Xun; Metzger, Thomas; Major, Zsuzsanna; Krausz, Ferenc; Apolonski, Alexander

    2012-04-23

    We report on an active synchronization between two independent mode-locked lasers using a combined electronic-optical feedback. With this scheme, seed pulses at MHz repetition rate were amplified in a non-collinear optical parametric chirped pulse amplifier (OPCPA). The amplifier was seeded with stretched 1.5 nJ pulses from a femtosecond Ti:Sapphire oscillator, while pumped with the 1 ps, 2.9 µJ frequency-doubled output of an Yb:YAG thin-disk oscillator. The residual timing jitter between the two oscillators was suppressed to 120 fs (RMS), allowing for an efficient and broadband amplification at 11.5 MHz to a pulse energy of 700 nJ and an average power of 8 W. First compression experiment with 240 nJ amplified pulse energy resulted in a pulse duration of ~10 fs. PMID:22535076

  19. Picosecond supercontinuum light source for stroboscopic white-light interferometry with freely adjustable pulse repetition rate.

    PubMed

    Novotny, Steffen; Durairaj, Vasuki; Shavrin, Igor; Lipiäinen, Lauri; Kokkonen, Kimmo; Kaivola, Matti; Ludvigsen, Hanne

    2014-06-01

    We present a picosecond supercontinuum light source designed for stroboscopic white-light interferometry. This source offers a potential for high-resolution characterization of vibrational fields in electromechanical components with frequencies up to the GHz range. The light source concept combines a gain-switched laser diode, the output of which is amplified in a two-stage fiber amplifier, with supercontinuum generation in a microstructured optical fiber. Implemented in our white-light interferometer setup, optical pulses with optimized spectral properties and below 310 ps duration are used for stroboscopic illumination at freely adjustable repetition rates. The performance of the source is demonstrated by characterizing the surface vibration field of a square-plate silicon MEMS resonator at 3.37 MHz. A minimum detectable vibration amplitude of less than 100 pm is reached. PMID:24921556

  20. Role of the optical pulse repetition rate in the efficiency of terahertz emitters

    NASA Astrophysics Data System (ADS)

    Reklaitis, Antanas

    2016-07-01

    Excitation of n-GaAs and p-InAs terahertz emitters by the series of optical pulses is studied by ensemble Monte Carlo simulations. It is found that the spatial separation of photoexcited electrons and holes dramatically reduces the recombination intensity in n-GaAs emitter, the operation of which is based on the surface field effect. The spatial separation of carriers does not affect the recombination intensity in p-InAs emitter, the operation of which is based on the photo-Dember effect. Therefore, the recovery time of equilibrium state after optical pulse in n-GaAs emitter significantly exceeds the corresponding recovery time in p-InAs emitter. This fact leads to a substantial reduction of photocurrent amplitude in n-GaAs emitter excited by the optical pulse series at high repetition rate.

  1. Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses

    SciTech Connect

    Chen Tao; Si Jinhai; Hou Xun; Kanehira, Shingo; Miura, Kiyotaka; Hirao, Kazuyuki

    2011-10-01

    We studied the photoluminescence (PL) from black silicon that was fabricated using an 800 nm, 250 kHz femtosecond laser in air. By changing the scan velocity and the fluence of the femtosecond laser, the formation of the PL band between the orange (600 nm) and red bands (near 680 nm) could be controlled. The red band PL from the photoinduced microstructures on the black silicon was observed even without annealing due to the thermal accumulation of high-repetition rate femtosecond laser pulses. The orange band PL was easily quenched under 532 nm cw laser irradiation, whereas the red band PL was more stable; this can be attributed to ''defect luminescence'' and ''quantum confinement'', respectively.

  2. A high repetition rate passively Q-switched microchip laser for controllable transverse laser modes

    NASA Astrophysics Data System (ADS)

    Dong, Jun; Bai, Sheng-Chuang; Liu, Sheng-Hui; Ueda, Ken-Ichi; Kaminskii, Alexander A.

    2016-05-01

    A Cr4+:YAG passively Q-switched Nd:YVO4 microchip laser for versatile controllable transverse laser modes has been demonstrated by adjusting the position of the Nd:YVO4 crystal along the tilted pump beam direction. The pump beam diameter-dependent asymmetric saturated inversion population inside the Nd:YVO4 crystal governs the oscillation of various Laguerre-Gaussian, Ince-Gaussian and Hermite-Gaussian modes. Controllable transverse laser modes with repetition rates over 25 kHz and up to 183 kHz, depending on the position of the Nd:YVO4 crystal, have been achieved. The controllable transverse laser beams with a nanosecond pulse width and peak power over hundreds of watts have been obtained for potential applications in optical trapping and quantum computation.

  3. High-power 355 nm ultraviolet lasers operating at ultrahigh repetition rate

    NASA Astrophysics Data System (ADS)

    Chen, H.; Liu, Q.; Yan, P.; Gong, M.

    2013-02-01

    In this letter, we demonstrate a novel 355 nm ultraviolet (UV) laser operating at ultrahigh repetition rate from 300 kHz to 1 MHz. The hybrid fiber-MOPA-bulk amplifiers based IR source exhibits a high average power of 105 W with near-diffraction-limited beam quality, narrow linewidth and high polarization extinction ratio. Two-cascaded LBO crystals are employed for high efficiency frequency tripling, and a maximum 43.7 W of average UV power is achieved at 400 kHz, corresponding to a conversion efficiency as high as 41.6%. The pulse duration of the UV pulse can be tuned from 5 to 10 ns with good pulse peak stability (better than 2.2% (RMS)).

  4. High-power high-repetition-rate copper-vapor-pumped dye laser

    SciTech Connect

    Singh, S.; Dasgupta, K.; Kumar, S.; Manohar, K.G.; Nair, L.G.; Chatterjee, U.K. . Laser and Plasma Technology Div.)

    1994-06-01

    The design and development of an efficient high average power dye laser oscillator-amplifier system developed at the Laser and Plasma Technology Division, Bhabha Atomic Research Centre, is reported. The dye laser is pumped by a 6.5-kHz repetition rate copper vapor laser. The signal beam to the dye amplifier is obtained from an efficient narrow-band grazing incidence grating (GIG) dye laser oscillator incorporating a multiple prism beam expander. Amplifier extraction efficiency up to 40% was obtained in a single amplifier stage, using rhodamine 6G (Rh6G) in ethanol. The authors have also demonstrated simultaneous amplification of two laser beams at different wavelengths in the same dye amplifier cell.

  5. High repetition rate frequency-doubled Nd:YAG laser for airborne bathymetry

    NASA Astrophysics Data System (ADS)

    Northam, D. B.; Guerra, M. A.; Mack, M. E.; Itzkan, I.; Deradourian, C.

    1981-03-01

    A flashlamp pumped frequency-doubled Nd:YAG laser producing 7-nsec 2.8-mJ pulses at 530 nm and 400 pps has been developed for use in airborne bathymetry. A flashlamp gas mixture of krypton and xenon provides efficient laser operation and rapid lamp recovery. Pulse transmission mode operation is used to achieve a narrow pulse width. Thermally induced lensing and birefringence in the rod are compensated for in the optical resonator. Rapid, high repetition rate Pockels cell switching is accomplished with a thyratron driver. A CD(asterisk)A crystal cut for 85 deg phase matching at 55 C is used to provide high conversion efficiency second harmonic generation.

  6. Design Studies for a High-Repetition-Rate FEL Facility at LBNL.

    SciTech Connect

    CORLETT, J.; BELKACEM, A.; BYRD, J. M.; FAWLEY, W.; KIRZ, J.; LIDIA, S.; MCCURDY, W.; PADMORE, H.; PENN, G.; POGORELOV, I.; QIANG, J.; ROBIN, D.; SANNIBALE, F.; SCHOENLEIN, R.; STAPLES, J.; STEIER, C.; VENTURINI, M.; WAN, W.; WILCOX, R.; ZHOLENTS, A.

    2007-10-04

    Lawrence Berkeley National Laboratory (LBNL) is working to address the needs of the primary scientific Grand Challenges now being considered by the U.S. Department of Energy, Office of Basic Energy Sciences: we are exploring scientific discovery opportunities, and new areas of science, to be unlocked with the use of advanced photon sources. A partnership of several divisions at LBNL is working to define the science and instruments needed in the future. To meet these needs, we propose a seeded, high-repetition-rate, free-electron laser (FEL) facility. Temporally and spatially coherent photon pulses, of controlled duration ranging from picosecond to sub-femtosecond, are within reach in the vacuum ultraviolet (VUV) to soft X-ray regime, and LBNL is developing critical accelerator physics and technologies toward this goal. We envision a facility with an array of FELs, each independently configurable and tunable, providing a range of photon-beam properties with high average and peak flux and brightness.

  7. High repetition rate Q-switched radially polarized laser with a graphene-based output coupler

    SciTech Connect

    Li, Lifei; Jin, Chenjie; Qi, Mei; Chen, Xiaoming; Ren, Zhaoyu E-mail: rzy@nwu.edu.cn; Zheng, Xinliang E-mail: rzy@nwu.edu.cn; Bai, Jintao; Sun, Zhipei

    2014-12-01

    We demonstrate a Q-switched radially polarized all-solid-state laser by transferring a graphene film directly onto an output coupler. The laser generates Q-switched radially polarized beam (QRPB) with a pulse width of 192 ns and 2.7 W average output power. The corresponding single pulse energy is up to 16.2 μJ with a high repetition rate of 167 kHz. The M{sup 2} factor and the polarization purity are ∼2.1 and 96%, respectively. Our QRPB source is a simple and low-cost source for a variety of applications, such as industrial material processing, optical trapping, and microscopy.

  8. Detector response to high repetition rate ultra-short laser pulses. I

    NASA Astrophysics Data System (ADS)

    Zakharova, I. K.; Rafailov, Michael K.

    2015-05-01

    Optical nonlinearities in semiconductors and semiconductor detectors have been widely investigated and exploited for many scientific and industrial applications. The correlation of optical and electronic characteristics in these detector materials under exposure of ultra-short laser pulses at high pulse repetition rates is still not very well known. These effects may be quite beneficial for many applications ranging from chemical and biological sensing to light-induced superconductivity. In this paper, we discuss the effect of extended bleaching in order to demonstrate sensing applications of such phenomenon as an example. Pump-probe measurements in bulk semiconductors will be presented to quantify the transient absorption dynamics and relate this to the electronic response of the detector devices. This effect is not limited semiconductors and may affect other matter states and electronic structures, like dielectrics.

  9. New results on spin determination of nanosatellite BLITS from High Repetition Rate SLR data

    NASA Astrophysics Data System (ADS)

    Kucharski, D.; Kirchner, G.; Lim, H.-C.; Koidl, F.

    2013-03-01

    The nanosatellite BLITS (Ball Lens In The Space) demonstrates a successful design of the new spherical lens type satellite for Satellite Laser Ranging (SLR). The spin parameters of the satellite were calculated from more than 1000 days of SLR data collected from 6 High Repetition Rate (HRR) systems: Beijing, Changchun, Graz, Herstmonceux, Potsdam, Shanghai.Analysis of the 892 passes (September 26, 2009-June 18, 2012) shows precession of the spin axis around orientation of the along track vector calculated at the launch epoch of the satellite RA = 9h16m39s, Dec = 43.1°. The spin period of BLITS remains stable with the mean value Tmean = 5.613 s, RMS = 11 ms. The incident angle between the spin axis and the symmetry axis of the body changes within 60° range.

  10. Laser system generating 250-mJ bunches of 5-GHz repetition rate, 12-ps pulses.

    PubMed

    Agnesi, Antonio; Braggio, Caterina; Carrà, Luca; Pirzio, Federico; Lodo, Stefano; Messineo, Giuseppe; Scarpa, Daniele; Tomaselli, Alessandra; Reali, Giancarlo; Vacchi, Carla

    2008-09-29

    We report on a high-energy solid-state laser based on a master-oscillator power-amplifier system seeded by a 5-GHz repetition-rate mode-locked oscillator, aimed at the excitation of the dynamic Casimir effect by optically modulating a microwave resonator. Solid-state amplifiers provide up to 250 mJ at 1064 nm in a 500-ns (macro-)pulse envelope containing 12-ps (micro-)pulses, with a macro/micropulse format and energy resembling that of near-infrared free-electron lasers. Efficient second-harmonic conversion allowed synchronous pumping of an optical parametric oscillator, obtaining up to 40 mJ in the range 750-850 nm. PMID:18825218

  11. Repetition rate switching in a passively mode-locked fibre laser

    NASA Astrophysics Data System (ADS)

    Tian, X. L.; Tang, M.; Gong, Y. D.; Shum, P.

    2006-09-01

    Here we demonstrated a dispersion stretched passively mode-locked fiber laser. The laser was mode-locked by nonlinear polarization rotation (NPR) technical. Both dispersion managed soliton and noise-like pulses were observed in the experiment. Harmonic mode-locked noise-like pulses were observed. By changing the pump power or rotating the waveplates, noise-like pulse could split and always form equally spaced pulse train, thus the repetition rate of the output pulse could be switched among different orders of harmonic frequency. The experiment results were analyzed. We found that peak power clamping caused by NPR module led to pulse splitting, the pulse interaction through the Raman light drives the pulse to space equally.

  12. Modeling and optimization of single-pass laser amplifiers for high-repetition-rate laser pulses

    SciTech Connect

    Ozawa, Akira; Udem, Thomas; Zeitner, Uwe D.; Haensch, Theodor W.; Hommelhoff, Peter

    2010-09-15

    We propose a model for a continuously pumped single-pass amplifier for continuous and pulsed laser beams. The model takes into account Gaussian shape and focusing geometry of pump and seed beam. As the full-wave simulation is complex we have developed a largely simplified numerical method that can be applied to rotationally symmetric geometries. With the tapered-shell model we treat (focused) propagation and amplification of an initially Gaussian beam in a gain crystal. The implementation can be done with a few lines of code that are given in this paper. With this code, a numerical parameter optimization is straightforward and example results are shown. We compare the results of our simple model with those of a full-wave simulation and show that they agree well. A comparison of model and experimental data also shows good agreement. We investigate in detail different regimes of amplification, namely the unsaturated, the fully saturated, and the intermediate regime. Because the amplification process is affected by spatially varying saturation and exhibits a nonlinear response against pump and seed power, no analytical expression for the expected output is available. For modeling of the amplification we employ a four-level system and show that if the fluorescence lifetime of the gain medium is larger than the inverse repetition rate of the seed beam, continuous-wave amplification can be employed to describe the amplification process of ultrashort pulse trains. We limit ourselves to this regime, which implies that if titanium:sapphire is chosen as gain medium the laser repetition rate has to be larger than a few megahertz. We show detailed simulation results for titanium:sapphire for a large parameter set.

  13. 200 ps FWHM and 100 MHz repetition rate ultrafast gated camera for optical medical functional imaging

    NASA Astrophysics Data System (ADS)

    Uhring, Wilfried; Poulet, Patrick; Hanselmann, Walter; Glazenborg, René; Zint, Virginie; Nouizi, Farouk; Dubois, Benoit; Hirschi, Werner

    2012-04-01

    The paper describes the realization of a complete optical imaging device to clinical applications like brain functional imaging by time-resolved, spectroscopic diffuse optical tomography. The entire instrument is assembled in a unique setup that includes a light source, an ultrafast time-gated intensified camera and all the electronic control units. The light source is composed of four near infrared laser diodes driven by a nanosecond electrical pulse generator working in a sequential mode at a repetition rate of 100 MHz. The resulting light pulses, at four wavelengths, are less than 80 ps FWHM. They are injected in a four-furcated optical fiber ended with a frontal light distributor to obtain a uniform illumination spot directed towards the head of the patient. Photons back-scattered by the subject are detected by the intensified CCD camera; there are resolved according to their time of flight inside the head. The very core of the intensified camera system is the image intensifier tube and its associated electrical pulse generator. The ultrafast generator produces 50 V pulses, at a repetition rate of 100 MHz and a width corresponding to the 200 ps requested gate. The photocathode and the Micro-Channel-Plate of the intensifier have been specially designed to enhance the electromagnetic wave propagation and reduce the power loss and heat that are prejudicial to the quality of the image. The whole instrumentation system is controlled by an FPGA based module. The timing of the light pulses and the photocathode gating is precisely adjustable with a step of 9 ps. All the acquisition parameters are configurable via software through an USB plug and the image data are transferred to a PC via an Ethernet link. The compactness of the device makes it a perfect device for bedside clinical applications.

  14. Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids.

    PubMed

    Streubel, René; Barcikowski, Stephan; Gökce, Bilal

    2016-04-01

    Utilizing a novel laser system consisting of a 500 W, 10 MHz, 3 ps laser source which is fully synchronized with a polygon scanner reaching scanning speeds up to 500 m/s, we explore the possibilities to increase the productivity of nanoparticle synthesis by laser ablation in liquids. By exploiting the high scanning speed, laser-induced cavitation bubbles are spatially bypassed at high repetition rates and continuous multigram ablation rates up to 4 g/h are demonstrated for platinum, gold, silver, aluminum, copper, and titanium. Furthermore, the applicable, ablation-effective repetition rate is increased by two orders of magnitude. The ultrafast ablation mechanisms are investigated for different laser fluences, repetition rates, interpulse distances, and ablation times, while the resulting trends are successfully described by validating a model developed for ultrafast laser ablation in air to hold in liquids as well. PMID:27192268

  15. NOx diesel exhaust treatment using a pulsed corona discharge: the pulse repetition rate effect

    NASA Astrophysics Data System (ADS)

    Yankelevich, Y.; Wolf, M.; Baksht, R.; Pokryvailo, A.; Vinogradov, J.; Rivin, B.; Sher, E.

    2007-05-01

    The pulsed corona offers real promise for degradation of pollutants in gas and water streams. This paper presents a study of NOx removal from diesel exhaust. Special emphasis is laid on the investigation of the dependence of the NO removal rate and efficiency on the pulse repetition rate (PRR). A nanosecond solid state power supply (45 kV, 60 ns, up to 1 kHz) was used for driving the corona reactor. A Mitsubishi 10 kW 3-cylinder diesel-generator engine with a total volume of 1300 cm3 was used as a source of exhaust gas. At an NO removal rate of 35% the NO removal efficiency was 53 g kW-1h-1 for PRR = 500 Hz and the initial NO concentration was 375 ppm. A semi-empirical expression for the corona reactor removal efficiency related both to PRR and to the residence time is presented. The removal efficiency decreases with increasing PRR at constant flow rate or constant residence time. This expression demonstrates reasonable agreement between the calculation results and the experimental data.

  16. Continuous hydroxyl radical planar laser imaging at 50 kHz repetition rate.

    PubMed

    Hammack, Stephen; Carter, Campbell; Wuensche, Clemens; Lee, Tonghun

    2014-08-10

    This study demonstrates high-repetition-rate planar laser-induced fluorescence (PLIF) imaging of hydroxyl radicals (OH) in flames at a continuous framing rate of 50 kHz. A frequency-doubled dye laser is pumped by the second harmonic of an Nd:YAG laser to generate laser radiation near 283 nm with a pulse width of 8 ns and rate of 50 kHz. Fluorescence is recorded by a two-stage image intensifier and complementary metal-oxide-semiconductor camera. The average power of the 283 nm beam reaches 7 W, yielding a pulse energy of 140 μJ. Both a Hencken burner and a DC transient-arc plasmatron are used to produce premixed CH4/air flames to evaluate the OH PLIF system. The average signal-to-noise ratio for the Hencken burner flame is greater than 20 near the flame front and greater than 10 further downstream in a region of the flame near equilibrium. Image sequences of the DC plasmatron discharge clearly illustrate development and evolution of flow features with signal levels comparable to those in the Hencken burner. The results are a demonstration of the ability to make high-fidelity OH PLIF measurements at 50 kHz using a Nd:YAG-pumped, frequency-doubled dye laser. PMID:25320935

  17. Formation of crystalline dots and lines in lanthanum borogermanate glass by the low pulse repetition rate femtosecond laser

    NASA Astrophysics Data System (ADS)

    Lipateva, Tatiana O.; Lotarev, Sergey V.; Lipatiev, Alexey S.; Kazansky, Peter G.; Sigaev, Vladimir N.

    2015-01-01

    Femtosecond lasers have become a powerful tool for 3D space-selective crystallization of glasses. A laser-induced cumulative heating effect required for crystal growth is usually considered to take place only at pulse repetition rate over 100 or 200 kHz and 200 kHz is known as the lowest repetition rate at which femtosecond laser-induced crystallization has been reported so far. We for the first time demonstrate precipitation of LaBGeO5 crystals in lanthanum borogermanate glass using a femtosecond laser emitting 1030 nm, 300 fs, 110 μJ pulses with adjustable repetition rate below 100 kHz. For the applied laser, minimal repetition rate enabling nucleation of ferroelectric LaBGeO5 crystals inside the glass was shown to be 9 kHz at maximal pulse energy of 110 μJ and growth of a crystalline line from the formed seed crystal was obtained starting from 8 kHz though smooth homogeneous oriented line which might be regarded as quasi-single-crystalline could be grown at 25 kHz or higher and corresponding pulse energy of 18 μJ. Thus, the pulse repetition rate sufficient for a cumulative heating effect and a stable crystal growth was reduced by an order of magnitude as compared to earlier publications due to relatively high pulse energy. Possibility and efficiency of cumulative heating and crystal growth and average time required for forming the seed crystal have been studied for various combinations of the pulse energy and the repetition rate. Obtained crystalline features have been studied by micro-Raman spectroscopy and Raman mapping which confirmed growth of stillwellite-like LaBGeO5 phase and orientation of its polar axis along the direction of the crystalline line.

  18. Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification.

    PubMed

    Schulz, M; Riedel, R; Willner, A; Mans, T; Schnitzler, C; Russbueldt, P; Dolkemeyer, J; Seise, E; Gottschall, T; Hädrich, S; Duesterer, S; Schlarb, H; Feldhaus, J; Limpert, J; Faatz, B; Tünnermann, A; Rossbach, J; Drescher, M; Tavella, F

    2011-07-01

    We report on a Yb:YAG Innoslab laser amplifier system for generation of subpicsecond high energy pump pulses for optical parametric chirped pulse amplification (OPCPA) at high repetition rates. Pulse energies of up to 20 mJ (at 12.5 kHz) and repetition rates of up to 100 kHz were attained with pulse durations of 830 fs and average power in excess of 200 W. We further investigate the possibility to use subpicosecond pulses to derive a stable continuum in a YAG crystal for OPCPA seeding. PMID:21725443

  19. Study of filamentation with a high power high repetition rate ps laser at 1.03 µm.

    PubMed

    Houard, A; Jukna, V; Point, G; André, Y-B; Klingebiel, S; Schultze, M; Michel, K; Metzger, T; Mysyrowicz, A

    2016-04-01

    We study the propagation of intense, high repetition rate laser pulses of picosecond duration at 1.03 µm central wavelength through air. Evidence of filamentation is obtained from measurements of the beam profile as a function of distance, from photoemission imaging and from spatially resolved sonometric recordings. Good agreement is found with numerical simulations. Simulations reveal an important self shortening of the pulse duration, suggesting that laser pulses with few optical cycles could be obtained via double filamentation. An important lowering of the voltage required to induce guided electric discharges between charged electrodes is measured at high laser pulse repetition rate. PMID:27137034

  20. A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses

    PubMed Central

    Watanabe, Shinichi; Yasumatsu, Naoya; Oguchi, Kenichi; Takeda, Masatoshi; Suzuki, Takeshi; Tachizaki, Takehiro

    2013-01-01

    We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications. PMID:23478599

  1. 1.4-MHz repetition rate electro-optic Q-switched Nd:YVO4 laser.

    PubMed

    Horiuchi, Ryusuke; Adachi, Koji; Watanabe, Goro; Tei, Kazuyoku; Yamaguchi, Shigeru

    2008-10-13

    An electro-optic (EO) deflector was used for Q-switching of a laser cavity with a Nd-doped yttrium vanadate (Nd:YVO(4)), enabling a short pulse width and a high peak power to be achieved at a high repetition rate of over 1 MHz. The EO deflector has a low optical loss during Q-switching without polarizers and can be used to form a short laser cavity. A repetition rate of 1.4 MHz with a pulse width of 39 ns was achieved. An output power of 2.7 W was obtained at a pump power of 6.5 W. PMID:18852782

  2. A rapidly-tuned, short-pulse-length, high-repetition-rate CO{sub 2} laser for IR dial

    SciTech Connect

    Zaugg, T.; Thompson, D.; Leland, W.T.; Busch, G.

    1997-08-01

    Analysis of noise sources in Differential Absorption LIDAR (DIAL) in the infrared region of the spectrum indicates that the signal-to-noise ratio for direct detection can be improved if multiple-wavelength, short-pulse-length beams are transmitted and received at high repetition rates. Atmospheric effects can be minimized, albedo can be rapidly scanned, and uncorrelated speckle can be acquired at the maximum possible rate. A compact, rugged, RF-excited waveguide laser can produce 15 nanosecond pulses at a 100 kHz rate with sufficient energy per pulse to reach the speckle limit of the signal-to-noise ratio. A high-repetition-rate laser has been procured and will be used to verify these signal and noise scaling relationships at high repetition rates. Current line-tuning devices are mechanical and are capable of switching lines at a rate up to a few hundred Hertz. Acousto-optic modulators, deflectors or tunable filters can be substituted for these mechanical devices in the resonator of a CO{sub 2} laser and used to rapidly line-tune the laser across the 9 and 10 micron bands at a rate as high as 100 kHz. Several configurations for line tuning using acousto-optic and electro-optic devices with and without gratings are presented. The merits of and constraints on each design are also discussed. A pair of large aperture, acousto-optic deflectors has been purchased and the various line-tuning designs will be evaluated in a conventional, glass tube, CO{sub 2} laser, with a view to incorporation into the high-repetition-rate, waveguide laser. A computer model of the dynamics of an RF-excited, short-pulse-length, high-repetition-rate waveguide laser has been developed. The model will be used to test the consequences of various line-tuning designs.

  3. Fast repetition rate (FRR) fluorometer for making in situ measurements of primary productivity

    SciTech Connect

    Kolber, Z.S.; Falkowski, P.G.

    1992-10-01

    Understanding the ocean carbon cycle and predicting how climate-induced changes in ocean circulation will affect ocean productivity requires that (a) primary productivity be measured with high spatial and temporal resolution, and (b) natural variability in primary productivity be parameterized with regardto environmental factors such as nutrient availabuity, irradiance, and temperature. Instrumentation to measure primary productivity from the stimulated in vivo fluoresence of phytoplankton chlorophyll is currendy being developed at Brookhaven National Laboratory. The instrumentation is based on fast repetition rate (FRR) fluorometry, and provides a robust technique for deriving the photosynthetic rates in situ. Moreover, the FRR methodology directly measures several photosynthetic parameters such as effective absorption cross- section, photo-conversion efficiency, and turnover time of photosynthesis, and relate them to primary productivity. Since photosynthetic parameters are affected by environmental factors such as fight and nutrient availability, the relationship between these parameters and primary productivity can be established. By understanding such relationships, prognostic models of primary productivity can be developed and parameterized.

  4. Laser ranging system and measurement analysis for space debris with high repetition rate

    NASA Astrophysics Data System (ADS)

    Wu, Zhibo; Zhang, Haifeng; Meng, Wendong; Li, Pu; Deng, Huarong; Tang, Kai; Ding, Renjie; Zhang, Zhongping

    2016-01-01

    Laser measurement technology is inherently high accurate and will play an important role in precise orbit determination, accurate catalog, surveillance to space debris. Shanghai Astronomical Observatory (SHAO) has been developing the technology of laser measurement to space debris for several years. Based on the first successful laser ranging measurement to space debris in country, by applying one new set of high power 532nm wavelength laser system with 200Hz repetition rate, and adopting low dark noise APD detector with high quantum efficiency and high transmissivity of narrow bandwidth spectral filter, SHAO have achieved hundreds of passes of laser data from space debris in 2014, and the measured objects with distance between 500km and 2200km, Radar Cross Section (RCS) of >10m2 to <0.5m2 at the precision of <1m RMS for small RCS targets ,and the success rate of measured passes of up to 80%. The results show that laser ranging technology in China can routinely measure space debris and provide enough measurement data with high accuracy to space debris applications and researches such as surveillance activities in the future.

  5. Improved repetition rate mixed isotope CO{sub 2} TEA laser

    SciTech Connect

    Cohn, D. B.

    2014-09-15

    A compact CO{sub 2} TEA laser has been developed for remote chemical detection that operates at a repetition rate of 250 Hz. It emits 700 mJ/pulse at 10.6 μm in a multimode beam with the {sup 12}C{sup 16}O{sub 2} isotope. With mixed {sup 12}C{sup 16}O{sub 2} plus {sup 13}C{sup 16}O{sub 2} isotopes it emits multiple lines in both isotope manifolds to improve detection of a broad range of chemicals. In particular, output pulse energies are 110 mJ/pulse at 9.77 μm, 250 mJ/pulse at 10 μm, and 550 mJ/pulse at 11.15 μm, useful for detection of the chemical agents Sarin, Tabun, and VX. Related work shows capability for long term sealed operation with a catalyst and an agile tuner at a wavelength shift rate of 200 Hz.

  6. Sentence comprehension in Alzheimer's disease: effects of grammatical complexity, speech rate, and repetition.

    PubMed

    Small, J A; Kemper, S; Lyons, K

    1997-03-01

    Caregivers of patients diagnosed with Alzheimer's disease (AD) are often advised to modify their speech to facilitate the patients' sentence comprehension. Three common recommendations are to (a) speak in simple sentences, (b) speak slowly, and (c) repeat one's utterance, using the same words. These three speech modifications were experimentally manipulated in order to investigate their individual and combined effects on sentence comprehension in AD. Fifteen patients with mild to moderate AD and 20 healthy older persons were tested on a sentence comprehension task with sentences varying in terms of (a) degree of grammatical complexity, (b) rate of presentation (normal vs. slow), and (c) form of repetition (verbatim vs. paraphrase). The results indicated a significant decline in sentence comprehension for the AD group. Sentence comprehension improved, however, after the sentence was repeated in either verbatim or parapharsed form. However, the patients' comprehension did not improve for sentences presented at the slow speech rate. This pattern of results is explained via-à-vis the patients' working memory loss. The findings challenge the appropriateness of several clinical recommendations. PMID:9100263

  7. GHz repetition rate tabletop X-band photoinjector for free-electron laser applications

    SciTech Connect

    Le Sage, G.P.; Fochs, S.N.; Feng, H.X.C.

    1995-12-31

    A 1-1/2 cell {pi}-mode X-bend (8.568 GHz) photoinjector system capable of producing trains of up to one hundred, 1 nC, 1ps, 5 MeV, {epsilon}{sub n} < 2.5 {pi} mm-mrad photoelectron bunches, at a micropulse repetition rate of 1-10 Hz, is currently under development at LLNL, in the UC Davis DAS coherent millimeter-wave group. The system is powered by a 20 MW, 8.568 GHz SLAC development klystron. The system also uses a Cs{sub 2}Te (Cesium Telluride) photocathode which has a quantum efficiency > 5% in the UV (210 nm). The compact UV laser system is composed of a synchronously modelocked AlGaAs semiconductor laser oscillator which produces pulses with a duration of 250 fs and 100 pJ energy at 830 nm, at a repetion rate of 2.142 GHz with less 400 is jitter, a 5 GHz bandwidth Lithium Niobate Mach-Zender fiber modulator, an 8-pass, 10{sup 6} gain, TiAl{sub 2}O{sub 3} (Titanium:Sapphire) chirped pulse amplifier, and 2 BBO frequency doublers in series to quadruple the laser frequency into the UV (207 nm).

  8. Reliable, high repetition rate thyratron grid driver used with a magnetic modulator

    SciTech Connect

    Hill, J.V.; Ball, D.G.; Garrett, D.N.

    1991-06-14

    The Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory uses a magnetic modulator switched by a high voltage thyratron to drive a gas discharge laser. The thyratron trigger source must provide an extremely reliable, low jitter, high- rep-rate grid pulse. This paper describes a thyratron grid driver which delivers a 1.2 kV, 80 ns rise time grid pulse into a 50 ohm load at up to 4.5 kHz repetition rate and has demonstrated approximately 10,000 hours MTBF. Since the thyratron is used with a magnetic compression circuit having a delay time of 1.4 ms this grid driver incorporates a jitter compensation circuit to adjust the trigger timing of the thyratron to provide overall modulator/laser jitter of less than {plus minus} 2 ns. The specific grid driver requirements will be discussed followed by a description of the circuit design and theory of operation. Construction comments will be followed by performance data (for a specific thyratron and magnetic compression circuit), including pulse shape, jitter, and lifetime. 1 ref., 10 figs.

  9. Reliable, high repetition rate thyratron grid driver used with a magnetic modulator

    NASA Astrophysics Data System (ADS)

    Hill, J. V.; Ball, D. G.; Garrett, D. N.

    1991-06-01

    The Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory uses a magnetic modulator switched by a high voltage thyratron to drive a gas discharge laser. The thyratron trigger source must provide an extremely reliable, low jitter, high-rep-rate grid pulse. This paper describes a thyratron grid driver which delivers a 1.2 kV, 80 ns rise time grid pulse into a 50 ohm load at up to 4.5 kHz repetition rate and has demonstrated approximately 10,000 hours MTBF. Since the thyratron is used with a magnetic compression circuit having a delay time of 1.4 ms, this grid driver incorporates a jitter compensation circuit to adjust the trigger timing of the thyratron to provide overall modulator/laser jitter of less than +/- 2 ns. The specific grid driver requirements will be discussed followed by a description of the circuit design and theory of operation. Construction comments will be followed by performance data (for a specific thyratron and magnetic compression circuit), including pulse shape, jitter, and lifetime.

  10. Design of a liquid membrane target for high repetition rate neutron generation

    NASA Astrophysics Data System (ADS)

    Poole, Patrick; Andereck, C. David; Storm, Mike; Schumacher, Douglass

    2013-10-01

    Ultra-bright, pulsed, spatially-small sources of energetic neutrons have applications in radiography and non-destructive remote sensing. Neutrons can be generated by a process wherein ions accelerated from a laser-irradiated primary target subsequently bombard a converter material, causing neutron-producing nuclear reactions, such as 7Li(d,n)8Be. Deuterons from this process are suppressed by contamination that builds up on the rear of the solid primary target. To eliminate this issue we propose a self-replenishing liquid membrane target consisting of heavy water and deuterated surfactant, formed in-vacuum within a moveable wire frame. In addition to removing issues associated with solid target positioning and collateral damage, this apparatus provides flow rate and target thickness control, and allows for the high repetition rates required to generate desired neutron fluxes with a portable laser-based system. The apparatus design will be presented, as well as a novel interferometric method that measures the membrane thickness using tightly-focused light. This work was performed with support from DARPA.

  11. Fast repetition rate (FRR) fluorometer for making in situ measurements of primary productivity

    SciTech Connect

    Kolber, Z.S.; Falkowski, P.G.

    1992-01-01

    Understanding the ocean carbon cycle and predicting how climate-induced changes in ocean circulation will affect ocean productivity requires that (a) primary productivity be measured with high spatial and temporal resolution, and (b) natural variability in primary productivity be parameterized with regardto environmental factors such as nutrient availabuity, irradiance, and temperature. Instrumentation to measure primary productivity from the stimulated in vivo fluoresence of phytoplankton chlorophyll is currendy being developed at Brookhaven National Laboratory. The instrumentation is based on fast repetition rate (FRR) fluorometry, and provides a robust technique for deriving the photosynthetic rates in situ. Moreover, the FRR methodology directly measures several photosynthetic parameters such as effective absorption cross- section, photo-conversion efficiency, and turnover time of photosynthesis, and relate them to primary productivity. Since photosynthetic parameters are affected by environmental factors such as fight and nutrient availability, the relationship between these parameters and primary productivity can be established. By understanding such relationships, prognostic models of primary productivity can be developed and parameterized.

  12. A pulsed, high repetition rate 2-micron laser transmitter for coherent CO2 DIAL

    NASA Astrophysics Data System (ADS)

    Yu, J.; Bai, Y.; Petzar, P.; Petros, M.; Chen, S.; Trieu, B.; Koch, G. J.; Kavaya, M. J.; Singh, U. N.

    2009-12-01

    A Holmium solid-state 2-µm pulsed laser, end-pumped by a Thulium fiber laser, is being developed for coherent CO2 Differential Absorption Lidar (DIAL). It combines the advantages of high efficient fiber laser technology with the mature high energy solid state laser technology to produce desired energy levels at a high repetition rate. To obtain high beam quality that is required by coherent detection technique, the effect of “spatial hole burning” in the laser gain medium must be prevented. This is achieved by the use of ring cavity configuration in which the laser light is forced to travel in one direction, so that no standing waves are formed. The pump beam and laser beam are mode-matched in the laser crystals to improve the laser efficiency. At the pumping power of 13.25W, optical-to-optical efficiency of 52% was obtained with the pulse repetition rate of 1.25 kHz, which gives the energy per pulse of ~5.5mJ. The pulse energy can be scaled by increasing the pump power or by reducing the pulse repetition rate. The pulse length of this laser is at ~50ns. The wavelengths of the Ho pulse laser are tunable over several characteristic absorption lines of CO2. The exact wavelengths of the Ho pulse laser are controlled by well-controlled continuous wave (CW) seed lasers to provide the required sequential, on-and-off line wavelength pulses for DIAL applications. Three CW lasers were used to provide the accurate on-and-off wavelengths. The first CW laser is locked to the center of a characteristic CO2 absorption line through a CO2 cell by the frequency modulation technique. The frequency of the second CW laser was shifted related to the first CW laser by a few GHz to the wing of the CO2 absorption line, and used as the on-line frequency of the CO2 DIAL. This frequency shift is necessary to obtain a better weighting function for the CO2 measurement. The standard deviation of the CW on-line frequency can be controlled within 250 KHz. The third CW laser provides the off

  13. Effects of water spray and repetition rate on the temperature elevation during Er:YAG laser ablation of dentine

    NASA Astrophysics Data System (ADS)

    Hibst, Raimund; Keller, Ulrich

    1996-01-01

    The Er:YAG is currently used as an alternative instrument for the removal of dental decay. Safe laser parameters have been found, but in order to increase the preparation speed also higher pulse energies or repetition rates are under consideration. To investigate systematically the temperature effect of these parameters and of water spray, slices of dentine were perforated with the laser radiation, exactly towards a thermocouple placed in a hole at the back side. During and after preparation temperature was monitored, and maximum temperature rise reached at the moment of perforation (Tm) was evaluated. For preparation without water irrigation Tm was in the range of 30 to 40 K, increasing slightly with pulse repetition rate (prr). For low prr (2 Hz) the same was observed for the radiant energy, however for high prr (10 Hz) the effect was inverse. When moistening the slices during preparation by a fine water spray, Tm decreases. The temperature reduction is very pronounced for low prr, leading to a temperature rise of only 2 K at 2 Hz (200 mJ). When prr is enhanced the spray becomes less effective, even when higher flow rates are chosen. With respect to temperature, combinations of low pulse energy and high repetition rate are least favorable. For safe preparations in dentine low pulse repetition rates are recommended.

  14. Use of spatial time-division repetition rate multiplication of mode-locked laser pulses to generate microwave radiation from optoelectronic switches

    NASA Astrophysics Data System (ADS)

    Mooradian, A.

    1984-09-01

    An all-optical technique is described which can substantially increase the pulse repetition rate of the output from any mode-locked laser. Multiplication of the repetition rate by a factor of 16 has been demonstrated. A mode-locked laser pulse train multiplied up to a 2-GHz repetition rate has been used to generate microwave radiation by means of a GaAs avalanche photodiode as well as an Fe:InP optoelectronic switch.

