Science.gov

Sample records for 1024x1024 format pixel

  1. 1024 x 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Hill, C. J.; Rafol, S. B.; Mumolo, J. M.; Trinh, J. T.; Tidrow, M. Z.; LeVan, P. D.

    2005-01-01

    Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 10(24) x 10(24) pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NEAT) of 17 mK at a 95 K operating temperature with f/2.5 optics at 300 K background and the LWIR detector array has demonstrated a NEAT of 13 mK at a 70 K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90 K and 70 K operating temperatures respectively, with similar optical and background conditions. In this paper, we will discuss the performance in terms of quantum efficiency, NE(delta)T, uniformity, operability and modulation transfer functions.

  2. A two-color 1024x1024 dynamic infrared scene projection system

    NASA Astrophysics Data System (ADS)

    LaVeigne, Joe; Franks, Greg; Prewarski, Marcus

    2013-05-01

    We report on the design and testing of a 2-color dynamic scene projector system based on the MIRAGE-XL infrared scene projector. The system is based on the optical combination of two 1024x1024 MIRAGE-XL resistive arrays. Algorithms derived for 2-color operation are discussed and system performance data is presented, including radiometric performance, sub-pixel spatial co-registration and compensation for spectral cross-talk.

  3. A New Large-Well 1024x1024 Si:As Detector for the Mid-Infrared

    NASA Technical Reports Server (NTRS)

    Mainzer, Amanda K.; Hong, John H.; Stapelbroek, M. G.; Hogue, Henry; Molyneux, Dale; Ressler, Michael E.; Watkins, Ernie; Reekstin, John; Werner, Mike; Young, Erick

    2005-01-01

    We present a description of a new 1024x1024 Si:As array designed for ground-based use from 5 - 28 microns. With a maximum well depth of 5e6 electrons, this device brings large-format array technology to bear on ground-based mid-infrared programs, allowing entry to the mega-pixel realm previously only accessible to the near-IR. The multiplexer design features switchable gain, a 256x256 windowing mode for extremely bright sources, and it is two-edge buttable. The device is currently in its final design phase at DRS in Cypress, CA. We anticipate completion of the foundry run in October 2005. This new array will enable wide field, high angular resolution ground-based follow up of targets found by space-based missions such as the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE).

  4. TEQUILA: NIR camera/spectrograph based on a Rockwell 1024x1024 HgCdTe FPA

    NASA Astrophysics Data System (ADS)

    Ruiz, Elfego; Sohn, Erika; Cruz-Gonzales, Irene; Salas, Luis; Parraga, Antonio; Perez, Manuel; Torres, Roberto; Cobos Duenas, Francisco J.; Gonzalez, Gaston; Langarica, Rosalia; Tejada, Carlos; Sanchez, Beatriz; Iriarte, Arturo; Valdez, J.; Gutierrez, Leonel; Lazo, Francisco; Angeles, Fernando

    1998-08-01

    We describe the configuration and operation modes of the IR camera/spectrograph: TEQUILA based on a 1024 X 1024 HgCdTe FPA. The optical system will allow three possible modes of operation: direct imaging, low and medium resolution spectroscopy and polarimetry. The basic system is being designed to consist of the following: 1) A LN(subscript 2) dewar that allocates the FPA together with the preamplifiers and a 24 filter position cylinder. 2) Control and readout electronics based on DSP modules linked to a workstation through fiber optics. 3) An opto-mechanical assembly cooled to -30 degrees that provides an efficient operation of the instrument in its various modes. 4) A control module for the moving parts of the instrument. The opto-mechanical assembly will have the necessary provision to install a scanning Fabry-Perot interferometer and an adaptive optics correction system. The final image acquisition and control of the whole instrument is carried out in a workstation to provide the observer with a friendly environment. The system will operate at the 2.1 m telescope at the Observatorio Astronomico Nacional in San Pedro Martir, B.C. (Mexico), and is intended to be a first-light instrument for the new 7.8m Mexican IR-Optical Telescope.

  5. Large-format and multispectral QWIP infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Goldberg, Arnold C.; Choi, Kwong-Kit; Jhabvala, Murzy; La, Anh; Uppal, Parvez N.; Winn, Michael L.

    2003-09-01

    The next generation of infrared (IR) focal plane arrays (FPAs) will need to be a significant improvement in capability over those used in present-day second generation FLIRs. The Army's Future Combat System requires that the range for target identification be greater than the range of detection for an opposing sensor. To accomplish this mission, the number of pixels on the target must be considerably larger than that possible with 2nd generation FLIR. Therefore, the 3rd generation FLIR will need to be a large format staring FPA with more than 1000 pixels on each side. In addition, a multi-spectral capability will be required to allow operability in challenging ambient environments, discriminate targets from decoys, and to take advantage of the smaller diffraction blur in the MWIR for enhanced image resolution. We report on laboratory measurements of a large format (1024 x 1024 pixels) single-color LWIR IR FPA made using the corrugated quantum well infrared photodetector (QWIP) structure by the ARL/NASA team. The pixel pitch is 18 μm and the spectral response peaks at 8.8 μm with a 9.2 μm cutoff. We report on recent results using a MWIR/LWIR QWIP FPA to image the boost phase of a launch vehicle for missile defense applications and a LWIR/LWIR FPA designed specifically for detecting the disturbed soil associated with buried land mines. Finally, we report on the fabrication of a new read-out integrated circuit (ROIC) specifically designed for multi-spectral operation.

  6. New Sofradir VISIR-SWIR large format detector for next generation space missions

    NASA Astrophysics Data System (ADS)

    Fieque, Bruno; Jamin, Nicolas; Chorier, Philippe; Pidancier, Patricia; Baud, Laurent; Terrier, Bertrand

    2012-09-01

    For now more than 10 years, Sofradir is involved in SWIR detector manufacturing, developing and improving its SWIR detectors technology, leading to a mature technology that enables to address most of missions needs in term of performances, but also with respect to hard environmental constraints. SWIR detection range at Sofradir has been qualified for space applications thanks to various programs already run (APEX or Bepi-Colombo programs) or currently running (Sentinel 2, PRISMA mission). Recently, for PRISMA mission, Sofradir is extending its Visible-Near infra-red technology, called VISIR, to 1000x256 hyperspectral arrays. This technology has the huge advantage to enable detection in both visible range and SWIR detection range (0.4μm up to 2.5μm). As part of the development of large format infrared detectors, Sofradir has developed Jupiter 1280x1024, 15μm pixel pitch detector in mid 2000s and this detector is available at production level since the end of year 2000s. Based on the experiences acquired in SWIR and VISIR technologies as well as in the development of large format infrared detectors, since 2011, in the frame of an ESA program (named Next Generation Panchromatic detector), Sofradir is developing a new VISIR 1kx1k detector. This new detector has a format of 1024x1024 pixels with a 15 μm pixel pitch and it is adapted to spectral range from UV to SWIR domain. This development contains mainly two challenges: - the extension of the detector sensitivity down to UV spectral range - the development of a large format Readout Integrated Circuit (ROIC) with 15μm pixel pitch adapted to VISIR and SWIR spectral range involving in particular low input fluxes. In this paper, we will describe the architecture and functionalities of this new detector. The expected performances will be presented as well. Finally, main applications of this kind of detectors and expected spatial missions will be presented.

  7. Evaluation of large format electron bombarded virtual phase CCDs as ultraviolet imaging detectors

    NASA Technical Reports Server (NTRS)

    Opal, Chet B.; Carruthers, George R.

    1989-01-01

    In conjunction with an external UV-sensitive cathode, an electron-bombarded CCD may be used as a high quantum efficiency/wide dynamic range photon-counting UV detector. Results are presented for the case of a 1024 x 1024, 18-micron square pixel virtual phase CCD used with an electromagnetically focused f/2 Schmidt camera, which yields excellent simgle-photoevent discrimination and counting efficiency. Attention is given to the vacuum-chamber arrangement used to conduct system tests and the CCD electronics and data-acquisition systems employed.

  8. Large Format Si:As IBC Array Performance for NGST and Future IR Space Telescope Applications

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Johnson, Roy; Love, Peter; Lum, Nancy; McKelvey, Mark; McCreight, Craig; McMurray, Robert, Jr.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    A mid-IR (5-30micrometer) instrument aboard a cryogenic space telescope can have an enormous impact in resolving key questions in astronomy and cosmology. A space platform's greatly reduced thermal backgrounds (compared to airborne or ground-based platforms), allow for more sensitive observations of dusty young galaxies at high redshifts, star formation of solar-type stars in the local universe, and formation and evolution of planetary disks and systems. The previous generation's largest, in sensitive IR detectors at these wavelengths are 256x256 pixel Si:As Impurity Band Conduction (IBC) devices built by Raytheon Infrared Operations (RIO) for the Space Infrared Telescope Facility/Infrared Array Camera (SIRTF)/(IRAC) instrument. RIO has successfully enhanced these devices, increasing the pixel count by a factor of 16 while matching or exceeding SIRTF/IRAC device performance. NASA-ARC in collaboration with RIO has tested the first high performance large format (1024x 1024) Si:As IBC arrays for low background applications, such as for the middle instrument on Next Generation Space Telescope (NGST) and future IR Explorer missions. These hybrid devices consist of radiation hard SIRTF/IRAC-type Si:As IBC material mated to a readout multiplexer that has been specially processed for operation at low cryogenic temperatures (below 10K), yielding high device sensitivity over a wavelength range of 5-28 micrometers. We present laboratory testing results from these benchmark, devices. Continued development in this technology is essential for conducting large-area surveys of the local and early universe through observation and for complementing future missions such as NGST, Terrestrial Planet Finder (TPF), and Focal Plane Instruments and Requirement Science Team (FIRST).

  9. Pixel Perfect

    SciTech Connect

    Perrine, Kenneth A.; Hopkins, Derek F.; Lamarche, Brian L.; Sowa, Marianne B.

    2005-09-01

    Biologists and computer engineers at Pacific Northwest National Laboratory have specified, designed, and implemented a hardware/software system for performing real-time, multispectral image processing on a confocal microscope. This solution is intended to extend the capabilities of the microscope, enabling scientists to conduct advanced experiments on cell signaling and other kinds of protein interactions. FRET (fluorescence resonance energy transfer) techniques are used to locate and monitor protein activity. In FRET, it is critical that spectral images be precisely aligned with each other despite disturbances in the physical imaging path caused by imperfections in lenses and cameras, and expansion and contraction of materials due to temperature changes. The central importance of this work is therefore automatic image registration. This runs in a framework that guarantees real-time performance (processing pairs of 1024x1024, 8-bit images at 15 frames per second) and enables the addition of other types of advanced image processing algorithms such as image feature characterization. The supporting system architecture consists of a Visual Basic front-end containing a series of on-screen interfaces for controlling various aspects of the microscope and a script engine for automation. One of the controls is an ActiveX component written in C++ for handling the control and transfer of images. This component interfaces with a pair of LVDS image capture boards and a PCI board containing a 6-million gate Xilinx Virtex-II FPGA. Several types of image processing are performed on the FPGA in a pipelined fashion, including the image registration. The FPGA offloads work that would otherwise need to be performed by the main CPU and has a guaranteed real-time throughput. Image registration is performed in the FPGA by applying a cubic warp on one image to precisely align it with the other image. Before each experiment, an automated calibration procedure is run in order to set up the

  10. IRCAMDR: IRCAM3 Data Reduction Software

    NASA Astrophysics Data System (ADS)

    Aspin, Colin; McCaughrean, Mark; Bridger, Alan B.; Baines, Dave; Beard, Steven; Chan, S.; Giddings, Jack; Hartley, K. F.; Horsfield, A. P.; Kelly, B. D.; Emerson, J. P.; Currie, Malcolm J.; Economou, Frossie

    2014-06-01

    The UKIRT IRCAM3 data reduction and analysis software package, IRCAMDR (formerly ircam_clred) analyzes and displays any 2D data image stored in the standard Starlink (ascl:1110.012) NDF data format. It reduces and analyzes IRCAM1/2 data images of 62x58 pixels and IRCAM3 images of 256x256 size. Most of the applications will work on NDF images of any physical (pixel) dimensions, for example, 1024x1024 CCD images can be processed.

  11. Large format, small pixel pitch and hot detectors at SOFRADIR

    NASA Astrophysics Data System (ADS)

    Reibel, Y.; Rouvie, A.; Nedelcu, A.; Augey, T.; Pere-Laperne, N.; Rubaldo, L.; Billon-Lanfrey, D.; Gravrand, O.; Rothman, J.; Destefanis, G.

    2013-10-01

    Recently Sofradir joined a very small circle of IR detector manufacturers with expertise every aspect of the cooled and uncooled IR technologies, all under one roof by consolidating all IR technologies available in France. These different technologies are complementary and are used depending of the needs of the applications mainly concerning the detection range needs as well as their ability to detect in bad weather environmental conditions. SNAKE (InGaAs) and SCORPIO LW (MCT) expand Sofradir's line of small pixel pitch TV format IR detectors from the mid-wavelength to the short and long wavelengths. Our dual band MW-LW QWIP detectors (25μm, 384×288 pixels) benefit to tactical platforms giving an all-weather performance and increasing flexibility in the presence of battlefield obscurants. In parallel we have been pursuing further infrared developments on future MWIR detectors, such as the VGA format HOT detector that consumes 2W and the 10μm pitch IR detector which gives us a leading position in innovation. These detectors are designed for long-range surveillance equipment, commander or gunner sights, ground-to-ground missile launchers and other applications that require higher resolution and sensitivity to improve reconnaissance and target identification. This paper discusses the system level performance in each detector type.

  12. ASTROCAM: An Offner Re-imaging 1024 x 1024 InSb Camera for Near-Infrared Astrometry on the USNO 1.55-m Telescope

    DTIC Science & Technology

    2003-01-01

    Kosakowskif, C. C. Dudleya and Kenneth Johnstoni aNaval Research Laboratory, Remote Sensing Division, Washington, DC, USA bU.S. Naval Observatory ...Flagstaff Station, PO Box 1149, Flagstaff, AZ, USA cMauna Kea Infrared, LLC, 159 Kalanikoa St, Hilo, HI USA dUniversity of Chicago Engineering Center...gApplied Designs, 3001 Specific Heights Rd, Honolulu, HI, USA hCAD Services, 1158 Mowai St, Kailua, HI, USA iU.S. Naval Observatory , 3450 Massachusetts

  13. The wide-field imager for IXO: status and future activities

    NASA Astrophysics Data System (ADS)

    Strüder, Lothar; Aschauer, Florian; Bautz, Mark; Bombelli, Luca; Burrows, David; Fiorini, Carlo; Fraser, George; Herrmann, Sven; Kendziorra, Eckhard; Kuster, Markus; Lauf, Thomas; Lechner, Peter; Lutz, Gerhard; Majewski, Petra; Meuris, Aline; Porro, Matteo; Reiffers, Jonas; Richter, Rainer; Santangelo, Andrea; Soltau, Heike; Stefanescu, Alexander; Tenzer, Chris; Treis, Johannes; Tsunemi, Hiroshi; de Vita, Giulio; Wilms, Jörn

    2010-07-01

    The Wide Field Imager (WFI) of the International X-ray Observatory (IXO) is an X-ray imaging spectrometer based on a large monolithic DePFET (Depleted P-channel Field Effect Transistor) Active Pixel Sensor. Filling an area of 10 x 10 cm2 with a format of 1024 x 1024 pixels it will cover a field of view of 18 arcmin. The pixel size of 100 x 100 μm2 corresponds to a fivefold oversampling of the telescope's expected 5 arcsec point spread function. The WFI's basic DePFET structure combines the functionalities of sensor and integrated amplifier with nearly Fano-limited energy resolution and high efficiency from 100 eV to 15 keV. The development of dedicated control and amplifier ASICs allows for high frame rates up to 1 kHz and flexible readout modes. Results obtained with representative prototypes with a format of 256 x 256 pixels are presented.

  14. PIXEL PUSHER

    NASA Technical Reports Server (NTRS)

    Stanfill, D. F.

    1994-01-01

    Pixel Pusher is a Macintosh application used for viewing and performing minor enhancements on imagery. It will read image files in JPL's two primary image formats- VICAR and PDS - as well as the Macintosh PICT format. VICAR (NPO-18076) handles an array of image processing capabilities which may be used for a variety of applications including biomedical image processing, cartography, earth resources, and geological exploration. Pixel Pusher can also import VICAR format color lookup tables for viewing images in pseudocolor (256 colors). This program currently supports only eight bit images but will work on monitors with any number of colors. Arbitrarily large image files may be viewed in a normal Macintosh window. Color and contrast enhancement can be performed with a graphical "stretch" editor (as in contrast stretch). In addition, VICAR images may be saved as Macintosh PICT files for exporting into other Macintosh programs, and individual pixels can be queried to determine their locations and actual data values. Pixel Pusher is written in Symantec's Think C and was developed for use on a Macintosh SE30, LC, or II series computer running System Software 6.0.3 or later and 32 bit QuickDraw. Pixel Pusher will only run on a Macintosh which supports color (whether a color monitor is being used or not). The standard distribution medium for this program is a set of three 3.5 inch Macintosh format diskettes. The program price includes documentation. Pixel Pusher was developed in 1991 and is a copyrighted work with all copyright vested in NASA. Think C is a trademark of Symantec Corporation. Macintosh is a registered trademark of Apple Computer, Inc.

  15. VizieR Online Data Catalog: V1044 Her VR differential photometry (Lu+, 2016)

    NASA Astrophysics Data System (ADS)

    Lu, H.; Zhang, L.; Han, X. L.; Pi, Q.; Wang, D.

    2016-11-01

    V1044 Her was observed in the VR bands on May 22, 23 and 24, 2015 using the 60-cm reflecting telescope at Xinglong Station of the National Astronomical Observatories of China (NAOC). This telescope was equipped with a 1024x1024 pixel CCD and the standard Johnson UBVRI filters. (1 data file).

  16. Imaging MAMA detector systems. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-01-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  17. Current Status of High Performance Large Format Si:As IBC Detectors for SOFIA-like Applications

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Greene, Thomas; McCreight, Craig; McKelvey, Mark; McMurray, Robert, Jr.; Cripe, Jerry; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Airborne and space telescope astronomical observations in the 5-25 micrometer wavelength region, are critical for understanding the physical conditions, composition, chemistry, and excitation of many environments in the interstellar medium, external galaxies, solar system objects, extra-solar systems, and stars. The scientific impact is particularly unique in the 5-8 micrometer and 14-25 micrometer regions which are inaccessible or poorly observed from ground-based observatories. Large-format area mid-infrared (MIR) detectors sensitive over these wavelengths and operable under moderate backgrounds (greater than 10(circumflex)6 e-/s at R=2000, 10(micrometers)) are essential for efficient large-area survey imaging and for taking moderate resolution spectra over a large spectral range. Both SOFIA and passively cooled Explorer observatories could benefit from this technology. Current first-light SOFIA instruments use small-format MIR FPA's of sizes 128x128 and 256x256, With the collaboration of Raytheon Infrared Operations (RIO), NASA-ARC has been testing the first device of this kind, a combination of 1) the ALADDIN III readout multiplexer, cryo-processed for 6K operation, with 2) SIRTF IRAC-like Sides IBC detector material. designed for higher QE and low dark current. Here we report requirements. design, and initial fabrication and testing of the first 1024x1024 Si:As IBC mid-IR detector array for these conditions. This device has exhibited low dark current, moderate noise levels, and greater than 200,000 electron linear well size at 6K operation. We conclude with suggestions for future device development for optimal performance under moderate background, SOFIA- and low Earth orbit observing conditions.

  18. VizieR Online Data Catalog: Δa observations of 3 globular clusters (Paunzen+, 2014)

    NASA Astrophysics Data System (ADS)

    Paunzen, E.; Iliev, I. Kh.; Pintado, O. I.; Baum, H.; Maitzen, H. M.; Netopil, M.; Onehag, A.; Zejda, M.; Fraga, L.

    2015-04-01

    The observations of the three globular clusters were performed at two different sites: * 2m Ritchey-Chretien-Coude telescope [Bulgarian National Astronomical Observatory (BNAO, Rozhen)], direct imaging, SITe SI003AB 1024x1024-pixel CCD, 5' field of view, 1pixel=0.32arcsec, and * 2.15m telescope [El Complejo Astronomico El Leoncito (CASLEO)], direct imaging with focal reducer, TEK-1024 CCD, 9.5-arcmin field of view, 1pixel=0.813arcsec. (3 data files).

  19. PixelLearn

    NASA Technical Reports Server (NTRS)

    Mazzoni, Dominic; Wagstaff, Kiri; Bornstein, Benjamin; Tang, Nghia; Roden, Joseph

    2006-01-01

    PixelLearn is an integrated user-interface computer program for classifying pixels in scientific images. Heretofore, training a machine-learning algorithm to classify pixels in images has been tedious and difficult. PixelLearn provides a graphical user interface that makes it faster and more intuitive, leading to more interactive exploration of image data sets. PixelLearn also provides image-enhancement controls to make it easier to see subtle details in images. PixelLearn opens images or sets of images in a variety of common scientific file formats and enables the user to interact with several supervised or unsupervised machine-learning pixel-classifying algorithms while the user continues to browse through the images. The machinelearning algorithms in PixelLearn use advanced clustering and classification methods that enable accuracy much higher than is achievable by most other software previously available for this purpose. PixelLearn is written in portable C++ and runs natively on computers running Linux, Windows, or Mac OS X.

  20. Argus: a new 16-pixel millimeter-wave spectroscopic instrument for star formation studies at the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Cunningham, Nichol; Frayer, David T.; Church, Sarah E.; Sieth, Matthew; Harris, Andrew I.; Cleary, Kieran; Gundersen, Joshua O.; Goldsmith, Paul; Chung, Dongwoo; Readhead, Anthony C. S.; gaier, todd; Kangaslahti, Pekka; Samoska, Lorene

    2017-01-01

    Argus is a new 16-pixel W-band focal plane array for millimeter spectroscopy at the Green Bank Telescope (GBT). Built by a consortium led by Sarah Church at Stanford, this new instrument provides fast astronomical imaging over the 75-116 GHz band and at high spatial resolution. The frequency range covered by Argus is of particular interest for star formation studies and will be excellent at probing cold, dense cores within star-forming regions, along with constraining the dynamics of filamentary structures withing giant molecular cloud complexes. In particular, the 3mm band covers a large number of important spectral lines, including CO (J=1-0) and its isotopologues, as well as HCO+, H13CO+, SiO, N2H+, HCN and HNC. These molecular transitions trace a combination of dense cold gas, shocked emission from jets and outflows as well as the signatures of infall, all of which are imperative constituents in the early stages of star formation. Argus on the GBT will provide the high sensitivity of a filled aperture along with a high angular resolution of 6-10", this resolution is well-matched to the mid- and far-infrared observations from the Spitzer, SOFIA, and Herschel telescopes. We report on the current status of Argus and present recent commissioning and early science highlights from Argus of 12CO, 13CO and HCO+ emission towards the massive star forming region, DR 21. Argus, currently under commissioning, is expected to be in full science mode in the winter semester of 2016.

  1. 4K×4K format 10μm pixel pitch H4RG-10 hybrid CMOS silicon visible focal plane array for space astronomy

    NASA Astrophysics Data System (ADS)

    Bai, Yibin; Tennant, William; Anglin, Selmer; Wong, Andre; Farris, Mark; Xu, Min; Holland, Eric; Cooper, Donald; Hosack, Joseph; Ho, Kenneth; Sprafke, Thomas; Kopp, Robert; Starr, Brian; Blank, Richard; Beletic, James W.; Luppino, Gerard A.

    2012-07-01

    Teledyne’s silicon hybrid CMOS focal plane array technology has matured into a viable, high performance and high- TRL alternative to scientific CCD sensors for space-based applications in the UV-visible-NIR wavelengths. This paper presents the latest results from Teledyne’s low noise silicon hybrid CMOS visible focal place array produced in 4K×4K format with 10 μm pixel pitch. The H4RG-10 readout circuit retains all of the CMOS functionality (windowing, guide mode, reference pixels) and heritage of its highly successful predecessor (H2RG) developed for JWST, with additional features for improved performance. Combined with a silicon PIN detector layer, this technology is termed HyViSI™ (Hybrid Visible Silicon Imager). H4RG-10 HyViSI™ arrays achieve high pixel interconnectivity (<99.99%), low readout noise (<10 e- rms single CDS), low dark current (<0.5 e-/pixel/s at 193K), high quantum efficiency (<90% broadband), and large dynamic range (<13 bits). Pixel crosstalk and interpixel capacitance (IPC) have been predicted using detailed models of the hybrid structure and these predictions have been confirmed by measurements with Fe-55 Xray events and the single pixel reset technique. For a 100-micron thick detector, IPC of less than 3% and total pixel crosstalk of less than 7% have been achieved for the HyViSI™ H4RG-10. The H4RG-10 array is mounted on a lightweight silicon carbide (SiC) package and has been qualified to Technology Readiness Level 6 (TRL-6). As part of space qualification, the HyViSI™ H4RG-10 array passed radiation testing for low earth orbit (LEO) environment.

  2. Achieving ultra-high temperatures with a resistive emitter array

    NASA Astrophysics Data System (ADS)

    Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott

    2016-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.

  3. High Sensitivity Long-Wavelength Infrared QWIP Focal Plane Array Based Instrument for Remote Sensing of Icy Satellites

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S.; Ivanov, A.

    2003-01-01

    GaAs based Quantum Well Infrared Photodetector (QWIP) technology has shown remarkable success in advancing low cost, highly uniform, high-operability, large format multi-color focal plane arrays. QWIPs afford greater flexibility than the usual extrinsically doped semiconductor IR detectors. The wavelength of the peak response and cutoff can be continuously tailored over a range wide enough to enable light detection at any wavelength range between 6 and 20 micron. The spectral band-width of these detectors can be tuned from narrow (Deltalambda/lambda is approximately 10%) to wide (Deltalambda/lambda is approximately 40%) allowing various applications. Furthermore, QWIPs offer low cost per pixel and highly uniform large format focal plane arrays due to mature GaAs/AlGaAs growth and processing technologies. The other advantages of GaAs/AlGaAs based QWIPS are higher yield, lower l/f noise and radiation hardness (1.5 Mrad). In this presentation, we will discuss our recent demonstrations of 640x512 pixel narrow-band, broad-band, multi-band focal plane arrays, and the current status of the development of 1024x1024 pixel long-wavelength infrared QWIP focal plane arrays.

  4. Composite x-ray image assembly for large-field digital mammography with one- and two-dimensional positioning of a focal plane array

    NASA Technical Reports Server (NTRS)

    Halama, G.; McAdoo, J.; Liu, H.

    1998-01-01

    To demonstrate the feasibility of a novel large-field digital mammography technique, a 1024 x 1024 pixel Loral charge-coupled device (CCD) focal plane array (FPA) was positioned in a mammographic field with one- and two-dimensional scan sequences to obtain 950 x 1800 pixel and 3600 x 3600 pixel composite images, respectively. These experiments verify that precise positioning of FPAs produced seamless composites and that the CCD mosaic concept has potential for high-resolution, large-field imaging. The proposed CCD mosaic concept resembles a checkerboard pattern with spacing left between the CCDs for the driver and readout electronics. To obtain a complete x-ray image, the mosaic must be repositioned four times, with an x-ray exposure at each position. To reduce the patient dose, a lead shield with appropriately patterned holes is placed between the x-ray source and the patient. The high-precision motorized translation stages and the fiber-coupled-scintillating-screen-CCD sensor assembly were placed in the position usually occupied by the film cassette. Because of the high mechanical precision, seamless composites were constructed from the subimages. This paper discusses the positioning, image alignment procedure, and composite image results. The paper only addresses the formation of a seamless composite image from subimages and will not consider the effects of the lead shield, multiple CCDs, or the speed of motion.

  5. High-performance visible/UV CCD focal plane technology for spacebased applications

    NASA Technical Reports Server (NTRS)

    Burke, B. E.; Mountain, R. W.; Gregory, J. A.; Huang, J. C. M.; Cooper, M. J.; Savoye, E. D.; Kosicki, B. B.

    1993-01-01

    We describe recent technology developments aimed at large CCD imagers for space based applications in the visible and UV. Some of the principal areas of effort include work on reducing device degradation in the natural space-radiation environment, improvements in quantum efficiency in the visible and UV, and larger-device formats. One of the most serious hazards for space based CCD's operating at low signal levels is the displacement damage resulting from bombardment by energetic protons. Such damage degrades charge-transfer efficiency and increases dark current. We have achieved improved hardness to proton-induced displacement damage by selective ion implants into the CCD channel and by reduced temperature of operation. To attain high quantum efficiency across the visible and UV we have developed a technology for back-illuminated CCD's. With suitable antireflection (AR) coatings such devices have quantum efficiencies near 90 percent in the 500-700-nm band. In the UV band from 200 to 400 nm, where it is difficult to find coatings that are sufficiently transparent and can provide good matching to the high refractive index of silicon, we have been able to substantially increase the quantum efficiency using a thin film of HfO2 as an AR coating. These technology efforts were applied to a 420 x 420-pixel frame-transfer imager, and future work will be extended to a 1024 x 1024-pixel device now under development.

  6. Serial Pixel Analog-to-Digital Converter

    SciTech Connect

    Larson, E D

    2010-02-01

    This method reduces the data path from the counter to the pixel register of the analog-to-digital converter (ADC) from as many as 10 bits to a single bit. The reduction in data path width is accomplished by using a coded serial data stream similar to a pseudo random number (PRN) generator. The resulting encoded pixel data is then decoded into a standard hexadecimal format before storage. The high-speed serial pixel ADC concept is based on the single-slope integrating pixel ADC architecture. Previous work has described a massively parallel pixel readout of a similar architecture. The serial ADC connection is similar to the state-of-the art method with the exception that the pixel ADC register is a shift register and the data path is a single bit. A state-of-the-art individual-pixel ADC uses a single-slope charge integration converter architecture with integral registers and “one-hot” counters. This implies that parallel data bits are routed among the counter and the individual on-chip pixel ADC registers. The data path bit-width to the pixel is therefore equivalent to the pixel ADC bit resolution.

  7. ATLAS IBL Pixel Upgrade

    NASA Astrophysics Data System (ADS)

    La Rosa, A.; Atlas Ibl Collaboration

    2011-06-01

    The upgrade for ATLAS detector will undergo different phases towards super-LHC. The first upgrade for the Pixel detector will consist of the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (LHC phase-I upgrade). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 3.3 cm. The IBL will require the development of several new technologies to cope with increase of radiation or pixel occupancy and also to improve the physics performance which will be achieved by reducing the pixel size and of the material budget. Three different promising sensor technologies (planar-Si, 3D-Si and diamond) are currently under investigation for the pixel detector. An overview of the project with particular emphasis on the pixel module is presented in this paper.

  8. High-resolution digital movies of emerging flux and horizontal flows in active regions on the sun

    NASA Technical Reports Server (NTRS)

    Topka, K.; Ferguson, S.; Frank, Z.; Tarbell, T.; Title, A.

    1988-01-01

    High-resolution observations of active regions in many wavelength bands obtained at the Vacuum Tower Telescope of NSO/Sunspot (Sacramento Peak) are presented. The SOUP tunable filter, HRSO 1024 x 1024 CCD camera, and a sunspot tracker for image stabilization were used. Subarrays of 512 x 512 pixels were processed digitally and recorded on videodisk in movie format. The movies with 0.5 to 1 arcsecond resolution of the following simultaneous observations were shown: green continuum, longitudinal magnetogram, Doppler velocity, Fe I 5576 A line center, H alpha wings, and H alpha line center. The best set of movies show a 90 x 90 arcsecond field-of-view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Flux emergence is most easily discovered in line center movies: an elongated dark feature appears first, followed soon after by bright points at one or both ends. A brief, strong upflow is seen when the dark feature first appears; downflow in the bright points persists much longer. The magnetic flux appears to increase gradually over this extended period. Some of the flux emergence events were studied in detail, with measurements of horizontal and vertical velocities and magnetic flux versus time within one footpoint of the loop.

  9. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, Scott; Allamandola, Louis; Bregman, Jesse; Cohen, Martin; Cruikshank, Dale; Greene, Thomas; Hudgins, Douglas; Kwok, Sun; Lord, Steven; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to approx. 7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the approx. 1.5 year mission lifetime.

  10. The IMPACTON Project: Pole and Shape of Seven near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Lazzaro, Daniela; Silva, José Sergio; Rodrigues, Teresinha; Márcio Carvano, Jorge; Roig, Fernando; Souza, Roberto Pereira e.; IMPACTON Team

    2015-08-01

    The formation and evolution of Solar System small bodies, in particular those in near-Earth orbits, is a complex problem which solution strongly depends on a better knowledge of their physical properties. To contribute to the international efforts in this direction the IMPACTON project (www.on.br/IMPACTON) set up a dedicated facility in a remote region in the northeast part of Brazil, denominated Observatório Astronômico do Sertão de Itaparica (OASI - code Y28, Itacuruba).Using the 1-m telescope of the OASI we observed more of 40 NEAs during several observational runs between March 2012 and October 2014. Our observations were made using an Apogee Alta U47 CCD camera, 1024 X 1024 pixels, giving a 5.9 x 5.9 arcmin field, and using an R Johnson filter.Standard reduction procedures were applied and relative magnitudes were used to obtain lightcurves for the observed asteroids. The application of the inversion of method developed by Kaasalainen and Torppa (2001) and Kaasalainen et al. (2001) allowed us to derive the rotational period for 14 NEAs and, for 7 of these, also the pole direction and the shape. The implications of the obtained results will be discussed.

  11. The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, Scott; Cox, Sylvia; Ellis, Benton; Gallagher, Dennis; Gautier, Nick; Greene, Thomas; McCreight, Craig; Mills, Gary; Purcell, William; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept under study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp. ABE will conduct IR spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Cassegrain telescope and two moderate resolution (R = 2000-3000) spectrographs covering the 2.5-16 micron spectral region. Large format (1024x 1024 pixel or larger) IR detector arrays and bandpass filters will allow each spectrograph to cover an entire octave of spectral range or more per exposure without any moving parts. The telescope will be cooled below 50K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to approximately 8K. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the approximate 1-2 year mission lifetime.

  12. Spatial Pattern of Biological Soil Crust with Fractal Geometry

    NASA Astrophysics Data System (ADS)

    Ospina, Abelardo; Florentino, Adriana; Tarquis, Ana M.

    2015-04-01

    Soil surface characteristics are subjected to changes driven by several interactions between water, air, biotic and abiotic components. One of the examples of such interactions is provided through biological soil crusts (BSC) in arid and semi-arid environments. BSC are communities composed of cyanobacteria, fungi, mosses, lichens, algae and liverworts covering the soil surface and play an important role in ecosystem functioning. The characteristics and formation of these BSC influence the soil hydrological balance, control the mass of eroded sediment, increase stability of soil surface, and influence plant productivity through the modification of nitrogen and carbon cycle. This study focus on characterize the spatial arrangements of the BSC based on image analysis and fractal concepts. To this end, RGB images of different types of biological soil crust where taken, each image corresponding to an area of 3.6 cm2 with a resolution of 1024x1024 pixels. For each image and channel, mass dimension and entropy were calculated. Preliminary results indicate that fractal methods are useful to describe changes associated to different types of BSC. Further research is necessary to apply these methodologies to several situations.

  13. Bad pixel mapping

    NASA Astrophysics Data System (ADS)

    Smith, Roger M.; Hale, David; Wizinowich, Peter

    2014-07-01

    Bad pixels are generally treated as a loss of useable area and then excluded from averaged performance metrics. The definition and detection of "bad pixels" or "cosmetic defects" are seldom discussed, perhaps because they are considered self-evident or of minor consequence for any scientific grade detector, however the ramifications can be more serious than generally appreciated. While the definition of pixel performance is generally understood, the classification of pixels as useable is highly application-specific, as are the consequences of ignoring or interpolating over such pixels. CMOS sensors (including NIR detectors) exhibit less compact distributions of pixel properties than CCDs. The extended tails in these distributions result in a steeper increase in bad pixel counts as performance thresholds are tightened which comes as a surprise to many users. To illustrate how some applications are much more sensitive to bad pixels than others, we present a bad pixel mapping exercise for the Teledyne H2RG used as the NIR tip-tilt sensor in the Keck-1 Adaptive Optics system. We use this example to illustrate the wide range of metrics by which a pixel might be judged inadequate. These include pixel bump bond connectivity, vignetting, addressing faults in the mux, severe sensitivity deficiency of some pixels, non linearity, poor signal linearity, low full well, poor mean-variance linearity, excessive noise and high dark current. Some pixels appear bad by multiple metrics. We also discuss the importance of distinguishing true performance outliers from measurement errors. We note how the complexity of these issues has ramifications for sensor procurement and acceptance testing strategies.

  14. Performance of the JWST/MIRI Si:As Detectors

    NASA Technical Reports Server (NTRS)

    Ressler, Michael E.; Cho, Hyung; Lee, Richard A. M.; Sukhatme, Kalyani G.; Drab, John J.; Domingo, George

    2008-01-01

    The Mid-Infrared Instrument (MIRI) is a 5 to 28 micron imager and spectrometer that is slated to fly aboard the JWST in 2013. Each of the flight arrays is a 1024x1024 pixel Si:As impurity band conductor detector array, developed by Raytheon Vision Systems. JPL, in conjunction with the MIRI science team, has selected the three flight arrays along with their spares. We briefly summarize the development of these devices, then describe the measured performance of the flight arrays along with supplemental data from sister flight-like parts.

  15. Advances in Detector Technology for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    McCreight, Craig; Cheng, P. L. (Technical Monitor)

    1995-01-01

    Progress in semiconductor materials and processing technology has allowed the development of infrared detector arrays with unprecedented sensitivity, for imaging and spectroscopic applications in astronomy. The earlier discrete-detector approach has been replaced by large-element (up to 1024 x 1024 pixel), multiplexed devices. Progress has been made against a number of key limiting factors, such as quantum efficiency, noise, spectral response, linearity, and dark current. Future developments will focus on the need for even larger arrays, which operate at higher temperatures.

  16. Manned observations technology development, FY 1992 report

    NASA Technical Reports Server (NTRS)

    Israel, Steven

    1992-01-01

    This project evaluated the suitability of the NASA/JSC developed electronic still camera (ESC) digital image data for Earth observations from the Space Shuttle, as a first step to aid planning for Space Station Freedom. Specifically, image resolution achieved from the Space Shuttle using the current ESC system, which is configured with a Loral 15 mm x 15 mm (1024 x 1024 pixel array) CCD chip on the focal plane of a Nikon F4 camera, was compared to that of current handheld 70 mm Hasselblad 500 EL/M film cameras.

  17. Compact water-window transmission X-ray microscopy.

    PubMed

    Berglund, M; Rymell, L; Peuker, M; Wilhein, T; Hertz, H M

    2000-03-01

    We demonstrate sub-100 nm resolution water-window soft X-ray full-field transmission microscopy with a compact system. The microscope operates at lambda = 3.37 nm and is based on a 100 Hz table-top regenerative debris-free droplet-target laser-plasma X-ray source in combination with normal-incidence multilayer condenser optics for sample illumination. High-spatial-resolution imaging is performed with a 7.3% efficiency nickel zone plate and a 1024 x 1024 pixel CCD detector. Images of dry test samples are recorded with exposure times of a few minutes and show features smaller than 60 nm.

  18. Automated recognition and characterization of solar active regions based on the SOHO/MDI images

    NASA Technical Reports Server (NTRS)

    Pap, J. M.; Turmon, M.; Mukhtar, S.; Bogart, R.; Ulrich, R.; Froehlich, C.; Wehrli, C.

    1997-01-01

    The first results of a new method to identify and characterize the various surface structures on the sun, which may contribute to the changes in solar total and spectral irradiance, are shown. The full disk magnetograms (1024 x 1024 pixels) of the Michelson Doppler Imager (MDI) experiment onboard SOHO are analyzed. Use of a Bayesian inference scheme allows objective, uniform, automated processing of a long sequence of images. The main goal is to identify the solar magnetic features causing irradiance changes. The results presented are based on a pilot time interval of August 1996.

  19. High density pixel array

    NASA Technical Reports Server (NTRS)

    Wiener-Avnear, Eliezer (Inventor); McFall, James Earl (Inventor)

    2004-01-01

    A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.

  20. Fiber pixelated image database

    NASA Astrophysics Data System (ADS)

    Shinde, Anant; Perinchery, Sandeep Menon; Matham, Murukeshan Vadakke

    2016-08-01

    Imaging of physically inaccessible parts of the body such as the colon at micron-level resolution is highly important in diagnostic medical imaging. Though flexible endoscopes based on the imaging fiber bundle are used for such diagnostic procedures, their inherent honeycomb-like structure creates fiber pixelation effects. This impedes the observer from perceiving the information from an image captured and hinders the direct use of image processing and machine intelligence techniques on the recorded signal. Significant efforts have been made by researchers in the recent past in the development and implementation of pixelation removal techniques. However, researchers have often used their own set of images without making source data available which subdued their usage and adaptability universally. A database of pixelated images is the current requirement to meet the growing diagnostic needs in the healthcare arena. An innovative fiber pixelated image database is presented, which consists of pixelated images that are synthetically generated and experimentally acquired. Sample space encompasses test patterns of different scales, sizes, and shapes. It is envisaged that this proposed database will alleviate the current limitations associated with relevant research and development and would be of great help for researchers working on comb structure removal algorithms.

  1. Selecting Pixels for Kepler Downlink

    NASA Technical Reports Server (NTRS)

    Bryson, Stephen T.; Jenkins, Jon M.; Klaus, Todd C.; Cote, Miles T.; Quintana, Elisa V.; Hall, Jennifer R.; Ibrahim, Khadeejah; Chandrasekaran, Hema; Caldwell, Douglas A.; Van Cleve, Jeffrey E.; Haas, Michael R.

    2010-01-01

    The Kepler mission monitors > 100,000 stellar targets using 42 2200 1024 pixel CCDs. Bandwidth constraints prevent the downlink of all 96 million pixels per 30-minute cadence, so the Kepler spacecraft downlinks a specified collection of pixels for each target. These pixels are selected by considering the object brightness, background and the signal-to-noise of each pixel, and are optimized to maximize the signal-to-noise ratio of the target. This paper describes pixel selection, creation of spacecraft apertures that efficiently capture selected pixels, and aperture assignment to a target. Diagnostic apertures, short-cadence targets and custom specified shapes are discussed.

  2. Full-disk magnetograms obtained with a Na magneto-optical filter at the Mount Wilson Observatory

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Garneau, Glenn; Misch, Tony; Progovac, Dusan; Shieber, Tom; Tomczyk, Steve; Ulrich, Roger K.

    1988-01-01

    The first full-disk magnetograms to be obtained with the Na magneto-optical filter (MOF) which is located at the 60 foot solar tower of the Mount Wilson Observatory are presented. This MOF was employed as a longitudinal magnetograph on June 18, 19, and July 1, 1987. On those three days the MOF was combined with a large format (1024 x 1024 pixel) virtual phase change coupled device camera and a high-speed data acquisition system. The combined system was used to record both line-of-sight magnetograms and Dopplergrams which covered the entire visible solar hemisphere. The pixel size of these magnetograms and Dopplergrams was 2.3 arcseconds. On each of the three days a time series of nine pairs of magnetograms and Dopplergrams was obtained at the rate of one pair every two minutes. On the same three day longitudinal magnetograms have one arcsecond pixels were obtained with the vacuum telescope at Kitt Peak. The MOF and vacuum tower magnetograms were compared at both the JPL Multi-Mission Image Processing Laboratory and at USC and have found the two sets of images to be well correlated both in spatial distribution and strength of the measured magnetic field. The simultaneously-obtained MOF Dopplergrams to remove the crosstalk which was present between the Doppler and Zeeman shifts of the NaD lines from the magnetograms from all three days and will also describe recent improvements to the system which allowed the obtaining of full-disk magnetograms as rapidly as one every 25 seconds.

  3. Serial pixel analog-to-digital converter (ADC)

    NASA Astrophysics Data System (ADS)

    Larson, Eric D.

    2010-02-01

    This method reduces the data path from the counter to the pixel register of the analog-to-digital converter (ADC) from as many as 10 bits to a single bit. The reduction in data path width is accomplished by using a coded serial data stream similar to a pseudo random number (PRN) generator. The resulting encoded pixel data is then decoded into a standard hexadecimal format before storage. The high-speed serial pixel ADC concept is based on the single-slope integrating pixel ADC architecture. Previous work has described a massively parallel pixel readout of a similar architecture. The serial ADC connection is similar to the state-of-the art method with the exception that the pixel ADC register is a shift register and the data path is a single bit. A state-of-the-art individual-pixel ADC uses a single-slope charge integration converter architecture with integral registers and "one-hot" counters. This implies that parallel data bits are routed among the counter and the individual on-chip pixel ADC registers. The data path bit-width to the pixel is therefore equivalent to the pixel ADC bit resolution.

  4. Pixelated neutron image plates

    NASA Astrophysics Data System (ADS)

    Schlapp, M.; Conrad, H.; von Seggern, H.

    2004-09-01

    Neutron image plates (NIPs) have found widespread application as neutron detectors for single-crystal and powder diffraction, small-angle scattering and tomography. After neutron exposure, the image plate can be read out by scanning with a laser. Commercially available NIPs consist of a powder mixture of BaFBr : Eu2+ and Gd2O3 dispersed in a polymer matrix and supported by a flexible polymer sheet. Since BaFBr : Eu2+ is an excellent x-ray storage phosphor, these NIPs are particularly sensitive to ggr-radiation, which is always present as a background radiation in neutron experiments. In this work we present results on NIPs consisting of KCl : Eu2+ and LiF that were fabricated into ceramic image plates in which the alkali halides act as a self-supporting matrix without the necessity for using a polymeric binder. An advantage of this type of NIP is the significantly reduced ggr-sensitivity. However, the much lower neutron absorption cross section of LiF compared with Gd2O3 demands a thicker image plate for obtaining comparable neutron absorption. The greater thickness of the NIP inevitably leads to a loss in spatial resolution of the image plate. However, this reduction in resolution can be restricted by a novel image plate concept in which a ceramic structure with square cells (referred to as a 'honeycomb') is embedded in the NIP, resulting in a pixelated image plate. In such a NIP the read-out light is confined to the particular illuminated pixel, decoupling the spatial resolution from the optical properties of the image plate material and morphology. In this work, a comparison of experimentally determined and simulated spatial resolutions of pixelated and unstructured image plates for a fixed read-out laser intensity is presented, as well as simulations of the properties of these NIPs at higher laser powers.

  5. The ALICE Pixel Detector

    NASA Astrophysics Data System (ADS)

    Mercado-Perez, Jorge

    2002-07-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well.

  6. Imaging properties of pixellated scintillators with deep pixels

    PubMed Central

    Barber, H. Bradford; Fastje, David; Lemieux, Daniel; Grim, Gary P.; Furenlid, Lars R.; Miller, Brian W.; Parkhurst, Philip; Nagarkar, Vivek V.

    2015-01-01

    We have investigated the light-transport properties of scintillator arrays with long, thin pixels (deep pixels) for use in high-energy gamma-ray imaging. We compared 10×10 pixel arrays of YSO:Ce, LYSO:Ce and BGO (1mm × 1mm × 20 mm pixels) made by Proteus, Inc. with similar 10×10 arrays of LSO:Ce and BGO (1mm × 1mm × 15mm pixels) loaned to us by Saint-Gobain. The imaging and spectroscopic behaviors of these scintillator arrays are strongly affected by the choice of a reflector used as an inter-pixel spacer (3M ESR in the case of the Proteus arrays and white, diffuse-reflector for the Saint-Gobain arrays). We have constructed a 3700-pixel LYSO:Ce Prototype NIF Gamma-Ray Imager for use in diagnosing target compression in inertial confinement fusion. This system was tested at the OMEGA Laser and exhibited significant optical, inter-pixel cross-talk that was traced to the use of a single-layer of ESR film as an inter-pixel spacer. We show how the optical cross-talk can be mapped, and discuss correction procedures. We demonstrate a 10×10 YSO:Ce array as part of an iQID (formerly BazookaSPECT) imager and discuss issues related to the internal activity of 176Lu in LSO:Ce and LYSO:Ce detectors. PMID:26236070

  7. Imaging properties of pixellated scintillators with deep pixels

    NASA Astrophysics Data System (ADS)

    Barber, H. Bradford; Fastje, David; Lemieux, Daniel; Grim, Gary P.; Furenlid, Lars R.; Miller, Brian W.; Parkhurst, Philip; Nagarkar, Vivek V.

    2014-09-01

    We have investigated the light-transport properties of scintillator arrays with long, thin pixels (deep pixels) for use in high-energy gamma-ray imaging. We compared 10x10 pixel arrays of YSO:Ce, LYSO:Ce and BGO (1mm x 1mm x 20 mm pixels) made by Proteus, Inc. with similar 10x10 arrays of LSO:Ce and BGO (1mm x 1mm x 15mm pixels) loaned to us by Saint-Gobain. The imaging and spectroscopic behaviors of these scintillator arrays are strongly affected by the choice of a reflector used as an inter-pixel spacer (3M ESR in the case of the Proteus arrays and white, diffuse-reflector for the Saint-Gobain arrays). We have constructed a 3700-pixel LYSO:Ce Prototype NIF Gamma-Ray Imager for use in diagnosing target compression in inertial confinement fusion. This system was tested at the OMEGA Laser and exhibited significant optical, inter-pixel cross-talk that was traced to the use of a single-layer of ESR film as an inter-pixel spacer. We show how the optical cross-talk can be mapped, and discuss correction procedures. We demonstrate a 10x10 YSO:Ce array as part of an iQID (formerly BazookaSPECT) imager and discuss issues related to the internal activity of 176Lu in LSO:Ce and LYSO:Ce detectors.

  8. Imaging properties of pixellated scintillators with deep pixels.

    PubMed

    Barber, H Bradford; Fastje, David; Lemieux, Daniel; Grim, Gary P; Furenlid, Lars R; Miller, Brian W; Parkhurst, Philip; Nagarkar, Vivek V

    2014-08-17

    We have investigated the light-transport properties of scintillator arrays with long, thin pixels (deep pixels) for use in high-energy gamma-ray imaging. We compared 10×10 pixel arrays of YSO:Ce, LYSO:Ce and BGO (1mm × 1mm × 20 mm pixels) made by Proteus, Inc. with similar 10×10 arrays of LSO:Ce and BGO (1mm × 1mm × 15mm pixels) loaned to us by Saint-Gobain. The imaging and spectroscopic behaviors of these scintillator arrays are strongly affected by the choice of a reflector used as an inter-pixel spacer (3M ESR in the case of the Proteus arrays and white, diffuse-reflector for the Saint-Gobain arrays). We have constructed a 3700-pixel LYSO:Ce Prototype NIF Gamma-Ray Imager for use in diagnosing target compression in inertial confinement fusion. This system was tested at the OMEGA Laser and exhibited significant optical, inter-pixel cross-talk that was traced to the use of a single-layer of ESR film as an inter-pixel spacer. We show how the optical cross-talk can be mapped, and discuss correction procedures. We demonstrate a 10×10 YSO:Ce array as part of an iQID (formerly BazookaSPECT) imager and discuss issues related to the internal activity of (176)Lu in LSO:Ce and LYSO:Ce detectors.

  9. Pixelated gamma detector

    SciTech Connect

    Dolinsky, Sergei Ivanovich; Yanoff, Brian David; Guida, Renato; Ivan, Adrian

    2016-12-27

    A pixelated gamma detector includes a scintillator column assembly having scintillator crystals and optical transparent elements alternating along a longitudinal axis, a collimator assembly having longitudinal walls separated by collimator septum, the collimator septum spaced apart to form collimator channels, the scintillator column assembly positioned adjacent to the collimator assembly so that the respective ones of the scintillator crystal are positioned adjacent to respective ones of the collimator channels, the respective ones of the optical transparent element are positioned adjacent to respective ones of the collimator septum, and a first photosensor and a second photosensor, the first and the second photosensor each connected to an opposing end of the scintillator column assembly. A system and a method for inspecting and/or detecting defects in an interior of an object are also disclosed.

  10. Pixelation Effects in Weak Lensing

    NASA Technical Reports Server (NTRS)

    High, F. William; Rhodes, Jason; Massey, Richard; Ellis, Richard

    2007-01-01

    Weak gravitational lensing can be used to investigate both dark matter and dark energy but requires accurate measurements of the shapes of faint, distant galaxies. Such measurements are hindered by the finite resolution and pixel scale of digital cameras. We investigate the optimum choice of pixel scale for a space-based mission, using the engineering model and survey strategy of the proposed Supernova Acceleration Probe as a baseline. We do this by simulating realistic astronomical images containing a known input shear signal and then attempting to recover the signal using the Rhodes, Refregier, and Groth algorithm. We find that the quality of shear measurement is always improved by smaller pixels. However, in practice, telescopes are usually limited to a finite number of pixels and operational life span, so the total area of a survey increases with pixel size. We therefore fix the survey lifetime and the number of pixels in the focal plane while varying the pixel scale, thereby effectively varying the survey size. In a pure trade-off for image resolution versus survey area, we find that measurements of the matter power spectrum would have minimum statistical error with a pixel scale of 0.09' for a 0.14' FWHM point-spread function (PSF). The pixel scale could be increased to 0.16' if images dithered by exactly half-pixel offsets were always available. Some of our results do depend on our adopted shape measurement method and should be regarded as an upper limit: future pipelines may require smaller pixels to overcome systematic floors not yet accessible, and, in certain circumstances, measuring the shape of the PSF might be more difficult than those of galaxies. However, the relative trends in our analysis are robust, especially those of the surface density of resolved galaxies. Our approach thus provides a snapshot of potential in available technology, and a practical counterpart to analytic studies of pixelation, which necessarily assume an idealized shape

  11. How Many Pixels Does It Take to Make a Good 4"×6" Print? Pixel Count Wars Revisited

    NASA Astrophysics Data System (ADS)

    Kriss, Michael A.

    Digital still cameras emerged following the introduction of the Sony Mavica analog prototype camera in 1981. These early cameras produced poor image quality and did not challenge film cameras for overall quality. By 1995 digital still cameras in expensive SLR formats had 6 mega-pixels and produced high quality images (with significant image processing). In 2005 significant improvement in image quality was apparent and lower prices for digital still cameras (DSCs) started a rapid decline in film usage and film camera sells. By 2010 film usage was mostly limited to professionals and the motion picture industry. The rise of DSCs was marked by a “pixel war” where the driving feature of the cameras was the pixel count where even moderate cost, ˜120, DSCs would have 14 mega-pixels. The improvement of CMOS technology pushed this trend of lower prices and higher pixel counts. Only the single lens reflex cameras had large sensors and large pixels. The drive for smaller pixels hurt the quality aspects of the final image (sharpness, noise, speed, and exposure latitude). Only today are camera manufactures starting to reverse their course and producing DSCs with larger sensors and pixels. This paper will explore why larger pixels and sensors are key to the future of DSCs.

  12. Design and Characterization of the CCD Detector Assemblies for ICON FUV

    NASA Astrophysics Data System (ADS)

    Champagne, J.; Syrstad, E. A.; Siegmund, O.; Darling, N.; Jelinsky, S. R.; Curtis, T.

    2015-12-01

    The Far Ultraviolet Imaging Spectrograph (FUV) on the upcoming Ionospheric Connection Explorer (ICON) mission uses dual image-intensified CCD camera systems, capable of detecting individual UV photons from both spectrometer channels (135.6 and 155 nm). Incident photons are converted to visible light using a sealed tube UV converter. The converter output is coupled to the CCD active area using a bonded fiber optic taper. The CCD (Teledyne DALSA FTT1010M) is a 1024x1024 frame transfer architecture. The camera readout electronics provide video imagery to the spacecraft over a 21 bit serialized LVDS interface, nominally at 10 frames per second and in 512x512 format (2x2 pixel binning). The CCD and primary electronics assembly reside in separate thermal zones, to minimize dark current without active cooling.Engineering and flight camera systems have been assembled, integrated, and tested under both ambient pressure and thermal vacuum environments. The CCD cameras have been fully characterized with both visible light (prior to integration with the UV converter) and UV photons (following system integration). Measured parameters include camera dark current, dark signal non-uniformity, read noise, linearity, gain, pulse height distribution, dynamic range, charge transfer efficiency, resolution, relative efficiency, quantum efficiency, and full well capacity. UV characterization of the camera systems over a range of microchannel plate (MCP) voltages during thermal vacuum testing demonstrates that camera performance will meet the critical on-orbit FUV dynamic range requirements. Flight camera integration with the FUV instrument and sensor calibration is planned for Fall 2015. Camera design and full performance data for the engineering and flight model cameras will be presented.

  13. MegaMIR: The Megapixel Mid-Infrared Instrument for the Large Binocular Telescope Interferometer

    NASA Technical Reports Server (NTRS)

    Mainzer, Amanda K.; Young, Erick; Hong, John; Werner, Mike; Hinz, Phil; Gorjan, Varoujan; Ressler, Michael E.

    2006-01-01

    The Megapixel Mid-infrared Instrument (MegaMIR) is a proposed Fizeau-mode camera for the Large Binocular Telescope operating at wavelengths between 5 and 28 micrometers. The camera will be used in conjunction with the Large Binocular Telescope Interferometer (LBTI), a cryogenic optical system that combines the beams from twin 8.4-m telescopes in a phase coherent manner. Unlike other interferometric systems, the co-mounted telescopes on the LBT satisfy the sine condition, providing diffraction-limited resolution over the 40" field of view of the camera. With a 22.8-m baseline, MegaMIR will yield 0.1" angular resolution, making it the highest resolution wide field imager in the thermal infrared for at least the next decade. MegaMIR will utilize a newly developed 1024 x 1024 pixel Si:As detector array that has been optimized for use at high backgrounds. This new detector is a derivative of the Wide-field Infrared Survey Explorer (WISE) low-background detector. The combination of high angular resolution and wide field imaging will be a unique scientific capability for astronomy. Key benefits will be realized in planetary science, galactic, and extra-galactic astronomy. High angular resolution is essential to disentangle highly complex sources, particularly in star formation regions and external galaxies, and MegaMIR provides this performance over a full field of view. Because of the great impact being made by space observatories like the Spitzer Space Telescope, the number of available targets for study has greatly increased in recent years, and MegaMIR will allow efficient follow up science.

  14. THE KEPLER PIXEL RESPONSE FUNCTION

    SciTech Connect

    Bryson, Stephen T.; Haas, Michael R.; Dotson, Jessie L.; Koch, David G.; Borucki, William J.; Tenenbaum, Peter; Jenkins, Jon M.; Chandrasekaran, Hema; Caldwell, Douglas A.; Klaus, Todd; Gilliland, Ronald L.

    2010-04-20

    Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Kepler's optical point-spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a star's flux value on any pixel given the star's pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurements of the PRF across the Kepler field of view are described. Two uses of the PRF are presented: the selection of pixels for each star that maximizes the photometric signal-to-noise ratio for that star, and PRF-fitted centroids which provide robust and accurate stellar positions on the CCD, primarily used for attitude and plate scale tracking. Good knowledge of the PRF has been a critical component for the successful collection of high-precision photometry by Kepler.

  15. From Pixels to Planets

    NASA Technical Reports Server (NTRS)

    Brownston, Lee; Jenkins, Jon M.

    2015-01-01

    The Kepler Mission was launched in 2009 as NASAs first mission capable of finding Earth-size planets in the habitable zone of Sun-like stars. Its telescope consists of a 1.5-m primary mirror and a 0.95-m aperture. The 42 charge-coupled devices in its focal plane are read out every half hour, compressed, and then downlinked monthly. After four years, the second of four reaction wheels failed, ending the original mission. Back on earth, the Science Operations Center developed the Science Pipeline to analyze about 200,000 target stars in Keplers field of view, looking for evidence of periodic dimming suggesting that one or more planets had crossed the face of its host star. The Pipeline comprises several steps, from pixel-level calibration, through noise and artifact removal, to detection of transit-like signals and the construction of a suite of diagnostic tests to guard against false positives. The Kepler Science Pipeline consists of a pipeline infrastructure written in the Java programming language, which marshals data input to and output from MATLAB applications that are executed as external processes. The pipeline modules, which underwent continuous development and refinement even after data started arriving, employ several analytic techniques, many developed for the Kepler Project. Because of the large number of targets, the large amount of data per target and the complexity of the pipeline algorithms, the processing demands are daunting. Some pipeline modules require days to weeks to process all of their targets, even when run on NASA's 128-node Pleiades supercomputer. The software developers are still seeking ways to increase the throughput. To date, the Kepler project has discovered more than 4000 planetary candidates, of which more than 1000 have been independently confirmed or validated to be exoplanets. Funding for this mission is provided by NASAs Science Mission Directorate.

  16. VizieR Online Data Catalog: HD61005 SPHERE H and Ks images (Olofsson+, 2016)

    NASA Astrophysics Data System (ADS)

    Olofsson, J.; Samland, M.; Avenhaus, H.; Caceres, C.; Henning, T.; Moor, A.; Milli, J.; Canovas, H.; Quanz, S. P.; Schreiber, M. R.; Augereau, J.-C.; Bayo, A.; Bazzon, A.; Beuzit, J.-L.; Boccaletti, A.; Buenzli, E.; Casassus, S.; Chauvin, G.; Dominik, C.; Desidera, S.; Feldt, M.; Gratton, R.; Janson, M.; Lagrange, A.-M.; Langlois, M.; Lannier, J.; Maire, A.-L.; Mesa, D.; Pinte, C.; Rouan, D.; Salter, G.; Thalmann, C.; Vigan, A.

    2016-05-01

    The fits files contains the reduced ADI and DPI SPHERE observations used to produce Fig. 1 of the paper. Besides the primary card, the files consists of 6 additional ImageHDU. The first and second one contain the SPHERE IRDIS ADI H band observations and the noise map. The third and fourth contain the SPHERE IRDIS ADI Ks band observations and the corresponding noise map. Finally, the fifth and sixth ImageHDU contain the SPHERE IRDIS DPI H band data as well as the noise map. Each ADI image has 1024x1024 pixels, while the DPI images have 1800x1800 pixels. The header of the primary card contains the pixel sizes for each datasets and the wavelengths of the H and K band observations. (2 data files).