  15. Heart Rate Variability and Skin Conductance During Repetitive TMS Course in Children with Autism.

    PubMed

    Wang, Yao; Hensley, Marie K; Tasman, Allan; Sears, Lonnie; Casanova, Manuel F; Sokhadze, Estate M

    2016-03-01

    Autism spectrum disorder (ASD) is a developmental disorder marked by difficulty in social interactions and communication. ASD also often present symptoms of autonomic nervous system (ANS) functioning abnormalities. In individuals with autism the sympathetic branch of the ANS presents an over-activation on a background of the parasympathetic activity deficits, creating an autonomic imbalance, evidenced by a faster heart rate with little variation and increased tonic electrodermal activity. The objective of this study was to explore the effect of 12 sessions of 0.5 Hz repetitive transcranial magnetic stimulation (rTMS) over dorsolateral prefrontal cortex (DLPFC) on autonomic activity in children with ASD. Electrocardiogram and skin conductance level (SCL) were recorded and analyzed during each session of rTMS. The measures of interest were time domain (i.e., R-R intervals, standard deviation of cardiac intervals, NN50-cardio-intervals >50 ms different from preceding interval) and frequency domain heart rate variability (HRV) indices [i.e., power of high frequency (HF) and low frequency (LF) components of HRV spectrum, LF/HF ratio]. Based on our prior pilot studies it was proposed that the course of 12 weekly inhibitory low-frequency rTMS bilaterally applied to the DLPFC will improve autonomic balance probably through improved frontal inhibition of the ANS activity, and will be manifested in an increased length of cardiointervals and their variability, and in higher frequency-domain HRV in a form of increased HF power, decreased LF power, resulting in decreased LF/HF ratio, and in decreased SCL. Our post-12 TMS results showed significant increases in cardiac intervals variability measures and decrease of tonic SCL indicative of increased cardiac vagal control and reduced sympathetic arousal. Behavioral evaluations showed decreased irritability, hyperactivity, stereotype behavior and compulsive behavior ratings that correlated with several autonomic variables. PMID

  16. Design of a high repetition rate S-band photocathode gun

    NASA Astrophysics Data System (ADS)

    Han, Jang-Hui; Cox, Matthew; Huang, Houcheng; Pande, Shivaji

    2011-08-01

    Photocathode RF guns have been developed in many laboratories for generating high quality electron beams for free-electron lasers based on linear accelerators. Such guns can generate electron beams with an exceptionally high peak current as well as a small transverse emittance. Their applications have been recently expanded for ultrafast electron diffraction, coherent terahertz radiation, and X-ray or γ-ray radiation by Compton scattering. In this paper, we design an S-band normal-conducting gun with capabilities of high quality beam generation and high repetition rate operation. The RF design and thermal analysis of the gun cavity and coupler are introduced. Optimal position of the gun focusing solenoid for low emittance beam generation is found by performing particle tracking simulations. Then, the gun system is designed to be able to afford the optimal solenoid position. The cooling-water channel surrounding the gun cavity and coupler is designed and analyzed numerically. The pressure in the gun is simulated with a vacuum model containing the detailed inner structure of the gun. An injector for a free-electron laser application is designed by using this gun and the beam dynamics simulation is shown. A cold test with a prototype gun for confirmation of the RF design is reported.

  17. Design of a VHF-band RF Photoinjector with Megahertz BeamRepetition Rate

    SciTech Connect

    Staples, J.W.; Baptiste, K.M.; Corlett, J.N.; Kwiatkowski, S.; Lidia, S.M.; Qiang, J.; Sannibale, F.; Sonnad, K.G.; Virostek, S.P.; Wells, R.P.

    2007-06-01

    New generation accelerator-based X-ray light sources require high quality beams with high average brightness. Normal conducting L- and S-band photoinjectors are limited in repetition rate and D-C (photo)injectors are limited in field strength at the cathode. We propose a low frequency normal-conducting cavity, operating at 50 to 100MHz CW, to provide beam bunches of up to the cavity frequency. The photoinjector uses a re-entrant cavity structure, requiring less than 100 kW CW, with a peak wall power density less than 10 W/cm{sup 2}. The cavity will support a vacuum down to 10 picoTorr, with a load-lock mechanism for easy replacement of photocathodes. The photocathode can be embedded in a magnetic field to provide correlations useful for emittance exchange. Beam dynamics simulations indicate that normalized emittances smaller than 1 mm-mrad are possible with gap voltage of 750 kV, with fields up to 20 MV/m at the photocathode, for 1 nanocoulomb charge per bunch after acceleration and emittance compensation. Long-bunch operation (10's of picosecond) is made possible by the low cavity frequency, permitting low bunch current at the 750 kV gap voltage.

  18. Experiments and Simulations on Magnetically Driven Implosions in High Repetition Rate Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Caballero Bendixsen, Luis; Bott-Suzuki, Simon; Cordaro, Samuel; Krishnan, Mahadevan; Chapman, Stephen; Coleman, Phil; Chittenden, Jeremy

    2015-11-01

    Results will be shown on coordinated experiments and MHD simulations on magnetically driven implosions, with an emphasis on current diffusion and heat transport. Experiments are run at a Mather-type dense plasma focus (DPF-3, Vc: 20 kV, Ip: 480 kA, E: 5.8 kJ). Typical experiments are run at 300 kA and 0.33 Hz repetition rate with different gas loads (Ar, Ne, and He) at pressures of ~ 1-3 Torr, usually gathering 1000 shots per day. Simulations are run at a 96-core HP blade server cluster using 3GHz processors with 4GB RAM per node.Preliminary results show axial and radial phase plasma sheath velocity of ~ 1x105 m/s. These are in agreement with the snow-plough model of DPFs. Peak magnetic field of ~ 1 Tesla in the radial compression phase are measured. Electron densities on the order of 1018 cm-3 anticipated. Comparison between 2D and 3D models with empirical results show a good agreement in the axial and radial phase.

  19. High-repetition rate laser ablation coupled to dielectric barrier discharge postionization for ambient mass spectrometry.

    PubMed

    Bierstedt, Andreas; Riedel, Jens

    2016-07-15

    Most ambient sample introduction and ionization techniques for native mass spectrometry are highly selective for polar agents. To achieve a more general sensitivity for a wider range of target analytes, a novel laser ablation dielectric barrier discharge (LA DBD) ionization scheme was developed. The approach employs a two-step mechanism with subsequent sample desorption and post-ionization. Effective ablation was achieved by the second harmonic output (λ=532nm) of a diode pumped Nd:YVO4 laser operating at a high-repetition rate of several kHz and pulse energies below 100μJ. The ejected analyte-containing aerosol was consecutively vaporized and ionized in the afterglow of a DBD plasma jet. Depending on their proton affinity the superexcited helium species in this afterglow produced analyte ions as protonated and ammoniated species, as well as radical cations. The optimization procedure could corroborate underlying conceptual consideration on the ablation, desorption and ionization mechanisms. A successful detection of a variety of target molecules could be shown from the pharmaceutical ibuprofen, urea, the amino acids l-arginine, l-lysine, the polymer polyethylene glycol, the organometallic compound ferrocene and the technical mixture wild mint oil. For a reliable evaluation of the introduced detection procedure spectra from the naturally abundant alkaloid capsaicin in dried capsicum fruits were recorded. PMID:26851554

  20. Cavity-Enhanced Field-Free Molecular Alignment at a High Repetition Rate

    NASA Astrophysics Data System (ADS)

    Benko, Craig; Hua, Linqiang; Allison, Thomas K.; Labaye, François; Ye, Jun

    2015-04-01

    Extreme ultraviolet frequency combs are a versatile tool with applications including precision measurement, strong-field physics, and solid-state physics. Here we report on an application of extreme ultraviolet frequency combs and their driving lasers for studying strong-field effects in molecular systems. We perform field-free molecular alignment and high-order harmonic generation with aligned molecules in a gas jet at a repetition rate of 154 MHz using a high-powered optical frequency comb inside a femtosecond enhancement cavity. The cavity-enhanced system provides a means to reach suitable intensities to study field-free molecular alignment and enhance the observable effects of the molecule-field interaction. We observe modulations of the driving field, arising from the nature of impulsive stimulated Raman scattering responsible for coherent molecular rotations. We foresee the impact of this work on the study of molecule-based strong-field physics, with improved precision and a more fundamental understanding of the interaction effects on both the field and molecules.

  1. Choppers to optimise the repetition rate multiplication technique on a direct geometry neutron chopper spectrometer

    SciTech Connect

    Vickery, A.; Deen, P. P.

    2014-11-15

    In recent years the use of repetition rate multiplication (RRM) on direct geometry neutron spectrometers has been established and is the common mode of operation on a growing number of instruments. However, the chopper configurations are not ideally optimised for RRM with a resultant 100 fold flux difference across a broad wavelength band. This paper presents chopper configurations that will produce a relative constant (RC) energy resolution and a relative variable (RV) energy resolution for optimised use of RRM. The RC configuration provides an almost uniform ΔE/E for all incident wavelengths and enables an efficient use of time as the entire dynamic range is probed with equivalent statistics, ideal for single shot measurements of transient phenomena. The RV energy configuration provides an almost uniform opening time at the sample for all incident wavelengths with three orders of magnitude in time resolution probed for a single European Spallation Source (ESS) period, which is ideal to probe complex relaxational behaviour. These two chopper configurations have been simulated for the Versatile Optimal Resolution direct geometry spectrometer, VOR, that will be built at ESS.

  2. Resolving range ambiguities in high-repetition rate airborne lidar applications

    NASA Astrophysics Data System (ADS)

    Rieger, Peter; Ullrich, Andreas

    2011-11-01

    Correctly determining a measurement range in LIDAR instruments, based on time-of-flight measurements on laser pulses, requires the allocation of each received echo pulse to its causative emitted laser pulse. Without further precautions this definite allocation is only possible under specific conditions constraining the usability of range finders and laser scanners with very high measurement rates. Losing the unambiguity of ranges in high repetition systems is well known in RADAR and the term "multiple time around" (MTA) has been coined. However because of fundamental differences between scanning LIDAR and RADAR, with respect to MTA processing, new approaches for resolving range ambiguities in LIDAR are possible. In this paper we compare known and novel techniques for avoiding or even resolving range ambiguities without any further user interaction required. Such techniques may be based upon measures affecting hardware (e.g. spatial multiplexing or modulation of consecutive laser pulses), software (e.g. assumptions about the true measurement range based on a rough DTM) or both hard- and soft-ware in order to achieve a high probability of correctly resolved range ambiguities. Furthermore a comparison of different approaches is given, discussing their specific (dis-) advantages and their current status of implementation.

  3. [INVITED] Laser welding of glasses at high repetition rates - Fundamentals and prospects

    NASA Astrophysics Data System (ADS)

    Richter, Sören; Zimmermann, Felix; Tünnermann, Andreas; Nolte, Stefan

    2016-09-01

    We report on the welding of various glasses with ultrashort laser pulses. Femtosecond laser pulses at repetition rates in the MHz range are focused at the interface between two substrates, resulting in multiphoton absorption and heat accumulation from successive pulses. This leads to local melting and subsequent resolidification which can be used to weld the glasses. The fundamental interaction process was studied using an in-situ micro Raman setup to measure the laser induced temperature distribution and its temporal decay. The induced network changes were analyzed by Raman spectrocopy identifying an increase of three and four membered silicon rings within the laser irradiated area. In order to determine the stability of the laser welded samples a three point bending test was used. Thereby, we identified that the maximal achievable breaking strength is limited by laser induced stress surrounding the modified material. To minimize the amount of stress bursts of laser pulses or an post processing annealing step can be applied. Besides fused silica, we welded borosilicate glasses and glasses with a low thermal expansion coefficient. Even the welding of different glass combinations is possible demonstrating the versatility of ultrashort pulse induced laser welding.

  4. Optical Parameter Variability in Laser Nerve Stimulation: A Study of Pulse Duration, Repetition Rate, and Wavelength

    PubMed Central

    Walsh, Joseph T.; Jansen, E. Duco; Bendett, Mark; Webb, Jim; Ralph, Heather; Richter, Claus-Peter

    2012-01-01

    Pulsed lasers can evoke neural activity from motor as well as sensory neurons in vivo. Lasers allow more selective spatial resolution of stimulation than the conventional electrical stimulation. To date, few studies have examined pulsed, mid-infrared laser stimulation of nerves and very little of the available optical parameter space has been studied. In this study, a pulsed diode laser, with wavelength between 1.844–1.873 μm, was used to elicit compound action potentials (CAPs) from the auditory system of the gerbil. We found that pulse durations as short as 35 μs elicit a CAP from the cochlea. In addition, repetition rates up to 13 Hz can continually stimulate cochlear spiral ganglion cells for extended periods of time. Varying the wavelength and, therefore, the optical penetration depth, allowed different populations of neurons to be stimulated. The technology of optical stimulation could significantly improve cochlear implants, which are hampered by a lack of spatial selectivity. PMID:17554829

  5. Choppers to optimise the repetition rate multiplication technique on a direct geometry neutron chopper spectrometer

    NASA Astrophysics Data System (ADS)

    Vickery, A.; Deen, P. P.

    2014-11-01

    In recent years the use of repetition rate multiplication (RRM) on direct geometry neutron spectrometers has been established and is the common mode of operation on a growing number of instruments. However, the chopper configurations are not ideally optimised for RRM with a resultant 100 fold flux difference across a broad wavelength band. This paper presents chopper configurations that will produce a relative constant (RC) energy resolution and a relative variable (RV) energy resolution for optimised use of RRM. The RC configuration provides an almost uniform ΔE/E for all incident wavelengths and enables an efficient use of time as the entire dynamic range is probed with equivalent statistics, ideal for single shot measurements of transient phenomena. The RV energy configuration provides an almost uniform opening time at the sample for all incident wavelengths with three orders of magnitude in time resolution probed for a single European Spallation Source (ESS) period, which is ideal to probe complex relaxational behaviour. These two chopper configurations have been simulated for the Versatile Optimal Resolution direct geometry spectrometer, VOR, that will be built at ESS.

  6. High energy, high repetition rate, second harmonic generation in large aperture DKDP, YCOB, and LBO crystals.

    PubMed

    Phillips, Jonathan P; Banerjee, Saumyabrata; Smith, Jodie; Fitton, Mike; Davenne, Tristan; Ertel, Klaus; Mason, Paul; Butcher, Thomas; De Vido, Mariastefania; Greenhalgh, Justin; Edwards, Chris; Hernandez-Gomez, Cristina; Collier, John

    2016-08-22

    We report on type-I phase-matched second harmonic generation (SHG) in three nonlinear crystals: DKDP (98% deuteration), YCOB (XZ plane), and LBO (XY plane), of 8 J, 10 Hz cryogenic gas cooled Yb:YAG laser operating at 1029.5 nm. DKDP exhibited an efficiency of 45% at a peak fundamental intensity of 0.24 GW/cm2 for 10 Hz operation at 10 ns. At the same intensity and repetition rate, YCOB and LBO showed 50% and 65% conversion efficiencies, respectively. Significant improvement in conversion efficiency, to a maximum of 82%, was demonstrated in LBO at 0.7 GW/cm2 and 10 Hz, generating output energy of 5.6 J at 514.75 nm, without damage or degradation. However, no improvement in conversion efficiency was recorded for YCOB at this increased intensity. Additionally, we present theoretically calculated temperature maps for both 10 J and 100 J operation at 10 Hz, and discuss the suitability of these three crystals for frequency conversion of a 100 J, 10 Hz diode pumped solid state laser (DPSSL). PMID:27557246

  7. Advances in generation of high-repetition-rate burst mode laser output.

    PubMed

    Jiang, Naibo; Webster, Matthew C; Lempert, Walter R

    2009-02-01

    It is demonstrated that the incorporation of variable pulse duration flashlamp power supplies into an Nd:YAG burst mode laser system results in very substantial increases in the realizable energy per pulse, the total pulse train length, and uniformity of the intensity envelope. As an example, trains of 20 pulses at burst frequencies of 50 and 20 kHz are demonstrated with individual pulse energy at 1064 nm of 220 and 400 mJ, respectively. Conversion efficiency to the second- (532 nm) and third- (355 nm) harmonic wavelengths of approximately 50% and 35-40%, respectively, is also achieved. Use of the third-harmonic output of the burst mode laser as a pump source for a simple, home built optical parametric oscillator (OPO) produces pulse trains of broadly wavelength tunable output. Sum-frequency mixing of OPO signal output at 622 nm with residual output from the 355 nm pump beam is shown to produce uniform bursts of tunable output at approximately 226 nm, with individual pulse energy of approximately 0.5 mJ. Time-correlated NO planar laser induced fluorescence (PLIF) image sequences are obtained in a Mach 3 wind tunnel at 500 kHz, representing, to our knowledge, the first demonstration of NO PLIF imaging at repetition rates exceeding tens of hertz. PMID:19183578

  8. Cavity-enhanced field-free molecular alignment at a high repetition rate.

    PubMed

    Benko, Craig; Hua, Linqiang; Allison, Thomas K; Labaye, François; Ye, Jun

    2015-04-17

    Extreme ultraviolet frequency combs are a versatile tool with applications including precision measurement, strong-field physics, and solid-state physics. Here we report on an application of extreme ultraviolet frequency combs and their driving lasers for studying strong-field effects in molecular systems. We perform field-free molecular alignment and high-order harmonic generation with aligned molecules in a gas jet at a repetition rate of 154 MHz using a high-powered optical frequency comb inside a femtosecond enhancement cavity. The cavity-enhanced system provides a means to reach suitable intensities to study field-free molecular alignment and enhance the observable effects of the molecule-field interaction. We observe modulations of the driving field, arising from the nature of impulsive stimulated Raman scattering responsible for coherent molecular rotations. We foresee the impact of this work on the study of molecule-based strong-field physics, with improved precision and a more fundamental understanding of the interaction effects on both the field and molecules. PMID:25933311

  9. High-repetition-rate Q-modulation in solid-state laser using fast saturable absorber V:YAG

    NASA Astrophysics Data System (ADS)

    Ma, Jia-Sai; Wang, Feng; Li, Pei-Xin; Hu, Wei-Wei; Yin, Chun-Hao; Xu, Jin-Long

    2015-07-01

    A high-repetition-rate Q-modulation operation in a solid-state Nd:GdVO4 laser with a V3+:YAG saturable absorber has been demonstrated in this paper. The V3+:YAG crystal behaves as a fast saturable absorber in this laser because of its very short lifetime of 22 ns. Taking advantage of such fast bleaching recovery and effective cooling of the V:YAG by a home-made copper holder, we realized a pulse repetition rate of 2.4 MHz, which is, to our best knowledge, the maximum among the reported passively Q-switched lasers. The corresponding average output power and pulse width were 1.28 W and 170 ns, respectively, giving a slope efficiency of 15.9% and a pulse energy of 0.53 µJ. This compact high-repetition-rate Q-switched laser offers a potential application in the construction of low-cost, integrated and portable sensing detection equipment which needs a high laser pulse repetition rate.

  10. High-repetition-rate optical delay line using a micromirror array and galvanometer mirror for a terahertz system.

    PubMed

    Kitahara, Hideaki; Tani, Masahiko; Hangyo, Masanori

    2009-07-01

    We developed a high-repetition-rate optical delay line based on a micromirror array and galvanometer mirror for terahertz time-domain spectroscopy. The micromirror array is fabricated by using the x-ray lithographic technology. The measurement of terahertz time-domain waveforms with the new optical delay line is demonstrated successfully up to 25 Hz. PMID:19655989

  11. Ultrashort pulse laser drilling of metals using a high-repetition rate high average power fiber CPA system

    NASA Astrophysics Data System (ADS)

    Ancona, A.; Jauregui, C.; Döring, S.; Röser, F.; Limpert, J.; Nolte, S.; Tünnermann, A.

    2009-02-01

    We present an experimental study of the drilling of metal targets with ultrashort laser pulses with pulse durations from 800 fs to 19 ps at repetition rates up to 1 MHz, average powers up to 70 Watts, using an Ytterbium-doped fiber CPA system. Particle shielding and heat accumulation have been found to influence the drilling efficiency at high repetition rates. Particle shielding causes an increase in the number of pulses for breakthrough. It occurs at a few hundred kHz, depending on the pulse energy and duration. The heat accumulation effect is noticed at higher repetition rates. Although it overbalances the particle shielding thus making the drilling process faster, heat accumulation is responsible for the formation of a large amount of molten material that limits the hole quality. The variations of the pulse duration reveal that heat accumulation starts at higher repetition rates for shorter pulse lengths. This is in agreement with the observed higher ablation efficiency with shorter pulse duration. Thus, the shorter pulses might be advantageous if highest precision and processing speed is required.

  12. Status of MBI activities: Will a transient collisional x-ray laser with high repetition rate come soon?

    NASA Astrophysics Data System (ADS)

    Nickles, Peter V.; Janulewicz, Karol A.; Priebe, Gerd; Lucianetti, Antonio; Kroemer, Robert K.; Gerlitzke, Anne-Kathrin; Sandner, Wolfgang

    2003-12-01

    Some prospects for development of collisional X-ray lasers with a high repetition rate based on the output characteristics of a transient Ni-like Ag soft X-ray laser pumped by a single picosecond laser pulse are analysed. Such problems as target technology, new driver development and the active medium parameters are discussed.

  13. Modeling transient gain dynamics in a cladding-pumped Yb-doped fiber ampliefier pulsed at low repetition rates

    NASA Technical Reports Server (NTRS)

    Valley, G. C.; Wright, M.

    2001-01-01

    Simulations of 1-50 kHz repetition rate, pulsed Yb-fiber amplifiers show peak powers to 10 kW with half-widths < 30 ns, consistent with commercial amplifier performance. This device is a potential source for deep space-communication.

  14. High Repetition Rate Table-Top Soft X-Ray Lasers in Capillary Discharges and Laser-Created Plasmas

    SciTech Connect

    Rocca, J.J.; Luther, B.M.; Heinbuch, S.; Larotonda, M.A.; Wang, Y.; Alessi, D.; Berrill, M.; Marconi, M.C.; Menoni, C.S.; Shlyaptsev, V.N.

    2006-01-05

    We discuss very recent advances in high repetition rate soft x-ray lasers resulting from the use of two different types of hot dense plasmas: fast capillary discharges and laser-created plasmas. We have demonstrated a new high repetition rate 46.9 nm capillary discharge laser that fits onto the surface area of a small desk and that operates at a relatively low voltage, therefore not requiring a Marx generator. Laser pulses with an energy of {approx} 13 {mu}J are generated at repetition rates up to 12 Hz. About (2-3)x104 laser shots can be generated with a single capillary. This new type of portable laser is an easily accessible source of intense short wavelength laser light for applications. We also discuss the demonstration of 5 Hz repetition rate table-top soft x-ray lasers producing microwatt average powers at wavelengths ranging from 13.2 to 33 nm. The results were obtained by collisional electron excitation of Ni-like and Ne-like ions in plasmas efficiently heated with a picosecond optical laser pulse impinging at grazing incidence onto a pre-created plasma. Efficient deposition of the pump beam into the gain region allows for the excitation of soft x-ray lasers in this wavelength range with a short pulse pump energy of only 1 J.

  15. Operation of the pulse-burst laser system for high-repetition-rate Thomson scattering on MST

    NASA Astrophysics Data System (ADS)

    Harris, W. S.; den Hartog, D. J.; Hurst, N. C.

    2011-10-01

    A custom pulse-burst laser system has been developed for high-repetition-rate Thomson scattering measurements on MST. The laser system is a master-oscillator power-amplifier (MOPA) design with five flashlamp-pumped amplifier stages. A diode-pumped, Q-switched Nd:YVO4 master oscillator (1064 nm) operates at pulse repetition rates between 5-250 kHz. The first four amplifier stages are Nd:YAG; the final amplifier is Nd:glass (silicate). Amplifier flashlamp drive is extremely flexible, ranging from short (250 μs) high-power pump pulses to long (10 ms) lower-power pulses. The entire laser system is computer controlled. Single pulse energies of the laser system are up to 5.5 J. Operation of the system with a short, high-power flashlamp discharge delivers a burst of up to 25 Q-switched laser pulses at 250 kHz repetition rate. For long flashlamp discharges, the laser system can deliver a burst of up to 50 pulses at a 5 kHz repetition rate. This work is supported by the U. S. DOE and NSF.

  16. High-repetition-rate pulse-burst laser for Thomson scattering on the MST reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Young, W. C.; Morton, L. A.; Parke, E.; Den Hartog, D. J.

    2013-11-01

    A new, high-repetition-rate pulse-burst laser system for the MST Thomson scattering diagnostic has operated with 2 J pulses at repetition rates up to 75 kHz within a burst. The 1064 nm laser currently employs a q-switched, diode pumped Nd:YVO4 master oscillator, four Nd:YAG amplifier stages, and a Nd:glass amplifier, with plans for an additional Nd:glass amplifier. The laser can maintain 1.5-2 J pulses in two operating modes: either at a uniform repetition rate of 5-10 kHz (sustained for 5-8 ms), or reach rates of up to 75 kHz in pulse-burst operation (for 10 bursts of 15 pulses each), limited by flashlamp explosion energy and wall loading. The full system, including an additional Nd:glass amplifier, is designed to produce bursts of 2 J pulses at a repetition rate of at least 250 kHz. Custom programmable square-pulse power supplies drive the amplifier flashlamps, providing fine control of pulse timing, duration, and repetition, and allow for pulse-burst operation. The new laser system integrates with the same collection optics and detectors as used by the previous MST Thomson laser: 21 spatial points across the MST minor radius, filter polychromators with 6 to 8 channels (10 eV-5 keV range), avalanche photodiode detectors, and 1 GSample/s/channel digitization. Use of the previous pulse-burst laser continues concurrently with new laser development. Additional notes on optimization of flashlamp simmering will also be covered, showing that an increase in simmer currents can improve pulse-to-pulse energy consistency on both the new and older lasers.

  17. Micro-processing of polymers and biological materials using high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ding, Li

    High repetition rate femtosecond laser micro-processing has been applied to ophthalmological hydrogel polymers and ocular tissues to create novel refractive and diffractive structures. Through the optimization of laser irradiation conditions and material properties, this technology has become feasible for future industrial applications and clinical practices. A femtosecond laser micro-processing workstation has been designed and developed. Different experimental parameters of the workstation such as laser pulse duration, focusing lens, and translational stages have been described and discussed. Diffractive gratings and three-dimensional waveguides have been fabricated and characterized in hydrogel polymers, and refractive index modifications as large as + 0.06 have been observed within the laser-irradiated region. Raman spectroscopic studies have shown that our femtosecond laser micro-processing induces significant thermal accumulation, resulting in a densification of the polymer network and increasing the localized refractive index of polymers within the laser irradiated region. Different kinds of dye chromophores have been doped in hydrogel polymers to enhance the two-photon absorption during femtosecond laser micro-processing. As the result, laser scanning speed can be greatly increased while the large refractive index modifications remain. Femtosecond laser wavelength and pulse energy as well as water and dye concentration of the hydrogels are optimized. Lightly fixed ocular tissues such as corneas and lenses have been micro-processed by focused femtosecond laser pulses, and refractive index modifications without any tissue-breakdown are observed within the stromal layer of the corneas and the cortex of the lenses. Living corneas are doped with Sodium Fluorescein to increase the two-photon absorption during the laser micro-processing, and laser scanning speed can be greatly increased while inducing large refractive index modifications. No evidence of cell death

  18. Nonword Repetition by Children with Cochlear Implants: Accuracy Ratings from Normal-Hearing Listeners.

    ERIC Educational Resources Information Center

    Dillon, Caitlin M.; Burkholder, Rose A.; Cleary, Miranda; Pisoni, David B.

    2004-01-01

    Seventy-six children with cochlear implants completed a nonword repetition task. The children were presented with 20 nonword auditory patterns over a loudspeaker and were asked to repeat them aloud to the experimenter. The children's responses were recorded on digital audiotape and then played back to normal-hearing adult listeners to obtain…

  19. Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser

    NASA Astrophysics Data System (ADS)

    Karimelahi, Samira; Abolghasemi, Ladan; Herman, Peter R.

    2014-01-01

    We present multiple methods of high aspect ratio hole drilling in fused silica glass, taking advantage of high power and high repetition rate picosecond lasers and flexible beam delivery methods to excise deep holes with minimal collateral damage. Combinations of static and synchronous scanning of laser focus were explored over a range of laser repetition rates and burst-train profiles that dramatically vary laser plume interaction dynamics, heat-affected zone, and heat accumulation physics. Chemically assisted etching of picosecond laser modification tracks are also presented as an extension from femtosecond laser writing of volume nanograting to form high aspect ratio (77) channels. Processing windows are identified for the various beam delivery methods that optimize the laser exposure over energy, wavelength, and repetition rate to reduce microcracking and deleterious heating effects. The results show the benefits of femtosecond laser interactions in glass extend into the picosecond domain, where the attributes of higher power further yield wide processing windows and significantly faster fabrication speed. High aspect ratio holes of 400 μm depth were formed over widely varying rates of 333 holes per second for mildly cracked holes in static-focal positioning through to one hole per second for low-damage and taper free holes in synchronous scanning.

  20. Low-Pump-Power, Low-Phase-Noise, and Microwave to Millimeter-Wave Repetition Rate Operation in Microcombs

    NASA Astrophysics Data System (ADS)

    Li, Jiang; Lee, Hansuek; Chen, Tong; Vahala, Kerry J.

    2012-12-01

    Microresonator-based frequency combs (microcombs or Kerr combs) can potentially miniaturize the numerous applications of conventional frequency combs. A priority is the realization of broadband (ideally octave spanning) spectra at detectable repetition rates for comb self-referencing. However, access to these rates involves pumping larger mode volumes and hence higher threshold powers. Moreover, threshold power sets both the scale for power per comb tooth and also the optical pump. Along these lines, it is shown that a class of resonators having surface-loss-limited Q factors can operate over a wide range of repetition rates with minimal variation in threshold power. A new, surface-loss-limited resonator illustrates the idea. Comb generation on mode spacings ranging from 2.6 to 220 GHz with overall low threshold power (as low as 1 mW) is demonstrated. A record number of comb lines for a microcomb (around 1900) is also observed with pump power of 200 mW. The ability to engineer a wide range of repetition rates with these devices is also used to investigate a recently observed mechanism in microcombs associated with dispersion of subcomb offset frequencies. We observe high-coherence phase locking in cases where these offset frequencies are small enough so as to be tuned into coincidence. In these cases, a record-low microcomb phase noise is reported at a level comparable to an open-loop, high-performance microwave oscillator.

  1. Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity

    SciTech Connect

    Shen, Xuling; He, Boqu; Zhao, Jian; Liu, Yang; Bai, Dongbi; Wang, Chao; Liu, Geping; Luo, Daping; Liu, Fengjiang; Li, Wenxue; Zeng, Heping; Yang, Kangwen; Hao, Qiang

    2015-01-19

    We present a method for stabilizing the repetition rate of an erbium-doped all-fiber laser by inserting an electronic polarization controller (EPC) in the fiber laser cavity. The device exhibited good integration, low cost, and convenient operation. Such a repetition rate stabilization may facilitate an all-fiber laser comb system with high integration. The repetition rate was phase-locked to a Rb reference more than 72 h with a low feedback voltage applied to one channel of the EPC. The repetition rate was 74.6 MHz. The standard deviation and the repetition rate linewidth were 1.4 and 1.7 mHz, respectively.

  2. Ytterbium fiber-based, 270 fs, 100 W chirped pulse amplification laser system with 1 MHz repetition rate

    NASA Astrophysics Data System (ADS)

    Zhao, Zhigang; Kobayashi, Yohei

    2016-01-01

    A 100 W Yb-doped, fiber-based, femtosecond, chirped pulse amplification laser system was developed with a repetition rate of 1 MHz, corresponding to a pulse energy of 100 µJ. Large-scale, fused-silica transmission gratings were used for both the pulse stretcher and compressor, with a compression throughput efficiency of ∼85%. A pulse duration of 270 fs was measured by second harmonic generation frequency-resolved optical gating (SHG-FROG). To the best of our knowledge, this is the shortest pulse duration ever achieved by a 100-W-level fiber chirped pulse amplification laser system at a repetition rate of few megahertz, without any special post-compression manipulation.

  3. 1 MHz repetition rate hollow fiber pulse compression to sub-100-fs duration at 100 W average power.

    PubMed

    Rothhardt, Jan; Hädrich, Steffen; Carstens, Henning; Herrick, Nicholas; Demmler, Stefan; Limpert, Jens; Tünnermann, Andreas

    2011-12-01

    We report on nonlinear pulse compression at very high average power. A high-power fiber chirped pulse amplification system based on a novel large pitch photonic crystal fiber delivers 700 fs pulses with 200 μJ pulse energy at a 1 MHz repetition rate, resulting in 200 W of average power. Subsequent spectral broadening in a xenon-filled hollow-core fiber and pulse compression with chirped mirrors is employed for pulse shortening and peak power enhancement. For the first time, to our knowledge, more than 100 W of average power are transmitted through a noble-gas-filled hollow fiber. After pulse compression of 81 fs, 93 μJ pulses are obtained at a 1 MHz repetition rate. PMID:22139257

  4. 1  J, 0.5  kHz repetition rate picosecond laser.

    PubMed

    Baumgarten, Cory; Pedicone, Michael; Bravo, Herman; Wang, Hanchen; Yin, Liang; Menoni, Carmen S; Rocca, Jorge J; Reagan, Brendan A

    2016-07-15

    We report the demonstration of a diode-pumped chirped pulse amplification Yb:YAG laser that produces λ=1.03  μm pulses of up to 1.5 J energy compressible to sub-5 ps duration at a repetition rate of 500 Hz (750 W average power). Amplification to high energy takes place in cryogenically cooled Yb:YAG active mirrors designed for kilowatt average power laser operation. This compact laser system will enable new advances in high-average-power ultrashort-pulse lasers and high-repetition-rate tabletop soft x-ray lasers. As a first application, the laser was used to pump a 400 Hz λ=18.9  nm laser. PMID:27420530

  5. Neodymium glass laser with a pulse energy of 220 J and a pulse repetition rate of 0.02 Hz

    SciTech Connect

    Kuzmin, A A; Kulagin, O V; Khazanov, Efim A; Shaykin, A A

    2013-07-31

    A compact neodymium glass laser with a pulse energy of 220 J and a record-high pulse repetition rate of 0.02 Hz (pulse duration 30 ns) is developed. Thermally induced phase distortions are compensated using wave phase conjugation. The integral depolarisation of radiation is decreased to 0.4% by using linear compensation schemes. The second harmonic of laser radiation can be used for pumping Ti : sapphire multipetawatt complexes. (letters)

  6. Breaking the trade-off: rainforest bats maximize bandwidth and repetition rate of echolocation calls as they approach prey

    PubMed Central

    Schmieder, Daniela A.; Kingston, Tigga; Hashim, Rosli; Siemers, Björn M.

    2010-01-01

    Both mammals and birds experience a performance trade-off between producing vocalizations with high bandwidths and at high repetition rate. Echolocating bats drastically increase repetition rate from 2–20 calls s−1 up to about 170 calls s−1 prior to intercepting airborne prey in order to accurately track prey movement. In turn, bandwidth drops to about 10–30 kHz for the calls of this ‘final buzz’. We have now discovered that Southeast Asian rainforest bats (in the vespertilionid subfamilies Kerivoulinae and Murininae) are able to maintain high call bandwidths at very high repetition rates throughout approach to prey. Five species of Kerivoula and Phoniscus produced call bandwidths of between 78 and 170 kHz at repetition rates of 140–200 calls s−1 and two of Murina at 80 calls s−1. The ‘typical’ and distinct drop in call frequency was present in none of the seven species. This stands in striking contrast to our present view of echolocation during approach to prey in insectivorous bats, which was established largely based on European and American members of the same bat family, the Vespertilionidae. Buzz calls of Kerivoula pellucida had mean bandwidths of 170 kHz and attained maximum starting frequencies of 250 kHz which makes them the most broadband and most highly pitched tonal animal vocalization known to date. We suggest that the extreme vocal performance of the Kerivoulinae and Murininae evolved as an adaptation to echolocating and tracking arthropods in the dense rainforest understorey. PMID:20356884

  7. Self-mode-locked all-fibre erbium laser with a low repetition rate and high pulse energy

    SciTech Connect

    Denisov, Vladimir I; Nyushkov, B N; Pivtsov, V S

    2010-01-31

    Self-starting mode locking is demonstrated for the first time in an all-fibre erbium laser with a cavity length above 1 km and high positive (normal) intracavity dispersion. The unconventional cavity design, with polarisation instability compensation, ensures stable operation and good frequency stability. The laser generates pulses with a record low repetition rate (82.4 kHz) and record high energy (564.3 nJ). (lasers)

  8. Octave-spanning Ti:sapphire laser with a repetition rate >1 ghz for optical frequency measurements and comparisons.

    PubMed

    Fortier, T M; Bartels, A; Diddams, S A

    2006-04-01

    We demonstrate a self-referenced, octave-spanning, mode-locked Ti:sapphire laser with a scalable repetition rate (550 MHz - 1.35 GHz). We use the frequency comb output of the laser, without additional broadening in optical fiber, for simultaneous measurements against atomic optical standards at 534, 578, 563, and 657 nm and to stabilize the laser offset frequency. PMID:16599240

  9. MAPLE-deposited PFO films: influence of the laser fluence and repetition rate on the film emission and morphology

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Anni, M.; Cesaria, M.; Lattante, S.; Leggieri, G.; Leo, C.; Martino, M.; Perulli, A.; Resta, V.

    2015-06-01

    The Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique is emerging as an alternative route to the conventional methods for depositing organic materials, although the MAPLE-deposited films very often present high surface roughness and characteristic morphological features. Films of the blue-emitting polymer, poly(9,9-dioctylfluorene)—PFO, have been deposited by MAPLE to investigate the influence of the laser fluence and repetition rate on both their topography and emission properties. The laser fluence has been changed from 150 up to 450 mJ/cm2, while laser repetition rates of 2 and 10 Hz have been considered. The interplay/relationship between the topography and the emission properties of the MAPLE-deposited films has been studied by confocal microscopy, photoluminescence spectrometry and atomic force microscopy. It has been found that under high irradiation (fluence of 450 mJ/cm2) conditions, the sample surface is characterized by bubbles presenting the intrinsic PFO blue emission. Instead, while improvements in the film morphology can be observed for lowered fluence and laser repetition rate, green emission becomes predominant in such conditions. Such result is very interesting to better understand the MAPLE ablation mechanism, which is discussed in this study.

  10. High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system.

    PubMed

    Ancona, A; Röser, F; Rademaker, K; Limpert, J; Nolte, S; Tünnermann, A

    2008-06-01

    We present an experimental study on the drilling of metal targets with ultrashort laser pulses at high repetition rates (from 50 kHz up to 975 kHz) and high average powers (up to 68 Watts), using an ytterbium-doped fiber CPA system. The number of pulses to drill through steel and copper sheets with thicknesses up to 1 mm have been measured as a function of the repetition rate and the pulse energy. Two distinctive effects, influencing the drilling efficiency at high repetition rates, have been experimentally found and studied: particle shielding and heat accumulation. While the shielding of subsequent pulses due to the ejected particles leads to a reduced ablation efficiency, this effect is counteracted by heat accumulation. The experimental data are in good qualitative agreement with simulations of the heat accumulation effect and previous studies on the particle emission. However, for materials with a high thermal conductivity as copper, both effects are negligible for the investigated processing parameters. Therefore, the full power of the fiber CPA system can be exploited, which allows to trepan high-quality holes in 0.5mm-thick copper samples with breakthrough times as low as 75 ms. PMID:18545607

  11. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal.

    PubMed

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I; Wang, Jiyang

    2016-01-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc. PMID:27461819

  12. Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate.

    PubMed

    Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun

    2012-01-16

    A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed. PMID:22274534

  13. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal

    NASA Astrophysics Data System (ADS)

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I.; Wang, Jiyang

    2016-07-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc.