  17. Local Pixel Bundles: Bringing the Pixels to the People

    NASA Astrophysics Data System (ADS)

    Anderson, Jay

    2014-12-01

    The automated galaxy-based alignment software package developed for the Frontier Fields program (hst2galign, see Anderson & Ogaz 2014 and http://www.stsci.edu/hst/campaigns/frontier-fields/) produces a direct mapping from the pixels of the flt frame of each science exposure into a common master frame. We can use these mappings to extract the flt-pixels in the vicinity of a source of interest and package them into a convenient "bundle". In addition to the pixels, this data bundle can also contain "meta" information that will allow users to transform positions from the flt pixels to the reference frame and vice-versa. Since the un-resampled pixels in the flt frames are the only true constraints we have on the astronomical scene, the ability to inter-relate these pixels will enable many high-precision studies, such as: point-source-fitting and deconvolution with accurate PSFs, easy exploration of different image-combining algorithms, and accurate faint-source finding and photometry. The data products introduced in this ISR are a very early attempt to provide the flt-level pixel constraints in a package that is accessible to more than the handful of experts in HST astrometry. The hope is that users in the community might begin using them and will provide feedback as to what information they might want to see in the bundles and what general analysis packages they might find useful. For that reason, this document is somewhat informally written, since I know that it will be modified and updated as the products and tools are optimized.

  18. Method of fabrication of display pixels driven by silicon thin film transistors

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.

    1999-01-01

    Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.

  19. The commercial use of satellite data to monitor the potato crop in the Columbia Basin

    NASA Technical Reports Server (NTRS)

    Waddington, George R., Jr.; Lamb, Frank G.

    1990-01-01

    The imaging of potato crops with satellites is described and evaluated in terms of the commercial application of the remotely sensed data. The identification and analysis of the crops is accomplished with multiple images acquired from the Landsat MSS and TM systems. The data are processed on a PC with image-procesing software which produces images of the seven 1024 x 1024 pixel windows which are subdivided into 21 512 x 512 pixel windows. Maximization of imaged data throughout the year aids in the identification of crop types by IR reflectance. The classification techniques involve the use of six or seven spectral classes for particular image dates. Comparisons with ground-truth data show good agreement; for example, potato fields are identified correctly 90 percent of the time. Acreage estimates and crop-condition assessments can be made from satellite data and used for corrective agricultural action.

  20. VizieR Online Data Catalog: AQ Boo VRI differential light curves (Wang+, 2016)

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, L.; Pi, Q.; Han, X. L.; Zhang, X.; Lu, H.; Wang, D.; Li, T.

    2016-11-01

    On March 22 and April 19 in 2014, we observed AQ Boo with the 60cm telescope at Xinglong Station of the National Astronomical Observatories of China (NAOC). The CCD camera on this telescope has a resolution of 1024 x 1024 pixels and its corresponding field of view is 17'x17' (Yang, 2013NewA...25..109Y). The other three days of data were obtained using the 1-m telescope at Yunnan Observatory of Chinese Academy of Sciences, on January 20, 21 and February 28 in 2015. The CCD camera on this telescope has a resolution of 2048x2048 pixels and its corresponding field of view is 7.3'x7.3'. Bessel VRI filters were used. The exposure times are 100-170s, 50-100s and 50-80s in the V, R, I bands, respectively. (1 data file).

  1. Challenges of small-pixel infrared detectors: a review

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Martyniuk, P.; Kopytko, M.

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology—HgCdTe material systems and III-V materials (mainly barrier detectors)—have been investigated.

  2. WFC3 Pixel Area Maps

    NASA Astrophysics Data System (ADS)

    Kalirai, J. S.; Cox, C.; Dressel, L.; Fruchter, A.; Hack, W.; Kozhurina-Platais, V.; Mack, J.

    2010-04-01

    We present the pixel area maps (PAMs) for the WFC3/UVIS and WFC3/IR detectors, and discuss the normalization of these images. HST processed flt images suffer from geometric distortion and therefore have pixel areas that vary on the sky. The counts (electrons) measured for a source on these images depends on the position of the source on the detector, an effect that is implicitly corrected when these images are multidrizzled into drz files. The flt images can be multiplied by the PAMs to yield correct and uniform counts for a given source irrespective of its location on the image. To ensure consistency between the count rate measured for sources in drz images and near the center of flt images, we set the normalization of the PAMs to unity at a reference pixel near the center of the UVIS mosaic and IR detector, and set the SCALE in the IDCTAB equal to the square root of the area of this reference pixel. The implications of this choice for photometric measurements are discussed.

  3. Dual color IR detection modules, trends and applications

    NASA Astrophysics Data System (ADS)

    Münzberg, M.; Breiter, R.; Cabanski, W.; Hofmann, K.; Lutz, H.; Wendler, J.; Ziegler, J.; Rehm, R.; Walther, M.

    2007-04-01

    The 3rd generation of infrared (IR) detection modules is expected to provide advanced features like higher resolution 1024x1024 or 1280x720 pixels and/or new functions like multicolor or multi band capability, higher frame rates and better thermal resolution. This paper is intended to present the current status and trends at AIM on antimonide type II superlattices (SL) dual color detection module developments for ground and airborne applications in the high performance range, where rapidly changing scenes - like e.g. in case of missile warning applications for airborne platforms or ground based sniper detection systems - require temporal signal coincidence with integration times of typically 1ms. AIM and IAF selected antimonide based type II superlattices (SL) for such kind of applications. The type II SL technology provides - similar to QWIP's - an accurate engineering of sensitive layers by MBE with very good homogeneity and yield. IAF and AIM managed already to realize a dual color 384x288 IR module based on this technology. It combines spectral selective detection in the 3 - 4μm wavelength range and 4 - 5 μm wavelength range in each pixel with coincident integration in a 384x288x2 format and 40x40 μm2 pitch. Excellent thermal resolution with NETD < 12 mK @ F/2, 2.8 ms for the longer wavelength range (red band) and NETD < 22 mK @ F/2, 2.8 ms for the shorter wavelength range (blue band) were reported. In the meantime a square design of 256x256x2 pixel with a reduced pitch of 30x30 μm2 is in preparation. In this case with 2 Indium bumps per pixel and a third common contact for all pixels required for temporal coincidence is connected at the outer area of the array. The fill factor is approx. 65% for both wavelength ranges. The reduced size of the array enables the use of a smaller dewar with reduced cooling power and significantly reduced weight and broadens the scope of applications where weight and costs is essential. Design aspects and expected performances

  4. SAR Image Complex Pixel Representations

    SciTech Connect

    Doerry, Armin W.

    2015-03-01

    Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed clutter can be represented as either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values. Generally, these component values are integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  5. Single-pixel hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Suo, Jinli; Wang, Yuwang; Bian, Liheng; Dai, Qionghai

    2016-10-01

    Conventional multispectral imaging methods detect photons of a 3D hyperspectral data cube separately either in the spatial or spectral dimension using array detectors, and are thus photon inefficient and spectrum range limited. Besides, they are usually bulky and highly expensive. To address these issues, this paper presents single-pixel multispectral imaging techniques, which are of high sensitivity, wide spectrum range, low cost and light weight. Two mechanisms are proposed, and experimental validation are also reported.

  6. CMOS digital pixel sensors: technology and applications

    NASA Astrophysics Data System (ADS)

    Skorka, Orit; Joseph, Dileepan

    2014-04-01

    CMOS active pixel sensor technology, which is widely used these days for digital imaging, is based on analog pixels. Transition to digital pixel sensors can boost signal-to-noise ratios and enhance image quality, but can increase pixel area to dimensions that are impractical for the high-volume market of consumer electronic devices. There are two main approaches to digital pixel design. The first uses digitization methods that largely rely on photodetector properties and so are unique to imaging. The second is based on adaptation of a classical analog-to-digital converter (ADC) for in-pixel data conversion. Imaging systems for medical, industrial, and security applications are emerging lower-volume markets that can benefit from these in-pixel ADCs. With these applications, larger pixels are typically acceptable, and imaging may be done in invisible spectral bands.

  7. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M (Inventor); Hancock, Bruce R. (Inventor)

    2013-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  8. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M. (Inventor); Hancock, Bruce R. (Inventor)

    2017-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  9. Operation of the University of Hawaii 2.2M telescope on Mauna Kea

    NASA Technical Reports Server (NTRS)

    Hall, Donald N. B.

    1991-01-01

    NASA's planetary astronomy program provides part of the funding for the 2.2 meter telescope. The parameters for time on the telescope are laid out. A major instrumental highlight has been the commissioning of a 256 x 256 near infrared camera which uses a Rockwell NICMOS-3 array. At the f/10 focus, image scales of 0.37 and 0.75 arcsec/pixel are available. A new, high quantum efficiency Tektronix 1024 x 1024 CCD saw first light on the telescope in 1991, and was available regularly from April 1991. Data from both of these detectors are transmitted directly to the Sun workstation for immediate analysis by the observers. The autoguider software was enhanced to permit guided tracking on objects have nonsideral motions (i.e., solar system objects).

  10. Digital radiography of the chest by self-scanning linear diode arrays.

    PubMed

    Slasky, B S; Sashin, D; Horton, J A; Sternglass, E J; Bron, K M; Deutsch, M; Herron, J M; Kennedy, W H; Boyer, J W; Girdany, B R

    1987-01-01

    Diode array digital radiography DADR is a method of radiographic imaging that combines the advantages of computer technology with self-scanning linear diode arrays. These digital images are superior to those obtained by film in recording and displaying information in the lightest and the darkest areas of the film, resulting in a balanced image of the entire thorax without compromising detail, and at reduced radiation dose. This is a direct result of the wide dynamic range, high contrast sensitivity, fiber optic coupling, small diode size, short exposure time, and rejection of scattered x-rays of the system coupled with digital post-processing enhancement of the image displayed at 1024 X 1024 pixels.

  11. Concrete Slump Classification using GLCM Feature Extraction

    NASA Astrophysics Data System (ADS)

    Andayani, Relly; Madenda, Syarifudin

    2016-05-01

    Digital image processing technologies have been widely applies in analyzing concrete structure because the accuracy and real time result. The aim of this study is to classify concrete slump by using image processing technique. For this purpose, concrete mix design of 30 MPa compression strength designed with slump of 0-10 mm, 10-30 mm, 30-60 mm, and 60-180 mm were analysed. Image acquired by Nikon Camera D-7000 using high resolution was set up. In the first step RGB converted to greyimage than cropped to 1024 x 1024 pixel. With open-source program, cropped images to be analysed to extract GLCM feature. The result shows for the higher slump contrast getting lower, but higher correlation, energy, and homogeneity.

  12. Making a trillion pixels dance

    NASA Astrophysics Data System (ADS)

    Singh, Vivek; Hu, Bin; Toh, Kenny; Bollepalli, Srinivas; Wagner, Stephan; Borodovsky, Yan

    2008-03-01

    In June 2007, Intel announced a new pixelated mask technology. This technology was created to address the problem caused by the growing gap between the lithography wavelength and the feature sizes patterned with it. As this gap has increased, the quality of the image has deteriorated. About a decade ago, Optical Proximity Correction (OPC) was introduced to bridge this gap, but as this gap continued to increase, one could not rely on the same basic set of techniques to maintain image quality. The computational lithography group at Intel sought to alleviate this problem by experimenting with additional degrees of freedom within the mask. This paper describes the resulting pixelated mask technology, and some of the computational methods used to create it. The first key element of this technology is a thick mask model. We realized very early in the development that, unlike traditional OPC methods, the pixelated mask would require a very accurate thick mask model. Whereas in the traditional methods, one can use the relatively coarse approximations such as the boundary layer method, use of such techniques resulted not just in incorrect sizing of parts of the pattern, but in whole features missing. We built on top of previously published domain decomposition methods, and incorporated limitations of the mask manufacturing process, to create an accurate thick mask model. Several additional computational techniques were invoked to substantially increase the speed of this method to a point that it was feasible for full chip tapeout. A second key element of the computational scheme was the comprehension of mask manufacturability, including the vital issue of the number of colors in the mask. While it is obvious that use of three or more colors will give the best image, one has to be practical about projecting mask manufacturing capabilities for such a complex mask. To circumvent this serious issue, we eventually settled on a two color mask - comprising plain glass and etched

  13. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    1995-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  14. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  15. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2004-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  16. Proceedings of PIXEL98 -- International pixel detector workshop

    SciTech Connect

    Anderson, D.F.; Kwan, S.

    1998-08-01

    Experiments around the globe face new challenges of more precision in the face of higher interaction rates, greater track densities, and higher radiation doses, as they look for rarer and rarer processes, leading many to incorporate pixelated solid-state detectors into their plans. The highest-readout rate devices require new technologies for implementation. This workshop reviewed recent, significant progress in meeting these technical challenges. Participants presented many new results; many of them from the weeks--even days--just before the workshop. Brand new at this workshop were results on cryogenic operation of radiation-damaged silicon detectors (dubbed the Lazarus effect). Other new work included a diamond sensor with 280-micron collection distance; new results on breakdown in p-type silicon detectors; testing of the latest versions of read-out chip and interconnection designs; and the radiation hardness of deep-submicron processes.

  17. Infrared astronomy - Pixels to spare

    SciTech Connect

    Mccaughrean, M. )

    1991-07-01

    An infrared CCD camera containing an array with 311,040 pixels arranged in 486 rows of 640 each is tested. The array is a chip of platinum silicide (PtSi), sensitive to photons with wavelengths between 1 and 6 microns. Observations of the Hubble Space Telescope, Mars, Pluto and moon are reported. It is noted that the satellite's twin solar-cell arrays, at an apparent separation of about 1 1/4 arc second, are well resolved. Some two dozen video frames were stacked to make each presented image of Mars at 1.6 microns; at this wavelength Mars appears much as it does in visible light. A stack of 11 images at a wavelength of 1.6 microns is used for an image of Jupiter with its Great Red Spot and moons Io and Europa.

  18. Dead pixel replacement in LWIR microgrid polarimeters.

    PubMed

    Ratliff, Bradley M; Tyo, J Scott; Boger, James K; Black, Wiley T; Bowers, David L; Fetrow, Matthew P

    2007-06-11

    LWIR imaging arrays are often affected by nonresponsive pixels, or "dead pixels." These dead pixels can severely degrade the quality of imagery and often have to be replaced before subsequent image processing and display of the imagery data. For LWIR arrays that are integrated with arrays of micropolarizers, the problem of dead pixels is amplified. Conventional dead pixel replacement (DPR) strategies cannot be employed since neighboring pixels are of different polarizations. In this paper we present two DPR schemes. The first is a modified nearest-neighbor replacement method. The second is a method based on redundancy in the polarization measurements.We find that the redundancy-based DPR scheme provides an order-of-magnitude better performance for typical LWIR polarimetric data.

  19. Equivalence of a Bit Pixel Image to a Quantum Pixel Image

    NASA Astrophysics Data System (ADS)

    Ortega, Laurel Carlos; Dong, Shi-Hai; Cruz-Irisson, M.

    2015-11-01

    We propose a new method to transform a pixel image to the corresponding quantum-pixel using a qubit per pixel to represent each pixels classical weight in a quantum image matrix weight. All qubits are linear superposition, changing the coefficients level by level to the entire longitude of the gray scale with respect to the base states of the qubit. Classically, these states are just bytes represented in a binary matrix, having code combinations of 1 or 0 at all pixel locations. This method introduces a qubit-pixel image representation of images captured by classical optoelectronic methods. Supported partially by the project 20150964-SIP-IPN, Mexico

  20. Method for fabricating pixelated silicon device cells

    SciTech Connect

    Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis; Nelson, Jeffrey S.; Anderson, Benjamin John

    2015-08-18

    A method, apparatus and system for flexible, ultra-thin, and high efficiency pixelated silicon or other semiconductor photovoltaic solar cell array fabrication is disclosed. A structure and method of creation for a pixelated silicon or other semiconductor photovoltaic solar cell array with interconnects is described using a manufacturing method that is simplified compared to previous versions of pixelated silicon photovoltaic cells that require more microfabrication steps.

  1. Commissioning of the CMS Forward Pixel Detector

    SciTech Connect

    Kumar, Ashish; /SUNY, Buffalo

    2008-12-01

    The Compact Muon Solenoid (CMS) experiment is scheduled for physics data taking in summer 2009 after the commissioning of high energy proton-proton collisions at Large Hadron Collider (LHC). At the core of the CMS all-silicon tracker is the silicon pixel detector, comprising three barrel layers and two pixel disks in the forward and backward regions, accounting for a total of 66 million channels. The pixel detector will provide high-resolution, 3D tracking points, essential for pattern recognition and precise vertexing, while being embedded in a hostile radiation environment. The end disks of the pixel detector, known as the Forward Pixel detector, has been assembled and tested at Fermilab, USA. It has 18 million pixel cells with dimension 100 x 150 {micro}m{sup 2}. The complete forward pixel detector was shipped to CERN in December 2007, where it underwent extensive system tests for commissioning prior to the installation. The pixel system was put in its final place inside the CMS following the installation and bake out of the LHC beam pipe in July 2008. It has been integrated with other sub-detectors in the readout since September 2008 and participated in the cosmic data taking. This report covers the strategy and results from commissioning of CMS forward pixel detector at CERN.

  2. Implementation of TDI based digital pixel ROIC with 15μm pixel pitch

    NASA Astrophysics Data System (ADS)

    Ceylan, Omer; Shafique, Atia; Burak, A.; Caliskan, Can; Abbasi, Shahbaz; Yazici, Melik; Gurbuz, Yasar

    2016-05-01

    A 15um pixel pitch digital pixel for LWIR time delay integration (TDI) applications is implemented which occupies one fourth of pixel area compared to previous digital TDI implementation. TDI is implemented on 8 pixels with oversampling rate of 2. ROIC provides 16 bits output with 8 bits of MSB and 8 bits of LSB. Pixel can store 75 M electrons with a quantization noise of 500 electrons. Digital pixel TDI implementation is advantageous over analog counterparts considering power consumption, chip area and signal-to-noise ratio. Digital pixel TDI ROIC is fabricated with 0.18um CMOS process. In digital pixel TDI implementation photocurrent is integrated on a capacitor in pixel and converted to digital data in pixel. This digital data triggers the summation counters which implements TDI addition. After all pixels in a row contribute, the summed data is divided to the number of TDI pixels(N) to have the actual output which is square root of N improved version of a single pixel output in terms of signal-to-noise-ratio (SNR).

  3. High stroke pixel for a deformable mirror

    DOEpatents

    Miles, Robin R.; Papavasiliou, Alexandros P.

    2005-09-20

    A mirror pixel that can be fabricated using standard MEMS methods for a deformable mirror. The pixel is electrostatically actuated and is capable of the high deflections needed for spaced-based mirror applications. In one embodiment, the mirror comprises three layers, a top or mirror layer, a middle layer which consists of flexures, and a comb drive layer, with the flexures of the middle layer attached to the mirror layer and to the comb drive layer. The comb drives are attached to a frame via spring flexures. A number of these mirror pixels can be used to construct a large mirror assembly. The actuator for the mirror pixel may be configured as a crenellated beam with one end fixedly secured, or configured as a scissor jack. The mirror pixels may be used in various applications requiring high stroke adaptive optics.

  4. SNR improvement for hyperspectral application using frame and pixel binning

    NASA Astrophysics Data System (ADS)

    Rehman, Sami Ur; Kumar, Ankush; Banerjee, Arup

    2016-05-01

    Hyperspectral imaging spectrometer systems are increasingly being used in the field of remote sensing for variety of civilian and military applications. The ability of such instruments in discriminating finer spectral features along with improved spatial and radiometric performance have made such instruments a powerful tool in the field of remote sensing. Design and development of spaceborne hyper spectral imaging spectrometers poses lot of technological challenges in terms of optics, dispersion element, detectors, electronics and mechanical systems. The main factors that define the type of detectors are the spectral region, SNR, dynamic range, pixel size, number of pixels, frame rate, operating temperature etc. Detectors with higher quantum efficiency and higher well depth are the preferred choice for such applications. CCD based Si detectors serves the requirement of high well depth for VNIR band spectrometers but suffers from smear. Smear can be controlled by using CMOS detectors. Si CMOS detectors with large format arrays are available. These detectors generally have smaller pitch and low well depth. Binning technique can be used with available CMOS detectors to meet the large swath, higher resolution and high SNR requirements. Availability of larger dwell time of satellite can be used to bin multiple frames to increase the signal collection even with lesser well depth detectors and ultimately increase the SNR. Lab measurements reveal that SNR improvement by frame binning is more in comparison to pixel binning. Effect of pixel binning as compared to the frame binning will be discussed and degradation of SNR as compared to theoretical value for pixel binning will be analyzed.

  5. Operation and Performance of the Mars Exploration Rover Imaging System on the Martian Surface

    NASA Technical Reports Server (NTRS)

    Maki, Justin N.; Litwin, Todd; Herkenhoff, Ken

    2005-01-01

    This slide presentation details the Mars Exploration Rover (MER) imaging system. Over 144,000 images have been gathered from all Mars Missions, with 83.5% of them being gathered by MER. Each Rover has 9 cameras (Navcam, front and rear Hazcam, Pancam, Microscopic Image, Descent Camera, Engineering Camera, Science Camera) and produces 1024 x 1024 (1 Megapixel) images in the same format. All onboard image processing code is implemented in flight software and includes extensive processing capabilities such as autoexposure, flat field correction, image orientation, thumbnail generation, subframing, and image compression. Ground image processing is done at the Jet Propulsion Laboratory's Multimission Image Processing Laboratory using Video Image Communication and Retrieval (VICAR) while stereo processing (left/right pairs) is provided for raw image, radiometric correction; solar energy maps,triangulation (Cartesian 3-spaces) and slope maps.

  6. Sub-pixel mapping of water boundaries using pixel swapping algorithm (case study: Tagliamento River, Italy)

    NASA Astrophysics Data System (ADS)

    Niroumand-Jadidi, Milad; Vitti, Alfonso

    2015-10-01

    Taking the advantages of remotely sensed data for mapping and monitoring of water boundaries is of particular importance in many different management and conservation activities. Imagery data are classified using automatic techniques to produce maps entering the water bodies' analysis chain in several and different points. Very commonly, medium or coarse spatial resolution imagery is used in studies of large water bodies. Data of this kind is affected by the presence of mixed pixels leading to very outstanding problems, in particular when dealing with boundary pixels. A considerable amount of uncertainty inescapably occurs when conventional hard classifiers (e.g., maximum likelihood) are applied on mixed pixels. In this study, Linear Spectral Mixture Model (LSMM) is used to estimate the proportion of water in boundary pixels. Firstly by applying an unsupervised clustering, the water body is identified approximately and a buffer area considered ensuring the selection of entire boundary pixels. Then LSMM is applied on this buffer region to estimate the fractional maps. However, resultant output of LSMM does not provide a sub-pixel map corresponding to water abundances. To tackle with this problem, Pixel Swapping (PS) algorithm is used to allocate sub-pixels within mixed pixels in such a way to maximize the spatial proximity of sub-pixels and pixels in the neighborhood. The water area of two segments of Tagliamento River (Italy) are mapped in sub-pixel resolution (10m) using a 30m Landsat image. To evaluate the proficiency of the proposed approach for sub-pixel boundary mapping, the image is also classified using a conventional hard classifier. A high resolution image of the same area is also classified and used as a reference for accuracy assessment. According to the results, sub-pixel map shows in average about 8 percent higher overall accuracy than hard classification and fits very well in the boundaries with the reference map.

  7. It's not the pixel count, you fool

    NASA Astrophysics Data System (ADS)

    Kriss, Michael A.

    2012-01-01

    The first thing a "marketing guy" asks the digital camera engineer is "how many pixels does it have, for we need as many mega pixels as possible since the other guys are killing us with their "umpteen" mega pixel pocket sized digital cameras. And so it goes until the pixels get smaller and smaller in order to inflate the pixel count in the never-ending pixel-wars. These small pixels just are not very good. The truth of the matter is that the most important feature of digital cameras in the last five years is the automatic motion control to stabilize the image on the sensor along with some very sophisticated image processing. All the rest has been hype and some "cool" design. What is the future for digital imaging and what will drive growth of camera sales (not counting the cell phone cameras which totally dominate the market in terms of camera sales) and more importantly after sales profits? Well sit in on the Dark Side of Color and find out what is being done to increase the after sales profits and don't be surprised if has been done long ago in some basement lab of a photographic company and of course, before its time.

  8. LISe pixel detector for neutron imaging

    NASA Astrophysics Data System (ADS)

    Herrera, Elan; Hamm, Daniel; Wiggins, Brenden; Milburn, Rob; Burger, Arnold; Bilheux, Hassina; Santodonato, Louis; Chvala, Ondrej; Stowe, Ashley; Lukosi, Eric

    2016-10-01

    Semiconducting lithium indium diselenide, 6LiInSe2 or LISe, has promising characteristics for neutron detection applications. The 95% isotopic enrichment of 6Li results in a highly efficient thermal neutron-sensitive material. In this study, we report on a proof-of-principle investigation of a semiconducting LISe pixel detector to demonstrate its potential as an efficient neutron imager. The LISe pixel detector had a 4×4 of pixels with a 550 μm pitch on a 5×5×0.56 mm3 LISe substrate. An experimentally verified spatial resolution of 300 μm was observed utilizing a super-sampling technique.

  9. Per-Pixel Lighting Data Analysis

    SciTech Connect

    Inanici, Mehlika

    2005-08-01

    This report presents a framework for per-pixel analysis of the qualitative and quantitative aspects of luminous environments. Recognizing the need for better lighting analysis capabilities and appreciating the new measurement abilities developed within the LBNL Lighting Measurement and Simulation Toolbox, ''Per-pixel Lighting Data Analysis'' project demonstrates several techniques for analyzing luminance distribution patterns, luminance ratios, adaptation luminance and glare assessment. The techniques are the syntheses of the current practices in lighting design and the unique practices that can be done with per-pixel data availability. Demonstrated analysis techniques are applicable to both computer-generated and digitally captured images (physically-based renderings and High Dynamic Range photographs).

  10. Anode readout for pixellated CZT detectors

    NASA Astrophysics Data System (ADS)

    Narita, Tomohiko; Grindlay, Jonathan E.; Hong, Jaesub; Niestemski, Francis C.

    2004-02-01

    Determination of the photon interaction depth offers numerous advantages for an astronomical hard X-ray telescope. The interaction depth is typically derived from two signals: anode and cathode, or collecting and non-collecting electrodes. We present some preliminary results from our depth sensing detectors using only the anode pixel signals. By examining several anode pixel signals simultaneously, we find that we can estimate the interaction depth, and get sub-pixel 2-D position resolution. We discuss our findings and the requirements for future ASIC development.

  11. Pixel-by-pixel VIS/NIR and LIR sensor fusion system

    NASA Astrophysics Data System (ADS)

    Zhang, Evan; Zhang, James S.; Song, Vivian W.; Chin, Ken P.; Hu, Gelbert

    2003-01-01

    Visible (VIS) camera (such as CCD) or Near Infrared (NIR) camera (such as low light level CCD or image intensifier) has high resolution and is easy to distinguish enemy and foe, but it cannot see through thin fog/cloud, heavy smoke/dust, foliage, camouflage, and darkness. The Long Infrared (LIR) imager can overcome above problems, but the resolution is too low and it cannot see the NIR aiming light from enemy. The best solution is to fuse the VIS/NIR and LIR sensors to overcome their shortcomings and take advantages of both sensors. In order to see the same target without parallax, the fusio system must have a common optical aperature. In this paper, three common optical apertures are designed: common reflective objective lens, common beam splitter, and common transmissive objective lens. The first one has very small field of view and the second one needs two heads, so the best choice is the third one, but we must find suitable optical materials and correct the color aberrations from 0.6 to 12 μ. It is a tough job. By choosing ZnSe as the first common piece of the objective lens and using glass for NIR and Ge (or IR glass) for LIR as rest pieces, we only need to and are able to correct the aberrations from 0.6 to 1.0 μ for NIR and from 8 to 12 μ for LIR. Finally, a common reflective objective lens and the common beam splitter are also successfully designed. Five application examples are given. In the digital signal processing, we use only one Altera chip. After inserting data, scaling the image size, and adjusting the signal level, the LIR will have the same format and same pixel number of the VIS/NIR, so real-time pixel-by-pixel sensor fusion is realized. The digital output can be used for further image processing and automatic target recognition, such as if we overlap the LIR image on the VIS/NIR image for missile guidance or rifle sight we don't need to worry about the time and the environment again. A gum-size wireless transmitter is also designed that is

  12. Pixels, Imagers and Related Fabrication Methods

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2014-01-01

    Pixels, imagers and related fabrication methods are described. The described methods result in cross-talk reduction in imagers and related devices by generating depletion regions. The devices can also be used with electronic circuits for imaging applications.

  13. Pixels, Imagers and Related Fabrication Methods

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2016-01-01

    Pixels, imagers and related fabrication methods are described. The described methods result in cross-talk reduction in imagers and related devices by generating depletion regions. The devices can also be used with electronic circuits for imaging applications.

  14. Toward Multispectral Imaging with Colloidal Metasurface Pixels.

    PubMed

    Stewart, Jon W; Akselrod, Gleb M; Smith, David R; Mikkelsen, Maiken H

    2017-02-01

    Multispectral colloidal metasurfaces are fabricated that exhibit greater than 85% absorption and ≈100 nm linewidths by patterning film-coupled nanocubes in pixels using a fusion of bottom-up and top-down fabrication techniques over wafer-scale areas. With this technique, the authors realize a multispectral pixel array consisting of six resonances between 580 and 1125 nm and reconstruct an RGB image with 9261 color combinations.

  15. Design of the small pixel pitch ROIC

    NASA Astrophysics Data System (ADS)

    Liang, Qinghua; Jiang, Dazhao; Chen, Honglei; Zhai, Yongcheng; Gao, Lei; Ding, Ruijun

    2014-11-01

    Since the technology trend of the third generation IRFPA towards resolution enhancing has steadily progressed,the pixel pitch of IRFPA has been greatly reduced.A 640×512 readout integrated circuit(ROIC) of IRFPA with 15μm pixel pitch is presented in this paper.The 15μm pixel pitch ROIC design will face many challenges.As we all known,the integrating capacitor is a key performance parameter when considering pixel area,charge capacity and dynamic range,so we adopt the effective method of 2 by 2 pixels sharing an integrating capacitor to solve this problem.The input unit cell architecture will contain two paralleled sample and hold parts,which not only allow the FPA to be operated in full frame snapshot mode but also save relatively unit circuit area.Different applications need more matching input unit circuits. Because the dimension of 2×2 pixels is 30μm×30μm, an input stage based on direct injection (DI) which has medium injection ratio and small layout area is proved to be suitable for middle wave (MW) while BDI with three-transistor cascode amplifier for long wave(LW). By adopting the 0.35μm 2P4M mixed signal process, the circuit architecture can make the effective charge capacity of 7.8Me- per pixel with 2.2V output range for MW and 7.3 Me- per pixel with 2.6V output range for LW. According to the simulation results, this circuit works well under 5V power supply and achieves less than 0.1% nonlinearity.

  16. Readout and DAQ for Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Platkevic, Michal

    2010-01-01

    Data readout and acquisition control of pixel detectors demand the transfer of significantly a large amounts of bits between the detector and the computer. For this purpose dedicated interfaces are used which are designed with focus on features like speed, small dimensions or flexibility of use such as digital signal processors, field-programmable gate arrays (FPGA) and USB communication ports. This work summarizes the readout and DAQ system built for state-of-the-art pixel detectors of the Medipix family.

  17. Design of a 12-megapixel imager with a nanowatt A/D converter at each pixel

    NASA Astrophysics Data System (ADS)

    Mandl, William J.

    2003-09-01

    The design for a large format digital visible light area array was developed based on A/D conversion at each pixel. Production CMOS technology was used in the development of a monolithic front side illuminated photo diode pixel. Each pixel includes a one loop MOSAD, multiplexed oversample A/D, converter, the photo diode and a buffered output to support a very large array format operating at a high frame rate. MOSAD is a modification of the delta sigma approach to A/D conversion. The requirements are to develop a 4,000 x 3,000 pixel array capable of up to 1,000 frames per second sample rate. A design was developed using the AMIS 0.35 μm CMOS process with a single poly and three metal layers. To approximately fit a 35 millimeter optics format, a pixel size of 8.5 μm was selected. There are no operational amplifiers required at the pixel to perform the A/D function, thus allowing a high fill factor. With this pixel size, a 48% fill factor and 38% photo diode area was achieved. The design can produce a pixel size of 4.3 μm square with the use of 0.18 μm CMOS without sacrificing fill factor. Alternate approaches to satisfy the 1 kiloframe sample rate with up to 10 bits dynamic range were analyzed. The design is still in progress with layout and simulation of the critical elements complete. This development program is sponsored by the Army White Sands Missile Range.

  18. Holographic imaging with single pixel sensor

    NASA Astrophysics Data System (ADS)

    Leportier, Thibault; Lee, Young Tack; Hwang, Do Kyung; Park, Min-Chul

    2016-09-01

    Imaging techniques based on CCD sensors presenting very high number of pixels enable to record images with high resolution. However, the huge storage load and high bandwidth required to store and transmit digital holographic information are technical bottlenecks that should be overcome for the future of holographic display. Techniques to capture images with single pixel sensors have been greatly improved recently with the development of compressive sensing algorithm (CS). Since interference patterns may be considered sparse, the number of measurements required to recover the information with CS is lower than the number of pixels of the reconstructed image. In addition, this method does not need any scanning system. One other advantage of single pixel imaging is that the cost of recording system can be dramatically reduced since high-resolution cameras are expensive while compressive sensing exploits only one pixel. In this paper, we present an imaging system based on phase-shifting holography. First, simulations were performed to confirm that hologram could be reconstructed by compressive sensing even if the number of measurements was smaller than the number of pixels. Then, experimental set-up was realized. Several holograms with different phase shifts introduced by quarter and half wave plates in the reference beam were acquired. We demonstrated that our system enables the reconstruction of the object.

  19. Simulation study of pixel detector charge digitization

    NASA Astrophysics Data System (ADS)

    Wang, Fuyue; Nachman, Benjamin; Sciveres, Maurice; Lawrence Berkeley National Laboratory Team

    2017-01-01

    Reconstruction of tracks from nearly overlapping particles, called Tracking in Dense Environments (TIDE), is an increasingly important component of many physics analyses at the Large Hadron Collider as signatures involving highly boosted jets are investigated. TIDE makes use of the charge distribution inside a pixel cluster to resolve tracks that share one of more of their pixel detector hits. In practice, the pixel charge is discretized using the Time-over-Threshold (ToT) technique. More charge information is better for discrimination, but more challenging for designing and operating the detector. A model of the silicon pixels has been developed in order to study the impact of the precision of the digitized charge distribution on distinguishing multi-particle clusters. The output of the GEANT4-based simulation is used to train neutral networks that predict the multiplicity and location of particles depositing energy inside one cluster of pixels. By studying the multi-particle cluster identification efficiency and position resolution, we quantify the trade-off between the number of ToT bits and low-level tracking inputs. As both ATLAS and CMS are designing upgraded detectors, this work provides guidance for the pixel module designs to meet TIDE needs. Work funded by the China Scholarship Council and the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231.

  20. Steganography based on pixel intensity value decomposition

    NASA Astrophysics Data System (ADS)

    Abdulla, Alan Anwar; Sellahewa, Harin; Jassim, Sabah A.

    2014-05-01

    This paper focuses on steganography based on pixel intensity value decomposition. A number of existing schemes such as binary, Fibonacci, Prime, Natural, Lucas, and Catalan-Fibonacci (CF) are evaluated in terms of payload capacity and stego quality. A new technique based on a specific representation is proposed to decompose pixel intensity values into 16 (virtual) bit-planes suitable for embedding purposes. The proposed decomposition has a desirable property whereby the sum of all bit-planes does not exceed the maximum pixel intensity value, i.e. 255. Experimental results demonstrate that the proposed technique offers an effective compromise between payload capacity and stego quality of existing embedding techniques based on pixel intensity value decomposition. Its capacity is equal to that of binary and Lucas, while it offers a higher capacity than Fibonacci, Prime, Natural, and CF when the secret bits are embedded in 1st Least Significant Bit (LSB). When the secret bits are embedded in higher bit-planes, i.e., 2nd LSB to 8th Most Significant Bit (MSB), the proposed scheme has more capacity than Natural numbers based embedding. However, from the 6th bit-plane onwards, the proposed scheme offers better stego quality. In general, the proposed decomposition scheme has less effect in terms of quality on pixel value when compared to most existing pixel intensity value decomposition techniques when embedding messages in higher bit-planes.

  1. Focal plane array with modular pixel array components for scalability

    SciTech Connect

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  2. Evolution of Fractal Parameters through Development Stage of Soil Crust

    NASA Astrophysics Data System (ADS)

    Ospina, Abelardo; Florentino, Adriana; Tarquis, Ana Maria

    2016-04-01

    Soil surface characteristics are subjected to changes driven by several interactions between water, air, biotic and abiotic components. One of the examples of such interactions is provided through biological soil crusts (BSC) in arid and semi-arid environments. BSC are communities composed of cyanobacteria, fungi, mosses, lichens, algae and liverworts covering the soil surface and play an important role in ecosystem functioning. The characteristics and formation of these BSC influence the soil hydrological balance, control the mass of eroded sediment, increase stability of soil surface, and influence plant productivity through the modification of nitrogen and carbon cycle. The site of this work is located at Quibor and Ojo de Agua (Lara state, Venezuela). The Quibor Depression in Venezuela is a major agricultural area being at semi-arid conditions and limited drainage favor the natural process of salinization. Additionally, the extension and intensification of agriculture has led to over-exploitation of groundwater in the past 30 years (Méndoza et al., 2013). The soil microbial crust develops initially on physical crusts which are mainly generated since wetting and drying, being a recurrent feature in the Quíbor arid zone. The microbiotic crust is organic, composed of macro organisms (bryophytes and lichens) and microorganisms (cyanobacteria, fungi algae, etc.); growing on the ground, forming a thickness no greater than 3 mm. For further details see Toledo and Florentino (2009). This study focus on characterize the development stage of the BSC based on image analysis. To this end, grayscale images of different types of biological soil crust at different stages where taken, each image corresponding to an area of 12.96 cm2 with a resolution of 1024x1024 pixels (Ospina et al., 2015). For each image lacunarity and fractal dimension through the differential box counting method were calculated. These were made with the software ImageJ/Fraclac (Karperien, 2013

  3. Spatial clustering of pixels of a multispectral image

    DOEpatents

    Conger, James Lynn

    2014-08-19

    A method and system for clustering the pixels of a multispectral image is provided. A clustering system computes a maximum spectral similarity score for each pixel that indicates the similarity between that pixel and the most similar neighboring. To determine the maximum similarity score for a pixel, the clustering system generates a similarity score between that pixel and each of its neighboring pixels and then selects the similarity score that represents the highest similarity as the maximum similarity score. The clustering system may apply a filtering criterion based on the maximum similarity score so that pixels with similarity scores below a minimum threshold are not clustered. The clustering system changes the current pixel values of the pixels in a cluster based on an averaging of the original pixel values of the pixels in the cluster.

  4. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    PubMed Central

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.

    2016-01-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed. PMID:26917125

  5. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    DOE PAGES

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; ...

    2016-01-28

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses atmore » megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.« less

  6. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    SciTech Connect

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.

    2016-01-28

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.

  7. HUBBLE SPACE TELESCOPE PIXEL ANALYSIS OF THE INTERACTING S0 GALAXY NGC 5195 (M51B)

    SciTech Connect

    Lee, Joon Hyeop; Kim, Sang Chul; Ree, Chang Hee; Kim, Minjin; Jeong, Hyunjin; Lee, Jong Chul; Kyeong, Jaemann E-mail: sckim@kasi.re.kr E-mail: mkim@kasi.re.kr E-mail: jclee@kasi.re.kr

    2012-08-01

    We report the properties of the interacting S0 galaxy NGC 5195 (M51B), revealed in a pixel analysis using the Hubble Space Telescope/Advanced Camera for Surveys images in the F435W, F555W, and F814W (BVI) bands. We analyze the pixel color-magnitude diagram (pCMD) of NGC 5195, focusing on the properties of its red and blue pixel sequences and the difference from the pCMD of NGC 5194 (M51A; the spiral galaxy interacting with NGC 5195). The red pixel sequence of NGC 5195 is redder than that of NGC 5194, which corresponds to the difference in the dust optical depth of 2 < {Delta}{tau}{sub V} < 4 at fixed age and metallicity. The blue pixel sequence of NGC 5195 is very weak and spatially corresponds to the tidal bridge between the two interacting galaxies. This implies that the blue pixel sequence is not an ordinary feature in the pCMD of an early-type galaxy, but that it is a transient feature of star formation caused by the galaxy-galaxy interaction. We also find a difference in the shapes of the red pixel sequences on the pixel color-color diagrams (pCCDs) of NGC 5194 and NGC 5195. We investigate the spatial distributions of the pCCD-based pixel stellar populations. The young population fraction in the tidal bridge area is larger than that in other areas by a factor >15. Along the tidal bridge, young populations seem to be clumped particularly at the middle point of the bridge. On the other hand, the dusty population shows a relatively wide distribution between the tidal bridge and the center of NGC 5195.

  8. An estimation error bound for pixelated sensing

    NASA Astrophysics Data System (ADS)

    Kreucher, Chris; Bell, Kristine

    2016-05-01

    This paper considers the ubiquitous problem of estimating the state (e.g., position) of an object based on a series of noisy measurements. The standard approach is to formulate this problem as one of measuring the state (or a function of the state) corrupted by additive Gaussian noise. This model assumes both (i) the sensor provides a measurement of the true target (or, alternatively, a separate signal processing step has eliminated false alarms), and (ii) The error source in the measurement is accurately described by a Gaussian model. In reality, however, sensor measurement are often formed on a grid of pixels - e.g., Ground Moving Target Indication (GMTI) measurements are formed for a discrete set of (angle, range, velocity) voxels, and EO imagery is made on (x, y) grids. When a target is present in a pixel, therefore, uncertainty is not Gaussian (instead it is a boxcar function) and unbiased estimation is not generally possible as the location of the target within the pixel defines the bias of the estimator. It turns out that this small modification to the measurement model makes traditional bounding approaches not applicable. This paper discusses pixelated sensing in more detail and derives the minimum mean squared error (MMSE) bound for estimation in the pixelated scenario. We then use this error calculation to investigate the utility of using non-thresholded measurements.

  9. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Seshadri, S.; Cole, D. M.; Hancock, B. R.; Smith, R. M.

    2008-01-01

    Electronic coupling effects such as Inter-Pixel Capacitance (IPC) affect the quantitative interpretation of image data from CMOS, hybrid visible and infrared imagers alike. Existing methods of characterizing IPC do not provide a map of the spatial variation of IPC over all pixels. We demonstrate a deterministic method that provides a direct quantitative map of the crosstalk across an imager. The approach requires only the ability to reset single pixels to an arbitrary voltage, different from the rest of the imager. No illumination source is required. Mapping IPC independently for each pixel is also made practical by the greater S/N ratio achievable for an electrical stimulus than for an optical stimulus, which is subject to both Poisson statistics and diffusion effects of photo-generated charge. The data we present illustrates a more complex picture of IPC in Teledyne HgCdTe and HyViSi focal plane arrays than is presently understood, including the presence of a newly discovered, long range IPC in the HyViSi FPA that extends tens of pixels in distance, likely stemming from extended field effects in the fully depleted substrate. The sensitivity of the measurement approach has been shown to be good enough to distinguish spatial structure in IPC of the order of 0.1%.

  10. Pixels, Blocks of Pixels, and Polygons: Choosing a Spatial Unit for Thematic Accuracy Assessment

    EPA Science Inventory

    Pixels, polygons, and blocks of pixels are all potentially viable spatial assessment units for conducting an accuracy assessment. We develop a statistical population-based framework to examine how the spatial unit chosen affects the outcome of an accuracy assessment. The populati...

  11. Radiation tolerance of CMOS monolithic active pixel sensors with self-biased pixels

    NASA Astrophysics Data System (ADS)

    Deveaux, M.; Amar-Youcef, S.; Besson, A.; Claus, G.; Colledani, C.; Dorokhov, M.; Dritsa, C.; Dulinski, W.; Fröhlich, I.; Goffe, M.; Grandjean, D.; Heini, S.; Himmi, A.; Hu, C.; Jaaskelainen, K.; Müntz, C.; Shabetai, A.; Stroth, J.; Szelezniak, M.; Valin, I.; Winter, M.

    2010-12-01

    CMOS monolithic active pixel sensors (MAPS) are proposed as a technology for various vertex detectors in nuclear and particle physics. We discuss the mechanisms of ionizing radiation damage on MAPS hosting the dead time free, so-called self bias pixel. Moreover, we introduce radiation hardened sensor designs which allow operating detectors after exposing them to irradiation doses above 1 Mrad.

  12. Active Pixel Sensors: Are CCD's Dinosaurs?

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.

    1993-01-01

    Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.

  13. Towards spark-proof gaseous pixel detectors

    NASA Astrophysics Data System (ADS)

    Tsigaridas, S.; Beuzekom, M. v.; Chan, H. W.; Graaf, H. v. d.; Hartjes, F.; Heijhoff, K.; Hessey, N. P.; Prodanovic, V.

    2016-11-01

    The micro-pattern gaseous pixel detector, is a promising technology for imaging and particle tracking applications. It is a combination of a gas layer acting as detection medium and a CMOS pixelated readout-chip. As a prevention against discharges we deposit a protection layer on the chip and then integrate on top a micromegas-like amplification structure. With this technology we are able to reconstruct 3D track segments of particles passing through the gas thanks to the functionality of the chip. We have turned a Timepix3 chip into a gaseous pixel detector and tested it at the SPS at Cern. The preliminary results are promising and within the expectations. However, the spark protection layer needs further improvement to make reliable detectors. For this reason, we have created a setup for spark-testing. We present the first results obtained from the lab-measurements along with preliminary results from the testbeam.

  14. Pixel lensing observations towards globular clusters

    NASA Astrophysics Data System (ADS)

    Cardone, V. F.; Cantiello, M.

    2003-07-01

    It has been suggested that a monitoring program employing the pixel lensing method to search for microlensing events towards galactic globular clusters may increase the statistics and discriminate among different halo models. Stimulated by this proposal, we evaluate an upper limit to the pixel lensing event rate for such a survey. Four different dark halo models have been considered changing both the flattening and the slope of the mass density profile. The lens mass function has been modelled as a homogenous power - law for mu in (mul, muu) and both the mass limits and the slope of the mass function have been varied to investigate their effect on the rate. The target globular clusters have been selected in order to minimize the disk contribution to the event rate. We find that a pixel lensing survey towards globular clusters is unable to discriminate among different halo models since the number of detectable events is too small to allow any reliable statistical analysis.

  15. Illuminant spectrum estimation at a pixel.

    PubMed

    Ratnasingam, Sivalogeswaran; Hernández-Andrés, Javier

    2011-04-01

    In this paper, an algorithm is proposed to estimate the spectral power distribution of a light source at a pixel. The first step of the algorithm is forming a two-dimensional illuminant invariant chromaticity space. In estimating the illuminant spectrum, generalized inverse estimation and Wiener estimation methods were applied. The chromaticity space was divided into small grids and a weight matrix was used to estimate the illuminant spectrum illuminating the pixels that fall within a grid. The algorithm was tested using a different number of sensor responses to determine the optimum number of sensors for accurate colorimetric and spectral reproduction. To investigate the performance of the algorithm realistically, the responses were multiplied with Gaussian noise and then quantized to 10 bits. The algorithm was tested with standard and measured data. Based on the results presented, the algorithm can be used with six sensors to obtain a colorimetrically good estimate of the illuminant spectrum at a pixel.

  16. Vivid, full-color aluminum plasmonic pixels

    PubMed Central

    Olson, Jana; Manjavacas, Alejandro; Liu, Lifei; Chang, Wei-Shun; Foerster, Benjamin; King, Nicholas S.; Knight, Mark W.; Nordlander, Peter; Halas, Naomi J.; Link, Stephan

    2014-01-01

    Aluminum is abundant, low in cost, compatible with complementary metal-oxide semiconductor manufacturing methods, and capable of supporting tunable plasmon resonance structures that span the entire visible spectrum. However, the use of Al for color displays has been limited by its intrinsically broad spectral features. Here we show that vivid, highly polarized, and broadly tunable color pixels can be produced from periodic patterns of oriented Al nanorods. Whereas the nanorod longitudinal plasmon resonance is largely responsible for pixel color, far-field diffractive coupling is used to narrow the plasmon linewidth, enabling monochromatic coloration and significantly enhancing the far-field scattering intensity of the individual nanorod elements. The bright coloration can be observed with p-polarized white light excitation, consistent with the use of this approach in display devices. The resulting color pixels are constructed with a simple design, are compatible with scalable fabrication methods, and provide contrast ratios exceeding 100:1. PMID:25225385

  17. Modulation transfer function of a trapezoidal pixel array detector

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Guo, Rongli; Ni, Jinping; Dong, Tao

    2016-01-01

    The modulation transfer function (MTF) is the tool most commonly used for quantifying the performance of an electro-optical imaging system. Recently, trapezoid-shaped pixels were designed and used in a retina-like sensor in place of rectangular-shaped pixels. The MTF of a detector with a trapezoidal pixel array is determined according to its definition. Additionally, the MTFs of detectors with differently shaped pixels, but the same pixel areas, are compared. The results show that the MTF values of the trapezoidal pixel array detector are obviously larger than those of rectangular and triangular pixel array detectors at the same frequencies.

  18. Commissioning of the ATLAS pixel detector

    SciTech Connect

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  19. Physics performance of the ATLAS pixel detector

    NASA Astrophysics Data System (ADS)

    Tsuno, S.

    2017-01-01

    In preparation for LHC Run-2 the ATLAS detector introduced a new pixel detector, the Insertable B-Layer (IBL). This detector is located between the beampipe and what was the innermost pixel layer. The tracking and vertex reconstruction are significantly improved and good performance is expected in high level objects such a b-quark jet tagging. This in turn, leads to better physics results. This note summarizes the impact of the IBL detector on physics results, especially focusing on the analyses using b-quark jets throughout 2016 summer physics program.

  20. All-passive pixel super-resolution of time-stretch imaging

    PubMed Central

    Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; So, Hayden K. H.; Lam, Edmund Y.; Tsia, Kevin K.

    2017-01-01

    Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate — hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (≈2–5 GSa/s)—more than four times lower than the originally required readout rate (20 GSa/s) — is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing. PMID:28303936

  1. All-passive pixel super-resolution of time-stretch imaging

    NASA Astrophysics Data System (ADS)

    Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; So, Hayden K. H.; Lam, Edmund Y.; Tsia, Kevin K.

    2017-03-01

    Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate — hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (≈2–5 GSa/s)—more than four times lower than the originally required readout rate (20 GSa/s) — is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing.

  2. Dynamic holography using pixelated light modulators.

    PubMed

    Zwick, Susanne; Haist, Tobias; Warber, Michael; Osten, Wolfgang

    2010-09-01

    Dynamic holography using spatial light modulators is a very flexible technique that offers various new applications compared to static holography. We give an overview on the technical background of dynamic holography focusing on pixelated spatial light modulators and their technical restrictions, and we present a selection of the numerous applications of dynamic holography.

  3. Pixel telescope test in STAR at RHIC

    NASA Astrophysics Data System (ADS)

    Sun, Xiangming; Szelezniak, Michal; Greiner, Leo; Matis, Howard; Vu, Chinh; Stezelberger, Thorsten; Wieman, Howard

    2007-10-01

    The STAR experiment at RHIC is designing a new inner vertex detector called the Heavy Flavor Tracker (HFT). The HFT's innermost two layers is called the PIXEL detector which uses Monolithic Active Pixel Sensor technology (MAPS). To test the MAPS technology, we just constructed and tested a telescope. The telescope uses a stack of three MIMOSTAR2 chips, Each MIMOSTAR2 sensor, which was designed by IPHC, is an array of 132x128 pixels with a square pixel size of 30 μ. The readout of the telescope makes use of the ALICE DDL/SIU cards, which is compatible with the future STAR data acquisition system called DAQ1000. The telescope was first studied in a 1.2 GeV/c electron beam at LBNL's Advanced Light Source. Afterwards, the telescope was outside the STAR magnet, and then later inside it, 145 cm away from STAR's center. We will describe this first test of MAPS technology in a collider environment, and report on the occupancy, particle flux, and performance of the telescope.

  4. Adaptive bad pixel correction algorithm for IRFPA based on PCNN

    NASA Astrophysics Data System (ADS)

    Leng, Hanbing; Zhou, Zuofeng; Cao, Jianzhong; Yi, Bo; Yan, Aqi; Zhang, Jian

    2013-10-01

    Bad pixels and response non-uniformity are the primary obstacles when IRFPA is used in different thermal imaging systems. The bad pixels of IRFPA include fixed bad pixels and random bad pixels. The former is caused by material or manufacture defect and their positions are always fixed, the latter is caused by temperature drift and their positions are always changing. Traditional radiometric calibration-based bad pixel detection and compensation algorithm is only valid to the fixed bad pixels. Scene-based bad pixel correction algorithm is the effective way to eliminate these two kinds of bad pixels. Currently, the most used scene-based bad pixel correction algorithm is based on adaptive median filter (AMF). In this algorithm, bad pixels are regarded as image noise and then be replaced by filtered value. However, missed correction and false correction often happens when AMF is used to handle complex infrared scenes. To solve this problem, a new adaptive bad pixel correction algorithm based on pulse coupled neural networks (PCNN) is proposed. Potential bad pixels are detected by PCNN in the first step, then image sequences are used periodically to confirm the real bad pixels and exclude the false one, finally bad pixels are replaced by the filtered result. With the real infrared images obtained from a camera, the experiment results show the effectiveness of the proposed algorithm.

  5. Design Methodology: ASICs with complex in-pixel processing for Pixel Detectors

    SciTech Connect

    Fahim, Farah

    2014-10-31

    The development of Application Specific Integrated Circuits (ASIC) for pixel detectors with complex in-pixel processing using Computer Aided Design (CAD) tools that are, themselves, mainly developed for the design of conventional digital circuits requires a specialized approach. Mixed signal pixels often require parasitically aware detailed analog front-ends and extremely compact digital back-ends with more than 1000 transistors in small areas below 100μm x 100μm. These pixels are tiled to create large arrays, which have the same clock distribution and data readout speed constraints as in, for example, micro-processors. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout.

  6. Dependence of the appearance-based perception of criminality, suggestibility, and trustworthiness on the level of pixelation of facial images.

    PubMed

    Nurmoja, Merle; Eamets, Triin; Härma, Hanne-Loore; Bachmann, Talis

    2012-10-01

    While the dependence of face identification on the level of pixelation-transform of the images of faces has been well studied, similar research on face-based trait perception is underdeveloped. Because depiction formats used for hiding individual identity in visual media and evidential material recorded by surveillance cameras often consist of pixelized images, knowing the effects of pixelation on person perception has practical relevance. Here, the results of two experiments are presented showing the effect of facial image pixelation on the perception of criminality, trustworthiness, and suggestibility. It appears that individuals (N = 46, M age = 21.5 yr., SD = 3.1 for criminality ratings; N = 94, M age = 27.4 yr., SD = 10.1 for other ratings) have the ability to discriminate between facial cues ndicative of these perceived traits from the coarse level of image pixelation (10-12 pixels per face horizontally) and that the discriminability increases with a decrease in the coarseness of pixelation. Perceived criminality and trustworthiness appear to be better carried by the pixelized images than perceived suggestibility.

  7. WFC3/IR Cycle 19 Bad Pixel Table Update

    NASA Astrophysics Data System (ADS)

    Hilbert, B.

    2012-06-01

    Using data from Cycles 17, 18, and 19, we have updated the IR channel bad pixel table for WFC3. The bad pixel table contains flags that mark the position of pixels that are dead, unstable, have a bad zeroth read value, or are affected by "blobs". In all, 28,500 of the science pixels (2.77%) are flagged as bad. Observers are encouraged to dither their observations as a means of lessening the effects of these bad pixels. The new bad pixel table is in the calibration database system (CDBS) as w681807ii_bpx.fits.

  8. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    SciTech Connect

    Fahim Farah, Fahim Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-28

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  9. Pixel-by-pixel absolute phase retrieval using three phase-shifted fringe patterns without markers

    NASA Astrophysics Data System (ADS)

    Jiang, Chufan; Li, Beiwen; Zhang, Song

    2017-04-01

    This paper presents a method that can recover absolute phase pixel by pixel without embedding markers on three phase-shifted fringe patterns, acquiring additional images, or introducing additional hardware component(s). The proposed three-dimensional (3D) absolute shape measurement technique includes the following major steps: (1) segment the measured object into different regions using rough priori knowledge of surface geometry; (2) artificially create phase maps at different z planes using geometric constraints of structured light system; (3) unwrap the phase pixel by pixel for each region by properly referring to the artificially created phase map; and (4) merge unwrapped phases from all regions into a complete absolute phase map for 3D reconstruction. We demonstrate that conventional three-step phase-shifted fringe patterns can be used to create absolute phase map pixel by pixel even for large depth range objects. We have successfully implemented our proposed computational framework to achieve absolute 3D shape measurement at 40 Hz.

  10. ACS/WFC Pixel Stability - Bringing the Pixels Back to the Science

    NASA Astrophysics Data System (ADS)

    Borncamp, David; Grogin, Norman A.; Bourque, Matthew; Ogaz, Sara

    2016-06-01

    Electrical current that has been trapped within the lattice structure of a Charged Coupled Device (CCD) can be present through multiple exposures, which will have an adverse effect on its science performance. The traditional way to correct for this extra charge is to take an image with the camera shutter closed periodically throughout the lifetime of the instrument. These images, generally referred to as dark images, allow for the characterization of the extra charge that is trapped within the CCD at the time of observation. This extra current can then be subtracted out of science images to correct for the extra charge that was there at this time. Pixels that have a charge above a certain threshold of current are marked as “hot” and flagged in the data quality array. However, these pixels may not be "bad" in the traditional sense that they cannot be reliably dark-subtracted. If these pixels are shown to be stable over an anneal period, the charge can be properly subtracted and the extra noise from this dark current can be taken into account. We present the results of a pixel history study that analyzes every pixel of ACS/WFC individually and allows pixels that were marked as bad to be brought back into the science image.

  11. Mars Exploration Rover engineering cameras

    USGS Publications Warehouse

    Maki, J.N.; Bell, J.F.; Herkenhoff, K. E.; Squyres, S. W.; Kiely, A.; Klimesh, M.; Schwochert, M.; Litwin, T.; Willson, R.; Johnson, Aaron H.; Maimone, M.; Baumgartner, E.; Collins, A.; Wadsworth, M.; Elliot, S.T.; Dingizian, A.; Brown, D.; Hagerott, E.C.; Scherr, L.; Deen, R.; Alexander, D.; Lorre, J.

    2003-01-01

    NASA's Mars Exploration Rover (MER) Mission will place a total of 20 cameras (10 per rover) onto the surface of Mars in early 2004. Fourteen of the 20 cameras are designated as engineering cameras and will support the operation of the vehicles on the Martian surface. Images returned from the engineering cameras will also be of significant importance to the scientific community for investigative studies of rock and soil morphology. The Navigation cameras (Navcams, two per rover) are a mast-mounted stereo pair each with a 45?? square field of view (FOV) and an angular resolution of 0.82 milliradians per pixel (mrad/pixel). The Hazard Avoidance cameras (Hazcams, four per rover) are a body-mounted, front- and rear-facing set of stereo pairs, each with a 124?? square FOV and an angular resolution of 2.1 mrad/pixel. The Descent camera (one per rover), mounted to the lander, has a 45?? square FOV and will return images with spatial resolutions of ???4 m/pixel. All of the engineering cameras utilize broadband visible filters and 1024 x 1024 pixel detectors. Copyright 2003 by the American Geophysical Union.

  12. MTF evaluation of white pixel sensors

    NASA Astrophysics Data System (ADS)

    Lindner, Albrecht; Atanassov, Kalin; Luo, Jiafu; Goma, Sergio

    2015-01-01

    We present a methodology to compare image sensors with traditional Bayer RGB layouts to sensors with alternative layouts containing white pixels. We focused on the sensors' resolving powers, which we measured in the form of a modulation transfer function for variations in both luma and chroma channels. We present the design of the test chart, the acquisition of images, the image analysis, and an interpretation of results. We demonstrate the approach at the example of two sensors that only differ in their color filter arrays. We confirmed that the sensor with white pixels and the corresponding demosaicing result in a higher resolving power in the luma channel, but a lower resolving power in the chroma channels when compared to the traditional Bayer sensor.

  13. Advanced monolithic pixel sensors using SOI technology

    NASA Astrophysics Data System (ADS)

    Miyoshi, Toshinobu; Arai, Yasuo; Asano, Mari; Fujita, Yowichi; Hamasaki, Ryutaro; Hara, Kazuhiko; Honda, Shunsuke; Ikegami, Yoichi; Kurachi, Ikuo; Mitsui, Shingo; Nishimura, Ryutaro; Tauchi, Kazuya; Tobita, Naoshi; Tsuboyama, Toru; Yamada, Miho

    2016-07-01

    We are developing advanced pixel sensors using silicon-on-insulator (SOI) technology. A SOI wafer is used; top silicon is used for electric circuit and bottom silicon is used as a sensor. Target applications are high-energy physics, X-ray astronomy, material science, non-destructive inspection, medical application and so on. We have developed two integration-type pixel sensors, FPIXb and INTPIX7. These sensors were processed on single SOI wafers with various substrates in n- or p-type and double SOI wafers. The development status of double SOI sensors and some up-to-date test results of n-type and p-type SOI sensors are shown.

  14. Pixel-based OPC optimization based on conjugate gradients.

    PubMed

    Ma, Xu; Arce, Gonzalo R

    2011-01-31

    Optical proximity correction (OPC) methods are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based OPC (PBOPC), the mask is divided into small pixels, each of which is modified during the optimization process. Two critical issues in PBOPC are the required computational complexity of the optimization process, and the manufacturability of the optimized mask. Most current OPC optimization methods apply the steepest descent (SD) algorithm to improve image fidelity augmented by regularization penalties to reduce the complexity of the mask. Although simple to implement, the SD algorithm converges slowly. The existing regularization penalties, however, fall short in meeting the mask rule check (MRC) requirements often used in semiconductor manufacturing. This paper focuses on developing OPC optimization algorithms based on the conjugate gradient (CG) method which exhibits much faster convergence than the SD algorithm. The imaging formation process is represented by the Fourier series expansion model which approximates the partially coherent system as a sum of coherent systems. In order to obtain more desirable manufacturability properties of the mask pattern, a MRC penalty is proposed to enlarge the linear size of the sub-resolution assistant features (SRAFs), as well as the distances between the SRAFs and the main body of the mask. Finally, a projection method is developed to further reduce the complexity of the optimized mask pattern.

  15. pPXF: Penalized Pixel-Fitting stellar kinematics extraction

    NASA Astrophysics Data System (ADS)

    Cappellari, Michele

    2012-10-01

    pPXF is an IDL (and free GDL or FL) program which extracts the stellar kinematics or stellar population from absorption-line spectra of galaxies using the Penalized Pixel-Fitting method (pPXF) developed by Cappellari & Emsellem (2004, PASP, 116, 138). Additional features implemented in the pPXF routine include: Optimal template: Fitted together with the kinematics to minimize template-mismatch errors. Also useful to extract gas kinematics or derive emission-corrected line-strengths indexes. One can use synthetic templates to study the stellar population of galaxies via "Full Spectral Fitting" instead of using traditional line-strengths.Regularization of templates weights: To reduce the noise in the recovery of the stellar population parameters and attach a physical meaning to the output weights assigned to the templates in term of the star formation history (SFH) or metallicity distribution of an individual galaxy.Iterative sigma clipping: To clean the spectra from residual bad pixels or cosmic rays.Additive/multiplicative polynomials: To correct low frequency continuum variations. Also useful for calibration purposes.

  16. The Silicon Pixel Detector for ALICE Experiment

    SciTech Connect

    Fabris, D.; Bombonati, C.; Dima, R.; Lunardon, M.; Moretto, S.; Pepato, A.; Bohus, L. Sajo; Scarlassara, F.; Segato, G.; Shen, D.; Turrisi, R.; Viesti, G.; Anelli, G.; Boccardi, A.; Burns, M.; Campbell, M.; Ceresa, S.; Conrad, J.; Kluge, A.; Kral, M.

    2007-10-26

    The Inner Tracking System (ITS) of the ALICE experiment is made of position sensitive detectors which have to operate in a region where the track density may be as high as 50 tracks/cm{sup 2}. To handle such densities detectors with high precision and granularity are mandatory. The Silicon Pixel Detector (SPD), the innermost part of the ITS, has been designed to provide tracking information close to primary interaction point. The assembly of the entire SPD has been completed.

  17. The Belle II DEPFET pixel detector

    NASA Astrophysics Data System (ADS)

    Moser, Hans-Günther

    2016-09-01

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55-60) μm in the first layer and between 50 μm×(70-85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the 'internal gate' modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X0). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO2 system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  18. Local Histograms for Per-Pixel Classification

    DTIC Science & Technology

    2012-03-01

    Domain-Knowledge-Inspired Math - ematical Framework for the Description and Classification of H&E Stained Histopathology Images,” Proceedings of SPIE, 8138... computed over discrete images as the number of pixels in a particular bin. In order to obtain a “density” independent of the bin-width, one can divide the...Notes in Computer Science , 5112: 688–696 (2008). [12] van Ginneken, Bram and Bart M. ter Haar Romeny. “Applications of Locally Orderless Images

  19. Photovoltaic Retinal Prosthesis with High Pixel Density

    PubMed Central

    Mathieson, Keith; Loudin, James; Goetz, Georges; Huie, Philip; Wang, Lele; Kamins, Theodore I.; Galambos, Ludwig; Smith, Richard; Harris, James S.; Sher, Alexander; Palanker, Daniel

    2012-01-01

    Retinal degenerative diseases lead to blindness due to loss of the “image capturing” photoreceptors, while neurons in the “image processing” inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems, which deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation was produced in normal and degenerate rat retinas, with pulse durations from 0.5 to 4 ms, and threshold peak irradiances from 0.2 to 10 mW/mm2, two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 μm bipolar pixel, demonstrating the possibility of a fully-integrated photovoltaic retinal prosthesis with high pixel density. PMID:23049619

  20. Soil moisture variability within remote sensing pixels

    SciTech Connect

    Charpentier, M.A.; Groffman, P.M. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper addresses the question of soil moisture variation within the field of view of a remote sensing pixel. Remote sensing is the only practical way to sense soil moisture over large areas, but it is known that there can be large variations of soil moisture within the field of view of a pixel. The difficulty with this is that many processes, such as gas exchange between surface and atmosphere can vary dramatically with moisture content, and a small wet spot, for example, can have a dramatic impact on such processes, and thereby bias remote sensing data results. Here the authors looked at the impact of surface topography on the level of soil moisture, and the interaction of both on the variability of soil moisture sensed by a push broom microwave radiometer (PBMR). In addition the authors looked at the question of whether variations of soil moisture within pixel size areas could be used to assign errors to PBMR generated soil moisture data.

  1. Photovoltaic retinal prosthesis with high pixel density

    NASA Astrophysics Data System (ADS)

    Mathieson, Keith; Loudin, James; Goetz, Georges; Huie, Philip; Wang, Lele; Kamins, Theodore I.; Galambos, Ludwig; Smith, Richard; Harris, James S.; Sher, Alexander; Palanker, Daniel

    2012-06-01

    Retinal degenerative diseases lead to blindness due to loss of the `image capturing' photoreceptors, while neurons in the `image-processing' inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating the surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems that deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation is produced in normal and degenerate rat retinas, with pulse durations of 0.5-4 ms, and threshold peak irradiances of 0.2-10 mW mm-2, two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 µm bipolar pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high pixel density.

  2. Status of the CMS pixel project

    SciTech Connect

    Uplegger, Lorenzo; /Fermilab

    2008-01-01

    The Compact Muon Solenoid Experiment (CMS) will start taking data at the Large Hadron Collider (LHC) in 2008. The closest detector to the interaction point is the silicon pixel detector which is the heart of the tracking system. It consists of three barrel layers and two pixel disks on each side of the interaction point for a total of 66 million channels. Its proximity to the interaction point means there will be very large particle fluences and therefore a radiation-tolerant design is necessary. The pixel detector will be crucial to achieve a good vertex resolution and will play a key role in pattern recognition and track reconstruction. The results from test beam runs prove that the expected performances can be achieved. The detector is currently being assembled and will be ready for insertion into CMS in early 2008. During the assembly phase, a thorough electronic test is being done to check the functionality of each channel to guarantee the performance required to achieve the physics goals. This report will present the final detector design, the status of the production as well as results from test beam runs to validate the expected performance.

  3. Pixel electronics for the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Fischer, P.

    2001-06-01

    The ATLAS experiment at LHC will use 3 barrel layers and 2×5 disks of silicon pixel detectors as the innermost elements of the semiconductor tracker. The basic building blocks are pixel modules with an active area of 16.4 mm×60.8 mm which include an n + on n-type silicon sensor and 16 VLSI front-end (FE) chips. Every FE chip contains a low power, high speed charge sensitive preamplifier, a fast discriminator, and a readout system which operates at the 40 MHz rate of LHC. The addresses of hit pixels (as well as a low resolution pulse height information) are stored on the FE chips until arrival of a level 1 trigger signal. Hits are then transferred to a module controller chip (MCC) which collects the data of all 16 FE chips, builds complete events and sends the data through two optical links to the data acquisition system. The MCC receives clock and data through an additional optical link and provides timing and configuration information for the FE chips. Two additional chips are used to amplify and decode the pin diode signal and to drive the VCSEL laser diodes of the optical links.

  4. CMOS Active Pixel Sensor Technology and Reliability Characterization Methodology

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Guertin, Steven M.; Pain, Bedabrata; Kayaii, Sammy

    2006-01-01

    This paper describes the technology, design features and reliability characterization methodology of a CMOS Active Pixel Sensor. Both overall chip reliability and pixel reliability are projected for the imagers.

  5. A PFM based digital pixel with off-pixel residue measurement for 15μm pitch MWIR FPAs

    NASA Astrophysics Data System (ADS)

    Abbasi, Shahbaz; Shafique, Atia; Galioglu, Arman; Ceylan, Omer; Yazici, Melik; Gurbuz, Yasar

    2016-05-01

    Digital pixels based on pulse frequency modulation (PFM) employ counting techniques to achieve very high charge handling capability compared to their analog counterparts. Moreover, extended counting methods making use of leftover charge (residue) on the integration capacitor help improve the noise performance of these pixels. However, medium wave infrared (MWIR) focal plane arrays (FPAs) having smaller pixel pitch are constrained in terms of pixel area which makes it difficult to add extended counting circuitry to the pixel. Thus, this paper investigates the performance of digital pixels employing off-pixel residue measurement. A circuit prototype of such a pixel has been designed for 15μm pixel pitch and fabricated in 90nm CMOS. The prototype is composed of a pixel front-end based on a PFM loop. The frontend is a modified version of conventional design providing a means for buffering the signal that needs to be converted to a digital value by an off-pixel ADC. The pixel has an integration phase and a residue measurement phase. Measured integration performance of the pixel has been reported in this paper for various detector currents and integration times.

  6. PIXELS: Using field-based learning to investigate students' concepts of pixels and sense of scale

    NASA Astrophysics Data System (ADS)

    Pope, A.; Tinigin, L.; Petcovic, H. L.; Ormand, C. J.; LaDue, N.

    2015-12-01

    Empirical work over the past decade supports the notion that a high level of spatial thinking skill is critical to success in the geosciences. Spatial thinking incorporates a host of sub-skills such as mentally rotating an object, imagining the inside of a 3D object based on outside patterns, unfolding a landscape, and disembedding critical patterns from background noise. In this study, we focus on sense of scale, which refers to how an individual quantified space, and is thought to develop through kinesthetic experiences. Remote sensing data are increasingly being used for wide-reaching and high impact research. A sense of scale is critical to many areas of the geosciences, including understanding and interpreting remotely sensed imagery. In this exploratory study, students (N=17) attending the Juneau Icefield Research Program participated in a 3-hour exercise designed to study how a field-based activity might impact their sense of scale and their conceptions of pixels in remotely sensed imagery. Prior to the activity, students had an introductory remote sensing lecture and completed the Sense of Scale inventory. Students walked and/or skied the perimeter of several pixel types, including a 1 m square (representing a WorldView sensor's pixel), a 30 m square (a Landsat pixel) and a 500 m square (a MODIS pixel). The group took reflectance measurements using a field radiometer as they physically traced out the pixel. The exercise was repeated in two different areas, one with homogenous reflectance, and another with heterogeneous reflectance. After the exercise, students again completed the Sense of Scale instrument and a demographic survey. This presentation will share the effects and efficacy of the field-based intervention to teach remote sensing concepts and to investigate potential relationships between students' concepts of pixels and sense of scale.

  7. HUBBLE SPACE TELESCOPE PIXEL ANALYSIS OF THE INTERACTING FACE-ON SPIRAL GALAXY NGC 5194 (M51A)

    SciTech Connect

    Lee, Joon Hyeop; Kim, Sang Chul; Park, Hong Soo; Ree, Chang Hee; Kyeong, Jaemann; Chung, Jiwon E-mail: sckim@kasi.re.kr E-mail: chr@kasi.re.kr E-mail: jiwon@kasi.re.kr

    2011-10-10

    A pixel analysis is carried out on the interacting face-on spiral galaxy NGC 5194 (M51A), using the Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) images in the F435W, F555W, and F814W (BVI) bands. After 4 x 4 binning of the HST/ACS images to secure a sufficient signal-to-noise ratio for each pixel, we derive several quantities describing the pixel color-magnitude diagram (pCMD) of NGC 5194: blue/red color cut, red pixel sequence parameters, blue pixel sequence parameters, and blue-to-red pixel ratio. The red sequence pixels are mostly older than 1 Gyr, while the blue sequence pixels are mostly younger than 1 Gyr, in their luminosity-weighted mean stellar ages. The color variation in the red pixel sequence from V = 20 mag arcsec{sup -2} to V = 17 mag arcsec{sup -2} corresponds to a metallicity variation of {Delta}[Fe/H] {approx}2 or an optical depth variation of {Delta}{tau}{sub V} {approx} 4 by dust, but the actual sequence is thought to originate from the combination of those two effects. At V < 20 mag arcsec{sup -2}, the color variation in the blue pixel sequence corresponds to an age variation from 5 Myr to 300 Myr under the assumption of solar metallicity and {tau}{sub V} = 1. To investigate the spatial distributions of stellar populations, we divide pixel stellar populations using the pixel color-color diagram and population synthesis models. As a result, we find that the pixel population distributions across the spiral arms agree with a compressing process by spiral density waves: dense dust {yields} newly formed stars. The tidal interaction between NGC 5194 and NGC 5195 appears to enhance the star formation at the tidal bridge connecting the two galaxies. We find that the pixels corresponding to the central active galactic nucleus (AGN) area of NGC 5194 show a tight sequence at the bright-end of the pCMD, which are in the region of R {approx} 100 pc and may be a photometric indicator of AGN properties.

  8. Measurements with MÖNCH, a 25 μm pixel pitch hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Ramilli, M.; Bergamaschi, A.; Andrae, M.; Brückner, M.; Cartier, S.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Hutwelker, T.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ruat, M.; Redford, S.; Schmitt, B.; Shi, X.; Tinti, G.; Zhang, J.

    2017-01-01

    MÖNCH is a hybrid silicon pixel detector based on charge integration and with analog readout, featuring a pixel size of 25×25 μm2. The latest working prototype consists of an array of 400×400 identical pixels for a total active area of 1×1 cm2. Its design is optimized for the single photon regime. An exhaustive characterization of this large area prototype has been carried out in the past months, and it confirms an ENC in the order of 35 electrons RMS and a dynamic range of ~4×12 keV photons in high gain mode, which increases to ~100×12 keV photons with the lowest gain setting. The low noise levels of MÖNCH make it a suitable candidate for X-ray detection at energies around 1 keV and below. Imaging applications in particular can benefit significantly from the use of MÖNCH: due to its extremely small pixel pitch, the detector intrinsically offers excellent position resolution. Moreover, in low flux conditions, charge sharing between neighboring pixels allows the use of position interpolation algorithms which grant a resolution at the micrometer-level. Its energy reconstruction and imaging capabilities have been tested for the first time at a low energy beamline at PSI, with photon energies between 1.75 keV and 3.5 keV, and results will be shown.

  9. Mars Science Laboratory Engineering Cameras

    NASA Technical Reports Server (NTRS)

    Maki, Justin N.; Thiessen, David L.; Pourangi, Ali M.; Kobzeff, Peter A.; Lee, Steven W.; Dingizian, Arsham; Schwochert, Mark A.

    2012-01-01

    NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams.

  10. Active pixel sensor pixel having a photodetector whose output is coupled to an output transistor gate

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Nakamura, Junichi (Inventor); Kemeny, Sabrina E. (Inventor)

    2005-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. A Simple Floating Gate (SFG) pixel structure could also be employed in the imager to provide a non-destructive readout and smaller pixel sizes.

  11. How many pixels does it take to make a good 4"×6" print? Pixel count wars revisited

    NASA Astrophysics Data System (ADS)

    Kriss, Michael A.

    2011-01-01

    In the early 1980's the future of conventional silver-halide photographic systems was of great concern due to the potential introduction of electronic imaging systems then typified by the Sony Mavica analog electronic camera. The focus was on the quality of film-based systems as expressed in the number of equivalent number pixels and bits-per-pixel, and how many pixels would be required to create an equivalent quality image from a digital camera. It was found that 35-mm frames, for ISO 100 color negative film, contained equivalent pixels of 12 microns for a total of 18 million pixels per frame (6 million pixels per layer) with about 6 bits of information per pixel; the introduction of new emulsion technology, tabular AgX grains, increased the value to 8 bit per pixel. Higher ISO speed films had larger equivalent pixels, fewer pixels per frame, but retained the 8 bits per pixel. Further work found that a high quality 3.5" x 5.25" print could be obtained from a three layer system containing 1300 x 1950 pixels per layer or about 7.6 million pixels in all. In short, it became clear that when a digital camera contained about 6 million pixels (in a single layer using a color filter array and appropriate image processing) that digital systems would challenge and replace conventional film-based system for the consumer market. By 2005 this became the reality. Since 2005 there has been a "pixel war" raging amongst digital camera makers. The question arises about just how many pixels are required and are all pixels equal? This paper will provide a practical look at how many pixels are needed for a good print based on the form factor of the sensor (sensor size) and the effective optical modulation transfer function (optical spread function) of the camera lens. Is it better to have 16 million, 5.7-micron pixels or 6 million 7.8-micron pixels? How does intrinsic (no electronic boost) ISO speed and exposure latitude vary with pixel size? A systematic review of these issues will

  12. Pixel-Level Simulation of Imaging Data

    NASA Astrophysics Data System (ADS)

    Stoughton, C.; Kuropatkin, N. P.; Neilsen, E., Jr.; Harms, D. C.

    2007-10-01

    We are preparing a set of Java packages to facilitate the design and operation of imaging surveys. The packages use shapelets to describe shapes of astronomical sources, optical distortions, and shear from weak gravitational lensing. We introduce noise, bad pixels, cosmic rays, the pupil image, saturation, and other observational effects. A set of utility classes handles I/O, plotting, and interfaces to existing packages: nom.tam.fits for FITS I/O; uk.ac.starlink.table for tables; and cern.colt for algorithms. The packages have been used to generate images for the Dark Energy Survey data challenges, and will be used by SNAP to continue evaluating its design.

  13. Small pixel uncooled imaging FPAs and applications

    NASA Astrophysics Data System (ADS)

    Blackwell, Richard; Franks, Glen; Lacroix, Daniel; Hyland, Sandra; Murphy, Robert

    2010-04-01

    BAE Systems continues to make dramatic progress in uncooled microbolometer sensors and applications. This paper will review the latest advancements in microbolometer technology at BAE Systems, including the development status of 17 micrometer pixel pitch detectors and imaging modules which are entering production and will be finding their way into BAE Systems products and applications. Benefits include increased die per wafer and potential benefits to SWAP for many applications. Applications include thermal weapons sights, thermal imaging modules for remote weapon stations, vehicle situational awareness sensors and mast/pole mounted sensors.

  14. Active pixel sensor array with electronic shuttering

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor)

    2002-01-01

    An active pixel cell includes electronic shuttering capability. The cell can be shuttered to prevent additional charge accumulation. One mode transfers the current charge to a storage node that is blocked against accumulation of optical radiation. The charge is sampled from a floating node. Since the charge is stored, the node can be sampled at the beginning and the end of every cycle. Another aspect allows charge to spill out of the well whenever the charge amount gets higher than some amount, thereby providing anti blooming.

  15. A neighbor pixel communication filtering structure for Dynamic Vision Sensors

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Liu, Shiqi; Lu, Hehui; Zhang, Zilong

    2017-02-01

    For Dynamic Vision Sensors (DVS), thermal noise and junction leakage current induced Background Activity (BA) is the major cause of the deterioration of images quality. Inspired by the smoothing filtering principle of horizontal cells in vertebrate retina, A DVS pixel with Neighbor Pixel Communication (NPC) filtering structure is proposed to solve this issue. The NPC structure is designed to judge the validity of pixel's activity through the communication between its 4 adjacent pixels. The pixel's outputs will be suppressed if its activities are determined not real. The proposed pixel's area is 23.76×24.71μm2 and only 3ns output latency is introduced. In order to validate the effectiveness of the structure, a 5×5 pixel array has been implemented in SMIC 0.13μm CIS process. 3 test cases of array's behavioral model show that the NPC-DVS have an ability of filtering the BA.

  16. Active pixel sensor array with multiresolution readout

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor); Pain, Bedabrata (Inventor)

    1999-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. The imaging device can also include an electronic shutter formed on the substrate adjacent the photogate, and/or a storage section to allow for simultaneous integration. In addition, the imaging device can include a multiresolution imaging circuit to provide images of varying resolution. The multiresolution circuit could also be employed in an array where the photosensitive portion of each pixel cell is a photodiode. This latter embodiment could further be modified to facilitate low light imaging.

  17. The Phase1 CMS Pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Tavolaro, V. R.

    2016-12-01

    The pixel detector of the CMS experiment will be replaced in an extended end-of-year shutdown during winter 2016/2017 with an upgraded one able to cope with peak instantaneous luminosities beyond the nominal LHC instantaneous luminosity of 1 × 1034 cm-2 s-1. Under the conditions expected in the coming years, which will see an increase of a factor two in instantaneous luminosity, the present system would experience a dynamic inefficiency caused mainly by data losses due to buffer overflows. The Phase I upgrade of the CMS pixel detector, described in this paper, will operate at full efficiency at an instantaneous luminosity of 2 × 1034 cm-2 s-1 and beyond, thanks to a new readout chip. The new detector will feature one additional tracking point both in the barrel and in the forward regions, while reducing the material budget as a result of a new CO2 cooling system and optimised layout of the services. In this paper, the design and the technological choices of the Phase I detector will be reviewed and the status of the construction of the detector and the performance of its components will be discussed.

  18. Ultra large mode area pixelated Bragg fiber

    NASA Astrophysics Data System (ADS)

    Yehouessi, J.-P.; Bouwmans, G.; Vanvincq, O.; Cassez, A.; Habert, R.; Quiquempois, Y.; Bigot, L.

    2016-03-01

    We report on the design and the fabrication of a new design of an all-solid Bragg fiber based on the pixelization and heterostructuration of a cladding made of only two high index rings. The thickness of the low index ring as well as the geometry of the heterostructuration (its symmetry and the number of removed pixels) have been chosen to maximize the confinement losses of the Higher Order Modes (HOM) (above 10 dB/m) while keeping the Fundamental Mode (FM) losses low (below 0.1 dB/m). The proposed geometry allows having access to different Mode Field Diameter (MFD) from 54 μm to 60 μm at 1 μm wavelength by drawing the same stack to different fiber (and hence, core) diameters. As a result, a record MFD of 60 μm is reported for a Solid Core Photonic Bandgap Fiber (SC-PBGF) and single-mode behavior is obtained experimentally even for a short fiber length (few tens centimeters) maintained straight.

  19. Silicon pixel R&D for CLIC

    NASA Astrophysics Data System (ADS)

    Munker, M.

    2017-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+ e‑ Compact Linear Collider (CLIC). A single point resolution of 3 μm for the vertex detector and 7 μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2% X0 per layer in the vertex detector and 1–2% X0 in the tracker. A fast time slicing of 10 ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D effort. Various hybrid planar sensor assemblies with a pixel size of 25×25 μm2 and 55×55 μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50 μm–500 μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  20. Further applications for mosaic pixel FPA technology

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.

    2011-06-01

    In previous papers to this SPIE forum the development of novel technology for next generation PIR security sensors has been described. This technology combines the mosaic pixel FPA concept with low cost optics and purpose-designed readout electronics to provide a higher performance and affordable alternative to current PIR sensor technology, including an imaging capability. Progressive development has resulted in increased performance and transition from conventional microbolometer fabrication to manufacture on 8 or 12 inch CMOS/MEMS fabrication lines. A number of spin-off applications have been identified. In this paper two specific applications are highlighted: high performance imaging IRFPA design and forest fire detection. The former involves optional design for small pixel high performance imaging. The latter involves cheap expendable sensors which can detect approaching fire fronts and send alarms with positional data via mobile phone or satellite link. We also introduce to this SPIE forum the application of microbolometer IR sensor technology to IoT, the Internet of Things.

  1. Analysis of pixel circuits in CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Mei, Zou; Chen, Nan; Yao, Li-bin

    2015-04-01

    CMOS image sensors (CIS) have lower power consumption, lower cost and smaller size than CCD image sensors. However, generally CCDs have higher performance than CIS mainly due to lower noise. The pixel circuit used in CIS is the first part of the signal processing circuit and connected to photodiode directly, so its performance will greatly affect the CIS or even the whole imaging system. To achieve high performance, CMOS image sensors need advanced pixel circuits. There are many pixel circuits used in CIS, such as passive pixel sensor (PPS), 3T and 4T active pixel sensor (APS), capacitive transimpedance amplifier (CTIA), and passive pixel sensor (PPS). At first, the main performance parameters of each pixel structure including the noise, injection efficiency, sensitivity, power consumption, and stability of bias voltage are analyzed. Through the theoretical analysis of those pixel circuits, it is concluded that CTIA pixel circuit has good noise performance, high injection efficiency, stable photodiode bias, and high sensitivity with small integrator capacitor. Furthermore, the APS and CTIA pixel circuits are simulated in a standard 0.18-μm CMOS process and using a n-well/p-sub photodiode by SPICE and the simulation result confirms the theoretical analysis result. It shows the possibility that CMOS image sensors can be extended to a wide range of applications requiring high performance.

  2. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    NASA Astrophysics Data System (ADS)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  3. Pixel response function experimental techniques and analysis of active pixel sensor star cameras

    NASA Astrophysics Data System (ADS)

    Fumo, Patrick; Waldron, Erik; Laine, Juha-Pekka; Evans, Gary

    2015-04-01

    The pixel response function (PRF) of a pixel within a focal plane is defined as the pixel intensity with respect to the position of a point source within the pixel. One of its main applications is in the field of astrometry, which is a branch of astronomy that deals with positioning data of a celestial body for tracking movement or adjusting the attitude of a spacecraft. Complementary metal oxide semiconductor (CMOS) image sensors generally offer better radiation tolerance to protons and heavy ions than CCDs making them ideal candidates for space applications aboard satellites, but like all image sensors they are limited by their spatial frequency response, better known as the modulation transfer function. Having a well-calibrated PRF allows us to eliminate some of the uncertainty in the spatial response of the system providing better resolution and a more accurate centroid estimation. This paper describes the experimental setup for determining the PRF of a CMOS image sensor and analyzes the effect on the oversampled point spread function (PSF) of an image intensifier, as well as the effects due to the wavelength of light used as a point source. It was found that using electron bombarded active pixel sensor (EBAPS) intensification technology had a significant impact on the PRF of the camera being tested as a result of an increase in the amount of carrier diffusion between collection sites generated by the intensification process. Taking the full width at half maximum (FWHM) of the resulting data, it was found that the intensified version of a CMOS camera exhibited a PSF roughly 16.42% larger than its nonintensified counterpart.

  4. Pixel detectors for x-ray imaging spectroscopy in space

    NASA Astrophysics Data System (ADS)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  5. Ultra-high speed burst-mode imager for multi-frame radiography

    SciTech Connect

    Kwiatkowski, Kris; Nedrow, Paul; Mariam, Fesseha; Merrill, Frank E; Morris, Chris L; Saunders, Abdy; Hogan, Gary; Douance, Vincent; Bal, Yibin; Joshi, Atul; Auyeung, John

    2010-01-01

    A 720 x 720 pixel hybrid-CMOS imager was fabricated by Rockwell Scientific (now Teledyne Imaging Sensors). Several cameras have been in operation for 5 years, in a variety of static and dynamic experiments, at the 800MeV proton radiography (pRAD) facility at the LANSCE accelerator. The cameras can operate with a per-pulse adjustable inter-frame time of 250ns to 2s, and with an exposure/integration-time as short as 150 ns. Given the 800 ms total readout time, the imager can be externally synchronized to 0.1-to-5Hz, 50-ns wide proton beam pulses, and record 1000-frame radiographic movies of 5-to-30 minute duration. The effectiveness and dependence of the global electronic shutter on the pixelated Si photo-sensor bias voltage is discussed. The spatial resolution dependence of the full imaging system on various monolithic and structured scintillators is presented. We also present features of a new-generation 10-frame, 1024 x 1024 pixel, 50-ns exposure, 12-bit dynamic range imager, which is now in the design phase.

  6. How big is an OMI pixel?

    NASA Astrophysics Data System (ADS)

    de Graaf, Martin; Sihler, Holger; Tilstra, Lieuwe G.; Stammes, Piet

    2016-08-01

    The Ozone Monitoring Instrument (OMI) is a push-broom imaging spectrometer, observing solar radiation backscattered by the Earth's atmosphere and surface. The incoming radiation is detected using a static imaging CCD (charge-coupled device) detector array with no moving parts, as opposed to most of the previous satellite spectrometers, which used a moving mirror to scan the Earth in the across-track direction. The field of view (FoV) of detector pixels is the solid angle from which radiation is observed, averaged over the integration time of a measurement. The OMI FoV is not quadrangular, which is common for scanning instruments, but rather super-Gaussian shaped and overlapping with the FoV of neighbouring pixels. This has consequences for pixel-area-dependent applications, like cloud fraction products, and visualisation.The shapes and sizes of OMI FoVs were determined pre-flight by theoretical and experimental tests but never verified after launch. In this paper the OMI FoV is characterised using collocated MODerate resolution Imaging Spectroradiometer (MODIS) reflectance measurements. MODIS measurements have a much higher spatial resolution than OMI measurements and spectrally overlap at 469 nm. The OMI FoV was verified by finding the highest correlation between MODIS and OMI reflectances in cloud-free scenes, assuming a 2-D super-Gaussian function with varying size and shape to represent the OMI FoV. Our results show that the OMPIXCOR product 75FoV corner coordinates are accurate as the full width at half maximum (FWHM) of a super-Gaussian FoV model when this function is assumed. The softness of the function edges, modelled by the super-Gaussian exponents, is different in both directions and is view angle dependent.The optimal overlap function between OMI and MODIS reflectances is scene dependent and highly dependent on time differences between overpasses, especially with clouds in the scene. For partially clouded scenes, the optimal overlap function was

  7. Pixel-level plasmonic microcavity infrared photodetector

    NASA Astrophysics Data System (ADS)

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-05-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging.

  8. Pixel-level plasmonic microcavity infrared photodetector

    PubMed Central

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-01-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging. PMID:27181111

  9. Silicon buried channels for pixel detector cooling

    NASA Astrophysics Data System (ADS)

    Boscardin, M.; Conci, P.; Crivellari, M.; Ronchin, S.; Bettarini, S.; Bosi, F.

    2013-08-01

    The support and cooling structures add important contributions to the thickness, in radiation length, of vertex detectors. In order to minimize the material budget of pixel sensors, we developed a new approach to integrate the cooling into the silicon devices. The microchannels are formed in silicon using isotropic SF6 plasma etching in a DRIE (deep reactive ion etcher) equipment. Due to their peculiar profiles, the channels can be sealed by a layer of a PECVD silicon oxide. We have realized on a silicon wafer microchannels with different geometries and hydraulic diameters. We describe the main fabrication steps of microchannels with focus on the channel definition. The experimental results are reported on the thermal characterization of several prototypes, using a mixture of glycol and water as a liquid coolant. The prototypes have shown high cooling efficiency and high-pressure breaking strength.

  10. Operational experience with the ALICE pixel detector

    NASA Astrophysics Data System (ADS)

    Mastroserio, A.

    2017-01-01

    The Silicon Pixel Detector (SPD) constitutes the two innermost layers of the Inner Tracking System of the ALICE experiment and it is the closest detector to the interaction point. As a vertex detector, it has the unique feature of generating a trigger signal that contributes to the L0 trigger of the ALICE experiment. The SPD started collecting data since the very first pp collisions at LHC in 2009 and since then it has taken part in all pp, Pb-Pb and p-Pb data taking campaigns. This contribution will present the main features of the SPD, the detector performance and the operational experience, including calibration and optimization activities from Run 1 to Run 2.

  11. Research of IRFPAs' reliability evaluation by bad pixel

    NASA Astrophysics Data System (ADS)

    Hao, Lichao; Huang, Aibo; Lai, Canxiong; Chen, Xing; Hao, Mingming; Chen, Honglei; Lu, Guoguang; Huang, Yun; En, Yunfei

    2015-10-01

    Reliability is an important index to ensure the application of infrared focal plane arrays (IRFPAs) in complex environment, and it becomes a major bottleneck problem of IRFPAs' development. Because of the characteristics such as type, nature, quantity, location and distribution et al, bad pixel which contains initial bad pixel and used bad pixel has outstanding advantage for failure analysis and reliability evaluation of IRFPAs. In this paper, the structure of IRPFAs has been introduced in detail, and the damage mechanisms of used bad pixel also have been analyzed deeply. At the same time, the feasibility to study IRPFAs' damage stress, failure position, damage mechanism has been discussed all around. The research of bad pixel can be used to optimize the structure and process, meanwhile it also can improve the accuracy of bad pixel identification and replacements.

  12. Fast Pixel Buffer For Processing With Lookup Tables

    NASA Technical Reports Server (NTRS)

    Fisher, Timothy E.

    1992-01-01

    Proposed scheme for buffering data on intensities of picture elements (pixels) of image increases rate or processing beyond that attainable when data read, one pixel at time, from main image memory. Scheme applied in design of specialized image-processing circuitry. Intended to optimize performance of processor in which electronic equivalent of address-lookup table used to address those pixels in main image memory required for processing.

  13. Mapping Capacitive Coupling Among Pixels in a Sensor Array

    NASA Technical Reports Server (NTRS)

    Seshadri, Suresh; Cole, David M.; Smith, Roger M.

    2010-01-01

    An improved method of mapping the capacitive contribution to cross-talk among pixels in an imaging array of sensors (typically, an imaging photodetector array) has been devised for use in calibrating and/or characterizing such an array. The method involves a sequence of resets of subarrays of pixels to specified voltages and measurement of the voltage responses of neighboring non-reset pixels.

  14. Steganography on quantum pixel images using Shannon entropy

    NASA Astrophysics Data System (ADS)

    Laurel, Carlos Ortega; Dong, Shi-Hai; Cruz-Irisson, M.

    2016-07-01

    This paper presents a steganographical algorithm based on least significant bit (LSB) from the most significant bit information (MSBI) and the equivalence of a bit pixel image to a quantum pixel image, which permits to make the information communicate secretly onto quantum pixel images for its secure transmission through insecure channels. This algorithm offers higher security since it exploits the Shannon entropy for an image.

  15. CMOS monolithic pixel sensors research and development at LBNL

    NASA Astrophysics Data System (ADS)

    Contarato, D.; Bussat, J.-M.; Denes, P.; Greiner, L.; Kim, T.; Stezelberger, T.; Wieman, H.; Battaglia, M.; Hooberman, B.; Tompkins, L.

    2007-12-01

    This paper summarizes the recent progress in the design and characterization of CMOS pixel sensors at LBNL. Results of lab tests, beam tests and radiation hardness tests carried out at LBNL on a test structure with pixels of various sizes are reported. The first results of the characterization of back-thinned CMOS pixel sensors are also reported, and future plans and activities are discussed.

  16. GaAs QWIP Array Containing More Than a Million Pixels

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzy; Choi, K. K.; Gunapala, Sarath

    2005-01-01

    A 1,024 x 1,024-pixel array of quantum-well infrared photodetectors (QWIPs) has been built on a 1.8 x 1.8- cm GaAs chip. In tests, the array was found to perform well in detecting images at wavelengths from 8 to 9 m in operation at temperatures between 60 and 70 K. The largest-format QWIP prior array that performed successfully in tests contained 512 x 640 pixels. There is continuing development effort directed toward satisfying actual and anticipated demands to increase numbers of pixels and pixel sizes in order to increase the imaging resolution of infrared photodetector arrays. A 1,024 x 1,024-pixel and even larger formats have been achieved in the InSb and HgCdTe material systems, but photodetector arrays in these material systems are very expensive and manufactured by fewer than half a dozen large companies. In contrast, GaAs-photodetector-array technology is very mature, and photodetectors in the GaAs material system can be readily manufactured by a wide range of industrial technologists, by universities, and government laboratories. There is much similarity between processing in the GaAs industry and processing in the pervasive silicon industry. With respect to yield and cost, the performance of GaAs technology substantially exceeds that of InSb and HgCdTe technologies. In addition, GaAs detectors can be designed to respond to any portion of the wavelength range from 3 to about 16 micrometers - a feature that is very desirable for infrared imaging. GaAs QWIP arrays, like the present one, have potential for use as imaging sensors in infrared measuring instruments, infrared medical imaging systems, and infrared cameras.

  17. Hit efficiency study of CMS prototype forward pixel detectors

    SciTech Connect

    Kim, Dongwook; /Johns Hopkins U.

    2006-01-01

    In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

  18. Evaluation of a single-pixel one-transistor active pixel sensor for fingerprint imaging

    NASA Astrophysics Data System (ADS)

    Xu, Man; Ou, Hai; Chen, Jun; Wang, Kai

    2015-08-01

    Since it first appeared in iPhone 5S in 2013, fingerprint identification (ID) has rapidly gained popularity among consumers. Current fingerprint-enabled smartphones unanimously consists of a discrete sensor to perform fingerprint ID. This architecture not only incurs higher material and manufacturing cost, but also provides only static identification and limited authentication. Hence as the demand for a thinner, lighter, and more secure handset grows, we propose a novel pixel architecture that is a photosensitive device embedded in a display pixel and detects the reflected light from the finger touch for high resolution, high fidelity and dynamic biometrics. To this purpose, an amorphous silicon (a-Si:H) dual-gate photo TFT working in both fingerprint-imaging mode and display-driving mode will be developed.

  19. Separation of metadata and pixel data to speed DICOM tag morphing.

    PubMed

    Ismail, Mahmoud; Philbin, James

    2013-01-01

    The DICOM information model combines pixel data and metadata in single DICOM object. It is not possible to access the metadata separately from the pixel data. There are use cases where only metadata is accessed. The current DICOM object format increases the running time of those use cases. Tag morphing is one of those use cases. Tag morphing includes deletion, insertion or manipulation of one or more of the metadata attributes. It is typically used for order reconciliation on study acquisition or to localize the issuer of patient ID (IPID) and the patient ID attributes when data from one domain is transferred to a different domain. In this work, we propose using Multi-Series DICOM (MSD) objects, which separate metadata from pixel data and remove duplicate attributes, to reduce the time required for Tag Morphing. The time required to update a set of study attributes in each format is compared. The results show that the MSD format significantly reduces the time required for tag morphing.

  20. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    NASA Astrophysics Data System (ADS)

    Gabrielli, A.; Backhaus, M.; Balbi, G.; Bindi, M.; Chen, S. P.; Falchieri, D.; Flick, T.; Hauck, S.; Hsu, S. C.; Kretz, M.; Kugel, A.; Lama, L.; Travaglini, R.; Wensing, M.

    2015-03-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called the Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL's off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware, and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ test bench using a realistic front-end chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data path implementation, test on the test bench and ROD prototypes, will be reported. Recent Pixel collaboration efforts focus on finalizing hardware and firmware tests for the IBL. The plan is to approach a complete IBL DAQ hardware-software installation by the end of 2014.

  1. Design and characterization of high precision in-pixel discriminators for rolling shutter CMOS pixel sensors with full CMOS capability

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Hu-Guo, C.; Dorokhov, A.; Pham, H.; Hu, Y.

    2013-07-01

    In order to exploit the ability to integrate a charge collecting electrode with analog and digital processing circuitry down to the pixel level, a new type of CMOS pixel sensors with full CMOS capability is presented in this paper. The pixel array is read out based on a column-parallel read-out architecture, where each pixel incorporates a diode, a preamplifier with a double sampling circuitry and a discriminator to completely eliminate analog read-out bottlenecks. The sensor featuring a pixel array of 8 rows and 32 columns with a pixel pitch of 80 μm×16 μm was fabricated in a 0.18 μm CMOS process. The behavior of each pixel-level discriminator isolated from the diode and the preamplifier was studied. The experimental results indicate that all in-pixel discriminators which are fully operational can provide significant improvements in the read-out speed and the power consumption of CMOS pixel sensors.

  2. High-dynamic-range pixel architectures for diagnostic medical imaging

    NASA Astrophysics Data System (ADS)

    Karim, Karim S.; Yin, Sherman; Nathan, Arokia; Rowlands, John A.

    2004-05-01

    One approach to increase pixel signal-to-noise ratio (SNR) in low noise digital fluoroscopy is to employ in-situ pixel amplification via current-mediated active pixel sensors (C-APS). Experiments reveal a reduction in readout noise and indicate that an a-Si C-APS, coupled together with an established X-ray detection technology such as amorphous selenium (a-Se), can meet the stringent requirements (of < 1000 noise electrons) for digital X-ray fluoroscopy. A challenge with the C-APS circuit is the presence of a small-signal input linearity constraint. While using such a pixel amplifier for real-time fluoroscopy (where the exposure level is small) is feasible, the voltage change at the amplifier input is much higher in chest radiography or mammography due to the larger X-ray exposure levels. The larger input voltage causes the C-APS output to be non-linear thus reducing the pixel dynamic range. In addition, the resulting larger pixel output current causes the external column amplifier to saturate further reducing the pixel dynamic range. In this research, we investigate two alternate amplified pixel architectures that exhibit higher dynamic range. The test pixels are designed and simulated using an a-Si TFT model implemented in Verilog-A and results indicate a linear performance, high dynamic range, and a programmable circuit gain via choice of supply voltage and sampling time. These high dynamic range pixel architectures have the potential to enable a large area, active matrix flat panel imager (AMFPI) to switch instantly between low exposure, fluoroscopic imaging and higher exposure radiographic imaging modes. Lastly, the high dynamic range pixel circuits are suitable for integration with on-panel multiplexers for both gate and data lines, which can further reduce circuit complexity.

  3. Novel integrated CMOS pixel structures for vertex detectors

    SciTech Connect

    Kleinfelder, Stuart; Bieser, Fred; Chen, Yandong; Gareus, Robin; Matis, Howard S.; Oldenburg, Markus; Retiere, Fabrice; Ritter, Hans Georg; Wieman, Howard H.; Yamamoto, Eugene

    2003-10-29

    Novel CMOS active pixel structures for vertex detector applications have been designed and tested. The overriding goal of this work is to increase the signal to noise ratio of the sensors and readout circuits. A large-area native epitaxial silicon photogate was designed with the aim of increasing the charge collected per struck pixel and to reduce charge diffusion to neighboring pixels. The photogate then transfers the charge to a low capacitance readout node to maintain a high charge to voltage conversion gain. Two techniques for noise reduction are also presented. The first is a per-pixel kT/C noise reduction circuit that produces results similar to traditional correlated double sampling (CDS). It has the advantage of requiring only one read, as compared to two for CDS, and no external storage or subtraction is needed. The technique reduced input-referred temporal noise by a factor of 2.5, to 12.8 e{sup -}. Finally, a column-level active reset technique is explored that suppresses kT/C noise during pixel reset. In tests, noise was reduced by a factor of 7.6 times, to an estimated 5.1 e{sup -} input-referred noise. The technique also dramatically reduces fixed pattern (pedestal) noise, by up to a factor of 21 in our tests. The latter feature may possibly reduce pixel-by-pixel pedestal differences to levels low enough to permit sparse data scan without per-pixel offset corrections.

  4. Method for hyperspectral imagery exploitation and pixel spectral unmixing

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2003-01-01

    An efficiently hybrid approach to exploit hyperspectral imagery and unmix spectral pixels. This hybrid approach uses a genetic algorithm to solve the abundance vector for the first pixel of a hyperspectral image cube. This abundance vector is used as initial state in a robust filter to derive the abundance estimate for the next pixel. By using Kalman filter, the abundance estimate for a pixel can be obtained in one iteration procedure which is much fast than genetic algorithm. The output of the robust filter is fed to genetic algorithm again to derive accurate abundance estimate for the current pixel. The using of robust filter solution as starting point of the genetic algorithm speeds up the evolution of the genetic algorithm. After obtaining the accurate abundance estimate, the procedure goes to next pixel, and uses the output of genetic algorithm as the previous state estimate to derive abundance estimate for this pixel using robust filter. And again use the genetic algorithm to derive accurate abundance estimate efficiently based on the robust filter solution. This iteration continues until pixels in a hyperspectral image cube end.

  5. Hybrid Pixel Detectors for gamma/X-ray imaging

    NASA Astrophysics Data System (ADS)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  6. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  7. Singlet mega-pixel resolution lens

    NASA Astrophysics Data System (ADS)

    Lin, Chen-Hung; Lin, Hoang Yan; Chang, Horng

    2008-03-01

    There always exist some new challenges for lens designers to keep their old-line technology update. To minimize lens volume is one of the most notified examples. In this paper we designed a single thick lens, constructed by using one oblique (reflective) surface, apart from two conventional refractive surfaces, to bend the optical path of the optical system to achieve this goal. Detail design procedure, including system layout and lens performance diagrams, will be presented. Following the first order layout, we applied aspherical form to the two refractive surfaces in order to correct the spherical aberration up to an acceptable condition. Then, the reduced aberrations such as coma, astigmatism, field curvature and distortion can easily be corrected with some calculations related to spherical aberration as shown in the publication of H. H. Hopkins (1950). Plastic material is used in the design, because the aspherical surfaces can then be manufactured in a more cost effective way. The final specification of the design is: EFL is 4.6 mm, the F number is 2.8, the over all thickness of lens is 3.6 mm, its MTF is 0.3 at 227 lp/mm in center field and chief ray angle is less than 15 degrees. Lens data as well as optical performance curves are also presented in the paper. In conclusion we have successfully finished a mega-pixel resolution lens design and its overall thickness is compatible with the state of the art.

  8. Hyperspectral Anomaly Detection by Graph Pixel Selection.

    PubMed

    Yuan, Yuan; Ma, Dandan; Wang, Qi

    2016-12-01

    Hyperspectral anomaly detection (AD) is an important problem in remote sensing field. It can make full use of the spectral differences to discover certain potential interesting regions without any target priors. Traditional Mahalanobis-distance-based anomaly detectors assume the background spectrum distribution conforms to a Gaussian distribution. However, this and other similar distributions may not be satisfied for the real hyperspectral images. Moreover, the background statistics are susceptible to contamination of anomaly targets which will lead to a high false-positive rate. To address these intrinsic problems, this paper proposes a novel AD method based on the graph theory. We first construct a vertex- and edge-weighted graph and then utilize a pixel selection process to locate the anomaly targets. Two contributions are claimed in this paper: 1) no background distributions are required which makes the method more adaptive and 2) both the vertex and edge weights are considered which enables a more accurate detection performance and better robustness to noise. Intensive experiments on the simulated and real hyperspectral images demonstrate that the proposed method outperforms other benchmark competitors. In addition, the robustness of the proposed method has been validated by using various window sizes. This experimental result also demonstrates the valuable characteristic of less computational complexity and less parameter tuning for real applications.

  9. Orion: The Largest Infrared Hybrid Focal Plane in Production

    NASA Astrophysics Data System (ADS)

    Fowler, Albert M.; Merrill, Michael; Ball, William J.; Henden, Arne A.; Vrba, Frederick J.; McCreight, Craig R.

    2003-03-01

    Orion is a program to develop a 2048x2048 infrared focal plane using InSb PV detectors. It is the natural follow-on to the successful Aladdin 1024x1024 program, which was the largest IR focal plane of the 90's. Although the pixels are somewhat smaller than Aladdin, the overall focal plane is over 50mm in size and for the present is the largest IR focal plane of the 21st century. The work is being done by Raytheon Infrared Operations (RIO but better known as SBRC) by many of the same people who created the Aladdin focal plane. The design is very similar to the successful Aladdin design with the addition of reference pixels to lower noise and drift effects in long integrations. So far we have made five focal plane modules with hybridized InSb detectors. In this paper we will discuss the unique design features of this device as well as present test data taken from these devices.

  10. Deep-UV-sensitive high-frame-rate backside-illuminated CCD camera developments

    NASA Astrophysics Data System (ADS)

    Dawson, Robin M.; Andreas, Robert; Andrews, James T.; Bhaskaran, Mahalingham; Farkas, Robert; Furst, David; Gershstein, Sergey; Grygon, Mark S.; Levine, Peter A.; Meray, Grazyna M.; O'Neal, Michael; Perna, Steve N.; Proefrock, Donald; Reale, Michael; Soydan, Ramazan; Sudol, Thomas M.; Swain, Pradyumna K.; Tower, John R.; Zanzucchi, Pete

    2002-04-01

    New applications for ultra-violet imaging are emerging in the fields of drug discovery and industrial inspection. High throughput is critical for these applications where millions of drug combinations are analyzed in secondary screenings or high rate inspection of small feature sizes over large areas is required. Sarnoff demonstrated in1990 a back illuminated, 1024 X 1024, 18 um pixel, split-frame-transfer device running at > 150 frames per second with high sensitivity in the visible spectrum. Sarnoff designed, fabricated and delivered cameras based on these CCDs and is now extending this technology to devices with higher pixel counts and higher frame rates through CCD architectural enhancements. The high sensitivities obtained in the visible spectrum are being pushed into the deep UV to support these new medical and industrial inspection applications. Sarnoff has achieved measured quantum efficiencies > 55% at 193 nm, rising to 65% at 300 nm, and remaining almost constant out to 750 nm. Optimization of the sensitivity is being pursued to tailor the quantum efficiency for particular wavelengths. Characteristics of these high frame rate CCDs and cameras will be described and results will be presented demonstrating high UV sensitivity down to 150 nm.

  11. Ultraviolet detector with CMOS-coupled microchannel plates for future space missions

    NASA Astrophysics Data System (ADS)

    Murakami, Go; Kuwabara, Masaki; Yoshioka, Kazuo; Hikida, Reina; Suzuki, Fumiharu; Yoshikawa, Ichiro

    2016-07-01

    The extreme ultraviolet (EUV) telescopes and spectrometers have been used as powerful tools in a variety of space applications, especially in planetary science. Many EUV instruments adopted microchannel plate (MCP) detection systems with resistive anode encoders (RAEs). An RAE is one of the position sensitive anodes suitable for space-based applications because of its low power, mass, and volume coupled with very high reliability. However, this detection system with RAE has limitations of resolution (up to 512 x 512 pixels) and incident count rate (up to 104 count/sec). Concerning the future space and planetary missions, a new detector with different position sensitive system is required in order to a higher resolution and dynamic range of incident photons. One of the solutions of this issue is using a CMOS imaging sensor. The CMOS imaging sensor with high resolution and high radiation tolerance has been widely used. Here we developed a new CMOS-coupled MCP detector for future UV space and planetary missions. It consists of MCPs followed by a phosphor screen, fiber optic plate, and a windowless CMOS. We manufactured a test model of this detector and performed vibration, thermal cycle, and performance tests. The test sample of FOP-coupled CMOS image sensor achieved the resolving limit of 32 lp/mm and the PSF of 28 um, corresponds to the spatial resolution of 1024 x 1024 pixels. Our results indicate that this new type of UV detector can be widely used for future space applications.

  12. First Results of the Athena Microscopic Imager Investigation

    NASA Technical Reports Server (NTRS)

    Herkenhoff, K.; Squyres, S.; Archinal, B.; Arvidson, R.; Bass, D.; Barrett, J.; Becker, K.; Becker, T.; Bell, J., III; Burr, D.

    2004-01-01

    The Athena science payload on the Mars Exploration Rovers (MER) includes the Microscopic Imager (MI). The MI is a fixed-focus camera mounted on an extendable arm, the Instrument Deployment Device (IDD). The MI acquires images at a spatial resolution of 30 microns/pixel over a broad spectral range (400 - 700 nm). The MI uses the same electronics design as the other MER cameras but its optics yield a field of view of 31 x 31 mm across a 1024 x 1024 pixel CCD image. The MI acquires images using only solar or skylight illumination of the target surface. A contact sensor is used to place the MI slightly closer to the target surface than its best focus distance (about 69 mm), allowing concave surfaces to be imaged in good focus. Coarse focusing (approx. 2 mm precision) is achieved by moving the IDD away from a rock target after contact is sensed. The MI optics are protected from the Martian environment by a retractable dust cover. This cover includes a Kapton window that is tinted orange to restrict the spectral bandpass to 500 - 700 nm, allowing crude color information to be obtained by acquiring images with the cover open and closed. The MI science objectives, instrument design and calibration, operation, and data processing were described by Herkenhoff et al. Initial results of the MI experiment on both MER rovers ('Spirit' and 'Opportunity') are described below.

  13. Solid state slit camera (SSC) of the MAXI mission for JEM (Japanese Experiment Module) on the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Tomida, Hiroshi; Matsuoka, Masaru; Torii, Ken'ichi; Ueno, Shiro; Sugizaki, Mutsumi; Yuan, Wei M.; Shirasaki, Yuji; Sakano, M.; Komatsu, Shigenori; Tsunemi, Hiroshi; Miyata, Emi; Kawai, Nobuyuki; Yoshida, Atsumasa; Mihara, Tatehiro; Tanaka, Isao

    2000-12-01

    Monitor of the All-sky X-ray Image (MAXI) is the first payload for the Japanese Experiment Module (JEM) on the International Space Station (ISS). It is designed for monitoring all-sky in the X-ray band. Its angular resolution and scanning period are about 1 arc-degree and 100 minutes, respectively. MAXI employs two types of X-ray camera. One is Gas Slit Camera (GSC), the detectors of which are one dimensional position sensitive proportional counters. Another is Solid-state Slit Camera (SSC). We mainly report on SSC. We employ a pair of SSCs, each of which consists of 16 CCD chips. Each CCD chips has 1024 X 1024 pixels, and the pixel size is 24 X 24 micrometer. The CCDs are to be operated at -60 degrees Celsius using Peltier coolers. Optical light is blocked by aluminum coat on the CCDs instead of fragile aluminized film. SSC achieves an energy resolution of 152 eV in FWHM at 5.9 keV. The energy range is 0.5 - 10 keV.

  14. Detector apparatus having a hybrid pixel-waveform readout system

    DOEpatents

    Meng, Ling-Jian

    2014-10-21

    A gamma ray detector apparatus comprises a solid state detector that includes a plurality of anode pixels and at least one cathode. The solid state detector is configured for receiving gamma rays during an interaction and inducing a signal in an anode pixel and in a cathode. An anode pixel readout circuit is coupled to the plurality of anode pixels and is configured to read out and process the induced signal in the anode pixel and provide triggering and addressing information. A waveform sampling circuit is coupled to the at least one cathode and configured to read out and process the induced signal in the cathode and determine energy of the interaction, timing of the interaction, and depth of interaction.

  15. Readout of TPC Tracking Chambers with GEMs and Pixel Chip

    SciTech Connect

    Kadyk, John; Kim, T.; Freytsis, M.; Button-Shafer, J.; Kadyk, J.; Vahsen, S.E.; Wenzel, W.A.

    2007-12-21

    Two layers of GEMs and the ATLAS Pixel Chip, FEI3, have been combined and tested as a prototype for Time Projection Chamber (TPC) readout at the International Linear Collider (ILC). The double-layer GEM system amplifies charge with gain sufficient to detect all track ionization. The suitability of three gas mixtures for this application was investigated, and gain measurements are presented. A large sample of cosmic ray tracks was reconstructed in 3D by using the simultaneous timing and 2D spatial information from the pixel chip. The chip provides pixel charge measurement as well as timing. These results demonstrate that a double GEM and pixel combination, with a suitably modified pixel ASIC, could meet the stringent readout requirements of the ILC.

  16. Status of the CMS Phase I pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Spannagel, S.

    2016-09-01

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  17. Attenuating Stereo Pixel-Locking via Affine Window Adaptation

    NASA Technical Reports Server (NTRS)

    Stein, Andrew N.; Huertas, Andres; Matthies, Larry H.

    2006-01-01

    For real-time stereo vision systems, the standard method for estimating sub-pixel stereo disparity given an initial integer disparity map involves fitting parabolas to a matching cost function aggregated over rectangular windows. This results in a phenomenon known as 'pixel-locking,' which produces artificially-peaked histograms of sub-pixel disparity. These peaks correspond to the introduction of erroneous ripples or waves in the 3D reconstruction of truly Rat surfaces. Since stereo vision is a common input modality for autonomous vehicles, these inaccuracies can pose a problem for safe, reliable navigation. This paper proposes a new method for sub-pixel stereo disparity estimation, based on ideas from Lucas-Kanade tracking and optical flow, which substantially reduces the pixel-locking effect. In addition, it has the ability to correct much larger initial disparity errors than previous approaches and is more general as it applies not only to the ground plane.

  18. Using an Active Pixel Sensor In A Vertex Detector

    SciTech Connect

    Matis, Howard S.; Bieser, Fred; Chen, Yandong; Gareus, Robin; Kleinfelder, Stuart; Oldenburg, Markus; Retiere, Fabrice; Ritter, HansGeorg; Wieman, Howard H.; Wurzel, Samuel E.; Yamamoto, Eugene

    2004-04-22

    Research has shown that Active Pixel CMOS sensors can detect charged particles. We have been studying whether this process can be used in a collider environment. In particular, we studied the effect of radiation with 55 MeV protons. These results show that a fluence of about 2 x 10{sup 12} protons/cm{sup 2} reduces the signal by a factor of two while the noise increases by 25%. A measurement 6 months after exposure shows that the silicon lattice naturally repairs itself. Heating the silicon to 100 C reduced the shot noise and increased the collected charge. CMOS sensors have a reduced signal to noise ratio per pixel because charge diffuses to neighboring pixels. We have constructed a photogate to see if this structure can collect more charge per pixel. Results show that a photogate does collect charge in fewer pixels, but it takes about 15 ms to collect all of the electrons produced by a pulse of light.

  19. Research on ionospheric tomography based on variable pixel height

    NASA Astrophysics Data System (ADS)

    Zheng, Dunyong; Li, Peiqing; He, Jie; Hu, Wusheng; Li, Chaokui

    2016-05-01

    A novel ionospheric tomography technique based on variable pixel height was developed for the tomographic reconstruction of the ionospheric electron density distribution. The method considers the height of each pixel as an unknown variable, which is retrieved during the inversion process together with the electron density values. In contrast to conventional computerized ionospheric tomography (CIT), which parameterizes the model with a fixed pixel height, the variable-pixel-height computerized ionospheric tomography (VHCIT) model applies a disturbance to the height of each pixel. In comparison with conventional CIT models, the VHCIT technique achieved superior results in a numerical simulation. A careful validation of the reliability and superiority of VHCIT was performed. According to the results of the statistical analysis of the average root mean square errors, the proposed model offers an improvement by 15% compared with conventional CIT models.

  20. Progressive band processing of fast iterative pixel purity index

    NASA Astrophysics Data System (ADS)

    Li, Yao; Chang, Chein-I.

    2016-05-01

    Fast Iterative Pixel Purity Index (FIPPI) was previously developed to address two major issues arising in PPI which are the use of skewers whose number must be determined by a priori and inconsistent final results which cannot be reproduced. Recently, a new concept has been developed for hyperspectral data communication according to Band SeQuential (BSQ) acquisition format in such a way that bands can be collected band by band. By virtue of BSQ users are able to develop Progressive Band Processing (PBP) for hyperspectral imaging algorithms so that data analysts can observe progressive profiles of inter-band changes among bands. Its advantages have been justified in several applications, anomaly detection, constrained energy minimization, automatic target generation process, orthogonal subspace projection, PPI, etc. This paper further extends PBP to FIPPI. The idea to implement PBP-FIPPI is to use two loops specified by skewers and bands to process FIPPI. Depending upon which one is implemented in the outer loop two different versions of PBP-FIPPI can be designed. When the outer loop is iterated band by band, it is called to be called Progressive Band Processing of FIPPI (PBP-FIPPI). When the outer loop is iterated by growing skewers, it is called Progressive Skewer Processing of FIPPI (PSP-FIPPI). Interestingly, both versions provide different insights into the design of FIPPI but produce close results.

  1. High performance uncooled amorphous silicon VGA IRFPA with 17-µm pixel-pitch

    NASA Astrophysics Data System (ADS)

    Tissot, J. L.; Durand, A.; Garret, Th.; Minassian, C.; Robert, P.; Tinnes, S.; Vilain, M.

    2010-04-01

    The high level of accumulated expertise by ULIS and CEA/LETI on uncooled microbolometers made from amorphous silicon enables ULIS to develop VGA IRFPA formats with 17μm pixel-pitch to build up the currently available product catalog. This detector keeps all the innovations developed on the 25 μm pixel-pitch ROIC (detector configuration by serial link, low power consumption and wide electrical dynamic range). The specific appeal of this unit lies in the high spatial resolution it provides. The reduction of the pixel-pitch turns this TEC-less VGA array into a product well adapted for high resolution and compact systems. In the last part of the paper, we will look more closely at the high electro-optical performances of this IRFPA and the rapid performance enhancement. We will insist on NETD trade-off with wide thermal dynamic range, as well as the high characteristics uniformity, achieved thanks to the mastering of the amorphous silicon technology coupled with the ROIC design. This technology node paves the way to high end products as well as low end compact smaller formats like 160 x 120 or smaller.

  2. Analysis of Multipath Pixels in SAR Images

    NASA Astrophysics Data System (ADS)

    Zhao, J. W.; Wu, J. C.; Ding, X. L.; Zhang, L.; Hu, F. M.

    2016-06-01

    As the received radar signal is the sum of signal contributions overlaid in one single pixel regardless of the travel path, the multipath effect should be seriously tackled as the multiple bounce returns are added to direct scatter echoes which leads to ghost scatters. Most of the existing solution towards the multipath is to recover the signal propagation path. To facilitate the signal propagation simulation process, plenty of aspects such as sensor parameters, the geometry of the objects (shape, location, orientation, mutual position between adjacent buildings) and the physical parameters of the surface (roughness, correlation length, permittivity)which determine the strength of radar signal backscattered to the SAR sensor should be given in previous. However, it's not practical to obtain the highly detailed object model in unfamiliar area by field survey as it's a laborious work and time-consuming. In this paper, SAR imaging simulation based on RaySAR is conducted at first aiming at basic understanding of multipath effects and for further comparison. Besides of the pre-imaging simulation, the product of the after-imaging, which refers to radar images is also taken into consideration. Both Cosmo-SkyMed ascending and descending SAR images of Lupu Bridge in Shanghai are used for the experiment. As a result, the reflectivity map and signal distribution map of different bounce level are simulated and validated by 3D real model. The statistic indexes such as the phase stability, mean amplitude, amplitude dispersion, coherence and mean-sigma ratio in case of layover are analyzed with combination of the RaySAR output.