  14. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal

    PubMed Central

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I.; Wang, Jiyang

    2016-01-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc. PMID:27461819

  15. Ultrafast, high repetition rate, ultraviolet, fiber-laser-based source: application towards Yb+ fast quantum-logic.

    PubMed

    Hussain, Mahmood Irtiza; Petrasiunas, Matthew Joseph; Bentley, Christopher D B; Taylor, Richard L; Carvalho, André R R; Hope, Joseph J; Streed, Erik W; Lobino, Mirko; Kielpinski, David

    2016-07-25

    Trapped ions are one of the most promising approaches for the realization of a universal quantum computer. Faster quantum logic gates could dramatically improve the performance of trapped-ion quantum computers, and require the development of suitable high repetition rate pulsed lasers. Here we report on a robust frequency upconverted fiber laser based source, able to deliver 2.5 ps ultraviolet (UV) pulses at a stabilized repetition rate of 300.00000 MHz with an average power of 190 mW. The laser wavelength is resonant with the strong transition in Ytterbium (Yb+) at 369.53 nm and its repetition rate can be scaled up using high harmonic mode locking. We show that our source can produce arbitrary pulse patterns using a programmable pulse pattern generator and fast modulating components. Finally, simulations demonstrate that our laser is capable of performing resonant, temperature-insensitive, two-qubit quantum logic gates on trapped Yb+ ions faster than the trap period and with fidelity above 99%. PMID:27464118

  16. All-fiberized SBS-based high repetition rate sub-nanosecond Yb fiber laser for supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Hua, Dacheng; Su, Jianjia; Cui, Wei; Yan, Yaxi; Jiang, Peipei

    2014-12-01

    We report an all-fiberized SBS-based high repetition rate sub-nanosecond Yb fiber laser for supercontinuum generation. The high repetition rate ns laser pulses were produced from a fiber Bragg grating (FBG)-constructed fiber laser cavity consisting of a piece of double cladding Yb fiber as the gain medium and a short piece of Bi/Cr-doped fiber as a saturable absorber (SA). By optimizing the fiber length of the Bi/Cr-doped fiber and the reflectivity of the FBG, the Q-switching state of the fiber laser can be adjusted so that the energy storing condition within the fiber cavity can assure the start of stimulated Brillouin scattering (SBS) and as a result, compress the laser pulse duration. The fiber laser had an average laser power output of 1.2 W at 1064 nm with pulse repetition rate of about 80 kHz, almost four times the reported results. The pulse duration was about 1 ns with peak power of about 15 kW. After one stage of amplification, the laser power was raised to about 3 W and was used to pump a 20 m long photonic crystal fiber (PCF). Supercontiuum (SC) laser output was obtained with average power up to 1.24 W and spectrum spanning from 550 to 2200 nm.

  17. Repetitive flash x-ray generator operated at low-dose rates for a medical x-ray television system

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Isobe, Hiroshi; Takahashi, Kei; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1991-04-01

    The fundamental studies for the repetitive flash x-ray generator operated at lowdose rates for a medical x-ray television system are described. This x-ray generator consisted of the following components: a high-voltage power supply, an energy storage condenser of lOOnF, a coaxial cable condenser with a capacity of l000pF, a repetitive impulse switching system, a turbo molecular pump, and an x-ray tube having a cold cathode. The condenser was charged from 40 to 70kV by a power supply, and the electric charges stored in the condenser were discharged repetitively by using a trigger electrode operated by an impulse switching system. The x-ray tube was of the triode-type which was connected to the turbo molecular pump and had a large discharge impedance in order to prevent the damped oscillations of the tube current and voltage. The maximum tube voltage was equivalent to the initial charged voltage, and the peak current was less than 70A. The durations were about 2ps, and the x-ray intensities were less than 1. OpC/kg at 0. 5m per pulse. The repetition frequency was less than 50Hz, and the effective focal spot size was equivalent to the anode diameter of 3. 0mm. For the x-ray television system used in conjunction with this repetitive pulsed x-ray generator, since the electromagnetic noise primarily caused by the high tube current was decreased, noise-free stroboscopic radiography performed by the television system could be realized.

  18. A Simulation of the Effects of Varying Repetition Rate and Pulse Width of Nanosecond Discharges on Premixed Lean Methane-Air Combustion

    DOE PAGESBeta

    Bak, Moon Soo; Cappelli, Mark A.

    2012-01-01

    Two-dimensional kinetic simulation has been carried out to investigate the effects of repetition rate and pulse width of nanosecond repetitively pulsed discharges on stabilizing premixed lean methane-air combustion. The repetition rate and pulse width are varied from 10 kHz to 50 kHz and from 9 ns to 2 ns while the total power is kept constant. The lower repetition rates provide larger amounts of radicals such as O, H, and OH. However, the effect on stabilization is found to be the same for all of the tested repetition rates. The shorter pulse width is found to favor the production of species in higher electronicmore » states, but the varying effects on stabilization are also found to be small. Our results indicate that the total deposited power is the critical element that determines the extent of stabilization over this range of discharge properties studied.« less

  19. LD pumped high-repetition-rate high-power 532nm Nd:YAG/LBO solid state laser

    NASA Astrophysics Data System (ADS)

    Li, Pingxue; Liu, Dongyu; Chi, Junjie; Yang, Chun; Zhao, Ziqiang; Hu, Haowei; Zhang, Guangju; Yao, Yifei

    2013-09-01

    Diode pumped solid state 532 nm green laser is widely required for many industrial, medical and scientific applications. Among most of these applications, high power quasi-continuous-wave (QCW) green laser output is demanded. This can be efficiently achieved through a diode-side-pumped acoustic-optic Q-switched Nd:YAG laser with an intracavity second harmonic generation (SHG). In our experiment, LBO crystal is used for the second harmonic generation of high-average-power lasers of near infrared (NIR) range, though its effective NLO coefficient deff is relatively small. It is because of its high damage threshold (greater than 2.5 GW/cm2), large acceptance angle, small walk-off angle, and the nonhygroscopic characteristic. In this paper, we reported a high-repetition-rate high-power diode-side-pumped AO Q-switched Nd:YAG 532 nm laser. A plane-plane cavity with two rods, two AO Q-switches and the type II critical phase-matched LBO at room temperature were employed. Under the LD pump power of 480 W, 95.86 W at 1064 nm wavelength was achieved when the repetition rate was 15 kHz, and the 532 nm average output power of 44.77 W was obtained, with a pulse width of 111.7 ns, corresponding to an optical to optical conversion efficiency of 46.7% from 1064 nm to 532 nm. The 532 nm average output power was 40.10 W at a repetition rate of 10 kHz with a pulse width of 78.65 ns. The output characteristics of the SHG varying with the pumping current and the pulse repetition frequency (PRF) of the laser were also investigated. Further improvement of the SHG is under study.

  20. Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate.

    PubMed

    Zhang, Yuxia; Yu, Haohai; Zhang, Huaijin; Di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang

    2016-06-15

    We demonstrate efficient laser-diode pumped multi-gigahertz (GHz) self-mode-locked praseodymium (Pr3+) visible lasers with broadband spectra from green to deep red for the first time to our knowledge. With a Pr3+-doped GdLiF4 crystal, stable self-mode-locked visible pulsed lasers at the wavelengths of 522 nm, 607 nm, 639 nm, and 720 nm have been obtained with the repetition rates of 2.8 GHz, 3.1 GHz, 3.1 GHz, and 3.0 GHz, respectively. The maximum output power was 612 mW with the slope efficiency of 46.9% at 639 nm. The mode-locking mechanism was theoretically analyzed. The stable second-harmonic mode-locking with doubled repetition frequency was also realized based on the Fabry-Perot effect formed in the laser cavity. In addition, we find that the polarization directions were turned with lasing wavelengths. This work may provide a new way for generating efficient ultrafast pulses with high- and changeable-repetition rates in the visible range. PMID:27304265

  1. Oral-diadochokinetic rates for Hebrew-speaking school-age children: real words vs. non-words repetition.

    PubMed

    Icht, Michal; Ben-David, Boaz M

    2015-02-01

    Oral-diadochokinesis (DDK) tasks are a common tool for evaluating speech disorders. Usually, these tasks involve repetitions of non-words. It has been suggested that repeating real words can be more suitable for preschool children. But, the impact of using real words with elementary school children has not been studied yet. This study evaluated oral-DDK rates for Hebrew-speaking elementary school children using non-words and real words. The participants were 60 children, 9-11 years old, with normal speech and language development, who were asked to repeat "pataka" (non-word) and "bodeket" (Hebrew real word). Data replicate the advantage generally found for real word repetition with preschoolers. Children produced real words faster than non-words for all age groups, and repetition rates were higher for the older children. The findings suggest that adding real words to the standard oral-DDK task with elementary school children may provide a more comprehensive picture of oro-motor function. PMID:25259403

  2. High-peak-power optically pumped AlGaInAs eye-safe laser at 500-kHz repetition rate with an intracavity diamond heat spreader

    NASA Astrophysics Data System (ADS)

    Chen, Y.-F.; Su, K. W.; Chen, W. L.; Huang, K. F.; Chen, Y. F.

    2012-08-01

    We report on a compact efficient high-repetition-rate (>100 kHz) optically pumped AlGaInAs nanosecond eye-safe laser at 1525 nm. A diamond heat spreader bonded to the gain chip is employed to improve the heat removal. At a pump power of 13.3 W, the average output power at a repetition rate 200 kHz is up to 3.12 W, corresponding to a peak output power of 560 W. At a repetition rate 500 kHz, the maximum average power and peak power are found to be 2.32 W and 170 W, respectively.

  3. Low-noise, low repetition rate, semiconductor-based mode-locked laser source suitable for high bandwidth photonic analog-digital conversion.

    PubMed

    Mandridis, Dimitrios; Ozdur, Ibrahim; Quinlan, Franklyn; Akbulut, Mehmetcan; Plant, Jason J; Juodawlkis, Paul W; Delfyett, Peter J

    2010-05-20

    A semiconductor-based mode-locked laser source with low repetition rate, ultralow amplitude, and phase noise is introduced. A harmonically mode-locked semiconductor-based ring laser is time demultiplexed at a frequency equal to the cavity fundamental frequency (80MHz), resulting in a low repetition rate pulse train having ultralow amplitude and phase noise, properties usually attributed to multigigahertz repetition rate lasers. The effect of time demultiplexing on the phase noise of harmonically mode-locked lasers is analyzed and experimentally verified. PMID:20490247

  4. 3.7 GHz repetition rate operated narrow-bandwidth picosecond pulsed Yb fiber amplifier with an all-fiber multiplier

    NASA Astrophysics Data System (ADS)

    Wei, K. H.; Wen, R. H.; Guo, Y.

    2016-04-01

    A high power picosecond pulsed Yb fiber amplifier with a pulse repetition rate of 3.7 GHz is experimentally demonstrated. The seed is a gain switched distributed Bragg reflection (DBR) structured laser diode (LD) with a pulse duration of 130 ps and a repetition rate of 460 MHz. The pulse repetition rate is increased to 3.7 GHz by introducing an all-fiber multiplier, which is composed of four 2  ×  2 structured fiber couplers. The multiplied pulse train is amplified to 81 W through two stage Yb fiber amplifiers.

  5. development of a medium repetition rate (10 Hz - 500 Hz) diode pumped laser transmitter for airborne scanning altimetry

    NASA Technical Reports Server (NTRS)

    Coyle, D. Barry; Lindauer, Steven J., II; Kay, Richard B.

    1998-01-01

    Since the late 1980's, NASA has developed several small, all-solid state lasers of low repetition rates for use as transmitters in prototype LIDAR and raster scanned altimetry retrieval systems. Our early laser transmitters were developed for high resolution airborne altimetry which employed cavity dumping techniques to produce a pulse shape with a 1 ns rise time. The first such laser was the SUMR (Sub-millimeter resolution) transmitter which used a side pumped, D-shaped half-rod of Nd:YAG for the oscillator active media and produced approximately 3 ns pulses of 100 micro-J energy at a 40 Hz repetition rate. (Coyle and Blair, 1993; Coyle et al., 1995) After several upgrades to improve rep rate and pulse energy, the final version produced 1.2 mJ pulses at 120 Hz with a 3.7 ns pulse width. The laser has become known as SPLT (Sharp Pulsed Laser Transmitter), and has flown successfully on a variety of airborne altimetry missions. (Coyle and Blair, 1995; Blair et al., 1994) From building these systems, we have accrued valuable experience in delivering field-deployable lasers and have become aware of the advantages and disadvantages of employing new technologies. For example, even though the laser's main operating environment is in a "cold" aircraft during flight, the laser must still operate in very warm temperatures. This is important if the mission is based in the desert or a tropical climate since ground calibration data from stationary targets must be gathered before and after each data flight. Because conductive cooling is much more convenient than closed loop water flow, achieving the highest possible laser efficiency is becoming a high priority when designing a flight laser. This is especially true for lasers with higher pulse energies and repetition rates which are needed for high altitude scanning altimeters and LIDARs.

  6. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    NASA Astrophysics Data System (ADS)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  7. >400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging

    PubMed Central

    Oh, Wang-Yuhl; Vakoc, Benjamin J.; Shishkov, Milen; Tearney, Guillermo J.; Bouma, Brett E.

    2010-01-01

    We demonstrate a high-speed wavelength-swept laser with a tuning range of 104 nm (1228–1332 nm) and a repetition rate of 403 kHz. The design of the laser utilizes a high-finesse polygon-based wavelength-scanning filter and a short-length unidirectional ring resonator. Optical frequency domain imaging of the human skin in vivo is presented using this laser, and the system shows sensitivity of higher than 98 dB with single-side ranging depth of 1.7 mm over 4 dB sensitivity roll-off. PMID:20808369

  8. Efficient neutron generation from solid-nanoparticle explosions driven by DPSSL-pumped high-repetition rate femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Watari, T.; Matsukado, K.; Sekine, T.; Takeuchi, Y.; Hatano, Y.; Yoshimura, R.; Satoh, N.; Nishihara, K.; Takagi, M.; Kawashima, T.

    2016-03-01

    We propose novel neutron source using high-intensity laser based on the cluster fusion scheme. We developed DPSSL-pumped high-repetition-rate 20-TW laser system and solid nanoparticle target for neutron generation demonstration. In our neutron generation experiment, high-energy deuterons were generated from coulomb explosion of CD solid- nanoparticles and neutrons were generated by DD fusion reaction. Efficient and stable neutron generation was obtained by irradiating an intense femtosecond laser pulse of >2×1018 W/cm2. A yield of ∼105 neutrons per shot was stably observed during 0.1-1 Hz continuous operation.

  9. High-repetition-rate widely tunable LiF : \\mathbf{\\mathsf{F}}_\\mathbf{\\mathsf{2}}^{-} color center lasers

    NASA Astrophysics Data System (ADS)

    Men, Shaojie; Liu, Zhaojun; Cong, Zhenhua; Rao, Han; Zhang, Sasa; Liu, Yang; Zverev, Petr G.; Konyushkin, Vasily A.; Zhang, Xingyu

    2016-02-01

    High-repetition-rate tunable LiF:\\text{F}2- color center lasers pumped by quasi-continuous-wave diode-side-pumped acousto-optically Q-switched Nd:YAG laser are demonstrated. Littrow-grating and Littman-grating tuning schemes are studied respectively. In the Littrow-grating scheme, the tuning range was 1085 nm to 1275 nm, and the maximal average output power was 275 mW. In the Littman-grating scheme, the tuning range was 1105.5 nm to 1215.5 nm, and the maximal average output power was 135 mW.

  10. High-repetition-rate tunable dye lasers pumped by copper vapor laser

    SciTech Connect

    Zherikin, A.N.; Letokhov, V.S.; Mishin, V.I.; Belyaev, V.P.; Evtyunin, A.N.; Lesnoi, M.A.

    1981-06-01

    A study was made of stimulated emission and amplification of light in lasers with active media consisting of alcohol solutions of rhodamines 110, 6G, and B, and of oxazine 17. The pulse repetition frequency was 10 kHz and pumping was provided by a mass-produced copper vapor laser of the ILGI-101 type. The dye lasers emitted in the range 530--720 nm. The efficiency of the oxazine 17 laser was 20% and the efficiency of the rhodamine 6G amplifier was 30% when the width of the laser emission spectrum was 0.8 cm/sup -1/. A Fabry--Perot interferometer was used to reduce the width of the spectrum to 0.04 cm/sup -1/, but this reduced the efficiency to 7%. The maximum output power was 0.6 W. The radiation was transformed to the second harmonic in the 265--360 nm range with an efficiency of 5%.

  11. BRIEF COMMUNICATIONS: High-repetition-rate tunable dye lasers pumped by copper vapor laser

    NASA Astrophysics Data System (ADS)

    Zherikin, A. N.; Letokhov, V. S.; Mishin, V. I.; Belyaev, V. P.; Evtyunin, A. N.; Lesnoĭ, M. A.

    1981-06-01

    A study was made of stimulated emission and amplification of light in lasers with active media consisting of alcohol solutions of rhodamines 110, 6G, and B, and of oxazine 17. The pulse repetition frequency was 10 kHz and pumping was provided by a mass-produced copper vapor laser of the ILGI-101 type. The dye lasers emitted in the range 530-720 nm. The efficiency of the oxazine 17 laser was 20% and the efficiency of the rhodamine 6G amplifier was 30% when the width of the laser emission spectrum was 0.8 cm-1. A Fabry-Perot interferometer was used to reduce the width of the spectrum to 0.04 cm-1, but this reduced the efficiency to 7%. The maximum output power was 0.6 W. The radiation was transformed to the second harmonic in the 265-360 nm range with an efficiency of 5%.

  12. Filamentation effect in a gas attenuator for high-repetition-rate X-ray FELs.

    PubMed

    Feng, Yiping; Krzywinski, Jacek; Schafer, Donald W; Ortiz, Eliazar; Rowen, Michael; Raubenheimer, Tor O

    2016-01-01

    A sustained filamentation or density depression phenomenon in an argon gas attenuator servicing a high-repetition femtosecond X-ray free-electron laser has been studied using a finite-difference method applied to the thermal diffusion equation for an ideal gas. A steady-state solution was obtained by assuming continuous-wave input of an equivalent time-averaged beam power and that the pressure of the entire gas volume has reached equilibrium. Both radial and axial temperature/density gradients were found and describable as filamentation or density depression previously reported for a femtosecond optical laser of similar attributes. The effect exhibits complex dependence on the input power, the desired attenuation, and the geometries of the beam and the attenuator. Time-dependent simulations were carried out to further elucidate the evolution of the temperature/density gradients in between pulses, from which the actual attenuation received by any given pulse can be properly calculated. PMID:26698041

  13. High repetition rate multi-channel source of high-power rf-modulated pulses

    NASA Astrophysics Data System (ADS)

    Ulmaskulov, M. R.; Pedos, M. S.; Rukin, S. N.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Yalandin, M. I.; Romanchenko, I. V.; Rostov, V. V.

    2015-07-01

    This paper presents the results of testing a high voltage pulse generator based on parallel gyromagnetic nonlinear transmission lines filled with saturable ferrite. The generator is capable of producing almost identical stable rf-modulated nanosecond high voltage pulses in each of the two, or four, parallel output channels. The output voltage amplitude in each channel can reach -285 or -180 kV, respectively, with a rf modulation depth of up to 60%. Drive pulses were produced as the packets of duration 1-5 s at a pulse repetition frequency of 800 Hz using a driver equipped with all-solid-state switches. Splitting the driver pulse provided electric field strengths in the channels which were below the breakdown field strength of the transmission lines. As a result, the use of nonlinear transmission lines of reduced diameter made it possible to increase the center frequency of the excited rf oscillations to ˜2 GHz.

  14. Performance Optimization of a High-Repetition-Rate KrF Laser Plasma X-Ray Source for Microlithography.

    PubMed

    Bukerk, F; Louis, E; Turcu, E C; Tallents, G J; Batani, D

    1992-01-01

    In order to develop a high-intensity laser plasma x-ray source appropriate for industrial application of x-ray lithography, experiments have been carried out using a high-repetition-rate (up to 40 Hz) excimer laser (249 nm, 300 mJ) with a power density of 2 × 1013 W/ cm2 in the laser focus. In this study emphasis is given to remedying specific problems inherent in operating the laser plasma x-ray source at high repetition rates and in its prolonged operation. Two different methods of minimizing the production of target debris are investigated. First, the use of helium as a quenching gas results in a reduction of the amount of atomic debris particles by more than two orders of magnitude with negligible x-ray absorption. Second, a tape target as opposed to a solid target reduces the production of larger debris particles by a further factor of 100. Remaining debris is stopped by an aluminized plastic or beryllium filter used to avoid exposure of the resist by plasma ultraviolet radiation. The x-ray source has been used to image x-ray transmission mask structures down to 0.3 μm onto general purpose x-ray photo-resist. Results have been analyzed with SEM. The x-ray emission spectrum of the repetitive laser plasmas created from an iron target has been recorded and the conversion efficiency of the laser light into x-rays that contribute to exposure of the resist was measured to be 0.3% over 2π sr. PMID:21307442

  15. Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate.

    PubMed

    Lee, Keunwoo; Lee, Joohyung; Jang, Yoon-Soo; Han, Seongheum; Jang, Heesuk; Kim, Young-Jin; Kim, Seung-Woo

    2015-01-01

    Femtosecond lasers allow for simultaneous detection of multiple absorption lines of a specimen over a broad spectral range of infrared or visible light with a single spectroscopic measurement. Here, we present an 8-THz bandwidth, 0.5-GHz resolution scheme of Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser. A resolving power of 1.6 × 10(4) about a 1560-nm center wavelength is achieved by sweeping the pulse repetition rate of the light source on a fiber Mach-Zehnder interferometer configured to capture interferograms with a 0.02-fs temporal sampling accuracy through a well-stabilized 60-m unbalance arm length. A dual-servo mechanism is realized by combining a mechanical linear stage with an electro-optic modulator (EOM) within the fiber laser cavity, enabling stable sweeping control of the pulse repetition rate over a 1.0-MHz scan range with 0.4-Hz steps with reference to the Rb clock. Experimental results demonstrate that the P-branch lines of the H(13)CN reference cell can be observed with a signal-to-noise ratio reaching 350 for the most intense line. PMID:26503257

  16. Effect of triggered discharge using an excimer laser with high-repetition-rate of the order of kilohertz

    SciTech Connect

    Yamaura, Michiteru; Watanabe, Takashi; Hayashi, Nobuya; Ihara, Satoshi

    2005-03-28

    The triggering ability of the laser-triggered lightning method is improved by using a KrF excimer laser with a high-repetition-rate of the order of kHz order. It is clarified that the effect of a triggered discharge is considerably enhanced when the plasma density is greater than 10{sup 13} cm{sup -3}. Thus far, the laser-triggered lightning method has not been expected to display a triggering ability since one pulse of an excimer laser possesses energy of less than 1 J, and the produced plasma has a low density of 10{sup 12} cm{sup -3}, its plasma density is one order lower than that required for its application in the triggering and guiding of lightning discharge. The enhancement of plasma density achieved by utilizing the accumulation effect of charged particles generated by the high-repetition-rate laser was 10{sup 13} cm{sup -3}. This led to an effective a 50% reduction in the self-breakdown voltage.

  17. Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate

    NASA Astrophysics Data System (ADS)

    Lee, Keunwoo; Lee, Joohyung; Jang, Yoon-Soo; Han, Seongheum; Jang, Heesuk; Kim, Young-Jin; Kim, Seung-Woo

    2015-10-01

    Femtosecond lasers allow for simultaneous detection of multiple absorption lines of a specimen over a broad spectral range of infrared or visible light with a single spectroscopic measurement. Here, we present an 8-THz bandwidth, 0.5-GHz resolution scheme of Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser. A resolving power of 1.6 × 104 about a 1560-nm center wavelength is achieved by sweeping the pulse repetition rate of the light source on a fiber Mach-Zehnder interferometer configured to capture interferograms with a 0.02-fs temporal sampling accuracy through a well-stabilized 60-m unbalance arm length. A dual-servo mechanism is realized by combining a mechanical linear stage with an electro-optic modulator (EOM) within the fiber laser cavity, enabling stable sweeping control of the pulse repetition rate over a 1.0-MHz scan range with 0.4-Hz steps with reference to the Rb clock. Experimental results demonstrate that the P-branch lines of the H13CN reference cell can be observed with a signal-to-noise ratio reaching 350 for the most intense line.

  18. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    SciTech Connect

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-06-11

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. In this article, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s-1 is generated at 22.3 eV, with 5 × 10-5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Finally, spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications.

  19. High-peak-power, high-repetition-rate LD end-pumped Nd:YVO4 burst mode laser

    NASA Astrophysics Data System (ADS)

    Pan, Hu; Yan, Renpeng; Fa, Xin; Yu, Xin; Ma, Yufei; Fan, Rongwei; Li, Xudong; Chen, Deying; Zhou, Zhongxiang

    2016-06-01

    A compact high-peak-power, high-repetition-rate burst mode laser is achieved by an acousto-optical Q-switched Nd:YVO4 1064 nm laser directly pumped at 878.6 nm. Pulse trains with 10-100 pulses are obtained using acousto-optical Q-switch at repetition rates of 10-100 kHz under a pulsed pumping with a 1 ms duration. At the maximum pump energy of 108.5 mJ, the pulse energy of 10 kHz burst mode laser reaches 44 mJ corresponding to a single pulse energy of 4.4 mJ and an optical-to-optical efficiency of 40.5 %.The maximum peak power of ~468.1 kW at 10 kHz is obtained with a pulse width of 9.4 ns. The beam quality factor is measured to be M 2 ~1.5 and the pulse jitter is estimated to be less than 1 % in both amplitude and time region.

  20. High-power, highly stable KrF laser with a 4-kHz pulse repetition rate

    NASA Astrophysics Data System (ADS)

    Borisov, V. M.; El'tsov, A. V.; Khristoforov, O. B.

    2015-08-01

    An electric-discharge KrF laser (248 nm) with an average output power of 300 W is developed and studied. A number of new design features are related to the use of a laser chamber based on an Al2O3 ceramic tube. A high power and pulse repetition rate are achieved by using a volume discharge with lateral preionisation by the UV radiation of a creeping discharge in the form of a homogeneous plasma sheet on the surface of a plane sapphire plate. Various generators for pumping the laser are studied. The maximum laser efficiency is 3.1%, the maximum laser energy is 160 mJ pulse-1, and the pulse duration at half maximum is 7.5 ns. In the case of long-term operation at a pulse repetition rate of 4 kHz and an output power of 300 W, high stability of laser output energy (σ <= 0.7%) is achieved using an all-solid-state pump system.

  1. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    PubMed Central

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-01-01

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922

  2. Tests of photocathodes for high repetition rate x-ray FELs at the APEX facility at LBNL

    NASA Astrophysics Data System (ADS)

    Sannibale, Fernando; Filippetto, Daniele; Qian, Houjun; Papadopoulos, Christos F.; Wells, Russell; Kramasz, Toby; Padmore, Howard; Feng, Jun; Nasiatka, James; Huang, Ruixuan; Zolotorev, Max; Staples, John W.

    2015-05-01

    After the formidable results of X-ray 4th generation light sources based on free electron lasers around the world, a new revolutionary step is undergoing to extend the FEL performance from the present few hundred Hz to MHz-class repetition rates. In such facilities, temporally equi-spaced pulses will allow for a wide range of previously non-accessible experiments. The Advanced Photo-injector EXperiment (APEX) at the Lawrence Berkeley National Laboratory (LBNL), is devoted to test the capability of a novel scheme electron source, the VHF-Gun, to generate the required electron beam brightness at MHz repetition rates. In linac-based FELs, the ultimate performance in terms of brightness is defined at the injector, and in particular, cathodes play a major role in the game. Part of the APEX program consists in testing high quantum efficiency photocathodes capable to operate at the conditions required by such challenging machines. Results and status of these tests at LBNL are presented.

  3. High-peak-power, high-repetition-rate LD end-pumped Nd:YVO4 burst mode laser

    NASA Astrophysics Data System (ADS)

    Pan, Hu; Yan, Renpeng; Fa, Xin; Yu, Xin; Ma, Yufei; Fan, Rongwei; Li, Xudong; Chen, Deying; Zhou, Zhongxiang

    2016-04-01

    A compact high-peak-power, high-repetition-rate burst mode laser is achieved by an acousto-optical Q-switched Nd:YVO4 1064 nm laser directly pumped at 878.6 nm. Pulse trains with 10-100 pulses are obtained using acousto-optical Q-switch at repetition rates of 10-100 kHz under a pulsed pumping with a 1 ms duration. At the maximum pump energy of 108.5 mJ, the pulse energy of 10 kHz burst mode laser reaches 44 mJ corresponding to a single pulse energy of 4.4 mJ and an optical-to-optical efficiency of 40.5 %.The maximum peak power of ~468.1 kW at 10 kHz is obtained with a pulse width of 9.4 ns. The beam quality factor is measured to be M 2 ~1.5 and the pulse jitter is estimated to be less than 1 % in both amplitude and time region.

  4. Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate

    PubMed Central

    Lee, Keunwoo; Lee, Joohyung; Jang, Yoon-Soo; Han, Seongheum; Jang, Heesuk; Kim, Young-Jin; Kim, Seung-Woo

    2015-01-01

    Femtosecond lasers allow for simultaneous detection of multiple absorption lines of a specimen over a broad spectral range of infrared or visible light with a single spectroscopic measurement. Here, we present an 8-THz bandwidth, 0.5-GHz resolution scheme of Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser. A resolving power of 1.6 × 104 about a 1560-nm center wavelength is achieved by sweeping the pulse repetition rate of the light source on a fiber Mach-Zehnder interferometer configured to capture interferograms with a 0.02-fs temporal sampling accuracy through a well-stabilized 60-m unbalance arm length. A dual-servo mechanism is realized by combining a mechanical linear stage with an electro-optic modulator (EOM) within the fiber laser cavity, enabling stable sweeping control of the pulse repetition rate over a 1.0-MHz scan range with 0.4-Hz steps with reference to the Rb clock. Experimental results demonstrate that the P-branch lines of the H13CN reference cell can be observed with a signal-to-noise ratio reaching 350 for the most intense line. PMID:26503257

  5. Filamentation effect in a gas attenuator for high-repetition-rate X-ray FELs

    SciTech Connect

    Feng, Yiping; Krzywinski, Jacek; Schafer, Donald W.; Ortiz, Eliazar; Rowen, Michael; Raubenheimer, Tor O.

    2016-01-01

    A sustained filamentation or density depression phenomenon in an argon gas attenuator servicing a high-repetition femtosecond X-ray free-electron laser has been studied using a finite-difference method applied to the thermal diffusion equation for an ideal gas. A steady-state solution was obtained by assuming continuous-wave input of an equivalent time-averaged beam power and that the pressure of the entire gas volume has reached equilibrium. Both radial and axial temperature/density gradients were found and describable as filamentation or density depression previously reported for a femtosecond optical laser of similar attributes. The effect exhibits complex dependence on the input power, the desired attenuation, and the geometries of the beam and the attenuator. Time-dependent simulations were carried out to further elucidate the evolution of the temperature/density gradients in between pulses, from which the actual attenuation received by any given pulse can be properly calculated.

  6. A pulse-burst laser system for a high-repetition-rate Thomson scattering diagnostic

    SciTech Connect

    Den Hartog, D. J.; Jiang, N.; Lempert, W. R.

    2008-10-15

    A ''pulse-burst'' laser system is being constructed for addition to the Thomson scattering diagnostic on the Madison Symmetric Torus (MST) reversed-field pinch. This laser is designed to produce a burst of up to 200 approximately 1 J Q-switched pulses at repetition frequencies 5-250 kHz. This laser system will operate at 1064 nm and is a master oscillator, power amplifier. The master oscillator is a compact diode-pumped Nd:YVO{sub 4} laser, intermediate amplifier stages are flashlamp-pumped Nd:YAG, and final stages will be flashlamp-pumped Nd:glass (silicate). Variable pulse width drive (0.3-20 ms) of the flashlamps is accomplished by insulated-gate bipolar transistor switching of large electrolytic capacitor banks. The burst train of laser pulses will enable the study of electron temperature (T{sub e}) and electron density (n{sub e}) dynamics in a single MST shot, and with ensembling, will enable correlation of T{sub e} and n{sub e} fluctuations with other fluctuating quantities.

  7. A pulse-burst laser system for a high-repetition-rate Thomson scattering diagnostic.

    PubMed

    Den Hartog, D J; Jiang, N; Lempert, W R

    2008-10-01

    A "pulse-burst" laser system is being constructed for addition to the Thomson scattering diagnostic on the Madison Symmetric Torus (MST) reversed-field pinch. This laser is designed to produce a burst of up to 200 approximately 1 J Q-switched pulses at repetition frequencies 5-250 kHz. This laser system will operate at 1064 nm and is a master oscillator, power amplifier. The master oscillator is a compact diode-pumped Nd:YVO(4) laser, intermediate amplifier stages are flashlamp-pumped Nd:YAG, and final stages will be flashlamp-pumped Nd:glass (silicate). Variable pulse width drive (0.3-20 ms) of the flashlamps is accomplished by insulated-gate bipolar transistor switching of large electrolytic capacitor banks. The burst train of laser pulses will enable the study of electron temperature (T(e)) and electron density (n(e)) dynamics in a single MST shot, and with ensembling, will enable correlation of T(e) and n(e) fluctuations with other fluctuating quantities. PMID:19044552

  8. A pulse-burst laser system for a high-repetition-rate Thomson scattering diagnostica)

    NASA Astrophysics Data System (ADS)

    Den Hartog, D. J.; Jiang, N.; Lempert, W. R.

    2008-10-01

    A "pulse-burst" laser system is being constructed for addition to the Thomson scattering diagnostic on the Madison Symmetric Torus (MST) reversed-field pinch. This laser is designed to produce a burst of up to 200 approximately 1J Q-switched pulses at repetition frequencies 5-250kHz. This laser system will operate at 1064nm and is a master oscillator, power amplifier. The master oscillator is a compact diode-pumped Nd :YVO4 laser, intermediate amplifier stages are flashlamp-pumped Nd:YAG, and final stages will be flashlamp-pumped Nd:glass (silicate). Variable pulse width drive (0.3-20ms) of the flashlamps is accomplished by insulated-gate bipolar transistor switching of large electrolytic capacitor banks. The burst train of laser pulses will enable the study of electron temperature (Te) and electron density (ne) dynamics in a single MST shot, and with ensembling, will enable correlation of Te and ne fluctuations with other fluctuating quantities.

  9. Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz.

    PubMed

    Finger, Johannes; Reininghaus, Martin

    2014-07-28

    We report on the effect of pulse to pulse interactions during percussion drilling of steel using high power ps-laser radiation with repetition rates of up to 10 MHz and high average powers up to 80 W. The ablation rate per pulse is measured as a function of the pulse repetition rate for four fluences ranging from 500 mJ/cm2 up to 1500 mJ/cm2. For every investigated fluence an abrupt increase of the ablation rate per pulse is observed at a distinctive repetition rate. The onset repetition rate for this effect is strongly dependent on the applied pulse fluence. The origin of the increase of the ablation rate is attributed to the emergence of a melt based ablation processes, as Laser Scanning Microscopy (LSM) images show the occurrence of melt ejected material surrounding the drilling holes. A semi empirical model based on classical heat conduction including heat accumulation as well as pulse-particle interactions is applied to enable quantitative conclusions on the origin of the observed data. In agreement with previous studies, the acquired data confirm the relevance of these two effects for the fundamental description of materials processing with ultra-short pulsed laser radiation at high repetition rates and high average power. PMID:25089496

  10. Research of narrow pulse width, high repetition rate, high output power fiber lasers for deep space exploration

    NASA Astrophysics Data System (ADS)

    Tang, Yan-feng; Li, Hong-zuo; Wang, Yan; Hao, Zi-qiang; Xiao, Dong-Ya

    2013-08-01

    As human beings expand the research in unknown areas constantly, the deep space exploration has become a hot research topic all over the world. According to the long distance and large amount of information transmission characteristics of deep space exploration, the space laser communication is the preferred mode because it has the advantages of concentrated energy, good security, and large information capacity and interference immunity. In a variety of laser source, fibre-optical pulse laser has become an important communication source in deep space laser communication system because of its small size, light weight and large power. For fiber lasers, to solve the contradiction between the high repetition rate and the peak value power is an important scientific problem. General Q technology is difficult to obtain a shorter pulse widths, This paper presents a DFB semiconductor laser integrated with Electro-absorption modulator to realize the narrow pulse width, high repetition rate of the seed source, and then using a two-cascaded high gain fiber amplifier as amplification mean, to realize the fibre-optical pulse laser with pulse width 3ns, pulse frequency 200kHz and peak power 1kW. According to the space laser atmospheric transmission window, the wavelength selects for 1.06um. It is adopted that full fibre technology to make seed source and amplification, pumping source and amplification of free-space coupled into fiber-coupled way. It can overcome that fibre lasers are vulnerable to changes in external conditions such as vibration, temperature drift and other factors affect, improving long-term stability. The fiber lasers can be modulated by PPM mode, to realize high rate modulation, because of its peak power, high transmission rate, narrow pulse width, high frequency stability, all technical indexes meet the requirements of the exploration of deep space communication technology.

  11. Pulse-to-pulse polarization-switching method for high-repetition-rate lasers

    NASA Astrophysics Data System (ADS)

    Hahne, Steffen; Johnston, Benjamin F.; Withford, Michael J.

    2007-02-01

    We report a method that enables dynamic switching of the pulse-to-pulse linear polarization orientation of a high-pulse-rate laser. The implications for laser micromachining, where polarization direction can be important, are also discussed.

  12. 250 W average power, 100 kHz repetition rate cryogenic Yb:YAG amplifier for OPCPA pumping.

    PubMed

    Zapata, L E; Reichert, F; Hemmer, M; Kärtner, F X

    2016-02-01

    A cryogenically cooled, bulk Yb:YAG, four-pass amplifier delivering up to 250 W average power at 100 kHz repetition rate is reported. The 2.5 mJ amplified optical pulses show a sub-20 ps duration before temporal compression and a spectrum supporting a transform-limited duration of 3.6 ps. The power instabilities were measured to be <0.5% rms over 30 min at full power, and the spatial intensity profile showed a flat-top distribution and near diffraction-limited beam quality. This compact amplifier is an ideal source for pumping either near-IR or mid-IR optical parametric chirped pulse amplifiers. PMID:26907405

  13. Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate

    SciTech Connect

    Buttafava, Mauro Boso, Gianluca; Ruggeri, Alessandro; Tosi, Alberto; Dalla Mora, Alberto

    2014-08-15

    We present the design and characterization of a complete single-photon counting module capable of time-gating a silicon single-photon avalanche diode with ON and OFF transition times down to 110 ps, at repetition rates up to 80 MHz. Thanks to this sharp temporal filtering of incoming photons, it is possible to reject undesired strong light pulses preceding (or following) the signal of interest, allowing to increase the dynamic range of optical acquisitions up to 7 decades. A complete experimental characterization of the module highlights its very flat temporal response, with a time resolution of the order of 30 ps. The instrument is fully user-configurable via a PC interface and can be easily integrated in any optical setup, thanks to its small and compact form factor.

  14. Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines.

    PubMed

    Hult, Johan; Richter, Mattias; Nygren, Jenny; Aldén, Marcus; Hultqvist, Anders; Christensen, Magnus; Johansson, Bengt

    2002-08-20

    High-repetition-rate laser-induced fluorescence measurements of fuel and OH concentrations in internal combustion engines are demonstrated. Series of as many as eight fluorescence images, with a temporal resolution ranging from 10 micros to 1 ms, are acquired within one engine cycle. A multiple-laser system in combination with a multiple-CCD camera is used for cycle-resolved imaging in spark-ignition, direct-injection stratified-charge, and homogeneous-charge compression-ignition engines. The recorded data reveal unique information on cycle-to-cycle variations in fuel transport and combustion. Moreover, the imaging system in combination with a scanning mirror is used to perform instantaneous three-dimensional fuel-concentration measurements. PMID:12206207

  15. High-power high-repetition-rate single-mode Er-Yb-doped fiber laser system.

    PubMed

    Pavlov, Ihor; Ilbey, Emrah; Dülgergil, Ebru; Bayri, Alper; Ilday, F Ömer

    2012-04-23

    We demonstrate an all-fiber-integrated, high-power chirped-pulse-amplification system operating at 1550 nm. The seed source is a soliton fiber laser with 156 MHz repetition rate. Two-stage single mode amplifier provides an amplification of more than 40 dB without significant spontaneous amplified emission. The power amplifier is based on cladding-pumped 10 µm-core Er-Yb co-doped fiber, the output of which was spliced into standard singlemode fiber. We obtain 10 W average power in a strictly singlemode operation. After dechirping with a grating compressor, near transform-limited, 450 fs-long pulses are obtained. The laser source exhibits excellent short and long-term intensity stability, with relative intensity noise measurements characterizing the short-term stability. PMID:22535037

  16. Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators

    NASA Astrophysics Data System (ADS)

    Nagarjun, K. P.; Selvaraja, Shankar Kumar; Supradeepa, V. R.

    2016-03-01

    High repetition-rate frequency combs with tunable repetition rate and carrier frequency are extensively used in areas like Optical communications, Microwave Photonics and Metrology. A common technique for their generation is strong phase modulation of a CW-laser. This is commonly implemented using Lithium-Niobate based modulators. With phase modulation alone, the combs have poor spectral flatness and significant number of missing lines. To overcome this, a complex cascade of multiple intensity and phase modulators are used. A comb generator on Silicon based on these principles is desirable to enable on-chip integration with other functionalities while reducing power consumption and footprint. In this work, we analyse frequency comb generation in carrier injection based Silicon modulators. We observe an interesting effect in these comb generators. Enhanced absorption accompanying carrier injection, an undesirable effect in data modulators, shapes the amplitude here to enable high quality combs from a single modulator. Thus, along with reduced power consumption to generate a specific number of lines, the complexity has also been significantly reduced. We use a drift-diffusion solver and mode solver (Silvaco TCAD) along with Soref-Bennett relations to calculate the variations in refractive indices and absorption of an optimized Silicon PIN - waveguide modulator driven by an unbiased high frequency (10 Ghz) voltage signal. Our simulations demonstrate that with a device length of 1 cm, a driving voltage of 2V and minor shaping with a passive ring-resonator filter, we obtain 37 lines with a flatness better than 5-dB across the band and power consumption an order of magnitude smaller than Lithium-Niobate modulators.

  17. High repetition rate laser induced fluorescence applied to Surfatron Induced Plasmas

    NASA Astrophysics Data System (ADS)

    van der Mullen, J. J. A. M.; Palomares, J. M.; Carbone, E. A. D.; Graef, W.; Hübner, S.

    2012-05-01

    The reaction kinetics in the excitation space of Ar and the conversion space of Ar-molecule mixtures are explored using a combination of high rep-rate YAG-Dye laser systems with a well defined and easily controllable Surfatron Induced Plasma set-up. Applying the method of Saturation Time Resolved Laser Induced Fluorescence (SaTiRe-LIF), we could trace excitation and conversion channels and determine rates of electron and heavy particle excitation kinetics. The time resolved density disturbances observed in the Ar excitation space, which are initiated by the laser, reveal the excitation channels and corresponding rates; responses of the molecular radiation in Ar-molecule mixtures corresponds to the presence of conversion processes induced by heavy particle excitation kinetics.

  18. Effect of laser annealing using high repetition rate pulsed laser on optical properties of phosphorus-ion-implanted ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Shimogaki, Tetsuya; Ofuji, Taihei; Tetsuyama, Norihiro; Okazaki, Kota; Higashihata, Mitsuhiro; Nakamura, Daisuke; Ikenoue, Hiroshi; Asano, Tanemasa; Okada, Tatsuo

    2014-02-01

    The effect of high repetition rate pulsed laser annealing with a KrF excimer laser on the optical properties of phosphorus-ion-implanted zinc oxide nanorods has been investigated. The recovery levels of phosphorus-ion-implanted zinc oxide nanorods have been measured by photoluminescence spectra and cathode luminescence images. Cathode luminescence disappeared over 300 nm below the surface due to the damage caused by ion implantation with an acceleration voltage of 25 kV. When the annealing was performed at a low repetition rate of the KrF excimer laser, cathode luminescence was recovered only in a shallow area below the surface. The depth of the annealed area was increased along with the repetition rate of the annealing laser. By optimizing the annealing conditions such as the repetition rate, the irradiation fluence and so on, we have succeeded in annealing the whole damaged area of over 300 nm in depth and in observing cathode luminescence. Thus, the effectiveness of high repetition rate pulsed laser annealing on phosphorus-ion-implanted zinc oxide nanorods was demonstrated.

  19. Investigating MALDI MSI parameters (Part 1) - A systematic survey of the effects of repetition rates up to 20kHz in continuous raster mode.

    PubMed

    Steven, Rory T; Dexter, Alex; Bunch, Josephine

    2016-07-15

    Recent developments in laser performance, combined with the desire for increases in detected ion intensity and throughput, have led to the adoption of high repetition-rate diode-pumped solid-state (DPSS) lasers in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). Previous studies have demonstrated a more complex relationship between detected ion intensity, stage raster speed and laser pulse repetition rate than the simple linear relationship between number of pulses and detected ion intensity that might be expected. Here we report, for the first time, the interrelated influence of varying laser energy, repetition rate and stage raster speed on detected ion intensity. Thin films of PC 34:1 lipid standard and murine brain tissue with CHCA are analysed by continuous stage raster MALDI MSI. Contrary to previous reports, the optimum laser repetition rate is found to be dependent on both laser energy and stage raster speed and is found to be as high as 20kHz under some conditions. The effects of different repetition rates and raster speeds are also found to vary for different ion species within MALDI MSI of tissue and so may be significant when either targeting specific molecules or seeking to minimize bias. A clear dependence on time between laser pulses is also observed indicating the underlying mechanisms may be related to on-plate hysteresis-exhibiting processes such as matrix chemical modification. PMID:27080810

  20. Application of repetitive pulsed power technology to chemical processing

    SciTech Connect

    Kaye, R.J.; Hamil, R.

    1995-12-31

    The numerous sites of soil and water contaminated with organic chemicals present an urgent environmental concern that continues to grow. Electron and x-ray irradiation have been shown to be effective methods to destroy a wide spectrum of organic chemicals, nitrates, nitrites, and cyanide in water by breaking molecules to non-toxic products or entirely mineralizing the by-products to gas, water, and salts. Sandia National Laboratories is developing Repetitive High Energy Pulsed Power (RHEPP) technology capable of producing high average power, broad area electron or x-ray beams. The 300 kW RHEPP-II facility accelerates electrons to 2.5 MeV at 25 kA over 1,000 cm{sup 2} in 60 ns pulses at repetition rates of over 100 Hz. Linking this modular treatment capability with the rapid optical-sensing diagnostics and neutral network characterization software algorithms will provide a Smart Waste Treatment (SWaT) system. Such a system would also be applicable for chemical manufacture and processing of industrial waste for reuse or disposal. This talk describes both the HREPP treatment capability and sensing technologies. Measurements of the propagated RHEPP-II beam and dose profiles are presented. Sensors and rapid detection software are discussed with application toward chemical treatment.

  1. Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation

    PubMed Central

    Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W.; Akens, Margarete K.; Lilge, Lothar; Marjoribanks, Robin S.

    2016-01-01

    High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles. PMID:27375948

  2. Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation.

    PubMed

    Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W; Akens, Margarete K; Lilge, Lothar; Marjoribanks, Robin S

    2016-06-01

    High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles. PMID:27375948

  3. High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system.

    PubMed

    Noom, Daniel W E; Witte, Stefan; Morgenweg, Jonas; Altmann, Robert K; Eikema, Kjeld S E

    2013-08-15

    We report on a high-power quasi-CW pumped Nd:YAG laser system, producing 130 mJ, 64 ps pulses at 1064 nm wavelength with a repetition rate of 300 Hz. Pulses from a Nd:YVO(4) oscillator are first amplified by a regenerative amplifier to the millijoule level and then further amplified in quasi-CW diode-pumped Nd:YAG modules. Pulsed diode pumping enables a high gain at repetition rates of several hundred hertz, while keeping thermal effects manageable. Birefringence compensation and multiple thermal-lensing-compensated relay-imaging stages are used to maintain a top-hat beam profile. After frequency doubling, 75 mJ pulses are obtained at 532 nm. The intensity stability is better than 1.1%, which makes this laser an attractive pump source for a high-repetition-rate optical parametric amplification system. PMID:24104637

  4. Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser.

    PubMed

    Jin, Rui-Bo; Shimizu, Ryosuke; Morohashi, Isao; Wakui, Kentaro; Takeoka, Masahiro; Izumi, Shuro; Sakamoto, Takahide; Fujiwara, Mikio; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Wang, Zhen; Sasaki, Masahide

    2014-01-01

    Efficient generation and detection of indistinguishable twin photons are at the core of quantum information and communications technology (Q-ICT). These photons are conventionally generated by spontaneous parametric down conversion (SPDC), which is a probabilistic process, and hence occurs at a limited rate, which restricts wider applications of Q-ICT. To increase the rate, one had to excite SPDC by higher pump power, while it inevitably produced more unwanted multi-photon components, harmfully degrading quantum interference visibility. Here we solve this problem by using recently developed 10 GHz repetition-rate-tunable comb laser, combined with a group-velocity-matched nonlinear crystal, and superconducting nanowire single photon detectors. They operate at telecom wavelengths more efficiently with less noises than conventional schemes, those typically operate at visible and near infrared wavelengths generated by a 76 MHz Ti Sapphire laser and detected by Si detectors. We could show high interference visibilities, which are free from the pump-power induced degradation. Our laser, nonlinear crystal, and detectors constitute a powerful tool box, which will pave a way to implementing quantum photonics circuits with variety of good and low-cost telecom components, and will eventually realize scalable Q-ICT in optical infra-structures. PMID:25524646

  5. Femtosecond laser bone ablation with a high repetition rate fiber laser source

    PubMed Central

    Mortensen, Luke J.; Alt, Clemens; Turcotte, Raphaël; Masek, Marissa; Liu, Tzu-Ming; Côté, Daniel C.; Xu, Chris; Intini, Giuseppe; Lin, Charles P.

    2014-01-01

    Femtosecond laser pulses can be used to perform very precise cutting of material, including biological samples from subcellular organelles to large areas of bone, through plasma-mediated ablation. The use of a kilohertz regenerative amplifier is usually needed to obtain the pulse energy required for ablation. This work investigates a 5 megahertz compact fiber laser for near-video rate imaging and ablation in bone. After optimization of ablation efficiency and reduction in autofluorescence, the system is demonstrated for the in vivo study of bone regeneration. Image-guided creation of a bone defect and longitudinal evaluation of cellular injury response in the defect provides insight into the bone regeneration process. PMID:25657872

  6. High-repetition rate, picosecond-pulse, tunable, mid-IR PPLN OPG source

    NASA Astrophysics Data System (ADS)

    Isyanova, Yelena; Tian, Wenyan; Moulton, Peter F.

    2016-03-01

    We report here on the performance of a narrow-line, mid-IR source based on a PPLN-crystal optical parametric generator (OPG). The crystal was pumped by a pulsed, 20-MHz-rate, 1064-nm Yb:fiber-based source operating with 20- psec pulses. The OPG produced a broad spectrum between 2027 nm and 2239 nm. By placing a band-pass filter after the OPG we were able to select a 30-nm bandwidth output, and we achieved further line reduction (0.7 nm) and 4.5 mW of average power at 2039 nm, using a reflective Volume Bragg Grating (VBG). Devices such as piezo-controlled etalons can provide rapidly tunable, narrow-linewidth power from this system.

  7. High repetition rate relativistic electron beam generation from intense laser solid interactions

    NASA Astrophysics Data System (ADS)

    Batson, Thomas; Nees, John; Hou, Bixue; Thomas, Alexander; Krushelnick, Karl

    2014-10-01

    Relativistic electron beams have wide-ranging applications in medicine, materials science, and homeland security. Recent advances in short pulse laser technology have enabled the production of very high focused intensities at kHz rep rates. Consequently this has led to the generation of high flux sources of relativistic electrons - which is a necessary characteristic of these laser plasma sources for any potential application. In our experiments, through the generation of a plasma by focusing a 5 × 1018 W/cm2, 500 Hz, Ti:Sapphire laser pulse onto a fused silica target, we have measured electrons ejected from the target surface having energies in excess of an MeV. The spectrum of these electrons, as well as the spatial divergence of the resulting beam, was also measured with respect to incident laser angle, prepulse timing and focusing conditions. The experimental results are compared to particle in cell simulations.

  8. Femtosecond laser bone ablation with a high repetition rate fiber laser source.

    PubMed

    Mortensen, Luke J; Alt, Clemens; Turcotte, Raphaël; Masek, Marissa; Liu, Tzu-Ming; Côté, Daniel C; Xu, Chris; Intini, Giuseppe; Lin, Charles P

    2015-01-01

    Femtosecond laser pulses can be used to perform very precise cutting of material, including biological samples from subcellular organelles to large areas of bone, through plasma-mediated ablation. The use of a kilohertz regenerative amplifier is usually needed to obtain the pulse energy required for ablation. This work investigates a 5 megahertz compact fiber laser for near-video rate imaging and ablation in bone. After optimization of ablation efficiency and reduction in autofluorescence, the system is demonstrated for the in vivo study of bone regeneration. Image-guided creation of a bone defect and longitudinal evaluation of cellular injury response in the defect provides insight into the bone regeneration process. PMID:25657872

  9. 47 W, 6 ns constant pulse duration, high-repetition-rate cavity-dumped Q-switched TEM(00) Nd:YVO(4) oscillator.

    PubMed

    McDonagh, Louis; Wallenstein, Richard; Knappe, Ralf

    2006-11-15

    We report on a cavity-dumped Q-switched TEM(00) Nd:YVO(4) oscillator offering a unique combination of high power, constant short pulse duration, and high repetition rate, suppressing the gain dependence of pulse duration in classical Q-switched oscillators. Its performance is compared with that of the same oscillator operated in a classical Q-switched regime, demonstrating the much higher peak powers achievable with this technique, especially at high repetition rates. Up to 31 W of 532 nm green light was generated by frequency doubling in a noncritical phase matched LBO crystal, corresponding to 70% conversion efficiency. PMID:17072404

  10. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    PubMed

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed. PMID:26625047

  11. Brown meagre vocalization rate increases during repetitive boat noise exposures: a possible case of vocal compensation.

    PubMed

    Picciulin, Marta; Sebastianutto, Linda; Codarin, Antonio; Calcagno, Giuliana; Ferrero, Enrico A

    2012-11-01

    This study investigated whether or not boat noise causes variations in brown meagre (Sciaena umbra) vocalizations recorded in a nearshore Mediterranean marine reserve. Six nocturnal experimental sessions were carried out from June to September 2009. In each of them, a recreational boat passed over vocalizing fish 6 times with 1 boat passage every 10 min. For this purpose three different boats were used in random order: an 8.5-m cabin-cruiser (CC), a 5-m fiberglass boat (FB), and a 7-m inflatable boat (INF). In situ continuous acoustic recordings were collected using a self-standing sonobuoy. Because boat noise levels largely exceeded both background noise and S. umbra vocalizations in the species' hearing frequency range, masking of acoustic communication was assumed. Although no immediate effect was observed during a single boat passage, the S. umbra mean pulse rate increased over multiple boat passages in the experimental condition but not in the control condition, excluding that the observed effect was due to a natural rise in fish vocalizations. The observed vocal enhancement may result either from an increased density of callers or from an increased number of pulses/sounds produced by already acoustically active individuals, as a form of vocal compensation. These two explanations are discussed. PMID:23145597

  12. Multi-GHz bandpass, high-repetition rate single channel mobile diagnostic system for ultra-wideband applications

    NASA Astrophysics Data System (ADS)

    Miner, Lynn M.; Voss, Donald E.

    1993-01-01

    Characterizing radiated ultra-wideband (UWB) signals poses challenges due to requirements for (1) multi-GHz bandpass recording of the signal's leading edge; (2) GHz-bandpass recording of long record lengths (10s-100s of ns); and (3) determining shot-to-shot reproducibility at rep-rates exceeding 10 kHz. The System Verification Apparatus (SVA) is a novel diagnostic system which can measure 60-ps rise-time signals on a single-shot basis, while monitoring pulse-to-pulse variation. The fully-integrated SVA includes a broadband sensor, signal and trigger conditioning electronics, multiple parallel digitizers with deep local storge, and automated software for acquiring, archiving, and analyzing waveform data with rapid (secs-minute) turnaround time. The instruments are housed in a portable 100-dB shielded aluminum enclosure. The SVA utilizes a 6-GHz bandpass free-field D-dot sensor to measure the incident electric field. Three separate digitizers together meet the requirements of high bandwidth, long record length, and high repetition rate. A 6-GHz bandpass scan converter digitizer captures the leading edge (few ns) of the radiated signal. 1-GHz and 600 MHz bandwidth solid-state digitizers supporting long record lengths (greater than 2 micrometers) record the balance of the signal, which typically contains negligible content above 1 GHz. These solid-state digitizers can store greater than 900 waveforms locally at rep-rates exceeding 65 Hz and 100 kHz, respectively. Data management and instrument control use an 80486-based PC, operating in a user-friendly Windows environment. All waveform and system configuration data are automatically stored in a built-in database. A fiber-optic link, up to 2 km long, provides electromagnetic isolation of the computer.

  13. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    PubMed

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-01

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects. PMID:18545609

  14. Laser driven nuclear science and applications: The need of high efficiency, high power and high repetition rate Laser beams

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-10-01

    Extreme Light Infrastructure (ELI) is a pan European research initiative selected on the European Strategy Forum on Research Infrastructures Roadmap that aims to close the gap between the existing laboratory-based laser driven research and international facility-grade research centre. The ELI-NP facility, one of the three ELI pillars under construction, placed in Romania and to be operational in 2018, has as core elements a couple of new generation 10 PW laser systems and a narrow bandwidth Compton backscattering gamma source with photon energies up to 19 MeV. ELI-NP will address nuclear photonics, nuclear astrophysics and quantum electrodynamics involving extreme photon fields. Prospective applications of high power laser in nuclear astrophysics, accelerator physics, in particular towards future Accelerator Driven System, as well as in nuclear photonics, for detection and characterization of nuclear material, and for nuclear medicine, will be discussed. Key issues in these research areas will be at reach with significant increase of the repetition rates and of the efficiency at the plug of the high power laser systems as proposed by the ICAN collaboration.

  15. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate

    NASA Astrophysics Data System (ADS)

    Pupeza, I.; Sánchez, D.; Zhang, J.; Lilienfein, N.; Seidel, M.; Karpowicz, N.; Paasch-Colberg, T.; Znakovskaya, I.; Pescher, M.; Schweinberger, W.; Pervak, V.; Fill, E.; Pronin, O.; Wei, Z.; Krausz, F.; Apolonski, A.; Biegert, J.

    2015-11-01

    Powerful coherent light with a spectrum spanning the mid-infrared (MIR) spectral range is crucial for a number of applications in natural as well as life sciences, but so far has only been available from large-scale synchrotron sources. Here we present a compact apparatus that generates pulses with a sub-two-cycle duration and with an average power of 0.1 W and a spectral coverage of 6.8-16.4 μm (at -30 dB). The demonstrated source combines, for the first time in this spectral region, a high power, a high repetition rate and phase coherence. The MIR pulses emerge via difference-frequency generation (DFG) driven by the nonlinearly compressed pulses of a Kerr-lens mode-locked ytterbium-doped yttrium-aluminium-garnet (Yb:YAG) thin-disc oscillator. The resultant 100 MHz MIR pulse train is hundreds to thousands of times more powerful than state-of-the-art frequency combs that emit in this range, and offers a high dynamic range for spectroscopy in the molecular fingerprint region and an ideal prerequisite for hyperspectral imaging as well as for the time-domain coherent control of vibrational dynamics.

  16. Two-point, high-repetition-rate Rayleigh thermometry in flames: techniques to correct for apparent dissipation induced by noise.

    PubMed

    Wang, G H; Clemens, N T; Varghese, P L

    2005-11-01

    High-repetition-rate, two-point Rayleigh thermometry is used to measure the thermal dissipation in turbulent nonpremixed jet flames. Scalar-dissipation measurements are very important in turbulent combustion but are often strongly influenced by noise effects. Dissipation is proportional to the squared gradient of the scalar, and noise produces an "apparent dissipation" that can dominate the measured dissipation, particularly at high resolution. Two independent techniques are presented that enable correction for the apparent thermal dissipation, provided that the smallest spatial scales are resolved. A model for shot-noise-limited data is developed that predicts the magnitude of the apparent dissipation at any measurement location and gives the minimum value of the apparent dissipation for measurements that are not shot-noise limited. These techniques are applied to the Rayleigh thermometry data, and they are shown to be largely self-consistent and consistent with theoretical expectations. The apparent dissipation is significantly larger than the true dissipation, demonstrating the importance of data correction in this noise-limited, fully spatially resolved regime. PMID:16270563

  17. Low-repetition rate femtosecond laser writing of optical waveguides in KTP crystals: analysis of anisotropic refractive index changes.

    PubMed

    Butt, Muhammad Ali; Nguyen, Huu-Dat; Ródenas, Airán; Romero, Carolina; Moreno, Pablo; Vázquez de Aldana, Javier R; Aguiló, Magdalena; Solé, Rosa Maria; Pujol, Maria Cinta; Díaz, Francesc

    2015-06-15

    We report on the direct low-repetition rate femtosecond pulse laser microfabrication of optical waveguides in KTP crystals and the characterization of refractive index changes after the thermal annealing of the sample, with the focus on studying the potential for direct laser fabricating Mach-Zehnder optical modulators. We have fabricated square cladding waveguides by means of stacking damage tracks, and found that the refractive index decrease is large for vertically polarized light (c-axis; TM polarized) but rather weak for horizontally polarized light (a-axis; TE polarized), this leading to good near-infrared light confinement for TM modes but poor for TE modes. However, after performing a sample thermal annealing we have found that the thermal process enables a refractive index increment of around 1.5x10(-3) for TE polarized light, while maintaining the negative index change of around -1x10(-2) for TM polarized light. In order to evaluate the local refractive index changes we have followed a multistep procedure: We have first characterized the waveguide cross-sections by means of Raman micro-mapping to access the lattice micro-modifications and their spatial extent. Secondly we have modeled the waveguides following the modified region sizes obtained by micro-Raman with finite element method software to obtain a best match between the experimental propagation modes and the simulated ones. Furthermore we also report the fabrication of Mach-Zehnder structures and the evaluation of propagation losses. PMID:26193514

  18. Intense high repetition rate Mo Kα x-ray source generated from laser solid interaction for imaging application

    SciTech Connect

    Huang, K.; Li, M. H.; Yan, W. C.; Ma, Y.; Zhao, J. R.; Li, Y. F.; Chen, L. M.; Guo, X.; Li, D. Z.; Chen, Y. P.; Zhang, J.

    2014-11-15

    We report an efficient Mo Kα x-ray source produced by interaction of femtosecond Ti: sapphire laser pulses with a solid Molybdenum target working at 1 kHz repetition rate. The generated Mo Kα x-ray intensity reaches to 4.7 × 10{sup 10} photons sr{sup −1} s{sup −1}, corresponding to an average power of 0.8 mW into 2π solid angle. The spatial resolution of this x-ray source is measured to be 26 lp/mm. With the high flux and high spatial resolution characteristics, high resolving in-line x-ray radiography was realized on test objects and large size biological samples within merely half a minute. This experiment shows the possibility of laser plasma hard x-ray source as a new low cost and high resolution system for radiography and its ability of ultrafast x-ray pump-probe study of matter.

  19. Determination of trace amounts of plutonium in environmental samples by RIMS using a high repetition rate solid state laser system

    NASA Astrophysics Data System (ADS)

    Grüning, C.; Huber, G.; Kratz, J. V.; Passler, G.; Trautmann, N.; Waldek, A.; Wendt, K.

    2001-08-01

    A reliable and easy to handle high repetition rate solid state laser system has been set up for routine applications of Resonance Ionization Mass Spectrometry (RIMS). It consists of three Titanium-Sapphire (Ti:Sa) lasers pumped by one Nd:YAG laser, providing up to 3 W of tunable laser light each in a wavelength range from 725 nm to 895 nm. The isotope shifts for 238Pu to 244Pu have been measured in an efficient ionization scheme with λ1=420.76 nm, λ2=847.28 nm and λ3=767.53 nm. An overall detection efficiency of the RIMS apparatus of ɛ=1×10-5 is routinely reached, resulting in a detection limit of 2×106atoms (0.8 fg) of plutonium. The isotopic compositions of synthetic samples and the NIST standard reference material SRM996 were measured. The content of 238Pu to 242Pu has been determined in dust samples from the surroundings of a nuclear power plant and 244Pu was determined in urine samples for the National Radiation Protection Board (NRPB), U.K. Routine operation of plutonium ultratrace detection could thus be established.

  20. Influence of the voltage pulse front shortening on the pulse repetition rate in a copper vapour laser

    SciTech Connect

    Bokhan, P A; Gugin, P P; Zakrevskii, D E; Lavrukhin, M A; Kazaryan, M A; Lyabin, N A

    2013-08-31

    The lasing characteristics of a copper vapour laser are investigated in the regime of a pulse train excited in the internalheating tube with the diameter of 2 cm and length of 48 cm. Two power supply schemes are compared: a conventional scheme with a storage capacitor discharged through a thyratron connected to a peaking capacitor and the scheme in which the peaking capacitor is connected to the laser active element through a kivotron – a fast switch based on the 'open discharge' with a turn-on time of less than 1 ns. It is shown that in the considered range of the pulse repetition rates f = 2 – 16 kHz in the first case we deal with a typical energy dependence on frequency having a maximum near 4 – 5 kHz. In the second case, the lasing energy is frequency-independent; hence, the average power in this range is proportional to f. The results obtained are explained by the neutralised influence of the initial electron concentration on energy characteristics of the copper vapour laser. (control of laser radiation parameters)

  1. Thermoelastic study of nanolayered structures using time-resolved X-ray diffraction at high repetition rate

    SciTech Connect

    Navirian, H. A.; Schick, D. Leitenberger, W.; Bargheer, M.; Gaal, P.; Shayduk, R.

    2014-01-13

    We investigate the thermoelastic response of a nanolayered sample composed of a metallic SrRuO{sub 3} electrode sandwiched between a ferroelectric Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} film with negative thermal expansion and a SrTiO{sub 3} substrate. SrRuO{sub 3} is rapidly heated by fs-laser pulses with 208 kHz repetition rate. Diffraction of X-ray pulses derived from a synchrotron measures the transient out-of-plane lattice constant c of all three materials simultaneously from 120 ps to 5 μs with a relative accuracy up to Δc/c = 10{sup −6}. The in-plane propagation of sound is essential for understanding the delayed out-of-plane compression of Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}.

  2. High power fiber amplifier with adjustable repetition rate for use in all-fiber supercontinuum light sources

    NASA Astrophysics Data System (ADS)

    Baselt, T.; Taudt, Ch.; Hartmann, P.

    2014-03-01

    In recent years the use of supercontinuum light sources has encouraged the development of various optical measurement techniques, like microscopy and optical coherence-tomography. Some disadvantages of common supercontinuum solutions, in particular the rather poor stability and the absence of modulation abilities limit the application potential of this technique. We present a directly controllable all-fiber laser source with appropriate parameters in order to generate a broad supercontinuum spectrum with the aid of microstructured fibers. Through the application of a laser seed-diode, which is driven by a custom built controller to generate nanosecond pulses with repetition rates in the MHz range in a reproducible manner, a direct control of the laser system is enabled. The seedsignal is amplified to the appropriate power level in a 2-step amplification stage. Wide supercontinuum is finally generated by launching the amplified laser pulses into different microstructured fibers. The system has been optimized in terms of stability, power-output, spectral width and beam-quality by employing different laser pulse parameters and several different microstructured fibers. Finally, the system as a whole has been characterized in reference to common solid state-laser-based supercontinuum light sources

  3. Solid-state YVO4/Nd:YVO4/KTP green laser system for the generation of subnanosecond pulses with adjustable kilohertz repetition rate.

    PubMed

    Zhang, Haijuan; Zhao, Shengzhi; Yang, Kejian; Li, Guiqiu; Li, Dechun; Zhao, Jia; Wang, Yonggang

    2013-09-20

    A solid-state green laser generating subnanosecond pulses with adjustable kilohertz repetition rate is presented. This pulse laser system is composed of a Q-switched and mode-locked YVO(4)/Nd:YVO(4)/KTP laser simultaneously modulated by an electro-optic (EO) modulator and a central semiconductor saturable absorption mirror. Because the repetition rate of the Q-switched envelope in this laser depends on the modulation frequency of the EO modulator, so long as the pulsewidth of the Q-switched envelope is shorter than the cavity roundtrip transmit time, i.e., the time interval of two neighboring mode-locking pulses, only one mode-locking pulse exists underneath a Q-switched envelope, resulting in the generation of subnanosecond pulses with kilohertz repetition rate. The experimental results show that the pulsewidth of subnanosecond pulses decreases with increasing pump power and the shortest pulse generated at 1 kHz was 450 ps with pulse energy as high as 252 μJ, corresponding to a peak power of 560 kW. In addition, this laser was confirmed to have high stability, and the pulse repetition rate could be freely adjusted from 1 to 4 kHz. PMID:24085177

  4. Repetitive Sequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Repetitive sequences, or repeats, account for a substantial portion of the eukaryotic genomes. These sequences include very different types of DNA with respect to mode of origin, function, structure, and genomic distribution. Two large families of repetitive sequences can be readily recognized, ta...

  5. Study of a plate-electrode XeCl laser with a pulse repetition rate up to 5 kHz

    SciTech Connect

    Voevodin, Denis D; Vysotskii, Andrei V; Lazhintsev, Boris V; Pisetskaya, Anastasiya V

    2012-11-30

    The results of the study of a repetitively pulsed XeCl laser with a high rate of pulse repetition and the electrode assembly based on a multi-section discharge gap with inductance-capacitance stabilisation of the discharge are presented. The multi-section discharge gap is formed by 25 pairs of anode - cathode plates. The discharge formed in the interelectrode gap had the dimensions 250 Multiplication-Sign 12 Multiplication-Sign 2 mm. The studies were performed using the HCl - Xe - Ne laser mixture at the total pressure up to 3.5 atm. The limit value of the radiation pulse repetition rate was equal to 5 kHz. The meansquare deviation of the pulse energy increased from 0.8 % to 1.6 % in the range of repetition rates from 1 to 4.5 kHz and did not exceed 2.4 % at the frequency 5 kHz. The maximal energy of the laser pulse and the efficiency coefficient were equal to 7.9 mJ and 1.6 %, respectively. The maximal power of laser radiation (31 W) was obtained at the repetition rate 5 kHz. A new technique of measuring the gas flow velocity in the interelectrode gap is proposed. The velocity of gas circulation at the maximal pressure of the mixture did not exceed 18 m s{sup -1}. Optical inhomogeneities were observed, caused by a high concentration of electrons in the discharge plasma, by the acoustic wave, arising in the discharge gap, and by the heating of the gas in the discharge. (lasers)

  6. Confirmation of gravitationally induced attitude drift of spinning satellite Ajisai with Graz high repetition rate SLR data

    NASA Astrophysics Data System (ADS)

    Kucharski, Daniel; Kirchner, Georg; Otsubo, Toshimichi; Lim, Hyung-Chul; Bennett, James; Koidl, Franz; Kim, Young-Rok; Hwang, Joo-Yeon

    2016-02-01

    The high repetition rate Satellite Laser Ranging system Graz delivers the millimeter precision range measurements to the corner cube reflector panels of Ajisai. The analysis of 4599 passes measured from October 2003 until November 2014 reveals the secular precession and nutation of Ajisai spin axis due to the gravitational forces as predicted by Kubo (1987) with the periods of 35.6 years and 116.5 days respectively. The observed precession cone is oriented at RA = 88.9°, Dec = -88.85° (J2000) and has a radius of 1.08°. The radius of the nutation cone increases from 1.32° to 1.57° over the 11 years of the measurements. We also detect a draconitic wobbling of Ajisai orientation due to the 'motion' of the Sun about the satellite's orbit. The observed spin period of Ajisai increases exponentially over the investigated time span according to the trend function: T = 1.492277·exp(0.0148388·Y) [s], where Y is in years since launch (1986.6133), RMS = 0.412 ms. The physical simulation model fitted to the observed spin parameters proves a very low interaction between Ajisai and the Earth's magnetic field, what assures that the satellite's angular momentum vector will remain in the vicinity of the south celestial pole for the coming decades. The developed empirical model of the spin axis orientation can improve the accuracy of the range determination between the ground SLR systems and the satellite's center-of-mass (Kucharski et al., 2015) and enable the accurate attitude prediction of Ajisai for the laser time-transfer experiments (Kunimori et al., 1992).

  7. Parameters of a trigatron-driven low-pulse-repetition-rate TEA CO{sub 2} laser preionised by a surface corona discharge

    SciTech Connect

    Aram, M; Shabanzadeh, M; Mansori, F; Behjat, A

    2007-01-31

    The design of a TEA CO{sub 2} laser with UV preionisation by a surface corona discharge is described and the dependences of its average output energy on the gas-flow rate, discharge voltage and pulse repetition rate are presented. The scheme of the electric circuit and the geometry of the pre-ionisation system are considered. The electric circuit is designed to produce only impulse voltage difference between the laser electrodes. The triggering system of the trigatron is used to prevent the appearance of the arc. The dependences of the current, voltage and average output energy on the gas-mixture composition and applied voltages at a low pulse repetition rate are presented. The central output wavelength of the laser was measured with an IR spectrometer. Lasing at two adjacent vibrational-rotational transitions of the CO{sub 2} molecule was observed, which demonstrates the possibility of simultaneous lasing at several lines. (lasers)

  8. 10  GHz pulse repetition rate Er:Yb:glass laser modelocked with quantum dot semiconductor saturable absorber mirror.

    PubMed

    Resan, B; Kurmulis, S; Zhang, Z Y; Oehler, A E H; Markovic, V; Mangold, M; Südmeyer, T; Keller, U; Hogg, R A; Weingarten, K J

    2016-05-10

    Semiconductor saturable absorber mirror (SESAM) modelocked high pulse repetition rate (≥10  GHz) diode-pumped solid-state lasers are proven as an enabling technology for high data rate coherent communication systems owing to their low noise and high pulse-to-pulse optical phase-coherence. Compared to quantum well, quantum dot (QD)-based SESAMs offer potential advantages to such laser systems in terms of reduced saturation fluence, broader bandwidth, and wavelength flexibility. Here, we describe the first 10 GHz pulse repetition rate QD-SESAM modelocked laser at 1.55 μm, exhibiting 2 ps pulse width from an Er-doped glass oscillator (ERGO). The 10 GHz ERGO laser is modelocked with InAs/GaAs QD-SESAM with saturation fluence as low as 9  μJ/cm2. PMID:27168291

  9. Derivation of a formula describing the saturation correction of plane-parallel ionization chambers in pulsed fields with arbitrary repetition rate

    NASA Astrophysics Data System (ADS)

    Karsch, Leonhard

    2016-04-01

    Gas-filled ionization chambers are widely used radiation detectors in radiotherapy. A quantitative description and correction of the recombination effects exists for two cases, for continuous radiation exposure and for pulsed radiation fields with short single pulses. This work gives a derivation of a formula for pulsed beams with arbitrary pulse rate for which the prerequisites of the two existing descriptions are not fulfilled. Furthermore, an extension of the validity of the two known cases is investigated. The temporal evolution of idealized charge density distributions within a plane parallel chamber volume is described for pulsed beams of vanishing pulse duration and arbitrary pulse repetition rate. First, the radiation induced release, movement and collection of the charge carriers without recombination are considered. Then, charge recombination is calculated basing on these simplified charge distributions and the time dependent spatial overlap of positive and negative charge carrier distributions. Finally, a formula for the calculation of the saturation correction factor is derived by calculation and simplification of the first two terms of a Taylor expansion for small recombination. The new formula of saturation correction contains the two existing cases, descriptions for exposure by single pulses and continuous irradiation, as limiting cases. Furthermore, it is possible to determine the pulse rate range for which each of the three descriptions is applicable by comparing the dependencies of the new formula with the two existing cases. As long as the time between two pulses is lower than one third of the collection time of the chamber, the formalism for a continuous exposure can be used. The known description for single pulse irradiation is only valid if the repetition rate is less than 1.2 times the inverse collection time. For all other repetition rates in between the new formula should be used. The experimental determination by Jaffe diagrams can be

  10. Cryogenic disk Yb : YAG laser with 120-mJ energy at 500-Hz pulse repetition rate

    SciTech Connect

    Perevezentsev, E A; Mukhin, I B; Kuznetsov, I I; Palashov, O V; Khazanov, Efim A

    2013-03-31

    A repetitively pulsed laser system based on cryogenically cooled Yb : YAG disks is developed. The creation of Yb : YAG/YAG composites and the use of an active liquid nitrogen cooling system made it possible to significantly decrease the effect of amplified spontaneous emission. The average output power of the system is 60 W. (extreme light fields and their applications)

  11. A high repetition rate (1 kHz) microcrystal laser for high throughput atmospheric pressure MALDI-quadrupole-time-of-flight mass spectrometry.

    PubMed

    McLean, John A; Russell, William K; Russell, David H

    2003-02-01

    Sample throughput has been increased in many areas of proteomics, but the last significant advance in lasers used for matrix-assisted laser desorption/ionization (MALDI) was the introduction of cartridge-type N2 lasers (337 nm, 4-ns pulse widths, 1-30-Hz repetition rates) more than a decade ago. This report describes the application of a 1-kHz repetition rate Nd:YAG laser (355 nm, <500-ps pulse widths) for atmospheric pressure MALDI-QqTOFMS, and data obtained are compared to a conventional nitrogen laser. For example, the signal intensity for angiotensin II using the 1-kHz laser was in some cases enhanced by a factor of 80 and high-quality data could be obtained in as little as 1 s. PMID:12585497

  12. Narrow-band, near-uv, high-repetition-rate laser-induced fluorescence system for use as an edge diagnostic in fusion machines

    SciTech Connect

    Young, C.E.; Gruen, D.M.; Pellin, M.J.; Calaway, W.F.

    1983-01-01

    A laser system for impurity diagnostics in the edge region of fusion devices is described, representing a substantial advance in repetition rate and capacity for velocity distribution measurements. A single mode cw dye laser with scan capability of 30 GHz in 100 msec is amplified by 3 fast flow dye cells, pumped by a high repetition rate excimer laser (60 mJ/pulse at 130 Hz at 308 rm). Average power during the 8 ns pulses of about 0.8 MW for amplified narrowband output at 604 rm, and 80 kW after frequency doubling in KD*P was achieved, with spectral bandwidth in the tenths of GHz regime. The usefulness of such high resolution is demonstrated by a model calculation for Fe velocity spectra involving the presence of thermal and sputtered flux, and spatial averaging. Laboratory velocity spectra are presented for Fe atoms, sputtered in the a/sup 5/D/sub 4/ ground state.

  13. A high-repetition rate scheme for synchrotron-based picosecond laser pump/x-ray probe experiments on chemical and biological systems in solution

    SciTech Connect

    Lima, Frederico A.; Milne, Christopher J.; Amarasinghe, Dimali C. V.; Rittmann-Frank, Mercedes Hannelore; Veen, Renske M. van der; Reinhard, Marco; Pham, Van-Thai; Karlsson, Susanne; Mourik, Frank van; Chergui, Majed; Johnson, Steven L.; Grolimund, Daniel; Borca, Camelia; Huthwelker, Thomas; Janousch, Markus; Abela, Rafael

    2011-06-15

    We present the extension of time-resolved optical pump/x-ray absorption spectroscopy (XAS) probe experiments towards data collection at MHz repetition rates. The use of a high-power picosecond laser operating at an integer fraction of the repetition rate of the storage ring allows exploitation of up to two orders of magnitude more x-ray photons than in previous schemes based on the use of kHz lasers. Consequently, we demonstrate an order of magnitude increase in the signal-to-noise of time-resolved XAS of molecular systems in solution. This makes it possible to investigate highly dilute samples at concentrations approaching physiological conditions for biological systems. The simplicity and compactness of the scheme allows for straightforward implementation at any synchrotron beamline and for a wide range of x-ray probe techniques, such as time-resolved diffraction or x-ray emission studies.

  14. Diode-pumped, ultrafast, multi-octave supercontinuum source at repetition rates between 500 kHz and 20 MHz using Yb:glass lasers and tapered fibers.

    PubMed

    Teipel, Jörn; Türke, Diana; Giessen, Harald; Killi, Alexander; Morgner, Uwe; Lederer, Max; Kopf, Daniel; Kolesik, Miroslav

    2005-03-01

    We present a compact, all diode-pumped supercontinuum source based on a SESAM mode-locked Yb:glass oscillator at 1040 nm and a tapered fiber. The oscillator has a repetition rate of 20 MHz, a pulse duration of 200 fs, and a maximum pulse energy of about 15 nJ. This system delivers an 1100 nm broad spectrum with an output power of more than 100 mW. Decreasing the repetition rate to 500 kHz by cavity-dumping results in a supercontinuum with a high pulse energy of about 50 nJ. Furthermore, using the frequency-doubled output of this laser at 520 nm with 300 fs pulse duration resulted in supercontinua in the near-UV and visible spectral region. We compare the experimental spectra with theoretical simulations. PMID:19495023

  15. Dual-frequency comb generation with differing GHz repetition rates by parallel Fabry–Perot cavity filtering of a single broadband frequency comb source

    NASA Astrophysics Data System (ADS)

    Mildner, Jutta; Meiners-Hagen, Karl; Pollinger, Florian

    2016-07-01

    We present a dual-comb-generator based on a coupled Fabry–Perot filtering cavity doublet and a single seed laser source. By filtering a commercial erbium-doped fiber-based optical frequency comb with CEO-stabilisation and 250 MHz repetition rate, two broadband coherent combs of different repetition rates in the GHz range are generated. The filtering doublet consists of two Fabry–Perot cavities with a tunable spacing and Pound–Drever–Hall stabilisation scheme. As a prerequisite for the development of such a filtering unit, we present a method to determine the actual free spectral range and transmission bandwidth of a Fabry–Perot cavity in situ. The transmitted beat signal of two diode lasers is measured as a function of their tunable frequency difference. Finally, the filtering performance and resulting beat signals of the heterodyned combs are discussed as well as the optimisation measures of the whole system.