  3. Intra-pixel response of infrared detector arrays for JWST

    NASA Astrophysics Data System (ADS)

    Hardy, Tim; Baril, M. R.; Pazder, J.; Stilburn, J. S.

    2008-07-01

    The near-infrared instruments on the James Webb Space Telescope will use 5 micron cutoff HAWAII-2RG detector arrays. We have investigated the response of this type of detector at sub-pixel resolution to determine whether variations at this scale would affect the performance of the instruments. Using a simple experimental setup we were able to get measurements with a resolution of approximately 4 microns. We have measured an un-hybridized HAWAII-1RG multiplexer, a hybridized HAWAII-1RG device with a 5 micron cutoff HgCdTe detector layer, and a hybridized HAWAII-2RG device with a 5 micron cutoff substrate-removed HgCdTe detector layer. We found that the intra-pixel response functions of the hybrid devices are basically smooth and well behaved, and vary little from pixel to pixel. However, we did find numerous sub-pixel sized defects, notably some long straight thin features like scratches. We were not able to detect any significant variations with wavelength between 0.65 and 2.2 microns, but in the -1RG device there was a variation with temperature. When cooled from 80K to 40K, the pixel response became narrower, and some signal began to be lost at the edges of the pixel. We believe this reflects a reduction in charge diffusion at the lower temperature.

  4. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    NASA Astrophysics Data System (ADS)

    Giubilato, P.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, L.; Ikemoto, Y.; Kloukinas, K.; Mansuy, S. C.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.

    2013-12-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV 55Fe double peak at room temperature. To achieve high granularity (10-20 μm pitch pixels) over large detector areas maintaining high readout speed, a completely new compressing architecture has been devised. This architecture departs from the mainstream hybrid pixel sparsification approach, which uses in-pixel logic to reduce data, by using topological compression to minimize pixel area and power consumption.

  5. Performance limits of a single photon counting pixel system

    NASA Astrophysics Data System (ADS)

    Chmeissani, M.; Mikulec, B.

    2001-03-01

    X-ray imaging using hybrid pixel detectors in single photon counting mode is a relatively recent and exciting development. The photon counting mode implies that each pixel has a threshold in energy above which a hit is recorded. Sharing of charge between adjacent pixels would therefore lead to a loss of registered hits and for medical imaging applications to a higher patient dose. This explains why the demand for high spatial resolution and consequently small pixel sizes (<100 μm) motivates the Medipix2 collaboration to study the effects of charge sharing between pixels on system performance. Two different simulation codes are used to simulate the energy loss inside the detector and the charge transport towards the pixel electrodes. The largest contribution to the lateral spreading of charge comes from diffusion and can result in a considerable loss of detection efficiency in photon counting systems for small pixel sizes. The Medipix2 collaboration consists of groups from Barcelona, Cagliari, CEA/Leti DEIN, CERN, Freiburg, Glasgow, Mitthögskolan, Napoli, NIKHEF, MRC lab Cambridge, Pisa, Prague and Sassari.

  6. A low light level sensor with dark current compensating pixels

    NASA Astrophysics Data System (ADS)

    Perley, Mitchell; Baxter, Patrick; Raynor, Jeffrey M.; Renshaw, David

    2008-09-01

    In ultra-low light conditions the presence of dark current becomes a major source of noise for a CMOS sensor. Standard dark current compensation techniques, such as using a dark reference frame, bring significant improvements to dark noise in typical applications. However, applications requiring long integration times mean that such techniques cannot always be used. This paper presents a differential dark current compensating pixel. The pixel is made up of a differential amplifier and two photodiodes: one light shielded photodiode connected to the non-inverting input of the opamp and a light detecting photodiode connected to the inverting input of the opamp. An integrating capacitor is used in the feedback loop to convert photocurrent to voltage, and a switched capacitor network is present in parallel with the light shielded pixel, which is used to satisfy the output equation to compensate the dark current. The pixel uses 150 μm x 150 μm photodiodes and is fabricated in a standard 0.18 μm, 6M1P, CMOS process. The results show that the pixel is light sensitive and has a linear output as expected. However, the dark current is not predictably controlled. Further work will be carried out on the pixel design, and particularly the switched capacitor circuit, to determine the cause of the non-predictability of the pixel output.

  7. Pixel Analysis and Plasma Dynamics Characterized by Photospheric Spectral Data

    NASA Astrophysics Data System (ADS)

    Rasca, A.; Chen, J.; Pevtsov, A. A.

    2015-12-01

    Continued advances in solar observations have led to higher-resolution magnetograms and surface (photospheric) images, revealing bipolar magnetic features operating near the resolution limit during emerging flux events and other phenomena used to predict solar eruptions responsible for geomagnetic plasma disturbances. However, line of sight (LOS) magnetogram pixels only contain the net uncanceled magnetic flux, which is expected to increase for fixed regions as resolution limits improve. A pixel dynamics model utilizing Stokes I spectral profiles was previously-used to quantify changes in the Doppler shift, width, asymmetry, and tail flatness of Fe I lines at 6301.5 and 6302.5 Å and used pixel-by-pixel line profile fluctuations to characterize quiet and active regions on the Sun. We use this pixel dynamics model with circularly polarized photospheric data (e.g., SOLIS data) to estimate plasma dynamic properties at a sub-pixel level. The analysis can be extended to include the full Stokes parameters and study signatures of magnetic fields and coupled plasma properties on sub-pixel scales.

  8. Adhesive Testing for the BTeV Pixel Detector

    SciTech Connect

    Lei, C.M.; Kwan, Simon; Hicks, D.; Hahn, Eileen; Hoffman, Jay; Austin, Sharon; Jones, Renee; /Fermilab

    2005-12-01

    is needed to verify the compliancy. The demands for good thermal and electrical properties would be lessened in favor of the more important properties if conflicts arose in our decision. As the adhesive layer would be as thin as about 0.05 mm, the temperature drop across it would be small, so a lower number in thermal conductivity would be tolerable. Also, having a greater coefficient of thermal expansion (CTE) value for the adhesive would be acceptable, as long as the modulus is low enough so that high thermal stress would not be generated within the pixel module. For our testing purposes, some of the samples in these testing groups have been exposed to ionizing radiation. It is known that ionizing radiations incident on organic materials causes the formation of free radicals by rupturing covalent bonds. These radicals are chemically active and can form new bonds, altering the structure of the polymeric material and resulting in changes of its appearance and of the chemical, physical, and mechanical properties. It is thus important that some samples be subjected to ionizing radiation. Mechanical testing should be conducted on a group of samples to ensure that the mechanical properties are still acceptable after heavy radiation dosages. The results of these tests will portray a more accurate idea as to whether the material that will meet the expectations of the experiments in our unique environment.

  9. Monolithic pixel detectors with 0.2 μm FD-SOI pixel process technology

    NASA Astrophysics Data System (ADS)

    Miyoshi, Toshinobu; Arai, Yasuo; Chiba, Tadashi; Fujita, Yowichi; Hara, Kazuhiko; Honda, Shunsuke; Igarashi, Yasushi; Ikegami, Yoichi; Ikemoto, Yukiko; Kohriki, Takashi; Ohno, Morifumi; Ono, Yoshimasa; Shinoda, Naoyuki; Takeda, Ayaki; Tauchi, Kazuya; Tsuboyama, Toru; Tadokoro, Hirofumi; Unno, Yoshinobu; Yanagihara, Masashi

    2013-12-01

    Truly monolithic pixel detectors were fabricated with 0.2 μm SOI pixel process technology by collaborating with LAPIS Semiconductor Co., Ltd. for particle tracking experiment, X-ray imaging and medical applications. CMOS circuits were fabricated on a thin SOI layer and connected to diodes formed in the silicon handle wafer through the buried oxide layer. We can choose the handle wafer and therefore high-resistivity silicon is also available. Double SOI (D-SOI) wafers fabricated from Czochralski (CZ)-SOI wafers were newly obtained and successfully processed in 2012. The top SOI layers are used as electric circuits and the middle SOI layers used as a shield layer against the back-gate effect and cross-talk between sensors and CMOS circuits, and as an electrode to compensate for the total ionizing dose (TID) effect. In 2012, we developed two SOI detectors, INTPIX5 and INTPIX3g. A spatial resolution study was done with INTPIX5 and it showed excellent performance. The TID effect study with D-SOI INTPIX3g detectors was done and we confirmed improvement of TID tolerance in D-SOI sensors.

  10. Pixel detectors in 3D technologies for high energy physics

    SciTech Connect

    Deptuch, G.; Demarteau, M.; Hoff, J.; Lipton, R.; Shenai, A.; Yarema, R.; Zimmerman, T.; /Fermilab

    2010-10-01

    This paper reports on the current status of the development of International Linear Collider vertex detector pixel readout chips based on multi-tier vertically integrated electronics. Initial testing results of the VIP2a prototype are presented. The chip is the second embodiment of the prototype data-pushed readout concept developed at Fermilab. The device was fabricated in the MIT-LL 0.15 {micro}m fully depleted SOI process. The prototype is a three-tier design, featuring 30 x 30 {micro}m{sup 2} pixels, laid out in an array of 48 x 48 pixels.

  11. Status and Construction of the Belle II DEPFET pixel system

    NASA Astrophysics Data System (ADS)

    Lütticke, Florian

    2014-06-01

    DEpleted P-channel Field Effect Transistor (DEPFET) active pixel detectors combine detection with a first amplification stage in a fully depleted detector, resulting in an superb signal-to-noise ratio even for thin sensors. Two layers of thin (75 micron) silicon DEPFET pixels will be used as the innermost vertex system, very close to the beam pipe in the Belle II detector at the SuperKEKB facility. The status of the 8 million DEPFET pixels detector, latest developments and current system tests will be discussed.

  12. Matching faces and expressions in pixelated and blurred photos.

    PubMed

    White, Murray; Li, Judy

    2006-01-01

    Matching the emotional expressions of pairs of face photos was slower with pixelated and blurred photos than with original, untransformed photos. Matching the identities of the same face pairs was unaffected by pixelation and blurring. Because pixelation and blurring degrade higher spatial frequencies carrying edge-based information that define feature shape more than lower frequencies carrying configural properties, these findings converge with findings for line drawings and negative photos in showing that expression and face recognition processes differ in their reliance on edge-based and configural information.

  13. Vertically integrated pixel readout chip for high energy physics

    SciTech Connect

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Khalid, Farah; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2011-01-01

    We report on the development of the vertex detector pixel readout chips based on multi-tier vertically integrated electronics for the International Linear Collider. Some testing results of the VIP2a prototype are presented. The chip is the second iteration of the silicon implementation of the prototype, data-pushed concept of the readout developed at Fermilab. The device was fabricated in the 3D MIT-LL 0.15 {micro}m fully depleted SOI process. The prototype is a three-tier design, featuring 30 x 30 {micro}m{sup 2} pixels, laid out in an array of 48 x 48 pixels.

  14. Monolithic pixel detectors in silicon on insulator technology

    NASA Astrophysics Data System (ADS)

    Bisello, Dario

    2013-05-01

    Silicon On Insulator (SOI) is becoming an attractive technology to fabricate monolithic pixel detectors. The possibility of using the depleted resistive substrate as a drift collection volume and to connect it by means of vias through the buried oxide to the pixel electronic makes this kind of approach interesting both for particle and photon detection. In this paper I report the results obtained in the development of monolithic pixel detectors in an SOI technology by a collaboration between groups from the University and INFN of Padova (Italy) and the LBNL and the SCIPP at UCSC (USA).

  15. A germanium hybrid pixel detector with 55μm pixel size and 65,000 channels

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Struth, B.; Hirsemann, H.; Sarajlic, M.; Smoljanin, S.; Zuvic, M.; Lampert, M. O.; Fritzsch, T.; Rothermund, M.; Graafsma, H.

    2014-12-01

    Hybrid pixel semiconductor detectors provide high performance through a combination of direct detection, a relatively small pixel size, fast readout and sophisticated signal processing circuitry in each pixel. For X-ray detection above 20 keV, high-Z sensor layers rather than silicon are needed to achieve high quantum efficiency, but many high-Z materials such as GaAs and CdTe often suffer from poor material properties or nonuniformities. Germanium is available in large wafers of extremely high quality, making it an appealing option for high-performance hybrid pixel X-ray detectors, but suitable technologies for finely pixelating and bump-bonding germanium have not previously been available. A finely-pixelated germanium photodiode sensor with a 256 by 256 array of 55μm pixels has been produced. The sensor has an n-on-p structure, with 700μm thickness. Using a low-temperature indium bump process, this sensor has been bonded to the Medipix3RX photoncounting readout chip. Tests with the LAMBDA readout system have shown that the detector works successfully, with a high bond yield and higher image uniformity than comparable high-Z systems. During cooling, the system is functional around -80°C (with warmer temperatures resulting in excessive leakage current), with -100°C sufficient for good performance.

  16. Improvement of Event Synchronization in the ATLAS Pixel Readout Development

    NASA Astrophysics Data System (ADS)

    Adams, Logan; Atlas Collaboration

    2017-01-01

    As the LHC continues in Run2, the B-Layer still uses the Atlas-SiROD Pixel readout system initially developed for Run 1. The higher luminosity occurring during Run 2 results in higher occupancy causing increased desynchronization errors in the Pixel Readout. In order to ensure lasting operation of the B-Layer until it is replaced after Run 3, changes were made to the firmware and software to add debug capabilities to identify when the errors are crossing certain thresholds and change the internal control logic accordingly. These features also allow for better debugging of the Event Counter Reset addition to the firmware. This talk will focus on the features implemented and measurements to demonstrate the positive impact on the Pixel DAQ system. A Pixel front-end chip emulator which can be used for readout system development beyond Run 3 will also be discussed. Presenter is Logan Adams, University of Washington.

  17. FPIX2, the BTeV pixel readout chip

    SciTech Connect

    David C. Christian et al.

    2003-12-10

    A radiation tolerant pixel readout chip, FPIX2, has been developed at Fermilab for use by BTeV. Some of the requirements of the BTeV pixel readout chip are reviewed and contrasted with requirements for similar devices in LHC experiments. A description of the FPIX2 is given, and results of initial tests of its performance are presented, as is a summary of measurements planned for the coming year.

  18. A Chip and Pixel Qualification Methodology on Imaging Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Guertin, Steven M.; Petkov, Mihail; Nguyen, Duc N.; Novak, Frank

    2004-01-01

    This paper presents a qualification methodology on imaging sensors. In addition to overall chip reliability characterization based on sensor s overall figure of merit, such as Dark Rate, Linearity, Dark Current Non-Uniformity, Fixed Pattern Noise and Photon Response Non-Uniformity, a simulation technique is proposed and used to project pixel reliability. The projected pixel reliability is directly related to imaging quality and provides additional sensor reliability information and performance control.

  19. Small pixel CZT detector for hard X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew David; Cernik, Robert; Chen, Henry; Hansson, Conny; Iniewski, Kris; Jones, Lawrence L.; Seller, Paul; Veale, Matthew C.

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20×20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20×20 pixels on a 250 μm pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A 241Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09±0.46 to 1.50±0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20×20 array. A large area 80×80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  20. High-voltage pixel sensors for ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Perić, I.; Kreidl, C.; Fischer, P.; Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M.; Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B.; Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A.; Nessi, M.; Iacobucci, G.; Backhaus, M.; Hügging, Fabian; Krüger, H.; Hemperek, T.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Quadt, A.; Weingarten, J.; George, M.; Grosse-Knetter, J.; Rieger, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.

    2014-11-01

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  1. Error-free demodulation of pixelated carrier frequency interferograms.

    PubMed

    Servin, M; Estrada, J C

    2010-08-16

    Recently, pixelated spatial carrier interferograms have been used in optical metrology and are an industry standard nowadays. The main feature of these interferometers is that each pixel over the video camera may be phase-modulated by any (however fixed) desired angle within [0,2pi] radians. The phase at each pixel is shifted without cross-talking from their immediate neighborhoods. This has opened new possibilities for experimental spatial wavefront modulation not dreamed before, because we are no longer constrained to introduce a spatial-carrier using a tilted plane. Any useful mathematical model to phase-modulate the testing wavefront in a pixel-wise basis can be used. However we are nowadays faced with the problem that these pixelated interferograms have not been correctly demodulated to obtain an error-free (exact) wavefront estimation. The purpose of this paper is to offer the general theory that allows one to demodulate, in an exact way, pixelated spatial-carrier interferograms modulated by any thinkable two-dimensional phase carrier.

  2. Techniques for precise energy calibration of particle pixel detectors

    NASA Astrophysics Data System (ADS)

    Kroupa, M.; Campbell-Ricketts, T.; Bahadori, A.; Empl, A.

    2017-03-01

    We demonstrate techniques to improve the accuracy of the energy calibration of Timepix pixel detectors, used for the measurement of energetic particles. The typical signal from such particles spreads among many pixels due to charge sharing effects. As a consequence, the deposited energy in each pixel cannot be reconstructed unless the detector is calibrated, limiting the usability of such signals for calibration. To avoid this shortcoming, we calibrate using low energy X-rays. However, charge sharing effects still occur, resulting in part of the energy being deposited in adjacent pixels and possibly lost. This systematic error in the calibration process results in an error of about 5% in the energy measurements of calibrated devices. We use FLUKA simulations to assess the magnitude of charge sharing effects, allowing a corrected energy calibration to be performed on several Timepix pixel detectors and resulting in substantial improvement in energy deposition measurements. Next, we address shortcomings in calibration associated with the huge range (from kiloelectron-volts to megaelectron-volts) of energy deposited per pixel which result in a nonlinear energy response over the full range. We introduce a new method to characterize the non-linear response of the Timepix detectors at high input energies. We demonstrate improvement using a broad range of particle types and energies, showing that the new method reduces the energy measurement errors, in some cases by more than 90%.

  3. Fault tolerant photodiode and photogate active pixel sensors

    NASA Astrophysics Data System (ADS)

    Jung, Cory; Chapman, Glenn H.; La Haye, Michelle L.; Djaja, Sunjaya; Cheung, Desmond Y. H.; Lin, Henry; Loo, Edward; Audet, Yves R.

    2005-03-01

    As the pixel counts of digital imagers increase, the challenge of maintaining high yields and ensuring reliability over an imager"s lifetime increases. A fault tolerant active pixel sensor (APS) has been designed to meet this need by splitting an APS in half and operating both halves in parallel. The fault tolerant APS will perform normally in the no defect case and will produce approximately half the output for single defects. Thus, the entire signal can be recovered by multiplying the output by two. Since pixels containing multiple defects are rare, this design can correct for most defects allowing for higher production yields. Fault tolerant photodiode and photogate APS" were fabricated in 0.18-micron technology. Testing showed that the photodiode APS could correct for optically induced and electrically induced faults, within experimental error. The photogate APS was only tested for optically induced defects and also corrects for defects within experimental error. Further testing showed that the sensitivity of fault tolerant pixels was approximately 2-3 times more sensitive than the normal pixels. HSpice simulations of the fault tolerant APS circuit did not show increased sensitivity, however an equivalent normal APS circuit with twice width readout and row transistors was 1.90 times more sensitive than a normal pixel.

  4. Frequency distribution signatures and classification of within-object pixels

    PubMed Central

    Stow, Douglas A.; Toure, Sory I.; Lippitt, Christopher D.; Lippitt, Caitlin L.; Lee, Chung-rui

    2011-01-01

    The premise of geographic object-based image analysis (GEOBIA) is that image objects are composed of aggregates of pixels that correspond to earth surface features of interest. Most commonly, image-derived objects (segments) or objects associated with predefined land units (e.g., agricultural fields) are classified using parametric statistical characteristics (e.g., mean and standard deviation) of the within-object pixels. The objective of this exploratory study was to examine the between- and within-class variability of frequency distributions of multispectral pixel values, and to evaluate a quantitative measure and classification rule that exploits the full pixel frequency distribution of within object pixels (i.e., histogram signatures) compared to simple parametric statistical characteristics. High spatial resolution Quickbird satellite multispectral data of Accra, Ghana were evaluated in the context of mapping land cover and land use and socioeconomic status. Results show that image objects associated with land cover and land use types can have characteristic, non-normal frequency distributions (histograms). Signatures of most image objects tended to match closely the training signature of a single class or sub-class. Curve matching approaches to classifying multi-pixel frequency distributions were found to be slightly more effective than standard statistical classifiers based on a nearest neighbor classifier. PMID:22408575

  5. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  6. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2000-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor Integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  7. Modeling and Analysis of Hybrid Pixel Detector Deficiencies for Scientific Applications

    SciTech Connect

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-28

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to

  8. Modeling and analysis of hybrid pixel detector deficiencies for scientific applications

    NASA Astrophysics Data System (ADS)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-01

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to

  9. Image processing pipeline for synchrotron-radiation-based tomographic microscopy.

    PubMed

    Hintermüller, C; Marone, F; Isenegger, A; Stampanoni, M

    2010-07-01

    With synchrotron-radiation-based tomographic microscopy, three-dimensional structures down to the micrometer level can be visualized. Tomographic data sets typically consist of 1000 to 1500 projections of 1024 x 1024 to 2048 x 2048 pixels and are acquired in 5-15 min. A processing pipeline has been developed to handle this large amount of data efficiently and to reconstruct the tomographic volume within a few minutes after the end of a scan. Just a few seconds after the raw data have been acquired, a selection of reconstructed slices is accessible through a web interface for preview and to fine tune the reconstruction parameters. The same interface allows initiation and control of the reconstruction process on the computer cluster. By integrating all programs and tools, required for tomographic reconstruction into the pipeline, the necessary user interaction is reduced to a minimum. The modularity of the pipeline allows functionality for new scan protocols to be added, such as an extended field of view, or new physical signals such as phase-contrast or dark-field imaging etc.

  10. Motion compensation in digital subtraction angiography using graphics hardware.

    PubMed

    Deuerling-Zheng, Yu; Lell, Michael; Galant, Adam; Hornegger, Joachim

    2006-07-01

    An inherent disadvantage of digital subtraction angiography (DSA) is its sensitivity to patient motion which causes artifacts in the subtraction images. These artifacts could often reduce the diagnostic value of this technique. Automated, fast and accurate motion compensation is therefore required. To cope with this requirement, we first examine a method explicitly designed to detect local motions in DSA. Then, we implement a motion compensation algorithm by means of block matching on modern graphics hardware. Both methods search for maximal local similarity by evaluating a histogram-based measure. In this context, we are the first who have mapped an optimizing search strategy on graphics hardware while paralleling block matching. Moreover, we provide an innovative method for creating histograms on graphics hardware with vertex texturing and frame buffer blending. It turns out that both methods can effectively correct the artifacts in most case, as the hardware implementation of block matching performs much faster: the displacements of two 1024 x 1024 images can be calculated at 3 frames/s with integer precision or 2 frames/s with sub-pixel precision. Preliminary clinical evaluation indicates that the computation with integer precision could already be sufficient.

  11. Evaluation of the Clinton Electronics DS2100HB-ST 4 X 3 Aspect Ratio, 21-Inch Diagonal Monochrome Monitor

    NASA Astrophysics Data System (ADS)

    2000-04-01

    The Clinton Electronics DS2100HB-ST Monochrome CRT Monitor (2 1-inch CRT size, 19.0" viewable area; the selling price is 1995) is a relatively low cost, 1600 x 1280 pixel, monochrome gray scale monitor. It has good image quality and features that make it an attractive candidate display device for NIMA Imagery Exploitation Capability workstations. Based on results of our evaluation, NIDL certifies the Clinton Electronics DS2100HB-ST monochrome monitor as being suitable only for monoscopic, and not for stereo, operation in IEC workstations. NIDL rates this monochrome monitor as a 'B' for monoscopic mode and 'F' for stereo mode for the Image Analyst and Cartographer applications. In stereo, this monitor can produce a 1024 x 1024 stereo image at 59 Hz per eye, but it has only 47% of the maximum luminance and only 44% of the stereo extinction ratio required by the IEC Specifications. Clinton states that the primary market for this lower cost monitor is for clinical tasks and for training purposes. It is not intended for primary diagnoses of x-ray images.

  12. Observation of Quiet Limb in He I 1083.0 nm, H Paschen alpha1281.8 nm and H Brackett gamma 2166.1 nm lines

    NASA Astrophysics Data System (ADS)

    Prasad Choudhary, Debi

    2016-05-01

    In this paper, we shall present the results of an observational study of the quiet solar limb in the near infrared lines using the New IR Array Camera (NAC) and the vertical spectrograph at the focal plane of McMath-Pierce telescope. The NAC, at the exit port of the spectrograph, was used to record the limb spectrum in HeI 1083.0 nm, Hydrogen Paschen 1281.8 nm and Brackett 2165.5 nm wavelength regions. The NAC is a 1024x1024 InSb Alladin III Detector operating over 1-5 micron range with high density sampling at 0.018 arc second/pixel. The all-reflective optical train minimizes number of surfaces and eliminates ghosts leading to low scatter, ghost-free optics. The close-cycle cryogenic provides a stable cooling environment over six hour period with an accuracy of 0.01K leading to low dark current. The low read out noise combined with low scattered light and dark current makes NAC an ideal detector for making high quality infrared spectral observations of solar limb. The limb spectrums were obtained by placing the spectrograph slit perpendicular to the limb at an interval of 10 degrees around the solar disk. We shall report the intensity profile, line-of-sight velocity and line width distribution around the sun derived from the spectra along the slit.

  13. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Ennico, Kimberly; Allamandola, Louis; Bregman, Jesse; Greene, Thomas; Hudgins, Douglas

    2002-01-01

    One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR telescopic and laboratory studies have shown that much of the carbon in the interstellar medium (ISM) is in complex organic species but the distribution, abundance and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept designed to conduct IR spectroscopic observations to detect and identify these materials and address outstanding problems in astrobiology, astrochemistry, and astrophysics. ABE's core science program includes observations of planetary nebulae and stellar outflows, protostellar objects, Solar System objects, and galaxies, and lines of sight through dense molecular clouds and the diffuse ISM. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cross-dispersed R-2000 spectrometers that share a single common slit. Each spectrometer measures one spectral octave and together cover the entire 2.5-20 micron region simultaneously. The spectrometers use state-of-the-art InSb and Si:As 1024x1024 pixel detectors. ABE would operate in a heliocentric, Earth drift-away orbit and have a core science mission lasting approximately 1.5 years. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp.

  14. XAFS imaging of Tsukuba gabbroic rocks: area analysis of chemical composition and local structure.

    PubMed

    Mizusawa, Mari; Sakurai, Kenji

    2004-03-01

    Gabbroic rocks were collected at Mount Tsukuba in Japan, and their XAFS images were studied using a projection-type X-ray fluorescence (XRF) microscope, which is a powerful new tool recently developed for extremely rapid imaging. The instrument employs a grazing-incidence arrangement in order that primary X-rays illuminate the whole sample surface, as well as parallel-beam optics and an extremely close geometry in order to detect XRF by a high-performance X-ray CCD system with 1024 x 1024 pixels. The XRF image indicated that black amphibole and white feldspar, both of which are typical mineral textures of the rock, contain iron. The origin has been suggested to be several small yellowish-brown minerals contained there. The XAFS imaging has been carried out by repeating the exposure of XRF images during the energy scan of the primary X-rays. It has been found that the structure is qualitatively close to that of olivine, and the main differences found in both areas can be explained as a difference in iron and magnesium concentration, i.e. the mixed ratio of forsterite (Mg(2)SiO(4)) and fayalite (Fe(2)SiO(4)). The feasibility of the present XAFS imaging method has been demonstrated for realistic inhomogeneous minerals.

  15. Charge-coupled-device/fiberoptic taper array X-ray detector for protein crystallography

    SciTech Connect

    Naday, I.; Ross, S.; Westbrook, E.M.; Zentai, G.

    1997-03-01

    A large area, charge-couple-device (CCD) based fiberoptic taper array detector (APS-1) has been installed at the insertion-device beamline of the Structural Biology Center at the ANL Advanced Photon Source. The detector is used in protein crystallography diffraction experiments, where the objective is to measure the position and intensity of X-ray Bragg peaks in diffraction images. Large imaging area, very high spatial resolution, high X-ray sensitivity, good detective quantum efficiency, low noise, wide dynamic range, excellent stability and short readout time are all fundamental requirements in this application. The APS-1 detector converts the two-dimensional X-ray patterns to a visible light images by a thin layer of X-ray sensitive phosphor. The phosphor coating is directly deposited on the large ends of nine fiberoptic tapers arranged in a 3x3 array. Nine, thermoelectrically cooled 1024 x 1024 pixel CCD`s image the patterns, demagnified by the tapers. After geometrical and uniformity corrections, the nine areas give a continuous image of the detector face with virtually no gaps between the individual tapers. The 18 parallel analog signal-processing channels and analog-to-digital converters assure short readout time and low readout noise.

  16. A Preliminary Analysis of LANDSAT-4 Thematic Mapper Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Justice, C.; Fusco, L.; Mehl, W.

    1984-01-01

    Analysis was performed to characterize the radiometry of three Thematic Mapper (TM) digital products of a scene of Arkansas. The three digital products examined were the NASA raw (BT) product, the radiometrically corrected (AT) product and the radiometrically and geometrically corrected (PT) product. The frequency distribution of the digital data; the statistical correlation between the bands; and the variability between the detectors within a band were examined on a series of image subsets from the full scene. The results are presented from one 1024 x 1024 pixel subset of Realfoot Lake, Tennessee which displayed a representative range of ground conditions and cover types occurring within the full frame image. Bands 1, 2 and 5 of the sample area are presented. The subsets were extracted from the three digital data products to cover the same geographic area. This analysis provides the first step towards a full appraisal of the TM radiometry being performed as part of the ESA/CEC contribution to the NASA/LIDQA program.

  17. A color graphics environment in support of supercomputer systems

    NASA Technical Reports Server (NTRS)

    Smith-Taylor, R.

    1985-01-01

    An initial step in the integration of an upgrade of a VPS-32 supercomputer to 16 million 64-bit words, to be closely followed by a further upgrade to 32 million words, was to develop a graphics language commonality with other computers at the Langley Center. The power of the upgraded supercomputer is to users at individual workstations, who will aid in defining the direction for future expansions in both graphics software and workstation requirements for the supercomputers. The LAN used is an ETHERNET configuration featuring both CYBER mainframe and PDP 11/34 image generator computers. The system includes a film recorder for image production in slide, CRT, 16 mm film, 35 mm film or polaroid film images. The workstations have screen resolutions of 1024 x 1024 with each pixel being one of 256 colors selected from a palette of 16 million colors. Each screen can have up to 8 windows open at a time, and is driven by a MC68000 microprocessor drawing on 4.5 Mb RAM, a 40 Mb hard disk and two floppy drives. Input is from a keyboard, digitizer pad, joystick or light pen. The system now allows researchers to view computed results in video time before printing out selected data.

  18. The soft x ray telescope for Solar-A

    NASA Technical Reports Server (NTRS)

    Brown, W. A.; Acton, L. W.; Bruner, M. E.; Lemen, J. R.; Strong, K. T.

    1989-01-01

    The Solar-A satellite being prepared by the Institute for Sapce and Astronautical Sciences (ISAS) in Japan is dedicated to high energy observations of solar flares. The Soft X Ray Telescope (SXT) is being prepared to provide filtered images in the 2 to 60 A interval. The flight model is now undergoing tests in the 1000 foot tunnel at MSFC. Launch will be in September 1991. Earlier resolution and efficiency tests on the grazing incidence mirror have established its performance in soft x rays. The one-piece, two mirror grazing incidence telescope is supported in a strain free mount separated from the focal plane assembly by a carbon-epoxy metering tube whose windings and filler are chosen to minimize thermal and hygroscopic effects. The CCD detector images both the x ray and the concentric visible light aspect telescope. Optical filters provide images at 4308 and 4700 A. The SXT will be capable of producing over 8000 of the smallest partial frame images per day, or fewer but larger images, up to 1024 x 1024 pixel images. Image sequence with two or more of the five x ray analysis filters, with automatic exposure compensation to optimize the charge collection by the CCD detector, will be used to provide plasma diagnostics. Calculations using a differential emission measure code were used to optimize filter selection over the range of emission measure variations and to avoid redundancy, but the filters were chosen primarily to give ratios that are monotonic in plasma temperature.

  19. Initial high-degree p-mode frequency splittings from the 1988 Mt. Wilson 60-foot Tower Solar Oscillation Program

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Korzennik, Sylvain G.

    1988-01-01

    The initial frequency splitting results of solar p-mode oscillations obtained from the 1988 helioseismology program at the Mt. Wilson Observatory are presented. The frequency splittings correspond to the rotational splittings of sectoral harmonics which range in degree between 10 and 598. They were obtained from a cross-correlation analysis of the prograde and retrograde portions of a two-dimensional (t - v) power spectrum. This power spectrum was computed from an eight-hour sequence of full-disk Dopplergrams obtained on July 2, 1988, at the 60-foot tower telescope with a Na magneto-optical filter and a 1024x1024 pixel CCD camera. These frequency splittings have an inherently larger scatter than did the splittings obtained from earlier 16-day power spectra. These splittings are consistent with an internal solar rotational velocity which is independent of radius along the equatorial plane. The normalized frequency splittings averaged 449 + or - 3 nHz, a value which is very close to the observed equatorial rotation rate of the photospheric gas of 451.7 nHz.

  20. Engineering performance of IRIS2 infrared imaging camera and spectrograph

    NASA Astrophysics Data System (ADS)

    Churilov, Vladimir; Dawson, John; Smith, Greg A.; Waller, Lew; Whittard, John D.; Haynes, Roger; Lankshear, Allan; Ryder, Stuart D.; Tinney, Chris G.

    2004-09-01

    IRIS2, the infrared imager and spectrograph for the Cassegrain focus of the Anglo Australian Telescope, has been in service since October 2001. IRIS2 incorporated many novel features, including multiple cryogenic multislit masks, a dual chambered vacuum vessel (the smaller chamber used to reduce thermal cycle time required to change sets of multislit masks), encoded cryogenic wheel drives with controlled backlash, a deflection compensating structure, and use of teflon impregnated hard anodizing for gear lubrication at low temperatures. Other noteworthy features were: swaged foil thermal link terminations, the pupil imager, the detector focus mechanism, phased getter cycling to prevent detector contamination, and a flow-through LN2 precooling system. The instrument control electronics was designed to allow accurate positioning of the internal mechanisms with minimal generation of heat. The detector controller was based on the AAO2 CCD controller, adapted for use on the HAWAII1 detector (1024 x 1024 pixels) and is achieving low noise and high performance. We describe features of the instrument design, the problems encountered and the development work required to bring them into operation, and their performance in service.

  1. VizieR Online Data Catalog: HKs photometry in the Arches cluster (Espinoza+, 2009)

    NASA Astrophysics Data System (ADS)

    Espinoza, P.; Selman, F. J.; Melnick, J.

    2009-06-01

    The NAOS-CONICA data (ESO Program ID 073.D-0815) were obtained under clear weather conditions with subarcsecond seeing. The detector was an Aladdin 1024x1024 pixel InSb array and the camera had a plate scale of 27.15[mas/pix], giving us a 27x27arcsec2^ field of view of the Arches cluster. Total integration times were 1000, 400 and 720[s] in J, H, and Ks respectively, with the telescope moving alternatively to sky positions for a proper background subtraction. To optimize the Adaptive Optics (AO) performance we used the N90C10 dichroic, i.e. 90% of the light was directed to the infrared wavefront sensor. The Strehl ratio of our observations exceeded 27% in Ks, and reached more modest values of 5% in J, and 11% in the H band. Tables 2 and 3 present the DAOPHOT photometry of 427 HKS and 126 JHKS stars in the innermost 10 arcseconds of the Arches cluster. Table 3 is considerably shorter due to the increasing extinction towards bluer wavelengths. Table 5 presents the catalog with all the observed data and physical parameters derived from the Bayesian method and using the Color-magnitude stereogram. (3 data files).

  2. Spectral imager based on Fabry-Perot interferometer for Aalto-1 nanosatellite

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Näsilä, Antti; Viherkanto, Kai; Holmlund, Christer; Näkki, Ismo; Saari, Heikki

    2013-09-01

    The Aalto-1 is a 3U-cubesat project coordinated by Aalto University. The satellite, Aalto-1, will be mainly built by students as project assignments and thesis works. The Aalto-1 is planned to launch on 2014. VTT Technical Research Centre of Finland is developing the main Earth observation payload, a miniaturized spectral imager unit, for the satellite. The spectral imager unit contains a spectral imager, a visible RGB-camera and control electronics of the cameras. Detailed design of the spectral imager unit has been completed and assembly of the spectral imager unit will be done in the autumn 2013. The spectral imager is based on a tunable Fabry-Perot interferometer (FPI) accompanied by an RGB CMOS image sensor. The FPI consists of two highly reflective surfaces separated by a tunable air gap and it is based on a piezo-actuated structure. The piezo-actuated FPI uses three piezo-actuators and is controlled in a closed capacitive feedback loop. The spectral resolution of the imager will be 8-15 nm at full width at half maximum and it will operate in the wavelength range 500-900 nm. Imaging resolution of the spectral imager is 1024x1024 pixels and the focal length of the optics is 32 mm and F-number is 3.4. Mass of the spectral imager unit is approximately 600 grams, and dimensions are 97 mm x 97 mm x 48 mm.

  3. Small pixel pitch MCT IR-modules

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Fries, P.; Rutzinger, S.; Wendler, J.

    2016-05-01

    It is only some years ago, since VGA format detectors in 15μm pitch, manufactured with AIM's MCT n-on-p LPE standard technology, have been introduced to replace TV/4 format detector arrays as a system upgrade. In recent years a rapid increase in the demand for higher resolution, while preserving high thermal resolution, compactness and low power budget is observed. To satisfy these needs AIM has realized first prototypes of MWIR XGA format (1024x768) detector arrays in 10μm pitch. They fit in the same compact dewar as 640x512, 15μm pitch detector arrays. Therefore, they are best suited for system upgrade purposes to benefit from higher spatial resolution and keep cost on system level low. By combining pitch size reduction with recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperatures the way ahead to ultra-compact high performance MWIR-modules is prepared. For cost reduction MBE grown MCT on commercially available GaAs substrates is introduced at AIM. Recently, 640x512, 15μm pitch FPAs, grown with MBE have successfully passed long-term high temperature storage tests as a crucial step towards serial production readiness level for use in future products. Pitch size reduction is not limited to arrays sensitive in the MWIR, but is of great interest for high performance LWIR or 3rd Gen solutions. Some applications such as rotorcraft pilotage require superior spatial resolution in a compact design to master severe weather conditions or degraded visual environment such as brown-out. For these applications AIM is developing both LWIR as well as dual band detector arrays in HD-format (1280x720) with 12μm pitch. This paper will present latest results in the development of detector arrays with small pitch sizes of 10μm and 12μm at AIM, together with their usage to realize compact cooled IR-modules.

  4. Calibration status and plans for the charge integrating JUNGFRAU pixel detector for SwissFEL

    NASA Astrophysics Data System (ADS)

    Redford, S.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Ekinci, Y.; Fröjdh, E.; Greiffenberg, D.; Mayilyan, D.; Mezza, D.; Mozzanica, A.; Rajeev, R.; Ramilli, M.; Ruder, C.; Schädler, L.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Zhang, J.

    2016-11-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector under development for photon science applications at free electron laser and synchrotron facilities. In particular, JUNGFRAU detectors will equip the Aramis end stations of SwissFEL, an X-ray free electron laser currently under construction at the Paul Scherrer Institut in Villigen, Switzerland. JUNGFRAU has been designed specifically to meet the challenges of photon science at XFELs, including high frame rates, single photon sensitivity in combination with a high dynamic range, vacuum compatibility and tilable modules. This has resulted in a charge integrating detector with three dynamically adjusting gains, a low noise of 55 ENC RMS, readout speeds in excess of 2 kHz, single photon sensitivity down to 2 keV (with a signal to noise ratio of 10) and a dynamic range covering four orders of magnitude at 12 keV. Each JUNGFRAU module consists of eight chips of 256 × 256 pixels, each 75 × 75 μm2 in size. The chips are arranged in 2 × 4 formation and bump-bonded to a single silicon sensor 320 μm thick, resulting in an active area of approximately 4 × 8 cm2 per module. Multi-module vacuum compatible systems comprising up to 16 Mpixels (32 modules) will be used at SwissFEL. The design of SwissFEL and the JUNGFRAU system for the Aramis end station A will be introduced, together with results from early prototypes and a characterisation using the first batch of final JUNGFRAU modules. Plans and first results of the pixel-by-pixel calibration will also be shown. The vacuum compatibility of the JUNGFRAU module is demonstrated for the first time.

  5. CMOS in-pixel optical pulse frequency modulator

    NASA Astrophysics Data System (ADS)

    Nel, Nicolaas E.; du Plessis, M.; Joubert, T.-H.

    2016-02-01

    This paper covers the design of a complementary metal oxide semiconductor (CMOS) pixel readout circuit with a built-in frequency conversion feature. The pixel contains a CMOS photo sensor along with all signal-to-frequency conversion circuitry. An 8×8 array of these pixels is also designed. Current imaging arrays often use analog-to-digital conversion (ADC) and digital signal processing (DSP) techniques that are off-chip1. The frequency modulation technique investigated in this paper is preferred over other ADC techniques due to its smaller size, and the possibility of a higher dynamic range. Careful considerations are made regarding the size of the components of the pixel, as various characteristics of CMOS devices are limited by decreasing the scale of the components2. The methodology used was the CMOS design cycle for integrated circuit design. All components of the pixel were designed from first principles to meet necessary requirements of a small pixel size (30×30 μm2) and an output resolution greater than that of an 8-bit ADC. For the photodetector, an n+-p+/p-substrate diode was designed with a parasitic capacitance of 3 fF. The analog front-end stage was designed around a Schmitt trigger circuit. The photo current is integrated on an integration capacitor of 200 fF, which is reset when the Schmitt trigger output voltage exceeds a preset threshold. The circuit schematic and layout were designed using Cadence Virtuoso and the process used was the AMS CMOS 350 nm process using a power supply of 5V. The simulation results were confirmed to comply with specifications, and the layout passed all verification checks. The dynamic range achieved is 58.828 dB per pixel, with the output frequencies ranging from 12.341kHz to 10.783 MHz. It is also confirmed that the output frequency has a linear relationship to the photocurrent generated by the photodiode.

  6. VeloPix: the pixel ASIC for the LHCb upgrade

    NASA Astrophysics Data System (ADS)

    Poikela, T.; De Gaspari, M.; Plosila, J.; Westerlund, T.; Ballabriga, R.; Buytaert, J.; Campbell, M.; Llopart, X.; Wyllie, K.; Gromov, V.; van Beuzekom, M.; Zivkovic, V.

    2015-01-01

    The LHCb Vertex Detector (VELO) will be upgraded in 2018 along with the other subsystems of LHCb in order to enable full readout at 40 MHz, with the data fed directly to the software triggering algorithms. The upgraded VELO is a lightweight hybrid pixel detector operating in vacuum in close proximity to the LHC beams. The readout will be provided by a dedicated front-end ASIC, dubbed VeloPix, matched to the LHCb readout requirements and the 55 × 55 μm VELO pixel dimensions. The chip is closely related to the Timepix3, from the Medipix family of ASICs. The principal challenge that the chip has to meet is a hit rate of up to 900 Mhits/s, resulting in a required output bandwidth of more than 16 Gbit/s. The occupancy across the chip is also very non-uniform, and the radiation levels reach an integrated 400 Mrad over the lifetime of the detector.VeloPix is a binary pixel readout chip with a data driven readout, designed in 130 nm CMOS technology. The pixels are combined into groups of 2 × 4 super pixels, enabling a shared logic and a reduction of bandwidth due to combined address and time stamp information. The pixel hits are combined with other simultaneous hits in the same super pixel, time stamped, and immediately driven off-chip. The analog front-end must be sufficiently fast to accurately time stamp the data, with a small enough dead time to minimize data loss in the most occupied regions of the chip. The data is driven off chip with a custom designed high speed serialiser. The current status of the ASIC design, the chip architecture and the simulations will be described.

  7. Pixel Analysis of Photospheric Spectral Data. I. Plasma Dynamics

    NASA Astrophysics Data System (ADS)

    Rasca, Anthony P.; Chen, James; Pevtsov, Alexei A.

    2016-11-01

    Recent observations of the photosphere using high spatial and temporal resolution show small dynamic features at or below the current resolving limits. A new pixel dynamics method has been developed to analyze spectral profiles and quantify changes in line displacement, width, asymmetry, and peakedness of photospheric absorption lines. The algorithm evaluates variations of line profile properties in each pixel and determines the statistics of such fluctuations averaged over all pixels in a given region. The method has been used to derive statistical characteristics of pixel fluctuations in observed quiet-Sun regions, an active region with no eruption, and an active region with an ongoing eruption. Using Stokes I images from the Vector Spectromagnetograph (VSM) of the Synoptic Optical Long-term Investigations of the Sun (SOLIS) telescope on 2012 March 13, variations in line width and peakedness of Fe i 6301.5 Å are shown to have a distinct spatial and temporal relationship with an M7.9 X-ray flare in NOAA 11429. This relationship is observed as stationary and contiguous patches of pixels adjacent to a sunspot exhibiting intense flattening in the line profile and line-center displacement as the X-ray flare approaches peak intensity, which is not present in area scans of the non-eruptive active region. The analysis of pixel dynamics allows one to extract quantitative information on differences in plasma dynamics on sub-pixel scales in these photospheric regions. The analysis can be extended to include the Stokes parameters and study signatures of vector components of magnetic fields and coupled plasma properties.

  8. Argus: A W-band 16-pixel focal plane array for the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Devaraj, Kiruthika; Church, Sarah; Cleary, Kieran; Frayer, David; Gawande, Rohit; Goldsmith, Paul; Gundersen, Joshua; Harris, Andrew; Kangaslahti, Pekka; Readhead, Tony; Reeves, Rodrigo; Samoska, Lorene; Sieth, Matt; Voll, Patricia

    2015-05-01

    We are building Argus, a 16-pixel square-packed focal plane array that will cover the 75-115.3 GHz frequency range on the Robert C. Byrd Green Bank Telescope (GBT). The primary research area for Argus is the study of star formation within our Galaxy and nearby galaxies. Argus will map key molecules that trace star formation, including carbon monoxide (CO) and hydrogen cyanide (HCN). An additional key science area is astrochemistry, which will be addressed by observing complex molecules in the interstellar medium, and the study of formation of solar systems, which will be addressed by identifying dense pre-stellar cores and by observing comets in our solar system. Argus has a highly scalable architecture and will be a technology path finder for larger arrays. The array is modular in construction, which will allow easy replacement of malfunctioning and poorly performing components.

  9. Visual mining business service using pixel bar charts

    NASA Astrophysics Data System (ADS)

    Hao, Ming C.; Dayal, Umeshwar; Casati, Fabio

    2004-06-01

    Basic bar charts have been commonly available, but they only show highly aggregated data. Finding the valuable information hidden in the data is essential to the success of business. We describe a new visualization technique called pixel bar charts, which are derived from regular bar charts. The basic idea of a pixel bar chart is to present all data values directly instead of aggregating them into a few data values. Pixel bar charts provide data distribution and exceptions besides aggregated data. The approach is to represent each data item (e.g. a business transaction) by a single pixel in the bar chart. The attribute of each data item is encoded into the pixel color and can be accessed and drilled down to the detail information as needed. Different color mappings are used to represent multiple attributes. This technique has been prototyped in three business service applications-Business Operation Analysis, Sales Analysis, and Service Level Agreement Analysis at Hewlett Packard Laboratories. Our applications show the wide applicability and usefulness of this new idea.

  10. The pixel tracking telescope at the Fermilab Test Beam Facility

    SciTech Connect

    Kwan, Simon; Lei, CM; Menasce, Dario; Moroni, Luigi; Ngadiuba, Jennifer; Prosser, Alan; Rivera, Ryan; Terzo, Stefano; Turqueti, Marcos; Uplegger, Lorenzo; Vigani, Luigi; Dinardo, Mauro E.

    2016-03-01

    An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm2 pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.

  11. Super pixel density based clustering automatic image classification method

    NASA Astrophysics Data System (ADS)

    Xu, Mingxing; Zhang, Chuan; Zhang, Tianxu

    2015-12-01

    The image classification is an important means of image segmentation and data mining, how to achieve rapid automated image classification has been the focus of research. In this paper, based on the super pixel density of cluster centers algorithm for automatic image classification and identify outlier. The use of the image pixel location coordinates and gray value computing density and distance, to achieve automatic image classification and outlier extraction. Due to the increased pixel dramatically increase the computational complexity, consider the method of ultra-pixel image preprocessing, divided into a small number of super-pixel sub-blocks after the density and distance calculations, while the design of a normalized density and distance discrimination law, to achieve automatic classification and clustering center selection, whereby the image automatically classify and identify outlier. After a lot of experiments, our method does not require human intervention, can automatically categorize images computing speed than the density clustering algorithm, the image can be effectively automated classification and outlier extraction.

  12. Pixel-feature hybrid fusion for PET/CT images.

    PubMed

    Zhu, Yang-Ming; Nortmann, Charles A

    2011-02-01

    Color blending is a popular display method for functional and anatomic image fusion. The underlay image is typically displayed in grayscale, and the overlay image is displayed in pseudo colors. This pixel-level fusion provides too much information for reviewers to analyze quickly and effectively and clutters the display. To improve the fusion image reviewing speed and reduce the information clutter, a pixel-feature hybrid fusion method is proposed and tested for PET/CT images. Segments of the colormap are selectively masked to have a few discrete colors, and pixels displayed in the masked colors are made transparent. The colormap thus creates a false contouring effect on overlay images and allows the underlay to show through to give contours an anatomic context. The PET standardized uptake value (SUV) is used to control where colormap segments are masked. Examples show that SUV features can be extracted and blended with CT image instantaneously for viewing and diagnosis, and the non-feature part of the PET image is transparent. The proposed pixel-feature hybrid fusion highlights PET SUV features on CT images and reduces display clutters. It is easy to implement and can be used as complementarily to existing pixel-level fusion methods.

  13. Pixel classification based color image segmentation using quaternion exponent moments.

    PubMed

    Wang, Xiang-Yang; Wu, Zhi-Fang; Chen, Liang; Zheng, Hong-Liang; Yang, Hong-Ying

    2016-02-01

    Image segmentation remains an important, but hard-to-solve, problem since it appears to be application dependent with usually no a priori information available regarding the image structure. In recent years, many image segmentation algorithms have been developed, but they are often very complex and some undesired results occur frequently. In this paper, we propose a pixel classification based color image segmentation using quaternion exponent moments. Firstly, the pixel-level image feature is extracted based on quaternion exponent moments (QEMs), which can capture effectively the image pixel content by considering the correlation between different color channels. Then, the pixel-level image feature is used as input of twin support vector machines (TSVM) classifier, and the TSVM model is trained by selecting the training samples with Arimoto entropy thresholding. Finally, the color image is segmented with the trained TSVM model. The proposed scheme has the following advantages: (1) the effective QEMs is introduced to describe color image pixel content, which considers the correlation between different color channels, (2) the excellent TSVM classifier is utilized, which has lower computation time and higher classification accuracy. Experimental results show that our proposed method has very promising segmentation performance compared with the state-of-the-art segmentation approaches recently proposed in the literature.

  14. Multiport solid-state imager characterization at variable pixel rates

    SciTech Connect

    Yates, G.J.; Albright, K.A.; Turko, B.T.

    1993-08-01

    The imaging performance of an 8-port Full Frame Transfer Charge Coupled Device (FFT CCD) as a function of several parameters including pixel clock rate is presented. The device, model CCD- 13, manufactured by English Electric Valve (EEV) is a 512 {times} 512 pixel array designed with four individual programmable bidirectional serial registers and eight output amplifiers permitting simultaneous readout of eight segments (128 horizontal {times} 256 vertical pixels) of the array. The imager was evaluated in Los Alamos National Laboratory`s High-Speed Solid-State Imager Test Station at true pixel rates as high as 50 MHz for effective imager pixel rates approaching 400 MHz from multiporting. Key response characteristics measured include absolute responsivity, Charge-Transfer-Efficiency (CTE), dynamic range, resolution, signal-to-noise ratio, and electronic and optical crosstalk among the eight video channels. Preliminary test results and data obtained from the CCD-13 will be presented and the versatility/capabilities of the test station will be reviewed.

  15. Fabrication and performance of mercuric iodide pixellated detectors

    NASA Astrophysics Data System (ADS)

    van den Berg, Lodewijk; Bastian, Lloyd F.; Zhang, Feng; Lenos, Howard; Capote, M. Albert

    2007-09-01

    The radiation detection efficiency and spectral resolution of mercuric iodide detectors can be improved significantly by increasing the volume of the detectors and by using a pixellated anode structure. Detector bodies with a thickness of nominally 10 mm and an active area of approximately 14 mm x 14 mm have been used for these experiments. The detectors were cut from single crystals grown by the physical vapor transport method. The cut surfaces were polished and etched using a string saw and potassium iodide solutions. The Palladium contacts were deposited by magnetron sputtering through stainless steel masks. The cathode contact is continuous; the anode contacts consist of an array of 11 x 11 pixels surrounded by a guard ring. The resistance between a pixel and its surrounding contacts should be larger than 0.25 Gohm. The detector is mounted on a substrate that makes it possible to connect the anode pixels to an ASIC, and is conditioned so that it is stable for all pixels at a bias of -3000 Volts. Under these conditions the spectral resolution for Cs-137 gamma rays (662 keV) is approximately 5% FWHM. When depth sensing correction methods are applied, the resolution improves to about 2% FWHM or better. It is expected that the performance of the devices can be improved by the careful selection of crystal parts that are free of structural defects. Details of the fabrication technologies will be described. The effects of material inhomogeneities and transport properties of the charge carriers will be discussed.

  16. Quantitative pixel grey measurement of the “high-risk” sign, darkening of third molar roots: a pilot study

    PubMed Central

    Szalma, J; Bata, Z; Lempel, E; Jeges, S; Olasz, L

    2013-01-01

    Objectives: Our aim was to examine the panoramic darkening of the root, which is a “high-risk” sign, using quantitative measurements of pixel grey values to determine different aetiological backgrounds, namely inferior alveolar nerve (IAN) exposure with or without groove formation of the third molar roots or thinning/fenestration of the lingual cortex (LCTF). Methods: 38 impacted third molars that had been surgically removed and had darkened roots on panoramic radiographs were included in this retrospective case–control study. 15 IAN exposure cases were selected for the case group, and 23 cases with proven lingual cortical thinning or fenestration were chosen for the control group. The mean pixel grey values of selected areas in the dark band (D) and control areas within the same roots (R) were determined with the ImageTool (University of Texas Health Science Center, San Antonio, TX) software. The differences in pixel values (R–D) of the IAN and LCTF groups were analysed using the Mann–Whitney U-test and Pearson's χ2 test. Results: The medians of the R–D pixel values were 45.7 in the IAN group and 34.3 in the LCTF group, whereas the interquartile ranges were 12.0 (IAN) and 18.3 (LCTF) (p < 0.001). The R–D critical value at which the outcomes differed significantly was 38. If the differences in pixel grey values (R–D) were higher than 38, the chance of IAN exposure was approximately 32 times higher than the chance of LCTF (χ2 test, p < 0.001; odds ratio, 32.0; 95% confidence interval, 3.5–293.1). Conclusions: The pre-operative prediction of IAN exposure or lingual cortical thinning in cases with “darkening” is possible based on pixel grey measurements of digital panoramic radiographs. PMID:23775927

  17. Method and apparatus of high dynamic range image sensor with individual pixel reset

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric R. (Inventor)

    2001-01-01

    A wide dynamic range image sensor provides individual pixel reset to vary the integration time of individual pixels. The integration time of each pixel is controlled by column and row reset control signals which activate a logical reset transistor only when both signals coincide for a given pixel.

  18. Planar pixel sensors for the ATLAS upgrade: beam tests results

    NASA Astrophysics Data System (ADS)

    Weingarten, J.; Altenheiner, S.; Beimforde, M.; Benoit, M.; Bomben, M.; Calderini, G.; Gallrapp, C.; George, M.; Gibson, S.; Grinstein, S.; Janoska, Z.; Jentzsch, J.; Jinnouchi, O.; Kishida, T.; La Rosa, A.; Libov, V.; Macchiolo, A.; Marchiori, G.; Muenstermann, D.; Nagai, R.; Piacquadio, G.; Ristic, B.; Rubinskiy, I.; Rummler, A.; Takubo, Y.; Troska, G.; Tsiskaridtze, S.; Tsurin, I.; Unno, Y.; Weigell, P.; Wittig, T.

    2012-10-01

    The performance of planar silicon pixel sensors, in development for the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades, has been examined in a series of beam tests at the CERN SPS facilities since 2009. Salient results are reported on the key parameters, including the spatial resolution, the charge collection and the charge sharing between adjacent cells, for different bulk materials and sensor geometries. Measurements are presented for n+-in-n pixel sensors irradiated with a range of fluences and for p-type silicon sensors with various layouts from different vendors. All tested sensors were connected via bump-bonding to the ATLAS Pixel read-out chip. The tests reveal that both n-type and p-type planar sensors are able to collect significant charge even after the lifetime fluence expected at the HL-LHC.

  19. The Phase-1 upgrade of the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Klein, Katja

    2017-02-01

    The CMS experiment features a pixel detector with three barrel layers and two discs per side, corresponding to an active silicon area of 1 m2. The detector delivered high-quality data during LHC Run 1. However, the CMS pixel detector was designed for the nominal instantaneous LHC luminosity of 1 ·1034cm-2s-1 . It is expected that the instantaneous luminosity will increase and reach twice the design value before Long Shutdown 3, scheduled for 2023. Under such conditions, the present readout chip would suffer from data loss due to buffer overflow, leading to significant inefficiencies of up to 16%. The CMS collaboration is presently constructing a new pixel detector to replace the present device during the winter shutdown 2016/2017. The design of this new detector will be outlined, the construction status summarized and the performance described.

  20. Visual mining geo-related data using pixel bar charts

    NASA Astrophysics Data System (ADS)

    Hao, Ming C.; Keim, Daniel A.; Dayal, Umeshwar; Wright, Peter; Schneidewind, Joern

    2005-03-01

    A common approach to analyze geo-related data is using bar charts or x-y plots. They are intuitive and easy to use. But important information often gets lost. In this paper, we introduce a new interactive visualization technique called Geo Pixel Bar Charts, which combines the advantages of Pixel Bar Charts and interactive maps. This technique allows analysts to visualize large amounts of spatial data without aggregation and shows the geographical regions corresponding to the spatial data attribute at the same time. In this paper, we apply Geo Pixel Bar Charts to visually mining sales transactions and Internet usage from different locations. Our experimental results show the effectiveness of this technique for providing data distribution and exceptions from the map.

  1. Virus based Full Colour Pixels using a Microheater

    PubMed Central

    Kim, Won-Geun; Kim, Kyujung; Ha, Sung-Hun; Song, Hyerin; Yu, Hyun-Woo; Kim, Chuntae; Kim, Jong-Man; Oh, Jin-Woo

    2015-01-01

    Mimicking natural structures has been received considerable attentions, and there have been a few practical advances. Tremendous efforts based on a self-assembly technique have been contributed to the development of the novel photonic structures which are mimicking nature’s inventions. We emulate the photonic structures from an origin of colour generation of mammalian skins and avian skin/feathers using M13 phage. The structures can be generated a full range of RGB colours that can be sensitively switched by temperature and substrate materials. Consequently, we developed an M13 phage-based temperature-dependent actively controllable colour pixels platform on a microheater chip. Given the simplicity of the fabrication process, the low voltage requirements and cycling stability, the virus colour pixels enable us to substitute for conventional colour pixels for the development of various implantable, wearable and flexible devices in future. PMID:26334322

  2. Wire Bond Encapsulation for the CMS Forward Pixel Upgrade

    NASA Astrophysics Data System (ADS)

    Higginbotham, Sam; CMS Collaboration

    2015-04-01

    The Phase 1 upgrade of the pixel tracker for the CMS experiment will require the assembly of approximately 1000 modules consisting of pixel sensors bump bonded to readout chips. Electrical connections between the custom readout chips and support ASIC's that constitute the front-end of the pixel data acquisition system are made via wire bonds to a thin printed circuit board. Part of the assembly process carried out at Purdue University includes the partial encapsulation of the wire bonds for mechanical protection, prevention of electrolytic corrosion, and to damp oscillations due to Lorentz forces from transient current pulses in large magnetic fields. We present the details of the robotic assembly process which allows the deposition of the viscous encapsulant compound with 100 micron precision.

  3. Acousto-optic imaging with a smart-pixels sensor

    NASA Astrophysics Data System (ADS)

    Barjean, K.; Contreras, K.; Laudereau, J.-B.; Tinet, E.; Ettori, D.; Ramaz, F.; Tualle, J.-M.

    2015-03-01

    Acousto-optic imaging (AOI) is an emerging technique in the field of biomedical optics which combines the optical contrast allowed by diffuse optical tomography with the resolution of ultrasound (US) imaging. In this work we report the implementation, for that purpose, of a CMOS smart-pixels sensor dedicated to the real-time analysis of speckle patterns. We implemented a highly sensitive lock-in detection in each pixel in order to extract the tagged photons after an appropriate in-pixel post-processing. With this system we can acquire images in scattering samples with a spatial resolution in the 2mm range, with an integration time compatible with the dynamic of living biological tissue.

  4. Calibration analysis software for the ATLAS Pixel Detector

    NASA Astrophysics Data System (ADS)

    Stramaglia, Maria Elena

    2016-07-01

    The calibration of the ATLAS Pixel Detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel Detector scans and analyses is called calibration console. The introduction of a new layer, equipped with new FE-I4 chips, required an update of the console architecture. It now handles scans and scan analyses applied together to chips with different characteristics. An overview of the newly developed calibration analysis software will be presented, together with some preliminary results.

  5. Leakage current measurements of a pixelated polycrystalline CVD diamond detector

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; Maneuski, D.; O'Shea, V.; Bates, R.; Blue, A.; Cunnigham, L.; Stehl, C.; Berderman, E.; Rahim, R. A.