  16. High-repetition-rate single-frequency electro-optic Q-switched Nd:YAG laser with feedback controlled prelase

    NASA Astrophysics Data System (ADS)

    Dai, Shutao; Shi, Fei; Huang, Jianhong; Deng, Jing; Zheng, Hui; Liu, Huagang; Wu, Hongchun; Weng, Wen; Ge, Yan; Li, Jinhui; Lin, Wenxiong

    2015-10-01

    A stable high-repetition-rate, high pulse energy and single-frequency electro-optic Q-switched laser has been developed and demonstrated in this paper. The prelase technique has been used in this single-frequency laser. And a PID feedback control electronics is applied to stabilize the prelase. Meanwhile, a two-plate resonant reflector take the place of traditional dielectric output coupler mirror to enhance the single-axial-mode selection. And a Cr:YAG saturable absorber is also inserted in the cavity to improve single-axial-mode selection. Output laser power over 2 W with 10 ns pulse duration has been obtained at a repetition rate of 1 kHz. And the single-axial-mode probability was 100% in one hour without any manual adjustments. The experimental results show that the prelase technique is reliable to attain single-frequency operation.

  17. Supercontinuum generation at 1.55 μm in an all-normal dispersion photonic crystal fiber with high-repetition-rate picosecond pulses

    NASA Astrophysics Data System (ADS)

    Xu, Yong-zhao; Han, Tao; Song, Jian-xun; Ling, Dong-xiong; Li, Hong-tao

    2014-11-01

    We demonstrate the generation of supercontinuum (SC) spectrum covering S+C+L band of optical communication by injecting 1.4 ps optical pulses with center wavelength of 1 552 nm and repetition rate of 10 GHz into an all-normal dispersion photonic crystal fiber (PCF) with length of 80 m. The experimental results are in good agreement with the numerical simulations, which are used to illustrate the SC generation dynamics by self-phase modulation and optical wave breaking (WB).

  18. 1 W average-power 100 MHz repetition-rate 259 nm femtosecond deep ultraviolet pulse generation from ytterbium fiber amplifier.

    PubMed

    Zhou, Xiangyu; Yoshitomi, Dai; Kobayashi, Yohei; Torizuka, Kenji

    2010-05-15

    We demonstrate 1W average-power ultraviolet (UV) femtosecond (fs) ultrashort pulse generation at a wavelength of 259 nm and a repetition rate as high as 100 MHz by quadrupling a fs ytterbium-fiber laser. A cavity-enhanced design is employed for efficient frequency doubling to the UV region. The optical-to-optical efficiency of UV output to the pump diode is 2.6%. PMID:20479859

  19. A frequency-locked and frequency-doubled, hybrid Q-switched Yb:KYW laser at 515 nm with a widely adjustable repetition rate

    NASA Astrophysics Data System (ADS)

    Tjörnhammar, S.; Zukauskas, A.; Canalias, C.; Pasiskevicius, V.; Laurell, F.

    2015-09-01

    We demonstrate a compact wavelength-stabilized, frequency-doubled Yb-doped double-tungstate laser with widely tunable repetition rate, spanning from 35 Hz to 3 kHz obtained by hybrid Q-switching. The Q-switching unit consisted of a combination of a passive Cr:YAG crystal and an opto-mechanical active intensity modulator. The fundamental wavelength was locked at 1029 nm with a volume Bragg grating, and the pulse length and energy were 42 ns and 250 µJ, respectively. As the laser was stabilized with the VBG and the opto-mechanical modulator, the frequency instability was reduced six times from free running down to 0.29 %. Frequency doubling was done extra-cavity in PPKTP, and a repetition rate-independent conversion efficiency of 63 % was obtained. The controllable repetition rate together with stable temporal and spatial characteristics makes this laser a suitable candidate in many biology-related experiments, as a pump source for in vivo excitation of fluorophores, e.g., pumping of "living lasers" and matrix-assisted laser desorption/ionization mass spectroscopy.

  20. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince–Gaussian modes for optical trapping

    NASA Astrophysics Data System (ADS)

    Dong, Jun; He, Yu; Zhou, Xiao; Bai, Shengchuang

    2016-03-01

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping.

  1. Single-pulse picking at kHz repetition rates using a Ge plasma switch at the free-electron laser FELBE

    SciTech Connect

    Schmidt, J. Helm, M.; Winnerl, S.; Seidel, W.; Schneider, H.; Bauer, C.; Gensch, M.

    2015-06-15

    We demonstrate a system for picking of mid-infrared and terahertz (THz) radiation pulses from the free-electron laser (FEL) FELBE operating at a repetition rate of 13 MHz. Single pulses are reflected by a dense electron-hole plasma in a Ge slab that is photoexcited by amplified near-infrared (NIR) laser systems operating at repetition rates of 1 kHz and 100 kHz, respectively. The peak intensity of picked pulses is up to 400 times larger than the peak intensity of residual pulses. The required NIR fluence for picking pulses at wavelengths in the range from 5 μm to 30 μm is discussed. In addition, we show that the reflectivity of the plasma decays on a time scale from 100 ps to 1 ns dependent on the wavelengths of the FEL and the NIR laser. The plasma switch enables experiments with the FEL that require high peak power but lower average power. Furthermore, the system is well suited to investigate processes with decay times in the μs to ms regime, i.e., much longer than the 77 ns long pulse repetition period of FELBE.

  2. Single-pulse picking at kHz repetition rates using a Ge plasma switch at the free-electron laser FELBE.

    PubMed

    Schmidt, J; Winnerl, S; Seidel, W; Bauer, C; Gensch, M; Schneider, H; Helm, M

    2015-06-01

    We demonstrate a system for picking of mid-infrared and terahertz (THz) radiation pulses from the free-electron laser (FEL) FELBE operating at a repetition rate of 13 MHz. Single pulses are reflected by a dense electron-hole plasma in a Ge slab that is photoexcited by amplified near-infrared (NIR) laser systems operating at repetition rates of 1 kHz and 100 kHz, respectively. The peak intensity of picked pulses is up to 400 times larger than the peak intensity of residual pulses. The required NIR fluence for picking pulses at wavelengths in the range from 5 μm to 30 μm is discussed. In addition, we show that the reflectivity of the plasma decays on a time scale from 100 ps to 1 ns dependent on the wavelengths of the FEL and the NIR laser. The plasma switch enables experiments with the FEL that require high peak power but lower average power. Furthermore, the system is well suited to investigate processes with decay times in the μs to ms regime, i.e., much longer than the 77 ns long pulse repetition period of FELBE. PMID:26133824

  3. Repetition through Successive Approximations.

    ERIC Educational Resources Information Center

    Littell, Katherine M.

    This study was conducted in an attempt to provide an alternative to the long-established method of tape listening and repetition drills, a method that has had disappointing results. It is suggested that the rate of speed of phonic presentation is not commensurate with the rate of comprehension. The proposed method seeks to prevent cognitive…

  4. The effect of pulse repetition rate on the delay sensitivity of neurons in the auditory cortex of the FM bat, Myotis lucifugus.

    PubMed

    Wong, D; Maekawa, M; Tanaka, H

    1992-04-01

    1. Echo delay is the primary cue used by echolocating bats to determine target range. During target-directed flight, the repetition rate of pulse emission increases systematically as range decreases. Thus, we examined the delay tuning of 120 neurons in the auditory cortex of the bat, Myotis lucifugus, as repetition rate was varied. 2. Delay sensitivity was exhibited in 77% of the neurons over different ranges of pulse repetition rates (PRRs). Delay tuning typically narrowed and eventually disappeared at higher PRRs. 3. Two major types of delay-sensitive neurons were found: i) delay-tuned neurons (59%) had a single fixed best delay, while ii) tracking neurons (22%) changed their best delay with PRR. 4. PRRs from 1-100/s were represented by the population of delay-sensitive neurons, with the majority of neurons delay-sensitive at PRRs of at least 10-20/s. Thus, delay-dependent neurons in Myotis are most active during the search phase of echolocation. 5. Delay-sensitive neurons that also responded to single sounds were common. At PRRs where delay sensitivity was found, the responses to single sounds were reduced and the responses to pulse-echo pairs at particular delays were greater than the single-sound responses. In facilitated neurons (53%), the maximal delay-dependent response was always larger than the best single-sound responses, whereas in enhanced neurons (47%), these responses were comparable. The presence of neurons that respond maximally to single sounds at one PRR and to pulse-echo pairs with particular echo delays at other PRRs suggests that these neurons perform echo-ranging in conjunction with other biosonar functions during target pursuit. PMID:1625215

  5. High-power, high-repetition-rate performance characteristics of β-BaB₂O₄ for single-pass picosecond ultraviolet generation at 266 nm.

    PubMed

    Kumar, S Chaitanya; Casals, J Canals; Wei, Junxiong; Ebrahim-Zadeh, M

    2015-10-19

    We report a systematic study on the performance characteristics of a high-power, high-repetition-rate, picosecond ultraviolet (UV) source at 266 nm based on β-BaB2O4 (BBO). The source, based on single-pass fourth harmonic generation (FHG) of a compact Yb-fiber laser in a two-crystal spatial walk-off compensation scheme, generates up to 2.9 W of average power at 266 nm at a pulse repetition rate of ~80 MHz with a single-pass FHG efficiency of 35% from the green to UV. Detrimental issues such as thermal effects have been studied and confirmed by performing relevant measurements. Angular and temperature acceptance bandwidths in BBO for FHG to 266 nm are experimentally determined, indicating that the effective interaction length is limited by spatial walk-off and thermal gradients under high-power operation. The origin of dynamic color center formation due to two-photon absorption in BBO is investigated by measurements of intensity-dependent transmission at 266 nm. Using a suitable theoretical model, two-photon absorption coefficients as well as the color center densities have been estimated at different temperatures. The measurements show that the two-photon absorption coefficient in BBO at 266 nm is ~3.5 times lower at 200°C compared to that at room temperature. The long-term power stability as well as beam pointing stability is analyzed at different output power levels and focusing conditions. Using cylindrical optics, we have circularized the generated elliptic UV beam to a circularity of >90%. To our knowledge, this is the first time such high average powers and temperature-dependent two-photon absorption measurements at 266 nm are reported at repetition rates as high as ~80 MHz. PMID:26480467

  6. Optimized spatial overlap in optical pump-X-ray probe experiments with high repetition rate using laser-induced surface distortions.

    PubMed

    Reinhardt, Matthias; Koc, Azize; Leitenberger, Wolfram; Gaal, Peter; Bargheer, Matias

    2016-03-01

    Ultrafast X-ray diffraction experiments require careful adjustment of the spatial overlap between the optical excitation and the X-ray probe pulse. This is especially challenging at high laser repetition rates. Sample distortions caused by the large heat load on the sample and the relatively low optical energy per pulse lead to only tiny signal changes. In consequence, this results in small footprints of the optical excitation on the sample, which turns the adjustment of the overlap difficult. Here a method for reliable overlap adjustment based on reciprocal space mapping of a laser excited thin film is presented. PMID:26917135

  7. Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate.

    PubMed

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Limpert, Jens; Tünnermann, Andreas

    2012-05-01

    We report on an OPCPA system delivering CEP-stable pulses with a pulse duration of only 1.7 optical cycles at 880 nm wavelength. This pulse duration is achieved by the generation, optical parametric amplification and compression of a full optical octave of bandwidth. The system is pumped by a high average power Yb-fiber laser system, which allows for operation of the OPCPA at up to 1 MHz repetition rate and 22 W of average output power. Further scaling towards single-cycle pulses, higher energy and output power is discussed. PMID:22565712

  8. Dispersion-compensation-free femtosecond Tm-doped all-fiber laser with a 248  MHz repetition rate.

    PubMed

    Sun, Biao; Luo, Jiaqi; Ng, Boon Ping; Yu, Xia

    2016-09-01

    In this Letter, we report a dispersion-compensation-free ultrafast thulium-doped all-fiber laser based on nonlinear polarization evolution (NPE) mode locking, delivering 330 fs soliton pulses at 1950 nm. A multifunctional hybrid fiberized device was applied in the oscillator to minimize the physical cavity length to ∼80  cm with a total dispersion of -0.045  ps2, enabling a state-of-the-art fundamental mode-locking repetition rate of 248 MHz in an NPE-based oscillator at ∼2  μm. PMID:27607970

  9. High-efficiency 17 W, 80 MHz repetition rate, passively mode-locked TEM00 Nd:YAG oscillator pumped at 885 nm

    NASA Astrophysics Data System (ADS)

    Zhang, X.-F.; Li, F.-Q.; Zong, N.; Le, X.-Y.; Cui, D.-F.; Xu, Z.-Y.

    2011-03-01

    We report on a passively mode-locked TEM00 Nd:YAG oscillator with the beam quality at M 2 = 1.1 by a semiconductor saturable absorber mirror under 885 nm laser diode direct pumping for the first time. A maximum average output power of 17 W at a repetition rate of 80 MHz with 39 ps pulse width was obtained under the absorbed pump power of 38 W, corresponding to an optical-optical efficiency of 44% and the slope efficiency of 69%, respectively.

  10. In vivo near-realtime volumetric optical-resolution photoacoustic microscopy using a high-repetition-rate nanosecond fiber-laser

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Hajireza, Parsin; Shao, Peng; Forbrich, Alexander; Zemp, Roger J.

    2011-08-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is capable of achieving optical-absorption-contrast images with micron-scale spatial resolution. Previous OR-PAM systems have been frame-rate limited by mechanical scanning speeds and laser pulse repetition rate (PRR). We demonstrate OR-PAM imaging using a diode-pumped nanosecond-pulsed Ytterbium-doped 532-nm fiber laser with PRR up to 600 kHz. Combined with fast-scanning mirrors, our proposed system provides C-scan and 3D images with acquisition frame rate of 4 frames per second (fps) or higher, two orders of magnitude faster than previously published systems. High-contrast images of capillary-scale microvasculature in a live Swiss Webster mouse ear with ~6-μm optical lateral spatial resolution are demonstrated.

  11. High-repetition-rate and high-photon-flux 70 eV high-harmonic source for coincidence ion imaging of gas-phase molecules.

    PubMed

    Rothhardt, Jan; Hädrich, Steffen; Shamir, Yariv; Tschnernajew, Maxim; Klas, Robert; Hoffmann, Armin; Tadesse, Getnet K; Klenke, Arno; Gottschall, Thomas; Eidam, Tino; Limpert, Jens; Tünnermann, Andreas; Boll, Rebecca; Bomme, Cedric; Dachraoui, Hatem; Erk, Benjamin; Di Fraia, Michele; Horke, Daniel A; Kierspel, Thomas; Mullins, Terence; Przystawik, Andreas; Savelyev, Evgeny; Wiese, Joss; Laarmann, Tim; Küpper, Jochen; Rolles, Daniel

    2016-08-01

    Unraveling and controlling chemical dynamics requires techniques to image structural changes of molecules with femtosecond temporal and picometer spatial resolution. Ultrashort-pulse x-ray free-electron lasers have significantly advanced the field by enabling advanced pump-probe schemes. There is an increasing interest in using table-top photon sources enabled by high-harmonic generation of ultrashort-pulse lasers for such studies. We present a novel high-harmonic source driven by a 100 kHz fiber laser system, which delivers 1011 photons/s in a single 1.3 eV bandwidth harmonic at 68.6 eV. The combination of record-high photon flux and high repetition rate paves the way for time-resolved studies of the dissociation dynamics of inner-shell ionized molecules in a coincidence detection scheme. First coincidence measurements on CH3I are shown and it is outlined how the anticipated advancement of fiber laser technology and improved sample delivery will, in the next step, allow pump-probe studies of ultrafast molecular dynamics with table-top XUV-photon sources. These table-top sources can provide significantly higher repetition rates than the currently operating free-electron lasers and they offer very high temporal resolution due to the intrinsically small timing jitter between pump and probe pulses. PMID:27505779

  12. Diode-pumped acousto-optically Q-switched high-repetition-rate Nd:YAG lasers at 946 and 473 nm by intracavity frequency-doubling

    NASA Astrophysics Data System (ADS)

    Chen, F.; Yu, X.; Guo, J.; Guo, L. H.; Yang, G. L.; Xie, J. J.; Zhang, L. M.; Geng, Y. M.; Li, S. M.; Li, D. J.; Shao, C. L.; Meng, F. J.; Zhang, C. S.; Yan, R. P.

    2011-10-01

    A diode-pumped acousto-optically (AO) Q-switched high-repetition-rate Nd:YAG lasers at 946 and 473 nm by intracavity frequency-doubling were reported in this paper. Using a compact V-type laser cavity, a maximum average output power of 4.5 W 946 nm laser was obtained at an operating repetition rate of 10 kHz, corresponding to an optical conversion efficiency of 10.5% and a slope efficiency of 15.6%. With a BiBO crystal as the intracavity frequency-doubler, 1.35 W 473 nm pulsed laser was achieved at 10 kHz. The peak power of the Q-switched blue pulse was up to 4.1 kW, with a pulse width of 33.1 ns. Then, the long-term power instability was less than 1%. Moreover, stable pulsed operation of 946 nm and 473 nm lasers can even reach 50 kHz.

  13. Gain-switched laser diode seeded Yb-doped fiber amplifier delivering 11-ps pulses at repetition rates up to 40-MHz

    NASA Astrophysics Data System (ADS)

    Ryser, Manuel; Neff, Martin; Pilz, Soenke; Burn, Andreas; Romano, Valerio

    2012-02-01

    Here, we demonstrate all-fiber direct amplification of 11 picosecond pulses from a gain-switched laser diode at 1063 nm. The diode was driven at a repetition rate of 40 MHz and delivered 13 μW of fiber-coupled average output power. For the low output pulse energy of 0.33 pJ we have designed a multi-stage core pumped preamplifier based on single clad Yb-doped fibers in order to keep the contribution of undesired amplified spontaneous emission as low as possible and to minimize temporal and spectral broadening. After the preamplifier we reduced the 40 MHz repetition rate to 1 MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we achieved amplification of 72 dBs to an output pulse energy of 5.7 μJ, pulse duration of 11 ps and peak power of >0.6 MW.

  14. Advances in the pulse-burst laser system for high-repetition-rate Thomson scattering on MST

    NASA Astrophysics Data System (ADS)

    Harris, W. S.; Hurst, N. C.; den Hartog, D. J.; Ambuel, J. R.; Holly, D. J.; Robl, P. E.

    2010-11-01

    A pulse-burst laser has been installed for Thomson scattering measurements on MST. The laser design is a master-oscillator power-amplifier which is capable of Q-switching at frequencies between 5-250 kHz. Single pulses through the first (four) Nd:YAG amplifier stages give energies up to 1.5 J, and the gain for each stage has been measured. Repetitive pulsing at 10 kHz has also been performed for 2 ms bursts giving average pulse energies of 0.53 J with δE/E of 4.6%, where δE is the standard deviation between pulses. The final Nd:glass amplifier stages require flashlamps operated at 1800 V and 1800 A. At these currents, inductive turnoff spikes can become large even for small circuit inductances. The flashlamp power supplies have been modified to reduce inductance and increase snubber capacitance, and now reliably produce pulse trains (10 pulses at 1 kHz) at maximum flashlamp drive current. In addition, the beam path is being extended to the MST vacuum vessel. This work is supported by the U. S. Department of Energy and the National Science Foundation.

  15. Human sensory-evoked responses differ coincident with either "fusion-memory" or "flash-memory", as shown by stimulus repetition-rate effects

    PubMed Central

    Jewett, Don L; Hart, Toryalai; Larson-Prior, Linda J; Baird, Bill; Olson, Marram; Trumpis, Michael; Makayed, Katherine; Bavafa, Payam

    2006-01-01

    Background: A new method has been used to obtain human sensory evoked-responses whose time-domain waveforms have been undetectable by previous methods. These newly discovered evoked-responses have durations that exceed the time between the stimuli in a continuous stream, thus causing an overlap which, up to now, has prevented their detection. We have named them "A-waves", and added a prefix to show the sensory system from which the responses were obtained (visA-waves, audA-waves, somA-waves). Results: When A-waves were studied as a function of stimulus repetition-rate, it was found that there were systematic differences in waveshape at repetition-rates above and below the psychophysical region in which the sensation of individual stimuli fuse into a continuity. The fusion phenomena is sometimes measured by a "Critical Fusion Frequency", but for this research we can only identify a frequency-region [which we call the STZ (Sensation-Transition Zone)]. Thus, the A-waves above the STZ differed from those below the STZ, as did the sensations. Study of the psychophysical differences in auditory and visual stimuli, as shown in this paper, suggest that different stimulus features are detected, and remembered, at stimulation rates above and below STZ. Conclusion: The results motivate us to speculate that: 1) Stimulus repetition-rates above the STZ generate waveforms which underlie "fusion-memory" whereas rates below the STZ show neuronal processing in which "flash-memory" occurs. 2) These two memories differ in both duration and mechanism, though they may occur in the same cell groups. 3) The differences in neuronal processing may be related to "figure" and "ground" differentiation. We conclude that A-waves provide a novel measure of neural processes that can be detected on the human scalp, and speculate that they may extend clinical applications of evoked response recordings. If A-waves also occur in animals, it is likely that A-waves will provide new methods for

  16. Asynchronous recruitment of low-threshold motor units during repetitive, low-current stimulation of the human tibial nerve.

    PubMed

    Dean, Jesse C; Clair-Auger, Joanna M; Lagerquist, Olle; Collins, David F

    2014-01-01

    Motoneurons receive a barrage of inputs from descending and reflex pathways. Much of our understanding about how these inputs are transformed into motor output in humans has come from recordings of single motor units during voluntary contractions. This approach, however, is limited because the input is ill-defined. Herein, we quantify the discharge of soleus motor units in response to well-defined trains of afferent input delivered at physiologically-relevant frequencies. Constant frequency stimulation of the tibial nerve (10-100 Hz for 30 s), below threshold for eliciting M-waves or H-reflexes with a single pulse, recruited motor units in 7/9 subjects. All 25 motor units recruited during stimulation were also recruited during weak (<10% MVC) voluntary contractions. Higher frequencies recruited more units (n = 3/25 at 10 Hz; n = 25/25 at 100 Hz) at shorter latencies (19.4 ± 9.4 s at 10 Hz; 4.1 ± 4.0 s at 100 Hz) than lower frequencies. When a second unit was recruited, the discharge of the already active unit did not change, suggesting that recruitment was not due to increased synaptic drive. After recruitment, mean discharge rate during stimulation at 20 Hz (7.8 Hz) was lower than during 30 Hz (8.6 Hz) and 40 Hz (8.4 Hz) stimulation. Discharge was largely asynchronous from the stimulus pulses with "time-locked" discharge occurring at an H-reflex latency with only a 24% probability. Motor units continued to discharge after cessation of the stimulation in 89% of trials, although at a lower rate (5.8 Hz) than during the stimulation (7.9 Hz). This work supports the idea that the afferent volley evoked by repetitive stimulation recruits motor units through the integration of synaptic drive and intrinsic properties of motoneurons, resulting in "physiological" recruitment which adheres to Henneman's size principle and results in relatively low discharge rates and asynchronous firing. PMID:25566025

  17. Generation of 1.5 W average power, 18 kHz repetition rate coherent mid-ultraviolet radiation at 271.2 nm.

    PubMed

    Biswal, Ramakanta; Agrawal, Praveen K; Dixit, Sudhir K; Nakhe, Shankar V

    2015-11-10

    This paper presents to our knowledge a first time study on the generation of 1.5 W average power, 18 kHz repetition rate coherent mid-ultraviolet (UV) radiation at 271.2 nm. The work is based on frequency summing of coherent green (G: 510.6 nm) and yellow (Y: 578.2 nm) radiations of a copper-HBr laser in a β-barium borate crystal. Average and peak sum frequency conversion efficiencies of about 13% and 16%, respectively, are obtained. The sum frequency results are experimentally analyzed in terms of the extent of matching of green and yellow pump radiations in space, time, and frequency domains. The result is of high significance for many applications in photonics components fabrication, semiconductor technology, and spectroscopy. PMID:26560794

  18. Long cavity and low repetition rate passively mode-locked fiber laser with high-energy right angle trapezoid shaped soliton in anomalous dispersion regime

    NASA Astrophysics Data System (ADS)

    Luo, Wenfeng; Lv, Shuyuan; Zhao, Xiaoxia; Qiao, Dun

    2015-05-01

    A long cavity passively mode locked fiber laser in the anomalous dispersion regime is reported. Nonlinear polarization rotation technique is employed to achieve the mode locking in our experiments. The output pulse from the fiber laser has the Gaussian profile spectrum and right angle trapezoid shape. Stable mode locking is achieved without using any dispersion-compensation components. The single pulse with an energy of 652 nJ and a repetition rate of 836 kHz at the pump power of approximately 500 mW is obtained and the duration of the output pulse increases linearly with the pump power. Different from the conventional low-energy soliton pulse, experimental results demonstrate that the passively mode locked fiber laser operating in the anomalous regime can also realize high energy pulse.

  19. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    NASA Astrophysics Data System (ADS)

    Krastelev, E. G.; Sedin, A. A.; Tugushev, V. I.

    2015-12-01

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80-90 ns, and a pulse repetition rate of up to 16 Hz.

  20. High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode-locked Yb-doped fiber laser in all normal dispersion cavity

    NASA Astrophysics Data System (ADS)

    Lin, J.-H.; Wang, D.; Lin, K.-H.

    2011-01-01

    Robust passively mode-locked pulse generation with low pulse repetition rate and giant spectrum bandwidth in an all-fiber, all-normal-dispersion ytterbium-doped fiber laser has been experimentally demonstrated using nonlinear polarization evolution technique. The highest pulse energy over 20 nJ with spectrum bandwidth over 50 nm can be experimentally obtained at 175 mW pump power. The mode-locked pulses reveal broadened 3-dB pulsewidth about several nanosecond and widened pedestal in time trace that is resulted from enormous dispersion in laser cavity and gain dynamics. At certain mode-locking state, a spectrum gap around 1056 nm are observed between the three and four energy levels of Yb-doped fiber laser. By properly rotating the polarization controller, the gap can be eliminated due to four-wave mixing to produce more flattened spectrum output.

  1. PULSAR: A High-Repetition-Rate, High-Power, CE Phase-Locked Laser for the J.R. Macdonald Laboratory at Kansas State University

    SciTech Connect

    Ben-Itzhak, Itzik; Carnes, Kevin D.; Cocke, C. Lew; Fehrenbach, Charles W.; Kumarappan, Vinod; Rudenko, Artem; Trallero, Carlos

    2014-05-09

    This instrumentation grant funded the development and installation of a state-of-the-art laser system to be used for the DOE funded research at the J.R. Macdonald Laboratory at Kansas State University. Specifically, we purchased a laser based on the KMLABs Red-Dragon design, which has a high repetition rate of 10-20 kHz crucial for multi-parameter coincidence measurements conducted in our lab. This laser system is carrier-envelope phase (CEP) locked and provides pulses as short as 21 fs directly from the amplifier (see details below). In addition, we have developed a pulse compression setup that provides sub 5 fs pulses and a CEP tagging capability that allows for long measurements of CEP dependent processes.

  2. Temperature scaling of hot electrons produced by a tightly focused relativistic-intensity laser at 0.5 kHz repetition rate

    SciTech Connect

    Mordovanakis, Aghapi G.; Masson-Laborde, Paul-Edouard; Easter, James; Hou Bixue; Nees, John; Krushelnick, Karl; Popov, Konstantin; Rozmus, Wojciech; Mourou, Gerard; Haines, Malcolm G.

    2010-02-15

    The energy spectrum of hot electrons emitted from the interaction of a relativistically intense laser with an Al plasma is measured at a repetition rate of 0.5 kHz by accumulating approx10{sup 3} highly reproducible laser shots. In the 10{sup 17}-2x10{sup 18} W/cm{sup 2} range, the temperature of electrons escaping the plasma along the specular direction scales as (Ilambda{sup 2}){sup 0.64+}-{sup 0.05} for p-polarized pulses incident at 45 deg. This scaling is in good agreement with three-dimensional particle-in-cell simulations and a simple model that estimates the hot-electron temperature by considering the balance between the deposited laser intensity and the energy carried away by those electrons.

  3. Diode-pumped short pulse passively Q-switched 912 nm Nd:GdVO4/Cr:YAG laser at high repetition rate operation

    NASA Astrophysics Data System (ADS)

    Chen, F.; Yu, X.; Wang, C.; Yan, R. P.; Li, X. D.; Gao, J.; Zhang, Z. H.; Yu, J. H.

    2010-06-01

    A diode-end-pumped passively Q-switched 912 nm Nd:GdVO4/Cr:YAG laser is demonstrated for the first time. In a concave-piano cavity, pulsed 912 nm laser performance is investigated using two kinds of Cr:YAG crystal with different unsaturated transmission ( T U) of 95% and 90% at 912 nm as the saturable absorbers. When the T U = 90% Cr:YAG is used, as much as 2.6 W average output power for short pulsed 912 nm laser is achieved at an absorbed pump power of 34.0 W, corresponding to an optical efficiency of 7.6% and a slope efficiency of 20.3%. Moreover, 10.5 ns duration pulses and up to 2.3 kW peak power is obtained at the repetition rate around 81.6 kHz.

  4. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    SciTech Connect

    Krastelev, E. G. Sedin, A. A.; Tugushev, V. I.

    2015-12-15

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz.

  5. High-power diode-directly-pumped tenth-order harmonic mode-locked TEM00 Nd:YVO4 laser with 1 GHz repetition rate

    NASA Astrophysics Data System (ADS)

    Li, F.-Q.; Zong, N.; Han, L.; Tian, C.-Y.; Bo, Y.; Peng, Q.-J.; Cui, D.-F.; Xu, Z.-Y.

    2011-02-01

    A high-efficiency high-power diode-directly-pumped tenth-order harmonic mode-locked TEM00 Nd:YVO4 laser with 1 GHz repetition rate was first demonstrated. The maximum output power was 10.4 W with optical-optical efficiency of 41.8% and slope efficiency of 78.1%, respectively, the pulse width was about 30 ps at the output power of 9.6 W. Based on the large third-order nonlinearity of Nd:YVO4, the tenth-order harmonic mode-locked pulses were induced by the intensity-dependent Kerr effect and the cooperative action of counter-propagating pulses colliding in the laser crystal for a colliding-pulse-modelocking-like cavity. The pulses were further modulated by a semiconductor saturable absorber mirror.

  6. Experimental investigation and theoretical analysis of pulse repetition rate adjustable deep ultraviolet picosecond radiation by second harmonic generation in KBe2BO3F2

    NASA Astrophysics Data System (ADS)

    Xu, Zhi; Zhang, Fengfeng; Zhang, Shenjin; Wang, Zhimin; Yang, Feng; Xu, Fengliang; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Wang, Xiaoyang; Chen, Chuangtian; Xu, Zuyan

    2014-06-01

    We reported on an experimental investigation and theoretical analysis of pulse repetition rate (PRR) adjustable deep ultraviolet (DUV) picosecond (ps) radiation by second harmonic generation (SHG) in KBe2BO3F2 (KBBF) crystal. Third harmonic radiation at 355 nm of a ps Nd:YVO4 laser output with PRR of 200 kHz-1 MHz was employed as the pump source. The dependence of the 177.3 nm output power on the 355 nm pump power was measured at different PRRs, and the maximum 177.3 nm average output power of 695 μW was obtained at the PRR of 200 kHz. The measured data agreed well with the results of the ps KBBF SHG theoretical simulations. Using simulations, the pulse width and the spectral bandwidth of the generated radiation at 177.3 nm were estimated to be 5.88 ps and 7.84 pm, respectively.

  7. Ultrafast laser with an average power of 120 W at 515 nm and a highly dynamic repetition rate in the MHz range for novel applications in micromachining

    NASA Astrophysics Data System (ADS)

    Harth, F.; Piontek, M. C.; Herrmann, T.; L'huillier, J. A.

    2016-03-01

    A new generation of resonant scanners in the kHz-range shows ultra-high deflection speeds of more than 1000m/s but suffer from an inherent nonlinear mirror oscillation. If this oscillation is not compensated, a typical bitmap, written point by point, would be strongly distorted because of the decreasing spot distance at the turning point of the scanning mirror. However, this can be avoided by a dynamic adaption of the repetition rate (RR) of the ultrafast laser. Since resonant scanners are operated in the 10 kHz-range, this means that the RR has to be continuously swept up to several 10 000 times per second between e.g. 5MHz and 10 MHz. High-speed continuous adaption of the RR could also optimize laser micromachining of narrow curved geometries, where nowadays a time consuming approximation with numerous vectors is required. We present a laser system, which is capable of sweeping the RR more than 32 000 times per second between 5MHz and 10MHz at an average output power of more than 120W at 515nm with a pulse duration of about 40 ps. The laser consists of a semiconductor oscillator, a 3-stage fiber pre-amplifier, a solid state InnoSlab power amplifier and a SHG stage. We systematically analyzed the dynamic of the laser system as well as the spectral and temporal behavior of the optical pulses. Switching the repetition rate typically causes a varying pulse energy, which could affect the machining quality over one scanning line. This effect will be analyzed and discussed. Possible techniques to compensate or avoid this effect will be considered.

  8. Multisectional KrF laser with a pulse repetition rate of 4 kHz and inductive-capacitive discharge stabilisation

    SciTech Connect

    Andramanov, A V; Kabaev, S A; Lazhintsev, B V; Nor-Arevyan, V A; Pisetskaya, A V; Selemir, Victor D

    2006-02-28

    An electric-discharge KrF laser with an inductive-capacitive discharge stabilisation and a pulse repetition rate up to 4 kHz is developed. The multisectional discharge gap with a total length of 25 cm is formed by 25 pairs of anode-cathode plates. A discharge width of no more than 1 mm is realised. Ne and He are used as the buffer gases, and F{sub 2} serves as the fluorine donor. The maximum output pulse energy is {approx}6 mJ for the Ne-Kr-F{sub 2} mixture at a total pressure of 1.6-3.2 atm. The maximum efficiency of the laser is {approx}1.4%. An original optical technique is worked out for measuring the gas velocity in the working gap. The maximum gas velocity in the gap between the electrodes is found to be 19 ms{sup -1} in the experiments. The average output power of the laser for a pulse repetition rate of 3-4 kHz is {approx}12 W, while the relative rms deviation of the laser pulse energy lies in the range 2%-3.8%. It is shown that the refractive index gradient of the active medium, which is related to the free electron concentration in the discharge plasma, plays a significant role in the formation of laser radiation field in the resonator. The characteristic value of the refractive index gradient is found to be no less than 10{sup -5} cm{sup -1} for the KrF laser wavelength. (lasers)

  9. Pump-beam-induced optical damage depended on repetition frequency and pulse width in 4-dimethylamino-N Prime -methyl-4 Prime -stilbazolium tosylate crystal

    SciTech Connect

    Matsukawa, Takeshi; Nawata, Kouji; Notake, Takashi; Qi Feng; Kawamata, Hiroshi; Minamide, Hiroaki

    2013-07-08

    We investigated the dependence of optical damage to an organic nonlinear optical crystal of 4-dimethylamino-N Prime -methyl-4 Prime -stilbazolium tosylate (DAST) on the repetition frequency and pulse width of the pump beam used to cause the thermal damage. For a pump beam with a pulse width of 15 ns at a wavelength of 1064 nm, the highest damage threshold of 8.0 J/cm{sup 2} was measured for repetition frequencies in the range from 10 to 40 Hz. On the other hand, DAST crystals were easily damaged under the repetition rates from 50 to 100 Hz. For 600-ps pulses, a higher damage threshold that was a factor of 11 to 28 times higher in terms of peak intensity was obtained compared with that of 15-ns pulses. In both the cases of 15-ns pulse duration and 600-ps duration, we demonstrated that the thermal effects in DAST crystals dominated the optical damage, which depended on thermal accumulation and dissipation.

  10. Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser

    PubMed Central

    Jin, Rui-Bo; Shimizu, Ryosuke; Morohashi, Isao; Wakui, Kentaro; Takeoka, Masahiro; Izumi, Shuro; Sakamoto, Takahide; Fujiwara, Mikio; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Wang, Zhen; Sasaki, Masahide

    2014-01-01

    Efficient generation and detection of indistinguishable twin photons are at the core of quantum information and communications technology (Q-ICT). These photons are conventionally generated by spontaneous parametric down conversion (SPDC), which is a probabilistic process, and hence occurs at a limited rate, which restricts wider applications of Q-ICT. To increase the rate, one had to excite SPDC by higher pump power, while it inevitably produced more unwanted multi-photon components, harmfully degrading quantum interference visibility. Here we solve this problem by using recently developed 10 GHz repetition-rate-tunable comb laser, combined with a group-velocity-matched nonlinear crystal, and superconducting nanowire single photon detectors. They operate at telecom wavelengths more efficiently with less noises than conventional schemes, those typically operate at visible and near infrared wavelengths generated by a 76 MHz Ti Sapphire laser and detected by Si detectors. We could show high interference visibilities, which are free from the pump-power induced degradation. Our laser, nonlinear crystal, and detectors constitute a powerful tool box, which will pave a way to implementing quantum photonics circuits with variety of good and low-cost telecom components, and will eventually realize scalable Q-ICT in optical infra-structures. PMID:25524646

  11. Demonstration of a time-resolved x-ray scattering instrument utilizing the full-repetition rate of x-ray pulses at the Pohang Light Source

    NASA Astrophysics Data System (ADS)

    Jo, Wonhyuk; Eom, Intae; Landahl, Eric C.; Lee, Sooheyong; Yu, Chung-Jong

    2016-03-01

    We report on the development of a new experimental instrument for time-resolved x-ray scattering (TRXS) at the Pohang Light Source (PLS-II). It operates with a photon energy ranging from 5 to 18 keV. It is equipped with an amplified Ti:sappahire femtosecond laser, optical diagnostics, and laser beam delivery for pump-probe experiments. A high-speed single-element detector and high trigger-rate oscilloscope are used for rapid data acquisition. While this instrument is capable of measuring sub-nanosecond dynamics using standard laser pump/x-ray probe techniques, it also takes advantage of the dense 500 MHz standard fill pattern in the PLS-II storage ring to efficiently record nano-to-micro-second dynamics simultaneously. We demonstrate this capability by measuring both the (fast) impulsive strain and (slower) thermal recovery dynamics of a crystalline InSb sample following intense ultrafast laser excitation. Exploiting the full repetition rate of the storage ring results in a significant improvement in data collection rates compared to conventional bunch-tagging methods.

  12. Demonstration of a time-resolved x-ray scattering instrument utilizing the full-repetition rate of x-ray pulses at the Pohang Light Source.