    2013-01-01

    Diamond has several desirable features when used as a material for radiation detection. With the invention of synthetic growth techniques, it has become feasible to look at developing diamond radiation detectors with reasonable surface areas. Polycrystalline diamond has been grown using a chemical vapour deposition (CVD) technique by the University of Augsburg and detector structures fabricated at the James Watt Nanofabrication Centre (JWNC) in the University of Glasgow in order to produce pixelated detector arrays. The anode and cathode contacts are realised by depositing gold to produce ohmic contacts. Measurements of I-V characteristics were performed to study the material uniformity. The bias voltage is stepped from -1000V to 1000V to investigate the variation of leakage current from pixel to pixel. Bulk leakage current is measured to be less than 1nA.

  6. Testbeam and laboratory characterization of CMS 3D pixel sensors

    NASA Astrophysics Data System (ADS)

    Bubna, M.; Bortoletto, D.; Alagoz, E.; Krzywda, A.; Arndt, K.; Shipsey, I.; Bolla, G.; Hinton, N.; Kok, A.; Hansen, T.-E.; Summanwar, A.; Brom, J. M.; Boscardin, M.; Chramowicz, J.; Cumalat, J.; Dalla Betta, G. F.; Dinardo, M.; Godshalk, A.; Jones, M.; Krohn, M. D.; Kumar, A.; Lei, C. M.; Mendicino, R.; Moroni, L.; Perera, L.; Povoli, M.; Prosser, A.; Rivera, R.; Solano, A.; Obertino, M. M.; Kwan, S.; Uplegger, L.; Vigani, L.; Wagner, S.

    2014-07-01

    The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected at the High-Luminosity LHC (HL-LHC). As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements of CMS 3D pixel sensors with different electrode configurations from different vendors. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties of silicon sensors, such as MOS capacitors, planar and gate-controlled diodes are also presented.

  7. Silicon pixel detector prototyping in SOI CMOS technology

    NASA Astrophysics Data System (ADS)

    Dasgupta, Roma; Bugiel, Szymon; Idzik, Marek; Kapusta, Piotr; Kucewicz, Wojciech; Turala, Michal

    2016-12-01

    The Silicon-On-Insulator (SOI) CMOS is one of the most advanced and promising technology for monolithic pixel detectors design. The insulator layer that is implemented inside the silicon crystal allows to integrate sensors matrix and readout electronic on a single wafer. Moreover, the separation of electronic and substrate increases also the SOI circuits performance. The parasitic capacitances to substrate are significantly reduced, so the electronic systems are faster and consume much less power. The authors of this presentation are the members of international SOIPIX collaboration, that is developing SOI pixel detectors in 200 nm Lapis Fully-Depleted, Low-Leakage SOI CMOS. This work shows a set of advantages of SOI technology and presents possibilities for pixel detector design SOI CMOS. In particular, the preliminary results of a Cracow chip are presented.

  8. Simulation of Caliste-SO single pixel response

    NASA Astrophysics Data System (ADS)

    Barylak, J.; Barylak, A.; Mrozek, T.; Podgórski, P.; Steślicki, M.; Ścisłowski, D.

    2016-09-01

    The paper presents a method for determining the pixel response using Geant4 package. The response is calculated for cadmium telluride sensor of Caliste-SO detector. Caliste-SO will be used in STIX instrument on board Solar Orbiter, which is M-class mission of the ESA's program Cosmic Vision 2015-2025. Solar Orbiter is to be launched in October 2018. STIX instrument will provide imaging spectroscopy of solar hard X-ray emissions (4 - 150 keV) using a Fourier-imaging technique. Response of pixels in pixelized Caliste-SO detector vary between each other due to different sizes and locations. This can influence the scientific data obtained from STIX. Additionally, in the simulation we considered detector effects, like: hole tailing, damage layer, Fano and electronic noise.

  9. Performance of the INTPIX6 SOI pixel detector

    NASA Astrophysics Data System (ADS)

    Arai, Y.; Bugiel, Sz.; Dasgupta, R.; Idzik, M.; Kapusta, P.; Kucewicz, W.; Miyoshi, T.; Turala, M.

    2017-01-01

    Characterization of the monolithic pixel detector INPTIX6, designed at KEK and fabricated in Lapis 0.2 μ m Fully-Depleted, Low-Leakage Silicon-On-Insulator (SOI) CMOS technology, was performed. The INTPIX6 comprises a large area of 1408 × 896 integrating type squared pixels of 12 micron pitch. In this work the performance and measurement results of the prototypes produced on lower resistivity Czochralski type (CZ-n) and high resistivity floating zone (FZ-n) sensor wafers are presented. Using 241Am radioactive source the noise of INTPIX6 was measured, showing the ENC (Equivalent Noise Charge) of about 70 e-. The resolution calculated from the FWHM of the Iron-55 X-ray peak was about 100 e-. The radiation hardness of the SOI pixel detector was also investigated. The CZ-n type INTPIX6 received a dose of 60 krad and its performance has been continuously monitored during the irradiation.

  10. Virus based Full Colour Pixels using a Microheater

    NASA Astrophysics Data System (ADS)

    Kim, Won-Geun; Kim, Kyujung; Ha, Sung-Hun; Song, Hyerin; Yu, Hyun-Woo; Kim, Chuntae; Kim, Jong-Man; Oh, Jin-Woo

    2015-09-01

    Mimicking natural structures has been received considerable attentions, and there have been a few practical advances. Tremendous efforts based on a self-assembly technique have been contributed to the development of the novel photonic structures which are mimicking nature’s inventions. We emulate the photonic structures from an origin of colour generation of mammalian skins and avian skin/feathers using M13 phage. The structures can be generated a full range of RGB colours that can be sensitively switched by temperature and substrate materials. Consequently, we developed an M13 phage-based temperature-dependent actively controllable colour pixels platform on a microheater chip. Given the simplicity of the fabrication process, the low voltage requirements and cycling stability, the virus colour pixels enable us to substitute for conventional colour pixels for the development of various implantable, wearable and flexible devices in future.

  11. HEXITEC ASIC—a pixellated readout chip for CZT detectors

    NASA Astrophysics Data System (ADS)

    Jones, Lawrence; Seller, Paul; Wilson, Matthew; Hardie, Alec

    2009-06-01

    HEXITEC is a collaborative project with the aim of developing a new range of detectors for high-energy X-ray imaging. High-energy X-ray imaging has major advantages over current lower energy imaging for the life and physical sciences, including improved phase-contrast images on larger, higher density samples and with lower accumulated doses. However, at these energies conventional silicon-based devices cannot be used, hence, the requirement for a new range of high Z-detector materials. Underpinning the HEXITEC programme are the development of a pixellated Cadmium Zinc Telluride (CZT) detectors and a pixellated readout ASIC which will be bump-bonded to the detector. The HEXITEC ASIC is required to have low noise (20 electrons rms) and tolerate detector leakage currents. A prototype 20×20 pixel ASIC has been developed and manufactured on a standard 0.35 μm CMOS process.

  12. Classification of multispectral image data by the Binary Diamond neural network and by nonparametric, pixel-by-pixel methods

    NASA Technical Reports Server (NTRS)

    Salu, Yehuda; Tilton, James

    1993-01-01

    The classification of multispectral image data obtained from satellites has become an important tool for generating ground cover maps. This study deals with the application of nonparametric pixel-by-pixel classification methods in the classification of pixels, based on their multispectral data. A new neural network, the Binary Diamond, is introduced, and its performance is compared with a nearest neighbor algorithm and a back-propagation network. The Binary Diamond is a multilayer, feed-forward neural network, which learns from examples in unsupervised, 'one-shot' mode. It recruits its neurons according to the actual training set, as it learns. The comparisons of the algorithms were done by using a realistic data base, consisting of approximately 90,000 Landsat 4 Thematic Mapper pixels. The Binary Diamond and the nearest neighbor performances were close, with some advantages to the Binary Diamond. The performance of the back-propagation network lagged behind. An efficient nearest neighbor algorithm, the binned nearest neighbor, is described. Ways for improving the performances, such as merging categories, and analyzing nonboundary pixels, are addressed and evaluated.

  13. Imaging by photon counting with 256x256 pixel matrix

    NASA Astrophysics Data System (ADS)

    Tlustos, Lukas; Campbell, Michael; Heijne, Erik H. M.; Llopart, Xavier

    2004-09-01

    Using 0.25µm standard CMOS we have developed 2-D semiconductor matrix detectors with sophisticated functionality integrated inside each pixel of a hybrid sensor module. One of these sensor modules is a matrix of 256x256 square 55µm pixels intended for X-ray imaging. This device is called 'Medipix2' and features a fast amplifier and two-level discrimination for signals between 1000 and 100000 equivalent electrons, with overall signal noise ~150 e- rms. Signal polarity and comparator thresholds are programmable. A maximum count rate of nearly 1 MHz per pixel can be achieved, which corresponds to an average flux of 3x10exp10 photons per cm2. The selected signals can be accumulated in each pixel in a 13-bit register. The serial readout takes 5-10 ms. A parallel readout of ~300 µs could also be used. Housekeeping functions such as local dark current compensation, test pulse generation, silencing of noisy pixels and threshold tuning in each pixel contribute to the homogeneous response over a large sensor area. The sensor material can be adapted to the energy of the X-rays. Best results have been obtained with high-resistivity silicon detectors, but also CdTe and GaAs detectors have been used. The lowest detectable X-ray energy was about 4 keV. Background measurements have been made, as well as measurements of the uniformity of imaging by photon counting. Very low photon count rates are feasible and noise-free at room temperature. The readout matrix can be used also with visible photons if an energy or charge intensifier structure is interposed such as a gaseous amplification layer or a microchannel plate or acceleration field in vacuum.

  14. SLHC upgrade plans for the ATLAS pixel detector

    NASA Astrophysics Data System (ADS)

    Šícho, Petr

    2009-08-01

    The ATLAS pixel detector is an 80 million channels silicon tracking system designed to detect charged tracks and secondary vertices with very high precision. An upgrade of the ATLAS pixel detector is presently being considered, enabling to cope with higher luminosity at Super Large Hadron Collider (SLHC). The increased luminosity leads to extremely high radiation doses in the innermost region of the ATLAS tracker. Options considered for a new detector are discussed, as well as some important R&D activities, such as investigations towards novel detector geometries and novel processes.

  15. Highly Reflective Multi-stable Electrofluidic Display Pixels

    NASA Astrophysics Data System (ADS)

    Yang, Shu

    Electronic papers (E-papers) refer to the displays that mimic the appearance of printed papers, but still owning the features of conventional electronic displays, such as the abilities of browsing websites and playing videos. The motivation of creating paper-like displays is inspired by the truths that reading on a paper caused least eye fatigue due to the paper's reflective and light diffusive nature, and, unlike the existing commercial displays, there is no cost of any form of energy for sustaining the displayed image. To achieve the equivalent visual effect of a paper print, an ideal E-paper has to be a highly reflective with good contrast ratio and full-color capability. To sustain the image with zero power consumption, the display pixels need to be bistable, which means the "on" and "off" states are both lowest energy states. Pixel can change its state only when sufficient external energy is given. There are many emerging technologies competing to demonstrate the first ideal E-paper device. However, none is able to achieve satisfactory visual effect, bistability and video speed at the same time. Challenges come from either the inherent physical/chemical properties or the fabrication process. Electrofluidic display is one of the most promising E-paper technologies. It has successfully demonstrated high reflectivity, brilliant color and video speed operation by moving colored pigment dispersion between visible and invisible places with electrowetting force. However, the pixel design did not allow the image bistability. Presented in this dissertation are the multi-stable electrofluidic display pixels that are able to sustain grayscale levels without any power consumption, while keeping the favorable features of the previous generation electrofluidic display. The pixel design, fabrication method using multiple layer dry film photoresist lamination, and physical/optical characterizations are discussed in details. Based on the pixel structure, the preliminary

  16. Mapping Pixel Windows To Vectors For Parallel Processing

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    1996-01-01

    Mapping performed by matrices of transistor switches. Arrays of transistor switches devised for use in forming simultaneous connections from square subarray (window) of n x n pixels within electronic imaging device containing np x np array of pixels to linear array of n(sup2) input terminals of electronic neural network or other parallel-processing circuit. Method helps to realize potential for rapidity in parallel processing for such applications as enhancement of images and recognition of patterns. In providing simultaneous connections, overcomes timing bottleneck or older multiplexing, serial-switching, and sample-and-hold methods.

  17. CMOS VLSI Active-Pixel Sensor for Tracking

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Sun, Chao; Yang, Guang; Heynssens, Julie

    2004-01-01

    An architecture for a proposed active-pixel sensor (APS) and a design to implement the architecture in a complementary metal oxide semiconductor (CMOS) very-large-scale integrated (VLSI) circuit provide for some advanced features that are expected to be especially desirable for tracking pointlike features of stars. The architecture would also make this APS suitable for robotic- vision and general pointing and tracking applications. CMOS imagers in general are well suited for pointing and tracking because they can be configured for random access to selected pixels and to provide readout from windows of interest within their fields of view. However, until now, the architectures of CMOS imagers have not supported multiwindow operation or low-noise data collection. Moreover, smearing and motion artifacts in collected images have made prior CMOS imagers unsuitable for tracking applications. The proposed CMOS imager (see figure) would include an array of 1,024 by 1,024 pixels containing high-performance photodiode-based APS circuitry. The pixel pitch would be 9 m. The operations of the pixel circuits would be sequenced and otherwise controlled by an on-chip timing and control block, which would enable the collection of image data, during a single frame period, from either the full frame (that is, all 1,024 1,024 pixels) or from within as many as 8 different arbitrarily placed windows as large as 8 by 8 pixels each. A typical prior CMOS APS operates in a row-at-a-time ( grolling-shutter h) readout mode, which gives rise to exposure skew. In contrast, the proposed APS would operate in a sample-first/readlater mode, suppressing rolling-shutter effects. In this mode, the analog readout signals from the pixels corresponding to the windows of the interest (which windows, in the star-tracking application, would presumably contain guide stars) would be sampled rapidly by routing them through a programmable diagonal switch array to an on-chip parallel analog memory array. The

  18. The BTeV pixel and microstrip detector

    SciTech Connect

    Simon W Kwan

    2003-06-04

    The BTeV pixel detector is one of the most crucial elements in the BTeV experiment. While the pixel detector is technically challenging, we have made great progress towards identifying viable solutions for individual components of the system. The forward silicon tracker is based on more mature technology and its design has benefited from the experience of other experiments. Nevertheless, we have started an R&D program on the forward silicon tracker and first results are expected some time next year.

  19. Fully depleted CMOS pixel sensor development and potential applications

    SciTech Connect

    Baudot, J.; Kachel, M.

    2015-07-01

    CMOS pixel sensors are often opposed to hybrid pixel sensors due to their very different sensitive layer. In standard CMOS imaging processes, a thin (about 20 μm) low resistivity epitaxial layer acts as the sensitive volume and charge collection is mostly driven by thermal agitation. In contrast, the so-called hybrid pixel technology exploits a thick (typically 300 μm) silicon sensor with high resistivity allowing for the depletion of this volume, hence charges drift toward collecting electrodes. But this difference is fading away with the recent availability of some CMOS imaging processes based on a relatively thick (about 50 μm) high resistivity epitaxial layer which allows for full depletion. This evolution extents the range of applications for CMOS pixel sensors where their known assets, high sensitivity and granularity combined with embedded signal treatment, could potentially foster breakthrough in detection performances for specific scientific instruments. One such domain is the Xray detection for soft energies, typically below 10 keV, where the thin sensitive layer was previously severely impeding CMOS sensor usage. Another application becoming realistic for CMOS sensors, is the detection in environment with a high fluence of non-ionizing radiation, such as hadron colliders. However, when considering highly demanding applications, it is still to be proven that micro-circuits required to uniformly deplete the sensor at the pixel level, do not mitigate the sensitivity and efficiency required. Prototype sensors in two different technologies with resistivity higher than 1 kΩ, sensitive layer between 40 and 50 μm and featuring pixel pitch in the range 25 to 50 μm, have been designed and fabricated. Various biasing architectures were adopted to reach full depletion with only a few volts. Laboratory investigations with three types of sources (X-rays, β-rays and infrared light) demonstrated the validity of the approach with respect to depletion, keeping a

  20. Improving Kepler Pipeline Sensitivity with Pixel Response Function Photometry.

    NASA Astrophysics Data System (ADS)

    Morris, Robert L.; Bryson, Steve; Jenkins, Jon Michael; Smith, Jeffrey C

    2014-06-01

    We present the results of our investigation into the feasibility and expected benefits of implementing PRF-fitting photometry in the Kepler Science Processing Pipeline. The Kepler Pixel Response Function (PRF) describes the expected system response to a point source at infinity and includes the effects of the optical point spread function, the CCD detector responsivity function, and spacecraft pointing jitter. Planet detection in the Kepler pipeline is currently based on simple aperture photometry (SAP), which is most effective when applied to uncrowded bright stars. Its effectiveness diminishes rapidly as target brightness decreases relative to the effects of noise sources such as detector electronics, background stars, and image motion. In contrast, PRF photometry is based on fitting an explicit model of image formation to the data and naturally accounts for image motion and contributions of background stars. The key to obtaining high-quality photometry from PRF fitting is a high-quality model of the system's PRF, while the key to efficiently processing the large number of Kepler targets is an accurate catalog and accurate mapping of celestial coordinates onto the focal plane. If the CCD coordinates of stellar centroids are known a priori then the problem of PRF fitting becomes linear. A model of the Kepler PRF was constructed at the time of spacecraft commissioning by fitting piecewise polynomial surfaces to data from dithered full frame images. While this model accurately captured the initial state of the system, the PRF has evolved dynamically since then and has been seen to deviate significantly from the initial (static) model. We construct a dynamic PRF model which is then used to recover photometry for all targets of interest. Both simulation tests and results from Kepler flight data demonstrate the effectiveness of our approach. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA’s Science

  1. Mars Descent Imager (MARDI) on the Mars Polar Lander

    USGS Publications Warehouse

    Malin, M.C.; Caplinger, M.A.; Carr, M.H.; Squyres, S.; Thomas, P.; Veverka, J.

    2001-01-01

    The Mars Descent Imager, or MARDI, experiment on the Mars Polar Lander (MPL) consists of a camera characterized by small physical size and mass (???6 ?? 6 ?? 12 cm, including baffle; <500 gm), low power requirements (<2.5 W, including power supply losses), and high science performance (1000 x 1000 pixel, low noise). The intent of the investigation is to acquire nested images over a range of resolutions, from 8 m/pixel to better than 1 cm/pixel, during the roughly 2 min it takes the MPL to descend from 8 km to the surface under parachute and rocket-powered deceleration. Observational goals will include studies of (1) surface morphology (e.g., nature and distribution of landforms indicating past and present environmental processes); (2) local and regional geography (e.g., context for other lander instruments: precise location, detailed local relief); and (3) relationships to features seen in orbiter data. To accomplish these goals, MARDI will collect three types of images. Four small images (256 x 256 pixels) will be acquired on 0.5 s centers beginning 0.3 s before MPL's heatshield is jettisoned. Sixteen full-frame images (1024 X 1024, circularly edited) will be acquired on 5.3 s centers thereafter. Just after backshell jettison but prior to the start of powered descent, a "best final nonpowered descent image" will be acquired. Five seconds after the start of powered descent, the camera will begin acquiring images on 4 s centers. Storage for as many as ten 800 x 800 pixel images is available during terminal descent. A number of spacecraft factors are likely to impact the quality of MARDI images, including substantial motion blur resulting from large rates of attitude variation during parachute descent and substantial rocket-engine-induced vibration during powered descent. In addition, the mounting location of the camera places the exhaust plume of the hydrazine engines prominently in the field of view. Copyright 2001 by the American Geophysical Union.

  2. iPixel: a visual content-based and semantic search engine for retrieving digitized mammograms by using collective intelligence.

    PubMed

    Alor-Hernández, Giner; Pérez-Gallardo, Yuliana; Posada-Gómez, Rubén; Cortes-Robles, Guillermo; Rodríguez-González, Alejandro; Aguilar-Laserre, Alberto A

    2012-09-01

    Nowadays, traditional search engines such as Google, Yahoo and Bing facilitate the retrieval of information in the format of images, but the results are not always useful for the users. This is mainly due to two problems: (1) the semantic keywords are not taken into consideration and (2) it is not always possible to establish a query using the image features. This issue has been covered in different domains in order to develop content-based image retrieval (CBIR) systems. The expert community has focussed their attention on the healthcare domain, where a lot of visual information for medical analysis is available. This paper provides a solution called iPixel Visual Search Engine, which involves semantics and content issues in order to search for digitized mammograms. iPixel offers the possibility of retrieving mammogram features using collective intelligence and implementing a CBIR algorithm. Our proposal compares not only features with similar semantic meaning, but also visual features. In this sense, the comparisons are made in different ways: by the number of regions per image, by maximum and minimum size of regions per image and by average intensity level of each region. iPixel Visual Search Engine supports the medical community in differential diagnoses related to the diseases of the breast. The iPixel Visual Search Engine has been validated by experts in the healthcare domain, such as radiologists, in addition to experts in digital image analysis.

  3. Pneumatic fractures in Confined Granular Media

    NASA Astrophysics Data System (ADS)

    Eriksen, Fredrik K.; Toussaint, Renaud; Jørgen Måløy, Knut; Grude Flekkøy, Eirik; Turkaya, Semih

    2016-04-01

    We will present our ongoing study of the patterns formed when air flows into a dry, non-cohesive porous medium confined in a horizontal Hele-Shaw cell. This is an optically transparent system consisting of two glass plates separated by 0.5 to 1 mm, containing a packing of dry 80 micron beads in between. The cell is rectangular and has an air-permeable boundary (blocking beads) at one short edge, while the other three edges are completely sealed. The granular medium is loosely packed against the semi-permeable boundary and fills about 80 % of the cell volume. This leaves an empty region at the sealed side, where an inlet allows us to set and maintain the air at a constant overpressure (0.1 - 2 bar). For the air trapped inside the cell to relax its overpressure it has to move through the deformable granular medium. Depending on the applied overpressure and initial density of the medium, we observe a range of different behaviors such as seepage through the pore-network with or without an initial compaction of the solid, formation of low density bubbles with rearrangement of particles, granular fingering/fracturing, and erosion inside formed channels/fractures. The experiments are recorded with a high-speed camera at a framerate of 1000 images/s and a resolution of 1024x1024 pixels. We use various image processing techniques to characterize the evolution of the air invasion patterns and the deformations in the surrounding material. The experiments are similar to deformation processes in porous media which are driven by pore fluid overpressure, such as mud volcanoes and hydraulic or pneumatic (gas-induced) fracturing, and the motivation is to increase the understanding of such processes by optical observations. In addition, this setup is an experimental version of the numerical models analyzed by Niebling et al. [1,2], and is useful for comparison with their results. In a directly related project [3], acoustic emissions from the cell plate are recorded during

  4. Phase 1 upgrade of the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Saha, Anirban

    2017-02-01

    The pixel tracker of the Compact Muon Solenoid (CMS) experiment is the innermost sub-detector, located close to the collision point, and is used for reconstruction of the tracks and vertices of charged particles. The present pixel detector was designed to work efficiently with the maximum instantaneous luminosity of 1 × 1034 cm‑2 s‑1. In 2017 the Large Hadron Collider (LHC) is expected to deliver a peak luminosity reaching up to 2 × 1034 cm‑2 s‑1, increasing the mean number of primary vertices to 50. Due to the radiation damage and significant data losses due to high occupancy in the readout chip of the pixel detector, the present system must be replaced by a new one in an extended end-of-year shutdown during winter 2016/2017 in order to maintain the excellent tracking and other physics performances. The main new features of the upgraded pixel detector are a ultra-light mechanical design with four barrel layers and three end-cap disks, digital readout chip with higher rate capability and a new cooling system. In this document, we discuss the motivations for the upgrade, the design, and technological choices made, the status of the construction of the new detector and the future plans for the installation and commissioning.

  5. Optimization of Focusing by Strip and Pixel Arrays

    SciTech Connect

    Burke, G J; White, D A; Thompson, C A

    2005-06-30

    Professor Kevin Webb and students at Purdue University have demonstrated the design of conducting strip and pixel arrays for focusing electromagnetic waves [1, 2]. Their key point was to design structures to focus waves in the near field using full wave modeling and optimization methods for design. Their designs included arrays of conducting strips optimized with a downhill search algorithm and arrays of conducting and dielectric pixels optimized with the iterative direct binary search method. They used a finite element code for modeling. This report documents our attempts to duplicate and verify their results. We have modeled 2D conducting strips and both conducting and dielectric pixel arrays with moment method and FDTD codes to compare with Webb's results. New designs for strip arrays were developed with optimization by the downhill simplex method with simulated annealing. Strip arrays were optimized to focus an incident plane wave at a point or at two separated points and to switch between focusing points with a change in frequency. We also tried putting a line current source at the focus point for the plane wave to see how it would work as a directive antenna. We have not tried optimizing the conducting or dielectric pixel arrays, but modeled the structures designed by Webb with the moment method and FDTD to compare with the Purdue results.

  6. Sub-pixel localization of highways in AVIRIS images

    NASA Technical Reports Server (NTRS)

    Salu, Yehuda

    1995-01-01

    Roads and highways show up clearly in many bands of AVIRIS images. A typical lane in the U.S. is 12 feet wide, and the total width of a four lane highway, including 18 feet of paved shoulders, is 19.8 m. Such a highway will cover only a portion of any 20x20 m AVIRIS pixel that it traverses. The other portion of these pixels wil be usually covered by vegetation. An interesting problem is to precisely determine the location of a highway within the AVIRIS pixels that it traverses. This information may be used for alignment and spatial calibration of AVIRIS images. Also, since the reflection properties of highway surfaces do not change with time, and they can be determined once and for all, such information can be of help in calculating and filtering out the atmospheric noise that contaminates AVIRIS measurements. The purpose of this report is to describe a method for sub-pixel localization of highways.

  7. Metamaterial-based single pixel imaging system (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Padilla, Willie; Watts, Claire M.; Nadell, Christian; Montoya, John A.; Krishna, Sanjay

    2015-09-01

    Single pixel cameras are useful imaging devices where it is difficult or infeasible to fashion focal plan arrays. For example in the Far Infrared (FIR) it is difficult to perform imaging by conventional detector arrays, owing to the cost and size of such an array. The typical single pixel camera uses a spatial light modulator (SLM) - placed in the conjugate image plane - and is used to sample various portions of the image. The spatially modulated light emerging from the SLM is then sent to a single detector where the light is condensed with suitable optics for detection. Conventional SLMs are either based on liquid crystals or digital mirror devices. As such these devices are limited in modulation speeds of order 30 kHz. Further there is little control over the type of light that is modulated. We present metamaterial based spatial light modulators which provide the ability to digitally encode images - with various measurement matrix coefficients - thus permitting high speed and fidelity imaging capability. In particular we use the Hadamard matrix and related S-matrix to encode images for single pixel imaging. Metamaterials thus permit imaging in regimes of the electromagnetic spectrum where conventional SLMs are not available. Additionally, metamaterials offer several salient features that are not available with commercial SLMs. For example, metamaterials may be used to enable hyperspectral, polarimetric, and phase sensitive imaging. We present the theory and experimental results of single pixel imaging with digital metamaterials in the far infrared and highlight the future of this exciting field.

  8. Advancement in 17-micron pixel pitch uncooled focal plane arrays

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Skidmore, George; Howard, Christopher; Clarke, Elwood; Han, C. J.

    2009-05-01

    This paper provides an update of 17 micron pixel pitch uncooled microbolometer development at DRS. Since the introduction of 17 micron pitch 640x480 focal plane arrays (FPAs) in 2006, significant progress has been made in sensor performance and manufacturing processes. The FPAs are now in initial production with an FPA noise equivalent temperature difference (NETD), detector thermal time constant, and pixel operability equivalent or better than that of the current 25 micron pixel pitch production FPAs. NETD improvement was achieved without compromising detector thermal response or thermal time constant by simultaneous reduction in bolometer heat capacity and thermal conductance. In addition, the DRS unique "umbrella" microbolometer cavities were optically tuned to optimize detector radiation absorption for specific spectral band applications. The 17 micron pixel pitch FPAs are currently being considered for the next generation soldier systems such as thermal weapon sights (TWS), vehicle driver vision enhancers (DVE), digitally fused enhanced night vision goggles (DENVG) and unmanned air vehicle (UAV) surveillance sensors, because of overall thermal imaging system size, weight and power advantages.

  9. The pixel tracking telescope at the Fermilab Test Beam Facility

    DOE PAGES

    Kwan, Simon; Lei, CM; Menasce, Dario; ...

    2016-03-01

    An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm2 pixelmore » cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less

  10. High responsivity CMOS imager pixel implemented in SOI technology

    NASA Technical Reports Server (NTRS)

    Zheng, X.; Wrigley, C.; Yang, G.; Pain, B.

    2000-01-01

    Availability of mature sub-micron CMOS technology and the advent of the new low noise active pixel sensor (APS) concept have enabled the development of low power, miniature, single-chip, CMOS digital imagers in the decade of the 1990's.

  11. Gauss-Legendre Sky Pixelization (glesp) for CMB Maps

    NASA Astrophysics Data System (ADS)

    Doroshkevich, A. G.; Naselsky, P. D.; Verkhodanov, O. V.; Novikov, D. I.; Turchaninov, V. I.; Novikov, I. D.; Christensen, P. R.; Chiang, L.-Y.

    A new scheme of sky pixelization is developed for CMB maps. The scheme is based on the Gauss-Legendre polynomials zeros and allows one to create strict orthogonal expansion of the map. A corresponding code has been implemented and comparison with other methods has been done.

  12. Pixel Analysis and Plasma Dynamics Characterized by Photospheric Spectral Data

    NASA Astrophysics Data System (ADS)

    Rasca, Anthony P.; Chen, James; Pevtsov, Alexei A.

    2016-05-01

    Recent observations of the photosphere using high spatial and temporal resolutions show small dynamic features at the resolving limit during emerging flux events. However, line-of-sight (LOS) magnetogram pixels only contain the net uncanceled magnetic flux, which is expected to increase for fixed regions as resolution limits improve. A new pixel dynamics method uses spectrographic images to characterize photospheric absorption line profiles by variations in line displacement, width, asymmetry, and peakedness and is applied to quiet-sun regions, active regions with no eruption, and an active region with an ongoing eruption. Using Stokes I images from SOLIS/VSM on 2012 March 13, variations in line width and peakedness of Fe I 6301.5 Å are shown to have a strong spatial and temporal relationship with an M7.9 X-ray flare originating from NOAA 11429. This relationship is observed as a flattening in the line profile as the X-ray flare approaches peak intensity and was not present in area scans of a non-eruptive active region on 2011 April 14. These results are used to estimate dynamic plasma properties on sub-pixel scales and provide both spatial and temporal information of sub-pixel activity at the photosphere. The analysis can be extended to include the full Stokes parameters and study signatures of magnetic fields and coupled plasma properties.

  13. Diamond pixel modules and the ATLAS beam conditions monitor

    NASA Astrophysics Data System (ADS)

    Dobos, D.; Pernegger, Heinz; RD42 Collaboration; ATLAS Diamond Pixel Upgrade Collaboration; ATLAS Beam Conditions Monitor Collaborations

    2011-02-01

    Chemical vapor deposition diamonds are considered among possible sensor materials for the next pixel upgrade in ATLAS. Full size diamond pixel modules have been constructed to the specification of the ATLAS Pixel Detector using poly-crystalline CVD diamond sensors to develop the production techniques required for industrial production. Those modules were tested in the lab and testbeam. Additionally we will present results of diamond pixel modules using single-crystal diamonds and results of proton irradiations up to 1.8 ×10 16 protons/cm 2. The ATLAS Beam Conditions Monitors (BCM) main purpose is to protect the experiments silicon tracker from beam incidents. In total 16 1×1 cm2 500 μm thick diamond pCVD sensors are used in eight positions around the LHC interaction point. They perform time difference measurements with sub nanosecond resolution to distinguish between particles from a collision and spray particles from a beam incident; an abundance of the latter can lead the BCM to provoke an abort of LHC beam. The BCM diamond detector modules, their readout system and the algorithms used to detect beam incidents are described. Results of the BCM operation with circulating LHC beams and its commissioning with first LHC collisions are reported.

  14. Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.

    PubMed

    Boinagrov, David; Lei, Xin; Goetz, Georges; Kamins, Theodore I; Mathieson, Keith; Galambos, Ludwig; Harris, James S; Palanker, Daniel

    2016-02-01

    Photovoltaic conversion of pulsed light into pulsed electric current enables optically-activated neural stimulation with miniature wireless implants. In photovoltaic retinal prostheses, patterns of near-infrared light projected from video goggles onto subretinal arrays of photovoltaic pixels are converted into patterns of current to stimulate the inner retinal neurons. We describe a model of these devices and evaluate the performance of photovoltaic circuits, including the electrode-electrolyte interface. Characteristics of the electrodes measured in saline with various voltages, pulse durations, and polarities were modeled as voltage-dependent capacitances and Faradaic resistances. The resulting mathematical model of the circuit yielded dynamics of the electric current generated by the photovoltaic pixels illuminated by pulsed light. Voltages measured in saline with a pipette electrode above the pixel closely matched results of the model. Using the circuit model, our pixel design was optimized for maximum charge injection under various lighting conditions and for different stimulation thresholds. To speed discharge of the electrodes between the pulses of light, a shunt resistor was introduced and optimized for high frequency stimulation.

  15. Detection and compensation of bad pixel for CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Xu, Youqing; Yu, Shengsheng; Zhou, Jingli; Fang, Zuyuan

    2000-05-01

    This paper presents a detailed analysis of the occurring reason and features of bad pixels in CMOS image sensor. Detect and compensate algorithms have also bee introduced. Experimental result show that the algorithms are efficiently when they are applied on CH5001 produced by Chrontel Inc.

  16. Use of silicon pixel detectors in double electron capture experiments

    NASA Astrophysics Data System (ADS)

    Cermak, P.; Stekl, I.; Shitov, Yu A.; Mamedov, F.; Rukhadze, E. N.; Jose, J. M.; Cermak, J.; Rukhadze, N. I.; Brudanin, V. B.; Loaiza, P.

    2011-01-01

    A novel experimental approach to search for double electron capture (EC/EC) is discussed in this article. R&D for a new generation EC/EC spectrometer based on silicon pixel detectors (SPDs) has been conducted since 2009 for an upgrade of the TGV experiment. SPDs built on Timepix technology with a spectroscopic readout from each individual pixel are an effective tool to detect the 2νEC/EC signature of the two low energy X-rays hitting two separate pixels. The ability of SPDs to indentify α/β/γ particles and localize them precisely leads to effective background discrimination and thus considerable improvement of the signal-to-background ratio (S/B). A multi-SPD system, called a Silicon Pixel Telescope (SPT), is planned based on the experimental approach of the TGV calorimeter which measures thin foils of enriched EC/EC-isotope sandwiched between HPGe detectors working in coincidence mode. The sources of SPD internal background have been identified by measuring SPD radiopurity with a low-background HPGe detector as well as by long-term SPD background runs in the Modane underground laboratory (LSM, France), and results of these studies are presented.

  17. Fourier transform demodulation of pixelated phase-masked interferograms.

    PubMed

    Servin, M; Estrada, J C; Medina, O

    2010-07-19

    Recently a new type of spatial phase shifting interferometer was proposed that uses a phase-mask over the camera's pixels. This new interferometer allows one to phase modulate each pixel independently by setting the angle of a linear polarizer built in contact over the camera's CCD. In this way neighbor pixels may have any desired (however fixed) phase shift without cross taking. The standard manufacturing of these interferometers uses a 2x2 array with phase-shifts of 0, pi/2, pi, and 3 pi/2 radians. This 2x2 array is tiled all over the video camera's CCD. In this paper we propose a new way to phase demodulate these phase-masked interferograms using the squeezing phase-shifting technique. A notable advantage of this squeezing technique is that it allows one the use of Fourier interferometry wiping out the detuning error that most phase shifting algorithms suffers. Finally we suggest the use of an alternative phase-mask to phase modulate the camera's pixels using a linear spatial carrier along a given axis.

  18. Harmonics rejection in pixelated interferograms using spatio-temporal demodulation.

    PubMed

    Padilla, J M; Servin, M; Estrada, J C

    2011-09-26

    Pixelated phase-mask interferograms have become an industry standard in spatial phase-shifting interferometry. These pixelated interferograms allow full wavefront encoding using a single interferogram. This allows the study of fast dynamic events in hostile mechanical environments. Recently an error-free demodulation method for ideal pixelated interferograms was proposed. However, non-ideal conditions in interferometry may arise due to non-linear response of the CCD camera, multiple light paths in the interferometer, etc. These conditions generate non-sinusoidal fringes containing harmonics which degrade the phase estimation. Here we show that two-dimensional Fourier demodulation of pixelated interferograms rejects most harmonics except the complex ones at {-3(rd), +5(th), -7(th), +9(th), -11(th),…}. We propose temporal phase-shifting to remove these remaining harmonics. In particular, a 2-step phase-shifting algorithm is used to eliminate the -3(rd) and +5(th) complex harmonics, while a 3-step one is used to remove the -3(rd), +5<(th), -7(th) and +9(th) complex harmonics.

  19. Overview of the BTeV Pixel Detector

    SciTech Connect

    Jeffrey A Appel

    2002-12-10

    BTeV is a new Fermilab beauty and charm experiment designed to operate in the CZero region of the Tevatron collider. Critical to the success of BTeV is its pixel detector. The unique features of this pixel detector include its proximity to the beam, its operation with a beam crossing time of 132 ns, and the need for the detector information to be read out quickly enough to be used for the lowest level trigger. This talk presents an overview of the pixel detector design, giving the motivations for the technical choices made. The status of the current R&D on detector components is also reviewed. Additional Pixel 2002 talks on the BTeV pixel detector are given by Dave Christian[1], Mayling Wong[2], and Sergio Zimmermann[3]. Table 1 gives a selection of pixel detector parameters for the ALICE, ATLAS, BTeV, and CMS experiments. Comparing the progression of this table, which I have been updating for the last several years, has shown a convergence of specifications. Nevertheless, significant differences endure. The BTeV data-driven readout, horizontal and vertical position resolution better than 9 {micro}m with the {+-} 300 mr forward acceptance, and positioning in vacuum and as close as 6 mm from the circulating beams remain unique. These features are driven by the physics goals of the BTeV experiment. Table 2 demonstrates that the vertex trigger performance made possible by these features is requisite for a very large fraction of the B meson decay physics which is so central to the motivation for BTeV. For most of the physics quantities of interest listed in the table, the vertex trigger is essential. The performance of the BTeV pixel detector may be summarized by looking at particular physics examples; e.g., the B{sub s} meson decay B{sub s} {yields} D{sub s}{sup -} K{sup +}. For that decay, studies using GEANT3 simulations provide quantitative measures of performance. For example, the separation between the B{sub s} decay point and the primary proton

  20. Single-pixel optical imaging with compressed reference intensity patterns

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Chen, Xudong

    2015-03-01

    Ghost imaging with single-pixel bucket detector has attracted more and more current attention due to its marked physical characteristics. However, in ghost imaging, a large number of reference intensity patterns are usually required for object reconstruction, hence many applications based on ghost imaging (such as tomography and optical security) may be tedious since heavy storage or transmission is requested. In this paper, we report that the compressed reference intensity patterns can be used for object recovery in computational ghost imaging (with single-pixel bucket detector), and object verification can be further conducted. Only a small portion (such as 2.0% pixels) of each reference intensity pattern is used for object reconstruction, and the recovered object is verified by using nonlinear correlation algorithm. Since statistical characteristic and speckle averaging property are inherent in ghost imaging, sidelobes or multiple peaks can be effectively suppressed or eliminated in the nonlinear correlation outputs when random pixel positions are selected from each reference intensity pattern. Since pixel positions can be randomly selected from each 2D reference intensity pattern (such as total measurements of 20000), a large key space and high flexibility can be generated when the proposed method is applied for authenticationbased cryptography. When compressive sensing is used to recover the object with a small number of measurements, the proposed strategy could still be feasible through further compressing the recorded data (i.e., reference intensity patterns) followed by object verification. It is expected that the proposed method not only compresses the recorded data and facilitates the storage or transmission, but also can build up novel capability (i.e., classical or quantum information verification) for ghost imaging.

  1. Minimum Variance Approaches to Ultrasound Pixel-Based Beamforming.

    PubMed

    Nguyen, Nghia Q; Prager, Richard W

    2017-02-01

    We analyze the principles underlying minimum variance distortionless response (MVDR) beamforming in order to integrate it into a pixel-based algorithm. There is a challenge posed by the low echo signal-to-noise ratio (eSNR) when calculating beamformer contributions at pixels far away from the beam centreline. Together with the well-known scarcity of samples for covariance matrix estimation, this reduces the beamformer performance and degrades the image quality. To address this challenge, we implement the MVDR algorithm in two different ways. First, we develop the conventional minimum variance pixel-based (MVPB) beamformer that performs the MVDR after the pixel-based superposition step. This involves a combination of methods in the literature, extended over multiple transmits to increase the eSNR. Then we propose the coherent MVPB beamformer, where the MVDR is applied to data within individual transmits. Based on pressure field analysis, we develop new algorithms to improve the data alignment and matrix estimation, and hence overcome the low-eSNR issue. The methods are demonstrated on data acquired with an ultrasound open platform. The results show the coherent MVPB beamformer substantially outperforms the conventional MVPB in a series of experiments, including phantom and in vivo studies. Compared to the unified pixel-based beamformer, the newest delay-and-sum algorithm in [1], the coherent MVPB performs well on regions that conform to the diffuse scattering assumptions on which the minimum variance principles are based. It produces less good results for parts of the image that are dominated by specular reflections.

  2. Dependent video coding using a tree representation of pixel dependencies

    NASA Astrophysics Data System (ADS)

    Amati, Luca; Valenzise, Giuseppe; Ortega, Antonio; Tubaro, Stefano

    2011-09-01

    Motion-compensated prediction induces a chain of coding dependencies between pixels in video. In principle, an optimal selection of encoding parameters (motion vectors, quantization parameters, coding modes) should take into account the whole temporal horizon of a GOP. However, in practical coding schemes, these choices are made on a frame-by-frame basis, thus with a possible loss of performance. In this paper we describe a tree-based model for pixelwise coding dependencies: each pixel in a frame is the child of a pixel in a previous reference frame. We show that some tree structures are more favorable than others from a rate-distortion perspective, e.g., because they entail a large descendance of pixels which are well predicted from a common ancestor. In those cases, a higher quality has to be assigned to pixels at the top of such trees. We promote the creation of these structures by adding a special discount term to the conventional Lagrangian cost adopted at the encoder. The proposed model can be implemented through a double-pass encoding procedure. Specifically, we devise heuristic cost functions to drive the selection of quantization parameters and of motion vectors, which can be readily implemented into a state-of-the-art H.264/AVC encoder. Our experiments demonstrate that coding efficiency is improved for video sequences with low motion, while there are no apparent gains for more complex motion. We argue that this is due to both the presence of complex encoder features not captured by the model, and to the complexity of the source to be encoded.

  3. Microlens performance limits in sub-2mum pixel CMOS image sensors.

    PubMed

    Huo, Yijie; Fesenmaier, Christian C; Catrysse, Peter B

    2010-03-15

    CMOS image sensors with smaller pixels are expected to enable digital imaging systems with better resolution. When pixel size scales below 2 mum, however, diffraction affects the optical performance of the pixel and its microlens, in particular. We present a first-principles electromagnetic analysis of microlens behavior during the lateral scaling of CMOS image sensor pixels. We establish for a three-metal-layer pixel that diffraction prevents the microlens from acting as a focusing element when pixels become smaller than 1.4 microm. This severely degrades performance for on and off-axis pixels in red, green and blue color channels. We predict that one-metal-layer or backside-illuminated pixels are required to extend the functionality of microlenses beyond the 1.4 microm pixel node.

  4. Land cover mapping at sub-pixel scales

    NASA Astrophysics Data System (ADS)

    Makido, Yasuyo Kato

    One of the biggest drawbacks of land cover mapping from remotely sensed images relates to spatial resolution, which determines the level of spatial details depicted in an image. Fine spatial resolution images from satellite sensors such as IKONOS and QuickBird are now available. However, these images are not suitable for large-area studies, since a single image is very small and therefore it is costly for large area studies. Much research has focused on attempting to extract land cover types at sub-pixel scale, and little research has been conducted concerning the spatial allocation of land cover types within a pixel. This study is devoted to the development of new algorithms for predicting land cover distribution using remote sensory imagery at sub-pixel level. The "pixel-swapping" optimization algorithm, which was proposed by Atkinson for predicting sub-pixel land cover distribution, is investigated in this study. Two limitations of this method, the arbitrary spatial range value and the arbitrary exponential model of spatial autocorrelation, are assessed. Various weighting functions, as alternatives to the exponential model, are evaluated in order to derive the optimum weighting function. Two different simulation models were employed to develop spatially autocorrelated binary class maps. In all tested models, Gaussian, Exponential, and IDW, the pixel swapping method improved classification accuracy compared with the initial random allocation of sub-pixels. However the results suggested that equal weight could be used to increase accuracy and sub-pixel spatial autocorrelation instead of using these more complex models of spatial structure. New algorithms for modeling the spatial distribution of multiple land cover classes at sub-pixel scales are developed and evaluated. Three methods are examined: sequential categorical swapping, simultaneous categorical swapping, and simulated annealing. These three methods are applied to classified Landsat ETM+ data that has

  5. A novel CMOS sensor with in-pixel auto-zeroed discrimination for charged particle tracking

    NASA Astrophysics Data System (ADS)

    Degerli, Y.; Guilloux, F.; Orsini, F.

    2014-05-01

    With the aim of developing fast and granular Monolithic Active Pixels Sensors (MAPS) as new charged particle tracking detectors for high energy physics experiments, a new rolling shutter binary pixel architecture concept (RSBPix) with in-pixel correlated double sampling, amplification and discrimination is presented. The discriminator features auto-zeroing in order to compensate process-related transistor mismatches. In order to validate the pixel, a first monolithic CMOS sensor prototype, including a pixel array of 96 × 64 pixels, has been designed and fabricated in the Tower-Jazz 0.18 μm CMOS Image Sensor (CIS) process. Results of laboratory tests are presented.

  6. High throughput optoelectronic smart pixel systems using diffractive optics

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Hao

    1999-12-01

    Recent developments in digital video, multimedia technology and data networks have greatly increased the demand for high bandwidth communication channels and high throughput data processing. Electronics is particularly suited for switching, amplification and logic functions, while optics is more suitable for interconnections and communications with lower energy and crosstalk. In this research, we present the design, testing, integration and demonstration of several optoelectronic smart pixel devices and system architectures. These systems integrate electronic switching/processing capability with parallel optical interconnections to provide high throughput network communication and pipeline data processing. The Smart Pixel Array Cellular Logic processor (SPARCL) is designed in 0.8 m m CMOS and hybrid integrated with Multiple-Quantum-Well (MQW) devices for pipeline image processing. The Smart Pixel Network Interface (SAPIENT) is designed in 0.6 m m GaAs and monolithically integrated with LEDs to implement a highly parallel optical interconnection network. The Translucent Smart Pixel Array (TRANSPAR) design is implemented in two different versions. The first version, TRANSPAR-MQW, is designed in 0.5 m m CMOS and flip-chip integrated with MQW devices to provide 2-D pipeline processing and translucent networking using the Carrier- Sense-MultipleAccess/Collision-Detection (CSMA/CD) protocol. The other version, TRANSPAR-VM, is designed in 1.2 m m CMOS and discretely integrated with VCSEL-MSM (Vertical-Cavity-Surface- Emitting-Laser and Metal-Semiconductor-Metal detectors) chips and driver/receiver chips on a printed circuit board. The TRANSPAR-VM provides an option of using the token ring network protocol in addition to the embedded functions of TRANSPAR-MQW. These optoelectronic smart pixel systems also require micro-optics devices to provide high resolution, high quality optical interconnections and external source arrays. In this research, we describe an innovative

  7. Geometrical Analysis of AMIE/Smart-1 Images and Applications to Photometric Studies of the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Despan, Daniela; Erard, S.; Barucci, M. A.; Josset, J. L.; Beauvivre, S.; Chevrel, S.; Pinet, P.; Koschny, D.; Almeida, M.; Foing, B. H.; AMIE Team

    2007-10-01

    AMIE, the Advanced Moon micro-Imager Experiment on board the ESA lunar mission SMART-1, is an imaging system to survey the terrain in visible and near-infrared light. AMIE provides high resolution images obtained using a tele-objective with 5.3° x 5.3° field of view and a sensor of 1024 x 1024 pixels. The output images have resolution 45m/pixel at 500km, and are encoded with 10 bits/pixel. From the 300 Km pericenter altitude, the same field of view corresponds to a spatial resolution about 30 m/pixel. The FOV is shared by various filters, allowing to reconstruct mosaics of the surface in 3 colors, depending on pointing mode. Spot-pointing observations provide photometric sequences that allow to study the surface properties in restricted areas. One of the scientific objectives of the mission is to get high resolution imaging of the Moon surface, e.g. high latitude regions in the southern hemisphere. In order to map the lunar surface with AMIE, systematic analysis and processing is being carried on using the whole data set. Geometrical analysis of AMIE images relies on the SPICE system: image coordinates are computed to get precise projection at the surface, and illumination angles are computed to analyze the photometric sequences. High resolution mosaics were constructed then compared to lower resolution Clementine UV-Vis and NIR images. Spot-pointing sequences are used to constrain the photometric and physical properties of surface materials in areas of interest, based on Hapke's modeling. Optical alignment parameters in the Spice kernels have been refined and provide absolute coordinates in the IAU lunar frame (ULCN). They provide discrepancies with the Clementine basemap, ranging up to some 0.1° in the equatorial regions, as expected (e.g., Cook et al DPS 2002; Arcinal et al. EPSC 2006). A progress report will be presented at the conference.

  8. High Resolution Maps of the Moon Surface with AMIE/SMART-1

    NASA Astrophysics Data System (ADS)

    Despan, Daniela; Erard, S.; Barucci, A.; Josset, J. L.; Beauvivre, S.; Chevrel, S.; Pinet, P.; Koschny, D.; Almeida, M.; Grieger, B.; Foing, B.; AMIE Team

    2008-09-01

    The Advanced Moon micro-Imager Experiment (AMIE) on board the ESA lunar mission Smart-1 has performed colour imaging of the lunar surface using various filters in the visible and NIR range. This micro-camera provided high resolution images of selected parts of the lunar surface, including the North and South pole areas. Being give that the SMART-1 mission was in a 300km x 300km orbit with perilune over the South pole, the coverage between the North and the South regions is different. The AMIE images were obtained using a tele-objective with 5.3° x 5.3° field of view and a sensor of 1024 x 1024 pixels. The output images have resolution 45m/pixel at 500km, and are encoded with 10 bits/pixel. The data for the North pole were obtained at a much higher altitude than the South pole data. From the 300 Km pericenter altitude, the same field of view corresponds to a spatial resolution about 27 m/pixel. The high resolution imaging of the Moon surface makes possible detailed analysis of the morphological features and physical characteristics of the lunar surface. In order to construct AMIE data maps, systematic analysis and processing is being carried on using the whole data set. Geometrical analysis of AMIE images relies on the SPICE system: image coordinates are computed to get precise projection at the surface, and illumination angles are computed to analyze the photometric sequences. Using this method, high resolution mosaics were constructed then compared to lower resolution Clementine UV-Vis and NIR images. Maps of both North and South pole were obtained as well as other regions of interest. Eventually, this method will be applied in all areas where AMIE has provided high resolution observations of the surface, typically a factor of 3 higher than the Clementine UV-Vis camera. New results will be presented at the conference.

  9. Pixel-based dust-extinction mapping in nearby galaxies: A new approach to lifting the veil of dust

    NASA Astrophysics Data System (ADS)

    Tamura, Kazuyuki

    In the first part of this dissertation, I explore a new approach to mapping dust extinction in galaxies, using the observed and estimated dust-free flux- ratios of optical V -band and mid-IR 3.6 micro-meter emission. Inferred missing V -band flux is then converted into an estimate of dust extinction. While dust features are not clearly evident in the observed ground-based images of NGC 0959, the target of my pilot study, the dust-map created with this method clearly traces the distribution of dust seen in higher resolution Hubble images. Stellar populations are then analyzed through various pixel Color- Magnitude Diagrams and pixel Color-Color Diagrams (pCCDs), both before and after extinction correction. The ( B - 3.6 microns) versus (far-UV - U ) pCCD proves particularly powerful to distinguish pixels that are dominated by different types of or mixtures of stellar populations. Mapping these pixel- groups onto a pixel-coordinate map shows that they are not distributed randomly, but follow genuine galactic structures, such as a previously unrecognized bar. I show that selecting pixel-groups is not meaningful when using uncorrected colors, and that pixel-based extinction correction is crucial to reveal the true spatial variations in stellar populations. This method is then applied to a sample of late-type galaxies to study the distribution of dust and stellar population as a function of their morphological type and absolute magnitude. In each galaxy, I find that dust extinction is not simply decreasing radially, but that is concentrated in localized clumps throughout a galaxy. I also find some cases where star-formation regions are not associated with dust. In the second part, I describe the application of astronomical image analysis tools for medical purposes. In particular, Source Extractor is used to detect nerve fibers in the basement membrane images of human skin-biopsies of obese subjects. While more development and testing is necessary for this kind of work

  10. Efficient defect pixel cluster detection and correction for Bayer CFA image sequences

    NASA Astrophysics Data System (ADS)

    Tajbakhsh, Touraj

    2011-01-01

    Image sensor arrays may have defect pixels, either originating from manufacturing or being developed over the lifetime of the image sensor array. Continuous defect pixel detection and correction performing during camera runtime is desirable. On-the-fly detection and correction is challenging since edges and high-frequency image content might get identified as defect pixel regions and intact pixels become corrupted during defect pixel replacement. We propose a table-based detection and correction method which by and by fills the non-volatile table during normal camera operation. In this work we model defect pixels and pixel clusters to be stuck to fixed values or at least fixed to a narrow value range whereas the local neighborhood of these pixels indicate a normal behavior. The idea is to temporally observe the value ranges of small group of pixels (e.g. 4x4 pixel blocks) and to decide about their defective condition depending on their variability with respect to their neighbor pixels. Our method is computationally efficient, requires no frame buffer, requires modest memory, and therefore is appropriate to operate in line-buffer based image signal processing (ISP) systems. Our results indicate high reliability in terms of detection rates and robustness against high-frequency image content. As part of the defect pixel replacement system we also propose a simple and efficient defect pixel correction method based on the mean of medians operating on the Bayer CFA image domain.

  11. Current progress on pixel level packaging for uncooled IRFPA

    NASA Astrophysics Data System (ADS)

    Dumont, G.; Rabaud, W.; Yon, J.-J.; Carle, L.; Goudon, V.; Vialle, C.; Becker, Sébastien; Hamelin, Antoine; Arnaud, A.

    2012-06-01

    Vacuum packaging is definitely a major cost driver for uncooled IRFPA and a technological breakthrough is still expected to comply with the very low cost infrared camera market. To address this key issue, CEA-LETI is developing a Pixel Level Packaging (PLP) technology which basically consists in capping each pixel under vacuum in the direct continuation of the wafer level bolometer process. Previous CEA-LETI works have yet shown the feasibility of PLP based microbolometers that exhibit the required thermal insulation and vacuum achievement. CEA-LETI is still pushing the technology which has been now applied for the first time on a CMOS readout circuit. The paper will report on the recent progress obtained on PLP technology with particular emphasis on the optical efficiency of the PLP arrangement compared to the traditional microbolometer packaging. Results including optical performances, aging studies and compatibility with CMOS readout circuit are extensively presented.

  12. Distance measurement based on pixel variation of CCD images.

    PubMed

    Hsu, Chen-Chien; Lu, Ming-Chih; Wang, Wei-Yen; Lu, Yin-Yu

    2009-10-01

    This paper presents a distance measurement method based on pixel number variation of CCD images by referencing to two arbitrarily designated points in the image frames. By establishing a relationship between the displacement of the camera movement along the photographing direction and the difference in pixel count between reference points in the images, the distance from an object can be calculated via the proposed method. To integrate the measuring functions into digital cameras, a circuit design implementing the proposed measuring system in selecting reference points, measuring distance, and displaying measurement results on CCD panel of the digital camera is proposed in this paper. In comparison to pattern recognition or image analysis methods, the proposed measuring approach is simple and straightforward for practical implementation into digital cameras. To validate the performance of the proposed method, measurement results using the proposed method and ultrasonic rangefinders are also presented in this paper.

  13. Sensor Development and Readout Prototyping for the STAR Pixel Detector

    SciTech Connect

    Greiner, L.; Anderssen, E.; Matis, H.S.; Ritter, H.G.; Stezelberger, T.; Szelezniak, M.; Sun, X.; Vu, C.; Wieman, H.

    2009-01-14

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is designing a new vertex detector. The purpose of this upgrade detector is to provide high resolution pointing to allow for the direct topological reconstruction of heavy flavor decays such as the D{sup 0} by finding vertices displaced from the collision vertex by greater than 60 microns. We are using Monolithic Active Pixel Sensor (MAPS) as the sensor technology and have a coupled sensor development and readout system plan that leads to a final detector with a <200 {micro}s integration time, 400 M pixels and a coverage of -1 < {eta} < 1. We present our coupled sensor and readout development plan and the status of the prototyping work that has been accomplished.

  14. Pixel extraction based integral imaging with controllable viewing direction

    NASA Astrophysics Data System (ADS)

    Ji, Chao-Chao; Deng, Huan; Wang, Qiong-Hua

    2012-09-01

    We propose pixel extraction based integral imaging with a controllable viewing direction. The proposed integral imaging can provide viewers three-dimensional (3D) images in a very small viewing angle. The viewing angle and the viewing direction of the reconstructed 3D images are controlled by the pixels extracted from an elemental image array. Theoretical analysis and a 3D display experiment of the viewing direction controllable integral imaging are carried out. The experimental results verify the correctness of the theory. A 3D display based on the integral imaging can protect the viewer’s privacy and has huge potential for a television to show multiple 3D programs at the same time.

  15. Pixel detector system development at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Marchal, J.; Horswell, I.; Gimenez, E. N.; Tartoni, N.

    2010-10-01

    Hybrid pixel detectors consisting of an array of silicon photodiodes bump-bonded to CMOS read-out chips provide high signal-to-noise ratio and high dynamic range compared to CCD-based detectors and Image Plates. These detector features are important for SAXS experiments where a wide range of intensities are present in the images. For time resolved SAXS experiments, high frame rates are compulsory. The latest CMOS read-out chip developed by the MEDIPIX collaboration provides high frame rate and continuous acquisition mode. A read-out system for an array of MEDIPIX3 sensors is under development at Diamond Light Source. This system will support a full resolution frame rate of 1 kHz at a pixel counter depth of 12-bit and a frame rate of 30 kHz at a counter depth of 1 bit. Details concerning system design and MEDIPIX sensors characterization are presented.

  16. CMS Pixel Detector design for HL-LHC

    NASA Astrophysics Data System (ADS)

    Migliore, E.

    2016-12-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 7.5×1034cm-2s-1 in 2028, to possibly reach an integrated luminosity of 3000 fb-1 by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges in higher data rates and increased radiation. In order to maintain its physics reach the CMS collaboration has undertaken a preparation program of the detector known as Phase-2 upgrade. The CMS Phase-2 Pixel upgrade will require a high bandwidth readout system and high radiation tolerance for sensors and on-detector ASICs. Several technologies for the upgrade sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs, will be presented together with performance estimation.

  17. Sub-pixel resolution with the Multispectral Thermal Imager (MTI).

    SciTech Connect

    Decker, Max Louis; Smith, Jody Lynn; Nandy, Prabal

    2003-06-01

    The Multispectral Thermal Imager Satellite (MTI) has been used to test a sub-pixel sampling technique in an effort to obtain higher spatial frequency imagery than that of its original design. The MTI instrument is of particular interest because of its infrared detectors. In this spectral region, the detector size is traditionally the limiting factor in determining the satellite's ground sampling distance (GSD). Additionally, many over-sampling techniques require flexible command and control of the sensor and spacecraft. The MTI sensor is well suited for this task, as it is the only imaging system on the MTI satellite bus. In this super-sampling technique, MTI is maneuvered such that the data are collected at sub-pixel intervals on the ground. The data are then processed using a deconvolution algorithm using in-scene measured point spread functions (PSF) to produce an image with synthetically-boosted GSD.

  18. Compressive holography with a single-pixel detector.

    PubMed

    Clemente, Pere; Durán, Vicente; Tajahuerce, Enrique; Andrés, Pedro; Climent, Vicent; Lancis, Jesús

    2013-07-15

    This Letter develops a framework for digital holography at optical wavelengths by merging phase-shifting interferometry with single-pixel optical imaging based on compressive sensing. The field diffracted by an input object is sampled by Hadamard patterns with a liquid crystal spatial light modulator. The concept of a single-pixel camera is then adapted to perform interferometric imaging of the sampled diffraction pattern by using a Mach-Zehnder interferometer. Phase-shifting techniques together with the application of a backward light propagation algorithm allow the complex amplitude of the object under scrutiny to be resolved. A proof-of-concept experiment evaluating the phase distribution of an ophthalmic lens with compressive phase-shifting holography is provided.

  19. Using Trained Pixel Classifiers to Select Images of Interest

    NASA Technical Reports Server (NTRS)

    Mazzoni, D.; Wagstaff, K.; Castano, R.

    2004-01-01

    We present a machine-learning-based approach to ranking images based on learned priorities. Unlike previous methods for image evaluation, which typically assess the value of each image based on the presence of predetermined specific features, this method involves using two levels of machine-learning classifiers: one level is used to classify each pixel as belonging to one of a group of rather generic classes, and another level is used to rank the images based on these pixel classifications, given some example rankings from a scientist as a guide. Initial results indicate that the technique works well, producing new rankings that match the scientist's rankings significantly better than would be expected by chance. The method is demonstrated for a set of images collected by a Mars field-test rover.