    PubMed

    Jo, Wonhyuk; Eom, Intae; Landahl, Eric C; Lee, Sooheyong; Yu, Chung-Jong

    2016-03-01

    We report on the development of a new experimental instrument for time-resolved x-ray scattering (TRXS) at the Pohang Light Source (PLS-II). It operates with a photon energy ranging from 5 to 18 keV. It is equipped with an amplified Ti:sappahire femtosecond laser, optical diagnostics, and laser beam delivery for pump-probe experiments. A high-speed single-element detector and high trigger-rate oscilloscope are used for rapid data acquisition. While this instrument is capable of measuring sub-nanosecond dynamics using standard laser pump/x-ray probe techniques, it also takes advantage of the dense 500 MHz standard fill pattern in the PLS-II storage ring to efficiently record nano-to-micro-second dynamics simultaneously. We demonstrate this capability by measuring both the (fast) impulsive strain and (slower) thermal recovery dynamics of a crystalline InSb sample following intense ultrafast laser excitation. Exploiting the full repetition rate of the storage ring results in a significant improvement in data collection rates compared to conventional bunch-tagging methods. PMID:27036819

  13. Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser

    NASA Astrophysics Data System (ADS)

    Jin, Rui-Bo; Shimizu, Ryosuke; Morohashi, Isao; Wakui, Kentaro; Takeoka, Masahiro; Izumi, Shuro; Sakamoto, Takahide; Fujiwara, Mikio; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Wang, Zhen; Sasaki, Masahide

    2014-12-01

    Efficient generation and detection of indistinguishable twin photons are at the core of quantum information and communications technology (Q-ICT). These photons are conventionally generated by spontaneous parametric down conversion (SPDC), which is a probabilistic process, and hence occurs at a limited rate, which restricts wider applications of Q-ICT. To increase the rate, one had to excite SPDC by higher pump power, while it inevitably produced more unwanted multi-photon components, harmfully degrading quantum interference visibility. Here we solve this problem by using recently developed 10 GHz repetition-rate-tunable comb laser, combined with a group-velocity-matched nonlinear crystal, and superconducting nanowire single photon detectors. They operate at telecom wavelengths more efficiently with less noises than conventional schemes, those typically operate at visible and near infrared wavelengths generated by a 76 MHz Ti Sapphire laser and detected by Si detectors. We could show high interference visibilities, which are free from the pump-power induced degradation. Our laser, nonlinear crystal, and detectors constitute a powerful tool box, which will pave a way to implementing quantum photonics circuits with variety of good and low-cost telecom components, and will eventually realize scalable Q-ICT in optical infra-structures.

  14. A Perceptual Repetition Blindness Effect

    NASA Technical Reports Server (NTRS)

    Hochhaus, Larry; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    Before concluding Repetition Blindness is a perceptual phenomenon, alternative explanations based on memory retrieval problems and report bias must be rejected. Memory problems were minimized by requiring a judgment about only a single briefly displayed field. Bias and sensitivity effects were empirically measured with an ROC-curve analysis method based on confidence ratings. Results from five experiments support the hypothesis that Repetition Blindness can be a perceptual phenomenon.

  15. Deception rate in a "lying game": different effects of excitatory repetitive transcranial magnetic stimulation of right and left dorsolateral prefrontal cortex not found with inhibitory stimulation.

    PubMed

    Karton, Inga; Palu, Annegrete; Jõks, Kerli; Bachmann, Talis

    2014-11-01

    Knowing the brain processes involved in lying is the key point in today's deception detection studies. We have previously found that stimulating the dorsolateral prefrontal cortex (DLPFC) with repetitive transcranial magnetic stimulation (rTMS) affects the rate of spontaneous lying in simple behavioural tasks. The main idea of this study was to examine the role of rTMS applied to the DLPFC in the behavioural conditions where subjects were better motivated to lie compared to our earlier studies and where all possible conditions (inhibition of left and right DLPFC with 1-Hz and sham; excitation of left and right DLPFC with 10-Hz and sham) were administered to the same subjects. It was expected that excitation of the left DLPFC with rTMS decreases and excitation of the right DLPFC increases the rate of lying and that inhibitory stimulation reverses the effects. As was expected, excitation of the left DLPFC decreased lying compared to excitation of the right DLPFC, but contrary to the expectation, inhibition had no different effects. These findings suggest that propensity to lie can be manipulated by non-invasive excitatory brain stimulation by TMS targeted at DLPFC and the direction of the effect depends on the cortical target locus. PMID:25233864

  16. Repetition Reduction: Lexical Repetition in the Absence of Referent Repetition

    ERIC Educational Resources Information Center

    Lam, Tuan Q.; Watson, Duane G.

    2014-01-01

    Compared to words that are new to a discourse, repeated words are produced with reduced acoustic prominence. Although these effects are often attributed to priming in the production system, the locus of the effect within the production system remains unresolved because, in natural speech, repetition often involves repetition of referents and…

  17. Emotional response to musical repetition.

    PubMed

    Livingstone, Steven R; Palmer, Caroline; Schubert, Emery

    2012-06-01

    Two experiments examined the effects of repetition on listeners' emotional response to music. Listeners heard recordings of orchestral music that contained a large section repeated twice. The music had a symmetric phrase structure (same-length phrases) in Experiment 1 and an asymmetric phrase structure (different-length phrases) in Experiment 2, hypothesized to alter the predictability of sensitivity to musical repetition. Continuous measures of arousal and valence were compared across music that contained identical repetition, variation (related), or contrasting (unrelated) structure. Listeners' emotional arousal ratings differed most for contrasting music, moderately for variations, and least for repeating musical segments. A computational model for the detection of repeated musical segments was applied to the listeners' emotional responses. The model detected the locations of phrase boundaries from the emotional responses better than from performed tempo or physical intensity in both experiments. These findings indicate the importance of repetition in listeners' emotional response to music and in the perceptual segmentation of musical structure. PMID:21707165

  18. High power UV generation at 355 nm by means of extracavity frequency conversion of a high repetition rate Innoslab MOPA system

    NASA Astrophysics Data System (ADS)

    Gronloh, Bastian; Höfer, Marco; Wester, Rolf; Hoffmann, Hans-Dieter

    2009-02-01

    An Innoslab based Nd:YV04 MOPA system with pulse energy of 7.25 mJ at 40 kHz repetition rate and pulse duration of 11.4 ns has been used for third harmonics generation in Lithium Triborate (LBO) crystals. We report UV pulses of 8.9 ns duration at pulse energy of 1.65 mJ, which means an average power of 66 W. We have been able to show UV beam qualities (M2) of 1.7/2.4 (stable/instable direction with 90/10 knife edge method), while IR beam quality is 1.8/5.2. A sinc2-shape transversal distribution of beam intensity has been used in instable direction of the Innoslab MOPA system for conversion. Due to high average power and short pulse length at 355 nm the laser meets the demands for high-throughput micro material processing as stereolithography or edge isolation of solar cells. The thermal dependence of the conversion efficiency (due to heating power of the beam) has been investigated theoretically, using a time resolved numerical simulation model for the nonlinear process in both LBO crystals. Scaling effects of the absorption coefficients of LBO and the pulse power on the conversion efficiency are presented in this article.

  19. A fast data acquisition system for the study of transient events by high repetition rate time-of-flight mass spectrometry

    NASA Technical Reports Server (NTRS)

    Lincoln, K. A.; Bechtel, R. D.

    1986-01-01

    Recent advances in commercially available data acquisition electronics embodying high speed A/D conversion coupled to increased memory storage have now made practical (at least within time intervals of a third of a millisecond or more) the capturing of all of the data generated by a high repetition rate time-of-flight mass spectrometer producing complete spectra every 25 to 35 microseconds. Such a system was assembled and interfaced with a personal computer for control and management of data. The applications are described for recording time-resolved spectra of individual vapor plumes induced from the pulsed-laser heating of material. Each laser pulse triggers the system to generate automatically a 3-dimensional (3-D) presentation of the time-resolved spectra with m/z labeling of the major mass peaks, plus an intensity versus time display of both the laser pulse and the resulting vapor pulse. The software also permits storing of data and its presentation in various additional forms.

  20. A shock tube with a high-repetition-rate time-of-flight mass spectrometer for investigations of complex reaction systems

    NASA Astrophysics Data System (ADS)

    Dürrstein, Steffen H.; Aghsaee, Mohammad; Jerig, Ludger; Fikri, Mustapha; Schulz, Christof

    2011-08-01

    A conventional membrane-type stainless steel shock tube has been coupled to a high-repetition-rate time-of-flight mass spectrometer (HRR-TOF-MS) to be used to study complex reaction systems such as the formation of pollutants in combustion processes or formation of nanoparticles from metal containing organic compounds. Opposed to other TOF-MS shock tubes, our instrument is equipped with a modular sampling unit that allows to sample with or without a skimmer. The skimmer unit can be mounted or removed in less than 10 min. Thus, it is possible to adjust the sampling procedure, namely, the mass flux into the ionization chamber of the HRR-TOF-MS, to the experimental situation imposed by species-specific ionization cross sections and vapor pressures. The whole sampling section was optimized with respect to a minimal distance between the nozzle tip inside the shock tube and the ion source inside the TOF-MS. The design of the apparatus is presented and the influence of the skimmer on the measured spectra is demonstrated by comparing data from both operation modes for conditions typical for chemical kinetics experiments. The well-studied thermal decomposition of acetylene has been used as a test system to validate the new setup against kinetics mechanisms reported in literature.

  1. Three-dimensional polymer nanostructures for applications in cell biology generated by high-repetition rate sub-15 fs near-infrared laser pulses

    NASA Astrophysics Data System (ADS)

    Licht, Martin; Straub, Martin; König, Karsten; Afshar, Maziar; Feili, Dara; Seidel, Helmut

    2011-03-01

    In recent years two-photon photopolymerization has emerged as a novel and extremely powerful technique of three-dimensional nanostructure formation. Complex-shaped structures can be generated using appropriate beam steering or nanopositioning systems. Here, we report on the fabrication of three-dimensional arrangements made of biocompatible polymer material, which can be used as templates for cell growth. Using three-dimensional cell cages as cell culture substrates is advantageous, as cells may develop in a more natural environment as compared to conventional planar growth methods. The two-photon fabrication experiments were carried out on a commercial microscope setup. Sub-15 fs pulsed Ti:Sapphire laser light (centre wavelength 800 nm, bandwidth 120 nm, repetition rate 85 MHz) was focused into the polymer material by a high-numerical aperture oil immersion objective. Due to the high peak intensities picojoule pulse energies in the focal spot are sufficient to polymerize the material at sub-100 nm structural element dimensions. Therefore, cell cages of sophisticated architecture can be constructed involving very fine features which take into account the specific needs of various types of cells. Ultimately, our research aims at three-dimensional assemblies of photopolymerized structural elements involving sub-100 nm features, which provide cell culture substrates far superior to those currently existing.

  2. Resonance ionization spectroscopy of sodium Rydberg levels using difference frequency generation of high-repetition-rate pulsed Ti:sapphire lasers

    NASA Astrophysics Data System (ADS)

    Naubereit, P.; Marín-Sáez, J.; Schneider, F.; Hakimi, A.; Franzmann, M.; Kron, T.; Richter, S.; Wendt, K.

    2016-05-01

    The generation of tunable laser light in the green to orange spectral range has generally been a deficiency of solid-state lasers. Hence, the formalisms of difference frequency generation (DFG) and optical parametric processes are well known, but the DFG of pulsed solid-state lasers was rarely efficient enough for its use in resonance ionization spectroscopy. Difference frequency generation of high-repetition-rate Ti:sapphire lasers was demonstrated for resonance ionization of sodium by efficiently exciting the well-known D1 and D2 lines in the orange spectral range (both ≈589 nm). In order to prove the applicability of the laser system for its use at resonance ionization laser ion sources of radioactive ion beam facilities, the first ionization potential of Na was remeasured by three-step resonance ionization into Rydberg levels and investigating Rydberg convergences. A result of EIP=41449.455 (6) stat(7) syscm-1 was obtained, which is in perfect agreement with the literature value of EIPlit =41449.451(2)cm-1 . A total of 41 level positions for the odd-parity Rydberg series n f 2F5/2,7/2o for principal quantum numbers of 10 ≤n ≤60 were determined experimentally.

  3. A shock tube with a high-repetition-rate time-of-flight mass spectrometer for investigations of complex reaction systems

    SciTech Connect

    Duerrstein, Steffen H.; Aghsaee, Mohammad; Jerig, Ludger; Fikri, Mustapha; Schulz, Christof

    2011-08-15

    A conventional membrane-type stainless steel shock tube has been coupled to a high-repetition-rate time-of-flight mass spectrometer (HRR-TOF-MS) to be used to study complex reaction systems such as the formation of pollutants in combustion processes or formation of nanoparticles from metal containing organic compounds. Opposed to other TOF-MS shock tubes, our instrument is equipped with a modular sampling unit that allows to sample with or without a skimmer. The skimmer unit can be mounted or removed in less than 10 min. Thus, it is possible to adjust the sampling procedure, namely, the mass flux into the ionization chamber of the HRR-TOF-MS, to the experimental situation imposed by species-specific ionization cross sections and vapor pressures. The whole sampling section was optimized with respect to a minimal distance between the nozzle tip inside the shock tube and the ion source inside the TOF-MS. The design of the apparatus is presented and the influence of the skimmer on the measured spectra is demonstrated by comparing data from both operation modes for conditions typical for chemical kinetics experiments. The well-studied thermal decomposition of acetylene has been used as a test system to validate the new setup against kinetics mechanisms reported in literature.

  4. Versatile high-repetition-rate phase-locked chopper system for fast timing experiments in the vacuum ultraviolet and x-ray spectral region

    NASA Astrophysics Data System (ADS)

    Plogmaker, Stefan; Linusson, Per; Eland, John H. D.; Baker, Neville; Johansson, Erik M. J.; Rensmo, Hâkan; Feifel, Raimund; Siegbahn, Hans

    2012-01-01

    A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of ˜8 to ˜120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses or pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region.

  5. Versatile high-repetition-rate phase-locked chopper system for fast timing experiments in the vacuum ultraviolet and x-ray spectral region.

    PubMed

    Plogmaker, Stefan; Linusson, Per; Eland, John H D; Baker, Neville; Johansson, Erik M J; Rensmo, Håkan; Feifel, Raimund; Siegbahn, Hans

    2012-01-01

    A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of ~8 to ~120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses or pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region. PMID:22299937

  6. Versatile high-repetition-rate phase-locked chopper system for fast timing experiments in the vacuum ultraviolet and x-ray spectral region

    SciTech Connect

    Plogmaker, Stefan; Johansson, Erik M. J.; Rensmo, Haakan; Feifel, Raimund; Siegbahn, Hans; Linusson, Per; Eland, John H. D.; Baker, Neville

    2012-01-15

    A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of {approx}8 to {approx}120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses or pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region.

  7. High-power LD side-pump Nd: YAG regenerative amplifier at 1 kHz repetition rate with volume Bragg gratings (VBG) for broadening and compressor

    NASA Astrophysics Data System (ADS)

    Long, Ming-Liang; Chen, Li-Yuan; Chen, Meng; Li, Gang

    2016-05-01

    Pulse width of 8.7 ps was broadened to 102.2, 198 ps with single and double pass the VBG respectively. When the 102.2 ps pulse was injected into 1 kHz repetition rate of LD side-pump Nd: YAG regenerative amplifier (RA), pulse width of 87.5 ps at 1 kHz was obtained with the pulse energy of 9.4 mJ, the beam quality of M^2 factor was 1.2. The pulse width was compressed to 32.7 ps with a single pass VBG and the pulse energy reduced to 8.8 mJ, and the power density was up to 15.2 GW/cm2, the stability for pulse to pulse rms is about 0.6 %, beam pointing was about 35 μrad. In addition, when 198 ps pulse was injected into RA, pulse width of 156 ps was obtained which energy was 9.6 mJ, the pulse width was compressed to 38 ps by double passing the VBG, the pulse energy decreased to 8.5 mJ. Chirped VBG is a new way to obtain high-intensity picosecond pulse laser system simple and smaller.

  8. A short pulse (7 micros FWHM) and high repetition rate (dc-5 kHz) cantilever piezovalve for pulsed atomic and molecular beams.

    PubMed

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; van den Ende, Daan A; Groen, Wilhelm A; Janssen, Maurice H M

    2009-11-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 micros have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 microm nozzle releases about 10(16) particles/pulse and the beam brightness was estimated to be 4x10(22) particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5x10(-6) Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow (Delta v/v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas load of the

  9. A short pulse (7 {mu}s FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    SciTech Connect

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; Janssen, Maurice H. M.; Ende, Daan A. van den; Groen, Wilhelm A.

    2009-11-15

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 {mu}s have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 {mu}m nozzle releases about 10{sup 16} particles/pulse and the beam brightness was estimated to be 4x10{sup 22} particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5x10{sup -6} Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow ({Delta}v/v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas

  10. A short pulse (7 μs FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    NASA Astrophysics Data System (ADS)

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; van den Ende, Daan A.; Groen, Wilhelm A.; Janssen, Maurice H. M.

    2009-11-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 μs have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 μm nozzle releases about 1016 particles/pulse and the beam brightness was estimated to be 4×1022 particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5×10-6 Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow (Δv /v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas load of the cantilever

  11. Critical mechanical structure of superconducting high current coils for fast ramped accelerator magnets with high repetition rates in long term operation

    NASA Astrophysics Data System (ADS)

    Fischer, E.; Schnizer, P.; Weiss, K.; Nyilas, A.; Mierau, A.; Sikler, G.

    2010-06-01

    The heavy ion synchrotron SIS100 is the core component of the Facility for Antiproton and Ion Research (FAIR) currently under construction at GSI in Darmstadt. It is rapidly cycled with a ramp rate of 4 T/s up to 2 T maximum field and a repetition frequency of 1 Hz. The superconducting coils of the Nuclotron-type magnets utilise a hollow cable cooled with a forced two phase helium flow. These coils must operate reliably over a period of at least 20 years and thus survive 2 · 10 load cycles. Intensive R&D is necessary to find the optimal solution preventing any possible damage of the coils by the fast pulsing loads over the life time taking into account the complex fine structure of the cable and coil designs as well as its sensitive influence on the field quality, AC loss generation and quench protection. We used FEM codes to analyse critical aspects of various design options and had manufactured coils for detailed mechanical tests. These tests on samples extracted from the coil are: thermal expansion measurements in all three directions on the cable package itself and its composite elements, compression tests and investigation of the Inter Laminar Shear Stress (ILSS). The stress strain behaviour of the cable package was measured along the transversal direction; the most important one to sustain the cycling load by Lorentz forces. A second sample was fatigue tested. Successful integral operation test results for the coil mechanics have been obtained within our first experimental runs on the prototype dipole magnets already started at GSI in the end of 2008.

  12. 948 kHz repetition rate, picosecond pulse duration, all-PM 1.03 μm mode-locked fiber laser based on nonlinear polarization evolution

    NASA Astrophysics Data System (ADS)

    Boivinet, S.; Lecourt, J.-B.; Hernandez, Y.; Fotiadi, A.; Mégret, P.

    2014-05-01

    We present in this study a PM all-fiber laser oscillator passively mode-locked (ML) at 1.03 μm. The laser is based on Nonlinear Polarization Evolution (NPE) in polarization maintaining (PM) fibers. In order to obtain the mode-locking regime, a nonlinear reflective mirror including a fibered polarizer, a long fiber span and a fibered Faraday mirror (FM) is inserted in a Fabry-Perot laser cavity. In this work we explain the principles of operation of this original laser design that permits to generate ultrashort pulses at low repetition (lower that 1MHz) rate with a cavity length of 100 m of fiber. In this experiment, the measured pulse duration is about 6 ps. To our knowledge this is the first all-PM mode-locked laser based on the NPE with a cavity of 100m length fiber and a delivered pulse duration of few picosecondes. Furthermore, the different mode-locked regimes of the laser, i.e. multi-pulse, noise-like mode-locked and single pulse, are presented together with the ways of controlling the apparition of these regimes. When the single pulse mode-locking regime is achieved, the laser delivers linearly polarized pulses in a very stable way. Finally, this study includes numerical results which are obtained with the resolution of the NonLinear Schrodinger Equations (NLSE) with the Split-Step Fourier (SSF) algorithm. This modeling has led to the understanding of the different modes of operation of the laser. In particular, the influence of the peak power on the reflection of the nonlinear mirror and its operation are studied.

  13. Repetitively pulsed plasma illumination sources

    NASA Astrophysics Data System (ADS)

    Root, Robert G.; Falkos, Paul

    1997-12-01

    The acoustic environment created by turbulence in aircraft flight tests demands that illumination sources for high speed photography of munitions drops be extremely rugged. A repetitive pulsed surface discharge system has been developed to provide wide angle illumination in a bomb bay for photography at 250 - 500 Hertz. The lamp has a simple construction suitable for adverse environments and produces 100 mJ of visible light per pulse. The discharge parameters were selected to minimize the size and complexity of the power supply. The system is also capable of operating at high repetition rates; preliminary tests demonstrated 1000 pulses at 1 kHz, 200 pulses at 1.5 kHz, and 13 pulses at 2 kHz. A simple power supply capable of providing several amperes at 450 V is being completed; it will be used to extend the run times and to explore extensions to higher repetition rate.

  14. Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system.

    PubMed

    Hong, Kyung-Han; Siddiqui, Aleem; Moses, Jeffrey; Gopinath, Juliet; Hybl, John; Ilday, F Omer; Fan, Tso Yee; Kärtner, Franz X

    2008-11-01

    We generate linearly polarized, 287 W average-power, 5.5 ps pulses using a cryogenically cooled Yb:YAG amplifier at a repetition rate of 78 MHz. An optical-to-optical efficiency of 41% is obtained at 700 W pump power. A 6 W, 0.4 nm bandwidth picosecond seed source at 1029 nm wavelength is constructed using a chirped-pulse fiber amplification chain based on chirped volume Bragg gratings. The combination of a fiber amplifier system and a cryogenically cooled Yb:YAG amplifier results in good spatial beam quality at large average power. Low nonlinear phase accumulation as small as 5.1 x 10(-3) rad in the bulk Yb:YAG amplifier supports power scalability to a > 10 kW level without being affected by self-phase modulation. This amplification system is well suited for pumping high-power high-repetition-rate optical parametric chirped-pulse amplifiers. PMID:18978891

  15. Development of a high time resolution measurement of NO2 and HCHO concentration in the atmosphere using high repetition rate cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Ida, A.; Nakamura, K.; Kajii, Y. J.

    2013-12-01

    Many chemical species with light absorption band at 300 ~ 350 nm are contained in the atmosphere, however these trace gases have important role in the atmosphere. The sun light is absorbed by these trace gases then free radicals cause the photochemistry in the atmosphere are formed by photolysis of these trace gases. Both hydrogen and formylradicals which will be converted into HO2 radicals in the atmosphere are generated in the photolysis of formaldehyde in the atmosphere. NO2 is important precursor for O3 in the troposphere that strongly control oxidation capacity of the air because OH radicals are formed in the photolysis of ozone. It is important to measure concentrations of these photoactive species precisely to reveal the atmospheric chemistry. These trace gases have short lifetimes and the forming process are complicated then these trace gases have wide fluctuations of concentrations. In this study, we developed a measurement system of NO2 and H2CO with high time resolution and high sensitivity using UV laser absorption system. The Cavity ring-down system was employed with high repetition rate laser system (10kHz). The ring-down time of N2 was measured to be 2.9×0.9, 3.0×0.1, 2.90×0.01 μs with the averaging time of 1 (0.1 ms), 50 (5ms) and 100000 (1s) shots, respectively. The uncertainty was decreasing to increase average times and the limit of detection was drastically decreasing. For example of NO2, the limit of detection was improved from 1.4 ppm to 3 ppb. The intercomparison measurement of the sample gases containing NO2 was performed under the several NO2 concentrations with this CRDS system and NOx analyser (MODEL 42i: Thermo Electron Corporation) employed cemiluminescense. The correlation factor was calculated to be 0.975. Measurement values from CRDS system was ensured. H2CO absorbs the UV light around 350~360 nm. The concentration was determined using the absorption band. The limit of detection was about 10 ppb of H2CO. In January 2012, ambient

  16. MW peak-power, mJ pulse energy, multi-kHz repetition rate pulses from Yb-doped fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Di Teodoro, Fabio; Brooks, Christopher D.

    2006-02-01

    We report on pulsed fiber-based sources generating high peak and average powers in beams of excellent spectral/spatial quality. In the first setup, a ~10-kHz pulse repetition rate (PRR), 1ns-pulse, Q-switched microlaser seeded a dual-stage amplifier featuring a 40-μm-core Yb-doped photonic-crystal fiber (PCF) as the power amplifier. From this amplifier, we obtained diffraction-limited (M2 = 1.05), ~1ns pulses of 1.1mJ energy, ~1.1MW peak power, ~10.2W average-power, spectral linewidth ~9GHz, negligible nonlinearities, and slope efficiency >73%. In the second setup, we replaced the seed source with a shorter-pulse (<500ps) microchip laser of PRR ~13.4 kHz and obtained diffraction-limited (M2=1.05), ~450ps pulses of energy >0.7mJ, peak power in excess of 1.5 MW, average power ~9.5W, spectral linewidth <35 GHz. To show further power scaling, these pulses were amplified in a 140-μmcore Yb-doped fiber, which yielded multimode (M2 ~ 9), 2.2mJ-energy, 30-W average-power pulses of peak power in excess of 4.5MW, the highest ever obtained in a fiber source, to our knowledge. In the third setup, an Yb-doped, 70μmcore, intrinsically single-mode photonic-crystal rod was used to generate diffraction-limited (M2 ~ 1.1), ~10kHz PRR, ~1ns pulses of 2.05mJ energy, >2 MW peak-power (the highest ever reported in a diffraction-limited fiber source), ~20W average-power, ~13 GHz spectral linewidth, and spectral signal-to-noise ratio >50 dB. Finally, a single polarization large-core Yb-doped PCF was used to demonstrate high-peak-power harmonic generation. We obtained ~1ns pulses of peak powers >410 kW in the green (531nm) and >190kW in the UV (265.5 nm).

  17. Mode-locking and frequency mixing at THz pulse repetition rates in a sampled-grating DBR mode-locked laser.

    PubMed

    Hou, Lianping; Haji, Mohsin; Marsh, John H

    2014-09-01

    We report a sampled grating distributed Bragg reflector (SGDBR) laser with two different gratings which mode-lock independently at respective pulse repetition frequencies of 640 and 700 GHz. The device operates in distinct regimes depending on the bias conditions, with stable pulse trains observed at 640 GHz, 700 GHz, the mean repetition frequency of 666 GHz, and the sum frequency of 1.34 THz (due to nonlinear mixing). Performance is consistent and highly reproducible with exceptional stability observed over wide ranges of drive bias conditions. Furthermore, a monolithically integrated semiconductor optical amplifier is used to amplify the pulse trains, providing an average output power of 46 mW at 666 GHz. PMID:25321545

  18. Fiber-solid, hybrid, single-frequency laser (100 W) with a 100 MHz repetition rate and 1 ns pulse width from a spherical aberration compensated four-stage Nd:YVO₄ amplifier.

    PubMed

    Zhang, Xiang; Wang, Yi; Liu, Bin; Wang, Chunhua; Xiang, Zhen; Liu, Chong

    2014-08-01

    A pulsed laser for laser guide stars with a 100 MHz repetition rate and 1 ns pulse width was achieved by external modulation of a continuous wave (CW) laser with a 70 kHz spectrum width. The laser is amplified first by two fiber pre-amplifiers and then by four solid-state power amplifiers. The laser achieves gains as high as 36 dB in the fiber pre-amplifiers due to the long gain medium length. The output power from the fiber amplifiers is 2.1 W. The laser receives further amplification in the solid-state amplifiers and retains good beam quality by aberration compensation. The final output average power is 102.9 W, and the beam quality factor M² is 1.46. The laser reaches high power without spectrum width and pulse width broadening at the 100 MHz repetition rate. The spectrum width of the pulsed laser is less than 0.8 GHz, which is close to the Fourier transform limit. Such a laser with single-frequency, high-repetition, and high-power features along with good beam quality will be valuable for many research areas. PMID:25090340

  19. 5.2-W high-repetition-rate eye-safe laser at 1525 nm generated by Nd:YVO₄₋YVO₄stimulated Raman conversion.

    PubMed

    Ding, Xin; Fan, Chen; Sheng, Quan; Li, Bin; Yu, Xuanyi; Zhang, Guizhong; Sun, Bing; Wu, Liang; Zhang, Haiyong; Liu, Jian; Jiang, Pengbo; Zhang, Wei; Zhao, Cen; Yao, Jianquan

    2014-11-17

    We report herein an efficient eye-safe Raman laser, which is based upon Nd:YVO₄₋YVO₄ and in-band pumped by a wavelength-locked laser diode array at 878.6 nm. By virtue of mitigated thermal load and improved pump absorption, a maximum average output power of 5.2 W at 1525 nm is obtained under the incident pump power of 30.6 W with the pulse repetition frequency of 140 kHz, corresponding to an optical efficiency of 17.0%. PMID:25402149

  20. Repetitive Stress Injuries

    MedlinePlus

    ... any problems since. What Are Repetitive Stress Injuries? Repetitive stress injuries (RSIs) are injuries that happen when too much stress is placed on a part of the body, resulting in inflammation (pain and swelling), muscle strain, or tissue damage. This stress generally occurs from ...

  1. The Negative Repetition Effect

    ERIC Educational Resources Information Center

    Mulligan, Neil W.; Peterson, Daniel J.

    2013-01-01

    A fundamental property of human memory is that repetition enhances memory. Peterson and Mulligan (2012) recently documented a surprising "negative repetition effect," in which participants who studied a list of cue-target pairs twice recalled fewer targets than a group who studied the pairs only once. Words within a pair rhymed, and…

  2. Replicating repetitive DNA.

    PubMed

    Tognetti, Silvia; Speck, Christian

    2016-05-27

    The function and regulation of repetitive DNA, the 'dark matter' of the genome, is still only rudimentarily understood. Now a study investigating DNA replication of repetitive centromeric chromosome segments has started to expose a fascinating replication program that involves suppression of ATR signalling, in particular during replication stress. PMID:27230530

  3. Roles of repetitive sequences

    SciTech Connect

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  4. Analytical Investigation of an Airbreathing, Repetitively Pulsed LSC-Wave Thruster: Part 1

    NASA Astrophysics Data System (ADS)

    Myrabo, L. N.; Borkowski, C. A.; Kaminski, D. A.

    2006-05-01

    The prospects for an airbreathing repetitively pulsed, LSC-wave thruster are assessed from the perspective of both thrust production and radiation heat transfer rates into the vehicle undersurface. Pulsed LSC wave thrusters are characterized by high plasma temperatures (e.g., 11,000 K), moderate overpressures (a function of laser intensity), and subsonic LSC wave propagation velocities. The axisymmetric Lightcraft engine configuration examined in this study has a flat underbody impulsive surface of radius 1.25 m. Energy is supplied to the LSC wave by an annular laser beam converging uniformly from the edges of the disk (i.e., reflected inward towards the axis of symmetry from secondary optics positioned around the entire disc circumference). The LSC wave propagates radially outward toward the edge of the disc. At some point the beam is extinguished, and a new LSC wave is initiated at the disk center. The process is repeated at a frequency that produces the desired thrust, and continued until maximum temperatures are exceeded. Results indicate that thrust levels in the range of 104 to 4×105 N are indeed feasible — i.e., sufficient to sustain a 1 tonne Lightcraft in hover, or accelerate it vertically at 40 g. Depending on the desired thrust and LSC wave geometry, viable PRFs can range from ˜100 Hz up to 750 Hz (or more), pulse energies from 0.01 to 4 MJ, and pulse durations from 10 to 350 ms. Momentum coupling coefficients range from 100 to 1000 N/MW, varying as a function of laser intensity incident upon the LSC wave.

  5. 50-GHz repetition-rate, 280-fs pulse generation at 100-mW average power from a mode-locked laser diode externally compressed in a pedestal-free pulse compressor.

    PubMed

    Tamura, Kohichi R; Sato, Kenji

    2002-07-15

    280-fs pedestal-free pulses are generated at average output powers exceeding 100 mW at a repetition rate of 50 GHz by compression of the output of a mode-locked laser diode (MLLD) by use of a pedestal-free pulse compressor (PFPC). The MLLD consists of a monolithically integrated chirped distributed Bragg reflector, a gain section, and an electroabsorption modulator. The PFPC is composed of a dispersion-flattened dispersion-decreasing fiber and a dispersion-flattened dispersion-imbalanced nonlinear optical loop mirror. Frequency modulation for linewidth broadening is used to overcome the power limitation imposed by stimulated Brillouin scattering. PMID:18026424

  6. Laser stand for irradiation of targets by laser pulses from the Iskra-5 facility at a repetition rate of 100 MHz

    SciTech Connect

    Annenkov, V I; Garanin, Sergey G; Eroshenko, V A; Zhidkov, N V; Zubkov, A V; Kalipanov, S V; Kalmykov, N A; Kovalenko, V P; Krotov, V A; Lapin, S G; Martynenko, S P; Pankratov, V I; Faizullin, V S; Khrustalev, V A; Khudikov, N M; Chebotar, V S

    2009-08-31

    A train of a few tens of high-power subnanosecond laser pulses with a repetition period of 10 ns is generated in the Iskra-5 facility. The laser pulse train has an energy of up to 300 J and contains up to 40 pulses (by the 0.15 intensity level), the single pulse duration in the train being {approx}0.5 ns. The results of experiments on conversion of a train of laser pulses to a train of X-ray pulses are presented. Upon irradiation of a tungsten target, a train of X-ray pulses is generated with the shape of an envelope in the spectral band from 0.18 to 0.28 keV similar to that of the envelope of the laser pulse train. The duration of a single X-ray pulse in the train is equal to that of a single laser pulse. (lasers)

  7. Perceptual Repetition Blindness Effects

    NASA Technical Reports Server (NTRS)

    Hochhaus, Larry; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    The phenomenon of repetition blindness (RB) may reveal a new limitation on human perceptual processing. Recently, however, researchers have attributed RB to post-perceptual processes such as memory retrieval and/or reporting biases. The standard rapid serial visual presentation (RSVP) paradigm used in most RB studies is, indeed, open to such objections. Here we investigate RB using a "single-frame" paradigm introduced by Johnston and Hale (1984) in which memory demands are minimal. Subjects made only a single judgement about whether one masked target word was the same or different than a post-target probe. Confidence ratings permitted use of signal detection methods to assess sensitivity and bias effects. In the critical condition for RB a precue of the post-target word was provided prior to the target stimulus (identity precue), so that the required judgement amounted to whether the target did or did not repeat the precue word. In control treatments, the precue was either an unrelated word or a dummy.

  8. Repetition priming in music.

    PubMed

    Hutchins, Sean; Palmer, Caroline

    2008-06-01

    The authors explore priming effects of pitch repetition in music in 3 experiments. Musically untrained participants heard a short melody and sang the last pitch of the melody as quickly as possible. Each experiment manipulated (a) whether or not the tone to be sung (target) was heard earlier in the melody (primed) and (b) the prime-target distance (measured in events). Experiment 1 used variable-length melodies, whereas Experiments 2 and 3 used fixed-length melodies. Experiment 3 changed the timbre of the target tone. In all experiments, fast-responding participants produced repeated tones faster than nonrepeated tones, and this repetition benefit decreased as prime-target distances increased. All participants produced expected tonic endings faster than less expected nontonic endings. Repetition and tonal priming effects are compared with harmonic priming effects in music and with repetition priming effects in language. PMID:18505332

  9. Doppler-limited H2O and HF absorption spectroscopy by sweeping the 1,321-1,354 nm range at 55 kHz repetition rate using a single-mode MEMS-tunable VCSEL

    NASA Astrophysics Data System (ADS)

    Stein, B. A.; Jayaraman, V.; Jiang, J. Y.; Cable, A.; Sanders, S. T.

    2012-09-01

    A single longitudinal mode micro-electro-mechanical system-tunable vertical cavity surface-emitting laser (VCSEL) was used to measure H2O and HF absorption spectra in the 1,321-1,354 nm range at 55 kHz repetition rate (˜ 740 MHz/ns tuning rate). Pulse delay referencing was used to achieve an absorbance noise level of 0.004 (RMS), within a factor of 2.6 of the shot noise limit. The measured linewidths approach the low-pressure feature linewidths (˜790 MHz) characteristic of the gases studied, highlighting the single-mode nature of the VCSEL throughout each rapid wavelength sweep. At even higher tuning rates, molecular features became asymmetric and broad, consistent with rapid passage and Fourier effects.

  10. Indirect decentralized repetitive control

    NASA Technical Reports Server (NTRS)

    Lee, Soo Cheol; Longman, Richard W.

    1993-01-01

    Learning control refers to controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented a theory of indirect decentralized learning control based on use of indirect adaptive control concepts employing simultaneous identification and control. This paper extends these results to apply to the indirect repetitive control problem in which a periodic (i.e., repetitive) command is given to a control system. Decentralized indirect repetitive control algorithms are presented that have guaranteed convergence to zero tracking error under very general conditions. The original motivation of the repetitive control and learning control fields was learning in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the desired trajectory. Decentralized repetitive control is natural for this application because the feedback control for link rotations is normally implemented in a decentralized manner, treating each link as if it is independent of the other links.

  11. Characterizing temporal repetition

    SciTech Connect

    Cukierman, D.; Delgrande, J.

    1996-12-31

    We are investigating the representation and reasoning about schedulable, repeated activities, specified using calendars. Examples of such activities include meeting every Tuesday and Thursday during a semester and attending a seminar every first day of a month. This research provides for a valuable framework for scheduling systems, financial systems and, in general, date-based systems. Very recently work has been done related to reasoning about repetition in the Artificial Intelligence community and others. A partial reference list is provided here. However, to our knowledge no extensive taxonomy of repetition has been proposed in the literature. We believe that reasoning about repeated activities calls for a study and precise definition of the topological characteristics in a repetitive series. In this abstract we summarize a proposal to classify types of repetition according to parameters. The combination of all possible values of these parameters provides a complete taxonomy of repetitive classes with respect to the proposed parameters. Several notions of repetition are considered, some are extremely general, some are very specific.

  12. Optical parametric oscillator of quasi-phasematched LiNbO 3 pumped by a compact high repetition rate single-frequency passively Q-switched Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Bäder, U.; Bartschke, J.; Klimov, I.; Borsutzky, A.; Wallenstein, R.

    1998-02-01

    We report on an efficient diode pumped compact source of pulsed tunable infrared radiation based on a high repetition rate single frequency passively Q-switched Nd:YAG laser and an optical parametric oscillator (OPO) of quasi-phase matched LiNbO 3. When pumped by 5.4 W of 810 nm cw diode laser radiation the Nd:YAG laser (which is passively Q-switched by a Cr 4+:GSGG saturable absorber) oscillates on a single-longitudinal mode and emits in a diffraction limited beam light pulses with duration of 2 ns, pulse energy of 100 μJ, repetition rate of 1.1 kHz and average power of 110 mW. This radiation excites an OPO of quasi-phase matched LiNbO 3. The OPO generates signal and idler radiation which is tunable in the range of 1.46-1.61 μm and 3.13-3.92 μm, respectively. Tuning is achieved by using 8 different poling periods ( Λ=28.5-29.9 μm) and by changing the crystal's temperature in the range of 80-160°C. The measured signal pulse energy is ES =22 μJ, the average signal output power PS =24 mW, the measured idler power PI =2.5 mW and the pump depletion 33%.

  13. The negative repetition effect.

    PubMed

    Mulligan, Neil W; Peterson, Daniel J

    2013-09-01

    A fundamental property of human memory is that repetition enhances memory. Peterson and Mulligan (2012) recently documented a surprising negative repetition effect, in which participants who studied a list of cue-target pairs twice recalled fewer targets than a group who studied the pairs only once. Words within a pair rhymed, and across pairs, the target words were drawn from a small set of categories. In the repetition condition, the pairs were initially presented in a random order and then presented a 2nd time blocked by the category of the target words. In the single presentation condition, the pairs were presented only in the blocked order. Participants in the former condition recalled fewer target words on a free recall test despite having seen the word pairs twice (the negative repetition effect). This phenomenon is explored in a series of 5 experiments assessing 3 theoretical accounts of the effect. The experiments demonstrate that the negative repetition effect generalizes over multiple encoding conditions (reading and generative encoding), over different memory tests (free and cued recall), and over delay (5 min and 2 days). The results argue against a retrieval account and a levels-of-processing account but are consistent with the item-specific-relational account, the account upon which the effect was initially predicated. PMID:23421508

  14. Compact, repetitive, 6. 5 kilojoule Marx generator

    SciTech Connect

    Lancaster, K.T.; Clark, R.S.; Buttram, M.T.

    1988-01-01

    Repetitive Marx generator technology developed has been actively pursued for many years at Sandia National Laboratories. Four repetitive Marx generators with voltages to 1 MV, energies to 20 kJ and repetition rates to 50 Hz have been built, tested, and used in on-line experiments. These devices have proven to be reliable pulsed power energy sources. The 440 kV, 6 kJ, 1 Hz Marx generator in this report was designed using this existing technology base. The repetitive Marx generator is an attractive power source for many applications for a variety of reasons. Circuit-wise a Marx is simple, being essentially a capacitor and inductor in series. This permits its use in a variety of configurations ranging from a pulse-forming line charger to an element of a pulse-forming network. At slow repetition rates (1 Hz to 10 Hz) Marx generators can be fabricated almost entirely from commercial components making them both inexpensive and quick to build. Generally they can be easily reconfigured as requirements change, making them a flexible laboratory tool. When designed conservatively, they are also useful for some commercial applications outside the laboratory. In this paper we illustrate the latter point by discussing the design and development of a compact field-transportable, repetitive Marx generator that was designed and built in three months. The authors also review the options considered before choosing the Marx design, and the use of commercially-available hardware in the Marx generator's construction.