  20. New SOFRADIR 10μm pixel pitch infrared products

    NASA Astrophysics Data System (ADS)

    Lefoul, X.; Pere-Laperne, N.; Augey, T.; Rubaldo, L.; Aufranc, Sébastien; Decaens, G.; Ricard, N.; Mazaleyrat, E.; Billon-Lanfrey, D.; Gravrand, Olivier; Bisotto, Sylvette

    2014-10-01

    Recent advances in miniaturization of IR imaging technology have led to a growing market for mini thermal-imaging sensors. In that respect, Sofradir development on smaller pixel pitch has made much more compact products available to the users. When this competitive advantage is mixed with smaller coolers, made possible by HOT technology, we achieved valuable reductions in the size, weight and power of the overall package. At the same time, we are moving towards a global offer based on digital interfaces that provides our customers simplifications at the IR system design process while freeing up more space. This paper discusses recent developments on hot and small pixel pitch technologies as well as efforts made on compact packaging solution developed by SOFRADIR in collaboration with CEA-LETI.

  1. Image pixel device using integrated organic electronic components

    NASA Astrophysics Data System (ADS)

    Swathi, K.; Narayan, K. S.

    2016-11-01

    We report a solution processed, monolithically integrated device similar to an imaging pixel element used in complementary metal-oxide semiconductor (CMOS) based cameras. This integrated pixel essentially consists of a pair of organic photodiode (OPD) and organic field effect transistor (OFET). The signal generated by the light responsive OPD drives the OFET to different output states to quantify the light intensity. The prerequisite of a low operating voltage OFET (<2 V) was achieved using a bottom-gate, top-contact OFET consisting of a high mobility polymer semiconductor and a self-assembled hybrid dielectric layer. A bulk heterojunction blend was used as the photo-active layer in the OPD along with suitable buffer layers for charge extraction. The material parameters were optimized to realize a suitable structure which clearly demonstrated the interplay of the OPD and OFET operations, thereby forming a roadmap for all-organic CMOS arrays.

  2. Measurement results of DIPIX pixel sensor developed in SOI technology

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammed Imran; Arai, Yasuo; Idzik, Marek; Kapusta, Piotr; Miyoshi, Toshinobu; Turala, Michal

    2013-08-01

    The development of integration type pixel detectors presents interest for physics communities because it brings optimization of design, simplicity of production-which means smaller cost, and reduction of detector material budget. During the last decade a lot of research and development activities took place in the field of CMOS Silicon-On-Insulator (SOI) technology resulting in improvement in wafer size, wafer resistivity and MIM capacitance. Several ideas have been tested successfully and are gradually entering into the application phase. Some of the novel concepts exploring SOI technology are pursued at KEK; several prototypes of dual mode integration type pixel (DIPIX) have been recently produced and described. This report presents initial test results of some of the prototypes including tests obtained with the infrared laser beams and Americium (Am-241) source. The Equivalent Noise Charge (ENC) of 86 e - has been measured. The measured performance demonstrates that SOI technology is a feasible choice for future applications.

  3. Digital pixel sensor array with logarithmic delta-sigma architecture.

    PubMed

    Mahmoodi, Alireza; Li, Jing; Joseph, Dileepan

    2013-08-16

    Like the human eye, logarithmic image sensors achieve wide dynamic range easily at video rates, but, unlike the human eye, they suffer from low peak signal-to-noise-and-distortion ratios (PSNDRs). To improve the PSNDR, we propose integrating a delta-sigma analog-to-digital converter (ADC) in each pixel. An image sensor employing this architecture is designed, built and tested in 0.18 micron complementary metal-oxide-semiconductor (CMOS) technology. It achieves a PSNDR better than state-of-the-art logarithmic sensors and comparable to the human eye. As the approach concerns an array of many ADCs, we use a small-area low-power delta-sigma design. For scalability, each pixel has its own decimator. The prototype is compared to a variety of other image sensors, linear and nonlinear, from industry and academia.

  4. A new data acquisition system for the CMS Phase 1 pixel detector

    NASA Astrophysics Data System (ADS)

    Kornmayer, A.

    2016-12-01

    A new pixel detector will be installed in the CMS experiment during the extended technical stop of the LHC at the beginning of 2017. The new pixel detector, built from four layers in the barrel region and three layers on each end of the forward region, is equipped with upgraded front-end readout electronics, specifically designed to handle the high particle hit rates created in the LHC environment. The DAQ back-end was entirely redesigned to handle the increased number of readout channels, the higher data rates per channel and the new digital data format. Based entirely on the microTCA standard, new front-end controller (FEC) and front-end driver (FED) cards have been developed, prototyped and produced with custom optical link mezzanines mounted on the FC7 AMC and custom firmware. At the same time as the new detector is being assembled, the DAQ system is set up and its integration into the CMS central DAQ system tested by running the pilot blade detector already installed in CMS. This work describes the DAQ system, integration tests and gives an outline for the activities up to commissioning the final system at CMS in 2017.

  5. Performance assessment of a single-pixel compressive sensing imaging system

    NASA Astrophysics Data System (ADS)

    Du Bosq, Todd W.; Preece, Bradley L.

    2016-05-01

    Conventional electro-optical and infrared (EO/IR) systems capture an image by measuring the light incident at each of the millions of pixels in a focal plane array. Compressive sensing (CS) involves capturing a smaller number of unconventional measurements from the scene, and then using a companion process known as sparse reconstruction to recover the image as if a fully populated array that satisfies the Nyquist criteria was used. Therefore, CS operates under the assumption that signal acquisition and data compression can be accomplished simultaneously. CS has the potential to acquire an image with equivalent information content to a large format array while using smaller, cheaper, and lower bandwidth components. However, the benefits of CS do not come without compromise. The CS architecture chosen must effectively balance between physical considerations (SWaP-C), reconstruction accuracy, and reconstruction speed to meet operational requirements. To properly assess the value of such systems, it is necessary to fully characterize the image quality, including artifacts and sensitivity to noise. Imagery of the two-handheld object target set at range was collected using a passive SWIR single-pixel CS camera for various ranges, mirror resolution, and number of processed measurements. Human perception experiments were performed to determine the identification performance within the trade space. The performance of the nonlinear CS camera was modeled with the Night Vision Integrated Performance Model (NV-IPM) by mapping the nonlinear degradations to an equivalent linear shift invariant model. Finally, the limitations of CS modeling techniques will be discussed.

  6. Broadband Terahertz Computed Tomography Using a 5k-pixel Real-time THz Camera

    NASA Astrophysics Data System (ADS)

    Trichopoulos, Georgios C.; Sertel, Kubilay

    2015-07-01

    We present a novel THz computed tomography system that enables fast 3-dimensional imaging and spectroscopy in the 0.6-1.2 THz band. The system is based on a new real-time broadband THz camera that enables rapid acquisition of multiple cross-sectional images required in computed tomography. Tomographic reconstruction is achieved using digital images from the densely-packed large-format (80×64) focal plane array sensor located behind a hyper-hemispherical silicon lens. Each pixel of the sensor array consists of an 85 μm × 92 μm lithographically fabricated wideband dual-slot antenna, monolithically integrated with an ultra-fast diode tuned to operate in the 0.6-1.2 THz regime. Concurrently, optimum impedance matching was implemented for maximum pixel sensitivity, enabling 5 frames-per-second image acquisition speed. As such, the THz computed tomography system generates diffraction-limited resolution cross-section images as well as the three-dimensional models of various opaque and partially transparent objects. As an example, an over-the-counter vitamin supplement pill is imaged and its material composition is reconstructed. The new THz camera enables, for the first time, a practical application of THz computed tomography for non-destructive evaluation and biomedical imaging.

  7. Multi-Color QWIP FPAs for Hyperspectral Thermal Emission Instruments

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Luong, Ed; Mumolo, Jason M.; Liu, John; Rafol, Sir B.; Keo, Sam A.; Johnson, William; Willson, Dan; Hill, Cory J.; Ting, David Z.-Y.; Gunapala, Sarath D.

    2012-01-01

    Infrared focal plane arrays (FPAs) covering broad mid- and long-IR spectral ranges are the central parts of the spectroscopic and imaging instruments in several Earth and planetary science missions. To be implemented in the space instrument these FPAs need to be large-format, uniform, reproducible, low-cost, low 1/f noise, and radiation hard. Quantum Well Infrared Photodetectors (QWIPs), which possess all needed characteristics, have a great potential for implementation in the space instruments. However a standard QWIP has only a relatively narrow spectral coverage. A multi-color QWIP, which is compromised of two or more detector stacks, can to be used to cover the broad spectral range of interest. We will discuss our recent work on development of multi-color QWIP for Hyperspectral Thermal Emission Spectrometer instruments. We developed QWIP compromising of two stacks centered at 9 and 10.5 ?m, and featuring 9 grating regions optimized to maximize the responsivity in the individual subbands across the 7.5-12 ?m spectral range. The demonstrated 1024x1024 QWIP FPA exhibited excellent performance with operability exceeding 99% and noise equivalent differential temperature of less than 15 mK across the entire 7.5-12 ?m spectral range.

  8. Performance studies of Micro Pixel Chamber for the ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Komai, H.; Ochi, A.; Homma, Y.; Edo, Y.; Yamaguchi, T.

    2013-03-01

    The Micro Pixel Chamber (μ-PIC) is being developed as a muon chamber of the ATLAS experiment in an HL-LHC environment. In the ATLAS muon system, a high flux of fast neutron background causes instability operation of the detectors. We performed neutron irradiation tests with μ-PIC to optimize the operation gas and detector structure. In addition, we studied neutron interactions with the detector, in order to understand the effect of fast neutrons.

  9. Planar slim-edge pixel sensors for the ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Altenheiner, S.; Goessling, C.; Jentzsch, J.; Klingenberg, R.; Lapsien, T.; Muenstermann, D.; Rummler, A.; Troska, G.; Wittig, T.

    2012-02-01

    The ATLAS detector at CERN is a general-purpose experiment at the Large Hadron Collider (LHC). The ATLAS Pixel Detector is the innermost tracking detector of ATLAS and requires a sufficient level of hermeticity to achieve superb track reconstruction performance. The current planar n-type pixel sensors feature a pixel matrix of n+-implantations which is (on the opposite p-side) surrounded by so-called guard rings to reduce the high voltage stepwise towards the cutting edge and an additional safety margin. Because of the inactive region around the active area, the sensor modules have been shingled on top of each other's edge which limits the thermal performance and adds complexity in the present detector. The first upgrade phase of the ATLAS pixel detector will consist of the insertable b-layer (IBL), an additional b-layer which will be inserted into the present detector in 2013. Several changes in the sensor design with respect to the existing detector had to be applied to comply with the IBL's specifications and are described in detail. A key issue for the ATLAS upgrades is a flat arrangement of the sensors. To maintain the required level of hermeticity in the detector, the inactive sensor edges have to be reduced to minimize the dead space between the adjacent detector modules. Unirradiated and irradiated sensors with the IBL design have been operated in test beams to study the efficiency performance in the sensor edge region and it was found that the inactive edge width could be reduced from 1100 μm to less than 250 μm.

  10. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager

    PubMed Central

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2012-01-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm2 at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm2. Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm2 while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt. PMID:23136624

  11. Characterization of indium and solder bump bonding for pixel detectors

    SciTech Connect

    Selcuk Cihangir and Simon Kwan

    2000-09-28

    A review of different bump-bonding processes used for pixel detectors is given. A large scale test on daisy-chained components from two vendors has been carried out at Fermilab to characterize the yield of these processes. The vendors are Advanced Interconnect Technology Ltd. (AIT) of Hong Kong and MCNC in North Carolina, US. The results from this test are presented and technical challenges encountered are discussed.

  12. Validity Assessment of Pixel Linear Spectral Mixing Through Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Mobasheri, M. R.; Dehnavi, S.; Maghsoudi, Y.

    2015-12-01

    In order to understand the characteristics of the data collected by hyperspectral imaging systems, it is important to discuss the physics behind the scene radiance field incident on the imaging system. A dominant effect in hyperspectral remote sensing is the mixing of radiant energies contributed from different materials present in a given pixel. The basic assumption of mixture modelling is that within a given scene, the surface is covered by a small number of distinct materials that have relatively constant spectral properties. It is most common to assume that the radiance reflected by different materials in a pixel can spectrally combine in a linear additive manner to produce the pixel radiance/reflectance, even when that might not be the case e.g. where the mixing process leads to nonlinear combinations of the radiance and where the linear assumption fails to hold. This can occur where there is significant relative three-dimensional structure within a given pixel. Without detailed knowledge of the dimensional structure, it can be very difficult to correctly ``un-mix'' the contributions of the various materials. This work aims to evaluate the correctness of the linear assumption in the mixture modelling using some laboratory measurements. Study was conducted using some sheets made of cellulose materials of different colours in 400-800 nm spectral range. Experimental results have shown that a correction term must be applied to the gains and offsets in the linear model. The obtained results can be extended to satellite sensors that acquire images in the above mentioned spectral range.

  13. Sub-pixel spatial resolution wavefront phase imaging

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip (Inventor); Mooney, James T. (Inventor)

    2012-01-01

    A phase imaging method for an optical wavefront acquires a plurality of phase images of the optical wavefront using a phase imager. Each phase image is unique and is shifted with respect to another of the phase images by a known/controlled amount that is less than the size of the phase imager's pixels. The phase images are then combined to generate a single high-spatial resolution phase image of the optical wavefront.

  14. Active pixel imagers incorporating pixel-level amplifiers based on polycrystalline-silicon thin-film transistors.

    PubMed

    El-Mohri, Youcef; Antonuk, Larry E; Koniczek, Martin; Zhao, Qihua; Li, Yixin; Street, Robert A; Lu, Jeng-Ping

    2009-07-01

    Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and/or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of approximately 10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in

  15. Active pixel imagers incorporating pixel-level amplifiers based on polycrystalline-silicon thin-film transistors

    PubMed Central

    El-Mohri, Youcef; Antonuk, Larry E.; Koniczek, Martin; Zhao, Qihua; Li, Yixin; Street, Robert A.; Lu, Jeng-Ping

    2009-01-01

    Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and∕or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of ∼10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical fill

  16. Construction of the Phase I Forward Pixel Detector

    NASA Astrophysics Data System (ADS)

    Neylon, Ashton; Bartek, Rachel

    2017-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system, providing high precision space point measurements of charged particle trajectories. The original CMS detector was designed for the nominal instantaneous LHC luminosity of 1 x 1034 cm-2s-1 . The LHC has already started to exceed this luminosity causing the CMS pixel detector to see a dynamic inefficiency caused by data losses due to buffer overflows. For this reason the CMS Collaboration has been building an upgraded pixel detector which is scheduled for installation during an extended year end technical stop during winter 2016/2017. The phase 1 upgrade includes four barrel layers and three forward disks, providing robust tracking and vertexing for LHC luminosities up to 2 x 1034 cm-2s-1 . The upgrade incorporates new readout chips, front-end electronics, DC-DC powering, and dual-phase CO2 cooling to achieve performance exceeding that of the present detector with a lower material budget. This contribution will review the design and technology choices of the Phase I detector and discuss the status of the detector. The challenges and difficulties encountered during the construction will also be presented, as well as the lessons learned for future upgrades. National Science Foundation.

  17. Sub pixel location identification using super resolved multilooking CHRIS data

    NASA Astrophysics Data System (ADS)

    Sahithi, V. S.; Agrawal, S.

    2014-11-01

    CHRIS /Proba is a multiviewing hyperspectral sensor that monitors the earth in five different zenith angles +55°, +36°, nadir, -36° and -55° with a spatial resolution of 17 m and within a spectral range of 400-1050 nm in mode 3. These multiviewing images are suitable for constructing a super resolved high resolution image that can reveal the mixed pixel of the hyperspectral image. In the present work, an attempt is made to find the location of various features constituted within the 17m mixed pixel of the CHRIS image using various super resolution reconstruction techniques. Four different super resolution reconstruction techniques namely interpolation, iterative back projection, projection on to convex sets (POCS) and robust super resolution were tried on the -36, nadir and +36 images to construct a super resolved high resolution 5.6 m image. The results of super resolution reconstruction were compared with the scaled nadir image and bicubic convoluted image for comparision of the spatial and spectral property preservance. A support vector machine classification of the best super resolved high resolution image was performed to analyse the location of the sub pixel features. Validation of the obtained results was performed using the spectral unmixing fraction images and the 5.6 m classified LISS IV image.

  18. Testbeam and laboratory characterization of 3D CMS pixel sensors

    NASA Astrophysics Data System (ADS)

    Bubna, Mayur; Krzwyda, Alex; Alagoz, Enver; Bortoletto, Daniela

    2013-04-01

    Future generations of colliders, like High Luminosity Large Hadron Collider (HL-LHC) at CERN will deliver much higher radiation doses to the particle detectors, specifically those closer to the beam line. Inner tracker detectors will be the most affected part, causing increased occupancy and radiation damage to Silicon detectors. Planar Silicon sensors have not shown enough radiation hardness for the innermost layers where the radiation doses can reach values around 10^16 neq/cm^2. As a possible replacement of planar pixel sensors, 3D Silicon technology is under consideration as they show higher radiation hardness, and efficiencies comparable to planar sensors. Several 3D CMS pixel designs were fabricated at FBK, CNM, and SINTEF. They were bump bonded to the CMS pixel readout chip and characterized in the laboratory using radioactive source (Sr90), and at Fermilab MTEST beam test facility. Sensors were also irradiated with 800 MeV protons at Los Alamos National Lab to study post-irradiation behavior. In addition, several diodes and test structures from FBK were studied before and after irradiation. We report the laboratory and testbeam measurement results for the irradiated 3D devices.

  19. Demosaiced pixel super-resolution for multiplexed holographic color imaging

    NASA Astrophysics Data System (ADS)

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2016-06-01

    To synthesize a holographic color image, one can sequentially take three holograms at different wavelengths, e.g., at red (R), green (G) and blue (B) parts of the spectrum, and digitally merge them. To speed up the imaging process by a factor of three, a Bayer color sensor-chip can also be used to demultiplex three wavelengths that simultaneously illuminate the sample and digitally retrieve individual set of holograms using the known transmission spectra of the Bayer color filters. However, because the pixels of different channels (R, G, B) on a Bayer color sensor are not at the same physical location, conventional demosaicing techniques generate color artifacts in holographic imaging using simultaneous multi-wavelength illumination. Here we demonstrate that pixel super-resolution can be merged into the color de-multiplexing process to significantly suppress the artifacts in wavelength-multiplexed holographic color imaging. This new approach, termed Demosaiced Pixel Super-Resolution (D-PSR), generates color images that are similar in performance to sequential illumination at three wavelengths, and therefore improves the speed of holographic color imaging by 3-fold. D-PSR method is broadly applicable to holographic microscopy applications, where high-resolution imaging and multi-wavelength illumination are desired.

  20. First results from electrical qualification measurements on DEPFET pixel detector

    NASA Astrophysics Data System (ADS)

    Majewski, Petra; Andricek, Ladislav; Lauf, Thomas; Lechner, Peter; Lutz, Gerhard; Reiffers, Jonas; Richter, Rainer; Schaller, Gerhard; Schnecke, Martina; Schopper, Florian; Soltau, Heike; Stefanescu, Alexander; Strüder, Lothar; Treis, Johannes

    2010-07-01

    We report on the first results from a new setup for electrical qualification measurements of DEPFET pixel detector matrices. In order to measure the transistor properties of all pixels, the DEPFET device is placed into a benchtest setup and electrically contacted via a probecard. Using a switch matrix, each pixel of the detector array can be addressed individually for characterization. These measurements facilitate to pre-select the best DEPFET matrices as detector device prior to the mounting of the matrix and allow to investigate topics like the homogeneity of transistor parameters on device, wafer and batch level in order to learn about the stability and reproducibility of the production process. Especially with regard to the detector development for the IXO Wide Field Imager (WFI), this yield learning will be an important tool. The first electrical qualification measurements with this setup were done on DEPFET macropixel detector flight hardware, which will form the FPAs of the Mercury Imaging X-ray Spectrometer (MIXS) on board of the 5th ESA cornerstone mission BepiColombo. The DEPFET array consists of 64×64 macropixel for which the transfer, output and clear characteristics were measured.

  1. Demosaiced pixel super-resolution for multiplexed holographic color imaging

    PubMed Central

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2016-01-01

    To synthesize a holographic color image, one can sequentially take three holograms at different wavelengths, e.g., at red (R), green (G) and blue (B) parts of the spectrum, and digitally merge them. To speed up the imaging process by a factor of three, a Bayer color sensor-chip can also be used to demultiplex three wavelengths that simultaneously illuminate the sample and digitally retrieve individual set of holograms using the known transmission spectra of the Bayer color filters. However, because the pixels of different channels (R, G, B) on a Bayer color sensor are not at the same physical location, conventional demosaicing techniques generate color artifacts in holographic imaging using simultaneous multi-wavelength illumination. Here we demonstrate that pixel super-resolution can be merged into the color de-multiplexing process to significantly suppress the artifacts in wavelength-multiplexed holographic color imaging. This new approach, termed Demosaiced Pixel Super-Resolution (D-PSR), generates color images that are similar in performance to sequential illumination at three wavelengths, and therefore improves the speed of holographic color imaging by 3-fold. D-PSR method is broadly applicable to holographic microscopy applications, where high-resolution imaging and multi-wavelength illumination are desired. PMID:27353242

  2. ATLAS pixel detector design for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Smart, B.

    2017-02-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector is called the Inner Tracker (ITk). The ITk will cover an extended η-range: at least to |η|<3.2, and likely up to 0|η|<4.. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362 mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into `extended' and `inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline, while inclined designs have sensors angled such that they point towards the interaction point. The relative advantages and challenges of these two classes of designs will be examined in this paper, along with the mechanical solutions being considered. Thermal management, radiation-length mapping, and electrical services will also be discussed.

  3. The phase II ATLAS Pixel upgrade: the Inner Tracker (ITk)

    NASA Astrophysics Data System (ADS)

    Flick, T.

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the ITk (Inner Tracker). The pixel detector will comprise the five innermost layers, and will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. Several layout options are being investigated. All of these include a barrel part and ring-shaped supports in the endcap regions. All structures will be based on low mass, highly stable and highly thermally conductive carbon-based materials cooled by evaporative carbon dioxide. Different designs of planar, 3D, and CMOS sensors are being investigated to identify the optimal technology for the different pixel layers. While the RD53 Collaboration is developing the new readout chip, the pixel off-detector readout electronics will be implemented in the framework of the general ATLAS trigger and DAQ system. A readout speed of up to 5 Gbit/s per data link (FE-chip) will be needed in the innermost layers going down to 640 Mbit/s for the outermost. This paper presents an overview of the different components of the ITk and the current status of the developments.

  4. A beam monitor using silicon pixel sensors for hadron therapy

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Zou, Shuguang; Fan, Yan; Liu, Jun; Sun, Xiangming; Wang, Dong; Kang, Huili; Sun, Daming; Yang, Ping; Pei, Hua; Huang, Guangming; Xu, Nu; Gao, Chaosong; Xiao, Le

    2017-03-01

    We report the design and test results of a beam monitor developed for online monitoring in hadron therapy. The beam monitor uses eight silicon pixel sensors, Topmetal-II-, as the anode array. Topmetal-II- is a charge sensor designed in a CMOS 0.35 μm technology. Each Topmetal-II- sensor has 72×72 pixels and the pixel size is 83×83 μm2. In our design, the beam passes through the beam monitor without hitting the electrodes, making the beam monitor especially suitable for monitoring heavy ion beams. This design also reduces radiation damage to the beam monitor itself. The beam monitor is tested with a carbon ion beam at the Heavy Ion Research Facility in Lanzhou (HIRFL). Results indicate that the beam monitor can measure position, incidence angle and intensity of the beam with a position resolution better than 20 μm, angular resolution about 0.5° and intensity statistical accuracy better than 2%.

  5. Simulation of charge transport in pixelated CdTe

    NASA Astrophysics Data System (ADS)

    Kolstein, M.; Ariño, G.; Chmeissani, M.; De Lorenzo, G.

    2014-12-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have optimal energy and spatial resolution. An individual read-out channel is dedicated for each detector voxel of size 1 × 1 × 2 mm3 using an application-specific integrated circuit (ASIC) which the VIP project has designed, developed and is currently evaluating experimentally. The behaviour of the signal charge carriers in CdTe should be well understood because it has an impact on the performance of the readout channels. For this purpose the Finite Element Method (FEM) Multiphysics COMSOL software package has been used to simulate the behaviour of signal charge carriers in CdTe and extract values for the expected charge sharing depending on the impact point and bias voltage. The results on charge sharing obtained with COMSOL are combined with GAMOS, a Geant based particle tracking Monte Carlo software package, to get a full evaluation of the amount of charge sharing in pixelated CdTe for different gamma impact points.

  6. Simulation of charge transport in pixelated CdTe

    PubMed Central

    Kolstein, M.; Ariño, G.; Chmeissani, M.; De Lorenzo, G.

    2014-01-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have optimal energy and spatial resolution. An individual read-out channel is dedicated for each detector voxel of size 1 × 1 × 2 mm3 using an application-specific integrated circuit (ASIC) which the VIP project has designed, developed and is currently evaluating experimentally. The behaviour of the signal charge carriers in CdTe should be well understood because it has an impact on the performance of the readout channels. For this purpose the Finite Element Method (FEM) Multiphysics COMSOL software package has been used to simulate the behaviour of signal charge carriers in CdTe and extract values for the expected charge sharing depending on the impact point and bias voltage. The results on charge sharing obtained with COMSOL are combined with GAMOS, a Geant based particle tracking Monte Carlo software package, to get a full evaluation of the amount of charge sharing in pixelated CdTe for different gamma impact points. PMID:25729404

  7. Spectroscopic and imaging capabilities of a pixellated photon counting system

    NASA Astrophysics Data System (ADS)

    Amendolia, S. R.; Bisogni, M. G.; Bottigli, U.; Delogu, P.; Dipasquale, G.; Fantacci, M. E.; Marchi, A.; Marzulli, V. M.; Oliva, P.; Palmiero, R.; Rosso, V.; Stefanini, A.; Stumbo, S.; Zucca, S.

    2001-06-01

    We are studying the performance of various thickness GaAs pixel detectors bump-bonded to a dedicated photon counting chip (PCC) for medical imaging applications in different energy ranges. In this work we present the experimental results obtained with a 600 μm thick pixel matrix (64×64 square pixels, 170 μm side) in the 60-140 keV energy range to evaluate the possible use of such a system in the nuclear medicine field. In particular, we have measured the spectroscopic properties of the detector (charge collection efficiency, energy resolution and detection efficiency) and evaluated the discrimination capability of the electronics. Then we have measured the imaging properties of the whole system in terms of Point Spread Function and using a home made thyroid phantom. We present also a comparison with a traditional gamma camera and an evaluation, made by both experimental measurements and software simulations, of the imaging characteristics related to the use of a collimation system.

  8. Simulation of charge transport in pixelated CdTe.

    PubMed

    Kolstein, M; Ariño, G; Chmeissani, M; De Lorenzo, G

    2014-12-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 10(6)). The design is based on the use of a pixelated CdTe Schottky detector to have optimal energy and spatial resolution. An individual read-out channel is dedicated for each detector voxel of size 1 × 1 × 2 mm(3) using an application-specific integrated circuit (ASIC) which the VIP project has designed, developed and is currently evaluating experimentally. The behaviour of the signal charge carriers in CdTe should be well understood because it has an impact on the performance of the readout channels. For this purpose the Finite Element Method (FEM) Multiphysics COMSOL software package has been used to simulate the behaviour of signal charge carriers in CdTe and extract values for the expected charge sharing depending on the impact point and bias voltage. The results on charge sharing obtained with COMSOL are combined with GAMOS, a Geant based particle tracking Monte Carlo software package, to get a full evaluation of the amount of charge sharing in pixelated CdTe for different gamma impact points.

  9. Spatial Pileup Considerations for Pixellated Gamma -ray Detectors

    PubMed Central

    Furenlid, L.R.; Clarkson, E.; Marks, D.G.; Barrett, H.H.

    2015-01-01

    High-spatial-resolution solid-state detectors being developed for gamma-ray applications benefit from having pixel dimensions substantially smaller than detector slab thickness. This leads to an enhanced possibility of charge partially spreading to neighboring pixels as a result of diffusion (and secondary photon emission) transverse to the drift direction. An undesirable consequence is the effective magnification of the event “size“ and the spatial overlap issues which result when two photons are absorbed in close proximity within the integration time of the detector/readout system. In this work, we develop the general statistics of spatial pileup in imaging systems and apply the results to detectors we are developing based on pixellated cadmium zinc telluride (CdZnTe) and a multiplexing application-specific integrated circuit (ASIC) readout. We consider the limitations imposed on total count rate capacity and explore in detail the consequences for the LISTMODE data-acquisition strategy. Algorithms are proposed for identifying and, where possible, resolving overlapping events by maximum-likelihood estimation. The efficacy and noise tolerance of these algorithms will be tested with a combination of simulated and experimental data in future work. PMID:26568675

  10. [Study on the reflected and hyperspectral mixed-pixel character of aquatic plants and water].

    PubMed

    Sun, Tian-lin; Zhao, Yun-sheng; Liang, Ren-feng; Zhang, Xia

    2012-02-01

    A study on the reflected and hyperspectral mixed-pixel of aquatic plants and water was given by using a orthogonal experimental design with three factors and two levels. The results of F test suggest that for the single factors, the band and the area ratio of mixed-pixel on the reflected and hyperspectral mixed-pixel of the reflection effects are particularly significant, however, the detector angle had no significant effect under these experimental conditions; For the interaction, the band and the area ratio of mixed-pixel, the detector and the area ratio of mixed-pixel, the effects of these two interactions on the reflected and hyperspectral mixed-pixel are also particularly significant, This study did quantitative analysis of the factors affecting the reflected and hyperspectral mixed-pixel character and their interaction, and provided a new method for the indepth study of mixed-pixel.

  11. Hexagonal Pixels and Indexing Scheme for Binary Images

    NASA Technical Reports Server (NTRS)

    Johnson, Gordon G.

    2004-01-01

    A scheme for resampling binaryimage data from a rectangular grid to a regular hexagonal grid and an associated tree-structured pixel-indexing scheme keyed to the level of resolution have been devised. This scheme could be utilized in conjunction with appropriate image-data-processing algorithms to enable automated retrieval and/or recognition of images. For some purposes, this scheme is superior to a prior scheme that relies on rectangular pixels: one example of such a purpose is recognition of fingerprints, which can be approximated more closely by use of line segments along hexagonal axes than by line segments along rectangular axes. This scheme could also be combined with algorithms for query-image-based retrieval of images via the Internet. A binary image on a rectangular grid is generated by raster scanning or by sampling on a stationary grid of rectangular pixels. In either case, each pixel (each cell in the rectangular grid) is denoted as either bright or dark, depending on whether the light level in the pixel is above or below a prescribed threshold. The binary data on such an image are stored in a matrix form that lends itself readily to searches of line segments aligned with either or both of the perpendicular coordinate axes. The first step in resampling onto a regular hexagonal grid is to make the resolution of the hexagonal grid fine enough to capture all the binaryimage detail from the rectangular grid. In practice, this amounts to choosing a hexagonal-cell width equal to or less than a third of the rectangular- cell width. Once the data have been resampled onto the hexagonal grid, the image can readily be checked for line segments aligned with the hexagonal coordinate axes, which typically lie at angles of 30deg, 90deg, and 150deg with respect to say, the horizontal rectangular coordinate axis. Optionally, one can then rotate the rectangular image by 90deg, then again sample onto the hexagonal grid and check for line segments at angles of 0deg, 60deg

  12. Transition-edge sensor pixel parameter design of the microcalorimeter array for the x-ray integral field unit on Athena

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Miniussi, A. R.; Porter, F. S.; Sadleir, J. E.; Sakai, K.; Wakeham, N. A.; Wassell, E. J.; Yoon, W.; Bennett, D. A.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Morgan, K. M.; Pappas, C. G.; Reintsema, C. N.; Swetz, D. S.; Ullom, J. N.; Irwin, K. D.; Akamatsu, H.; Gottardi, L.; den Hartog, R.; Jackson, B. D.; van der Kuur, J.; Barret, D.; Peille, P.

    2016-07-01

    The focal plane of the X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 keV. The instrument will provide unprecedented spectral resolution of 2.5 eV at energies of up to 7 keV and will accommodate photon fluxes of 1 mCrab (90 cps) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28" pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 × 18 small pixel array (SPA) of 2" pixels in the central 36" region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 mCrab (900 cps) or alternately for improved spectral performance (< 1.5 eV) at low count-rates. In this paper we report on the TES pixel designs that are being optimized to meet these proposed LPA and SPA configurations. In particular we describe details of how important TES parameters are chosen to meet the specific mission criteria such as energy resolution, count-rate and quantum efficiency, and highlight performance trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.

  13. Development of a super B-factory monolithic active pixel detector—the Continuous Acquisition Pixel (CAP) prototypes

    NASA Astrophysics Data System (ADS)

    Varner, G.; Barbero, M.; Bozek, A.; Browder, T.; Fang, F.; Hazumi, M.; Igarashi, A.; Iwaida, S.; Kennedy, J.; Kent, N.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Stanic, S.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.

    2005-04-01

    Over the last few years great progress has been made in the technological development of Monolithic Active Pixel Sensors (MAPS) such that upgrades to existing vertex detectors using this technology are now actively being considered. Future vertex detection at an upgraded KEK-B factory, already the highest luminosity collider in the world, will require a detector technology capable of withstanding the increased track densities and larger radiation exposures. Near the beam pipe the current silicon strip detectors have projected occupancies in excess of 100%. Deep sub-micron MAPS look very promising to address this problem. In the context of an upgrade to the Belle vertex detector, the major obstacles to realizing such a device have been concerns about radiation hardness and readout speed. Two prototypes implemented in the TSMC 0.35 μm process have been developed to address these issues. Denoted the Continuous Acquisition Pixel, or CAP, the two variants of this architecture are distinguished in that CAP2 includes an 8-deep sampling pipeline within each 22.5 μm 2 pixel. Preliminary test results and remaining R&D issues are presented.

  14. Sub-pixel calibration for Weak Lensing and Astrometry

    NASA Astrophysics Data System (ADS)

    Shao, Michael

    We have recently developed and demonstrated a new method of sub-pixel detector calibration that offers orders of magnitude improvement in astrometry with CCD focal planes. Using this technique we have demonstrated centroiding of images to 1e 5 lambda/D in laboratory conditions. Our method allows reconstructing the true optical point spread function (PSF) of a telescope from pixelated stellar images. Although this technique was originally developed for centroiding of images across a large focal plane, it can also be applied to weak lensing program on WFIRST. We use a laser metrology technique to measure geometric imperfections in the focal plane array from pixel placement errors to non-uniform quantum efficiency (QE) within every pixel. With precise sub-pixel calibration one can use dithered images (e.g., a 2×2 dither) to derive Nyquist-sampled image of stars. The WFIRST telescope has a large 0.28 sq.deg field of view (FOV) with theoretical PSF varying considerably over that FOV. However, even at high galactic latitude there will be over 1,000 stars brighter than 16 mag and, with Nyquist-sampled images, it should be possible to calculate the spatially varying PSF at 1,000 locations in the focal plane. With knowledge of the optical PSF and sub-pixel calibration of the detector, one can remove biases in the shapes of galaxies introduced by the spatially varying PSF. The technique of sub-pixel calibration has so far only been demonstrated in with visible CCD detectors and applied to achieve ultra-precise image centroiding. The purpose of this proposal is to extend the technique of removing biases in the shape of galaxies due to pixilation and spatially varying PSF and to extend the calibration of visible detectors to NIR detectors. The new technique could be used to enable 4 10 microarcsecond (μas) astrometry within the 0.28 sq.deg FOV of the WFIRST telescope. Using the upcoming Gaia catalogue accurate to ~10 μas, we will be able to stitch the HgCdTe arrays on

  15. Optical differentiation wavefront sensor based on binary pixelated transmission filters

    NASA Astrophysics Data System (ADS)

    Qiao, J.; Travinsky, A.; Ding, G.; Dorrer, C.

    2015-03-01

    High-resolution wavefront sensors are used in a wide range of applications. The Shack-Hartmann sensor is the industry standard and mostly used for this kind of analysis. However, with this sensor the analysis can only be performed for narrowband radiation, the recoverable curvature of the wavefront slopes is also restricted by the size of a single lens in the microlens array. The high-resolution Shack Hartmann wavefront sensor (>128×128) is also significantly expensive. The optical differentiation wavefront sensor, on the other hand, consists of only simple and therefore inexpensive components, offers greater signal to noise ratio, allows for high-resolution analysis of wavefront curvature, and is potentially capable of performing broadband measurements. When a transmission mask with linear attenuation along a spatial direction modulates the far field of an optical wave, the spatial wavefront slope along that direction can be recovered from the fluence in the near field after modulation. With two orthogonal measurements one can recover the complete wavefront of the optical wave. In this study the characteristics of such a wavefront sensor are investigated when the linear transmission modulation is implemented with a pixelated binary filter. Such a filter can be produced as a gray-scale quasi-continuous transmission pattern constructed using arrays of small (e.g., 10-micron) transparent or opaque pixels and therefore it can simply be fabricated by conventional lithography techniques. Simulations demonstrate the potential ability of such a pixelated filter to match the performance of a filter with continuously varying transmission, while offering the advantage of better transmission control and reduction of fabrication costs.

  16. CMOS Hybrid Pixel Detectors for Scientific, Industrial and Medical Applications

    NASA Astrophysics Data System (ADS)

    Broennimann, Christian

    2009-03-01

    Crystallography is the principal technique for determining macromolecular structures at atomic resolution and uses advantageously the high intensity of 3rd generation synchrotron X-ray sources . Macromolecular crystallography experiments benefit from excellent beamline equipment, recent software advances and modern X-ray detectors. However, the latter do not take full advantage of the brightness of modern synchrotron sources. CMOS Hybrid pixel array detectors, originally developed for high energy physics experiments, meet these requirements. X-rays are recorded in single photon counting mode and data thus are stored digitally at the earliest possible stage. This architecture leads to several advantages over current detectors: No detector noise is added to the signal. Readout time is reduced to a few milliseconds. The counting rates are matched to beam intensities at protein crystallography beamlines at 3rd generation synchrotrons. The detector is not sensitive to X-rays during readout; therefore no mechanical shutter is required. The detector has a very sharp point spread function (PSF) of one pixel, which allows better resolution of adjacent reflections. Low energy X-rays can be suppressed by the comparator At the Paul Scherrer Institute (PSI) in Switzerland the first and largest array based on this technology was constructed: The Pilatus 6M detector. The detector covers an area of 43.1 x 44.8 cm2 , has 6 million pixels and is read out noise free in 3.7 ms. Since June 2007 the detector is in routine operation at the beamline 6S of the Swiss Light Source (SLS). The company DETCRIS Ltd, has licensed the technology from PSI and is commercially offering the PILATUS detectors. Examples of the wide application range of the detectors will be shown.

  17. Study of silicon pixel sensor for synchrotron radiation detection

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Jie; Jia, Yun-Cong; Hu, Ling-Fei; Liu, Peng; Yin, Hua-Xiang

    2016-03-01

    The silicon pixel sensor (SPS) is one of the key components of hybrid pixel single-photon-counting detectors for synchrotron radiation X-ray detection (SRD). In this paper, the design, fabrication, and characterization of SPSs for single beam X-ray photon detection is reported. The designed pixel sensor is a p+-in-n structure with guard-ring structures operated in full-depletion mode and is fabricated on 4-inch, N type, 320 μm thick, high-resistivity silicon wafers by a general Si planar process. To achieve high energy resolution of X-rays and obtain low dark current and high breakdown voltage as well as appropriate depletion voltage of the SPS, a series of technical optimizations of device structure and fabrication process are explored. With optimized device structure and fabrication process, excellent SPS characteristics with dark current of 2 nA/cm2, full depletion voltage < 50 V and breakdown voltage >150 V are achieved. The fabricated SPSs are wire bonded to ASIC circuits and tested for the performance of X-ray response to the 1W2B synchrotron beam line of the Beijing Synchrotron Radiation Facility. The measured S-curves for SRD demonstrate a high discrimination for different energy X-rays. The extracted energy resolution is high (<20% for X-ray photon energy >10 keV) and the linear properties between input photo energy and the equivalent generator amplitude are well established. It confirmed that the fabricated SPSs have a good energy linearity and high count rate with the optimized technologies. The technology is expected to have a promising application in the development of a large scale SRD system for the Beijing Advanced Photon Source. Supported by Prefabrication Research of Beijing Advanced Photon Source (R&D for BAPS) and National Natural Science Foundation of China (11335010)

  18. A metamaterial-based single pixel imaging system (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Padilla, Willie J.

    2016-09-01

    Electromagnetic metamaterials have demonstrated unprecedented control over light matter interactions and have realized exotic responses difficult to achieve with natural materials. The ability to achieve real-time control of novel responses exhibited by electromagnetic metamaterials has led to the realization of metadevices and metasystems. Here we experimentally demonstrate two realizations of single pixel imaging systems that rely entirely on all-electronic metamaterial spatial light modulators. The metasystem enables images to be digitally encoded with various measurement matrix coefficients, thus permitting high speed and fidelity imaging.

  19. Position-Sensitive Nuclear Spectroscopy with Pixel Detectors

    SciTech Connect

    Granja, Carlos; Vykydal, Zdenek; Jakubek, Jan; Pospisil, Stanislav

    2007-10-26

    State-of-the-art hybrid semiconductor pixel detectors such as Medipix2 are suitable for energy- and position-sensitive nuclear spectroscopy. In addition to excellent energy- and spatial-resolution, these devices can operate in spectroscopic, single-quantum counting and/or on-line tracking mode. A devoted compact USB-readout interface provides functionality and ease of operation. The compact and versatile Medipix2/USB radiation camera provides visualization, vacuum and room-temperature operation as a real-time portable active nuclear emulsion.

  20. Dissolve Detection Using Intensity Change Information of Edge Pixels

    NASA Astrophysics Data System (ADS)

    Kwon, Chul-Hyun; Han, Doo-Jin; Kim, Hyun-Sool; Lee, Myung-Ho; Park, Sang-Hui

    Shot transition detection is a core technology in video browsing, indexing systems and information retrieval. In this paper we propose a dissolve detection algorithm using the characteristics of edge in MPEG compressed video. Using the intensity change information of edge pixels obtained by Sobel edge detector, we detect the location of a dissolve and its precise duration. We also present a new reliable method to eliminate the false dissolves. The proposed algorithm is tested in various types of videos, and the experimental results show that the proposed algorithm is effective and robust.

  1. Pixel DAQ and trigger for HL-LHC

    NASA Astrophysics Data System (ADS)

    Morettini, P.

    2017-03-01

    The read-out is one of the challenges in the design of a pixel detector for the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), that is expected to operate from 2026 at a leveled luminosity of 5 × 1034 cm‑2 s‑1. This is especially true if tracking information is needed in a low latency trigger system. The difficulties of a fast read-out will be reviewed, and possible strategies explained. The solutions that are being evaluated by the ATLAS and CMS collaborations for the upgrade of their trackers will be outlined and ideas on possible development beyond HL-LHC will be presented.

  2. Hyperspectral imaging using the single-pixel Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo

    2017-03-01

    Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400–1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.

  3. Hyperspectral imaging using the single-pixel Fourier transform technique

    PubMed Central

    Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo

    2017-01-01

    Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400–1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes. PMID:28338100

  4. Independent pixel and Monte Carlo estimates of stratocumulus albedo

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Ridgway, William; Wiscombe, Warren J.; Gollmer, Steven; HARSHVARDHAN

    1994-01-01

    Monte Carlo radiative transfer methods are employed here to estimate the plane-parallel albedo bias for marine stratocumulus clouds. This is the bias in estimates of the mesoscale-average albedo, which arises from the assumption that cloud liquid water is uniformly distributed. The authors compare such estimates with those based on a more realistic distribution generated from a fractal model of marine stratocumulus clouds belonging to the class of 'bounded cascade' models. In this model the cloud top and base are fixed, so that all variations in cloud shape are ignored. The model generates random variations in liquid water along a single horizontal direction, forming fractal cloud streets while conserving the total liquid water in the cloud field. The model reproduces the mean, variance, and skewness of the vertically integrated cloud liquid water, as well as its observed wavenumber spectrum, which is approximately a power law. The Monte Carlo method keeps track of the three-dimensional paths solar photons take through the cloud field, using a vectorized implementation of a direct technique. The simplifications in the cloud field studied here allow the computations to be accelerated. The Monte Carlo results are compared to those of the independent pixel approximation, which neglects net horizontal photon transport. Differences between the Monte Carlo and independent pixel estimates of the mesoscale-average albedo are on the order of 1% for conservative scattering, while the plane-parallel bias itself is an order of magnitude larger. As cloud absorption increases, the independent pixel approximation agrees even more closely with the Monte Carlo estimates. This result holds for a wide range of sun angles and aspect ratios. Thus, horizontal photon transport can be safely neglected in estimates of the area-average flux for such cloud models. This result relies on the rapid falloff of the wavenumber spectrum of stratocumulus, which ensures that the smaller

  5. Thin hybrid pixel assembly with backside compensation layer on ROIC

    NASA Astrophysics Data System (ADS)

    Bates, R.; Buttar, C.; McMullen, T.; Cunningham, L.; Ashby, J.; Doherty, F.; Gray, C.; Pares, G.; Vignoud, L.; Kholti, B.; Vahanen, S.

    2017-01-01

    The entire ATLAS inner tracking system will be replaced for operation at the HL-LHC . This will include a significantly larger pixel detector of approximately 15 m2. For this project, it is critical to reduce the mass of the hybrid pixel modules and this requires thinning both the sensor and readout chips to about 150 micrometres each. The thinning of the silicon chips leads to low bump yield for SnAg bumps due to bad co-planarity of the two chips at the solder reflow stage creating dead zones within the pixel array. In the case of the ATLAS FEI4 pixel readout chip thinned to 100 micrometres, the chip is concave, with the front side in compression, with a bow of +100 micrometres at room temperature which varies to a bow of -175 micrometres at the SnAg solder reflow temperature, caused by the CTE mismatch between the materials in the CMOS stack and the silicon substrate. A new wafer level process to address the issue of low bump yield be controlling the chip bow has been developed. A back-side dielectric and metal stack of SiN and Al:Si has been deposited on the readout chip wafer to dynamically compensate the stress of the front side stack. In keeping with a 3D process the materials used are compatible with Through Silicon Via (TSV) technology with a TSV last approach which is under development for this chip. It is demonstrated that the amplitude of the correction can be manipulated by the deposition conditions and thickness of the SiN/Al:Si stack. The bow magnitude over the temperature range for the best sample to date is reduced by almost a factor of 4 and the sign of the bow (shape of the die) remains constant. Further development of the backside deposition conditions is on-going with the target of close to zero bow at the solder reflow temperature and a minimal bow magnitude throughout the temperature range. Assemblies produced from FEI4 readout wafers thinned to 100 micrometres with the backside compensation layer have been made for the first time and

  6. ATLAS Phase-II-Upgrade Pixel data transmission development

    NASA Astrophysics Data System (ADS)

    Wensing, M.

    2017-01-01

    The ATLAS tracking system will be replaced by an all-silicon detector in the course of the planned upgrade of the Large Hadron Collider around 2025. The readout of the new pixel system will be most challenging in terms of data rate and readout speed. Simulations of the on-detector electronics based on the currently foreseen trigger rate of 1 MHz indicate that a readout speed of up to 5 Gbit/s per data link is necessary. Due to radiation levels, the first part of transmission has to be implemented electrically. System simulation and test results of cable candidates will be presented.

  7. An integrating CMOS APS for X-ray imaging with an in-pixel preamplifier

    NASA Astrophysics Data System (ADS)

    Abdalla, M. A.; Fröjdh, C.; Petersson, C. S.

    2001-06-01

    We present in this paper an integrating CMOS Active Pixel Sensor (APS) circuit coated with scintillator type sensors for intra-oral dental X-ray imaging systems. The photosensing element in the pixel is formed by the p-diffusion on the n-well diode. The advantage of this photosensor is its very low direct absorption of X-rays compared to the other available photosensing elements in the CMOS pixel. The pixel features an integrating capacitor in the feedback loop of a preamplifier of a finite gain in order to increase the optical sensitivity. To verify the effectiveness of this in-pixel preamplification, a prototype 32×80 element CMOS active pixel array was implemented in a 0.8 μm CMOS double poly, n-well process with a pixel pitch of 50 μm. Measured results confirmed the improved optical sensitivity performance of the APS. Various measurements on device performance are presented.

  8. A new ATLAS pixel front-end IC for upgraded LHC luminosity

    NASA Astrophysics Data System (ADS)

    Barbero, M.; Arutinov, D.; Beccherle, R.; Darbo, G.; Ely, R.; Fougeron, D.; Garcia-Sciveres, M.; Gnani, D.; Hemperek, T.; Karagounis, M.; Kluit, R.; Kostioukhine, V.; Mekkaoui, A.; Menouni, M.; Schipper, J.-D.

    2009-06-01

    A new pixel Front-End (FE) IC is being developed in a 130 nm technology for use in the upgraded ATLAS pixel detector. The new pixel FE will be made of smaller pixels (50×250 μm vs. 50×400 μm for the present FE, FE-I3), a much improved active area over inactive area ratio, and a new analog pixel chain tuned for low power and new detector input capacitance. The higher luminosity for which this IC is tuned implies a complete redefinition of the digital architecture logic, which will not be based on End-of-Column data buffering but on local pixel logic and local pixel data storage. An overview of the new FE is given with particular emphasis on the new digital logic architecture and possible architecture variations.

  9. A New Pixels Flipping Method for Huge Watermarking Capacity of the Invoice Font Image

    PubMed Central

    Li, Li; Hou, Qingzheng; Lu, Jianfeng; Dai, Junping; Mao, Xiaoyang; Chang, Chin-Chen

    2014-01-01

    Invoice printing just has two-color printing, so invoice font image can be seen as binary image. To embed watermarks into invoice image, the pixels need to be flipped. The more huge the watermark is, the more the pixels need to be flipped. We proposed a new pixels flipping method in invoice image for huge watermarking capacity. The pixels flipping method includes one novel interpolation method for binary image, one flippable pixels evaluation mechanism, and one denoising method based on gravity center and chaos degree. The proposed interpolation method ensures that the invoice image keeps features well after scaling. The flippable pixels evaluation mechanism ensures that the pixels keep better connectivity and smoothness and the pattern has highest structural similarity after flipping. The proposed denoising method makes invoice font image smoother and fiter for human vision. Experiments show that the proposed flipping method not only keeps the invoice font structure well but also improves watermarking capacity. PMID:25489606

  10. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    NASA Astrophysics Data System (ADS)

    Jain, G.; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichorn, T.; Fernandez, M.; Lalwani, K.; Messineo, A.; Palomo, F. R.; Peltola, T.; Printz, M.; Ranjan, K.; Villa, I.; Hidalgo, S.

    2016-07-01

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  11. The Gauss-Legendre Sky Pixelization for the CMB Polarization Glesp-Pol Errors due to Pixelization of the CMB Sky

    NASA Astrophysics Data System (ADS)

    Doroshkevich, Andrei G.; Verkhodanov, Oleg V.; Naselsky, Pavel D.; Kim, Jaiseung; Novikov, Dmitry I.; Turchaninov, Viktor I.; Novikov, Igor D.; Chiang, Lung-Yih; Hansen, Martin

    We present the development of the method for numerical analysis of polarization in the Gauss-Legendre sky pixelization (GLESP) scheme for CMB maps. This incorporation of the polarization transforms in the pixelization scheme GLESP completes the creation of our new method for numerical analysis of CMB maps. A comparison of GLESP and HEALPix calculations is done.

  12. Advances in Small Pixel TES-Based X-Ray Microcalorimeter Arrays for Solar Physics and Astrophysics

    NASA Technical Reports Server (NTRS)

    Bandler, S. R.; Adams, J. S.; Bailey, C. N.; Busch, S. E.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; Kilbourne, C. A.; Porst, J.-P.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.

    2012-01-01

    We are developing small-pixel transition-edge-sensor (TES) for solar physics and astrophysics applications. These large format close-packed arrays are fabricated on solid silicon substrates and are designed to accommodate count-rates of up to a few hundred counts/pixel/second at a FWHM energy resolution approximately 2 eV at 6 keV. We have fabricated versions that utilize narrow-line planar and stripline wiring. We present measurements of the performance and uniformity of kilo-pixel arrays, incorporating TESs with single 65-micron absorbers on a 7s-micron pitch, as well as versions with more than one absorber attached to the TES, 4-absorber and 9-absorber "Hydras". We have also fabricated a version of this detector optimized for lower energies and lower count-rate applications. These devices have a lower superconducting transition temperature and are operated just above the 40mK heat sink temperature. This results in a lower heat capacity and low thermal conductance to the heat sink. With individual single pixels of this type we have achieved a FWHM energy resolution of 0.9 eV with 1.5 keV Al K x-rays, to our knowledge the first x-ray microcalorimeter with sub-eV energy resolution. The 4-absorber and 9-absorber versions of this type achieved FWHM energy resolutions of 1.4 eV and 2.1 eV at 1.5 keV respectively. We will discuss the application of these devices for new astrophysics mission concepts.

  13. A CMOS Active Pixel Sensor for Charged Particle Detection

    SciTech Connect

    Matis, Howard S.; Bieser, Fred; Kleinfelder, Stuart; Rai, Gulshan; Retiere, Fabrice; Ritter, Hans George; Singh, Kunal; Wurzel, Samuel E.; Wieman, Howard; Yamamoto, Eugene

    2002-12-02

    Active Pixel Sensor (APS) technology has shown promise for next-generation vertex detectors. This paper discusses the design and testing of two generations of APS chips. Both are arrays of 128 by 128 pixels, each 20 by 20 {micro}m. Each array is divided into sub-arrays in which different sensor structures (4 in the first version and 16 in the second) and/or readout circuits are employed. Measurements of several of these structures under Fe{sup 55} exposure are reported. The sensors have also been irradiated by 55 MeV protons to test for radiation damage. The radiation increased the noise and reduced the signal. The noise can be explained by shot noise from the increased leakage current and the reduction in signal is due to charge being trapped in the epi layer. Nevertheless, the radiation effect is small for the expected exposures at RHIC and RHIC II. Finally, we describe our concept for mechanically supporting a thin silicon wafer in an actual detector.

  14. Solution processed integrated pixel element for an imaging device

    NASA Astrophysics Data System (ADS)

    Swathi, K.; Narayan, K. S.

    2016-09-01

    We demonstrate the implementation of a solid state circuit/structure comprising of a high performing polymer field effect transistor (PFET) utilizing an oxide layer in conjunction with a self-assembled monolayer (SAM) as the dielectric and a bulk-heterostructure based organic photodiode as a CMOS-like pixel element for an imaging sensor. Practical usage of functional organic photon detectors requires on chip components for image capture and signal transfer as in the CMOS/CCD architecture rather than simple photodiode arrays in order to increase speed and sensitivity of the sensor. The availability of high performing PFETs with low operating voltage and photodiodes with high sensitivity provides the necessary prerequisite to implement a CMOS type image sensing device structure based on organic electronic devices. Solution processing routes in organic electronics offers relatively facile procedures to integrate these components, combined with unique features of large-area, form factor and multiple optical attributes. We utilize the inherent property of a binary mixture in a blend to phase-separate vertically and create a graded junction for effective photocurrent response. The implemented design enables photocharge generation along with on chip charge to voltage conversion with performance parameters comparable to traditional counterparts. Charge integration analysis for the passive pixel element using 2D TCAD simulations is also presented to evaluate the different processes that take place in the monolithic structure.

  15. Thin hybrid pixel assembly fabrication development with backside compensation layer

    NASA Astrophysics Data System (ADS)

    Bates, R.; Buttar, C.; McMullen, T.; Cunningham, L.; Ashby, J.; Doherty, F.; Pares, G.; Vignoud, L.; Kholti, B.; Vahanen, S.

    2017-02-01

    The ATLAS and CMS experiments will both replace their entire tracking systems for operation at the HL-LHC in 2026. This will include a significantly larger pixel systems, for example, for ATLAS approximately 15 m2. To keep the tracker material budget low it is crucial to minimize the mass of the pixel modules via thinning both the sensor and readout chip to about 150 μm each. The bump yield of thin module assemblies using solder based bump bonding can be problematic due to wafer bowing during solder reflow at high temperature. A new bump-bonding process using backside compensation on the readout chip to address the issue of low yield will be presented. The objective is to compensate dynamically the stress of the front side stack by adding a compensating layer to the backside of the wafer. A SiN and Al:Si stack has been chosen for the backside layer. The bow reducing effect of applying a backside compensation layer will be demonstrated using the FE-I4 wafer. The world's first results from assemblies produced from readout wafers thinned to 100 μm with a stress compensation layer are presented with bond yields close to 100% measured using the FE-I4 readout chip.

  16. Single pixel optical imaging using a scanning MEMS mirror

    NASA Astrophysics Data System (ADS)

    Li, Li; Stankovic, Vladimir; Stankovic, Lina; Li, Lijie; Cheng, Samuel; Uttamchandani, Deepak

    2011-02-01

    The paper describes a low-complexity optical imaging system using demagnifying optics, a single scanning MEMS mirror and a single photodetector. Light at visible wavelengths from the object passes through a lens assembly and is incident on a scanning MEMS micromirror. After reflection from the micromirror, a complete image of the object is projected at the image plane of the optical system where a single-element photodetector with a pinhole at its entrance is located. By tilting the micromirror in the x and y directions, the projected image is translated across the image plane in the x and y directions. The photodetector sequentially detects the intensity of different areas of the projected optical image, thereby enabling a digital image to be generated pixel-by-pixel. However, due to the noisy raw image obtained experimentally, an image enhancement algorithm based on iterative-combined wavelet and curvelet denoising has been developed. Using blind image quality indices (BIQI) as an objective performance measure, it is shown that the proposed image enhancement method enhances the raw image by up to 40% and outperforms state-of-the-art denoising methods for up to 10 units of BIQI.

  17. Multilayer fluorescence imaging on a single-pixel detector

    PubMed Central

    Guo, Kaikai; Jiang, Shaowei; Zheng, Guoan

    2016-01-01

    A critical challenge for fluorescence imaging is the loss of high frequency components in the detection path. Such a loss can be related to the limited numerical aperture of the detection optics, aberrations of the lens, and tissue turbidity. In this paper, we report an imaging scheme that integrates multilayer sample modeling, ptychography-inspired recovery procedures, and lensless single-pixel detection to tackle this challenge. In the reported scheme, we directly placed a 3D sample on top of a single-pixel detector. We then used a known mask to generate speckle patterns in 3D and scanned this known mask to different positions for sample illumination. The sample was then modeled as multiple layers and the captured 1D fluorescence signals were used to recover multiple sample images along the z axis. The reported scheme may find applications in 3D fluorescence sectioning, time-resolved and spectrum-resolved imaging. It may also find applications in deep-tissue fluorescence imaging using the memory effect. PMID:27446679

  18. Multilayer fluorescence imaging on a single-pixel detector.

    PubMed

    Guo, Kaikai; Jiang, Shaowei; Zheng, Guoan

    2016-07-01

    A critical challenge for fluorescence imaging is the loss of high frequency components in the detection path. Such a loss can be related to the limited numerical aperture of the detection optics, aberrations of the lens, and tissue turbidity. In this paper, we report an imaging scheme that integrates multilayer sample modeling, ptychography-inspired recovery procedures, and lensless single-pixel detection to tackle this challenge. In the reported scheme, we directly placed a 3D sample on top of a single-pixel detector. We then used a known mask to generate speckle patterns in 3D and scanned this known mask to different positions for sample illumination. The sample was then modeled as multiple layers and the captured 1D fluorescence signals were used to recover multiple sample images along the z axis. The reported scheme may find applications in 3D fluorescence sectioning, time-resolved and spectrum-resolved imaging. It may also find applications in deep-tissue fluorescence imaging using the memory effect.

  19. The ultralight DEPFET pixel detector of the Belle II experiment

    NASA Astrophysics Data System (ADS)

    Luetticke, Florian

    2017-02-01

    An upgrade of the existing Japanese flavor factory (KEKB in Tsukuba, Japan) is under construction and foreseen for commissioning by the end of 2017. This new e+e- machine (SuperKEKB) will deliver an instantaneous luminosity 40 times higher than the luminosity world record set by KEKB. To fully exploit the increased number of events and provide high precision measurements of B-meson decay vertices in such a harsh environment, the Belle detector will be upgraded to Belle II, featuring a new silicon vertex detector with two pixel layers close to the interaction point based on the DEPFET (DEpleted P-channel Field Effect Transistor) technology. This technology combines particle detection together with in-pixel amplification by integrating a field effect transistor into a fully depleted silicon bulk. In Belle II, DEPFET sensors thinned down to 75 μm with low power consumption and low intrinsic noise will be used. The first large thin multi-chip production modules have been produced and characterization results on both large modules as well as small test systems will be presented in this contribution.

  20. Pixelated transmission-mode diamond X-ray detector.

    PubMed

    Zhou, Tianyi; Ding, Wenxiang; Gaowei, Mengjia; De Geronimo, Gianluigi; Bohon, Jen; Smedley, John; Muller, Erik

    2015-11-01

    Fabrication and testing of a prototype transmission-mode pixelated diamond X-ray detector (pitch size 60-100 µm), designed to simultaneously measure the flux, position and morphology of an X-ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic-grade chemical vapor deposition single-crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ∼ 1 kHz, which leads to an image sampling rate of ∼ 30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5-15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10(-2) to 90 W mm(-2). Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software-controlled single channel mode providing accurate flux measurement (fluctuation within 1%).

  1. Pixelated transmission-mode diamond X-ray detector

    SciTech Connect

    Zhou, Tianyi; Ding, Wenxiang; Gaowei, Mengjia; De Geronimo, Gianluigi; Bohon, Jen; Smedley, John; Muller, Erik

    2015-09-29

    Fabrication and testing of a prototype transmission-mode pixelated diamond X-ray detector (pitch size 60–100 µm), designed to simultaneously measure the flux, position and morphology of an X-ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic-grade chemical vapor deposition single-crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ~1 kHz, which leads to an image sampling rate of ~30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5–15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10-2to 90 W mm-2. Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software-controlled single channel mode providing accurate flux measurement (fluctuation within 1%).