  15. Novel porcine repetitive elements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An analysis of 220 fully sequenced porcine BACs generated by the Comparative Vertebrate Sequencing Initiative (http://www.nisc.nih.gov/) revealed 27 distinct, novel porcine repetitive elements ranging in length from 55 to 1059 nucleotides. This set of fully sequenced BACs covers approximately 1% of...

  16. Repetition Priming in Music

    ERIC Educational Resources Information Center

    Hutchins, Sean; Palmer, Caroline

    2008-01-01

    The authors explore priming effects of pitch repetition in music in 3 experiments. Musically untrained participants heard a short melody and sang the last pitch of the melody as quickly as possible. Each experiment manipulated (a) whether or not the tone to be sung (target) was heard earlier in the melody (primed) and (b) the prime-target distance…

  17. Repetitive Pulsed X-Ray Generator Utilizing A Triode

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Kawasaki, Satoshi; Isobe, Hiroshi; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1990-01-01

    A repetitive pulsed x-ray generator utilizing a triode for biomedical radiography is described. This generator consisted of the following components: a high-voltage power supply, a cable condenser with a length of 10m and a capacity of about 1000pF, a repetitive impulse switching system, a turbo molecular pump, and a pulsed x-ray tube having a cold cathode. The x-ray tube was of the triode type which was connected to the turbo molecular pump and consisted of the following components: a rod-shaped anode tip made of tungsten, a ring cathode made of molybdenum, a ring trigger electrode made of iron and other parts. The trigger electrode was attached to the cathode electrode just inside of the x-ray window and the space between the cathode and trigger electrodes was less than 0.5mm. The anode-cathode (A-C) space was adjusted outside of the x-ray window for controlling the A-C impedance. The cable condenser was charged from 30 to 100kV by the constant voltage generator and was discharged repetitively by the impulse switching system utilizing a frequency control system with a high time resolution. The maximum frequencies varied according to the charging voltage, the condenser capacity which was determined by the length of the cable condenser, and the current capacity of the high-voltage power supply. The frequencies of this generator were less than 100Hz, and the pulse widths of the pulsed x-rays were less than 300ns. The time integrated x-ray intensity was less than 5.0pC/kg at 0.5m per pulse, and the effective focal spot size ranged from 0.5 to 3.0mm.

  18. High-power, narrow-band, high-repetition-rate, 5.9 eV coherent light source using passive optical cavity for laser-based angle-resolved photoelectron spectroscopy.

    PubMed

    Omachi, J; Yoshioka, K; Kuwata-Gonokami, M

    2012-10-01

    We demonstrate a scheme for efficient generation of a 5.9 eV coherent light source with an average power of 23 mW, 0.34 meV linewidth, and 73 MHz repetition rate from a Ti: sapphire picosecond mode-locked laser with an output power of 1 W. Second-harmonic light is generated in a passive optical cavity by a BiB(3)O(6) crystal with a conversion efficiency as high as 67%. By focusing the second-harmonic light transmitted from the cavity into a β-BaB(2)O(4) crystal, we obtain fourth-harmonic light at 5.9 eV. This light source offers stable operation for at least a week. We discuss the suitability of the laser light source for high-resolution angle-resolved photoelectron spectroscopy by comparing it with other sources (synchrotron radiation facilities and gas discharge lamp). PMID:23188317

  19. Synchronized ps fiber lasers with pulse durations (25, 50, 100-2000ps) and repetition rates (100kHz-150Mhz) continuously tunable over three orders of magnitude

    NASA Astrophysics Data System (ADS)

    Dupuis, Alexandre; Burgoyne, Bryan; Pena, Guido; Archambault, André; Lemieux, Dominic; Solomonean, Vasile; Duong, Maxime; Villeneuve, Alain

    2013-03-01

    Ultrafast lasers are enabling precision machining of a wide variety of materials. However, the optimal laser parameters for proper material processing can differ greatly from one material to another. In order to cut high aspect-ratio features at high processing speeds the laser parameters such as pulse energy, repetition rate, and cutting speed need to be optimized. In particular, a shorter pulse duration plays an important role in reducing the thermal damage in the Heat-Affected Zones. In this paper we present a novel ps fiber laser whose electronically tunable parameters aim to facilitate the search for optimal processing parameters. The 20W 1064nm Yb fiber laser is based on a Master Oscillator Power Amplifier (MOPA) architecture with a repetition rate that can be tuned continuously from 120kHz to 120MHz. More importantly, the integration of three different pulse generators enables the pulse duration to be switched from 25ps to 50ps, or to any value within the 55ps to 2000ps range. By reducing the pulse duration from the ns-regime down to 25ps, the laser approaches the transition from the thermal processing regime to the ablation regime of most materials. Moreover, in this paper we demonstrate the synchronization of the pulses from two such MOPA lasers. This enables more elaborate multipulse processing schemes where the pulses of each laser can be set to different parameter values, such as an initial etching pulse followed by a thermal annealing pulse. It should be noted that all the laser parameters are controlled electronically with no moving parts, including the synchronization.

  20. Design and performance of broadly tunable, narrow line-width, high repetition rate 1310nm VCSELs for swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jayaraman, V.; Jiang, J.; Potsaid, B.; Cole, G.; Fujimoto, J.; Cable, A.

    2012-03-01

    MEMS tunable vertical cavity surface emitting laser (MEMS-VCSEL) development, over the past two decades, has primarily focused on communications and spectroscopic applications. Because of the narrow line-width, single-mode operation, monolithic fabrication, and high-speed capability of these devices, MEMS-VCSELs also present an attractive optical source for emerging swept source optical coherence tomography (SSOCT) systems. In this paper, we describe the design and performance of broadly tunable MEMS-VCSELs targeted for SSOCT, emphasizing 1310nm operation for cancer and vascular imaging. We describe the VCSEL structure and fabrication, employing a fully oxidized GaAs/AlxOy mirrors in conjunction with dielectric mirrors and InP-based multi-quantum well active regions. We also describe the optimization of MEMs speed and frequency response for SSOCT. Key results include 1310 nm VCSELs with >120nm dynamic tuning range and imaging rates near 1MHz, representing the widest VCSEL tuning range and some of the fastest swept source imaging rates thus far obtained. We also describe how low-noise semiconductor optical amplification boosts average optical power to the required levels, while maintaining superior OCT imaging quality and state of the art system sensitivity. Finally, we present measured multi-centimeter dynamic coherence length, and discuss the implications of VCSELs for OCT.

  1. Role of heat accumulation in the multi-shot damage of silicon irradiated with femtosecond XUV pulses at a 1 MHz repetition rate.

    PubMed

    Sobierajski, Ryszard; Jacyna, Iwanna; Dłużewski, Piotr; Klepka, Marcin T; Klinger, Dorota; Pełka, Jerzy B; Burian, Tomáš; Hájková, Věra; Juha, Libor; Saksl, Karel; Vozda, Vojtěch; Makhotkin, Igor; Louis, Eric; Faatz, Bart; Tiedtke, Kai; Toleikis, Sven; Enkisch, Hartmut; Hermann, Martin; Strobel, Sebastian; Loch, Rolf A; Chalupsky, Jaromir

    2016-07-11

    The role played by heat accumulation in multi-shot damage of silicon was studied. Bulk silicon samples were exposed to intense XUV monochromatic radiation of a 13.5 nm wavelength in a series of 400 femtosecond pulses, repeated with a 1 MHz rate (pulse trains) at the FLASH facility in Hamburg. The observed surface morphological and structural modifications are formed as a result of sample surface melting. Modifications are threshold dependent on the mean fluence of the incident pulse train, with all threshold values in the range of approximately 36-40 mJ/cm2. Experimental data is supported by a theoretical model described by the heat diffusion equation. The threshold for reaching the melting temperature (45 mJ/cm2) and liquid state (54 mJ/cm2), estimated from this model, is in accordance with experimental values within measurement error. The model indicates a significant role of heat accumulation in surface modification processes. PMID:27410821

  2. Multi-purpose two- and three-dimensional momentum imaging of charged particles for attosecond experiments at 1 kHz repetition rate

    SciTech Connect

    Månsson, Erik P. Sorensen, Stacey L.; Gisselbrecht, Mathieu; Arnold, Cord L.; Kroon, David; Guénot, Diego; Fordell, Thomas; Johnsson, Per; L’Huillier, Anne; Lépine, Franck

    2014-12-15

    We report on the versatile design and operation of a two-sided spectrometer for the imaging of charged-particle momenta in two dimensions (2D) and three dimensions (3D). The benefits of 3D detection are to discern particles of different mass and to study correlations between fragments from multi-ionization processes, while 2D detectors are more efficient for single-ionization applications. Combining these detector types in one instrument allows us to detect positive and negative particles simultaneously and to reduce acquisition times by using the 2D detector at a higher ionization rate when the third dimension is not required. The combined access to electronic and nuclear dynamics available when both sides are used together is important for studying photoreactions in samples of increasing complexity. The possibilities and limitations of 3D momentum imaging of electrons or ions in the same spectrometer geometry are investigated analytically and three different modes of operation demonstrated experimentally, with infrared or extreme ultraviolet light and an atomic/molecular beam.

  3. Multi-purpose two- and three-dimensional momentum imaging of charged particles for attosecond experiments at 1 kHz repetition rate.

    PubMed

    Månsson, Erik P; Sorensen, Stacey L; Arnold, Cord L; Kroon, David; Guénot, Diego; Fordell, Thomas; Lépine, Franck; Johnsson, Per; L'Huillier, Anne; Gisselbrecht, Mathieu

    2014-12-01

    We report on the versatile design and operation of a two-sided spectrometer for the imaging of charged-particle momenta in two dimensions (2D) and three dimensions (3D). The benefits of 3D detection are to discern particles of different mass and to study correlations between fragments from multi-ionization processes, while 2D detectors are more efficient for single-ionization applications. Combining these detector types in one instrument allows us to detect positive and negative particles simultaneously and to reduce acquisition times by using the 2D detector at a higher ionization rate when the third dimension is not required. The combined access to electronic and nuclear dynamics available when both sides are used together is important for studying photoreactions in samples of increasing complexity. The possibilities and limitations of 3D momentum imaging of electrons or ions in the same spectrometer geometry are investigated analytically and three different modes of operation demonstrated experimentally, with infrared or extreme ultraviolet light and an atomic/molecular beam. PMID:25554286

  4. FRB repetition and non-Poissonian statistics

    NASA Astrophysics Data System (ADS)

    Connor, Liam; Pen, Ue-Li; Oppermann, Niels

    2016-05-01

    We discuss some of the claims that have been made regarding the statistics of fast radio bursts (FRBs). In an earlier Letter, we conjectured that flicker noise associated with FRB repetition could show up in non-cataclysmic neutron star emission models, like supergiant pulses. We show how the current limits of repetition would be significantly weakened if their repeat rate really were non-Poissonian and had a pink or red spectrum. Repetition and its statistics have implications for observing strategy, generally favouring shallow wide-field surveys, since in the non-repeating scenario survey depth is unimportant. We also discuss the statistics of the apparent latitudinal dependence of FRBs, and offer a simple method for calculating the significance of this effect. We provide a generalized Bayesian framework for addressing this problem, which allows for direct model comparison. It is shown how the evidence for a steep latitudinal gradient of the FRB rate is less strong than initially suggested and simple explanations like increased scattering and sky temperature in the plane are sufficient to decrease the low-latitude burst rate, given current data. The reported dearth of bursts near the plane is further complicated if FRBs have non-Poissonian repetition, since in that case the event rate inferred from observation depends on observing strategy.

  5. Kinetic changes in tetanic Ca2+ transients in enzymatically dissociated muscle fibres under repetitive stimulation

    PubMed Central

    Calderón, Juan C; Bolaños, Pura; Caputo, Carlo

    2011-01-01

    Abstract We used enzymatically dissociated flexor digitorum brevis (FDB) and soleus fibres loaded with the fast Ca2+ dye Magfluo-4 AM, and adhered to Laminin, to test whether repetitive stimulation induces progressive changes in the kinetics of Ca2+ release and reuptake in a fibre-type-dependent fashion. We applied a protocol of tetani of 350 ms, 100 Hz, every 4 s to reach a mean amplitude reduction of 25% of the first peak. Morphology type I (MT-I) and morphology type II (MT-II) fibres underwent a total of 96 and 52.8 tetani (P < 0.01 between groups), respectively. The MT-II fibres (n = 18) showed significant reductions of the amplitude (19%), an increase in rise time (8.5%) and a further reduction of the amplitude/rise time ratio (25.5%) of the first peak of the tetanic transient after 40 tetani, while MT-I fibres (n = 5) did not show any of these changes. However, both fibre types showed significant reductions in the maximum rate of rise of the first peak after 40 tetani. Two subpopulations among the MT-II fibres could be distinguished according to Ca2+ reuptake changes. Fast-fatigable MT-II fibres (fMT-II) showed an increase of 32.2% in the half-width value of the first peak, while for fatigue-resistant MT-II fibres (rMT-II), the increase amounted to 6.9%, both after 40 tetani. Significant and non-significant increases of 36.4% and 11.9% in the first time constant of decay (t1) values were seen after 40 tetani in fMT-II and rMT-II fibres, respectively. MT-I fibres did not show kinetic changes in any of the Ca2+ reuptake variables. All changes were reversed after an average recovery of 7.5 and 15.4 min for MT-I and MT-II fibres, respectively. Further experiments ruled out the possibility that the differences in the kinetic changes of the first peak of the Ca2+ transients between fibres MT-I and MT-II could be related to the inactivation of Ca2+ release mechanism. In conclusion, we established a model of enzymatically dissociated fibres, loaded with Magfluo-4 and

  6. Repetitive resonant railgun power supply

    DOEpatents

    Honig, E.M.; Nunnally, W.C.

    1985-06-19

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  7. Repetitive resonant railgun power supply

    DOEpatents

    Honig, Emanuel M.; Nunnally, William C.

    1988-01-01

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  8. [Repetition Strain Injury

    PubMed

    Ribeiro

    1997-01-01

    Muscular-skeletal disorders of the upper limbs resulting from work involving repetition strain (RSI) are now the most frequent work-related diseases in early or late industrialized countries. The author maintains that in addition to being work-related diseases, RSIs are symbolic illnesses revealing the contradictions and social pathogenesis of the new cycle of development and crisis in capitalist production. Discussing the social and historical dimensions of this process, the author insists that the low efficacy of technical interventions by labor engineering, ergonomics, and clinical medicine in the prevention, early and adequate diagnosis, and treatment of such post-modern illnesses and the difficulty in rehabilitating and reincorporating such workers reflect precisely a broader determination of health and illness, since the appropriation, incorporation, and use of technological innovations and the new forms of work management are defined according to the exclusive interests of capital. Thus, a growing contingent of young workers (mainly females) from different labor categories are losing or under threat of losing their health and work capacity, two essential and closely linked public values. The solution to the SRI issue must be political and collective. PMID:10886940

  9. Neural Basis of Repetition Priming during Mathematical Cognition: Repetition Suppression or Repetition Enhancement?

    ERIC Educational Resources Information Center

    Salimpoor, Valorie N.; Chang, Catie; Menon, Vinod

    2010-01-01

    We investigated the neural basis of repetition priming (RP) during mathematical cognition. Previous studies of RP have focused on repetition suppression as the basis of behavioral facilitation, primarily using word and object identification and classification tasks. More recently, researchers have suggested associative stimulus-response learning…

  10. Longitudinal Patterns of Repetitive Behavior in Toddlers with Autism

    PubMed Central

    Wolff, Jason J.; Botteron, Kelly N.; Dager, Stephen R.; Elison, Jed T.; Estes, Annette M.; Gu, Hongbin; Hazlett, Heather C.; Pandey, Juhi; Paterson, Sarah J.; Schultz, Robert T.; Zwaigenbaum, Lonnie; Piven, Joseph

    2014-01-01

    Background Recent evidence suggests that restricted and repetitive behaviors may differentiate children who develop autism spectrum disorder (ASD) by late infancy. How these core symptoms manifest early in life, particularly among infants at high-risk for the disorder, is not well characterized. Methods Prospective, longitudinal parent-report data (Repetitive Behavior Scales-Revised) were collected for 190 high-risk toddlers and 60 low-risk controls from 12 to 24 months age. Forty-one high-risk children were classified with ASD at age 2. Profiles of repetitive behavior were compared between groups using generalized estimating equations. Results Longitudinal profiles for children diagnosed with ASD differed significantly from high- and low-risk children without the disorder on all measures of repetitive behavior. High-risk toddlers without ASD were intermediate to low-risk and ASD positive counterparts. Toddlers with ASD showed significantly higher rates of repetitive behavior across subtypes at the 12 month time point. Repetitive behaviors were significantly correlated with adaptive behavior and socialization scores among children with ASD at 24 months-age but were largely unrelated to measures of general cognitive ability. Conclusions These findings suggest that as early as 12 months age, a broad range of repetitive behaviors are highly elevated in children who go on to develop ASD. While some degree of repetitive behavior is elemental to typical early development, the extent of these behaviors among children who develop ASD appears highly atypical. PMID:24552513

  11. [Repetitive work and psychosomatic complaints].

    PubMed

    Liebrich, J; Geiger, L; Rupp, M

    1978-08-01

    200 workers of the Swiss watch industry were examined in an interdisciplinary study on the effect of repetitive work on the wellbeing of the worker. Women doing repetitive work with little autonomy complained more often about psychosomatic problems than the male workers doing non-repetitive work. This difference is interpreted as a difference of sexe rather than one of the work situation. However, there is a significant difference in the complaint about nervosity between women being paid monthly and women who were paid by piece or by hour with a premium. PMID:706840

  12. A Study of the Factors That Influence the Increasing Repetition and Dropout Rates in Primary Schools in Nandi District of Kenya. African Studies in Curriculum Development & Evaluation. No. 67.

    ERIC Educational Resources Information Center

    Kirui, Paul Martin Kipngetich

    The incidence and causal factors of dropping out of school and grade repetition at the primary school level in the Nandi District of Kenya were examined. The study involved longitudinal analysis of primary school flow from 1976 to 1982 in five representative schools. Data were gathered through questionnaires and interviews with District Education…

  13. Neural repetition suppression reflects fulfilled perceptual expectations

    PubMed Central

    Summerfield, Christopher; Monti, Jim M.P.; Trittschuh, Emily H.; Mesulam, M.-Marsel; Egner, Tobias

    2009-01-01

    Stimulus-evoked neural activity is attenuated upon stimulus repetition (‘repetition suppression’), a phenomenon attributed to largely automatic processes in sensory neurons. By manipulating the likelihood of stimulus repetition, we show that repetition suppression in the human brain is reduced when stimulus repetitions are improbable (and thus, unexpected). These data suggest that repetition suppression reflects a relative reduction in top-down perceptual ‘prediction error’ when processing an expected compared to an unexpected stimulus. PMID:19160497

  14. Repetitively pumped electron beam device

    DOEpatents

    Schlitt, L.G.

    1979-07-24

    Disclosed is an apparatus for producing fast, repetitive pulses of controllable length of an electron beam by phased energy storage in a transmission line of length matched to the number of pulses and specific pulse lengths desired. 12 figs.

  15. Paucity of moderately repetitive sequences

    SciTech Connect

    Schmid, C.W.

    1991-01-01

    We examined clones of renatured repetitive human DNA to find novel repetitive DNAs. After eliminating known repeats, the remaining clones were subjected to sequence analysis. These clones also corresponded to known repeats, but with greater sequence diversity. This indicates that either these libraries were depleted of short interspersed repeats in construction, or these repeats are much less prevalent in the human genome than is indicated by data from {und Xenopus} or sea urchin studies. We directly investigated the sequence composition of human DNA through traditional renaturation techniques with the goal of estimating the limits of abundance of repetitive sequence classes in human DNA. Our results sharply limit the maximum possible abundance to 1--2% of the human genome. Our estimate, minus the known repeats in this fraction, leaves about 1% (3 {times} 10{sup 7} nucleotides) of the human genome for novel repetitive elements. 2 refs. (MHB)

  16. Overview of repetitively pulsed photolytic iodine lasers

    NASA Astrophysics Data System (ADS)

    Schlie, L. A. V.

    1996-02-01

    The performance of a repetitively pulsed, 70 joule, closed cycle 1.3 (mu) M photolytic atomic iodine laser with excellent beam quality (BQ equals 1.15) is presented. This BQ was exhibited in the fundamental mode from a M equals 3.1 confocal unstable resonator at a 0.5 Hz repetition rate. A closed cycle scrubber/laser fuel system consisting of a condensative- evaporative section, two Cu wool I2 reactor regions, and an internal turbo-blower enabled the laser to operate very reliably with low maintenance. The fuel system provided C3F7I gas at 10 - 60 torr absent of the photolytic quenching by-product I2. Using a turbo- molecular blower longitudinal flow velocities greater than 10 m/s were achieved through the 150 cm long by 7.5 multiplied by 7.5 cm2 cross sectional photolytic iodine gain region. In addition to the high laser output and excellent BQ, the resulting 8 - 12 microsecond laser pulse had a coherence length greater than 45 meters and polarization extinction ratio better than 100:1. Projections from this pulsed photolytic atomic iodine laser technology to larger energies, higher repetition rates, and variable pulse widths are discussed.

  17. Software reliability: Repetitive run experimentation and modeling

    NASA Technical Reports Server (NTRS)

    Nagel, P. M.; Skrivan, J. A.

    1982-01-01

    A software experiment conducted with repetitive run sampling is reported. Independently generated input data was used to verify that interfailure times are very nearly exponentially distributed and to obtain good estimates of the failure rates of individual errors and demonstrate how widely they vary. This fact invalidates many of the popular software reliability models now in use. The log failure rate of interfailure time was nearly linear as a function of the number of errors corrected. A new model of software reliability is proposed that incorporates these observations.

  18. Repetition-based credibility enhancement of unfamiliar faces.

    PubMed

    Brown, Alan S; Brown, Lori A; Zoccoli, Sandy L

    2002-01-01

    This experiment demonstrated that rating the credibility of nonfamous faces results in a significant increase in rated credibility on a subsequent encounter relative to new nonfamous faces. The degree of credibility enhancement is comparable for both honesty and sincerity ratings and at both short (2-day) and long (14-day) interrating intervals. Furthermore, credibility enhancement was independent of recognition; ratings were significantly higher for repeated faces, regardless of whether they were remembered. Although female faces were rated more credible than male faces, there was no gender difference in the degree of credibility enhancement with repetition. Conditional analyses revealed that actual, rather than perceived, repetition formed the basis of credibility enhancement. Future research should compare repetition effects on both credibility and affect as well as the durability of such effects over time. PMID:12041008

  19. Lsh, an epigenetic guardian of repetitive elements.

    PubMed

    Huang, Jiaqiang; Fan, Tao; Yan, Qingsheng; Zhu, Heming; Fox, Stephen; Issaq, Haleem J; Best, Lionel; Gangi, Lisa; Munroe, David; Muegge, Kathrin

    2004-01-01

    The genome is burdened with repetitive sequences that are generally embedded in silenced chromatin. We have previously demonstrated that Lsh (lymphoid-specific helicase) is crucial for the control of heterochromatin at pericentromeric regions consisting of satellite repeats. In this study, we searched for additional genomic targets of Lsh by examining the effects of Lsh deletion on repeat regions and single copy gene sequences. We found that the absence of Lsh resulted in an increased association of acetylated histones with repeat sequences and transcriptional reactivation of their silenced state. In contrast, selected single copy genes displayed no change in histone acetylation levels, and their transcriptional rate was indistinguishable compared to Lsh-deficient cells and wild-type controls. Microarray analysis of total RNA derived from brain and liver tissues revealed that <0.4% of the 15 247 examined loci were abnormally expressed in Lsh-/-embryos and almost two-thirds of these deregulated sequences contained repeats, mainly retroviral LTR (long terminal repeat) elements. Chromatin immunoprecipitation analysis demonstrated a direct interaction of Lsh with repetitive sites in the genome. These data suggest that the repetitive sites are direct targets of Lsh action and that Lsh plays an important role as 'epigenetic guardian' of the genome to protect against deregulation of parasitic retroviral elements. PMID:15448183

  20. Unintended imitation in nonword repetition.

    PubMed

    Kappes, Juliane; Baumgaertner, Annette; Peschke, Claudia; Ziegler, Wolfram

    2009-12-01

    Verbal repetition is conventionally considered to require motor-reproduction of only the phonologically relevant content of a perceived linguistic stimulus, while imitation of incidental acoustic properties of the stimulus is not an explicit part of this task. Exemplar-based theories of speech processing, however, would predict that imitation beyond linguistic reproduction may occur in word repetition. Five experiments were conducted in which verbal audio-motor translations had to be performed under different conditions. Nonwords varying in phonemic content, in vocal pitch (F(0)), and in speaking style (schwa-syllable expression) were presented. We experimentally varied the factors response delay (repetition vs. shadowing), intention-to-repeat (repetition vs. pseudo-naming), and phonological load (repetition vs. transformation). The responses of ten healthy participants were examined for phonemic accuracy and for traces of para-phonological imitation. Two aphasic patients with phonological impairments were also included, to find out if lesions to left anterior or posterior perisylvian cortex interfere with imitation. In the healthy participants, significant imitation of both F(0) and phonetic style was observed, with markedly stronger effects for the latter. Strong imitation was also found in an aphasic patient with a lesion to left anterior perisylvian cortex, whereas almost no imitation occurred in a patient with a lesion to the posterior language area. The degree of unintended imitation was modulated by each of the three independent factors introduced here. The results are discussed on the background of cognitive and neurolinguistic theories of imitation. PMID:19811813

  1. Repetitively Q-switched Nd:BeL lasers

    NASA Technical Reports Server (NTRS)

    Degnan, J.; Birnbaum, M.; Deshazer, L. G.

    1979-01-01

    The thermal and mechanical characteristics which will ultimately limit the performance of Nd:BeL at high average power levels were investigated. The output beam characteristics (pulse width, peak power, beam dimensions and collimation) were determined at high repetition rates for both Nd:BeL and Nd:YAG. The output of Nd:BeL was shown to exceed that of Nd:YAG by a factor of 2.7 at low Q-switched repetition rates (1 Hz). This result follows from the smaller stimulated emission cross section of x-axis Nb:BeL compared to that of NdYAG by the same factor. At high repetition rates (10 Hz) the output of Nd:Bel falls to a level of three-fifths of its low repetition rate value while under similar tests the output of Nd:YAG remains essentially constant. A comparison of the measured values of the elasto-optic coefficients, the dn/dT values and the linear expansion coefficients for BeL and YAG failed to provide an explanation for the performance of BeL; however, thermal lensing was observed in Nd:BeL. Results imply that the output of a high repetition rate Q-switched Nd:BeL laser (high thermal loading) could be dramatically increased by utilization of a resonator design to compensate for the thermal lensing effects.

  2. Neural Basis of Repetition Priming during Mathematical Cognition: Repetition Suppression or Repetition Enhancement?

    PubMed Central

    Salimpoor, Valorie N.; Chang, Catie; Menon, Vinod

    2015-01-01

    We investigated the neural basis of repetition priming (RP) during mathematical cognition. Previous studies of RP have focused on repetition suppression as the basis of behavioral facilitation, primarily using word and object identification and classification tasks. More recently, researchers have suggested associative stimulus-response learning as an alternate model for behavioral facilitation. We examined the neural basis of RP during mathematical problem solving in the context of these two models of learning. Brain imaging and behavioral data were acquired from 39 adults during novel and repeated presentation of three-operand mathematical equations. Despite widespread decreases in activation during repeat, compared with novel trials, there was no direct relation between behavioral facilitation and the degree of repetition suppression in any brain region. Rather, RT improvements were directly correlated with repetition enhancement in the hippocampus and the postero-medial cortex [posterior cingulate cortex, precuneus, and retro-splenial cortex; Brodmann’s areas (BAs) 23, 7, and 30, respectively], regions known to support memory formation and retrieval, and in the SMA (BA 6) and the dorsal midcingulate (“motor cingulate”) cortex (BA 24d), regions known to be important for motor learning. Furthermore, improvements in RT were also correlated with increased functional connectivity of the hippocampus with both the SMA and the dorsal midcingulate cortex. Our findings provide novel support for the hypothesis that repetition enhancement and associated stimulus-response learning may facilitate behavioral performance during problem solving. PMID:19366289

  3. Unintended Imitation in Nonword Repetition

    ERIC Educational Resources Information Center

    Kappes, Juliane; Baumgaertner, Annette; Peschke, Claudia; Ziegler, Wolfram

    2009-01-01

    Verbal repetition is conventionally considered to require motor-reproduction of only the phonologically relevant content of a perceived linguistic stimulus, while imitation of incidental acoustic properties of the stimulus is not an explicit part of this task. Exemplar-based theories of speech processing, however, would predict that imitation…

  4. Constructive and Unconstructive Repetitive Thought

    ERIC Educational Resources Information Center

    Watkins, Edward R.

    2008-01-01

    The author reviews research showing that repetitive thought (RT) can have constructive or unconstructive consequences. The main unconstructive consequences of RT are (a) depression, (b) anxiety, and (c) difficulties in physical health. The main constructive consequences of RT are (a) recovery from upsetting and traumatic events, (b) adaptive…

  5. Repetitive DNA in eukaryotic genomes.

    PubMed

    Biscotti, Maria Assunta; Olmo, Ettore; Heslop-Harrison, J S Pat

    2015-09-01

    Repetitive DNA--sequence motifs repeated hundreds or thousands of times in the genome--makes up the major proportion of all the nuclear DNA in most eukaryotic genomes. However, the significance of repetitive DNA in the genome is not completely understood, and it has been considered to have both structural and functional roles, or perhaps even no essential role. High-throughput DNA sequencing reveals huge numbers of repetitive sequences. Most bioinformatic studies focus on low-copy DNA including genes, and hence, the analyses collapse repeats in assemblies presenting only one or a few copies, often masking out and ignoring them in both DNA and RNA read data. Chromosomal studies are proving vital to examine the distribution and evolution of sequences because of the challenges of analysis of sequence data. Many questions are open about the origin, evolutionary mode and functions that repetitive sequences might have in the genome. Some, the satellite DNAs, are present in long arrays of similar motifs at a small number of sites, while others, particularly the transposable elements (DNA transposons and retrotranposons), are dispersed over regions of the genome; in both cases, sequence motifs may be located at relatively specific chromosome domains such as centromeres or subtelomeric regions. Here, we overview a range of works involving detailed characterization of the nature of all types of repetitive sequences, in particular their organization, abundance, chromosome localization, variation in sequence within and between chromosomes, and, importantly, the investigation of their transcription or expression activity. Comparison of the nature and locations of sequences between more, and less, related species is providing extensive information about their evolution and amplification. Some repetitive sequences are extremely well conserved between species, while others are among the most variable, defining differences between even closely relative species. These data suggest

  6. Characterizing exploration behavior in spatial neglect: omissions and repetitive search.

    PubMed

    Olk, Bettina; Harvey, Monika

    2006-11-01

    In search tasks, patients with spatial neglect typically fail to respond to stimuli on the contralesional side. Such behavior has been associated with hyperattention to the ipsilesional side and a deficit in disengaging from attended stimuli. The present study investigated whether such explanations can also account for a further kind of behavior frequently shown by neglect patients: repetitive returns to previously indicated stimuli, particularly on the ipsilesional side. A group of neglect patients was tested along with a group of healthy participants and a patient control group without neglect. Participants performed an exploration task in which they searched for targets defined by their shape or for all stimuli either with the aid of vision or blindfolded. The results showed differential effects of reducing the salience of visual stimuli by blindfolding. For a subgroup of patients, detection rate improved, while for others the percentage of omissions increased. However, contrary to the control groups, blindfolding had no effect on repetitive search in the neglect group, inconsistent with hyperattention, a disengage or impaired working memory deficits. The rate of repetitive returns to previously indicated locations did not seem to be associated with the percentage of omitted stimuli, suggesting that repetitive returns may be best explained by a disruption of systematic search and lack of volitional control in spatial neglect. The results further underline the importance of considering repetitive search behavior in addition to omissions in standard neglect assessments. PMID:16979143

  7. Chromosome specific repetitive DNA sequences

    DOEpatents

    Moyzis, Robert K.; Meyne, Julianne

    1991-01-01

    A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  8. Investigation of a repetitive pulsed electrothermal thruster

    NASA Technical Reports Server (NTRS)

    Burton, R. L.; Fleischer, D.; Goldstein, S. A.; Tidman, D. A.; Winsor, N. K.

    1986-01-01

    A pulsed electrothermal (PET) thruster with 1000:1 ratio nozzle is tested in a repetitive mode on water propellant. The thruster is driven by a 60J pulse forming network at repetition rates up to 10 Hz (600W). The pulse forming network has a .31 ohm impedance, well matched to the capillary discharge resistance of .40 ohm, and is directly coupled to the thruster electrodes without a switch. The discharge is initiated by high voltage breakdown, typically at 2500V, through the water vapor in the interelectrode gap. Water is injected as a jet through a .37 mm orifice on the thruster axis. Thruster voltage, current and impulse bit are recorded for several seconds at various power supply currents. Thruster to power ratio is typically T/P = .07 N/kW. Tank background pressure precludes direct measurement of exhaust velocity which is inferred from calculated pressure and temperature in the discharge to be about 14 km/sec. Efficiency, based on this velocity and measured T/P is .54 + or - .07. Thruster ablation is zero at the throat and becomes measurable further upstream, indicating that radiative ablation is occurring late in the pulse.

  9. Episodic repetitive thought: dimensions, correlates, and consequences.

    PubMed

    Segerstrom, Suzanne C; Stanton, Annette L; Flynn, Sarah McQueary; Roach, Abbey R; Testa, Jamie J; Hardy, Jaime K

    2012-01-01

    Repetitive thought (RT) - attentive, prolonged, or frequent thought about oneself and one's world - plays an important role in many models of psychological and physical ill health (e.g., rumination and worry), as well as models of recovery and well-being (e.g., processing and reminiscing). In these models, repetitive thought is typically treated as stable or trait-like. In contrast, episodic RT reflects what people have "on their minds" at a particular point in time. In four studies, young women (N=94), college students (N=166), first-year law students (N=73), and older adults (N=174) described their episodic RT, which was then rated for qualities including valence, purpose, and theme. Episodic RT valence was associated with mood and depressive symptoms both between (Studies 1-4) and within people (Studies 3-4), and it mediated the effects of dispositional coping through emotional approach (Study 1). The effect of episodic RT valence in turn was moderated by other properties of episodic RT, including purpose, "trait" valence, and theme (Studies 1-4). The study of episodic RT complements that of trait RT and allows for observations of how RT and psychological adjustment change in concert and in context, as well as examining how the RT qualities that are not reflected in trait measures affect adjustment. PMID:21861772

  10. Episodic Repetitive Thought: Dimensions, Correlates, and Consequences

    PubMed Central

    Segerstrom, Suzanne C.; Stanton, Annette L.; Flynn, Sarah McQueary; Roach, Abbey R.; Testa, Jamie J.; Hardy, Jaime K.

    2011-01-01

    Repetitive thought (RT) – attentive, prolonged, or frequent thought about oneself and one’s world – plays an important role in many models of psychological and physical ill health (e.g., rumination and worry), as well as models of recovery and well-being (e.g., processing and reminiscing). In these models, repetitive thought is typically treated as stable or trait-like. In contrast, episodic RT reflects what people have “on their minds” at a particular point in time. In four studies, young women (N = 94), college students (N = 166), first-year law students (N = 73), and older adults (N = 174) described their episodic RT, which was then rated for qualities including valence, purpose, and theme. Episodic RT valence was associated with mood and depressive symptoms both between (Studies 1–4) and within people (Studies 3–4), and it mediated the effects of dispositional coping through emotional approach (Study 1). The effect of episodic RT valence in turn was moderated by other properties of episodic RT, including purpose, “trait” valence, and theme (Studies 1–4). The study of episodic RT complements that of trait RT and allows for observations of how RT and psychological adjustment change in concert and in context, as well as examining the RT qualities that are not reflected in trait measures affecting adjustment. PMID:21861772

  11. Exact Repetition as Input Enhancement in Second Language Acquisition.

    ERIC Educational Resources Information Center

    Jensen, Eva Dam; Vinther, Thora

    2003-01-01

    Reports on two studies on input enhancement used to support learners' selection of focus of attention in Spanish second language listening material. Input consisted of video recordings of dialogues between native speakers. Exact repetition and speech rate reduction were examined for effect on comprehension, acquisition of decoding strategies, and…

  12. Repetitive speech disorder resulting from infarcts in the paramedian thalami and midbrain.

    PubMed Central

    Abe, K; Yokoyama, R; Yorifuji, S

    1993-01-01

    A repetitive speech disorder resulting from infarcts in the paramedian thalami and the midbrain is reported. Although the speech disorder seemed like stuttering, the compulsive repetitions, constant rate and monotonous tone were not associated with ordinary stuttering. Since repetition was restricted to the first syllable, the speech disorder in our patient could be distinguished from palilalia. The extrapyramidal system is considered responsible for repetitive speech disorders resulting from infarcts in the paramedian thalami and the midbrain but without good reason. Repetitive speech disorder in patients with infarcts in the supplementary motor area (SMA) have similar clinical features to our patient. It is suggested that interruption in the projective system to the SMA is a possible cause of "stuttering like repetition". Images PMID:8410027

  13. Circuit considerations for repetitive railguns

    SciTech Connect

    Honih, E.M.

    1986-01-01

    Railgun electromagnetic launchers have significant military and scientific potential. They provide direct conversion of electrical energy to projectile kinetic energy, and they offer the hope of achieving projectile velocities greatly exceeding the limits of conventional guns. With over 10 km/sec already demonstrated, railguns are attracting attention for tactical and strategic weapons systems and for scientific equation-of-state research. The full utilization of railguns will require significant improvements in every aspect of system design - projectile, barrel, and power source - to achieve operation on a large scale. This paper will review fundamental aspects of railguns, with emphasis on circuit considerations and repetitive operation.

  14. Nonword Repetition with Spectrally Reduced Speech: Some Developmental and Clinical Findings from Pediatric Cochlear Implantation

    ERIC Educational Resources Information Center

    Burkholder-Juhasz, Rose A.; Levi, Susannah V.; Dillon, Caitlin M.; Pisoni, David B.

    2007-01-01

    Nonword repetition skills were examined in 24 pediatric cochlear implant (CI) users and 18 normal-hearing (NH) adult listeners listening through a CI simulator. Two separate groups of NH adult listeners assigned accuracy ratings to the nonword responses of the pediatric CI users and the NH adult speakers. Overall, the nonword repetitions of…

  15. Neuroimaging in repetitive brain trauma

    PubMed Central

    2014-01-01

    Sports-related concussions are one of the major causes of mild traumatic brain injury. Although most patients recover completely within days to weeks, those who experience repetitive brain trauma (RBT) may be at risk for developing a condition known as chronic traumatic encephalopathy (CTE). While this condition is most commonly observed in athletes who experience repetitive concussive and/or subconcussive blows to the head, such as boxers, football players, or hockey players, CTE may also affect soldiers on active duty. Currently, the only means by which to diagnose CTE is by the presence of phosphorylated tau aggregations post-mortem. Non-invasive neuroimaging, however, may allow early diagnosis as well as improve our understanding of the underlying pathophysiology of RBT. The purpose of this article is to review advanced neuroimaging methods used to investigate RBT, including diffusion tensor imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, susceptibility weighted imaging, and positron emission tomography. While there is a considerable literature using these methods in brain injury in general, the focus of this review is on RBT and those subject populations currently known to be susceptible to RBT, namely athletes and soldiers. Further, while direct detection of CTE in vivo has not yet been achieved, all of the methods described in this review provide insight into RBT and will likely lead to a better characterization (diagnosis), in vivo, of CTE than measures of self-report. PMID:25031630

  16. Modeling repetitive, non-globular proteins.

    PubMed

    Basu, Koli; Campbell, Robert L; Guo, Shuaiqi; Sun, Tianjun; Davies, Peter L

    2016-05-01

    While ab initio modeling of protein structures is not routine, certain types of proteins are more straightforward to model than others. Proteins with short repetitive sequences typically exhibit repetitive structures. These repetitive sequences can be more amenable to modeling if some information is known about the predominant secondary structure or other key features of the protein sequence. We have successfully built models of a number of repetitive structures with novel folds using knowledge of the consensus sequence within the sequence repeat and an understanding of the likely secondary structures that these may adopt. Our methods for achieving this success are reviewed here. PMID:26914323

  17. Constructive and Unconstructive Repetitive Thought

    PubMed Central

    Watkins, Edward R.

    2008-01-01

    The author reviews research showing that repetitive thought (RT) can have constructive or unconstructive consequences. The main unconstructive consequences of RT are (a) depression, (b) anxiety, and (c) difficulties in physical health. The main constructive consequences of RT are (a) recovery from upsetting and traumatic events, (b) adaptive preparation and anticipatory planning, (c) recovery from depression, and (d) uptake of health-promoting behaviors. Several potential principles accounting for these distinct consequences of RT are identified within this review: (a) the valence of thought content, (b) the intrapersonal and situational context in which RT occurs, and (c) the level of construal (abstract vs. concrete processing) adopted during RT. Of the existing models of RT, it is proposed that an elaborated version of the control theory account provides the best theoretical framework to account for its distinct consequences. PMID:18298268

  18. Pressure rig for repetitive casting

    NASA Technical Reports Server (NTRS)

    Vasquez, Peter (Inventor); Hutto, William R. (Inventor); Philips, Albert R. (Inventor)

    1989-01-01

    The invention is a pressure rig for repetitive casting of metal. The pressure rig performs like a piston for feeding molten metal into a mold. Pressure is applied to an expandable rubber diaphragm which expands like a balloon to force the metal into the mold. A ceramic cavity which holds molten metal is lined with blanket-type insulating material, necessitating only a relining for subsequent use and eliminating the lengthy cavity preparation inherent in previous rigs. In addition, the expandable rubber diaphragm is protected by the insulating material thereby decreasing its vulnerability to heat damage. As a result of the improved design the life expectancy of the pressure rig contemplated by the present invention is more than doubled. Moreover, the improved heat protection has allowed the casting of brass and other alloys with higher melting temperatures than possible in the conventional pressure rigs.

  19. Information Density and Syntactic Repetition.

    PubMed

    Temperley, David; Gildea, Daniel

    2015-11-01

    In noun phrase (NP) coordinate constructions (e.g., NP and NP), there is a strong tendency for the syntactic structure of the second conjunct to match that of the first; the second conjunct in such constructions is therefore low in syntactic information. The theory of uniform information density predicts that low-information syntactic constructions will be counterbalanced by high information in other aspects of that part of the sentence, and high-information constructions will be counterbalanced by other low-information components. Three predictions follow: (a) lexical probabilities (measured by N-gram probabilities and head-dependent probabilities) will be lower in second conjuncts than first conjuncts; (b) lexical probabilities will be lower in matching second conjuncts (those whose syntactic expansions match the first conjunct) than nonmatching ones; and (c) syntactic repetition should be especially common for low-frequency NP expansions. Corpus analysis provides support for all three of these predictions. PMID:25557056

  20. Development and evaluation of an observational method for assessing repetition in hand tasks.

    PubMed

    Latko, W A; Armstrong, T J; Foulke, J A; Herrin, G D; Rabourn, R A; Ulin, S S

    1997-04-01

    Several physical stressors, including repetitive, sustained, and forceful exertions, awkward postures, localized mechanical stress, highly dynamic movements, exposures to low temperatures, and vibration have been linked to increased risk of work-related musculoskeletal disorders. Repetitive exertions have been among the most widely studied of these stressors, but there is no single metric for assessing exposure to repetitive work. A new methodology enables repetitive hand activity to be rated based on observable characteristics of manual work. This method uses a series of 10-cm visual-analog scales with verbal anchors and benchmark examples. Ratings for repetition reflect both the dynamic aspect of hand movements and the amount of recovery or idle hand time. Trained job analysis experts rate the jobs individually and then agree on ratings. For a group of 33 jobs, repetition ratings using this system were compared to measurements of recovery time within the cycle, exertion counts, and cycle time. Amount of recovery time within the job cycle was found to be significantly correlated with the analysis ratings (r2 = 0.58), as were the number of exertions per second (r2 = 0.53). Cycle time was not related to the analyst ratings. Repeated analyses using the new method were performed 1 1/2 to 2 years apart on the same jobs with the same group of raters. Ratings for repetition differed less than 1 point (on the 10-cm scale), on average, among the different sessions. These results indicate that the method is sensitive to exertion level and recovery time, and that the decision criteria and benchmark examples allow for a consistent application of these methods over a period of time. This method of rating repetition can be combined with similar scales for other physical stressors. PMID:9115085

  1. A Nonword Repetition Task for Speakers with Misarticulations: The Syllable Repetition Task (SRT)

    ERIC Educational Resources Information Center

    Shriberg, Lawrence D.; Lohmeier, Heather L.; Campbell, Thomas F.; Dollaghan, Christine A.; Green, Jordan R.; Moore, Christopher A.

    2009-01-01

    Purpose: Conceptual and methodological confounds occur when non(sense) word repetition tasks are administered to speakers who do not have the target speech sounds in their phonetic inventories or who habitually misarticulate targeted speech sounds. In this article, the authors (a) describe a nonword repetition task, the Syllable Repetition Task…

  2. Socio-Economic Status Affects Sentence Repetition, but Not Non-Word Repetition, in Chilean Preschoolers

    ERIC Educational Resources Information Center

    Balladares, Jaime; Marshall, Chloë; Griffiths, Yvonne

    2016-01-01

    Sentence repetition and non-word repetition tests are widely used measures of language processing which are sensitive to language ability. Surprisingly little previous work has investigated whether children's socio-economic status (SES) affects their sentence and non-word repetition accuracy. This study investigates sentence and non-word…

  3. Serial Position Effects in Nonword Repetition

    ERIC Educational Resources Information Center

    Gupta, P.; Lipinski, J.; Abbs, B.; Lin, P.H.

    2005-01-01

    A growing body of research has emphasized the linkage between performance in immediate serial recall of lists, nonword repetition, and word learning. Recently, it has been reported that primacy and recency effects are obtained in repetition of individual syllables within nonwords (Gupta, in press). Five experiments examined whether such…

  4. Repetition priming results in sensitivity attenuation

    PubMed Central

    Allenmark, Fredrik; Hsu, Yi-Fang; Roussel, Cedric; Waszak, Florian

    2015-01-01

    Repetition priming refers to the change in the ability to perform a task on a stimulus as a consequence of a former encounter with that very same item. Usually, repetition results in faster and more accurate performance. In the present study, we used a contrast discrimination protocol to assess perceptual sensitivity and response bias of Gabor gratings that are either repeated (same orientation) or alternated (different orientation). We observed that contrast discrimination performance is worse, not better, for repeated than for alternated stimuli. In a second experiment, we varied the probability of stimulus repetition, thus testing whether the repetition effect is due to bottom-up or top-down factors. We found that it is top-down expectation that determines the effect. We discuss the implication of these findings for repetition priming and related phenomena as sensory attenuation. This article is part of a Special Issue entitled SI: Prediction and Attention. PMID:25819554

  5. Large repetitively Q-switched oscillators

    NASA Astrophysics Data System (ADS)

    Epstein, H. M.; Dulaney, J. L.; O'Loughlin, J. F.; Altman, W. P.

    A versatile waveform laser which can operate in bursts from 5 to 160 ms long and deliver up to 30 kJ power burst has been constructed. This Nd:glass laser system consists of four oscillators in parallel. Each oscillator can be varied in length from about 3 to 10 m, and contains two pump heads 670 mm long by 64 mm in diameter phosphate glass laser rods. When trains of Q-switched pulses are required, 70 mm diameter Pockels cells and dielectric polarizers are added to the oscillator cavity. The basic burst duration of 5 ms can be stretched to 10, 20, 40, 80,and 160 ms by sequencing the firing of flashlamps, with the longest pulse length attained by sequentially firing 1/4 heads. Trains of Q-switched pulses up to 10 kHz in repetition rate and 50 to 900 ns wide can be obtained by varying the cavity configuration and Pockels cell firing rate. Spatial distributions are flat-topped within about 10 percent. Overall efficiency for the oscillator with a CW waveform can exceed 4.8 percent.

  6. Environmental conditions associated with repetitive behavior in a group of African elephants.

    PubMed

    Hasenjager, Matthew J; Bergl, Richard A

    2015-01-01

    Repetitive movement patterns are commonly observed in zoo elephants. The extent to which these behaviors constitute a welfare concern varies, as their expression ranges from stereotypies to potentially beneficial anticipatory behaviors. Nevertheless, their occurrence in zoo animals is often viewed negatively. To better identify conditions that prompt their performance, observations were conducted on six African elephants (Loxodonta africana) at the North Carolina Zoo. Individuals spent most of their time engaged in feeding, locomotion, resting, and repetitive behavior. Both generalized estimating equation and zero-inflated negative binomial models were used to identify factors associated with increased rates of repetitive behavior. Time of day in conjunction with location on- or off-exhibit best explained patterns of repetitive behavior. Repetitive behaviors occurred at a lower rate in the morning when on-exhibit, as compared to afternoons on-exhibit or at any time of day off-exhibit. Increased repetitive behavior rates observed on-exhibit in the afternoon prior to the evening transfer and feeding were possibly anticipatory responses towards those events. In contrast, consistently elevated frequencies of repetitive behavior off-exhibit at all times of day could be related to differences in exhibit complexity between off-exhibit and on-exhibit areas, as well as a lack of additional foraging opportunities. Our study contributes valuable information on captive elephant behavior and represents a good example of how behavioral research can be employed to improve management of zoo animals. PMID:25919392

  7. Strategies for Using Repetition as a Powerful Teaching Tool

    ERIC Educational Resources Information Center

    Saville, Kirt

    2011-01-01

    Brain research indicates that repetition is of vital importance in the learning process. Repetition is an especially useful tool in the area of music education. The success of repetition can be enhanced by accurate and timely feedback. From "simple repetition" to "repetition with the addition or subtraction of degrees of freedom," there are many…

  8. Altered Brain Activities Associated with Neural Repetition Effects in Mild Cognitive Impairment Patients.

    PubMed

    Yu, Jing; Li, Rui; Jiang, Yang; Broster, Lucas S; Li, Juan

    2016-05-11

    Older adults with mild cognitive impairment (MCI) manifest impaired explicit memory. However, studies on implicit memory such as repetition effects in persons with MCI have been limited. In the present study, 17 MCI patients and 16 healthy normal controls (NC) completed a modified delayed-match-to-sample task while undergoing functional magnetic resonance imaging. We aim to examine the neural basis of repetition; specifically, to elucidate whether and how repetition-related brain responses are altered in participants with MCI. When repeatedly rejecting distracters, both NC and MCI showed similar behavioral repetition effects; however, in both whole-brain and region-of-interest analyses of functional data, persons with MCI showed reduced repetition-driven suppression in the middle occipital and middle frontal gyrus. Further, individual difference analysis found that activation in the left middle occipital gyrus was positively correlated with rejecting reaction time and negatively correlated with accuracy rate, suggesting a predictor of repetition behavioral performance. These findings provide new evidence to support the view that neural mechanisms of repetition effect are altered in MCI who manifests compensatory repetition-related brain activities along with their neuropathology. PMID:27176074

  9. Repetitively pulsed Cr:LiSAF laser for lidar applications

    SciTech Connect

    Shimada, Tsutomu; Early, J.W.; Lester, C.S.; Cockroft, N.J.

    1994-03-01

    A Cr:LiSAF laser has been successfully operated at time averaged powers up to 11 W and at pulse repetition rates to 12 Hz. During Q-switch operation, output energy as high as 450 mJ (32 ns FWHM) was obtained. Finally, line narrowed Q-switched pulses (< 0.1 nm) from the Cr:LiSAF laser were successfully used as a tunable light source for lidar to measure atmospheric water content.

  10. Repetitively pulsed regime of Nd : glass large-aperture laser amplifiers

    SciTech Connect

    Kuzmin, A A; Khazanov, Efim A; Shaykin, A A

    2012-04-30

    A repetitively pulsed operation regime of neodymium glass rod laser amplifiers with apertures of 4.5, 6, 8.5, and 10 cm is analysed using experimental data. The limits of an increase in the pulse repetition rates are determined. Universal dependences are obtained, which help finding a compromise between increasing the repetition rate and enhancing the gain for each particular case. In particular, it is shown that an amplifier 4.5-cm in diameter exhibits a five-fold safety factor with respect to a thermo-mechanical breakdown at a repetition rate of 1 pulse min{sup -1} and stored energy of above 100 J. A strong thermally induced birefringence in two such amplifiers is experimentally reduced to a 'cold' level by employing a 90 Degree-Sign optical rotator.

  11. A compact, repetitive accelerator for military and industrial applications

    SciTech Connect

    Zutavern, F.J.; O`Malley, M.W.; Ruebush, M.H.; Rinehart, L.F.; Loubriel, G.M.; Babcock, S.R.; Denison, G.J.

    1998-04-01

    A compact, short pulse, repetitive accelerator has many useful military and commercial applications in biological counter proliferation, materials processing, radiography, and sterilization (medical instruments, waste, and food). The goal of this project was to develop and demonstrate a small, 700 kV accelerator, which can produce 7 kA particle beams with pulse lengths of 10--30 ns at rates up to 50 Hz. At reduced power levels, longer pulses or higher repetition rates (up to 10 kHz) could be achieved. Two switching technologies were tested: (1) spark gaps, which have been used to build low repetition rate accelerators for many years; and (2) high gain photoconductive semiconductor switches (PCSS), a new solid state switching technology. This plan was economical, because it used existing hardware for the accelerator, and the PCSS material and fabrication for one module was relatively inexpensive. It was research oriented, because it provided a test bed to examine the utility of other emerging switching technologies, such as magnetic switches. At full power, the accelerator will produce 700 kV and 7 kA with either the spark gap or PCSS pulser.

  12. Cross-modal nonspatial repetition inhibition.

    PubMed

    Wang, Lihui; Yue, Zhenzhu; Chen, Qi

    2012-07-01

    Although it has been well documented that the spatial inhibitory effect induced by repetition of location (i.e., spatial inhibition of return, or IOR) occurs cross-modally, we do not yet know whether nonspatial (e.g., color-based) repetition-induced inhibition occurs in a cross-modal fashion as well. In the present study, a novel cross-modal paradigm with regard to color-based repetition was adopted. An intervening neutral cue, whose semantic identity was different from those of both the prime and the target, was introduced between the prime and the target in a repetition-priming task. The modalities of the prime, the neutral cue, and the target could be either visual or auditory, and the prime and the target could refer either to the same or to different semantic identities. By adopting this paradigm, we aimed to answer two questions: (1) What are the specific conditions under which cross-modal semantic-based repetition inhibition occurs? (2) Are the representations inhibited in the semantic-based repetition inhibition effect supramodal or modality-specific? Our results suggested that semantic-based repetition inhibition occurs only when the prime and the neutral cue are from the same sensory modality, and it occurs irrespective of whether the modality of the target is cued and irrespective of whether the modality of the target is auditory or visual. Taken together, our results suggest that the occurrence of cross-modal nonspatial repetition inhibition is conditional and that the nonspatial representations inhibited by the repetition inhibition are supramodal. PMID:22415447

  13. Not all repetition is alike: different benefits of repetition in amnesia and normal memory.

    PubMed

    Verfaellie, Mieke; Rajaram, Suparna; Fossum, Karen; Williams, Lisa

    2008-05-01

    While it is well known that repetition can enhance memory in amnesia, little is known about which forms of repetition are most beneficial. This study compared the effect on recognition memory of repetition of words in the same semantic context and in varied semantic contexts. To gain insight into the mechanisms by which these forms of repetition affect performance, participants were asked to make Remember/Know judgments during recognition. These judgments were used to make inferences about the contribution of recollection and familiarity to performance. For individuals with intact memory, the two forms of repetition were equally beneficial to overall recognition, and were associated with both enhanced Remember and Know responses. However, varied repetition was associated with a higher likelihood of Remember responses than was fixed repetition. The two forms of repetition also conferred equivalent benefits on overall recognition in amnesia, but in both cases, this enhancement was manifest exclusively in enhanced Know responses. We conclude that the repetition of information, and especially repetition in varied contexts, enhances recollection in individuals with intact memory, but exclusively affects familiarity in patients with severe amnesia. PMID:18419835

  14. Resistance to change of operant variation and repetition.

    PubMed Central

    Doughty, A H; Lattal, K A

    2001-01-01

    A multiple chained schedule was used to compare the relative resistance to change of variable and fixed four-peck response sequences in pigeons. In one terminal link, a response sequence produced food only if it occurred infrequently relative to 15 other response sequences (vary). In the other terminal link, a single response sequence produced food (repeat). Identical variable-interval schedules operated in the initial links. During baseline, lower response rates generally occurred in the vary initial link, and similar response and reinforcement rates occurred in each terminal link. Resistance of responding to prefeeding and three rates of response-independent food delivered during the intercomponent intervals then was compared between components. During each disruption condition, initial- and terminal-link response rates generally were more resistant in the vary component than in the repeat component. During the response-independent food conditions, terminal-link response rates were more resistant than initial-link response rates in each component, but this did not occur during prefeeding. Variation (in vary) and repetition (in repeat) both decreased during the response-independent food conditions in the respective components, but with relatively greater disruption in repeat. These results extend earlier findings demonstrating that operant variation is more resistant to disruption than is operant repetition and suggest that theories of response strength, such as behavioral momentum theory, must consider factors other than reinforcement rate. The implications of the results for understanding operant response classes are discussed. PMID:11599639

  15. Developmental Norms for the Sentence Repetition Test.

    ERIC Educational Resources Information Center

    Carmichael, John A.; MacDonald, John W.

    1984-01-01

    Obtained developmental norms for the Sentence Repetition Test from children (N=1,081) ranging in age from three to 13 years. Utilized a substanially larger number of children in each age group than previous reports. (Author/LLL)

  16. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, Emanuel M.

    1987-01-01

    A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.

  17. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, E.M.

    1987-02-10

    A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime. 10 figs.

  18. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, E.M.

    1984-06-05

    A high power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.

  19. Bubble Phenomena caused by High Repetitive Plasmas in Water

    NASA Astrophysics Data System (ADS)

    Akiyama, Masahiro; Oikawa, Takuma; Fue, Masatoshi; Ogata, Ryoma; Takaki, Koich; Akiyama, Hidenori; Iwate Univ Team; Kumamoto Univ Collaboration

    2015-09-01

    Streamer discharges in water were generated by a pulsed power generator. The streamer shape changed depending on pulse repetition rate. Streamer discharges at 500 pulses per second (pps) resulted in a ball shape. Under this formation, small bubbles gather near the electrode tip. Our aims are the analysis and discussion of the bubble phenomena caused by high repetitive plasmas produced in water. Pulsed power with a maximum output of 1 J/pulse was applied to an electrode of 0.8 mm in diameter covered by an insulator of 2 mm thickness. The electrode was inserted into tap water with conductivity of 170 uS/cm. The polarity was positive. Phenomena, in which the resulting gas bubbles oscillate and gather, were found to have an important role in producing ball shape streamer discharges.

  20. MOS-Gated Thyristors (MCTs) for Repetitive High Power Switching

    SciTech Connect

    BAYNE,S.B.; PORTNOY,W.M.; ROHWEIN,G.J.; HEFNER,A.R.

    2000-01-13

    Certain applications for pulse power require narrow, high current pulses for their implementation. This work was performed to determine if MCTS (MOS Controlled Thyristors) could be used for these applications. The MCTS were tested as discharge switches in a low inductance circuit delivering 1 {micro}s pulses at currents between roughly 3 kA and 11 kA, single shot and repetitively at 1, 10 and 50 Hz. Although up to 9000 switching events could be obtained, all the devices failed at some combination of current and repetition rate. Failure was attributed to temperature increases caused by average power dissipated in the thyristor during the switching sequence. A simulation was performed to confirm that the temperature rise was sufficient to account for failure. Considerable heat sinking, and perhaps a better thermal package, would be required before the MCT could be considered for pulse power applications.

  1. Repetitive sequence environment distinguishes housekeeping genes

    PubMed Central

    Eller, C. Daniel; Regelson, Moira; Merriman, Barry; Nelson, Stan; Horvath, Steve; Marahrens, York

    2007-01-01

    Housekeeping genes are expressed across a wide variety of tissues. Since repetitive sequences have been reported to influence the expression of individual genes, we employed a novel approach to determine whether housekeeping genes can be distinguished from tissue-specific genes their repetitive sequence context. We show that Alu elements are more highly concentrated around housekeeping genes while various longer (>400-bp) repetitive sequences ("repeats"), including Long Interspersed Nuclear Element 1 (LINE-1) elements, are excluded from these regions. We further show that isochore membership does not distinguish housekeeping genes from tissue-specific genes and that repetitive sequence environment distinguishes housekeeping genes from tissue-specific genes in every isochore. The distinct repetitive sequence environment, in combination with other previously published sequence properties of housekeeping genes, were used to develop a method of predicting housekeeping genes on the basis of DNA sequence alone. Using expression across tissue types as a measure of success, we demonstrate that repetitive sequence environment is by far the most important sequence feature identified to date for distinguishing housekeeping genes. PMID:17141428

  2. Word Recognition during Reading: The Interaction between Lexical Repetition and Frequency

    PubMed Central

    Lowder, Matthew W.; Choi, Wonil; Gordon, Peter C.

    2013-01-01

    Memory studies utilizing long-term repetition priming have generally demonstrated that priming is greater for low-frequency words than for high-frequency words and that this effect persists if words intervene between the prime and the target. In contrast, word-recognition studies utilizing masked short-term repetition priming typically show that the magnitude of repetition priming does not differ as a function of word frequency and does not persist across intervening words. We conducted an eye-tracking while reading experiment to determine which of these patterns more closely resembles the relationship between frequency and repetition during the natural reading of a text. Frequency was manipulated using proper names that were high-frequency (e.g., Stephen) or low-frequency (e.g., Dominic). The critical name was later repeated in the sentence, or a new name was introduced. First-pass reading times and skipping rates on the critical name revealed robust repetition-by-frequency interactions such that the magnitude of the repetition-priming effect was greater for low-frequency names than for high-frequency names. In contrast, measures of later processing showed effects of repetition that did not depend on lexical frequency. These results are interpreted within a framework that conceptualizes eye-movement control as being influenced in different ways by lexical- and discourse-level factors. PMID:23283808

  3. Repetitive Nerve Stimulation Transiently Opens the Mitochondrial Permeability Transition Pore in Motor Nerve Terminals of Symptomatic Mutant SOD1 Mice

    PubMed Central

    Nguyen, Khanh T.; Barrett, John N.; García-Chacón, Luis; David, Gavriel; Barrett, Ellen F.

    2011-01-01

    Mitochondria in motor nerve terminals temporarily sequester large Ca2+ loads during repetitive stimulation. In wild-type mice this Ca2+ uptake produces a small (<5 mV), transient depolarization of the mitochondrial membrane potential (Ψm, motor nerve stimulated with at 100 Hz for 5 s). We demonstrate that this stimulation-induced Ψm depolarization attains much higher amplitudes in motor terminals of symptomatic mice expressing the G93A or G85R mutation of human superoxide dismutase 1 (SOD1), models of familial amyotrophic lateral sclerosis (fALS). These large Ψm depolarizations decayed slowly and incremented with successive stimulus trains. Additional Ψm depolarizations occurred that were not synchronized with stimulation. These large Ψm depolarizations were reduced (a) by cyclosporin A (CsA, 1-2 uM), which inhibits opening of the mitochondrial permeability transition pore (mPTP), or (b) by replacing bath Ca2+ with Sr2+, which enters motor terminals and mitochondria but does not support mPTP opening. These results are consistent with the hypothesis that the large Ψm depolarizations evoked by repetitive stimulation in motor terminals of symptomatic fALS mice result from mitochondrial dysfunction that increases the likelihood of transient mPTP opening during Ca2+ influx. Such mPTP openings, a sign of mitochondrial stress, would disrupt motor terminal handling of Ca2+ loads and might thereby contribute to motor terminal degeneration in fALS mice. Ψm depolarizations resembling those in symptomatic fALS mice could be elicited in wild-type mice following 0.5-1 hr exposure to diamide (200 μM), which produces an oxidative stress, but these depolarizations were not reduced by CsA. PMID:21310237

  4. Repetitive nerve stimulation transiently opens the mitochondrial permeability transition pore in motor nerve terminals of symptomatic mutant SOD1 mice.

    PubMed

    Nguyen, Khanh T; Barrett, John N; García-Chacón, Luis; David, Gavriel; Barrett, Ellen F

    2011-06-01

    Mitochondria in motor nerve terminals temporarily sequester large Ca(2+) loads during repetitive stimulation. In wild-type mice this Ca(2+) uptake produces a small (<5 mV), transient depolarization of the mitochondrial membrane potential (Ψ(m), motor nerve stimulated at 100 Hz for 5s). We demonstrate that this stimulation-induced Ψ(m) depolarization attains much higher amplitudes in motor terminals of symptomatic mice expressing the G93A or G85R mutation of human superoxide dismutase 1 (SOD1), models of familial amyotrophic lateral sclerosis (fALS). These large Ψ(m) depolarizations decayed slowly and incremented with successive stimulus trains. Additional Ψ(m) depolarizations occurred that were not synchronized with stimulation. These large Ψ(m) depolarizations were reduced (a) by cyclosporin A (CsA, 1-2 μM), which inhibits opening of the mitochondrial permeability transition pore (mPTP), or (b) by replacing bath Ca(2+) with Sr(2+), which enters motor terminals and mitochondria but does not support mPTP opening. These results are consistent with the hypothesis that the large Ψ(m) depolarizations evoked by repetitive stimulation in motor terminals of symptomatic fALS mice result from mitochondrial dysfunction that increases the likelihood of transient mPTP opening during Ca(2+) influx. Such mPTP openings, a sign of mitochondrial stress, would disrupt motor terminal handling of Ca(2+) loads and might thereby contribute to motor terminal degeneration in fALS mice. Ψ(m) depolarizations resembling those in symptomatic fALS mice could be elicited in wild-type mice following a 0.5-1h exposure to diamide (200 μM), which produces an oxidative stress, but these depolarizations were not reduced by CsA. PMID:21310237

  5. A compact high repetition rate CO2 coherent Doppler lidar

    NASA Technical Reports Server (NTRS)

    Alejandro, S.; Frelin, R.; Dix, B.; Mcnicholl, P.

    1992-01-01

    As part of its program to develop coherent heterodyne detection lidar technology for space, airborne, and ground based applications, the Optical Environment Division of the USAF's Phillips Laboratory developed a compact coherent CO2 TEA lidar system. Although originally conceived as a high altitude balloon borne system, the lidar is presently integrated into a trailer for ground based field measurements of aerosols and wind fields. In this role, it will also serve as a testbed for signal acquisition and processing development for planned future airborne and space based solid state lidar systems. The system has also found significance in new areas of interest to the Air Force such as cloud studies and coherent Differential Absorption Lidar (DIAL) systems.

  6. Improving child compliance on a computer administered nonword repetition task.

    PubMed

    Polišenská, Kamila; Kapalková, Svetlana

    2014-06-01

    Purpose: A range of nonword repetition (NWR) tasks are used in research and clinical applications, but compliance rates among young children remain low. Live presentation is usually used to improve compliance rates, but this lacks the consistency of recorded stimuli. In this study, the authors examined whether a novel delivery of NWR stimuli based on recorded material could provide improved compliance rates in young children, thereby reducing research bias.Method: The novel NWR task with 26 recorded items was administered to 391 typically developing children ages 2–6 years. The children were presented with a story that they could influence by repeating “magic” words. Results: From the 384 children who completed the task, the authors found a noncompliance rate related to age. In line with previous research, no effect of demographic factors was found,but there was a significant main effect of age, syllable length,and phonological complexity on repetition accuracy. Test–retest and interrater scoring showed high levels of reliability.Conclusion: The task described in this study offers an objective delivery of recorded stimuli that engages young children and provides high compliance rates. The task is inexpensive, requires minimal training, and can be adapted to other languages. PMID:25667943

  7. The infogram: Entropic evidence of the signature of repetitive transients

    NASA Astrophysics Data System (ADS)

    Antoni, Jerome

    2016-06-01

    A classical symptom of rotating machines faults in vibration signals is the presence of repetitive transients, whose distinctive signature is both impulsive and cyclostationary. Typical approaches for their detection proceed in the time or frequency domains, with tools such as the spectral kurtosis, the kurtogram, or the envelope spectrum. The object of this paper is to extend and somehow connect these concepts in order to capture the signature of repetitive transients in both domains. Motivated by ideas borrowed from the field of thermodynamics where transients are seen as departures from a state of equilibrium, it is proposed to measure the negentropy of the squared envelope (SE) and of the squared envelope spectrum (SES) of the signal. This defines the SE infogram, the SES infogram, and their average which is theoretically maximum for a Dirac comb according to Hirschman's uncertainty principle. It is demonstrated that the joint consideration of the infograms significantly extends the domain of applicability of the kurtogram, in particular to situations corrupted with impulsive noise or when the relaxation time of the transients is low as compared to their rate of repetition. This is illustrated on both synthetic and actual vibration signals. This paper is part of a special issue in honor of Professor Simon Braun and pays tribute to his early contribution to the field of mechanical signature analysis.

  8. The Prevalence and Phenomenology of Repetitive Behavior in Genetic Syndromes

    ERIC Educational Resources Information Center

    Moss, Joanna; Oliver, Chris; Arron, Kate; Burbidge, Cheryl; Berg, Katy

    2009-01-01

    We investigated the prevalence and phenomenology of repetitive behavior in genetic syndromes to detail profiles of behavior. The Repetitive Behaviour Questionnaire (RBQ) provides fine-grained identification of repetitive behaviors. The RBQ was employed to examine repetitive behavior in Angelman (N = 104), Cornelia de Lange (N = 101), Cri-du-Chat…

  9. 21 CFR 882.5805 - Repetitive transcranial magnetic stimulation system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Repetitive transcranial magnetic stimulation....5805 Repetitive transcranial magnetic stimulation system. (a) Identification. A repetitive transcranial magnetic stimulation system is an external device that delivers transcranial repetitive pulsed...

  10. 21 CFR 882.5805 - Repetitive transcranial magnetic stimulation system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Repetitive transcranial magnetic stimulation....5805 Repetitive transcranial magnetic stimulation system. (a) Identification. A repetitive transcranial magnetic stimulation system is an external device that delivers transcranial repetitive pulsed...

  11. 21 CFR 882.5805 - Repetitive transcranial magnetic stimulation system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Repetitive transcranial magnetic stimulation....5805 Repetitive transcranial magnetic stimulation system. (a) Identification. A repetitive transcranial magnetic stimulation system is an external device that delivers transcranial repetitive pulsed...

  12. Manipulating Articulatory Demands in Non-Word Repetition: A "Late-8" Non-Word Repetition Task

    ERIC Educational Resources Information Center

    Moore, Michelle W.; Tompkins, Connie A.; Dollaghan, Christine A.

    2010-01-01

    The purpose of this paper was to examine the psychometric properties of a non-word repetition task (NRT), the Late-8 Non-word Repetition Task (L8NRT). This task was designed similarly to the NRT, but contains only Late-8 consonants to increase articulatory demands and avoid ceiling effects in studies with adolescents and adults. Thirty college…

  13. Repetitive Q-switching of a CW Nd:YAG laser using Cr{sup 4+}:YAG saturable absorbers

    SciTech Connect

    Shimony, Y.; Burshtein, Z.; Ben-Amar Baranga, A.; Kalisky, Y.; Strauss, M.

    1996-02-01

    Repetitive Q-switching of a CW pumped Nd:YAG laser using a Cr{sup 4+}:YAG saturable absorber was achieved for the first time, providing pulses 80--300 ns wide (FWHM) with repetition rates ranging between 2 and 29 kHz. Different ranges of repetition rates and pulse widths are obtained by using absorbers of different optical densities. Satisfactory quantitative description of the experimental results is obtained by a full numerical solution of the system rate equations according to the theory of Powell and Wolga. These equations involve the dynamics of the laser population inversion, the absorber state population, and the photon density in the laser cavity.

  14. Alterations of functional properties of hippocampal networks following repetitive closed-head injury.

    PubMed

    Logue, Omar C; Cramer, Nathan P; Xu, Xiufen; Perl, Daniel P; Galdzicki, Zygmunt

    2016-03-01

    Traumatic brain injury (TBI) is the leading cause of death for persons under the age of 45. Military service members who have served on multiple combat deployments and contact-sport athletes are at particular risk of sustaining repetitive TBI (rTBI). Cognitive and behavioral deficits resulting from rTBI are well documented. Optimal associative LTP, occurring in the CA1 hippocampal Schaffer collateral pathway, is required for both memory formation and retrieval. Surprisingly, ipsilateral Schaffer collateral CA1 LTP evoked by 100Hz tetanus was enhanced in mice from the 3× closed head injury (3× CHI) treatment group in comparison to LTP in contralateral or 3× Sham CA1 area, and in spite of reduced freezing during contextual fear conditioning at one week following 3× CHI. Electrophysiological activity of CA1 neurons was evaluated with whole-cell patch-clamp recordings. 3× CHI ipsilateral CA1 neurons exhibited significant increases in action potential amplitude and maximum rise and decay slope while the action potential duration was decreased. Recordings of CA1 neuron postsynaptic currents were conducted to detect spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs/sIPSCs) and respective miniature currents (mEPSCs and mIPSCs). In the 3× CHI mice, sEPSCs and sIPSCs in ipsilateral CA1 neurons had an increased frequency of events but decreased amplitudes. In addition, 3× CHI altered the action potential-independent miniature postsynaptic currents. The mEPSCs of ipsilateral CA1 neurons exhibited both an increased frequency of events and larger amplitudes. Moreover, the effect of 3× CHI on mIPSCs was opposite to that of the sIPSCs. Specifically, the frequency of the mIPSCs was decreased while the amplitudes were increased. These results are consistent with a mechanism in which repetitive closed-head injury affects CA1 hippocampal function by promoting a remodeling of excitatory and inhibitory synaptic inputs leading to impairment in hippocampal

  15. Repetition Priming and Repetition Suppression: A Case for Enhanced Efficiency Through Neural Synchronization

    PubMed Central

    Gotts, Stephen J.; Chow, Carson C.; Martin, Alex

    2012-01-01

    Stimulus repetition in identification tasks leads to improved behavioral performance ("repetition priming") but attenuated neural responses ("repetition suppression") throughout task-engaged cortical regions. While it's clear that this pervasive brain-behavior relationship reflects some form of improved processing efficiency, the exact form that it takes remains elusive. In this Discussion Paper, we review four different theoretical proposals that have the potential to link repetition suppression and priming, with a particular focus on a proposal that stimulus repetition affects improved efficiency through enhanced neural synchronization. We argue that despite exciting recent work on the role of neural synchronization in cognitive processes such as attention and perception, similar studies in the domain of learning and memory - and priming, in particular - have been lacking. We emphasize the need for new studies with adequate spatiotemporal resolution, formulate several novel predictions, and discuss our ongoing efforts to disentangle the current proposals. PMID:23144664

  16. Local state space temporal fluctuations: a methodology to reveal changes during a fatiguing repetitive task.

    PubMed

    Sanjari, Mohammad Ali; Arshi, Ahmad Reza; Parnianpour, Mohamad; Seyed-Mohseni, Saeedeh

    2010-10-01

    The effect of muscular fatigue on temporal and spectral features of muscle activities and motor performance, i.e., kinematics and kinetics, has been studied. It is of value to quantify fatigue related kinematic changes in biomechanics and sport sciences using simple measurements of joint angles. In this work, a new approach was introduced to extract kinematic changes from 2D phase portraits to study the fatigue adaptation patterns of subjects performing elbow repetitive movement. This new methodology was used to test the effect of load and repetition rate on the temporal changes of an elbow phase portrait during a dynamic iso-inertial fatiguing task. The local flow variation concept, which quantifies the trajectory shifts in the state space, was used to track the kinematic changes of an elbow repetitive fatiguing task in four conditions (two loads and two repetition rates). Temporal kinematic changes due to muscular fatigue were measured as regional curves for various regions of the phase portrait and were also expressed as a single curve to describe the total drift behavior of trajectories due to fatigue. Finally, the effect of load and repetition rate on the complexity of kinematic changes, measured by permutation entropy, was tested using analysis of variance with repeated measure design. Statistical analysis showed that kinematic changes fluctuated more (showed more complexity) under higher loads (p=0.014), but did not differ under high and low repetition rates (p=0.583). Using the proposed method, new features for complexity of kinematic changes could be obtained from phase portraits. The local changes of trajectories in epochs of time reflected the temporal kinematic changes in various regions of the phase portrait, which can be used for qualitative and quantitative assessment of fatigue adaptation of subjects and evaluation of the influence of task conditions (e.g., load and repetition rate) on kinematic changes. PMID:20887012

  17. Pathophysiological Tissue Changes Associated With Repetitive Movement: A Review of the Evidence

    PubMed Central

    Barr, Ann E; Barbe, Mary F

    2006-01-01

    Work-related musculoskeletal disorders (WMSDs) represent approximately one third of workers’ compensation costs in US private industry, yet estimates of acceptable exposure levels for forceful and repetitive tasks are imprecise, in part, due to lack of measures of tissue injury in humans. In this review, the authors discuss the scope of upper-extremity WMSDs, the relationship between repetition rate and forcefulness of reaching tasks and WMSDs, cellular responses to injury in vivo and in vitro, and animal injury models of repetitive, forceful tasks. The authors describe a model using albino rats and present evidence related to tissue injury and inflammation due to a highly repetitive reaching task. A conceptual schematic for WMSD development and suggestions for further research are presented. Animal models can enhance our ability to predict risk and to manage WMSDs in humans because such models permit the direct observation of exposed tissues as well as motor behavior. PMID:11856068

  18. Is nonword repetition a test of phonological memory or long-term knowledge? It all depends on the nonwords.

    PubMed

    Gathercole, S E

    1995-01-01

    The extent to which children's performance on tests of nonword repetition is constrained by phonological working memory and long-term lexical knowledge was investigated in a longitudinal study of 70 children tested at 4 and 5 years of age. At each time of testing, measures of nonword repetition, memory span, and vocabulary knowledge were obtained. Reading ability was also assessed at 5 years. At both ages, repetition accuracy was greater for nonwords of high- rather than low-rated wordlikeness, and memory-span measures were more closely related to repetition accuracy for the low-wordlike than for the high-wordlike stimuli. It is argued that these findings indicate that nonword repetition for unwordlike stimuli is largely dependent on phonological memory, whereas repetition for wordlike items is also mediated by long-term lexical knowledge and is therefore less sensitive to phonological memory constraints. Reading achievement was selectively linked with earlier repetition scores for low-wordlike nonwords, suggesting a phonological memory contribution in the early stages of reading development. Vocabulary knowledge was associated with repetition accuracy for both low- and high-wordlike nonwords, consistent with the notion that lexical knowledge and nonword repetition share a reciprocal developmental relationship. PMID:7885268

  19. An Experiment on Repetitive Pulse Operation of Microwave Rocket

    SciTech Connect

    Oda, Yasuhisa; Shibata, Teppei; Komurasaki, Kimiya; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi

    2008-04-28

    Microwave Rocket was operated with repetitive pulses. The microwave rocket model with forced breathing system was used. The pressure history in the thruster was measured and the thrust impulse was deduced. As a result, the impulse decreased at second pulse and impulses at latter pulses were constant. The dependence of the thrust performance on the partial filling rate of the thruster was compared to the thrust generation model based on the shock wave driven by microwave plasma. The experimental results showed good agreement to the predicted dependency.

  20. Improving Child Compliance on a Computer-Administered Nonword Repetition Task

    ERIC Educational Resources Information Center

    Polišenská, Kamila; Kapalková, Svetlana

    2014-01-01

    Purpose: A range of nonword repetition (NWR) tasks are used in research and clinical applications, but compliance rates among young children remain low. Live presentation is usually used to improve compliance rates, but this lacks the consistency of recorded stimuli. In this study, the authors examined whether a novel delivery of NWR stimuli based…