  2. Pixel Hybridization Technologies for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Alimonti, G.; Biasotti, M.; Ceriale, V.; Darbo, G.; Gariano, G.; Gaudiello, A.; Gemme, C.; Rossi, L.; Rovani, A.; Ruscino, E.

    2016-12-01

    During the 2024-2025 shut-down, the Large Hadron Collider (LHC) will be upgraded to reach an instantaneous luminosity up to 7×1034 cm-2s-1. This upgrade of the collider is called High-Luminosity LHC (HL-LHC). ATLAS and CMS detectors will be upgraded to meet the new challenges of HL-LHC: an average of 200 pile-up events in every bunch crossing and an integrated luminosity of 3000 fb-1 over ten years. In particular, the current trackers will be completely replaced. In HL-LHC the trackers should operate under high fluences (up to 1.4 × 1016 neq cm-2), with a correlated high radiation damage. The pixel detectors, the innermost part of the trackers, needed a completely new design in the readout electronics, sensors and interconnections. A new 65 nm front-end (FE) electronics is being developed by the RD53 collaboration compatible with smaller pixel sizes than the actual ones to cope with the high track densities. Consequently the bump density will increase up to 4 ·104 bumps/cm2. Preliminary results of two hybridization technologies study are presented in this paper. In particular, the on-going bump-bonding qualification program at Leonardo-Finmeccanica is discussed, together with alternative hybridization techniques, as the capacitive coupling for HV-CMOS detectors.

  3. Pixelated transmission-mode diamond X-ray detector

    PubMed Central

    Zhou, Tianyi; Ding, Wenxiang; Gaowei, Mengjia; De Geronimo, Gianluigi; Bohon, Jen; Smedley, John; Muller, Erik

    2015-01-01

    Fabrication and testing of a prototype transmission-mode pixelated diamond X-ray detector (pitch size 60–100 µm), designed to simultaneously measure the flux, position and morphology of an X-ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic-grade chemical vapor deposition single-crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ∼1 kHz, which leads to an image sampling rate of ∼30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5–15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10−2 to 90 W mm−2. Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software-controlled single channel mode providing accurate flux measurement (fluctuation within 1%). PMID:26524304

  4. Amplifier based broadband pixel for sub-millimeter wave imaging

    NASA Astrophysics Data System (ADS)

    Sarkozy, Stephen; Drewes, Jonathan; Leong, Kevin M. K. H.; Lai, Richard; Mei, X. B. (Gerry); Yoshida, Wayne; Lange, Michael D.; Lee, Jane; Deal, William R.

    2012-09-01

    Broadband sub-millimeter wave technology has received significant attention for potential applications in security, medical, and military imaging. Despite theoretical advantages of reduced size, weight, and power compared to current millimeter wave systems, sub-millimeter wave systems have been hampered by a fundamental lack of amplification with sufficient gain and noise figure properties. We report a broadband pixel operating from 300 to 340 GHz, biased off a single 2 V power supply. Over this frequency range, the amplifiers provide > 40 dB gain and <8 dB noise figure, representing the current state-of-art performance capabilities. This pixel is enabled by revolutionary enhancements to indium phosphide (InP) high electron mobility transistor technology, based on a sub-50 nm gate and indium arsenide composite channel with a projected maximum oscillation frequency fmax>1.0 THz. The first sub-millimeter wave-based images using active amplification are demonstrated as part of the Joint Improvised Explosive Device Defeat Organization Longe Range Personnel Imager Program. This development and demonstration may bring to life future sub-millimeter-wave and THz applications such as solutions to brownout problems, ultra-high bandwidth satellite communication cross-links, and future planetary exploration missions.

  5. A 128 pixel linear array for radiotherapy quality assurance

    NASA Astrophysics Data System (ADS)

    Franco, L.; Gómez, F.; Iglesias, A.; Lobato, R.; Marín, J.; Mosquera, J.; Pardo, J.; Pazos, A.; Pena, J.; Pombar, M.; Rodríguez, A.; Saavedra, D.; Sendón, J.; Yañez, A.

    2004-12-01

    New radiotherapy techniques require detectors able to verify and monitor the clinical beam with high spatial resolution and fast response. Room temperature organic liquid ionization detectors are becoming an alternative to standard air ionization chambers, due to their tissue equivalent behavior, their sensibility and small directional dependence. A liquid isooctane filled ionization linear array for radiotherapy quality assurance has been designed, built and tested. The detector consists of 128 pixels, each of them with an area of 1.7 mm×1.7 mm and a gap of 0.5 mm. The small pixel size makes the detector ideal for high gradient beam profiles like those present in Intensity Modulated Radiation Therapy. The gap and the polarization voltage have been chosen in order to guarantee a linear relationship between the dose rate and the readout signal at high dose rates. As readout electronics we use the X-ray Data Acquisition System with the Xchip developed by the CCLRC.In the first device tests we have confirmed linearity up to a 6.7 Gy/min dose rate with a deviation less than 1%. A profile with a signal-to-noise ratio around 500 can be obtained for a 4 Gy/min dose rate with a 10 ms integration time.

  6. A new design for the gas pixel detector

    NASA Astrophysics Data System (ADS)

    Muleri, Fabio; Bellazzini, Ronaldo; Brez, Alessandro; Costa, Enrico; Fabiani, Sergio; Minuti, Massimo; Pinchera, Michele; Rubini, Alda; Soffitta, Paolo; Spandre, Gloria

    2012-09-01

    The Gas Pixel Detector, developed and continuously improved by Pisa INFN in collaboration with INAF-IAPS, can visualize the tracks produced within a low Z gas by photoelectrons of few keV. By reconstructing the impact point and the original direction of the photoelectrons, the GPD can measure the linear polarization of X-rays, while preserving the information on the absorption point, the energy and the time of arrival of individual photons. The Gas Pixel Detector filled with He-DME mixture at 1 bar is sensitive in the 2-10 keV energy range and this configuration has been the basis of a number of mission proposals, such as POLARIX or XPOL on-board XEUS/IXO, or the X-ray Imaging Polarimetry Explorer (XIPE) submitted in response to ESA small mission call in 2012. We have recently improved the design by modifying the geometry of the absorption cell to minimize any systematic effect which could leave a residual polarization signal for non polarized source. We report on the testing of this new concept with preliminary results on the new design performance.

  7. Monolithic Active Pixel Matrix with Binary Counters (MAMBO) ASIC

    SciTech Connect

    Khalid, Farah F.; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond J.; /Fermilab

    2010-11-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12 keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  8. Monolithic active pixel matrix with binary counters (MAMBO III) ASIC

    SciTech Connect

    Khalid, Farah; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond; /Fermilab

    2010-01-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  9. Development of a Novel Translational Model of Vibration Injury to the Spine to Study Acute Injury in Vivo

    DTIC Science & Technology

    2012-10-01

    accelerometer and were tracked by a high speed CCD camera (VRI-MIROEX1-1024MM; Phantom ; 640X480) during vibration. Behavioral sensitivity was assessed... DICOM images were acquired at a slice thickness of 0.38 µm and a 1024x1024 axial field of view, with 32-bit-gray levels to enable segmentation of the

  10. Development of a 3D pixel module for an ultralarge screen 3D display

    NASA Astrophysics Data System (ADS)

    Hashiba, Toshihiko; Takaki, Yasuhiro

    2004-10-01

    A large screen 2D display used at stadiums and theaters consists of a number of pixel modules. The pixel module usually consists of 8x8 or 16x16 LED pixels. In this study we develop a 3D pixel module in order to construct a large screen 3D display which is glass-free and has the motion parallax. This configuration for a large screen 3D display dramatically reduces the complexity of wiring 3D pixels. The 3D pixel module consists of several LCD panels, several cylindrical lenses, and one small PC. The LCD panels are slanted in order to differentiate the distances from same color pixels to the axis of the cylindrical lens so that the rays from the same color pixels are refracted into the different horizontal directions by the cylindrical lens. We constructed a prototype 3D pixel module, which consists of 8x4 3D pixels. The prototype module is designed to display 300 different patterns into different horizontal directions with the horizontal display angle pitch of 0.099 degree. The LCD panels are controlled by a small PC and the 3D image data is transmitted through the Gigabit Ethernet.

  11. The effect of split pixel HDR image sensor technology on MTF measurements

    NASA Astrophysics Data System (ADS)

    Deegan, Brian M.

    2014-03-01

    Split-pixel HDR sensor technology is particularly advantageous in automotive applications, because the images are captured simultaneously rather than sequentially, thereby reducing motion blur. However, split pixel technology introduces artifacts in MTF measurement. To achieve a HDR image, raw images are captured from both large and small sub-pixels, and combined to make the HDR output. In some cases, a large sub-pixel is used for long exposure captures, and a small sub-pixel for short exposures, to extend the dynamic range. The relative size of the photosensitive area of the pixel (fill factor) plays a very significant role in the output MTF measurement. Given an identical scene, the MTF will be significantly different, depending on whether you use the large or small sub-pixels i.e. a smaller fill factor (e.g. in the short exposure sub-pixel) will result in higher MTF scores, but significantly greater aliasing. Simulations of split-pixel sensors revealed that, when raw images from both sub-pixels are combined, there is a significant difference in rising edge (i.e. black-to-white transition) and falling edge (white-to-black) reproduction. Experimental results showed a difference of ~50% in measured MTF50 between the falling and rising edges of a slanted edge test chart.

  12. Optical characterisation and analysis of multi-mode pixels for use in future far infrared telescopes

    NASA Astrophysics Data System (ADS)

    McCarthy, Darragh; Trappe, Neil; Murphy, J. Anthony; Doherty, Stephen; Gradziel, Marcin; O'Sullivan, Créidhe; Audley, Michael D.; de Lange, Gert; van der Vorst, Maarten

    2016-07-01

    , to be proposed as an ESA M5 mission. It is planned for this mission to be launched on board the proposed SPICA (SPace Infrared telescope for Cosmology and Astrophysics) mission, in collaboration with JAXA. SAFARI is planned to operate in the 1.5-10 THz band, focussing on the formation and evolution of galaxies, stars and planetary systems. The pixel that drove the development of the techniques presented in this paper is typical of one option that could be implemented in the SAFARI focal plane, and so the ability to accurately understand and characterise such pixels is critical in the design phase of the next generation of far IR telescopes.

  13. Pluto's Global Surface Composition Through Pixel-by-Pixel Hapke Modeling of New Horizons Ralph LEISA Data

    NASA Technical Reports Server (NTRS)

    Protopapa, S.; Grundy, W. M.; Reuter, D. C.; Hamilton, D. P.; Dalle Ore, C. M.; Cook, J. C.; Cruikshank, D. P.; Schmitt, B.; Philippe, S.; Quirico, E.; Binzel, R. P.; Earle, A. M.; Ennico, K.; Howett, C. J. A.; Lunsford, A. W.; Olkin, C. B.; Parker, A.; Singer, K. N.; Stern, A.; Verbiscer, A. J.; Weaver, H. A.; Young, L. A.

    2016-01-01

    On July 14th 2015, NASA's New Horizons mission gave us an unprecedented detailed view of the Pluto system. The complex compositional diversity of Pluto's encounter hemisphere was revealed by the Ralph/LEISA infrared spectrometer on board of New Horizons. We present compositional maps of Pluto defining the spatial distribution of the abundance and textural properties of the volatiles methane and nitrogen ices and non-volatiles water ice and tholin. These results are obtained by applying a pixel-by-pixel Hapke radiative transfer model to the LEISA scans. Our analysis focuses mainly on the large scale latitudinal variations of methane and nitrogen ices and aims at setting observational constraints to volatile transport models. Specifically, we find three latitudinal bands: the first, enriched in methane, extends from the pole to 55degN, the second dominated by nitrogen, continues south to 35 degN, and the third, com- posed again mainly of methane, reaches 20 degN. We demonstrate that the distribution of volatiles across these surface units can be explained by differences in insolation over the past few decades. The latitudinal pattern is broken by Sputnik Planitia, a large reservoir of volatiles, with nitrogen playing the most important role. The physical properties of methane and nitrogen in this region are suggestive of the presence of a cold trap or possible volatile stratification. Furthermore our modeling results point to a possible sublimation transport of nitrogen from the northwest edge of Sputnik Planitia toward the south.

  14. Hardware solutions for the 65k pixel X-ray camera module of 75 μm pixel size

    NASA Astrophysics Data System (ADS)

    Kasinski, K.; Maj, P.; Grybos, P.; Koziol, A.

    2016-02-01

    We present three hardware solutions designed for a detector module built with a 2 cm × 2 cm hybrid pixel detector built from a single 320 or 450 μ m thick silicon sensor designed and fabricated by Hamamatsu and two UFXC32k readout integrated circuits (128 × 256 pixels with 75μ m pitch, designed in CMOS 130 nm at AGH-UST). The chips work in a single photon counting mode and provide ultra-fast X-ray imaging. The presented hardware modules are designed according to requirements of various tests and applications: ṡDevice A: a fast and flexible system for tests with various radiation sources. ṡDevice B: a standalone, all-in-one imaging device providing three standard interfaces (USB 2.0, Ethernet, Camera Link) and up to 640 MB/s bandwidth. ṡDevice C: a prototype large-area imaging system. The paper shows the readout system structure for each case with highlighted circuit board designs with details on power distribution and cooling on both FR4 and LTCC (low temperature co-fired ceramic) based circuits.

  15. Moment Method and Pixel-by-Pixel Method: Complementary Mode Identification I. Testing FG Vir-like pulsation modes

    NASA Astrophysics Data System (ADS)

    Zima, W.; Kolenberg, K.; Briquet, M.; Breger, M.

    2004-06-01

    We have carried out a Hare-and-Hound test to determine the reliability of the Moment Method (Briquet & Aerts 2003) and the Pixel-by-Pixel Method (Mantegazza 2000) for the identification of pulsation modes in Delta Scuti stars. For this purpose we calculated synthetic line profiles, exhibiting six pulsation modes of low degree and with input parameters initially unknown to us. The aim was to test and increase the quality of the mode identification by applying both methods independently and by using a combined technique. Our results show that, whereas the azimuthal order m and its sign can be fixed by both methods, the degree l is not determined unambiguously. Both identification methods show a better reliability if multiple modes are fitted simultaneously. In particular, the inclination angle is better determined. We have to emphasize that the outcome of this test is only meaningful for stars having pulsational velocities below 0.2 vsini. This is the first part of a series of articles, in which we will test these spectroscopic identification methods.

  16. Performance characteristics of a new pixelated portable gamma camera

    PubMed Central

    Siman, W.; Cheenu Kappadath, S.

    2012-01-01

    Purpose: To evaluate and characterize the performance of a new commercially available pixelated portable gamma camera Ergo (Digirad, Poway, CA). Methods: The authors evaluated a pixelated portable gamma camera system, Ergo, that consists of 11 520 elements of 3 × 3 mm2 CsI(Tl) crystals that are 6-mm thick and are coupled to silicon photodiodes. The detector element has a size of 3.31 × 3.24 mm2. The gamma camera performance was evaluated for both low-energy all-purpose (LEAP) and low-energy high-resolution (LEHR) collimators. The flood-field uniformity for 99mTc and 201Tl was assessed using fillable uniform flood phantoms. Energy spectra were acquired for 99mTc, 111In, 201Tl, and 67Ga to evaluate energy linearity and energy resolution. Spectral fits were performed to calculate the photopeak energies and resolutions. The pixel size and multiwindow spatial registration (MWSR) was evaluated by measuring mixed 99mTc and 201Tl point sources placed at known distances apart. The system’s sensitivity was measured according to the National Electrical Manufacturer’s Association (NEMA) NU1-2007 standards for both LEAP and LEHR collimators as a function of distance from the collimator surface (5, 10, 15, 20, 25, 30, and 40 cm). The system resolution without scatter was measured for both LEAP and LEHR using 99mTc-filled capillary tubes located at 0, 2, 4, 6, 10, and 12 cm away from the surface of the collimator. As a measure of the spatial resolution, the full width at half maximum (FWHM) at a given distance was calculated from the presampling line spread function (LSF), constructed from the line profiles of the capillary tubes at the same distance. As a comparison, the FWHM at 10 cm away from LEHR and LEAP collimators was also calculated from linear interpolation as described by NEMA NU-1 2007 and from fitting the profiles to a Gaussian-plus-constant model. Results: All isotope-collimator pairs demonstrated good flood-field uniformity with an integral

  17. Further developments of 8μm pitch MCT pixels at Finmeccanica (formerly Selex ES)

    NASA Astrophysics Data System (ADS)

    Jeckells, David; McEwen, R. Kennedy; Bains, Sudesh; Herbert, Martin

    2016-05-01

    Finmeccanica (formerly Selex ES) introduced high performance mercury cadmium telluride (MCT) infrared detectors on an 8μm pitch in 2015 with their SuperHawk device which builds on standard production processes already used for the manufacture of 24μm, 20μm, 16μm and 12μm pitch devices. The flexibility of the proprietary Finmeccanica designed diode structure, used in conjunction with the mature production Metal Organic Vapour Phase Epitaxy (MOVPE) MCT growth process at Finmeccanica, enables fine control of diode electrical and optical structure including free choice of cut-off wavelength. The mesa pixel design inherently provides major system performance benefits by reducing blurring mechanisms, including optical scattering, inter-pixel cross-talk and carrier diffusion, to negligible levels. The SuperHawk detector has demonstrated unrivalled MTF and NETD performance, even when operating at temperatures in excess of 120K. The SuperHawk Integrated Detector Cooler Assembly (IDCA) benefits from recent dewar developments at Finmeccanica, which have improved thermal efficiencies while maintaining mechanical integrity over a wide range of applications, enabling use of smaller cryo-coolers to reduce system SWAP-C. Performance and qualification results are presented together with example imagery. SuperHawk provides an easy high resolution upgrade for systems currently based on standard definition 16μm and 15μm infrared detector formats. The paper also addresses further work to increase the operating temperature of the established 8μm process, exploiting High Operating Temperature (HOT) MCT at Finmeccanica, as well as options for LWIR variants of the SuperHawk device.

  18. WFC3 Calibration and Data Processing

    NASA Technical Reports Server (NTRS)

    Bushouse, H.; Baggett, S.; Brown, T.; Hartig, G.; Hilbert, B.; Quijano, J. Kim; MacKenty, J.; Reid, I. N.; Robberto, M.; Hill, B.

    2006-01-01

    Wide Field Camera 3 (WFC3), a panchromatic imager being developed for the Hubble Space Telescope (HST), is now fully integrated and over the past year has completed first rounds of extensive ground testing at Goddard Space Flight Center (GSFC), in both ambient and thermal-vacuum test environments. This report summarizes the results of those tests and describes the pipeline processing methods that will be used to calibrate WFC3 data. WFC3 is designed to ensure that the superb imaging performance of HST is maintained through the end of the mission and takes advantage of recent developments in detector technology to provide new and unique capabilities for HST. WFC3 contains ultraviolet/visible (UVIS) and near-infrared (IR) imaging channels, offering high sensitivity and wide field of view over the broadest wavelength range of any HST instrument. It is slated to replace the current Wide Field and Planetary Camera 2 during Servicing Mission 4. The WFC3 UVIS channel is based on elements from the Advanced Camera for Surveys (ACS)Wide Field Camera (WFC), with a 4096x4096 pixel Marconi CCD covering a 160x160 arcsecond field of view. The WFC3 UVIS channel is optimized for maximum sensitivity in the near-UV and contains a complement of 48 spectral filters and a grism. The WFC3 IR channel uses a 1024x1024 pixel HgCdTe Hawaii-1R detector array covering a 135x135 arcsecond field of view. The array sensitivity is optimized in the 0.8-1.7micron spectral range. The IR channel accomodates 15 filters and 2 grisms for slitless spectroscopy.

  19. Integrated Lens Antennas for Multi-Pixel Receivers

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam

    2011-01-01

    Future astrophysics and planetary experiments are expected to require large focal plane arrays with thousands of detectors. Feedhorns have excellent performance, but their mass, size, fabrication challenges, and expense become prohibitive for very large focal plane arrays. Most planar antenna designs produce broad beam patterns, and therefore require additional elements for efficient coupling to the telescope optics, such as substrate lenses or micromachined horns. An antenna array with integrated silicon microlenses that can be fabricated photolithographically effectively addresses these issues. This approach eliminates manual assembly of arrays of lenses and reduces assembly errors and tolerances. Moreover, an antenna array without metallic horns will reduce mass of any planetary instrument significantly. The design has a monolithic array of lens-coupled, leaky-wave antennas operating in the millimeter- and submillimeter-wave frequencies. Electromagnetic simulations show that the electromagnetic fields in such lens-coupled antennas are mostly confined in approximately 12 15 . This means that one needs to design a small-angle sector lens that is much easier to fabricate using standard lithographic techniques, instead of a full hyper-hemispherical lens. Moreover, this small-angle sector lens can be easily integrated with the antennas in an array for multi-pixel imager and receiver implementation. The leaky antenna is designed using double-slot irises and fed with TE10 waveguide mode. The lens implementation starts with a silicon substrate. Photoresist with appropriate thickness (optimized for the lens size) is spun on the substrate and then reflowed to get the desired lens structure. An antenna array integrated with individual lenses for higher directivity and excellent beam profile will go a long way in realizing multi-pixel arrays and imagers. This technology will enable a new generation of compact, low-mass, and highly efficient antenna arrays for use in multi-pixel

  20. Development of a Micro Pixel Chamber for the ATLAS Upgrade

    NASA Astrophysics Data System (ADS)

    Ochi, Atsuhiko; Homma, Yasuhiro; Komai, Hidetoshi; Edo, Yuki; Yamaguchi, Takahiro

    The Micro Pixel Chamber(μ-PIC)isbeingdevelopedasacandidateforthe muonsystemoftheATLAS detectorfor upgrading in LHC experiments. The μ-PICisa micro-patterngaseous detector that doesn'thave floating structure such as wires, mesh, or foil. This detector can be made by printed-circuit-board (PCB) technology, which is commercially available and suited for mass production. Operation tests have been performed under high flux neutrons under similar conditions to theATLAS cavern. Spark rates are measured using severalgas mixtures under7MeV neutron irradiation, andgoodpropertieswereobservedusingneon,ethane,andCF4mixtureofgases.Usingresistivematerialsas electrodes, we are also developing a new μ-PIC, which is not expected to damage the electrodes in the case of discharge sparks.

  1. Line profile modelling for multi-pixel CZT detectors

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, T.; Vadawale, S. V.; Rao, A. R.; Bhattacharya, D.; Mithun, N. P. S.; Bhalerao, V.

    2016-07-01

    Cadmium Zinc Telluride (CZT) detectors have been the mainstay for hard X-ray astronomy for its high quantum efficiency, fine energy resolution, near room temperature operation, and radiation hardness. In order to fully utilize the spectroscopic capabilities of CZT detectors, it is important to generate accurate response matrix, which in turn requires precise modelling of the line profiles for the CZT detectors. We have developed a numerical model taking into account the mobility and lifetime of the charge carriers and intrpixel charge sharing for the CZT detectors. This paper describes the details of the modelling along with the experimental measurements of mobility, lifetime and charge sharing fractions for the CZT detector modules of thickness of 5 mm and 2.5 mm pixel size procured from Orbotech Medical Solutions (same modules used in AstroSat-CZTI).

  2. Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Akturk, Cemal; Karaaslan, Muharrem; Ozdemir, Ersin; Ozkaner, Vedat; Dincer, Furkan; Bakir, Mehmet; Ozer, Zafer

    2015-03-01

    Chiral metamaterials have been a research area for many researchers due to their polarization rotation properties on electromagnetic waves. However, most of the proposed chiral metamaterials are designed depending on experience or time-consuming inefficient simulations. A method is investigated for designing a chiral metamaterial with a strong and natural chirality admittance by optimizing a grid of metallic pixels through both sides of a dielectric sheet placed perpendicular to the incident wave by using a genetic algorithm (GA) technique based on finite element method solver. The effective medium parameters are obtained by using constitutive equations and S parameters. The proposed methodology is very efficient for designing a chiral metamaterial with the desired effective medium parameters. By using GA-based topology, it is proven that a chiral metamaterial can be designed and manufactured more easily and with a low cost.

  3. Interactive Isogeometric Volume Visualization with Pixel-Accurate Geometry.

    PubMed

    Fuchs, Franz G; Hjelmervik, Jon M

    2016-02-01

    A recent development, called isogeometric analysis, provides a unified approach for design, analysis and optimization of functional products in industry. Traditional volume rendering methods for inspecting the results from the numerical simulations cannot be applied directly to isogeometric models. We present a novel approach for interactive visualization of isogeometric analysis results, ensuring correct, i.e., pixel-accurate geometry of the volume including its bounding surfaces. The entire OpenGL pipeline is used in a multi-stage algorithm leveraging techniques from surface rendering, order-independent transparency, as well as theory and numerical methods for ordinary differential equations. We showcase the efficiency of our approach on different models relevant to industry, ranging from quality inspection of the parametrization of the geometry, to stress analysis in linear elasticity, to visualization of computational fluid dynamics results.

  4. A Wideband Circularly Polarized Pixelated Dielectric Resonator Antenna

    PubMed Central

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2016-01-01

    The design of a wideband circularly polarized pixelated dielectric resonator antenna using a real-coded genetic algorithm (GA) is presented for far-field wireless power transfer applications. The antenna consists of a dielectric resonator (DR) which is discretized into 8 × 8 grid DR bars. The real-coded GA is utilized to estimate the optimal heights of the 64 DR bars to realize circular polarization. The proposed antenna is excited by a narrow rectangular slot etched on the ground plane. A prototype of the proposed antenna is fabricated and tested. The measured −10 dB reflection and 3 dB axial ratio bandwidths are 32.32% (2.62–3.63 GHz) and 14.63% (2.85–3.30 GHz), respectively. A measured peak gain of 6.13 dBic is achieved at 3.2 GHz. PMID:27563897

  5. Measurement of pixel response functions of a fully depleted CCD

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukiyasu; Niwa, Yoshito; Yano, Taihei; Gouda, Naoteru; Hara, Takuji; Yamada, Yoshiyuki

    2014-07-01

    We describe the measurement of detailed and precise Pixel Response Functions (PRFs) of a fully depleted CCD. Measurements were performed under different physical conditions, such as different wavelength light sources or CCD operating temperatures. We determined the relations between these physical conditions and the forms of the PRF. We employ two types of PRFs: one is the model PRF (mPRF) that can represent the shape of a PRF with one characteristic parameter and the other is the simulated PRF (sPRF) that is the resultant PRF from simulating physical phenomena. By using measured, model, and simulated PRFs, we determined the relations between operational parameters and the PRFs. Using the obtained relations, we can now estimate a PRF under conditions that will be encountered during the course of Nano-JASMINE observations. These estimated PRFs will be utilized in the analysis of the Nano-JASMINE data.

  6. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  7. Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry

    SciTech Connect

    Zhang, Zhigang; Cheng, Teng; Qiu, Kang; Zhang, Qingchuan E-mail: wgchu@nanoctr.cn; Wu, Xiaoping; Dong, Fengliang; Chu, Weiguo E-mail: wgchu@nanoctr.cn

    2014-10-15

    Pixelated micropolarizer array (PMA) is a novel concept for real-time visible imaging polarimetry. A 320 × 240 aluminum PMA fabricated by electron beam lithography is described in this paper. The period, duty ratio, and depth of the grating are 140 nm, 0.5, and 100 nm, respectively. The units are standard square structures and the metal nanowires of the grating are collimating and uniformly thick. The extinction ratio of 75 and the maximum polarization transmittance of 78.8% demonstrate that the PMA is suitable for polarization imaging. When the PMA is applied to real-time polarization imaging, the degree of linear polarization image and the angle of linear polarization image are calculated from a single frame image. The polarized target object is highlighted from the unpolarized background, and the surface contour of the target object can be reflected by the polarization angle.

  8. Image steganography using layered pixel-value differencing

    NASA Astrophysics Data System (ADS)

    Kim, Jaeyoung; Park, Hanhoon

    2017-02-01

    This paper proposes a layered approach to improve the embedding capacity of the existing pixel-value differencing (PVD) methods for image steganography. Specifically, one of the PVD methods is applied to embed a secret information into a cover image and the resulting image, called stego-image, is used to embed additional secret information by the same or another PVD method. This results in a double-layered stego-image. Then, another PVD method can be applied to the double-layered stego-image, resulting in a triple-layered stego-image. Likewise, multi-layered stego-images can be obtained. To successfully recover the secret information hidden in each layer, the embedding process is carefully designed. In the experiment, the proposed layered PVD method proved to be effective.

  9. A Wideband Circularly Polarized Pixelated Dielectric Resonator Antenna.

    PubMed

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2016-08-23

    The design of a wideband circularly polarized pixelated dielectric resonator antenna using a real-coded genetic algorithm (GA) is presented for far-field wireless power transfer applications. The antenna consists of a dielectric resonator (DR) which is discretized into 8 × 8 grid DR bars. The real-coded GA is utilized to estimate the optimal heights of the 64 DR bars to realize circular polarization. The proposed antenna is excited by a narrow rectangular slot etched on the ground plane. A prototype of the proposed antenna is fabricated and tested. The measured -10 dB reflection and 3 dB axial ratio bandwidths are 32.32% (2.62-3.63 GHz) and 14.63% (2.85-3.30 GHz), respectively. A measured peak gain of 6.13 dBic is achieved at 3.2 GHz.

  10. The LHCb Vertex Locator (VELO) Pixel Detector Upgrade

    NASA Astrophysics Data System (ADS)

    Buchanan, E.

    2017-01-01

    The LHCb experiment is designed to perform high-precision measurements of CP violation and the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. There is a planned upgrade during Long Shutdown 2 (LS2), expected in 2019, which will allow the detector to run at higher luminosities by transforming the entire readout to a trigger-less system. This will include a substantial upgrade of the Vertex Locator (VELO), the silicon tracker that surrounds the LHCb interaction region. The VELO is moving from silicon strip technology to hybrid pixel sensors, where silicon sensors are bonded to VeloPix ASICs. Sensor prototypes have undergone rigorous testing using the Timepix3 Telescope at the SPS, CERN. The main components of the upgrade are summarised and testbeam results presented.

  11. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  12. X-ray micro-beam characterization of a small pixel spectroscopic CdTe detector

    NASA Astrophysics Data System (ADS)

    Veale, M. C.; Bell, S. J.; Seller, P.; Wilson, M. D.; Kachkanov, V.

    2012-07-01

    A small pixel, spectroscopic, CdTe detector has been developed at the Rutherford Appleton Laboratory (RAL) for X-ray imaging applications. The detector consists of 80 × 80 pixels on a 250 μm pitch with 50 μm inter-pixel spacing. Measurements with an 241Am γ-source demonstrated that 96% of all pixels have a FWHM of better than 1 keV while the majority of the remaining pixels have FWHM of less than 4 keV. Using the Diamond Light Source synchrotron, a 10 μm collimated beam of monochromatic 20 keV X-rays has been used to map the spatial variation in the detector response and the effects of charge sharing corrections on detector efficiency and resolution. The mapping measurements revealed the presence of inclusions in the detector and quantified their effect on the spectroscopic resolution of pixels.

  13. Pixel architectures in a HV-CMOS process for the ATLAS inner detector upgrade

    NASA Astrophysics Data System (ADS)

    Degerli, Y.; Godiot, S.; Guilloux, F.; Hemperek, T.; Krüger, H.; Lachkar, M.; Liu, J.; Orsini, F.; Pangaud, P.; Rymaszewski, P.; Wang, T.

    2016-12-01

    In this paper, design details and simulation results of new pixel architectures designed in LFoundry 150 nm high voltage CMOS process in the framework of the ATLAS high luminosity inner detector upgrade are presented. These pixels can be connected to the FE-I4 readout chip via bump bonding or glue and some of them can also be tested without a readout chip. Negative high voltage is applied to the high resistivity (> 2 kΩ .cm) substrate in order to deplete the deep n-well charge collection diode, ensuring good charge collection and radiation tolerance. In these pixels, the front-end has been implemented inside the diode using both NMOS and PMOS transistors. The pixel pitch is 50 μm × 250 μm for all pixels. These pixels have been implemented in a demonstrator chip called LFCPIX.

  14. Missing pixels restoration for remote sensing images using adaptive search window and linear regression

    NASA Astrophysics Data System (ADS)

    Tai, Shen-Chuan; Chen, Peng-Yu; Chao, Chian-Yen

    2016-07-01

    The Consultative Committee for Space Data Systems proposed an efficient image compression standard that can do lossless compression (CCSDS-ICS). CCSDS-ICS is the most widely utilized standard for satellite communications. However, the original CCSDS-ICS is weak in terms of error resilience with even a single incorrect bit possibly causing numerous missing pixels. A restoration algorithm based on the neighborhood similar pixel interpolator is proposed to fill in missing pixels. The linear regression model is used to generate the reference image from other panchromatic or multispectral images. Furthermore, an adaptive search window is utilized to sieve out similar pixels from the pixels in the search region defined in the neighborhood similar pixel interpolator. The experimental results show that the proposed methods are capable of reconstructing missing regions with good visual quality.

  15. 2D Sub-Pixel Disparity Measurement Using QPEC / Medicis

    NASA Astrophysics Data System (ADS)

    Cournet, M.; Giros, A.; Dumas, L.; Delvit, J. M.; Greslou, D.; Languille, F.; Blanchet, G.; May, S.; Michel, J.

    2016-06-01

    In the frame of its earth observation missions, CNES created a library called QPEC, and one of its launcher called Medicis. QPEC / Medicis is a sub-pixel two-dimensional stereo matching algorithm that works on an image pair. This tool is a block matching algorithm, which means that it is based on a local method. Moreover it does not regularize the results found. It proposes several matching costs, such as the Zero mean Normalised Cross-Correlation or statistical measures (the Mutual Information being one of them), and different match validation flags. QPEC / Medicis is able to compute a two-dimensional dense disparity map with a subpixel precision. Hence, it is more versatile than disparity estimation methods found in computer vision literature, which often assume an epipolar geometry. CNES uses Medicis, among other applications, during the in-orbit image quality commissioning of earth observation satellites. For instance the Pléiades-HR 1A & 1B and the Sentinel-2 geometric calibrations are based on this block matching algorithm. Over the years, it has become a common tool in ground segments for in-flight monitoring purposes. For these two kinds of applications, the two-dimensional search and the local sub-pixel measure without regularization can be essential. This tool is also used to generate automatic digital elevation models, for which it was not initially dedicated. This paper deals with the QPEC / Medicis algorithm. It also presents some of its CNES applications (in-orbit commissioning, in flight monitoring or digital elevation model generation). Medicis software is distributed outside the CNES as well. This paper finally describes some of these external applications using Medicis, such as ground displacement measurement, or intra-oral scanner in the dental domain.

  16. A BOINC based, citizen-science project for pixel spectral energy distribution fitting of resolved galaxies in multi-wavelength surveys

    NASA Astrophysics Data System (ADS)

    Vinsen, Kevin; Thilker, David

    2013-11-01

    In this work we present our experience from the first year of theSkyNet Pan-STARRS1 Optical Galaxy Survey (POGS) project. This citizen-scientist driven research project uses the Berkeley Open Infrastructure for Network Computing (BOINC) middleware and thousands of Internet-connected computers to measure the resolved galactic structural properties of ˜100,000 low redshift galaxies. We are combining the spectral coverage of GALEX, Pan-STARRS1, SDSS, and WISE to generate a value-added, multi-wavelength UV-optical-NIR galaxy atlas for the nearby Universe. Specifically, we are measuring physical parameters (such as local stellar mass, star formation rate, and first-order star formation history) on a resolved pixel-by-pixel basis using spectral energy distribution (SED) fitting techniques in a distributed computing mode. Berkeley Open Infrastructure for Network Computing.

  17. Urban Image Classification: Per-Pixel Classifiers, Sub-Pixel Analysis, Object-Based Image Analysis, and Geospatial Methods. 10; Chapter

    NASA Technical Reports Server (NTRS)

    Myint, Soe W.; Mesev, Victor; Quattrochi, Dale; Wentz, Elizabeth A.

    2013-01-01

    Remote sensing methods used to generate base maps to analyze the urban environment rely predominantly on digital sensor data from space-borne platforms. This is due in part from new sources of high spatial resolution data covering the globe, a variety of multispectral and multitemporal sources, sophisticated statistical and geospatial methods, and compatibility with GIS data sources and methods. The goal of this chapter is to review the four groups of classification methods for digital sensor data from space-borne platforms; per-pixel, sub-pixel, object-based (spatial-based), and geospatial methods. Per-pixel methods are widely used methods that classify pixels into distinct categories based solely on the spectral and ancillary information within that pixel. They are used for simple calculations of environmental indices (e.g., NDVI) to sophisticated expert systems to assign urban land covers. Researchers recognize however, that even with the smallest pixel size the spectral information within a pixel is really a combination of multiple urban surfaces. Sub-pixel classification methods therefore aim to statistically quantify the mixture of surfaces to improve overall classification accuracy. While within pixel variations exist, there is also significant evidence that groups of nearby pixels have similar spectral information and therefore belong to the same classification category. Object-oriented methods have emerged that group pixels prior to classification based on spectral similarity and spatial proximity. Classification accuracy using object-based methods show significant success and promise for numerous urban 3 applications. Like the object-oriented methods that recognize the importance of spatial proximity, geospatial methods for urban mapping also utilize neighboring pixels in the classification process. The primary difference though is that geostatistical methods (e.g., spatial autocorrelation methods) are utilized during both the pre- and post

  18. Shape determination of microcalcifications in simulated digital mammography images with varying pixel size

    NASA Astrophysics Data System (ADS)

    Ruschin, Mark; Bath, Magnus; Hemdal, Bengt; Tingberg, Anders

    2005-04-01

    The purpose of this work was to study how the pixel size of digital detectors can affect shape determination of microcalcifications in mammography. Screen-film mammograms containing microcalcifications clinically proven to be indicative of malignancy were digitised at 100 lines/mm using a high-resolution Tango drum scanner. Forty microcalcifications were selected to cover an appropriate range of sizes, shapes and contrasts typically found of malignant cases. Based on the measured MTF and NPS of the combined screen-film and scanner system, these digitised images were filtered to simulate images acquired with a square sampling pixel size of 10 μm x 10 μm and a fill factor of one. To simulate images acquired with larger pixel sizes, these finely sampled images were re-binned to yield a range of effective pixel sizes from 20 μm up to 140 μm. An alternative forced-choice (AFC) observer experiment was conducted with eleven observers for this set of digitised microcalcifications to determine how pixel size affects the ability to discriminate shape. It was found that observer score increased with decreasing pixel size down to 60 μm (p<0.01), at which point no significant advantage was obtained by using smaller pixel sizes due to the excessive relative noise-per-pixel. The relative gain in shape discrimination ability at smaller pixel sizes was larger for microcalcifications that were smaller than 500 μm and circular.

  19. Characterization of Pixelated Cadmium-Zinc-Telluride Detectors for Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    Comparisons of charge sharing and charge loss measurements between two pixelated Cadmium-Zinc-Telluride (CdZnTe) detectors are discussed. These properties along with the detector geometry help to define the limiting energy resolution and spatial resolution of the detector in question. The first detector consists of a 1-mm-thick piece of CdZnTe sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). Signal readout is via discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). This crystal is bonded to a custom-built readout chip (ASIC) providing all front-end electronics to each of the 256 independent pixels. These detectors act as precursors to that which will be used at the focal plane of the High Energy Replicated Optics (HERO) telescope currently being developed at Marshall Space Flight Center. With a telescope focal length of 6 meters, the detector needs to have a spatial resolution of around 200 microns in order to take full advantage of the HERO angular resolution. We discuss to what degree charge sharing will degrade energy resolution but will improve our spatial resolution through position interpolation.

  20. 1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors.

    PubMed

    Lu, Guo-Neng; Tournier, Arnaud; Roy, François; Deschamps, Benoît

    2009-01-01

    We present a single-transistor pixel for CMOS image sensors (CIS). It is a floating-body MOSFET structure, which is used as photo-sensing device and source-follower transistor, and can be controlled to store and evacuate charges. Our investigation into this 1T pixel structure includes modeling to obtain analytical description of conversion gain. Model validation has been done by comparing theoretical predictions and experimental results. On the other hand, the 1T pixel structure has been implemented in different configurations, including rectangular-gate and ring-gate designs, and variations of oxidation parameters for the fabrication process. The pixel characteristics are presented and discussed.

  1. 1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors

    PubMed Central

    Lu, Guo-Neng; Tournier, Arnaud; Roy, François; Deschamps, Benoît

    2009-01-01

    We present a single-transistor pixel for CMOS image sensors (CIS). It is a floating-body MOSFET structure, which is used as photo-sensing device and source-follower transistor, and can be controlled to store and evacuate charges. Our investigation into this 1T pixel structure includes modeling to obtain analytical description of conversion gain. Model validation has been done by comparing theoretical predictions and experimental results. On the other hand, the 1T pixel structure has been implemented in different configurations, including rectangular-gate and ring-gate designs, and variations of oxidation parameters for the fabrication process. The pixel characteristics are presented and discussed. PMID:22389592

  2. Design of a 3D-IC multi-resolution digital pixel sensor

    NASA Astrophysics Data System (ADS)

    Brochard, N.; Nebhen, J.; Dubois, J.; Ginhac, D.

    2016-04-01

    This paper presents a digital pixel sensor (DPS) integrating a sigma-delta analog-to-digital converter (ADC) at pixel level. The digital pixel includes a photodiode, a delta-sigma modulation and a digital decimation filter. It features adaptive dynamic range and multiple resolutions (up to 10-bit) with a high linearity. A specific row decoder and column decoder are also designed to permit to read a specific pixel chosen in the matrix and its neighborhood of 4 x 4. Finally, a complete design with the CMOS 130 nm 3D-IC FaStack Tezzaron technology is also described, revealing a high fill-factor of about 80%.

  3. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors.

    PubMed

    Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don

    2016-03-09

    Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel's type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms.

  4. Error analysis of filtering operations in pixel-duplicated images of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; McLauchlan, Lifford

    2010-08-01

    In this paper, diabetic retinopathy is chosen for a sample target image to demonstrate the effectiveness of image enlargement through pixel duplication in identifying regions of interest. Pixel duplication is presented as a simpler alternative to data interpolation techniques for detecting small structures in the images. A comparative analysis is performed on different image processing schemes applied to both original and pixel-duplicated images. Structures of interest are detected and and classification parameters optimized for minimum false positive detection in the original and enlarged retinal pictures. The error analysis demonstrates the advantages as well as shortcomings of pixel duplication in image enhancement when spatial averaging operations (smoothing filters) are also applied.

  5. Supervised pixel classification using a feature space derived from an artificial visual system

    NASA Technical Reports Server (NTRS)

    Baxter, Lisa C.; Coggins, James M.

    1991-01-01

    Image segmentation involves labelling pixels according to their membership in image regions. This requires the understanding of what a region is. Using supervised pixel classification, the paper investigates how groups of pixels labelled manually according to perceived image semantics map onto the feature space created by an Artificial Visual System. Multiscale structure of regions are investigated and it is shown that pixels form clusters based on their geometric roles in the image intensity function, not by image semantics. A tentative abstract definition of a 'region' is proposed based on this behavior.

  6. a Comparison of Sub-Pixel Mapping Methods for Coastal Areas

    NASA Astrophysics Data System (ADS)

    Liu, Qingxiang; Trinder, John; Turner, Ian

    2016-06-01

    This paper presents the comparisons of three soft classification methods and three sub-pixel mapping methods for the classification of coastal areas at sub-pixel level. Specifically, SPOT-7 multispectral images covering the coastal area of Perth are selected as the experiment dataset. For the soft classification, linear spectral unmixing model, supervised fully-fuzzy classification method and the support vector machine are applied to generate the fraction map. Then for the sub-pixel mapping, the sub-pixel/pixel attraction model, pixel swapping and wavelets method are compared. Besides, the influence of the correct fraction constraint is explored. Moreover, a post-processing step is implemented according to the known spatial knowledge of coastal areas. The accuracy assessment of the fraction values indicates that support vector machine generates the most accurate fraction result. For sub-pixel mapping, wavelets method outperforms the other two methods with overall classification accuracy of 91.79% and Kappa coefficient of 0.875 after the post-processing step and it also performs best for waterline extraction with mean distance of 0.71m to the reference waterline. In this experiment, the use of correct fraction constraint decreases the classification accuracy of sub-pixel mapping methods and waterline extraction. Finally, the post-processing step improves the accuracy of sub-pixel mapping methods, especially for those with correct coefficient constraint. The most significant improvement of overall accuracy is as much as 4% for the sub-pixel/pixel attraction model with correct coefficient constraint.

  7. EDITORIAL: Micro-pixellated LEDs for science and instrumentation

    NASA Astrophysics Data System (ADS)

    Dawson, Martin D.; Neil, Mark A. A.

    2008-05-01

    This Cluster Issue of Journal of Physics D: Applied Physics highlights micro-pixellated gallium nitride light-emitting diodes or `micro-LEDs', an emerging technology offering considerable attractions for a broad range of scientific and instrumentation applications. It showcases the results of a Research Councils UK (RCUK) Basic Technology Research programme (http://bt-onethousand.photonics.ac.uk), running from 2004-2008, which has drawn together a multi-disciplinary and multi-institutional research partnership to develop these devices and explore their potential. Images of LEDs Examples of GaN micro-pixel LEDs in operation. Images supplied courtesy of the Guest Editors. The partnership, of physicists, engineers and chemists drawn from the University of Strathclyde, Heriot-Watt University, the University of Sheffield and Imperial College London, has sought to move beyond the established mass-market uses of gallium nitride LEDs in illumination and lighting. Instead, it focuses on specialised solid-state micro-projection devices the size of a match-head, containing up to several thousand individually-addressable micro-pixel elements emitting light in the ultraviolet or visible regions of the spectrum. Such sources are pattern-programmable under computer control and can project into materials fixed or high-frame rate optical images or spatially-controllable patterns of nanosecond excitation pulses. These materials can be as diverse as biological cells and tissues, biopolymers, photoresists and organic semiconductors, leading to new developments in optical microscopy, bio-sensing and chemical sensing, mask-free lithography and direct writing, and organic electronics. Particular areas of interest are multi-modal microscopy, integrated forms of organic semiconductor lasers, lab-on-a-chip, GaN/Si optoelectronics and hybrid inorganic/organic semiconductor structures. This Cluster Issue contains four invited papers and ten contributed papers. The invited papers serve to set

  8. SPIDR, a general-purpose readout system for pixel ASICs

    NASA Astrophysics Data System (ADS)

    van der Heijden, B.; Visser, J.; van Beuzekom, M.; Boterenbrood, H.; Kulis, S.; Munneke, B.; Schreuder, F.

    2017-02-01

    The SPIDR (Speedy PIxel Detector Readout) system is a flexible general-purpose readout platform that can be easily adapted to test and characterize new and existing detector readout ASICs. It is originally designed for the readout of pixel ASICs from the Medipix/Timepix family, but other types of ASICs or front-end circuits can be read out as well. The SPIDR system consists of an FPGA board with memory and various communication interfaces, FPGA firmware, CPU subsystem and an API library on the PC . The FPGA firmware can be adapted to read out other ASICs by re-using IP blocks. The available IP blocks include a UDP packet builder, 1 and 10 Gigabit Ethernet MAC's and a "soft core" CPU . Currently the firmware is targeted at the Xilinx VC707 development board and at a custom board called Compact-SPIDR . The firmware can easily be ported to other Xilinx 7 series and ultra scale FPGAs. The gap between an ASIC and the data acquisition back-end is bridged by the SPIDR system. Using the high pin count VITA 57 FPGA Mezzanine Card (FMC) connector only a simple chip carrier PCB is required. A 1 and a 10 Gigabit Ethernet interface handle the connection to the back-end. These can be used simultaneously for high-speed data and configuration over separate channels. In addition to the FMC connector, configurable inputs and outputs are available for synchronization with other detectors. A high resolution (≈ 27 ps bin size) Time to Digital converter is provided for time stamping events in the detector. The SPIDR system is frequently used as readout for the Medipix3 and Timepix3 ASICs. Using the 10 Gigabit Ethernet interface it is possible to read out a single chip at full bandwidth or up to 12 chips at a reduced rate. Another recent application is the test-bed for the VeloPix ASIC, which is developed for the Vertex Detector of the LHCb experiment. In this case the SPIDR system processes the 20 Gbps scrambled data stream from the VeloPix and distributes it over four 10 Gigabit

  9. Imaging performance of the hybrid pixel detectors XPAD3-S

    NASA Astrophysics Data System (ADS)

    Brunner, F. Cassol; Clemens, J. C.; Hemmer, C.; Morel, C.

    2009-03-01

    Hybrid pixel detectors, originally developed for tracking particles in high-energy physics experiments, have recently been used in material sciences and macromolecular crystallography. Their capability to count single photons and to apply a threshold on the photon energy suggests that they could be optimal digital x-ray detectors in low energy beams such as for small animal computed tomography (CT). To investigate this issue, we have studied the imaging performance of photon counting hybrid pixel detectors based on the XPAD3-S chip. Two detectors are considered, connected either to a Si or to a CdTe sensor, the latter being of interest for its higher efficiency. Both a standard 'International Electrotechnical Commission' (IEC) mammography beam and a beam used for mouse CT results published in the literature are employed. The detector stability, linearity and noise are investigated as a function of the dose for several imaging exposures (~0.1-400 µGy). The perfect linearity of both detectors is confirmed, but an increase in internal noise for counting statistics higher than ~5000 photons has been found, corresponding to exposures above ~110 µGy and ~50 µGy for the Si and CdTe sensors, respectively. The noise power spectrum (NPS), the modulation transfer function (MTF) and the detective quantum efficiency (DQE) are then measured for two energy threshold configurations (5 keV and 18 keV) and three doses (~3, 30 and 300 µGy), in order to obtain a complete estimation of the detector performances. In general, the CdTe sensor shows a clear superiority with a maximal DQE(0) of ~1, thanks to its high efficiency (~100%). The DQE of the Si sensor is more dependent on the radiation quality, due to the energy dependence of its efficiency its maximum is ~0.4 with respect to the softer radiation. Finally, we compare the XPAD3-S DQE with published curves of other digital devices in a similar radiation condition. The XPAD3-S/CdTe detector appears to be the best with the highest

  10. Optimization of convergent collimators for pixelated SPECT systems

    SciTech Connect

    Capote, Ricardo M.; Matela, Nuno; Conceicao, Raquel C.; Almeida, Pedro

    2013-06-15

    Purpose: The optimization of the collimator design is essential to obtain the best possible sensitivity in single photon emission computed tomography imaging. The aim of this work is to present a methodology for maximizing the sensitivity of convergent collimators, specifically designed to match the pitch of pixelated detectors, for a fixed spatial resolution value and to present some initial results using this approach. Methods: Given the matched constraint, the optimal collimator design cannot be simply found by allowing the highest level of septal penetration and spatial resolution consistent with the imposed restrictions, as it is done for the optimization of conventional collimators. Therefore, an algorithm that interactively calculates the collimator dimensions, with the maximum sensitivity, which respect the imposed restrictions was developed and used to optimize cone and fan beam collimators with tapered square-shaped holes for low (60-300 keV) and high energy radiation (300-511 keV). The optimal collimator dimensions were locally calculated based on the premise that each hole and septa of the convergent collimator should locally resemble an appropriate optimal matched parallel collimator. Results: The optimal collimator dimensions, calculated for subcentimeter resolutions (3 and 7.5 mm), common pixel sizes (1.6, 2.1, and 2.5 mm), and acceptable septal penetration at 140 keV, were approximately constant throughout the collimator, despite their different hole incidence angles. By using these input parameters and a less strict septal penetration value of 5%, the optimal collimator dimensions and the corresponding mass per detector area were calculated for 511 keV. It is shown that a low value of focal distance leads to improvements in the average sensitivity at a fixed source-collimator distance and resolution. The optimal cone beam performance outperformed that of other optimal collimation geometries (fan and parallel beam) in imaging objects close to the

  11. Achievements of the ATLAS upgrade planar pixel sensors R&D project

    NASA Astrophysics Data System (ADS)

    Calderini, G.

    2014-11-01

    This paper reports on recent accomplishments and ongoing work of the ATLAS Planar Pixel Sensors R&D project. Special attention is given in particular to new testbeam results obtained with highly irradiated sensors, developments in the field of slim and active edges and first step towards prototypes of future pixel modules.

  12. Characterization of pixel crosstalk and impact of Bayer patterning by quantum efficiency measurement

    NASA Astrophysics Data System (ADS)

    Vaillant, Jérôme; Mornet, Clémence; Decroux, Thomas; Hérault, Didier; Schanen, Isabelle

    2011-01-01

    Development of small pixels for high resolution image sensors implies a lot of challenges. A high level of performance should be guaranteed whereas the overall size must be reduced and so the degree of freedom in design and process. One key parameter of this constant improvement is the knowledge and the control of the crosstalk between pixels. In this paper, we present an advance in crosstalk characterization method based on the design of specific color patterns and the measurement of quantum efficiency. In a first part, we describe the color patterns designed to isolate one pixel or to simulate un-patterned colored pixels. These patterns have been implemented on test-chip and characterized. The second part deals with the characterization setup for quantum efficiency. Indeed, the use of spectral measurements allows us to discriminate pixels based on the color filter placed on top of them and to probe the crosstalk as a function of the depth in silicon, thanks to the photon absorption length variation with the wavelength. In the last part, results are presented showing the impact of color filters patterning, i.e. pixels in a Bayer pattern versus un-patterned pixels. The crosstalk directions and amplitudes are also analyzed in relation to pixel layout.

  13. Comparison of Sub-Pixel Classification Approaches for Crop-Specific Mapping

    EPA Science Inventory

    This paper examined two non-linear models, Multilayer Perceptron (MLP) regression and Regression Tree (RT), for estimating sub-pixel crop proportions using time-series MODIS-NDVI data. The sub-pixel proportions were estimated for three major crop types including corn, soybean, a...

  14. DISPLAY OF PIXEL LOSS AND REPLICATION IN REPROJECTING RASTER DATA FROM THE SINUSOIDAL PROJECTION

    EPA Science Inventory

    Recent studies show the sinusoidal projection to be a superior planar projection for representing global raster datasets. This study uses the sinusoidal projection as a basis for evaluating pixel loss and replication in eight other planar map projections. The percent of pixels ...

  15. Iterative CT reconstruction with small pixel size: distance-driven forward projector versus Joseph's

    NASA Astrophysics Data System (ADS)

    Hahn, K.; Rassner, U.; Davidson, H. C.; Schöndube, H.; Stierstorfer, K.; Hornegger, J.; Noo, F.

    2015-03-01

    Over the last few years, iterative reconstruction methods have become an important research topic in x-ray CT imaging. This effort is motivated by increasing evidence that such methods may enable significant savings in terms of dose imparted to the patient. Conceptually, iterative reconstruction methods involve two important ingredients: the statistical model, which includes the forward projector, and a priori information in the image domain, which is expressed using a regularizer. Most often, the image pixel size is chosen to be equal (or close) to the detector pixel size (at field-of-view center). However, there are applications for which a smaller pixel size is desired. In this investigation, we focus on reconstruction with a pixel size that is twice smaller than the detector pixel size. Using such a small pixel size implies a large increase in computational effort when using the distance-driven method for forward projection, which models the detector size. On the other hand, the more efficient method of Joseph will create imbalances in the reconstruction of each pixel, in the sense that there will be large differences in the way each projection contributes to the pixels. The purpose of this work is to evaluate the impact of these imbalances on image quality in comparison with utilization of the distance-driven method. The evaluation involves computational effort, bias and noise metrics, and LROC analysis using human observers. The results show that Joseph's method largely remains attractive.

  16. X-ray imaging characterization of active edge silicon pixel sensors

    NASA Astrophysics Data System (ADS)

    Ponchut, C.; Ruat, M.; Kalliopuska, J.

    2014-05-01

    The aim of this work was the experimental characterization of edge effects in active-edge silicon pixel sensors, in the frame of X-ray pixel detectors developments for synchrotron experiments. We produced a set of active edge pixel sensors with 300 to 500 μm thickness, edge widths ranging from 100 μm to 150 μm, and n or p pixel contact types. The sensors with 256 × 256 pixels and 55 × 55 μm2 pixel pitch were then bump-bonded to Timepix readout chips for X-ray imaging measurements. The reduced edge widths makes the edge pixels more sensitive to the electrical field distribution at the sensor boundaries. We characterized this effect by mapping the spatial response of the sensor edges with a finely focused X-ray synchrotron beam. One of the samples showed a distortion-free response on all four edges, whereas others showed variable degrees of distortions extending at maximum to 300 micron from the sensor edge. An application of active edge pixel sensors to coherent diffraction imaging with synchrotron beams is described.

  17. Field-portable pixel super-resolution colour microscope.

    PubMed

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2). This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings.

  18. Improvement to the signaling interface for CMOS pixel sensors

    NASA Astrophysics Data System (ADS)

    Shi, Zhan; Tang, Zhenan; Feng, Chong; Cai, Hong

    2016-10-01

    The development of the readout speed of CMOS pixel sensors (CPS) is motivated by the demanding requirements of future high energy physics (HEP) experiments. As the interface between CPS and the data acquisition (DAQ) system, which inputs clock from the DAQ system and outputs data from CPS, the signaling interface should also be improved in terms of data rates. Meanwhile, the power consumption of the signaling interface should be maintained as low as possible. Consequently, a reduced swing differential signaling (RSDS) driver was adopted instead of a low-voltage differential signaling (LVDS) driver to transmit data from CPS to the DAQ system. In order to increase the capability of data rates, a serial source termination technique was employed. A LVDS/RSDS receiver was employed for transmitting clock from the DAQ system to CPS. A new method of generating hysteresis and a special current comparator were used to achieve a higher speed with lower power consumption. The signaling interface was designed and submitted for fabrication in a 0.18 μm CMOS image sensor (CIS) process. Measurement results indicate that the RSDS driver and the LVDS receiver can operate correctly at a data rate of 2 Gb/s with a power consumption of 19.1 mW.

  19. Ultrahigh-temperature emitter pixel development for scene projectors

    NASA Astrophysics Data System (ADS)

    Sparkman, Kevin; LaVeigne, Joe; McHugh, Steve; Lannon, John; Goodwin, Scott

    2014-05-01

    To meet the needs of high fidelity infrared sensors, under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) has developed new infrared emitter materials capable of achieving extremely high temperatures. The current state of the art arrays based on the MIRAGE-XL generation of scene projectors is capable of producing imagery with mid-wave infrared (MWIR) apparent temperatures up to 700K with response times of 5 ms. The Test Resource Management Center (TRMC) Test and Evaluation/Science and Technology (TandE/SandT) Program through the U.S. Army Program Executive Office for Simulation, Training and Instrumentations (PEO STRI) has contracted with SBIR and its partners to develop a new resistive array based on these new materials, using a high current Read-In Integrated Circuit (RIIC) capable of achieving higher temperatures as well as faster frame rates. The status of that development will be detailed within this paper, including performance data from prototype pixels.

  20. EVEREST: Pixel Level Decorrelation of K2 Light Curves

    NASA Astrophysics Data System (ADS)

    Luger, Rodrigo; Agol, Eric; Kruse, Ethan; Barnes, Rory; Becker, Andrew; Foreman-Mackey, Daniel; Deming, Drake

    2016-10-01

    We present EPIC Variability Extraction and Removal for Exoplanet Science Targets (EVEREST), an open-source pipeline for removing instrumental noise from K2 light curves. EVEREST employs a variant of pixel level decorrelation to remove systematics introduced by the spacecraft’s pointing error and a Gaussian process to capture astrophysical variability. We apply EVEREST to all K2 targets in campaigns 0-7, yielding light curves with precision comparable to that of the original Kepler mission for stars brighter than {K}p≈ 13, and within a factor of two of the Kepler precision for fainter targets. We perform cross-validation and transit injection and recovery tests to validate the pipeline, and compare our light curves to the other de-trended light curves available for download at the MAST High Level Science Products archive. We find that EVEREST achieves the highest average precision of any of these pipelines for unsaturated K2 stars. The improved precision of these light curves will aid in exoplanet detection and characterization, investigations of stellar variability, asteroseismology, and other photometric studies. The EVEREST pipeline can also easily be applied to future surveys, such as the TESS mission, to correct for instrumental systematics and enable the detection of low signal-to-noise transiting exoplanets. The EVEREST light curves and the source code used to generate them are freely available online.

  1. Diamond Pixel Detectors and 3D Diamond Devices

    NASA Astrophysics Data System (ADS)

    Venturi, N.

    2016-12-01

    Results from detectors of poly-crystalline chemical vapour deposited (pCVD) diamond are presented. These include the first analysis of data of the ATLAS Diamond Beam Monitor (DBM). The DBM module consists of pCVD diamond sensors instrumented with pixellated FE-I4 front-end electronics. Six diamond telescopes, each with three modules, are placed symmetrically around the ATLAS interaction point. The DBM tracking capabilities allow it to discriminate between particles coming from the interaction point and background particles passing through the ATLAS detector. Also, analysis of test beam data of pCVD DBM modules are presented. A new low threshold tuning algorithm based on noise occupancy was developed which increases the DBM module signal to noise ratio significantly. Finally first results from prototypes of a novel detector using pCVD diamond and resistive electrodes in the bulk, forming a 3D diamond device, are discussed. 3D devices based on pCVD diamond were successfully tested with test beams at CERN. The measured charge is compared to that of a strip detector mounted on the same pCVD diamond showing that the 3D device collects significantly more charge than the planar device.

  2. Field-Portable Pixel Super-Resolution Colour Microscope

    PubMed Central

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm2. This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate ‘rainbow’ like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings. PMID:24086742

  3. Probability Distribution Estimation for Autoregressive Pixel-Predictive Image Coding.

    PubMed

    Weinlich, Andreas; Amon, Peter; Hutter, Andreas; Kaup, André

    2016-03-01

    Pixelwise linear prediction using backward-adaptive least-squares or weighted least-squares estimation of prediction coefficients is currently among the state-of-the-art methods for lossless image compression. While current research is focused on mean intensity prediction of the pixel to be transmitted, best compression requires occurrence probability estimates for all possible intensity values. Apart from common heuristic approaches, we show how prediction error variance estimates can be derived from the (weighted) least-squares training region and how a complete probability distribution can be built based on an autoregressive image model. The analysis of image stationarity properties further allows deriving a novel formula for weight computation in weighted least-squares proofing and generalizing ad hoc equations from the literature. For sparse intensity distributions in non-natural images, a modified image model is presented. Evaluations were done in the newly developed C++ framework volumetric, artificial, and natural image lossless coder (Vanilc), which can compress a wide range of images, including 16-bit medical 3D volumes or multichannel data. A comparison with several of the best available lossless image codecs proofs that the method can achieve very competitive compression ratios. In terms of reproducible research, the source code of Vanilc has been made public.

  4. From vertex detectors to inner trackers with CMOS pixel sensors

    NASA Astrophysics Data System (ADS)

    Besson, A.; Pérez, A. Pérez; Spiriti, E.; Baudot, J.; Claus, G.; Goffe, M.; Winter, M.

    2017-02-01

    The use of CMOS Pixel Sensors (CPS) for high resolution and low material vertex detectors has been validated with the 2014 and 2015 physics runs of the STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner tracking devices, with 10-100 times larger sensitive area, which require therefore a sensor design privileging power saving, response uniformity and robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was considered as too poorly suited to upcoming applications like the upgraded ALICE Inner Tracking System (ITS), which requires sensors with one order of magnitude improvement on readout speed and improved radiation tolerance. This triggered the exploration of a deeper sub-micron CMOS technology, Tower-Jazz 180 nm, for the design of a CPS well adapted for the new ALICE-ITS running conditions. This paper reports the R & D results for the conception of a CPS well adapted for the ALICE-ITS.

  5. Active pixel as dosimetric device for interventional radiology

    NASA Astrophysics Data System (ADS)

    Servoli, L.; Baldaccini, F.; Biasini, M.; Checcucci, B.; Chiocchini, S.; Cicioni, R.; Conti, E.; Di Lorenzo, R.; Dipilato, A. C.; Esposito, A.; Fanó, L.; Paolucci, M.; Passeri, D.; Pentiricci, A.; Placidi, P.

    2013-08-01

    Interventional Radiology (IR) is a subspecialty of radiology comprehensive of all minimally invasive diagnostic and therapeutic procedures performed using radiological devices to obtain image guidance. The interventional procedures are potentially harmful for interventional radiologists and medical staff due to the X-ray diffusion by the patient's body. The characteristic energy range of the diffused photons spans few tens of keV. In this work we will present a proposal for a new X-ray sensing element in the energy range of interest for IR procedures. The sensing element will then be assembled in a dosimeter prototype, capable of real-time measurement, packaged in a small form-factor, with wireless communication and no external power supply to be used for individual operators dosimetry for IR procedures. For the sensor, which is the heart of the system, we considered three different Active Pixel Sensors (APS). They have shown a good capability as single X-ray photon detectors, up to several tens keV photon energy. Two dosimetric quantities have been considered, the number of detected photons and the measured energy deposition. Both observables have a linear dependence with the dose, as measured by commercial dosimeters. The uncertainties in the measurement are dominated by statistic and can be pushed at ˜5% for all the sensors under test.

  6. Compensation for radiation damage of SOI pixel detector via tunneling

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Arai, Y.; Fujita, Y.; Hamasaki, R.; Ikegami, Y.; Kurachi, I.; Miyoshi, T.; Nishimura, R.; Tauchi, K.; Tsuboyama, T.

    2016-09-01

    We are developing a method for removing holes trapped in the oxide layer of a silicon-on-insulator (SOI) monolithic pixel detector after irradiation. Radiation that passes through the detector generates positive charge by trapped holes in the buried oxide layer (BOX) underneath the MOSFET. The positive potential caused by these trapped holes modifies the characteristics of the MOSFET of the signal readout circuit. In order to compensate for the effect of the positive potential, we tried to recombine the trapped holes with electrons via Fowler-Nordheim (FN) tunneling. By applying high voltage to the buried p-well (BPW) under the oxide layer with the MOSFET fixed at 0 V, electrons are injected into the BOX by FN tunneling. X-rays cause a negative shift in the threshold voltage Vth of the MOSFET. We can successfully recover Vth close to its pre-irradiation level after applying VBPW ≥ 120 V. However, the drain leakage current increased after applying VBPW; we find that this can be suppressed by applying a negative voltage to the BPW.

  7. Cloud Motion Vectors from MISR using Sub-pixel Enhancements

    NASA Technical Reports Server (NTRS)

    Davies, Roger; Horvath, Akos; Moroney, Catherine; Zhang, Banglin; Zhu, Yanqiu

    2007-01-01

    The operational retrieval of height-resolved cloud motion vectors by the Multiangle Imaging SpectroRadiometer on the Terra satellite has been significantly improved by using sub-pixel approaches to co-registration and disparity assessment, and by imposing stronger quality control based on the agreement between independent forward and aft triplet retrievals. Analysis of the fore-aft differences indicates that CMVs pass the basic operational quality control 67% of the time, with rms differences - in speed of 2.4 m/s, in direction of 17 deg, and in height assignment of 290 m. The use of enhanced quality control thresholds reduces these rms values to 1.5 m/s, 17 deg and 165 m, respectively, at the cost of reduced coverage to 45%. Use of the enhanced thresholds also eliminates a tendency for the rms differences to increase with height. Comparison of CMVs from an earlier operational version that had slightly weaker quality control, with 6-hour forecast winds from the Global Modeling and Assimilation Office yielded very low bias values and an rms vector difference that ranged from 5 m/s for low clouds to 10 m/s for high clouds.

  8. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    NASA Astrophysics Data System (ADS)

    Dobos, Daniel

    2016-07-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to the surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer, a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. An overview of the refurbishing of the Pixel Detector and of the IBL project as well as early performance tests using cosmic rays and beam data will be presented.

  9. Bilateral bad pixel and Stokes image reconstruction for microgrid polarimetric imagers

    NASA Astrophysics Data System (ADS)

    LeMaster, Daniel A.; Ratliff, Bradley M.

    2015-09-01

    Uncorrected or poorly corrected bad pixels reduce the effectiveness of polarimetric clutter suppression. In conventional microgrid processing, bad pixel correction is accomplished as a separate step from Stokes image reconstruction. Here, these two steps are combined to speed processing and provide better estimates of the entire image, including missing samples. A variation on the bilateral filter enables both edge preservation in the Stokes imagery and bad pixel suppression. Understanding the newly presented filter requires two key insights. First, the adaptive nature of the bilateral filter is extended to correct for bad pixels by simply incorporating a bad pixel mask. Second, the bilateral filter for Stokes estimation is the sum of the normalized bilateral filters for estimating each analyzer channel individually. This paper describes the new approach and compares it to our legacy method using simulated imagery.

  10. Tracking performance of GasPixel detectors in test beam studies

    NASA Astrophysics Data System (ADS)

    Boldyrev, A. S.; Hartjes, F.; Hessey, N. P.; Fransen, M.; Konovalov, S. P.; Koppert, W.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Van der Graaf, H.; Vorobev, K.

    2016-01-01

    A combination of a pixel chip and a gas chamber (GasPixel detectors) opens new opportunities for particle detectors. GasPixel detectors consist of an electron drift volume, an amplification gap and an anode plane based on a semiconductor chip. This technology promises large benefits in high-energy charged-particle tracking. It allows reconstruction of a 3D image of a particle track segment in a single detector layer with high accuracy. Several prototypes of GasPixel detectors based on micromegas technology with different gas mixtures and drift gaps were studied in a test beam. A spatial resolution of 8 μm and angular accuracy of about 0.2° in a chip plane were obtained. A dedicated Monte Carlo simulation of GasPixel detectors shows good agreement with experimental data.

  11. Methods of editing cloud and atmospheric layer affected pixels from satellite data

    NASA Technical Reports Server (NTRS)

    Nixon, P. R. (Principal Investigator); Wiegand, C. L.; Richardson, A. J.; Johnson, M. P.; Goodier, B. G.

    1981-01-01

    The location and migration of cloud, land and water features were examined in spectral space (reflective VIS vs. emissive IR). Daytime HCMM data showed two distinct types of cloud affected pixels in the south Texas test area. High altitude cirrus and/or cirrostratus and "subvisible cirrus" (SCi) reflected the same or only slightly more than land features. In the emissive band, the digital counts ranged from 1 to over 75 and overlapped land features. Pixels consisting of cumulus clouds, or of mixed cumulus and landscape, clustered in a different area of spectral space than the high altitude cloud pixels. Cumulus affected pixels were more reflective than land and water pixels. In August the high altitude clouds and SCi were more emissive than similar clouds were in July. Four-channel TIROS-N data were examined with the objective of developing a multispectral screening technique for removing SCi contaminated data.

  12. MONOLITHIC ACTIVE PIXEL MATRIX WITH BINARY COUNTERS IN AN SOI PROCESS.

    SciTech Connect

    DUPTUCH,G.; YAREMA, R.

    2007-06-07

    The design of a Prototype monolithic active pixel matrix, designed in a 0.15 {micro}m CMOS SOI Process, is presented. The process allowed connection between the electronics and the silicon volume under the layer of buried oxide (BOX). The small size vias traversing through the BOX and implantation of small p-type islands in the n-type bulk result in a monolithic imager. During the acquisition time, all pixels register individual radiation events incrementing the counters. The counting rate is up to 1 MHz per pixel. The contents of counters are shifted out during the readout phase. The designed prototype is an array of 64 x 64 pixels and the pixel size is 26 x 26 {micro}m{sup 2}.

  13. Smart-Pixel Array Processors Based on Optimal Cellular Neural Networks for Space Sensor Applications

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Sheu, Bing J.; Venus, Holger; Sandau, Rainer

    1997-01-01

    A smart-pixel cellular neural network (CNN) with hardware annealing capability, digitally programmable synaptic weights, and multisensor parallel interface has been under development for advanced space sensor applications. The smart-pixel CNN architecture is a programmable multi-dimensional array of optoelectronic neurons which are locally connected with their local neurons and associated active-pixel sensors. Integration of the neuroprocessor in each processor node of a scalable multiprocessor system offers orders-of-magnitude computing performance enhancements for on-board real-time intelligent multisensor processing and control tasks of advanced small satellites. The smart-pixel CNN operation theory, architecture, design and implementation, and system applications are investigated in detail. The VLSI (Very Large Scale Integration) implementation feasibility was illustrated by a prototype smart-pixel 5x5 neuroprocessor array chip of active dimensions 1380 micron x 746 micron in a 2-micron CMOS technology.

  14. Active-Pixel Image Sensor With Analog-To-Digital Converters

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Mendis, Sunetra K.; Pain, Bedabrata; Nixon, Robert H.

    1995-01-01

    Proposed single-chip integrated-circuit image sensor contains 128 x 128 array of active pixel sensors at 50-micrometer pitch. Output terminals of all pixels in each given column connected to analog-to-digital (A/D) converter located at bottom of column. Pixels scanned in semiparallel fashion, one row at time; during time allocated to scanning row, outputs of all active pixel sensors in row fed to respective A/D converters. Design of chip based on complementary metal oxide semiconductor (CMOS) technology, and individual circuit elements fabricated according to 2-micrometer CMOS design rules. Active pixel sensors designed to operate at video rate of 30 frames/second, even at low light levels. A/D scheme based on first-order Sigma-Delta modulation.

  15. Characterization of optical turbulence in a jet engine exhaust with Shack-Hartmenn wavefront sensor

    NASA Astrophysics Data System (ADS)

    Deron, R.; Mendez, F.

    2008-10-01

    Airborne laser countermeasure applications (DIRCM) are hampered by the turbulence of jet engine exhaust. The effects of this source of perturbation on optical propagation have still to be documented and analyzed in order to get a better insight into the different mechanisms of the plume perturbations and also to validate CFD/LES codes. For that purpose, wave front sensing has been used as a non-intrusive optical technique to provide unsteady and turbulent optical measurements through a plume of a jet engine installed at a fixed point on the ground. The experiment has been implemented in October 2007 along with other optical measuring techniques at Volvo Aero Corporation (Trollhättan, Sweden). This study is part of a European research programme dealing with DIRCM issues. The Shack- Hartmann (SH) wave front sensing technique was employed. It consisted of 64 x 64 lenslets coupled to a 1024x1024 pixel Dalsa CCD sensor working at a sampling rate of 40 Hz. A 15 ns pulsed laser synchronized with the SH sensor enabled "freezing" turbulence in each SH image. The ability of the technique to substract a reference permitted a simple calibration procedure to ensure accurate and reliable measurements despite vibration environment. Instantaneous phases are reconstructed using Fourier techniques so as to obtain a better spatial resolution against turbulent effects. Under any given plume condition, overall tilt aberration prevails. Phase power spectra derived from phase statistics are drawn according to the plume main axis and to normal axis. They compare favorably well to the decaying Kolmogorov power law on a useful high spatial frequency range. Averaged phases are also decomposed into Zernike polynomials to analyze optical mode behavior according to engine status and to plume abscissa. With overall tilt removed, turbulent DSP's amplitude drops by a factor of 30 to 40 and mean aberrations by a factor of 10 from an abscissa 1 meter to another 3.5 meters away from the engine

  16. AMIE: Micro-Imaging System for SMART-1 Mission

    NASA Astrophysics Data System (ADS)

    Josset, J. L.

    1999-09-01

    The Asteroid Moon micro-Imager Experiment (AMIE) is an imaging system selected for the ESA moon mission SMART-1. AMIE is derived from the development efforts already under way for the Technological Research Program of ESA, the ROSETTA and MARS missions. Synthetic Objectives of AMIE during the SMART-1 mission: - Imaging Lunar South Pole (Aitken basin) Permanent shadow (ice deposit) Eternal light (crater rims) - Mapping of high latitudes regions (south) mainly at far side The present baseline plan considers an orbit with an apocenter of 10000 km and a pericenter of 300 km to 1800 km. At a distance of 300 km, the field of view of AMIE (5.3 deg x 5.3 deg) corresponds to 27 km. The pixel size for the 1024 x 1024 CCD is therefore 27 m at pericenter. The South polar region had been proposed as the focus of European lunar activities by the Lunar Science Advisory Group of ESA on the following grounds: 1. The possibility of ice deposits was already considered in 1995. This has now been confirmed by the results of the Lunar Prospector neutron spectrometer, although contrarily to the expectations from Clementine the reservoir may be larger at the North pole. 2. The South pole is on the rim of a major geologic feature discovered by Clementine, the Aitken (our South polar) basin, more than 1500 km in diameter, the largest such feature on the Moon. It penetrated very deep into the farside crust, as witnessed by the contamination by mantle material, but was not filled up by lava flows as was the case for similar features on the near side. There is therefore a strong interest in investigating at close range the mineralogical composition of ejecta which provide a vertical sounding of the farside crust down to several ten km. AMIE will directly contribute to the characterisation of surface mineralogy and geology, in combination with other elements of the payload.

  17. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Vincenzi, Donald (Technical Monitor)

    2002-01-01

    One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR studies (telescopic and laboratory) have demonstrated that much of the carbon in the interstellar medium (ISM) is in complex organic species of a variety of types, but the distribution, abundance, and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEAST mission concept designed to conduct IR spectroscopic observations to detect and identify these materials to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. Systematic studies include the observation of planetary nebulae and stellar outflows, protostellar objects, Solar System Objects, and galaxies, and multiple lines of sight through dense molecular clouds and the diffuse ISM. ABE will also search for evidence of D enrichment in complex molecules in all these environments. The mission is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cryogenic cross-dispersed spectrographs that share a single common slit. The 3 spectrometers each measure single spectral octaves (2.5-5, 5-10, 10-20 microns) and together cover the entire 2.5 - 20 micron region simultaneously. The spectrometers use state-of-the-art 1024x1024 pixel detectors, with a single InSb array for the 2.5-5 micron region and two Si:As arrays for the 5-10 and 10-20 micron regions. The spectral resolution is wavelength dependent but is greater than 2000 across the entire spectral range. ABE would operate in a heliocentric, Earth drift-away orbit and is designed to take maximum advantage of this environment for cooling, thermal stability, and mission lifetime. ABE would have a core science mission lasting approximately 1.5 years.

  18. Preliminary status of POLICAN: A near-infrared imaging polarimeter

    NASA Astrophysics Data System (ADS)

    Devaraj, R.; Luna, A.; Carrasco, L.; Mayya, Y. D.

    2015-10-01

    POLICAN is a near-infrared (J, H, K) imaging polarimeter developed for the Cananea near infrared camera (CANICA) at the 2.1m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located at Cananea, Sonora, México. The camera has a 1024 x 1024 HgCdTe detector (HAWAII array) with a plate scale of 0.32 arcsec/pixel providing a field of view of 5.5 x 5.5 arcmin. POLICAN is mounted externally to CANICA for narrow-field (f/12) linear polarimetric observations. It consists of a rotating super achromatic (1-2.7μm) half waveplate and a fixed wire-grid polarizer as the analyzer. The light is modulated by setting the half waveplate at different angles (0°, 22.5°, 45°, 67.5°) and linear combinations of the Stokes parameters (I, Q and U) are obtained. Image reduction and removal of instrumental polarization consist of dark noise subtraction, polarimetric flat fielding and background sky subtraction. Polarimetric calibration is performed by observing polarization standards available in the literature. The astrometry correction is performed by matching common stars with the Two Micron All Sky Survey. POLICAN's bright and limiting magnitudes are approximately 6th and 16th magnitude, which correspond to saturation and photon noise, respectively. POLICAN currently achieves a polarimetric accuracy about 3.0% and polarization angle uncertainties within 3°. Preliminary observations of star forming regions are being carried out in order to study their magnetic field properties.

  19. Micro-CT images reconstruction and 3D visualization for small animal studying

    NASA Astrophysics Data System (ADS)

    Gong, Hui; Liu, Qian; Zhong, Aijun; Ju, Shan; Fang, Quan; Fang, Zheng

    2005-01-01

    A small-animal x-ray micro computed tomography (micro-CT) system has been constructed to screen laboratory small animals and organs. The micro-CT system consists of dual fiber-optic taper-coupled CCD detectors with a field-of-view of 25x50 mm2, a microfocus x-ray source, a rotational subject holder. For accurate localization of rotation center, coincidence between the axis of rotation and centre of image was studied by calibration with a polymethylmethacrylate cylinder. Feldkamp"s filtered back-projection cone-beam algorithm is adopted for three-dimensional reconstruction on account of the effective corn-beam angle is 5.67° of the micro-CT system. 200x1024x1024 matrix data of micro-CT is obtained with the magnification of 1.77 and pixel size of 31x31μm2. In our reconstruction software, output image size of micro-CT slices data, magnification factor and rotation sample degree can be modified in the condition of different computational efficiency and reconstruction region. The reconstructed image matrix data is processed and visualization by Visualization Toolkit (VTK). Data parallelism of VTK is performed in surface rendering of reconstructed data in order to improve computing speed. Computing time of processing a 512x512x512 matrix datasets is about 1/20 compared with serial program when 30 CPU is used. The voxel size is 54x54x108 μm3. The reconstruction and 3-D visualization images of laboratory rat ear are presented.

  20. Design and fabrication of the New Horizons Long-Range Reconnaissance Imager

    NASA Astrophysics Data System (ADS)

    Conard, S. J.; Azad, F.; Boldt, J. D.; Cheng, A.; Cooper, K. A.; Darlington, E. H.; Grey, M. P.; Hayes, J. R.; Hogue, P.; Kosakowski, K. E.; Magee, T.; Morgan, M. F.; Rossano, E.; Sampath, D.; Schlemm, C.; Weaver, H. A.

    2005-09-01

    The LOng-Range Reconnaissance Imager (LORRI) is an instrument that was designed, fabricated, and qualified for the New Horizons mission to the outermost planet Pluto, its giant satellite Charon, and the Kuiper Belt, which is the vast belt of icy bodies extending roughly from Neptune's orbit out to 50 astronomical units (AU). New Horizons is being prepared for launch in January 2006 as the inaugural mission in NASA's New Frontiers program. This paper provides an overview of the efforts to produce LORRI. LORRI is a narrow angle (field of view=0.29°), high resolution (instantaneous field of view = 4.94 μrad), Ritchey-Chretien telescope with a 20.8 cm diameter primary mirror, a focal length of 263 cm, and a three lens field-flattening assembly. A 1024 x 1024 pixel (optically active region), back-thinned, backside-illuminated charge-coupled device (CCD) detector (model CCD 47-20 from E2V Technologies) is located at the telescope focal plane and is operated in standard frame-transfer mode. LORRI does not have any color filters; it provides panchromatic imaging over a wide bandpass that extends approximately from 350 nm to 850 nm. A unique aspect of LORRI is the extreme thermal environment, as the instrument is situated inside a near room temperature spacecraft, while pointing primarily at cold space. This environment forced the use of a silicon carbide optical system, which is designed to maintain focus over the operating temperature range without a focus adjustment mechanism. Another challenging aspect of the design is that the spacecraft will be thruster stabilized (no reaction wheels), which places stringent limits on the available exposure time and the optical throughput needed to accomplish the high-resolution observations required. LORRI was designed and fabricated by a combined effort of The Johns Hopkins University Applied Physics Laboratory (APL) and SSG Precision Optronics Incorporated (SSG).

  1. A Prototype Micro-Angiographic Fluoroscope and Its Application in Animal Studies

    PubMed Central

    Wu, Ye; Rudin, Stephen; Bednarek, Daniel R.

    2011-01-01

    In order to satisfy the high resolution (3 to 10 cycles/mm) imaging requirements in neurovascular image-guided interventional (IGI) procedures, a micro-angiographic fluoroscope (MAF) is being developed to enable both rapid sequence angiography (15 fps) at high exposure levels (hundreds of μR/frame) as well as fluoroscopy at high frame rates (30 fps) and low exposure levels (5 to 20 μR/frame). The prototype MAF consists of a 350-μm-thick CsI(Tl) scintillator coupled by a 2:1 fiber-optical taper to an 18 mm diameter variable-gain light image intensifier with two-stage microchannel plate (MCP) viewed by a 12-bit, 1024x1024, 30 fps CCD camera with digital interface board. The optical set-up enables variation of effective pixel-size from 31 to 50 micron. The first frame lag of the MAF in fluoroscopic 30 fps mode (2:1 binning) was less than 0.8% at exposures of 5-23 μR/frame. MTF, NPS, and DQE in angiographic mode were measured for IEC standard spectrum RQA 5. At spatial frequencies of 4 and 10 cycles/mm the MTF was 14% and 1.5%, and the DQE was 12% and 1.2%, respectively, while the DQE(0) was 60%. Acquisition software was developed to acquire 15 fps angiography and 30 fps fluoroscopy for real-time dark field and flat field correction or real-time roadmapping. Images obtained with the MAF in small animal IGI procedures are demonstrated. The linearity versus x-ray intensity and MCP working range effects has been studied. We plan to expand the current 3.6 cm diameter field of view to 6 cm in the next model of the MAF. PMID:21311727

  2. Thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

    NASA Astrophysics Data System (ADS)

    Savic, N.; Bergbreiter, L.; Breuer, J.; La Rosa, A.; Macchiolo, A.; Nisius, R.; Terzo, S.

    2017-02-01

    The ATLAS experiment will undergo a major upgrade of the tracker system in view of the high luminosity phase of the LHC (HL-LHC) foreseen to start around 2025. Thin planar pixel modules are promising candidates to instrument the new pixel system, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. New designs of the pixel cells, with an optimized biasing structure, have been implemented in n-in-p planar pixel productions with sensor thicknesses of 270 μm. Using beam tests, the gain in hit efficiency is investigated as a function of the received irradiation fluence. The outlook for future thin planar pixel sensor productions will be discussed, with a focus on thin sensors with a thickness of 100 and 150 μm and a novel design with the optimized biasing structure and small pixel cells (50×50 and 25×100 μm2). These dimensions are foreseen for the new ATLAS read-out chip in 65 nm CMOS technology and the fine segmentation will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. To predict the performance of 50×50 μm2 pixels at high η, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle with respect to the short pixel direction. Results on cluster shapes, charge collection- and hit efficiency will be shown.

  3. Pixelized Device Control Actuators for Large Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter

    2009-01-01

    A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.

  4. No Pixel Left Behind - Peeling Away NASA's Satellite Swaths

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Boller, R. A.; Schmaltz, J. E.; Roberts, J. T.; Alarcon, C.; Huang, T.; McGann, M.; Murphy, K. J.

    2014-12-01

    Discovery and identification of Earth Science products should not be the majority effort of scientific research. Search aides based on text metadata go to great lengths to simplify this process. However, the process is still cumbersome and requires too much data download and analysis to down select to valid products. The EOSDIS Global Imagery Browse Services (GIBS) is attempting to improve this process by providing "visual metadata" in the form of full-resolution visualizations representing geophysical parameters taken directly fromt he data. Through the use of accompanying interpretive information such as color legends and the natural visual processing of the human eye, researchers are able to search and filter through data products in a more natural and efficient way. The GIBS "visual metadata" products are generated as representations of Level 3 data or as temporal composites of the Level 2 granule- or swath-based data products projected across a geographic or polar region. Such an approach allows for low-latency tiled access to pre-generated imagery products. For many GIBS users, the resulting image suffices for a basic representation of the underlying data. However, composite imagery presents an insurmountable problem: for areas of spatial overlap within the composite, only one observation is visually represented. This is especially problematic in the polar regions where a significant portion of sensed data is "lost." In response to its user community, the GIBS team coordinated with its stakeholders to begin developing an approach to ensure that there is "no pixel left behind." In this presentation we will discuss the use cases and requirements guiding our efforts, considerations regarding standards compliance and interoperability, and near term goals. We will also discuss opportunities to actively engage with the GIBS team on this topic to continually improve our services.

  5. Efficient implementation of the adaptive scale pixel decomposition algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Bhatnagar, S.; Rau, U.; Zhang, M.

    2016-08-01

    Context. Most popular algorithms in use to remove the effects of a telescope's point spread function (PSF) in radio astronomy are variants of the CLEAN algorithm. Most of these algorithms model the sky brightness using the delta-function basis, which results in undesired artefacts when used to image extended emission. The adaptive scale pixel decomposition (Asp-Clean) algorithm models the sky brightness on a scale-sensitive basis and thus gives a significantly better imaging performance when imaging fields that contain both resolved and unresolved emission. Aims: However, the runtime cost of Asp-Clean is higher than that of scale-insensitive algorithms. In this paper, we identify the most expensive step in the original Asp-Clean algorithm and present an efficient implementation of it, which significantly reduces the computational cost while keeping the imaging performance comparable to the original algorithm. The PSF sidelobe levels of modern wide-band telescopes are significantly reduced, allowing us to make approximations to reduce the computational cost, which in turn allows for the deconvolution of larger images on reasonable timescales. Methods: As in the original algorithm, scales in the image are estimated through function fitting. Here we introduce an analytical method to model extended emission, and a modified method for estimating the initial values used for the fitting procedure, which ultimately leads to a lower computational cost. Results: The new implementation was tested with simulated EVLA data and the imaging performance compared well with the original Asp-Clean algorithm. Tests show that the current algorithm can recover features at different scales with lower computational cost.

  6. The Mixed Pixels Estimation for LANDSAT7 Images Using the Non-linear Model and the Filtering of the Neighborhood Pixels

    NASA Astrophysics Data System (ADS)

    Ito, Seiji; Oguro, Yoshinari

    The aim of this paper is estimation of the mixture ratios for the categories in the remotely sensed images. The number of the categories is two: "Vegetation" and "Non-vegetation". The conventional method had been estimated by using the linear model, but this model is not suitable for an optical sensor. It is necessary to append the non-linear terms to consider the reflective characteristics. The pixels are affected by reflection from the neighborhood pixels, since the method for considering the neighborhood pixels should be proposed to increase the estimation accuracies. In this paper, the method using the non-linear mixed pixel model and the filtering for considering the neighborhood pixels has proposed. In order to show the effec-tiveness of the model and the filtering in the proposed method, the several simulations have done. The results of the simulations have been evaluated quantitatively by calculating the correlation coefficients between the results and the model answers which are created by using aerial photographs (higher resolution images) previously. From the results the proposed method is better than the conventional method, since the correlation coefficients of the conventional method, the proposed methods (only the non-linear model, and the non-linear model + the neighborhood filtering) are 0.157, 0.344 and 0.718 respectively.

  7. WFC3/IR Reference Pixel Characterization #1: Comparison of Bias Subtraction Methods

    NASA Astrophysics Data System (ADS)

    Hilbert, B.

    2012-03-01

    In this first of two ISRs about the WFC3/IR reference pixel performance, we compare five different methods for using the reference pixels on the detector to remove bias signal from the measured signal in the light-sensitive science pixels. None of these methods produce a significant improvement over the current approach in the calwf3 calibration pipeline. We also note the existence of an extra signal in addition to the bias signal in the inboard reference pixels. Thought to be a "signal memory", this signal was observed in ground tests of early, non-flight detectors but was thought not to be present in the current flight detector. The extra signal does not degrade the WFC3/IR calibration. Large (~100DN), long-lasting (~weeks) signal jumps in a subset of the reference pixels as well as nearby science pixels were also observed. A subsequent ISR will report on efforts to characterize these jumps and the long-term behavior of the reference pixels.

  8. Development of a mixed pixel filter for improved dimension estimation using AMCW laser scanner

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Sohn, Hoon; Cheng, Jack C. P.

    2016-09-01

    Accurate dimension estimation is desired in many fields, but the traditional dimension estimation methods are time-consuming and labor-intensive. In the recent decades, 3D laser scanners have become popular for dimension estimation due to their high measurement speed and accuracy. Nonetheless, scan data obtained by amplitude-modulated continuous-wave (AMCW) laser scanners suffer from erroneous data called mixed pixels, which can influence the accuracy of dimension estimation. This study develops a mixed pixel filter for improved dimension estimation using AMCW laser scanners. The distance measurement of mixed pixels is firstly formulated based on the working principle of laser scanners. Then, a mixed pixel filter that can minimize the classification errors between valid points and mixed pixels is developed. Validation experiments were conducted to verify the formulation of the distance measurement of mixed pixels and to examine the performance of the proposed mixed pixel filter. Experimental results show that, for a specimen with dimensions of 840 mm × 300 mm, the overall errors of the dimensions estimated after applying the proposed filter are 1.9 mm and 1.0 mm for two different scanning resolutions, respectively. These errors are much smaller than the errors (4.8 mm and 3.5 mm) obtained by the scanner's built-in filter.

  9. Improving Photometry and Stellar Signal Preservation with Pixel-Level Systematic Error Correction

    NASA Technical Reports Server (NTRS)

    Kolodzijczak, Jeffrey J.; Smith, Jeffrey C.; Jenkins, Jon M.

    2013-01-01

    The Kepler Mission has demonstrated that excellent stellar photometric performance can be achieved using apertures constructed from optimally selected CCD pixels. The clever methods used to correct for systematic errors, while very successful, still have some limitations in their ability to extract long-term trends in stellar flux. They also leave poorly correlated bias sources, such as drifting moiré pattern, uncorrected. We will illustrate several approaches where applying systematic error correction algorithms to the pixel time series, rather than the co-added raw flux time series, provide significant advantages. Examples include, spatially localized determination of time varying moiré pattern biases, greater sensitivity to radiation-induced pixel sensitivity drops (SPSDs), improved precision of co-trending basis vectors (CBV), and a means of distinguishing the stellar variability from co-trending terms even when they are correlated. For the last item, the approach enables physical interpretation of appropriately scaled coefficients derived in the fit of pixel time series to the CBV as linear combinations of various spatial derivatives of the pixel response function (PRF). We demonstrate that the residuals of a fit of soderived pixel coefficients to various PRF-related components can be deterministically interpreted in terms of physically meaningful quantities, such as the component of the stellar flux time series which is correlated with the CBV, as well as, relative pixel gain, proper motion and parallax. The approach also enables us to parameterize and assess the limiting factors in the uncertainties in these quantities.

  10. Simultaneous real-time visible and infrared video with single-pixel detectors

    NASA Astrophysics Data System (ADS)

    Edgar, Matthew. P.; Gibson, Graham M.; Bowman, Richard W.; Sun, Baoqing; Radwell, Neal; Mitchell, Kevin J.; Welsh, Stephen S.; Padgett, Miles J.

    2015-05-01

    Conventional cameras rely upon a pixelated sensor to provide spatial resolution. An alternative approach replaces the sensor with a pixelated transmission mask encoded with a series of binary patterns. Combining knowledge of the series of patterns and the associated filtered intensities, measured by single-pixel detectors, allows an image to be deduced through data inversion. In this work we extend the concept of a ‘single-pixel camera’ to provide continuous real-time video at 10 Hz , simultaneously in the visible and short-wave infrared, using an efficient computer algorithm. We demonstrate our camera for imaging through smoke, through a tinted screen, whilst performing compressive sampling and recovering high-resolution detail by arbitrarily controlling the pixel-binning of the masks. We anticipate real-time single-pixel video cameras to have considerable importance where pixelated sensors are limited, allowing for low-cost, non-visible imaging systems in applications such as night-vision, gas sensing and medical diagnostics.

  11. Fast distributed large-pixel-count hologram computation using a GPU cluster.

    PubMed

    Pan, Yuechao; Xu, Xuewu; Liang, Xinan

    2013-09-10

    Large-pixel-count holograms are one essential part for big size holographic three-dimensional (3D) display, but the generation of such holograms is computationally demanding. In order to address this issue, we have built a graphics processing unit (GPU) cluster with 32.5 Tflop/s computing power and implemented distributed hologram computation on it with speed improvement techniques, such as shared memory on GPU, GPU level adaptive load balancing, and node level load distribution. Using these speed improvement techniques on the GPU cluster, we have achieved 71.4 times computation speed increase for 186M-pixel holograms. Furthermore, we have used the approaches of diffraction limits and subdivision of holograms to overcome the GPU memory limit in computing large-pixel-count holograms. 745M-pixel and 1.80G-pixel holograms were computed in 343 and 3326 s, respectively, for more than 2 million object points with RGB colors. Color 3D objects with 1.02M points were successfully reconstructed from 186M-pixel hologram computed in 8.82 s with all the above three speed improvement techniques. It is shown that distributed hologram computation using a GPU cluster is a promising approach to increase the computation speed of large-pixel-count holograms for large size holographic display.

  12. Development of the Continuous Acquisition Pixel (CAP) sensor for high luminosity lepton colliders

    NASA Astrophysics Data System (ADS)

    Varner, G.; Aihara, H.; Barbero, M.; Bozek, A.; Browder, T.; Hazumi, M.; Kennedy, J.; Martin, E.; Mueller, J.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Stanič, S.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.; Yang, Q.; Yarema, R.

    2006-09-01

    A future higher luminosity B-factory detector and concept study detectors for the proposed International Linear Collider require precision vertex reconstruction while coping with high track densities and radiation exposures. Compared with current silicon strip and hybrid pixels, a significant reduction in the overall detector material thickness is needed to achieve the desired vertex resolution. Considerable progress in the development of thin CMOS-based Monolithic Active Pixel Sensors (MAPS) in recent years makes them a viable technology option and feasibility studies are being actively pursued. The most serious concerns are their radiation hardness and their readout speed. To address these, several prototypes denoted as the Continuous Acquisition Pixel (CAP) sensors have been developed and tested. The latest of the CAP sensor prototypes is CAP3, designed in the TSMC 0.25 μm process with a 5-deep Correlated Double Sample (CDS) pair pipeline in each pixel. A setup with several CAP3 sensors is under evaluation to assess the performance of a full-scale pixel readout system running at realistic readout speed. Given the similarity in the occupancy numbers and hit throughput requirements, per unit area, between a Belle vertex detector upgradation and the requirements for a future ILC pixel detector, this effort can be considered a small-scale functioning prototype for such a future system. The results and plans for the next stages of R&D towards a full Belle Pixel Vertex Detector (PVD) are presented.

  13. Model-based optimization of near-field binary-pixelated beam shapers.

    PubMed

    Dorrer, C; Hassett, J

    2017-02-01

    The optimization of components that rely on spatially dithered distributions of transparent or opaque pixels and an imaging system with far-field filtering for transmission control is demonstrated. The binary-pixel distribution can be iteratively optimized to lower an error function that takes into account the design transmission and the characteristics of the required far-field filter. Simulations using a design transmission chosen in the context of high-energy lasers show that the beam-fluence modulation at an image plane can be reduced by a factor of 2, leading to performance similar to using a non-optimized spatial-dithering algorithm with pixels of size reduced by a factor of 2 without the additional fabrication complexity or cost. The optimization process preserves the pixel distribution statistical properties. Analysis shows that the optimized pixel distribution starting from a high-noise distribution defined by a random-draw algorithm should be more resilient to fabrication errors than the optimized pixel distributions starting from a low-noise, error-diffusion algorithm, while leading to similar beam-shaping performance. This is confirmed by experimental results obtained with various pixel distributions and induced fabrication errors.

  14. Analysis of filtering techniques and image quality in pixel duplicated images

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; McLauchlan, Lifford

    2009-08-01

    When images undergo filtering operations, valuable information can be lost besides the intended noise or frequencies due to averaging of neighboring pixels. When the image is enlarged by duplicating pixels, such filtering effects can be reduced and more information retained, which could be critical when analyzing image content automatically. Analysis of retinal images could reveal many diseases at early stage as long as minor changes that depart from a normal retinal scan can be identified and enhanced. In this paper, typical filtering techniques are applied to an early stage diabetic retinopathy image which has undergone digital pixel duplication. The same techniques are applied to the original images for comparison. The effects of filtering are then demonstrated for both pixel duplicated and original images to show the information retention capability of pixel duplication. Image quality is computed based on published metrics. Our analysis shows that pixel duplication is effective in retaining information on smoothing operations such as mean filtering in the spatial domain, as well as lowpass and highpass filtering in the frequency domain, based on the filter window size. Blocking effects due to image compression and pixel duplication become apparent in frequency analysis.

  15. Automatic Extraction of Closed Pixel Clusters for Target Cueing in Hyperspectral Images

    SciTech Connect

    Paglieroni, D W; Perkins, D E

    2001-06-05

    Traditional algorithms for automatic target cueing (ATC) in hyperspectral images, such as the RX algorithm, treat anomaly detection as a simple hypothesis testing problem. Each decision threshold gives rise to a different set of anomalous pixels. The clustered Rx algorithm generates target cues by grouping anomalous pixels into spatial clusters, and retaining only those clusters that satisfy target specific spatial constraints. It produces one set of target cues for each of several decision thresholds, and conservatively requires {Omicron}(K{sup 2}) operations per pixel, where K is the number of spectral bands (which varies from hundreds to thousands in hyperspectral images). A novel ATC algorithm, known as ''Pixel Cluster Cueing'' (PCC), is discussed. PCC groups pixels into clusters based on spectral similarity and spatial proximity, and then selects only those clusters that satisfy target-specific spatial constraints as target cues. PCC requires only {Omicron}(K) operations per pixel, and it produces only one set of target cues because it is not an anomaly detection algorithm, i.e., it does not use a decision threshold to classify individual pixels as anomalies. PCC is compared both computationally and statistically to the RX algorithm.

  16. Model-based optimization of near-field binary-pixelated beam shapers

    DOE PAGES

    Dorrer, C.; Hassett, J.

    2017-01-23

    The optimization of components that rely on spatially dithered distributions of transparent or opaque pixels and an imaging system with far-field filtering for transmission control is demonstrated. The binary-pixel distribution can be iteratively optimized to lower an error function that takes into account the design transmission and the characteristics of the required far-field filter. Simulations using a design transmission chosen in the context of high-energy lasers show that the beam-fluence modulation at an image plane can be reduced by a factor of 2, leading to performance similar to using a non-optimized spatial-dithering algorithm with pixels of size reduced by amore » factor of 2 without the additional fabrication complexity or cost. The optimization process preserves the pixel distribution statistical properties. Analysis shows that the optimized pixel distribution starting from a high-noise distribution defined by a random-draw algorithm should be more resilient to fabrication errors than the optimized pixel distributions starting from a low-noise, error-diffusion algorithm, while leading to similar beamshaping performance. Furthermore, this is confirmed by experimental results obtained with various pixel distributions and induced fabrication errors.« less

  17. Design, optimization and evaluation of a "smart" pixel sensor array for low-dose digital radiography

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Liu, Xinghui; Ou, Hai; Chen, Jun

    2016-04-01

    Amorphous silicon (a-Si:H) thin-film transistors (TFTs) have been widely used to build flat-panel X-ray detectors for digital radiography (DR). As the demand for low-dose X-ray imaging grows, a detector with high signal-to-noise-ratio (SNR) pixel architecture emerges. "Smart" pixel is intended to use a dual-gate photosensitive TFT for sensing, storage, and switch. It differs from a conventional passive pixel sensor (PPS) and active pixel sensor (APS) in that all these three functions are combined into one device instead of three separate units in a pixel. Thus, it is expected to have high fill factor and high spatial resolution. In addition, it utilizes the amplification effect of the dual-gate photosensitive TFT to form a one-transistor APS that leads to a potentially high SNR. This paper addresses the design, optimization and evaluation of the smart pixel sensor and array for low-dose DR. We will design and optimize the smart pixel from the scintillator to TFT levels and validate it through optical and electrical simulation and experiments of a 4x4 sensor array.

  18. New CMOS digital pixel sensor architecture dedicated to a visual cortical implant

    NASA Astrophysics Data System (ADS)

    Trépanier, Annie; Trépanier, Jean-Luc; Sawan, Mohamad; Audet, Yves

    2004-10-01

    A CMOS image sensor with pixel level analog to digital conversion is presented. Each 16μm x 16μm pixel area contains a photodiode, with a fill factor of 22%, a comparator and an 8-bit DRAM, resulting in a total of 44 transistors per pixel. A digital to analog converter is used to deliver a voltage reference to compare with the pixel voltage for the analog to digital conversion. This sensor is required by a visual cortical stimulator, primarily to capture the image which is dedicated to stimulate the visual cortex of a blind patient. An active range finder system will be added to the implant, requiring the difference information between two images, in order to obtain the 3D information useful to the patient. For this purpose, three selectable operation modes are combined in the same pixel circuit. The linear integration, resulting from image capture at multiple exposure times, allows a high intrascene dynamic range. Random accessibility, in space and time, of the array of sensors is possible with the logarithmic mode. And the new differential mode makes the difference between two consecutive images. The circuit of a pixel has been fabricated in CMOS 0.18μm technology and it is under test to validate the full operation of the 3 modes. Also, a matrix of 45 x 90 pixels is currently being implemented for fabrication.

  19. Specification of hierarchical-model-based fast quarter-pixel motion estimation

    NASA Astrophysics Data System (ADS)

    Cho, Junsang; Suh, Jung W.; Jeon, Gwanggil; Jeong, Jechang

    2010-06-01

    We propose a robust and fast quarter-pixel motion estimation algorithm. This algorithm is an advanced version of the previously proposed model-based quarter-pixel motion estimation (MBQME). MBQME has many advantages in computational complexity, running speed, and hardware implementations. But it has the problem that it does not find the quarter-pixel positions that locate beyond the half-pixel positions. That is one of limitations of model-based motion estimation methods, and it leads to both peak-SNR degradation and bit-rate increase. To solve this problem, we propose a hierarchical mathematical model with minimum interpolations. Through this model, we can determine a motion vector at every quarter-pixel point, which is perfectly compatible with the quarter-pixel motion estimation method within international video coding standards such as MPEG-4 and H.264/AVC. The simulation results show that the proposed method yields almost the same or even better peak-SNR performance than that of full-search quarter-pixel motion estimation, with much lower computational complexity.

  20. The upgraded Pixel Detector of the ATLAS Experiment for Run 2 at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Backhaus, M.

    2016-09-01

    During Run 1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This included the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally, a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore, a new readout chip and two new sensor technologies (planar and 3D) are used in the IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanical support and a CO2 based cooling system. This paper describes the improvements achieved during the maintenance of the existing Pixel Detector as well as the performance of the IBL during the construction and commissioning phase. Additionally, first results obtained during the LHC Run 2 demonstrating the distinguished tracking performance of the new Four Layer ATLAS Pixel Detector are presented.

  1. Human vision-based algorithm to hide defective pixels in LCDs

    NASA Astrophysics Data System (ADS)

    Kimpe, Tom; Coulier, Stefaan; Van Hoey, Gert

    2006-02-01

    Producing displays without pixel defects or repairing defective pixels is technically not possible at this moment. This paper presents a new approach to solve this problem: defects are made invisible for the user by using image processing algorithms based on characteristics of the human eye. The performance of this new algorithm has been evaluated using two different methods. First of all the theoretical response of the human eye was analyzed on a series of images and this before and after applying the defective pixel compensation algorithm. These results show that indeed it is possible to mask a defective pixel. A second method was to perform a psycho-visual test where users were asked whether or not a defective pixel could be perceived. The results of these user tests also confirm the value of the new algorithm. Our "defective pixel correction" algorithm can be implemented very efficiently and cost-effectively as pixel-dataprocessing algorithms inside the display in for instance an FPGA, a DSP or a microprocessor. The described techniques are also valid for both monochrome and color displays ranging from high-quality medical displays to consumer LCDTV applications.

  2. Charge Loss and Charge Sharing Measurements for Two Different Pixelated Cadmium-Zinc-Telluride Detectors

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    As part of ongoing research at Marshall Space Flight Center, Cadmium-Zinc- Telluride (CdZnTe) pixilated detectors are being developed for use at the focal plane of the High Energy Replicated Optics (HERO) telescope. HERO requires a 64x64 pixel array with a spatial resolution of around 200 microns (with a 6m focal length) and high energy resolution (< 2% at 60keV). We are currently testing smaller arrays as a necessary first step towards this goal. In this presentation, we compare charge sharing and charge loss measurements between two devices that differ both electronically and geometrically. The first device consists of a 1-mm-thick piece of CdZnTe that is sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). The signal is read out using discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe that is sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). Instead of using discrete preamplifiers, the crystal is bonded to an ASIC that provides all of the front-end electronics to each of the 256 pixels. what degree the bias voltage (i.e. the electric field) and hence the drift and diffusion coefficients affect our measurements. Further, we compare the measured results with simulated results and discuss to

  3. Development of n-in-p pixel modules for the ATLAS upgrade at HL-LHC

    NASA Astrophysics Data System (ADS)

    Macchiolo, A.; Nisius, R.; Savic, N.; Terzo, S.

    2016-09-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 μm thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of 14 ×1015 neq /cm2 . The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50×50 and 25×100 μm2) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region after irradiation. For this purpose the performance of different layouts have been compared in FE-I4 compatible sensors at various fluence levels by using beam test data. Highly segmented sensors will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. In order to reproduce the performance of 50×50 μm2 pixels at high pseudo-rapidity values, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle (80°) with respect to the short pixel direction. Results on cluster shapes, charge collection and hit efficiency will be shown.

  4. Signal modeling of charge sharing effect in simple pixelated CdZnTe detector

    NASA Astrophysics Data System (ADS)

    Kim, Jae Cheon; Kaye, William R.; He, Zhong

    2014-05-01

    In order to study the energy resolution degradation in 3D position-sensitive pixelated CdZnTe (CZT) detectors, a detailed detector system modeling package has been developed and used to analyze the detector performance. A 20 × 20 × 15 mm3 CZT crystal with an 11 × 11 simple-pixel anode array and a 1.72 mm pixel pitch was modeled. The VAS UM/TAT4 Application Specific Integrated Circuitry (ASIC) was used for signal read-out. Components of the simulation package include gamma-ray interactions with the CZT crystal, charge induction, electronic noise, pulse shaping, and ASIC triggering procedures. The charge induction model considers charge drift, trapping, diffusion, and sharing between pixels. This system model is used to determine the effects of electron cloud sharing, weighting potential non-uniformity, and weighting potential cross-talk which produce non-uniform signal responses for different gamma-ray interaction positions and ultimately degrade energy resolution. The effect of the decreased weighting potential underneath the gap between pixels on the total pulse amplitude of events has been studied. The transient signals induced by electron clouds collected near the gap between pixels may generate false signals, and the measured amplitude can be even greater than the photopeak. As the number of pixels that collect charge increases, the probability of side-neighbor events due to charge sharing significantly increases. If side-neighbor events are not corrected appropriately, the energy resolution of pixelated CZT detectors in multiple-pixel events degrades rapidly.

  5. HST/WFC3 Characteristics: gain, post-flash stability, UVIS low-sensitivity pixels, persistence, IR flats and bad pixel table

    NASA Astrophysics Data System (ADS)

    Gunning, Heather C.; Baggett, Sylvia; Gosmeyer, Catherine M.; Long, Knox S.; Ryan, Russell E.; MacKenty, John W.; Durbin, Meredith

    2015-08-01

    The Wide Field Camera 3 (WFC3) is a fourth-generation imaging instrument on the Hubble Space Telescope (HST). Installed in May 2009, WFC3 is comprised of two observational channels covering wavelengths from UV/Visible (UVIS) to infrared (IR); both have been performing well on-orbit. We discuss the gain stability of both WFC3 channel detectors from ground testing through present day. For UVIS, we detail a low-sensitivity pixel population that evolves during the time between anneals, but is largely reset by the annealing procedure. We characterize the post-flash LED lamp stability, used and recommended to mitigate CTE effects for observations with less than 12e-/pixel backgrounds. We present mitigation options for IR persistence during and after observations. Finally, we give an overview on the construction of the IR flats and provide updates on the bad pixel table.

  6. Development of planar pixel modules for the ATLAS high luminosity LHC tracker upgrade

    NASA Astrophysics Data System (ADS)

    Allport, P. P.; Ashby, J.; Bates, R. L.; Blue, A.; Burdin, S.; Buttar, C. M.; Casse, G.; Dervan, P.; Doonan, K.; Forshaw, D.; Lipp, J.; McMullen, T.; Pater, J.; Stewart, A.; Tsurin, I.

    2014-11-01

    The high-luminosity LHC will present significant challenges for tracking systems. ATLAS is preparing to upgrade the entire tracking system, which will include a significantly larger pixel detector. This paper reports on the development of large area planar detectors for the outer pixel layers and the pixel endcaps. Large area sensors have been fabricated and mounted onto 4 FE-I4 readout ASICs, the so-called quad-modules, and their performance evaluated in the laboratory and testbeam. Results from characterisation of sensors prior to assembly, experience with module assembly, including bump-bonding and results from laboratory and testbeam studies are presented.

  7. 18k Channels single photon counting readout circuit for hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Maj, P.; Grybos, P.; Szczygiel, R.; Zoladz, M.; Sakumura, T.; Tsuji, Y.

    2013-01-01

    We have performed measurements of an integrated circuit named PXD18k designed for hybrid pixel semiconductor detectors used in X-ray imaging applications. The PXD18k integrated circuit, fabricated in CMOS 180 nm technology, has dimensions of 9.64 mm×20 mm and contains approximately 26 million transistors. The core of the IC is a matrix of 96×192 pixels with 100 μm×100 μm pixel size. Each pixel works in a single photon counting mode. A single pixel contains two charge sensitive amplifiers with Krummenacher feedback scheme, two shapers, two discriminators (with independent thresholds A and B) and two 16-bit ripple counters. The data are read out via eight low voltage differential signaling (LVDS) outputs with 100 Mbps rate. The power consumption is dominated by analog blocks and it is about 23 μW/pixel. The effective peaking time at the discriminator input is 30 ns and is mainly determined by the time constants of the charge sensitive amplifier (CSA). The gain is equal to 42.5 μV/e- and the equivalent noise charge is 168 e- rms (with bump-bonded silicon pixel detector). Thanks to the use of trim DACs in each pixel, the effective threshold spread at the discriminator input is only 1.79 mV. The dead time of the front end electronics for a standard setting is 172 ns (paralyzable model). In the standard readout mode (when the data collection time is separated from the time necessary to readout data from the chip) the PXD18k IC works with two energy thresholds per pixel. The PXD18k can also be operated in the continuous readout mode (with a zero dead time) where one can select the number of bits readout from each pixel to optimize the PXD18k frame rate. For example, for reading out 16 bits/pixel the frame rate is 2.7 kHz and for 4 bits/pixel it rises to 7.1 kHz.

  8. A MCM-D-type module for the ATLAS pixel detector

    SciTech Connect

    Becks, K.H.; Beyne, E.; Ehrmann, O.; Gerlach, P.; Gregor, I.M.; Pieters, P.; Toepper, M.; Truzzi, C.; Wolf, J.

    1999-12-01

    For the ATLAS experiment at the planned Large Hadron Collider LHC at CERN hybrid pixel detectors are being built as innermost layers of the inner tracking detector system. Modules are the basic building blocks of the ATLAS pixel detector. A module consists of a sensor tile with an active area of 16.4 mm x 60.4 mm, 16 read out IC's, each serving 24 x 160 pixel unit cells, a module controller chip, an optical transceiver and the local signal interconnection and power distribution busses. The dies are attached by flip-chip assembly to the sensor diodes and the local busses.

  9. Restoration of hot pixels in digital imagers using lossless approximation techniques

    NASA Astrophysics Data System (ADS)

    Hadar, O.; Shleifer, A.; Cohen, E.; Dotan, Y.

    2015-09-01

    During the last twenty years, digital imagers have spread into industrial and everyday devices, such as satellites, security cameras, cell phones, laptops and more. "Hot pixels" are the main defects in remote digital cameras. In this paper we prove an improvement of existing restoration methods that use (solely or as an auxiliary tool) some average of the surrounding single pixel, such as the method of the Chapman-Koren study 1,2. The proposed method uses the CALIC algorithm and adapts it to a full use of the surrounding pixels.

  10. Dynamically reconfigurable framework for pixel-level visible light communication projector

    NASA Astrophysics Data System (ADS)

    Zhou, Leijie; Fukushima, Shogo; Naemura, Takeshi

    2014-03-01

    We have developed the Pixel-level Visible Light Communication (PVLC) projector based on the DLP (Digital Light Processing) system. The projector can embed invisible data pixel by pixel into a visible image to realize augmented reality applications. However, it cannot update either invisible or visible contents in real time. In order to solve the problem, we improve the projector so that a PC can dynamically control the system and enable us to achieve a high-frame-rate feature by resolution conversion. This paper proposes the system framework and the design method for the dynamically reconfigurable PVLC projector.

  11. Monolithic integration of individually addressable light-emitting diode color pixels

    NASA Astrophysics Data System (ADS)

    Chung, Kunook; Sui, Jingyang; Demory, Brandon; Teng, Chu-Hsiang; Ku, Pei-Cheng

    2017-03-01

    Monolithic integration of individually addressable light-emitting diode (LED) color pixels is reported. The integration is enabled by local strain engineering. The use of a nanostructured active region comprising one or more nanopillars allows color tuning across the visible spectrum. In the current work, integration of amber, green, and blue pixels is demonstrated. The nanopillar LEDs exhibit an electrical performance comparable to that of a conventional thin-film LED fabricated on the same wafer. The proposed platform uses only standard epitaxy and a similar process flow as a conventional LED. It is also shown that the emission intensity can be linearly tuned without shifting the color coordinate of individual pixels.

  12. Qualification of the modules for the Phase 1 upgrade of the CMS forward pixel detector

    NASA Astrophysics Data System (ADS)

    Sandoval Gonzalez, Irving; CMS Collaboration

    2017-01-01

    The innermost component of the Compact Muon Solenoid (CMS) detector, the silicon pixel tracker, will be replaced by a new device in early 2017 to cope with the significant increase in instantaneous luminosity expected for the remainder of Run 2 of the Large Hadron Collider. The upgraded detector is composed of two subcomponents: the barrel pixel (BPIX) and the forward pixel (FPIX). In this work, we describe the testing and calibration procedures that the FPIX detector subcomponents underwent as well as the quality assurance criteria used for selecting the best detector modules for the final installation. NSF

  13. Automated procedures for the assembly of the CMS Phase 1 upgrade pixel modules

    NASA Astrophysics Data System (ADS)

    Wade, Alex; CMS Collaboration

    2016-03-01

    The Phase 1 upgrade of the pixel tracker for the CMS experiment requires the assembly of approximately 1000 modules consisting of pixel sensors bump bonded to readout chips. The precision assembly of modules in this volume is made possible using several robotic processes for dispensing epoxy,positioning of sensor components, automatic wire-bonding and robotic deposition of elastomer for wire bond encapsulation. We will describe the these processes in detail, along with the measurements that quanitfy the quality of assembled modules, and describe the subsequent steps in which the sensor modules are used in the construction of the Phase 1 pixel tracker. With support from USCMS.

  14. Thinking in Pixels: An Editing System for Electronic Texts.

    ERIC Educational Resources Information Center

    Kuhlenschmidt, Sally; Mosby, Charmaine

    2001-01-01

    Explores implications of increased publication options and examines conceptual distinctions among Fixed-Format, Electronic, and Meta-media Editors. Proposes a keyboard editing/commenting technique that will work across platforms and software programs and in every mode of electronic communication including simple e-mail. Suggests an increased…

  15. Metallicity of the Intergalactic Medium Using Pixel Statistics. IV. Oxygen

    NASA Astrophysics Data System (ADS)

    Aguirre, Anthony; Dow-Hygelund, Corey; Schaye, Joop; Theuns, Tom

    2008-12-01

    We have studied the abundance of oxygen in the IGM by analyzing O VI, C IV, Si IV, and H I pixel optical depths derived from a set of high-quality VLT and Keck spectra of 17 QSOs at 2.1lesssim zlesssim 3.6. Comparing ratios τO VI/τC IV(τC IV) to those in realistic, synthetic spectra drawn from a hydrodynamical simulation and comparing to existing constraints on [Si/C] places strong constraints on the ultraviolet background (UVB) model using weak priors on allowed values of [Si/O]: for example, a quasar-only background yields [ Si/O ] ≈ 1.4, which is highly inconsistent with the [ Si/O ] ≈ 0 expected from nucleosynthetic yields and with observations of metal-poor stars. Assuming a fiducial quasar+galaxy UVB consistent with these constraints yields a primary result that [ O/C ] = 0.66 +/- 0.06 +/- 0.2; this result pertains to gas with overdensity δ gtrsim 2. Consistent results are obtained by similarly comparing τO VI/τH I(τH I) and τO VI/τSi IV(τSi IV) to simulation values, and also by directly ionization-correcting τO VI/τH I as a function of τH I into [O/H] as a function of density. Subdividing the sample reveals no evidence for evolution, but low- and high-τH I samples are inconsistent, suggesting either density dependence of [O/C] or—more likely—prevalence of collisionally ionized gas at high density. Based on public data obtained from the ESP archive of observations from the UVES spectrograph at the VLT, Paranal, Chile, and on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The W. M. Keck Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  16. 640 x 512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, Sumith V.; Hill, Cory J.; Ting, David Z.; Liu, John K.; Rafol, Sir B.; Blazejewski, Edward R.; Mumolo, Jason M.; Keo, Sam A.; Krishna, Sanjay; Chang, Y. -C.; Shott, Craig A.

    2007-01-01

    Epitaxially grown self-assembled. InAs-InGaAs-GaAs quantum dots (QDs) are exploited for the development of large-format long-wavelength infrared focal plane arrays (FPAs). The dot-in-a-well (DWELL) structures were experimentally shown to absorb both 45 degrees and normal incident light, therefore, a reflection grating structure was used to enhance the quantum efficiency. The devices exhibit peak responsivity out to 8.1 micrometers, with peak detectivity reaching approximately 1 X 10(exp 10) Jones at 77 K. The devices were fabricated into the first long-wavelength 640 x 512 pixel QD infrared photodetector imaging FPA, which has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60-K operating temperature.

  17. Planar pixel sensors for the ATLAS tracker upgrade at HL-LHC

    NASA Astrophysics Data System (ADS)

    Gallrapp, C.; Atlas Planar Pixel Sensor R&D Project

    2013-08-01

    The ATLAS Planar Pixel Sensor R&D Project is a collaboration of 17 institutes and more than 80 scientists. Their goal is to explore the operation of planar pixel sensors for the tracker upgrade at the High Luminosity-Large Hadron Collider (HL-LHC). This work will give a summary of the achievements on radiation studies with n-in-n and n-in-p pixel sensors, bump-bonded to ATLAS FE-I3 and FE-I4 read-out chips. The summary includes results from tests with radioactive sources and tracking efficiencies extracted from test beam measurements. Analysis results of 2 ×1016neqcm-2 and 1 ×1016neqcm-2 (1 MeV neutron equivalent) irradiated n-in-n and n-in-p modules confirm the operation of planar pixel sensors for future applications.

  18. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    NASA Astrophysics Data System (ADS)

    Viel, Simon; Banerjee, Swagato; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian; Wu, Sau Lan; Yang, Hongtao

    2016-09-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN.

  19. Characteristics of Monolithically Integrated InGaAs Active Pixel Image Array

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Cunningham, T. J.; Pain, B.; Lange, M. J.; Olsen, G. H.

    1999-01-01

    Switching and amplifying characteristics of a newly developed monolithic InGaAs Active Pixel Imager Array are presented. The sensor array is fabricated from InGaAs material epitaxially deposited on an InP substrate.

  20. Charge Transfer Efficiency modeling/measurements as function of CCD pixel rate

    SciTech Connect

    Yates, G.J.; Gallegos, R.; Pena, C.; Zagarino, P.

    1995-09-01

    We have developed a charge transport model for predicting the effects on Charge Transfer Efficiency (CTE) of Charge Coupled Devices (CCDs) as functions of number of transfers, pixel charge flow rate, and magnitude in the CCD`s vertical and horizontal charge transport mediums. The model uses carrier lifetime an mobility criteria to establish pixel speed arguments and limitations for various CCD architectures. The model is compared with experimental measurements obtained using strobed single pixel illumination and a variant of the deferred charge tail technique while independently varying the CCD pixel rates for both the vertical and horizontal readout phases. The generic model is discussed and applied to specific real CCDs. Agreement between predicted performance and actual measured performance is presented.